mm/vmap: add DEBUG_AUGMENT_PROPAGATE_CHECK macro
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02
NP
26#include <linux/rbtree.h>
27#include <linux/radix-tree.h>
28#include <linux/rcupdate.h>
f0aa6617 29#include <linux/pfn.h>
89219d37 30#include <linux/kmemleak.h>
60063497 31#include <linux/atomic.h>
3b32123d 32#include <linux/compiler.h>
32fcfd40 33#include <linux/llist.h>
0f616be1 34#include <linux/bitops.h>
68ad4a33 35#include <linux/rbtree_augmented.h>
3b32123d 36
7c0f6ba6 37#include <linux/uaccess.h>
1da177e4 38#include <asm/tlbflush.h>
2dca6999 39#include <asm/shmparam.h>
1da177e4 40
dd56b046
MG
41#include "internal.h"
42
32fcfd40
AV
43struct vfree_deferred {
44 struct llist_head list;
45 struct work_struct wq;
46};
47static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
48
49static void __vunmap(const void *, int);
50
51static void free_work(struct work_struct *w)
52{
53 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
54 struct llist_node *t, *llnode;
55
56 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
57 __vunmap((void *)llnode, 1);
32fcfd40
AV
58}
59
db64fe02 60/*** Page table manipulation functions ***/
b221385b 61
1da177e4
LT
62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63{
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71}
72
db64fe02 73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
74{
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
b9820d8f
TK
81 if (pmd_clear_huge(pmd))
82 continue;
1da177e4
LT
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87}
88
c2febafc 89static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
90{
91 pud_t *pud;
92 unsigned long next;
93
c2febafc 94 pud = pud_offset(p4d, addr);
1da177e4
LT
95 do {
96 next = pud_addr_end(addr, end);
b9820d8f
TK
97 if (pud_clear_huge(pud))
98 continue;
1da177e4
LT
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103}
104
c2febafc
KS
105static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
106{
107 p4d_t *p4d;
108 unsigned long next;
109
110 p4d = p4d_offset(pgd, addr);
111 do {
112 next = p4d_addr_end(addr, end);
113 if (p4d_clear_huge(p4d))
114 continue;
115 if (p4d_none_or_clear_bad(p4d))
116 continue;
117 vunmap_pud_range(p4d, addr, next);
118 } while (p4d++, addr = next, addr != end);
119}
120
db64fe02 121static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
122{
123 pgd_t *pgd;
124 unsigned long next;
1da177e4
LT
125
126 BUG_ON(addr >= end);
127 pgd = pgd_offset_k(addr);
1da177e4
LT
128 do {
129 next = pgd_addr_end(addr, end);
130 if (pgd_none_or_clear_bad(pgd))
131 continue;
c2febafc 132 vunmap_p4d_range(pgd, addr, next);
1da177e4 133 } while (pgd++, addr = next, addr != end);
1da177e4
LT
134}
135
136static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
138{
139 pte_t *pte;
140
db64fe02
NP
141 /*
142 * nr is a running index into the array which helps higher level
143 * callers keep track of where we're up to.
144 */
145
872fec16 146 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
147 if (!pte)
148 return -ENOMEM;
149 do {
db64fe02
NP
150 struct page *page = pages[*nr];
151
152 if (WARN_ON(!pte_none(*pte)))
153 return -EBUSY;
154 if (WARN_ON(!page))
1da177e4
LT
155 return -ENOMEM;
156 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 157 (*nr)++;
1da177e4
LT
158 } while (pte++, addr += PAGE_SIZE, addr != end);
159 return 0;
160}
161
db64fe02
NP
162static int vmap_pmd_range(pud_t *pud, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
164{
165 pmd_t *pmd;
166 unsigned long next;
167
168 pmd = pmd_alloc(&init_mm, pud, addr);
169 if (!pmd)
170 return -ENOMEM;
171 do {
172 next = pmd_addr_end(addr, end);
db64fe02 173 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
174 return -ENOMEM;
175 } while (pmd++, addr = next, addr != end);
176 return 0;
177}
178
c2febafc 179static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 180 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
181{
182 pud_t *pud;
183 unsigned long next;
184
c2febafc 185 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
186 if (!pud)
187 return -ENOMEM;
188 do {
189 next = pud_addr_end(addr, end);
db64fe02 190 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
191 return -ENOMEM;
192 } while (pud++, addr = next, addr != end);
193 return 0;
194}
195
c2febafc
KS
196static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
197 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
198{
199 p4d_t *p4d;
200 unsigned long next;
201
202 p4d = p4d_alloc(&init_mm, pgd, addr);
203 if (!p4d)
204 return -ENOMEM;
205 do {
206 next = p4d_addr_end(addr, end);
207 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
208 return -ENOMEM;
209 } while (p4d++, addr = next, addr != end);
210 return 0;
211}
212
db64fe02
NP
213/*
214 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
215 * will have pfns corresponding to the "pages" array.
