mm: add vfree_atomic()
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02 23#include <linux/list.h>
4da56b99 24#include <linux/notifier.h>
db64fe02
NP
25#include <linux/rbtree.h>
26#include <linux/radix-tree.h>
27#include <linux/rcupdate.h>
f0aa6617 28#include <linux/pfn.h>
89219d37 29#include <linux/kmemleak.h>
60063497 30#include <linux/atomic.h>
3b32123d 31#include <linux/compiler.h>
32fcfd40 32#include <linux/llist.h>
0f616be1 33#include <linux/bitops.h>
3b32123d 34
1da177e4
LT
35#include <asm/uaccess.h>
36#include <asm/tlbflush.h>
2dca6999 37#include <asm/shmparam.h>
1da177e4 38
dd56b046
MG
39#include "internal.h"
40
32fcfd40
AV
41struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44};
45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47static void __vunmap(const void *, int);
48
49static void free_work(struct work_struct *w)
50{
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
57 }
58}
59
db64fe02 60/*** Page table manipulation functions ***/
b221385b 61
1da177e4
LT
62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63{
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71}
72
db64fe02 73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
74{
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
b9820d8f
TK
81 if (pmd_clear_huge(pmd))
82 continue;
1da177e4
LT
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87}
88
db64fe02 89static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
90{
91 pud_t *pud;
92 unsigned long next;
93
94 pud = pud_offset(pgd, addr);
95 do {
96 next = pud_addr_end(addr, end);
b9820d8f
TK
97 if (pud_clear_huge(pud))
98 continue;
1da177e4
LT
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103}
104
db64fe02 105static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
106{
107 pgd_t *pgd;
108 unsigned long next;
1da177e4
LT
109
110 BUG_ON(addr >= end);
111 pgd = pgd_offset_k(addr);
1da177e4
LT
112 do {
113 next = pgd_addr_end(addr, end);
114 if (pgd_none_or_clear_bad(pgd))
115 continue;
116 vunmap_pud_range(pgd, addr, next);
117 } while (pgd++, addr = next, addr != end);
1da177e4
LT
118}
119
120static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 121 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
122{
123 pte_t *pte;
124
db64fe02
NP
125 /*
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
128 */
129
872fec16 130 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
131 if (!pte)
132 return -ENOMEM;
133 do {
db64fe02
NP
134 struct page *page = pages[*nr];
135
136 if (WARN_ON(!pte_none(*pte)))
137 return -EBUSY;
138 if (WARN_ON(!page))
1da177e4
LT
139 return -ENOMEM;
140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 141 (*nr)++;
1da177e4
LT
142 } while (pte++, addr += PAGE_SIZE, addr != end);
143 return 0;
144}
145
db64fe02
NP
146static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
148{
149 pmd_t *pmd;
150 unsigned long next;
151
152 pmd = pmd_alloc(&init_mm, pud, addr);
153 if (!pmd)
154 return -ENOMEM;
155 do {
156 next = pmd_addr_end(addr, end);
db64fe02 157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
158 return -ENOMEM;
159 } while (pmd++, addr = next, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pud_t *pud;
167 unsigned long next;
168
169 pud = pud_alloc(&init_mm, pgd, addr);
170 if (!pud)
171 return -ENOMEM;
172 do {
173 next = pud_addr_end(addr, end);
db64fe02 174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pud++, addr = next, addr != end);
177 return 0;
178}
179
db64fe02
NP
180/*
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
183 *
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 */
8fc48985
TH
186static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 pgprot_t prot, struct page **pages)
1da177e4
LT
188{
189 pgd_t *pgd;
190 unsigned long next;
2e4e27c7 191 unsigned long addr = start;
db64fe02
NP
192 int err = 0;
193 int nr = 0;
1da177e4
LT
194
195 BUG_ON(addr >= end);
196 pgd = pgd_offset_k(addr);
1da177e4
LT
197 do {
198 next = pgd_addr_end(addr, end);
db64fe02 199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 200 if (err)
bf88c8c8 201 return err;
1da177e4 202 } while (pgd++, addr = next, addr != end);
db64fe02 203
db64fe02 204 return nr;
1da177e4
LT
205}
206
8fc48985
TH
207static int vmap_page_range(unsigned long start, unsigned long end,
208 pgprot_t prot, struct page **pages)
209{
210 int ret;
211
212 ret = vmap_page_range_noflush(start, end, prot, pages);
213 flush_cache_vmap(start, end);
214 return ret;
215}
216
81ac3ad9 217int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
218{
219 /*
ab4f2ee1 220 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
223 */
224#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr = (unsigned long)x;
226 if (addr >= MODULES_VADDR && addr < MODULES_END)
227 return 1;
228#endif
229 return is_vmalloc_addr(x);
230}
231
48667e7a 232/*
add688fb 233 * Walk a vmap address to the struct page it maps.
48667e7a 234 */
add688fb 235struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
236{
237 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 238 struct page *page = NULL;
48667e7a 239 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 240
7aa413de
IM
241 /*
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
244 */
73bdf0a6 245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 246
48667e7a 247 if (!pgd_none(*pgd)) {
db64fe02 248 pud_t *pud = pud_offset(pgd, addr);
48667e7a 249 if (!pud_none(*pud)) {
db64fe02 250 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 251 if (!pmd_none(*pmd)) {
db64fe02
NP
252 pte_t *ptep, pte;
253
48667e7a
CL
254 ptep = pte_offset_map(pmd, addr);
255 pte = *ptep;
256 if (pte_present(pte))
add688fb 257 page = pte_page(pte);
48667e7a
CL
258 pte_unmap(ptep);
259 }
260 }
261 }
add688fb 262 return page;
48667e7a 263}
add688fb 264EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
265
266/*
add688fb 267 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 268 */
add688fb 269unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 270{
add688fb 271 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 272}
add688fb 273EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 274
db64fe02
NP
275
276/*** Global kva allocator ***/
277
db64fe02
NP
278#define VM_VM_AREA 0x04
279
db64fe02 280static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
281/* Export for kexec only */
282LIST_HEAD(vmap_area_list);
80c4bd7a 283static LLIST_HEAD(vmap_purge_list);
89699605
NP
284static struct rb_root vmap_area_root = RB_ROOT;
285
286/* The vmap cache globals are protected by vmap_area_lock */
287static struct rb_node *free_vmap_cache;
288static unsigned long cached_hole_size;
289static unsigned long cached_vstart;
290static unsigned long cached_align;
291
ca23e405 292static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
293
294static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 295{
db64fe02
NP
296 struct rb_node *n = vmap_area_root.rb_node;
297
298 while (n) {
299 struct vmap_area *va;
300
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
cef2ac3f 304 else if (addr >= va->va_end)
db64fe02
NP
305 n = n->rb_right;
306 else
307 return va;
308 }
309
310 return NULL;
311}
312
313static void __insert_vmap_area(struct vmap_area *va)
314{
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
318
319 while (*p) {
170168d0 320 struct vmap_area *tmp_va;
db64fe02
NP
321
322 parent = *p;
170168d0
NK
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
db64fe02 325 p = &(*p)->rb_left;
170168d0 326 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
327 p = &(*p)->rb_right;
328 else
329 BUG();
330 }
331
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
334
4341fa45 335 /* address-sort this list */
db64fe02
NP
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
343}
344
345static void purge_vmap_area_lazy(void);
346
4da56b99
CW
347static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
348
db64fe02
NP
349/*
350 * Allocate a region of KVA of the specified size and alignment, within the
351 * vstart and vend.
352 */
353static struct vmap_area *alloc_vmap_area(unsigned long size,
354 unsigned long align,
355 unsigned long vstart, unsigned long vend,
356 int node, gfp_t gfp_mask)
357{
358 struct vmap_area *va;
359 struct rb_node *n;
1da177e4 360 unsigned long addr;
db64fe02 361 int purged = 0;
89699605 362 struct vmap_area *first;
db64fe02 363
7766970c 364 BUG_ON(!size);
891c49ab 365 BUG_ON(offset_in_page(size));
89699605 366 BUG_ON(!is_power_of_2(align));
db64fe02 367
4da56b99
CW
368 might_sleep_if(gfpflags_allow_blocking(gfp_mask));
369
db64fe02
NP
370 va = kmalloc_node(sizeof(struct vmap_area),
371 gfp_mask & GFP_RECLAIM_MASK, node);
372 if (unlikely(!va))
373 return ERR_PTR(-ENOMEM);
374
7f88f88f
CM
375 /*
376 * Only scan the relevant parts containing pointers to other objects
377 * to avoid false negatives.
378 */
379 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
380
db64fe02
NP
381retry:
382 spin_lock(&vmap_area_lock);
89699605
NP
383 /*
384 * Invalidate cache if we have more permissive parameters.
385 * cached_hole_size notes the largest hole noticed _below_
386 * the vmap_area cached in free_vmap_cache: if size fits
387 * into that hole, we want to scan from vstart to reuse
388 * the hole instead of allocating above free_vmap_cache.
389 * Note that __free_vmap_area may update free_vmap_cache
390 * without updating cached_hole_size or cached_align.
391 */
392 if (!free_vmap_cache ||
393 size < cached_hole_size ||
394 vstart < cached_vstart ||
395 align < cached_align) {
396nocache:
397 cached_hole_size = 0;
398 free_vmap_cache = NULL;
399 }
400 /* record if we encounter less permissive parameters */
401 cached_vstart = vstart;
402 cached_align = align;
403
404 /* find starting point for our search */
405 if (free_vmap_cache) {
406 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 407 addr = ALIGN(first->va_end, align);
89699605
NP
408 if (addr < vstart)
409 goto nocache;
bcb615a8 410 if (addr + size < addr)
89699605
NP
411 goto overflow;
412
413 } else {
414 addr = ALIGN(vstart, align);
bcb615a8 415 if (addr + size < addr)
89699605
NP
416 goto overflow;
417
418 n = vmap_area_root.rb_node;
419 first = NULL;
420
421 while (n) {
db64fe02
NP
422 struct vmap_area *tmp;
423 tmp = rb_entry(n, struct vmap_area, rb_node);
424 if (tmp->va_end >= addr) {
db64fe02 425 first = tmp;
89699605
NP
426 if (tmp->va_start <= addr)
427 break;
428 n = n->rb_left;
429 } else
db64fe02 430 n = n->rb_right;
89699605 431 }
db64fe02
NP
432
433 if (!first)
434 goto found;
db64fe02 435 }
89699605
NP
436
437 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 438 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
439 if (addr + cached_hole_size < first->va_start)
440 cached_hole_size = first->va_start - addr;
248ac0e1 441 addr = ALIGN(first->va_end, align);
bcb615a8 442 if (addr + size < addr)
89699605
NP
443 goto overflow;
444
92ca922f 445 if (list_is_last(&first->list, &vmap_area_list))
89699605 446 goto found;
92ca922f 447
6219c2a2 448 first = list_next_entry(first, list);
db64fe02
NP
449 }
450
89699605
NP
451found:
452 if (addr + size > vend)
453 goto overflow;
db64fe02
NP
454
455 va->va_start = addr;
456 va->va_end = addr + size;
457 va->flags = 0;
458 __insert_vmap_area(va);
89699605 459 free_vmap_cache = &va->rb_node;
db64fe02
NP
460 spin_unlock(&vmap_area_lock);
461
61e16557 462 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
463 BUG_ON(va->va_start < vstart);
464 BUG_ON(va->va_end > vend);
465
db64fe02 466 return va;
89699605
NP
467
468overflow:
469 spin_unlock(&vmap_area_lock);
470 if (!purged) {
471 purge_vmap_area_lazy();
472 purged = 1;
473 goto retry;
474 }
4da56b99
CW
475
476 if (gfpflags_allow_blocking(gfp_mask)) {
477 unsigned long freed = 0;
478 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
479 if (freed > 0) {
480 purged = 0;
481 goto retry;
482 }
483 }
484
89699605 485 if (printk_ratelimit())
756a025f
JP
486 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
487 size);
89699605
NP
488 kfree(va);
489 return ERR_PTR(-EBUSY);
db64fe02
NP
490}
491
4da56b99
CW
492int register_vmap_purge_notifier(struct notifier_block *nb)
493{
494 return blocking_notifier_chain_register(&vmap_notify_list, nb);
495}
496EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
497
498int unregister_vmap_purge_notifier(struct notifier_block *nb)
499{
500 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
501}
502EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
503
db64fe02
NP
504static void __free_vmap_area(struct vmap_area *va)
505{
506 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
507
508 if (free_vmap_cache) {
509 if (va->va_end < cached_vstart) {
510 free_vmap_cache = NULL;
511 } else {
512 struct vmap_area *cache;
513 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
514 if (va->va_start <= cache->va_start) {
515 free_vmap_cache = rb_prev(&va->rb_node);
516 /*
517 * We don't try to update cached_hole_size or
518 * cached_align, but it won't go very wrong.
519 */
520 }
521 }
522 }
db64fe02
NP
523 rb_erase(&va->rb_node, &vmap_area_root);
524 RB_CLEAR_NODE(&va->rb_node);
525 list_del_rcu(&va->list);
526
ca23e405
TH
527 /*
528 * Track the highest possible candidate for pcpu area
529 * allocation. Areas outside of vmalloc area can be returned
530 * here too, consider only end addresses which fall inside
531 * vmalloc area proper.
532 */
533 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
534 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
535
14769de9 536 kfree_rcu(va, rcu_head);
db64fe02
NP
537}
538
539/*
540 * Free a region of KVA allocated by alloc_vmap_area
541 */
542static void free_vmap_area(struct vmap_area *va)
543{
544 spin_lock(&vmap_area_lock);
545 __free_vmap_area(va);
546 spin_unlock(&vmap_area_lock);
547}
548
549/*
550 * Clear the pagetable entries of a given vmap_area
551 */
552static void unmap_vmap_area(struct vmap_area *va)
553{
554 vunmap_page_range(va->va_start, va->va_end);
555}
556
cd52858c
NP
557static void vmap_debug_free_range(unsigned long start, unsigned long end)
558{
559 /*
f48d97f3
JK
560 * Unmap page tables and force a TLB flush immediately if pagealloc
561 * debugging is enabled. This catches use after free bugs similarly to
562 * those in linear kernel virtual address space after a page has been
563 * freed.
cd52858c 564 *
f48d97f3
JK
565 * All the lazy freeing logic is still retained, in order to minimise
566 * intrusiveness of this debugging feature.
cd52858c 567 *
f48d97f3
JK
568 * This is going to be *slow* (linear kernel virtual address debugging
569 * doesn't do a broadcast TLB flush so it is a lot faster).
cd52858c 570 */
f48d97f3
JK
571 if (debug_pagealloc_enabled()) {
572 vunmap_page_range(start, end);
573 flush_tlb_kernel_range(start, end);
574 }
cd52858c
NP
575}
576
db64fe02
NP
577/*
578 * lazy_max_pages is the maximum amount of virtual address space we gather up
579 * before attempting to purge with a TLB flush.
580 *
581 * There is a tradeoff here: a larger number will cover more kernel page tables
582 * and take slightly longer to purge, but it will linearly reduce the number of
583 * global TLB flushes that must be performed. It would seem natural to scale
584 * this number up linearly with the number of CPUs (because vmapping activity
585 * could also scale linearly with the number of CPUs), however it is likely
586 * that in practice, workloads might be constrained in other ways that mean
587 * vmap activity will not scale linearly with CPUs. Also, I want to be
588 * conservative and not introduce a big latency on huge systems, so go with
589 * a less aggressive log scale. It will still be an improvement over the old
590 * code, and it will be simple to change the scale factor if we find that it
591 * becomes a problem on bigger systems.
592 */
593static unsigned long lazy_max_pages(void)
594{
595 unsigned int log;
596
597 log = fls(num_online_cpus());
598
599 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
600}
601
602static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
603
0574ecd1
CH
604/*
605 * Serialize vmap purging. There is no actual criticial section protected
606 * by this look, but we want to avoid concurrent calls for performance
607 * reasons and to make the pcpu_get_vm_areas more deterministic.
608 */
609static DEFINE_SPINLOCK(vmap_purge_lock);
610
02b709df
NP
611/* for per-CPU blocks */
612static void purge_fragmented_blocks_allcpus(void);
613
3ee48b6a
CW
614/*
615 * called before a call to iounmap() if the caller wants vm_area_struct's
616 * immediately freed.
617 */
618void set_iounmap_nonlazy(void)
619{
620 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
621}
622
db64fe02
NP
623/*
624 * Purges all lazily-freed vmap areas.
db64fe02 625 */
0574ecd1 626static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 627{
80c4bd7a 628 struct llist_node *valist;
db64fe02 629 struct vmap_area *va;
cbb76676 630 struct vmap_area *n_va;
db64fe02
NP
631 int nr = 0;
632
0574ecd1 633 lockdep_assert_held(&vmap_purge_lock);
02b709df 634
80c4bd7a
CW
635 valist = llist_del_all(&vmap_purge_list);
636 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
637 if (va->va_start < start)
638 start = va->va_start;
639 if (va->va_end > end)
640 end = va->va_end;
80c4bd7a 641 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02 642 }
db64fe02 643
0574ecd1
CH
644 if (!nr)
645 return false;
db64fe02 646
0574ecd1
CH
647 atomic_sub(nr, &vmap_lazy_nr);
648 flush_tlb_kernel_range(start, end);
db64fe02 649
0574ecd1
CH
650 spin_lock(&vmap_area_lock);
651 llist_for_each_entry_safe(va, n_va, valist, purge_list)
652 __free_vmap_area(va);
653 spin_unlock(&vmap_area_lock);
654 return true;
db64fe02
NP
655}
656
496850e5
NP
657/*
658 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
659 * is already purging.
660 */
661static void try_purge_vmap_area_lazy(void)
662{
0574ecd1
CH
663 if (spin_trylock(&vmap_purge_lock)) {
664 __purge_vmap_area_lazy(ULONG_MAX, 0);
665 spin_unlock(&vmap_purge_lock);
666 }
496850e5
NP
667}
668
db64fe02
NP
669/*
670 * Kick off a purge of the outstanding lazy areas.
671 */
672static void purge_vmap_area_lazy(void)
673{
0574ecd1
CH
674 spin_lock(&vmap_purge_lock);
675 purge_fragmented_blocks_allcpus();
676 __purge_vmap_area_lazy(ULONG_MAX, 0);
677 spin_unlock(&vmap_purge_lock);
db64fe02
NP
678}
679
680/*
64141da5
JF
681 * Free a vmap area, caller ensuring that the area has been unmapped
682 * and flush_cache_vunmap had been called for the correct range
683 * previously.
db64fe02 684 */
64141da5 685static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 686{
80c4bd7a
CW
687 int nr_lazy;
688
689 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
690 &vmap_lazy_nr);
691
692 /* After this point, we may free va at any time */
693 llist_add(&va->purge_list, &vmap_purge_list);
694
695 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 696 try_purge_vmap_area_lazy();
db64fe02
NP
697}
698
b29acbdc
NP
699/*
700 * Free and unmap a vmap area
701 */
702static void free_unmap_vmap_area(struct vmap_area *va)
703{
704 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e
CH
705 unmap_vmap_area(va);
706 free_vmap_area_noflush(va);
b29acbdc
NP
707}
708
db64fe02
NP
709static struct vmap_area *find_vmap_area(unsigned long addr)
710{
711 struct vmap_area *va;
712
713 spin_lock(&vmap_area_lock);
714 va = __find_vmap_area(addr);
715 spin_unlock(&vmap_area_lock);
716
717 return va;
718}
719
db64fe02
NP
720/*** Per cpu kva allocator ***/
721
722/*
723 * vmap space is limited especially on 32 bit architectures. Ensure there is
724 * room for at least 16 percpu vmap blocks per CPU.
725 */
726/*
727 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
728 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
729 * instead (we just need a rough idea)
730 */
731#if BITS_PER_LONG == 32
732#define VMALLOC_SPACE (128UL*1024*1024)
733#else
734#define VMALLOC_SPACE (128UL*1024*1024*1024)
735#endif
736
737#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
738#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
739#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
740#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
741#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
742#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
743#define VMAP_BBMAP_BITS \
744 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
745 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
746 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
747
748#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
749
9b463334
JF
750static bool vmap_initialized __read_mostly = false;
751
db64fe02
NP
752struct vmap_block_queue {
753 spinlock_t lock;
754 struct list_head free;
db64fe02
NP
755};
756
757struct vmap_block {
758 spinlock_t lock;
759 struct vmap_area *va;
db64fe02 760 unsigned long free, dirty;
7d61bfe8 761 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
762 struct list_head free_list;
763 struct rcu_head rcu_head;
02b709df 764 struct list_head purge;
db64fe02
NP
765};
766
767/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
768static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
769
770/*
771 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
772 * in the free path. Could get rid of this if we change the API to return a
773 * "cookie" from alloc, to be passed to free. But no big deal yet.