216 *
217 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
218 */
8fc48985
TH
219static int vmap_page_range_noflush(unsigned long start, unsigned long end,
220 pgprot_t prot, struct page **pages)
1da177e4
LT
221{
222 pgd_t *pgd;
223 unsigned long next;
2e4e27c7 224 unsigned long addr = start;
db64fe02
NP
225 int err = 0;
226 int nr = 0;
1da177e4
LT
227
228 BUG_ON(addr >= end);
229 pgd = pgd_offset_k(addr);
1da177e4
LT
230 do {
231 next = pgd_addr_end(addr, end);
c2febafc 232 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 233 if (err)
bf88c8c8 234 return err;
1da177e4 235 } while (pgd++, addr = next, addr != end);
db64fe02 236
db64fe02 237 return nr;
1da177e4
LT
238}
239
8fc48985
TH
240static int vmap_page_range(unsigned long start, unsigned long end,
241 pgprot_t prot, struct page **pages)
242{
243 int ret;
244
245 ret = vmap_page_range_noflush(start, end, prot, pages);
246 flush_cache_vmap(start, end);
247 return ret;
248}
249
81ac3ad9 250int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
251{
252 /*
ab4f2ee1 253 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
254 * and fall back on vmalloc() if that fails. Others
255 * just put it in the vmalloc space.
256 */
257#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
258 unsigned long addr = (unsigned long)x;
259 if (addr >= MODULES_VADDR && addr < MODULES_END)
260 return 1;
261#endif
262 return is_vmalloc_addr(x);
263}
264
48667e7a 265/*
add688fb 266 * Walk a vmap address to the struct page it maps.
48667e7a 267 */
add688fb 268struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
269{
270 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 271 struct page *page = NULL;
48667e7a 272 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
273 p4d_t *p4d;
274 pud_t *pud;
275 pmd_t *pmd;
276 pte_t *ptep, pte;
48667e7a 277
7aa413de
IM
278 /*
279 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
280 * architectures that do not vmalloc module space
281 */
73bdf0a6 282 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 283
c2febafc
KS
284 if (pgd_none(*pgd))
285 return NULL;
286 p4d = p4d_offset(pgd, addr);
287 if (p4d_none(*p4d))
288 return NULL;
289 pud = pud_offset(p4d, addr);
029c54b0
AB
290
291 /*
292 * Don't dereference bad PUD or PMD (below) entries. This will also
293 * identify huge mappings, which we may encounter on architectures
294 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
295 * identified as vmalloc addresses by is_vmalloc_addr(), but are
296 * not [unambiguously] associated with a struct page, so there is
297 * no correct value to return for them.
298 */
299 WARN_ON_ONCE(pud_bad(*pud));
300 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
301 return NULL;
302 pmd = pmd_offset(pud, addr);
029c54b0
AB
303 WARN_ON_ONCE(pmd_bad(*pmd));
304 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
305 return NULL;
306
307 ptep = pte_offset_map(pmd, addr);
308 pte = *ptep;
309 if (pte_present(pte))
310 page = pte_page(pte);
311 pte_unmap(ptep);
add688fb 312 return page;
48667e7a 313}
add688fb 314EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
315
316/*
add688fb 317 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 318 */
add688fb 319unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 320{
add688fb 321 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 322}
add688fb 323EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 324
db64fe02
NP
325
326/*** Global kva allocator ***/
327
bb850f4d
URS
328#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
329
78c72746 330#define VM_LAZY_FREE 0x02
db64fe02
NP
331#define VM_VM_AREA 0x04
332
db64fe02 333static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
334/* Export for kexec only */
335LIST_HEAD(vmap_area_list);
80c4bd7a 336static LLIST_HEAD(vmap_purge_list);
89699605 337static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 338static bool vmap_initialized __read_mostly;
89699605 339
68ad4a33
URS
340/*
341 * This kmem_cache is used for vmap_area objects. Instead of
342 * allocating from slab we reuse an object from this cache to
343 * make things faster. Especially in "no edge" splitting of
344 * free block.
345 */
346static struct kmem_cache *vmap_area_cachep;
347
348/*
349 * This linked list is used in pair with free_vmap_area_root.
350 * It gives O(1) access to prev/next to perform fast coalescing.
351 */
352static LIST_HEAD(free_vmap_area_list);
353
354/*
355 * This augment red-black tree represents the free vmap space.
356 * All vmap_area objects in this tree are sorted by va->va_start
357 * address. It is used for allocation and merging when a vmap
358 * object is released.
359 *
360 * Each vmap_area node contains a maximum available free block
361 * of its sub-tree, right or left. Therefore it is possible to
362 * find a lowest match of free area.
363 */
364static struct rb_root free_vmap_area_root = RB_ROOT;
365
366static __always_inline unsigned long
367va_size(struct vmap_area *va)
368{
369 return (va->va_end - va->va_start);
370}
371
372static __always_inline unsigned long
373get_subtree_max_size(struct rb_node *node)
374{
375 struct vmap_area *va;
376
377 va = rb_entry_safe(node, struct vmap_area, rb_node);
378 return va ? va->subtree_max_size : 0;
379}
89699605 380
68ad4a33
URS
381/*
382 * Gets called when remove the node and rotate.
383 */
384static __always_inline unsigned long
385compute_subtree_max_size(struct vmap_area *va)
386{
387 return max3(va_size(va),
388 get_subtree_max_size(va->rb_node.rb_left),
389 get_subtree_max_size(va->rb_node.rb_right));
390}
391
392RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
393 struct vmap_area, rb_node, unsigned long, subtree_max_size,
394 compute_subtree_max_size)
395
396static void purge_vmap_area_lazy(void);
397static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
398static unsigned long lazy_max_pages(void);
db64fe02
NP
399
400static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 401{
db64fe02
NP
402 struct rb_node *n = vmap_area_root.rb_node;
403
404 while (n) {
405 struct vmap_area *va;
406
407 va = rb_entry(n, struct vmap_area, rb_node);
408 if (addr < va->va_start)
409 n = n->rb_left;
cef2ac3f 410 else if (addr >= va->va_end)
db64fe02
NP
411 n = n->rb_right;
412 else
413 return va;
414 }
415
416 return NULL;
417}
418
68ad4a33
URS
419/*
420 * This function returns back addresses of parent node
421 * and its left or right link for further processing.
422 */
423static __always_inline struct rb_node **
424find_va_links(struct vmap_area *va,
425 struct rb_root *root, struct rb_node *from,
426 struct rb_node **parent)
427{
428 struct vmap_area *tmp_va;
429 struct rb_node **link;
430
431 if (root) {
432 link = &root->rb_node;
433 if (unlikely(!*link)) {
434 *parent = NULL;
435 return link;
436 }
437 } else {
438 link = &from;
439 }
db64fe02 440
68ad4a33
URS
441 /*
442 * Go to the bottom of the tree. When we hit the last point
443 * we end up with parent rb_node and correct direction, i name
444 * it link, where the new va->rb_node will be attached to.
445 */
446 do {
447 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 448
68ad4a33
URS
449 /*
450 * During the traversal we also do some sanity check.
451 * Trigger the BUG() if there are sides(left/right)
452 * or full overlaps.
453 */
454 if (va->va_start < tmp_va->va_end &&
455 va->va_end <= tmp_va->va_start)
456 link = &(*link)->rb_left;
457 else if (va->va_end > tmp_va->va_start &&
458 va->va_start >= tmp_va->va_end)
459 link = &(*link)->rb_right;
db64fe02
NP
460 else
461 BUG();
68ad4a33
URS
462 } while (*link);
463
464 *parent = &tmp_va->rb_node;
465 return link;
466}
467
468static __always_inline struct list_head *
469get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
470{
471 struct list_head *list;
472
473 if (unlikely(!parent))
474 /*
475 * The red-black tree where we try to find VA neighbors
476 * before merging or inserting is empty, i.e. it means
477 * there is no free vmap space. Normally it does not
478 * happen but we handle this case anyway.