774 */
775static DEFINE_SPINLOCK(vmap_block_tree_lock);
776static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
777
778/*
779 * We should probably have a fallback mechanism to allocate virtual memory
780 * out of partially filled vmap blocks. However vmap block sizing should be
781 * fairly reasonable according to the vmalloc size, so it shouldn't be a
782 * big problem.
783 */
784
785static unsigned long addr_to_vb_idx(unsigned long addr)
786{
787 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
788 addr /= VMAP_BLOCK_SIZE;
789 return addr;
790}
791
cf725ce2
RP
792static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
793{
794 unsigned long addr;
795
796 addr = va_start + (pages_off << PAGE_SHIFT);
797 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
798 return (void *)addr;
799}
800
801/**
802 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
803 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
804 * @order: how many 2^order pages should be occupied in newly allocated block
805 * @gfp_mask: flags for the page level allocator
806 *
807 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
808 */
809static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
810{
811 struct vmap_block_queue *vbq;
812 struct vmap_block *vb;
813 struct vmap_area *va;
814 unsigned long vb_idx;
815 int node, err;
cf725ce2 816 void *vaddr;
db64fe02
NP
817
818 node = numa_node_id();
819
820 vb = kmalloc_node(sizeof(struct vmap_block),
821 gfp_mask & GFP_RECLAIM_MASK, node);
822 if (unlikely(!vb))
823 return ERR_PTR(-ENOMEM);
824
825 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
826 VMALLOC_START, VMALLOC_END,
827 node, gfp_mask);
ddf9c6d4 828 if (IS_ERR(va)) {
db64fe02 829 kfree(vb);
e7d86340 830 return ERR_CAST(va);
db64fe02
NP
831 }
832
833 err = radix_tree_preload(gfp_mask);
834 if (unlikely(err)) {
835 kfree(vb);
836 free_vmap_area(va);
837 return ERR_PTR(err);
838 }
839
cf725ce2 840 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
841 spin_lock_init(&vb->lock);
842 vb->va = va;
cf725ce2
RP
843 /* At least something should be left free */
844 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
845 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 846 vb->dirty = 0;
7d61bfe8
RP
847 vb->dirty_min = VMAP_BBMAP_BITS;
848 vb->dirty_max = 0;
db64fe02 849 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
850
851 vb_idx = addr_to_vb_idx(va->va_start);
852 spin_lock(&vmap_block_tree_lock);
853 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
854 spin_unlock(&vmap_block_tree_lock);
855 BUG_ON(err);
856 radix_tree_preload_end();
857
858 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 859 spin_lock(&vbq->lock);
68ac546f 860 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 861 spin_unlock(&vbq->lock);
3f04ba85 862 put_cpu_var(vmap_block_queue);
db64fe02 863
cf725ce2 864 return vaddr;
db64fe02
NP
865}
866
db64fe02
NP
867static void free_vmap_block(struct vmap_block *vb)
868{
869 struct vmap_block *tmp;
870 unsigned long vb_idx;
871
db64fe02
NP
872 vb_idx = addr_to_vb_idx(vb->va->va_start);
873 spin_lock(&vmap_block_tree_lock);
874 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
875 spin_unlock(&vmap_block_tree_lock);
876 BUG_ON(tmp != vb);
877
64141da5 878 free_vmap_area_noflush(vb->va);
22a3c7d1 879 kfree_rcu(vb, rcu_head);
db64fe02
NP
880}
881
02b709df
NP
882static void purge_fragmented_blocks(int cpu)
883{
884 LIST_HEAD(purge);
885 struct vmap_block *vb;
886 struct vmap_block *n_vb;
887 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
888
889 rcu_read_lock();
890 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
891
892 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
893 continue;
894
895 spin_lock(&vb->lock);
896 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
897 vb->free = 0; /* prevent further allocs after releasing lock */
898 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
899 vb->dirty_min = 0;
900 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
901 spin_lock(&vbq->lock);
902 list_del_rcu(&vb->free_list);
903 spin_unlock(&vbq->lock);
904 spin_unlock(&vb->lock);
905 list_add_tail(&vb->purge, &purge);
906 } else
907 spin_unlock(&vb->lock);
908 }
909 rcu_read_unlock();
910
911 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
912 list_del(&vb->purge);
913 free_vmap_block(vb);
914 }
915}
916
02b709df
NP
917static void purge_fragmented_blocks_allcpus(void)
918{
919 int cpu;
920
921 for_each_possible_cpu(cpu)
922 purge_fragmented_blocks(cpu);
923}
924
db64fe02
NP
925static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
926{
927 struct vmap_block_queue *vbq;
928 struct vmap_block *vb;
cf725ce2 929 void *vaddr = NULL;
db64fe02
NP
930 unsigned int order;
931
891c49ab 932 BUG_ON(offset_in_page(size));
db64fe02 933 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
934 if (WARN_ON(size == 0)) {
935 /*
936 * Allocating 0 bytes isn't what caller wants since
937 * get_order(0) returns funny result. Just warn and terminate
938 * early.
939 */
940 return NULL;
941 }
db64fe02
NP
942 order = get_order(size);
943
db64fe02
NP
944 rcu_read_lock();
945 vbq = &get_cpu_var(vmap_block_queue);
946 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 947 unsigned long pages_off;
db64fe02
NP
948
949 spin_lock(&vb->lock);
cf725ce2
RP
950 if (vb->free < (1UL << order)) {
951 spin_unlock(&vb->lock);
952 continue;
953 }
02b709df 954
cf725ce2
RP
955 pages_off = VMAP_BBMAP_BITS - vb->free;
956 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
957 vb->free -= 1UL << order;
958 if (vb->free == 0) {
959 spin_lock(&vbq->lock);
960 list_del_rcu(&vb->free_list);
961 spin_unlock(&vbq->lock);
962 }
cf725ce2 963
02b709df
NP
964 spin_unlock(&vb->lock);
965 break;
db64fe02 966 }
02b709df 967
3f04ba85 968 put_cpu_var(vmap_block_queue);
db64fe02
NP
969 rcu_read_unlock();
970
cf725ce2
RP
971 /* Allocate new block if nothing was found */
972 if (!vaddr)
973 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 974
cf725ce2 975 return vaddr;
db64fe02
NP
976}
977
978static void vb_free(const void *addr, unsigned long size)
979{
980 unsigned long offset;
981 unsigned long vb_idx;
982 unsigned int order;
983 struct vmap_block *vb;
984
891c49ab 985 BUG_ON(offset_in_page(size));
db64fe02 986 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
987
988 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
989
db64fe02
NP
990 order = get_order(size);
991
992 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 993 offset >>= PAGE_SHIFT;
db64fe02
NP
994
995 vb_idx = addr_to_vb_idx((unsigned long)addr);
996 rcu_read_lock();
997 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
998 rcu_read_unlock();
999 BUG_ON(!vb);
1000
64141da5
JF
1001 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1002
db64fe02 1003 spin_lock(&vb->lock);
7d61bfe8
RP
1004
1005 /* Expand dirty range */
1006 vb->dirty_min = min(vb->dirty_min, offset);
1007 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1008
db64fe02
NP
1009 vb->dirty += 1UL << order;
1010 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1011 BUG_ON(vb->free);
db64fe02
NP
1012 spin_unlock(&vb->lock);
1013 free_vmap_block(vb);
1014 } else
1015 spin_unlock(&vb->lock);
1016}
1017
1018/**
1019 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1020 *
1021 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1022 * to amortize TLB flushing overheads. What this means is that any page you
1023 * have now, may, in a former life, have been mapped into kernel virtual
1024 * address by the vmap layer and so there might be some CPUs with TLB entries
1025 * still referencing that page (additional to the regular 1:1 kernel mapping).
1026 *
1027 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1028 * be sure that none of the pages we have control over will have any aliases
1029 * from the vmap layer.
1030 */
1031void vm_unmap_aliases(void)
1032{
1033 unsigned long start = ULONG_MAX, end = 0;
1034 int cpu;
1035 int flush = 0;
1036
9b463334
JF
1037 if (unlikely(!vmap_initialized))
1038 return;
1039
db64fe02
NP
1040 for_each_possible_cpu(cpu) {
1041 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1042 struct vmap_block *vb;
1043
1044 rcu_read_lock();
1045 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1046 spin_lock(&vb->lock);
7d61bfe8
RP
1047 if (vb->dirty) {
1048 unsigned long va_start = vb->va->va_start;
db64fe02 1049 unsigned long s, e;
b136be5e 1050
7d61bfe8
RP
1051 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1052 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1053
7d61bfe8
RP
1054 start = min(s, start);
1055 end = max(e, end);
db64fe02 1056
7d61bfe8 1057 flush = 1;
db64fe02
NP
1058 }
1059 spin_unlock(&vb->lock);
1060 }
1061 rcu_read_unlock();
1062 }
1063
0574ecd1
CH
1064 spin_lock(&vmap_purge_lock);
1065 purge_fragmented_blocks_allcpus();
1066 if (!__purge_vmap_area_lazy(start, end) && flush)
1067 flush_tlb_kernel_range(start, end);
1068 spin_unlock(&vmap_purge_lock);
db64fe02
NP
1069}
1070EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1071
1072/**
1073 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1074 * @mem: the pointer returned by vm_map_ram
1075 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1076 */
1077void vm_unmap_ram(const void *mem, unsigned int count)
1078{
65ee03c4 1079 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1080 unsigned long addr = (unsigned long)mem;
9c3acf60 1081 struct vmap_area *va;
db64fe02
NP
1082
1083 BUG_ON(!addr);
1084 BUG_ON(addr < VMALLOC_START);
1085 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1086 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02
NP
1087
1088 debug_check_no_locks_freed(mem, size);
cd52858c 1089 vmap_debug_free_range(addr, addr+size);
db64fe02 1090
9c3acf60 1091 if (likely(count <= VMAP_MAX_ALLOC)) {
db64fe02 1092 vb_free(mem, size);
9c3acf60
CH
1093 return;
1094 }
1095
1096 va = find_vmap_area(addr);
1097 BUG_ON(!va);
1098 free_unmap_vmap_area(va);
db64fe02
NP
1099}
1100EXPORT_SYMBOL(vm_unmap_ram);
1101
1102/**
1103 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1104 * @pages: an array of pointers to the pages to be mapped
1105 * @count: number of pages
1106 * @node: prefer to allocate data structures on this node
1107 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1108 *
36437638
GK
1109 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1110 * faster than vmap so it's good. But if you mix long-life and short-life
1111 * objects with vm_map_ram(), it could consume lots of address space through
1112 * fragmentation (especially on a 32bit machine). You could see failures in
1113 * the end. Please use this function for short-lived objects.