479 */
480 return NULL;
481
482 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
483 return (&parent->rb_right == link ? list->next : list);
484}
485
486static __always_inline void
487link_va(struct vmap_area *va, struct rb_root *root,
488 struct rb_node *parent, struct rb_node **link, struct list_head *head)
489{
490 /*
491 * VA is still not in the list, but we can
492 * identify its future previous list_head node.
493 */
494 if (likely(parent)) {
495 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
496 if (&parent->rb_right != link)
497 head = head->prev;
db64fe02
NP
498 }
499
68ad4a33
URS
500 /* Insert to the rb-tree */
501 rb_link_node(&va->rb_node, parent, link);
502 if (root == &free_vmap_area_root) {
503 /*
504 * Some explanation here. Just perform simple insertion
505 * to the tree. We do not set va->subtree_max_size to
506 * its current size before calling rb_insert_augmented().
507 * It is because of we populate the tree from the bottom
508 * to parent levels when the node _is_ in the tree.
509 *
510 * Therefore we set subtree_max_size to zero after insertion,
511 * to let __augment_tree_propagate_from() puts everything to
512 * the correct order later on.
513 */
514 rb_insert_augmented(&va->rb_node,
515 root, &free_vmap_area_rb_augment_cb);
516 va->subtree_max_size = 0;
517 } else {
518 rb_insert_color(&va->rb_node, root);
519 }
db64fe02 520
68ad4a33
URS
521 /* Address-sort this list */
522 list_add(&va->list, head);
db64fe02
NP
523}
524
68ad4a33
URS
525static __always_inline void
526unlink_va(struct vmap_area *va, struct rb_root *root)
527{
528 /*
529 * During merging a VA node can be empty, therefore
530 * not linked with the tree nor list. Just check it.
531 */
532 if (!RB_EMPTY_NODE(&va->rb_node)) {
533 if (root == &free_vmap_area_root)
534 rb_erase_augmented(&va->rb_node,
535 root, &free_vmap_area_rb_augment_cb);
536 else
537 rb_erase(&va->rb_node, root);
db64fe02 538
68ad4a33
URS
539 list_del(&va->list);
540 RB_CLEAR_NODE(&va->rb_node);
541 }
542}
543
bb850f4d
URS
544#if DEBUG_AUGMENT_PROPAGATE_CHECK
545static void
546augment_tree_propagate_check(struct rb_node *n)
547{
548 struct vmap_area *va;
549 struct rb_node *node;
550 unsigned long size;
551 bool found = false;
552
553 if (n == NULL)
554 return;
555
556 va = rb_entry(n, struct vmap_area, rb_node);
557 size = va->subtree_max_size;
558 node = n;
559
560 while (node) {
561 va = rb_entry(node, struct vmap_area, rb_node);
562
563 if (get_subtree_max_size(node->rb_left) == size) {
564 node = node->rb_left;
565 } else {
566 if (va_size(va) == size) {
567 found = true;
568 break;
569 }
570
571 node = node->rb_right;
572 }
573 }
574
575 if (!found) {
576 va = rb_entry(n, struct vmap_area, rb_node);
577 pr_emerg("tree is corrupted: %lu, %lu\n",
578 va_size(va), va->subtree_max_size);
579 }
580
581 augment_tree_propagate_check(n->rb_left);
582 augment_tree_propagate_check(n->rb_right);
583}
584#endif
585
68ad4a33
URS
586/*
587 * This function populates subtree_max_size from bottom to upper
588 * levels starting from VA point. The propagation must be done
589 * when VA size is modified by changing its va_start/va_end. Or
590 * in case of newly inserting of VA to the tree.
591 *
592 * It means that __augment_tree_propagate_from() must be called:
593 * - After VA has been inserted to the tree(free path);
594 * - After VA has been shrunk(allocation path);
595 * - After VA has been increased(merging path).
596 *
597 * Please note that, it does not mean that upper parent nodes
598 * and their subtree_max_size are recalculated all the time up
599 * to the root node.
600 *
601 * 4--8
602 * /\
603 * / \
604 * / \
605 * 2--2 8--8
606 *
607 * For example if we modify the node 4, shrinking it to 2, then
608 * no any modification is required. If we shrink the node 2 to 1
609 * its subtree_max_size is updated only, and set to 1. If we shrink
610 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
611 * node becomes 4--6.
612 */
613static __always_inline void
614augment_tree_propagate_from(struct vmap_area *va)
615{
616 struct rb_node *node = &va->rb_node;
617 unsigned long new_va_sub_max_size;
618
619 while (node) {
620 va = rb_entry(node, struct vmap_area, rb_node);
621 new_va_sub_max_size = compute_subtree_max_size(va);
622
623 /*
624 * If the newly calculated maximum available size of the
625 * subtree is equal to the current one, then it means that
626 * the tree is propagated correctly. So we have to stop at
627 * this point to save cycles.
628 */
629 if (va->subtree_max_size == new_va_sub_max_size)
630 break;
631
632 va->subtree_max_size = new_va_sub_max_size;
633 node = rb_parent(&va->rb_node);
634 }
bb850f4d
URS
635
636#if DEBUG_AUGMENT_PROPAGATE_CHECK
637 augment_tree_propagate_check(free_vmap_area_root.rb_node);
638#endif
68ad4a33
URS
639}
640
641static void
642insert_vmap_area(struct vmap_area *va,
643 struct rb_root *root, struct list_head *head)
644{
645 struct rb_node **link;
646 struct rb_node *parent;
647
648 link = find_va_links(va, root, NULL, &parent);
649 link_va(va, root, parent, link, head);
650}
651
652static void
653insert_vmap_area_augment(struct vmap_area *va,
654 struct rb_node *from, struct rb_root *root,
655 struct list_head *head)
656{
657 struct rb_node **link;
658 struct rb_node *parent;
659
660 if (from)
661 link = find_va_links(va, NULL, from, &parent);
662 else
663 link = find_va_links(va, root, NULL, &parent);
664
665 link_va(va, root, parent, link, head);
666 augment_tree_propagate_from(va);
667}
668
669/*
670 * Merge de-allocated chunk of VA memory with previous
671 * and next free blocks. If coalesce is not done a new
672 * free area is inserted. If VA has been merged, it is
673 * freed.
674 */
675static __always_inline void
676merge_or_add_vmap_area(struct vmap_area *va,
677 struct rb_root *root, struct list_head *head)
678{
679 struct vmap_area *sibling;
680 struct list_head *next;
681 struct rb_node **link;
682 struct rb_node *parent;
683 bool merged = false;
684
685 /*
686 * Find a place in the tree where VA potentially will be
687 * inserted, unless it is merged with its sibling/siblings.
688 */
689 link = find_va_links(va, root, NULL, &parent);
690
691 /*
692 * Get next node of VA to check if merging can be done.
693 */
694 next = get_va_next_sibling(parent, link);
695 if (unlikely(next == NULL))
696 goto insert;
697
698 /*
699 * start end
700 * | |
701 * |<------VA------>|<-----Next----->|
702 * | |
703 * start end
704 */
705 if (next != head) {
706 sibling = list_entry(next, struct vmap_area, list);
707 if (sibling->va_start == va->va_end) {
708 sibling->va_start = va->va_start;
709
710 /* Check and update the tree if needed. */
711 augment_tree_propagate_from(sibling);
712
713 /* Remove this VA, it has been merged. */
714 unlink_va(va, root);
715
716 /* Free vmap_area object. */
717 kmem_cache_free(vmap_area_cachep, va);
718
719 /* Point to the new merged area. */
720 va = sibling;
721 merged = true;
722 }
723 }
724
725 /*
726 * start end
727 * | |
728 * |<-----Prev----->|<------VA------>|
729 * | |
730 * start end
731 */
732 if (next->prev != head) {
733 sibling = list_entry(next->prev, struct vmap_area, list);
734 if (sibling->va_end == va->va_start) {
735 sibling->va_end = va->va_end;
736
737 /* Check and update the tree if needed. */
738 augment_tree_propagate_from(sibling);
739
740 /* Remove this VA, it has been merged. */
741 unlink_va(va, root);
742
743 /* Free vmap_area object. */
744 kmem_cache_free(vmap_area_cachep, va);
745
746 return;
747 }
748 }
749
750insert:
751 if (!merged) {
752 link_va(va, root, parent, link, head);
753 augment_tree_propagate_from(va);
754 }
755}
756
757static __always_inline bool
758is_within_this_va(struct vmap_area *va, unsigned long size,
759 unsigned long align, unsigned long vstart)
760{
761 unsigned long nva_start_addr;
762
763 if (va->va_start > vstart)
764 nva_start_addr = ALIGN(va->va_start, align);
765 else
766 nva_start_addr = ALIGN(vstart, align);
767
768 /* Can be overflowed due to big size or alignment. */
769 if (nva_start_addr + size < nva_start_addr ||
770 nva_start_addr < vstart)
771 return false;
772
773 return (nva_start_addr + size <= va->va_end);
774}
775
776/*
777 * Find the first free block(lowest start address) in the tree,
778 * that will accomplish the request corresponding to passing
779 * parameters.