1114 *
e99c97ad 1115 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1116 */
1117void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1118{
65ee03c4 1119 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1120 unsigned long addr;
1121 void *mem;
1122
1123 if (likely(count <= VMAP_MAX_ALLOC)) {
1124 mem = vb_alloc(size, GFP_KERNEL);
1125 if (IS_ERR(mem))
1126 return NULL;
1127 addr = (unsigned long)mem;
1128 } else {
1129 struct vmap_area *va;
1130 va = alloc_vmap_area(size, PAGE_SIZE,
1131 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1132 if (IS_ERR(va))
1133 return NULL;
1134
1135 addr = va->va_start;
1136 mem = (void *)addr;
1137 }
1138 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1139 vm_unmap_ram(mem, count);
1140 return NULL;
1141 }
1142 return mem;
1143}
1144EXPORT_SYMBOL(vm_map_ram);
1145
4341fa45 1146static struct vm_struct *vmlist __initdata;
be9b7335
NP
1147/**
1148 * vm_area_add_early - add vmap area early during boot
1149 * @vm: vm_struct to add
1150 *
1151 * This function is used to add fixed kernel vm area to vmlist before
1152 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1153 * should contain proper values and the other fields should be zero.
1154 *
1155 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1156 */
1157void __init vm_area_add_early(struct vm_struct *vm)
1158{
1159 struct vm_struct *tmp, **p;
1160
1161 BUG_ON(vmap_initialized);
1162 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1163 if (tmp->addr >= vm->addr) {
1164 BUG_ON(tmp->addr < vm->addr + vm->size);
1165 break;
1166 } else
1167 BUG_ON(tmp->addr + tmp->size > vm->addr);
1168 }
1169 vm->next = *p;
1170 *p = vm;
1171}
1172
f0aa6617
TH
1173/**
1174 * vm_area_register_early - register vmap area early during boot
1175 * @vm: vm_struct to register
c0c0a293 1176 * @align: requested alignment
f0aa6617
TH
1177 *
1178 * This function is used to register kernel vm area before
1179 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1180 * proper values on entry and other fields should be zero. On return,
1181 * vm->addr contains the allocated address.
1182 *
1183 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1184 */
c0c0a293 1185void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1186{
1187 static size_t vm_init_off __initdata;
c0c0a293
TH
1188 unsigned long addr;
1189
1190 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1191 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1192
c0c0a293 1193 vm->addr = (void *)addr;
f0aa6617 1194
be9b7335 1195 vm_area_add_early(vm);
f0aa6617
TH
1196}
1197
db64fe02
NP
1198void __init vmalloc_init(void)
1199{
822c18f2
IK
1200 struct vmap_area *va;
1201 struct vm_struct *tmp;
db64fe02
NP
1202 int i;
1203
1204 for_each_possible_cpu(i) {
1205 struct vmap_block_queue *vbq;
32fcfd40 1206 struct vfree_deferred *p;
db64fe02
NP
1207
1208 vbq = &per_cpu(vmap_block_queue, i);
1209 spin_lock_init(&vbq->lock);
1210 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1211 p = &per_cpu(vfree_deferred, i);
1212 init_llist_head(&p->list);
1213 INIT_WORK(&p->wq, free_work);
db64fe02 1214 }
9b463334 1215
822c18f2
IK
1216 /* Import existing vmlist entries. */
1217 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1218 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1219 va->flags = VM_VM_AREA;
822c18f2
IK
1220 va->va_start = (unsigned long)tmp->addr;
1221 va->va_end = va->va_start + tmp->size;
dbda591d 1222 va->vm = tmp;
822c18f2
IK
1223 __insert_vmap_area(va);
1224 }
ca23e405
TH
1225
1226 vmap_area_pcpu_hole = VMALLOC_END;
1227
9b463334 1228 vmap_initialized = true;
db64fe02
NP
1229}
1230
8fc48985
TH
1231/**
1232 * map_kernel_range_noflush - map kernel VM area with the specified pages
1233 * @addr: start of the VM area to map
1234 * @size: size of the VM area to map
1235 * @prot: page protection flags to use
1236 * @pages: pages to map
1237 *
1238 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1239 * specify should have been allocated using get_vm_area() and its
1240 * friends.
1241 *
1242 * NOTE:
1243 * This function does NOT do any cache flushing. The caller is
1244 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1245 * before calling this function.
1246 *
1247 * RETURNS:
1248 * The number of pages mapped on success, -errno on failure.
1249 */
1250int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1251 pgprot_t prot, struct page **pages)
1252{
1253 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1254}
1255
1256/**
1257 * unmap_kernel_range_noflush - unmap kernel VM area
1258 * @addr: start of the VM area to unmap
1259 * @size: size of the VM area to unmap
1260 *
1261 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1262 * specify should have been allocated using get_vm_area() and its
1263 * friends.
1264 *
1265 * NOTE:
1266 * This function does NOT do any cache flushing. The caller is
1267 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1268 * before calling this function and flush_tlb_kernel_range() after.
1269 */
1270void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1271{
1272 vunmap_page_range(addr, addr + size);
1273}
81e88fdc 1274EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1275
1276/**
1277 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1278 * @addr: start of the VM area to unmap
1279 * @size: size of the VM area to unmap
1280 *
1281 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1282 * the unmapping and tlb after.
1283 */
db64fe02
NP
1284void unmap_kernel_range(unsigned long addr, unsigned long size)
1285{
1286 unsigned long end = addr + size;
f6fcba70
TH
1287
1288 flush_cache_vunmap(addr, end);
db64fe02
NP
1289 vunmap_page_range(addr, end);
1290 flush_tlb_kernel_range(addr, end);
1291}
93ef6d6c 1292EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1293
f6f8ed47 1294int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1295{
1296 unsigned long addr = (unsigned long)area->addr;
762216ab 1297 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1298 int err;
1299
f6f8ed47 1300 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1301
f6f8ed47 1302 return err > 0 ? 0 : err;
db64fe02
NP
1303}
1304EXPORT_SYMBOL_GPL(map_vm_area);
1305
f5252e00 1306static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1307 unsigned long flags, const void *caller)
cf88c790 1308{
c69480ad 1309 spin_lock(&vmap_area_lock);
cf88c790
TH
1310 vm->flags = flags;
1311 vm->addr = (void *)va->va_start;
1312 vm->size = va->va_end - va->va_start;
1313 vm->caller = caller;
db1aecaf 1314 va->vm = vm;
cf88c790 1315 va->flags |= VM_VM_AREA;
c69480ad 1316 spin_unlock(&vmap_area_lock);
f5252e00 1317}
cf88c790 1318
20fc02b4 1319static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1320{
d4033afd 1321 /*
20fc02b4 1322 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1323 * we should make sure that vm has proper values.
1324 * Pair with smp_rmb() in show_numa_info().
1325 */
1326 smp_wmb();
20fc02b4 1327 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1328}
1329
db64fe02 1330static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1331 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1332 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1333{
0006526d 1334 struct vmap_area *va;
db64fe02 1335 struct vm_struct *area;
1da177e4 1336
52fd24ca 1337 BUG_ON(in_interrupt());
1da177e4 1338 size = PAGE_ALIGN(size);
31be8309
OH
1339 if (unlikely(!size))
1340 return NULL;
1da177e4 1341
252e5c6e 1342 if (flags & VM_IOREMAP)
1343 align = 1ul << clamp_t(int, get_count_order_long(size),
1344 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1345
cf88c790 1346 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1347 if (unlikely(!area))
1348 return NULL;
1349
71394fe5
AR
1350 if (!(flags & VM_NO_GUARD))
1351 size += PAGE_SIZE;
1da177e4 1352
db64fe02
NP
1353 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1354 if (IS_ERR(va)) {
1355 kfree(area);
1356 return NULL;
1da177e4 1357 }
1da177e4 1358
d82b1d85 1359 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1360
1da177e4 1361 return area;
1da177e4
LT
1362}
1363
930fc45a
CL
1364struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1365 unsigned long start, unsigned long end)
1366{
00ef2d2f
DR
1367 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1368 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1369}
5992b6da 1370EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1371
c2968612
BH
1372struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1373 unsigned long start, unsigned long end,
5e6cafc8 1374 const void *caller)
c2968612 1375{
00ef2d2f
DR
1376 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1377 GFP_KERNEL, caller);
c2968612
BH
1378}
1379
1da177e4 1380/**
183ff22b 1381 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1382 * @size: size of the area
1383 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1384 *
1385 * Search an area of @size in the kernel virtual mapping area,
1386 * and reserved it for out purposes. Returns the area descriptor
1387 * on success or %NULL on failure.
1388 */
1389struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1390{
2dca6999 1391 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1392 NUMA_NO_NODE, GFP_KERNEL,
1393 __builtin_return_address(0));
23016969
CL
1394}
1395
1396struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1397 const void *caller)
23016969 1398{
2dca6999 1399 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1400 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1401}
1402
e9da6e99
MS
1403/**
1404 * find_vm_area - find a continuous kernel virtual area
1405 * @addr: base address
1406 *
1407 * Search for the kernel VM area starting at @addr, and return it.
1408 * It is up to the caller to do all required locking to keep the returned
1409 * pointer valid.
1410 */
1411struct vm_struct *find_vm_area(const void *addr)
83342314 1412{
db64fe02 1413 struct vmap_area *va;
83342314 1414
db64fe02
NP
1415 va = find_vmap_area((unsigned long)addr);
1416 if (va && va->flags & VM_VM_AREA)
db1aecaf 1417 return va->vm;
1da177e4 1418
1da177e4 1419 return NULL;
1da177e4
LT
1420}
1421
7856dfeb 1422/**
183ff22b 1423 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1424 * @addr: base address
1425 *
1426 * Search for the kernel VM area starting at @addr, and remove it.
1427 * This function returns the found VM area, but using it is NOT safe
1428 * on SMP machines, except for its size or flags.
1429 */
b3bdda02 1430struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1431{
db64fe02
NP
1432 struct vmap_area *va;
1433
1434 va = find_vmap_area((unsigned long)addr);
1435 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1436 struct vm_struct *vm = va->vm;
f5252e00 1437
c69480ad
JK
1438 spin_lock(&vmap_area_lock);
1439 va->vm = NULL;
1440 va->flags &= ~VM_VM_AREA;
1441 spin_unlock(&vmap_area_lock);
1442
dd32c279 1443 vmap_debug_free_range(va->va_start, va->va_end);
a5af5aa8 1444 kasan_free_shadow(vm);
dd32c279 1445 free_unmap_vmap_area(va);
dd32c279 1446
db64fe02
NP
1447 return vm;
1448 }
1449 return NULL;
7856dfeb
AK
1450}
1451
b3bdda02 1452static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1453{
1454 struct vm_struct *area;
1455
1456 if (!addr)
1457 return;
1458
e69e9d4a 1459 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1460 addr))
1da177e4 1461 return;
1da177e4
LT
1462
1463 area = remove_vm_area(addr);
1464 if (unlikely(!area)) {
4c8573e2 1465 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1466 addr);
1da177e4
LT
1467 return;
1468 }
1469
7511c3ed
JM
1470 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1471 debug_check_no_obj_freed(addr, get_vm_area_size(area));
9a11b49a 1472
1da177e4
LT
1473 if (deallocate_pages) {
1474 int i;
1475
1476 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1477 struct page *page = area->pages[i];
1478
1479 BUG_ON(!page);
4949148a 1480 __free_pages(page, 0);
1da177e4
LT
1481 }
1482
244d63ee 1483 kvfree(area->pages);
1da177e4
LT
1484 }
1485
1486 kfree(area);
1487 return;
1488}
bf22e37a
AR
1489
1490static inline void __vfree_deferred(const void *addr)
1491{
1492 /*
1493 * Use raw_cpu_ptr() because this can be called from preemptible
1494 * context. Preemption is absolutely fine here, because the llist_add()
1495 * implementation is lockless, so it works even if we are adding to
1496 * nother cpu's list. schedule_work() should be fine with this too.
1497 */
1498 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1499
1500 if (llist_add((struct llist_node *)addr, &p->list))
1501 schedule_work(&p->wq);
1502}
1503
1504/**
1505 * vfree_atomic - release memory allocated by vmalloc()
1506 * @addr: memory base address
1507 *
1508 * This one is just like vfree() but can be called in any atomic context
1509 * except NMIs.
1510 */
1511void vfree_atomic(const void *addr)
1512{
1513 BUG_ON(in_nmi());
1514
1515 kmemleak_free(addr);
1516
1517 if (!addr)
1518 return;
1519 __vfree_deferred(addr);
1520}
1521
1da177e4
LT
1522/**
1523 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1524 * @addr: memory base address
1525 *
183ff22b 1526 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1527 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1528 * NULL, no operation is performed.
1da177e4 1529 *
32fcfd40
AV
1530 * Must not be called in NMI context (strictly speaking, only if we don't
1531 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1532 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51
AM
1533 *
1534 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1da177e4 1535 */
b3bdda02 1536void vfree(const void *addr)
1da177e4 1537{
32fcfd40 1538 BUG_ON(in_nmi());
89219d37
CM
1539
1540 kmemleak_free(addr);
1541
32fcfd40
AV
1542 if (!addr)
1543 return;
bf22e37a
AR
1544 if (unlikely(in_interrupt()))
1545 __vfree_deferred(addr);
1546 else
32fcfd40 1547 __vunmap(addr, 1);
1da177e4 1548}
1da177e4
LT
1549EXPORT_SYMBOL(vfree);
1550
1551/**
1552 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1553 * @addr: memory base address
1554 *
1555 * Free the virtually contiguous memory area starting at @addr,
1556 * which was created from the page array passed to vmap().
1557 *
80e93eff 1558 * Must not be called in interrupt context.
1da177e4 1559 */
b3bdda02 1560void vunmap(const void *addr)
1da177e4
LT
1561{
1562 BUG_ON(in_interrupt());
34754b69 1563 might_sleep();
32fcfd40
AV
1564 if (addr)
1565 __vunmap(addr, 0);
1da177e4 1566}
1da177e4
LT
1567EXPORT_SYMBOL(vunmap);
1568
1569/**
1570 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1571 * @pages: array of page pointers
1572 * @count: number of pages to map
1573 * @flags: vm_area->flags
1574 * @prot: page protection for the mapping
1575 *
1576 * Maps @count pages from @pages into contiguous kernel virtual
1577 * space.
1578 */
1579void *vmap(struct page **pages, unsigned int count,
1580 unsigned long flags, pgprot_t prot)
1581{
1582 struct vm_struct *area;
65ee03c4 1583 unsigned long size; /* In bytes */
1da177e4 1584
34754b69
PZ
1585 might_sleep();
1586
4481374c 1587 if (count > totalram_pages)
1da177e4
LT
1588 return NULL;
1589
65ee03c4
GJM
1590 size = (unsigned long)count << PAGE_SHIFT;
1591 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
1592 if (!area)
1593 return NULL;
23016969 1594
f6f8ed47 1595 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1596 vunmap(area->addr);
1597 return NULL;
1598 }
1599
1600 return area->addr;
1601}
1da177e4
LT
1602EXPORT_SYMBOL(vmap);
1603
2dca6999
DM
1604static void *__vmalloc_node(unsigned long size, unsigned long align,
1605 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1606 int node, const void *caller);
e31d9eb5 1607static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1608 pgprot_t prot, int node)
1da177e4
LT
1609{
1610 struct page **pages;
1611 unsigned int nr_pages, array_size, i;
930f036b
DR
1612 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1613 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1da177e4 1614
762216ab 1615 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1616 array_size = (nr_pages * sizeof(struct page *));
1617
1618 area->nr_pages = nr_pages;
1619 /* Please note that the recursion is strictly bounded. */
8757d5fa 1620 if (array_size > PAGE_SIZE) {
976d6dfb 1621 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
3722e13c 1622 PAGE_KERNEL, node, area->caller);
286e1ea3 1623 } else {
976d6dfb 1624 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1625 }
1da177e4
LT
1626 area->pages = pages;
1627 if (!area->pages) {
1628 remove_vm_area(area->addr);
1629 kfree(area);
1630 return NULL;
1631 }
1da177e4
LT
1632
1633 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1634 struct page *page;
1635
4b90951c 1636 if (node == NUMA_NO_NODE)
7877cdcc 1637 page = alloc_page(alloc_mask);
930fc45a 1638 else
7877cdcc 1639 page = alloc_pages_node(node, alloc_mask, 0);
bf53d6f8
CL
1640
1641 if (unlikely(!page)) {
1da177e4
LT
1642 /* Successfully allocated i pages, free them in __vunmap() */
1643 area->nr_pages = i;
1644 goto fail;
1645 }
bf53d6f8 1646 area->pages[i] = page;
d0164adc 1647 if (gfpflags_allow_blocking(gfp_mask))
660654f9 1648 cond_resched();
1da177e4
LT
1649 }
1650
f6f8ed47 1651 if (map_vm_area(area, prot, pages))
1da177e4
LT
1652 goto fail;
1653 return area->addr;
1654
1655fail:
7877cdcc
MH
1656 warn_alloc(gfp_mask,
1657 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 1658 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1659 vfree(area->addr);
1660 return NULL;
1661}
1662
1663/**
d0a21265 1664 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1665 * @size: allocation size
2dca6999 1666 * @align: desired alignment
d0a21265
DR
1667 * @start: vm area range start
1668 * @end: vm area range end
1da177e4
LT
1669 * @gfp_mask: flags for the page level allocator
1670 * @prot: protection mask for the allocated pages
cb9e3c29 1671 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1672 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1673 * @caller: caller's return address
1da177e4
LT
1674 *
1675 * Allocate enough pages to cover @size from the page level
1676 * allocator with @gfp_mask flags. Map them into contiguous
1677 * kernel virtual space, using a pagetable protection of @prot.
1678 */
d0a21265
DR
1679void *__vmalloc_node_range(unsigned long size, unsigned long align,
1680 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1681 pgprot_t prot, unsigned long vm_flags, int node,
1682 const void *caller)
1da177e4
LT
1683{
1684 struct vm_struct *area;
89219d37
CM
1685 void *addr;
1686 unsigned long real_size = size;
1da177e4
LT
1687
1688 size = PAGE_ALIGN(size);
4481374c 1689 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1690 goto fail;
1da177e4 1691
cb9e3c29
AR
1692 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1693 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1694 if (!area)
de7d2b56 1695 goto fail;
1da177e4 1696
3722e13c 1697 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1698 if (!addr)
b82225f3 1699 return NULL;
89219d37 1700
f5252e00 1701 /*
20fc02b4
ZY
1702 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1703 * flag. It means that vm_struct is not fully initialized.
4341fa45 1704 * Now, it is fully initialized, so remove this flag here.
f5252e00 1705 */
20fc02b4 1706 clear_vm_uninitialized_flag(area);
f5252e00 1707
89219d37 1708 /*
7f88f88f
CM
1709 * A ref_count = 2 is needed because vm_struct allocated in
1710 * __get_vm_area_node() contains a reference to the virtual address of
1711 * the vmalloc'ed block.
89219d37 1712 */
7f88f88f 1713 kmemleak_alloc(addr, real_size, 2, gfp_mask);
89219d37
CM
1714
1715 return addr;
de7d2b56
JP
1716
1717fail:
7877cdcc
MH
1718 warn_alloc(gfp_mask,
1719 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 1720 return NULL;
1da177e4
LT
1721}
1722
d0a21265
DR
1723/**
1724 * __vmalloc_node - allocate virtually contiguous memory
1725 * @size: allocation size
1726 * @align: desired alignment
1727 * @gfp_mask: flags for the page level allocator
1728 * @prot: protection mask for the allocated pages
00ef2d2f 1729 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1730 * @caller: caller's return address
1731 *
1732 * Allocate enough pages to cover @size from the page level
1733 * allocator with @gfp_mask flags. Map them into contiguous
1734 * kernel virtual space, using a pagetable protection of @prot.
1735 */
1736static void *__vmalloc_node(unsigned long size, unsigned long align,
1737 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1738 int node, const void *caller)
d0a21265
DR
1739{
1740 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1741 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1742}
1743
930fc45a
CL
1744void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1745{
00ef2d2f 1746 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1747 __builtin_return_address(0));
930fc45a 1748}
1da177e4
LT
1749EXPORT_SYMBOL(__vmalloc);
1750
e1ca7788
DY
1751static inline void *__vmalloc_node_flags(unsigned long size,
1752 int node, gfp_t flags)
1753{
1754 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1755 node, __builtin_return_address(0));
1756}
1757
1da177e4
LT
1758/**
1759 * vmalloc - allocate virtually contiguous memory
1da177e4 1760 * @size: allocation size
1da177e4
LT
1761 * Allocate enough pages to cover @size from the page level
1762 * allocator and map them into contiguous kernel virtual space.
1763 *
c1c8897f 1764 * For tight control over page level allocator and protection flags
1da177e4
LT
1765 * use __vmalloc() instead.
1766 */
1767void *vmalloc(unsigned long size)
1768{
00ef2d2f
DR
1769 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1770 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1771}
1da177e4
LT
1772EXPORT_SYMBOL(vmalloc);
1773
e1ca7788
DY
1774/**
1775 * vzalloc - allocate virtually contiguous memory with zero fill
1776 * @size: allocation size
1777 * Allocate enough pages to cover @size from the page level
1778 * allocator and map them into contiguous kernel virtual space.
1779 * The memory allocated is set to zero.
1780 *
1781 * For tight control over page level allocator and protection flags
1782 * use __vmalloc() instead.
1783 */
1784void *vzalloc(unsigned long size)
1785{
00ef2d2f 1786 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1787 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1788}
1789EXPORT_SYMBOL(vzalloc);
1790
83342314 1791/**
ead04089
REB
1792 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1793 * @size: allocation size
83342314 1794 *
ead04089
REB
1795 * The resulting memory area is zeroed so it can be mapped to userspace
1796 * without leaking data.
83342314
NP
1797 */
1798void *vmalloc_user(unsigned long size)
1799{
1800 struct vm_struct *area;
1801 void *ret;
1802
2dca6999
DM
1803 ret = __vmalloc_node(size, SHMLBA,
1804 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1805 PAGE_KERNEL, NUMA_NO_NODE,
1806 __builtin_return_address(0));
2b4ac44e 1807 if (ret) {
db64fe02 1808 area = find_vm_area(ret);
2b4ac44e 1809 area->flags |= VM_USERMAP;
2b4ac44e 1810 }
83342314
NP
1811 return ret;
1812}
1813EXPORT_SYMBOL(vmalloc_user);
1814
930fc45a
CL
1815/**
1816 * vmalloc_node - allocate memory on a specific node
930fc45a 1817 * @size: allocation size
d44e0780 1818 * @node: numa node
930fc45a
CL
1819 *
1820 * Allocate enough pages to cover @size from the page level
1821 * allocator and map them into contiguous kernel virtual space.
1822 *
c1c8897f 1823 * For tight control over page level allocator and protection flags
930fc45a
CL
1824 * use __vmalloc() instead.
1825 */
1826void *vmalloc_node(unsigned long size, int node)
1827{
2dca6999 1828 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1829 node, __builtin_return_address(0));
930fc45a
CL
1830}
1831EXPORT_SYMBOL(vmalloc_node);
1832
e1ca7788
DY
1833/**
1834 * vzalloc_node - allocate memory on a specific node with zero fill
1835 * @size: allocation size
1836 * @node: numa node
1837 *
1838 * Allocate enough pages to cover @size from the page level
1839 * allocator and map them into contiguous kernel virtual space.
1840 * The memory allocated is set to zero.
1841 *
1842 * For tight control over page level allocator and protection flags
1843 * use __vmalloc_node() instead.
1844 */
1845void *vzalloc_node(unsigned long size, int node)
1846{
1847 return __vmalloc_node_flags(size, node,
1848 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1849}
1850EXPORT_SYMBOL(vzalloc_node);
1851
4dc3b16b
PP
1852#ifndef PAGE_KERNEL_EXEC
1853# define PAGE_KERNEL_EXEC PAGE_KERNEL
1854#endif
1855
1da177e4
LT
1856/**
1857 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1858 * @size: allocation size
1859 *
1860 * Kernel-internal function to allocate enough pages to cover @size
1861 * the page level allocator and map them into contiguous and
1862 * executable kernel virtual space.
1863 *
c1c8897f 1864 * For tight control over page level allocator and protection flags
1da177e4
LT
1865 * use __vmalloc() instead.
1866 */
1867
1da177e4
LT
1868void *vmalloc_exec(unsigned long size)
1869{
2dca6999 1870 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1871 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1872}
1873
0d08e0d3 1874#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1875#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1876#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1877#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1878#else
1879#define GFP_VMALLOC32 GFP_KERNEL
1880#endif
1881
1da177e4
LT
1882/**
1883 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1884 * @size: allocation size
1885 *
1886 * Allocate enough 32bit PA addressable pages to cover @size from the
1887 * page level allocator and map them into contiguous kernel virtual space.
1888 */
1889void *vmalloc_32(unsigned long size)
1890{
2dca6999 1891 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1892 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1893}
1da177e4
LT
1894EXPORT_SYMBOL(vmalloc_32);
1895
83342314 1896/**
ead04089 1897 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1898 * @size: allocation size
ead04089
REB
1899 *
1900 * The resulting memory area is 32bit addressable and zeroed so it can be
1901 * mapped to userspace without leaking data.
83342314
NP
1902 */
1903void *vmalloc_32_user(unsigned long size)
1904{
1905 struct vm_struct *area;
1906 void *ret;
1907
2dca6999 1908 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1909 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1910 if (ret) {
db64fe02 1911 area = find_vm_area(ret);
2b4ac44e 1912 area->flags |= VM_USERMAP;
2b4ac44e 1913 }
83342314
NP
1914 return ret;
1915}
1916EXPORT_SYMBOL(vmalloc_32_user);
1917
d0107eb0
KH
1918/*
1919 * small helper routine , copy contents to buf from addr.
1920 * If the page is not present, fill zero.
1921 */
1922
1923static int aligned_vread(char *buf, char *addr, unsigned long count)
1924{
1925 struct page *p;
1926 int copied = 0;
1927
1928 while (count) {
1929 unsigned long offset, length;
1930
891c49ab 1931 offset = offset_in_page(addr);
d0107eb0
KH
1932 length = PAGE_SIZE - offset;
1933 if (length > count)
1934 length = count;
1935 p = vmalloc_to_page(addr);
1936 /*
1937 * To do safe access to this _mapped_ area, we need
1938 * lock. But adding lock here means that we need to add
1939 * overhead of vmalloc()/vfree() calles for this _debug_
1940 * interface, rarely used. Instead of that, we'll use
1941 * kmap() and get small overhead in this access function.
1942 */
1943 if (p) {
1944 /*
1945 * we can expect USER0 is not used (see vread/vwrite's
1946 * function description)
1947 */
9b04c5fe 1948 void *map = kmap_atomic(p);
d0107eb0 1949 memcpy(buf, map + offset, length);
9b04c5fe 1950 kunmap_atomic(map);
d0107eb0
KH
1951 } else
1952 memset(buf, 0, length);
1953
1954 addr += length;
1955 buf += length;
1956 copied += length;
1957 count -= length;
1958 }
1959 return copied;
1960}
1961
1962static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1963{
1964 struct page *p;
1965 int copied = 0;
1966
1967 while (count) {
1968 unsigned long offset, length;
1969
891c49ab 1970 offset = offset_in_page(addr);
d0107eb0
KH
1971 length = PAGE_SIZE - offset;
1972 if (length > count)
1973 length = count;
1974 p = vmalloc_to_page(addr);
1975 /*
1976 * To do safe access to this _mapped_ area, we need
1977 * lock. But adding lock here means that we need to add
1978 * overhead of vmalloc()/vfree() calles for this _debug_
1979 * interface, rarely used. Instead of that, we'll use
1980 * kmap() and get small overhead in this access function.
1981 */
1982 if (p) {
1983 /*
1984 * we can expect USER0 is not used (see vread/vwrite's
1985 * function description)
1986 */
9b04c5fe 1987 void *map = kmap_atomic(p);
d0107eb0 1988 memcpy(map + offset, buf, length);
9b04c5fe 1989 kunmap_atomic(map);
d0107eb0
KH
1990 }
1991 addr += length;
1992 buf += length;
1993 copied += length;
1994 count -= length;
1995 }
1996 return copied;
1997}
1998
1999/**
2000 * vread() - read vmalloc area in a safe way.
2001 * @buf: buffer for reading data
2002 * @addr: vm address.
2003 * @count: number of bytes to be read.
2004 *
2005 * Returns # of bytes which addr and buf should be increased.
2006 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2007 * includes any intersect with alive vmalloc area.
2008 *
2009 * This function checks that addr is a valid vmalloc'ed area, and
2010 * copy data from that area to a given buffer. If the given memory range
2011 * of [addr...addr+count) includes some valid address, data is copied to
2012 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2013 * IOREMAP area is treated as memory hole and no copy is done.
2014 *
2015 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2016 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2017 *
2018 * Note: In usual ops, vread() is never necessary because the caller
2019 * should know vmalloc() area is valid and can use memcpy().
2020 * This is for routines which have to access vmalloc area without
2021 * any informaion, as /dev/kmem.
2022 *
2023 */
2024
1da177e4
LT
2025long vread(char *buf, char *addr, unsigned long count)
2026{
e81ce85f
JK
2027 struct vmap_area *va;
2028 struct vm_struct *vm;
1da177e4 2029 char *vaddr, *buf_start = buf;
d0107eb0 2030 unsigned long buflen = count;
1da177e4
LT
2031 unsigned long n;
2032
2033 /* Don't allow overflow */
2034 if ((unsigned long) addr + count < count)
2035 count = -(unsigned long) addr;
2036
e81ce85f
JK
2037 spin_lock(&vmap_area_lock);
2038 list_for_each_entry(va, &vmap_area_list, list) {
2039 if (!count)
2040 break;
2041
2042 if (!(va->flags & VM_VM_AREA))
2043 continue;
2044
2045 vm = va->vm;
2046 vaddr = (char *) vm->addr;
762216ab 2047 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2048 continue;
2049 while (addr < vaddr) {
2050 if (count == 0)
2051 goto finished;
2052 *buf = '\0';
2053 buf++;
2054 addr++;
2055 count--;
2056 }
762216ab 2057 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2058 if (n > count)
2059 n = count;
e81ce85f 2060 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2061 aligned_vread(buf, addr, n);
2062 else /* IOREMAP area is treated as memory hole */
2063 memset(buf, 0, n);
2064 buf += n;
2065 addr += n;
2066 count -= n;
1da177e4
LT
2067 }
2068finished:
e81ce85f 2069 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2070
2071 if (buf == buf_start)
2072 return 0;
2073 /* zero-fill memory holes */
2074 if (buf != buf_start + buflen)
2075 memset(buf, 0, buflen - (buf - buf_start));
2076
2077 return buflen;
1da177e4
LT
2078}
2079
d0107eb0
KH
2080/**
2081 * vwrite() - write vmalloc area in a safe way.
2082 * @buf: buffer for source data
2083 * @addr: vm address.
2084 * @count: number of bytes to be read.
2085 *
2086 * Returns # of bytes which addr and buf should be incresed.
2087 * (same number to @count).
2088 * If [addr...addr+count) doesn't includes any intersect with valid
2089 * vmalloc area, returns 0.
2090 *
2091 * This function checks that addr is a valid vmalloc'ed area, and
2092 * copy data from a buffer to the given addr. If specified range of
2093 * [addr...addr+count) includes some valid address, data is copied from
2094 * proper area of @buf. If there are memory holes, no copy to hole.
2095 * IOREMAP area is treated as memory hole and no copy is done.
2096 *
2097 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2098 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2099 *
2100 * Note: In usual ops, vwrite() is never necessary because the caller
2101 * should know vmalloc() area is valid and can use memcpy().
2102 * This is for routines which have to access vmalloc area without
2103 * any informaion, as /dev/kmem.
d0107eb0
KH
2104 */
2105
1da177e4
LT
2106long vwrite(char *buf, char *addr, unsigned long count)
2107{
e81ce85f
JK
2108 struct vmap_area *va;
2109 struct vm_struct *vm;
d0107eb0
KH
2110 char *vaddr;
2111 unsigned long n, buflen;
2112 int copied = 0;
1da177e4
LT
2113
2114 /* Don't allow overflow */
2115 if ((unsigned long) addr + count < count)
2116 count = -(unsigned long) addr;
d0107eb0 2117 buflen = count;
1da177e4 2118
e81ce85f
JK
2119 spin_lock(&vmap_area_lock);
2120 list_for_each_entry(va, &vmap_area_list, list) {
2121 if (!count)
2122 break;
2123
2124 if (!(va->flags & VM_VM_AREA))
2125 continue;
2126
2127 vm = va->vm;
2128 vaddr = (char *) vm->addr;
762216ab 2129 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2130 continue;
2131 while (addr < vaddr) {
2132 if (count == 0)
2133 goto finished;
2134 buf++;
2135 addr++;
2136 count--;
2137 }
762216ab 2138 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2139 if (n > count)
2140 n = count;
e81ce85f 2141 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2142 aligned_vwrite(buf, addr, n);
2143 copied++;
2144 }
2145 buf += n;
2146 addr += n;
2147 count -= n;
1da177e4
LT
2148 }
2149finished:
e81ce85f 2150 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2151 if (!copied)
2152 return 0;
2153 return buflen;
1da177e4 2154}
83342314
NP
2155
2156/**
e69e9d4a
HD
2157 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2158 * @vma: vma to cover
2159 * @uaddr: target user address to start at
2160 * @kaddr: virtual address of vmalloc kernel memory
2161 * @size: size of map area
7682486b
RD
2162 *
2163 * Returns: 0 for success, -Exxx on failure
83342314 2164 *
e69e9d4a
HD
2165 * This function checks that @kaddr is a valid vmalloc'ed area,
2166 * and that it is big enough to cover the range starting at
2167 * @uaddr in @vma. Will return failure if that criteria isn't
2168 * met.
83342314 2169 *
72fd4a35 2170 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2171 */
e69e9d4a
HD
2172int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2173 void *kaddr, unsigned long size)
83342314
NP
2174{
2175 struct vm_struct *area;
83342314 2176
e69e9d4a
HD
2177 size = PAGE_ALIGN(size);
2178
2179 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2180 return -EINVAL;
2181
e69e9d4a 2182 area = find_vm_area(kaddr);
83342314 2183 if (!area)
db64fe02 2184 return -EINVAL;
83342314
NP
2185
2186 if (!(area->flags & VM_USERMAP))
db64fe02 2187 return -EINVAL;
83342314 2188
e69e9d4a 2189 if (kaddr + size > area->addr + area->size)
db64fe02 2190 return -EINVAL;
83342314 2191
83342314 2192 do {
e69e9d4a 2193 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2194 int ret;
2195
83342314
NP
2196 ret = vm_insert_page(vma, uaddr, page);
2197 if (ret)
2198 return ret;
2199
2200 uaddr += PAGE_SIZE;
e69e9d4a
HD
2201 kaddr += PAGE_SIZE;
2202 size -= PAGE_SIZE;
2203 } while (size > 0);
83342314 2204
314e51b9 2205 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2206
db64fe02 2207 return 0;
83342314 2208}
e69e9d4a
HD
2209EXPORT_SYMBOL(remap_vmalloc_range_partial);
2210
2211/**
2212 * remap_vmalloc_range - map vmalloc pages to userspace
2213 * @vma: vma to cover (map full range of vma)
2214 * @addr: vmalloc memory
2215 * @pgoff: number of pages into addr before first page to map
2216 *
2217 * Returns: 0 for success, -Exxx on failure
2218 *
2219 * This function checks that addr is a valid vmalloc'ed area, and
2220 * that it is big enough to cover the vma. Will return failure if
2221 * that criteria isn't met.
2222 *
2223 * Similar to remap_pfn_range() (see mm/memory.c)
2224 */
2225int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2226 unsigned long pgoff)
2227{
2228 return remap_vmalloc_range_partial(vma, vma->vm_start,
2229 addr + (pgoff << PAGE_SHIFT),
2230 vma->vm_end - vma->vm_start);
2231}
83342314
NP
2232EXPORT_SYMBOL(remap_vmalloc_range);
2233
1eeb66a1
CH
2234/*
2235 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2236 * have one.
2237 */
3b32123d 2238void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2239{
2240}
5f4352fb
JF
2241
2242
2f569afd 2243static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2244{
cd12909c
DV
2245 pte_t ***p = data;
2246
2247 if (p) {
2248 *(*p) = pte;
2249 (*p)++;
2250 }
5f4352fb
JF
2251 return 0;
2252}
2253
2254/**
2255 * alloc_vm_area - allocate a range of kernel address space
2256 * @size: size of the area
cd12909c 2257 * @ptes: returns the PTEs for the address space
7682486b
RD
2258 *
2259 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2260 *
2261 * This function reserves a range of kernel address space, and
2262 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2263 * are created.
2264 *
2265 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2266 * allocated for the VM area are returned.
5f4352fb 2267 */
cd12909c 2268struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2269{
2270 struct vm_struct *area;
2271
23016969
CL
2272 area = get_vm_area_caller(size, VM_IOREMAP,
2273 __builtin_return_address(0));
5f4352fb
JF
2274 if (area == NULL)
2275 return NULL;
2276
2277 /*
2278 * This ensures that page tables are constructed for this region
2279 * of kernel virtual address space and mapped into init_mm.
2280 */
2281 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2282 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2283 free_vm_area(area);
2284 return NULL;
2285 }
2286
5f4352fb
JF
2287 return area;
2288}
2289EXPORT_SYMBOL_GPL(alloc_vm_area);
2290
2291void free_vm_area(struct vm_struct *area)
2292{
2293 struct vm_struct *ret;
2294 ret = remove_vm_area(area->addr);
2295 BUG_ON(ret != area);
2296 kfree(area);
2297}
2298EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2299
4f8b02b4 2300#ifdef CONFIG_SMP
ca23e405
TH
2301static struct vmap_area *node_to_va(struct rb_node *n)
2302{
2303 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2304}
2305
2306/**
2307 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2308 * @end: target address
2309 * @pnext: out arg for the next vmap_area
2310 * @pprev: out arg for the previous vmap_area
2311 *
2312 * Returns: %true if either or both of next and prev are found,
2313 * %false if no vmap_area exists
2314 *
2315 * Find vmap_areas end addresses of which enclose @end. ie. if not
2316 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2317 */
2318static bool pvm_find_next_prev(unsigned long end,
2319 struct vmap_area **pnext,
2320 struct vmap_area **pprev)
2321{
2322 struct rb_node *n = vmap_area_root.rb_node;
2323 struct vmap_area *va = NULL;
2324
2325 while (n) {
2326 va = rb_entry(n, struct vmap_area, rb_node);
2327 if (end < va->va_end)
2328 n = n->rb_left;
2329 else if (end > va->va_end)
2330 n = n->rb_right;
2331 else
2332 break;
2333 }
2334
2335 if (!va)
2336 return false;
2337
2338 if (va->va_end > end) {
2339 *pnext = va;
2340 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2341 } else {
2342 *pprev = va;
2343 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2344 }
2345 return true;
2346}
2347
2348/**
2349 * pvm_determine_end - find the highest aligned address between two vmap_areas
2350 * @pnext: in/out arg for the next vmap_area
2351 * @pprev: in/out arg for the previous vmap_area
2352 * @align: alignment
2353 *
2354 * Returns: determined end address
2355 *
2356 * Find the highest aligned address between *@pnext and *@pprev below
2357 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2358 * down address is between the end addresses of the two vmap_areas.
2359 *
2360 * Please note that the address returned by this function may fall
2361 * inside *@pnext vmap_area. The caller is responsible for checking
2362 * that.
2363 */
2364static unsigned long pvm_determine_end(struct vmap_area **pnext,
2365 struct vmap_area **pprev,
2366 unsigned long align)
2367{
2368 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2369 unsigned long addr;
2370
2371 if (*pnext)
2372 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2373 else
2374 addr = vmalloc_end;
2375
2376 while (*pprev && (*pprev)->va_end > addr) {
2377 *pnext = *pprev;
2378 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2379 }
2380
2381 return addr;
2382}
2383
2384/**
2385 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2386 * @offsets: array containing offset of each area
2387 * @sizes: array containing size of each area
2388 * @nr_vms: the number of areas to allocate
2389 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2390 *
2391 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2392 * vm_structs on success, %NULL on failure
2393 *
2394 * Percpu allocator wants to use congruent vm areas so that it can
2395 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2396 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2397 * be scattered pretty far, distance between two areas easily going up
2398 * to gigabytes. To avoid interacting with regular vmallocs, these
2399 * areas are allocated from top.
ca23e405
TH
2400 *
2401 * Despite its complicated look, this allocator is rather simple. It
2402 * does everything top-down and scans areas from the end looking for
2403 * matching slot. While scanning, if any of the areas overlaps with
2404 * existing vmap_area, the base address is pulled down to fit the
2405 * area. Scanning is repeated till all the areas fit and then all
2406 * necessary data structres are inserted and the result is returned.
2407 */
2408struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2409 const size_t *sizes, int nr_vms,
ec3f64fc 2410 size_t align)
ca23e405
TH
2411{
2412 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2413 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2414 struct vmap_area **vas, *prev, *next;
2415 struct vm_struct **vms;
2416 int area, area2, last_area, term_area;
2417 unsigned long base, start, end, last_end;
2418 bool purged = false;
2419
ca23e405 2420 /* verify parameters and allocate data structures */
891c49ab 2421 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2422 for (last_area = 0, area = 0; area < nr_vms; area++) {
2423 start = offsets[area];
2424 end = start + sizes[area];
2425
2426 /* is everything aligned properly? */
2427 BUG_ON(!IS_ALIGNED(offsets[area], align));
2428 BUG_ON(!IS_ALIGNED(sizes[area], align));
2429
2430 /* detect the area with the highest address */
2431 if (start > offsets[last_area])
2432 last_area = area;
2433
2434 for (area2 = 0; area2 < nr_vms; area2++) {
2435 unsigned long start2 = offsets[area2];
2436 unsigned long end2 = start2 + sizes[area2];
2437
2438 if (area2 == area)
2439 continue;
2440
2441 BUG_ON(start2 >= start && start2 < end);
2442 BUG_ON(end2 <= end && end2 > start);
2443 }
2444 }
2445 last_end = offsets[last_area] + sizes[last_area];
2446
2447 if (vmalloc_end - vmalloc_start < last_end) {
2448 WARN_ON(true);
2449 return NULL;
2450 }
2451
4d67d860
TM
2452 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2453 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2454 if (!vas || !vms)
f1db7afd 2455 goto err_free2;
ca23e405
TH
2456
2457 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2458 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2459 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2460 if (!vas[area] || !vms[area])
2461 goto err_free;
2462 }
2463retry:
2464 spin_lock(&vmap_area_lock);
2465
2466 /* start scanning - we scan from the top, begin with the last area */
2467 area = term_area = last_area;
2468 start = offsets[area];
2469 end = start + sizes[area];
2470
2471 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2472 base = vmalloc_end - last_end;
2473 goto found;
2474 }
2475 base = pvm_determine_end(&next, &prev, align) - end;
2476
2477 while (true) {
2478 BUG_ON(next && next->va_end <= base + end);
2479 BUG_ON(prev && prev->va_end > base + end);
2480
2481 /*
2482 * base might have underflowed, add last_end before
2483 * comparing.
2484 */
2485 if (base + last_end < vmalloc_start + last_end) {
2486 spin_unlock(&vmap_area_lock);
2487 if (!purged) {
2488 purge_vmap_area_lazy();
2489 purged = true;
2490 goto retry;
2491 }
2492 goto err_free;
2493 }
2494
2495 /*
2496 * If next overlaps, move base downwards so that it's
2497 * right below next and then recheck.
2498 */
2499 if (next && next->va_start < base + end) {
2500 base = pvm_determine_end(&next, &prev, align) - end;
2501 term_area = area;
2502 continue;
2503 }
2504
2505 /*
2506 * If prev overlaps, shift down next and prev and move
2507 * base so that it's right below new next and then
2508 * recheck.
2509 */
2510 if (prev && prev->va_end > base + start) {
2511 next = prev;
2512 prev = node_to_va(rb_prev(&next->rb_node));
2513 base = pvm_determine_end(&next, &prev, align) - end;
2514 term_area = area;
2515 continue;
2516 }
2517
2518 /*
2519 * This area fits, move on to the previous one. If
2520 * the previous one is the terminal one, we're done.
2521 */
2522 area = (area + nr_vms - 1) % nr_vms;
2523 if (area == term_area)
2524 break;
2525 start = offsets[area];
2526 end = start + sizes[area];
2527 pvm_find_next_prev(base + end, &next, &prev);
2528 }
2529found:
2530 /* we've found a fitting base, insert all va's */
2531 for (area = 0; area < nr_vms; area++) {
2532 struct vmap_area *va = vas[area];
2533
2534 va->va_start = base + offsets[area];
2535 va->va_end = va->va_start + sizes[area];
2536 __insert_vmap_area(va);
2537 }
2538
2539 vmap_area_pcpu_hole = base + offsets[last_area];
2540
2541 spin_unlock(&vmap_area_lock);
2542
2543 /* insert all vm's */
2544 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2545 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2546 pcpu_get_vm_areas);
ca23e405
TH
2547
2548 kfree(vas);
2549 return vms;
2550
2551err_free:
2552 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2553 kfree(vas[area]);
2554 kfree(vms[area]);
ca23e405 2555 }
f1db7afd 2556err_free2:
ca23e405
TH
2557 kfree(vas);
2558 kfree(vms);
2559 return NULL;
2560}
2561
2562/**
2563 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2564 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2565 * @nr_vms: the number of allocated areas
2566 *
2567 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2568 */
2569void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2570{
2571 int i;
2572
2573 for (i = 0; i < nr_vms; i++)
2574 free_vm_area(vms[i]);
2575 kfree(vms);
2576}
4f8b02b4 2577#endif /* CONFIG_SMP */
a10aa579
CL
2578
2579#ifdef CONFIG_PROC_FS
2580static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2581 __acquires(&vmap_area_lock)
a10aa579 2582{
d4033afd 2583 spin_lock(&vmap_area_lock);
3f500069 2584 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
2585}
2586
2587static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2588{
3f500069 2589 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
2590}
2591
2592static void s_stop(struct seq_file *m, void *p)
d4033afd 2593 __releases(&vmap_area_lock)
a10aa579 2594{
d4033afd 2595 spin_unlock(&vmap_area_lock);
a10aa579
CL
2596}
2597
a47a126a
ED
2598static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2599{
e5adfffc 2600 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2601 unsigned int nr, *counters = m->private;
2602
2603 if (!counters)
2604 return;
2605
af12346c
WL
2606 if (v->flags & VM_UNINITIALIZED)
2607 return;
7e5b528b
DV
2608 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2609 smp_rmb();
af12346c 2610
a47a126a
ED
2611 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2612
2613 for (nr = 0; nr < v->nr_pages; nr++)
2614 counters[page_to_nid(v->pages[nr])]++;
2615
2616 for_each_node_state(nr, N_HIGH_MEMORY)
2617 if (counters[nr])
2618 seq_printf(m, " N%u=%u", nr, counters[nr]);
2619 }
2620}
2621
a10aa579
CL
2622static int s_show(struct seq_file *m, void *p)
2623{
3f500069 2624 struct vmap_area *va;
d4033afd
JK
2625 struct vm_struct *v;
2626
3f500069 2627 va = list_entry(p, struct vmap_area, list);
2628
c2ce8c14
WL
2629 /*
2630 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2631 * behalf of vmap area is being tear down or vm_map_ram allocation.
2632 */
2633 if (!(va->flags & VM_VM_AREA))
d4033afd 2634 return 0;
d4033afd
JK
2635
2636 v = va->vm;
a10aa579 2637
45ec1690 2638 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2639 v->addr, v->addr + v->size, v->size);
2640
62c70bce
JP
2641 if (v->caller)
2642 seq_printf(m, " %pS", v->caller);
23016969 2643
a10aa579
CL
2644 if (v->nr_pages)
2645 seq_printf(m, " pages=%d", v->nr_pages);
2646
2647 if (v->phys_addr)
ffa71f33 2648 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2649
2650 if (v->flags & VM_IOREMAP)
f4527c90 2651 seq_puts(m, " ioremap");
a10aa579
CL
2652
2653 if (v->flags & VM_ALLOC)
f4527c90 2654 seq_puts(m, " vmalloc");
a10aa579
CL
2655
2656 if (v->flags & VM_MAP)
f4527c90 2657 seq_puts(m, " vmap");
a10aa579
CL
2658
2659 if (v->flags & VM_USERMAP)
f4527c90 2660 seq_puts(m, " user");
a10aa579 2661
244d63ee 2662 if (is_vmalloc_addr(v->pages))
f4527c90 2663 seq_puts(m, " vpages");
a10aa579 2664
a47a126a 2665 show_numa_info(m, v);
a10aa579
CL
2666 seq_putc(m, '\n');
2667 return 0;
2668}
2669
5f6a6a9c 2670static const struct seq_operations vmalloc_op = {
a10aa579
CL
2671 .start = s_start,
2672 .next = s_next,
2673 .stop = s_stop,
2674 .show = s_show,
2675};
5f6a6a9c
AD
2676
2677static int vmalloc_open(struct inode *inode, struct file *file)
2678{
703394c1
RJ
2679 if (IS_ENABLED(CONFIG_NUMA))
2680 return seq_open_private(file, &vmalloc_op,
2681 nr_node_ids * sizeof(unsigned int));
2682 else
2683 return seq_open(file, &vmalloc_op);
5f6a6a9c
AD
2684}
2685
2686static const struct file_operations proc_vmalloc_operations = {
2687 .open = vmalloc_open,
2688 .read = seq_read,
2689 .llseek = seq_lseek,
2690 .release = seq_release_private,
2691};
2692
2693static int __init proc_vmalloc_init(void)
2694{
2695 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2696 return 0;
2697}
2698module_init(proc_vmalloc_init);
db3808c1 2699
a10aa579
CL
2700#endif
2701