780 */
781static __always_inline struct vmap_area *
782find_vmap_lowest_match(unsigned long size,
783 unsigned long align, unsigned long vstart)
784{
785 struct vmap_area *va;
786 struct rb_node *node;
787 unsigned long length;
788
789 /* Start from the root. */
790 node = free_vmap_area_root.rb_node;
791
792 /* Adjust the search size for alignment overhead. */
793 length = size + align - 1;
794
795 while (node) {
796 va = rb_entry(node, struct vmap_area, rb_node);
797
798 if (get_subtree_max_size(node->rb_left) >= length &&
799 vstart < va->va_start) {
800 node = node->rb_left;
801 } else {
802 if (is_within_this_va(va, size, align, vstart))
803 return va;
804
805 /*
806 * Does not make sense to go deeper towards the right
807 * sub-tree if it does not have a free block that is
808 * equal or bigger to the requested search length.
809 */
810 if (get_subtree_max_size(node->rb_right) >= length) {
811 node = node->rb_right;
812 continue;
813 }
814
815 /*
816 * OK. We roll back and find the fist right sub-tree,
817 * that will satisfy the search criteria. It can happen
818 * only once due to "vstart" restriction.
819 */
820 while ((node = rb_parent(node))) {
821 va = rb_entry(node, struct vmap_area, rb_node);
822 if (is_within_this_va(va, size, align, vstart))
823 return va;
824
825 if (get_subtree_max_size(node->rb_right) >= length &&
826 vstart <= va->va_start) {
827 node = node->rb_right;
828 break;
829 }
830 }
831 }
832 }
833
834 return NULL;
835}
836
837enum fit_type {
838 NOTHING_FIT = 0,
839 FL_FIT_TYPE = 1, /* full fit */
840 LE_FIT_TYPE = 2, /* left edge fit */
841 RE_FIT_TYPE = 3, /* right edge fit */
842 NE_FIT_TYPE = 4 /* no edge fit */
843};
844
845static __always_inline enum fit_type
846classify_va_fit_type(struct vmap_area *va,
847 unsigned long nva_start_addr, unsigned long size)
848{
849 enum fit_type type;
850
851 /* Check if it is within VA. */
852 if (nva_start_addr < va->va_start ||
853 nva_start_addr + size > va->va_end)
854 return NOTHING_FIT;
855
856 /* Now classify. */
857 if (va->va_start == nva_start_addr) {
858 if (va->va_end == nva_start_addr + size)
859 type = FL_FIT_TYPE;
860 else
861 type = LE_FIT_TYPE;
862 } else if (va->va_end == nva_start_addr + size) {
863 type = RE_FIT_TYPE;
864 } else {
865 type = NE_FIT_TYPE;
866 }
867
868 return type;
869}
870
871static __always_inline int
872adjust_va_to_fit_type(struct vmap_area *va,
873 unsigned long nva_start_addr, unsigned long size,
874 enum fit_type type)
875{
876 struct vmap_area *lva;
877
878 if (type == FL_FIT_TYPE) {
879 /*
880 * No need to split VA, it fully fits.
881 *
882 * | |
883 * V NVA V
884 * |---------------|
885 */
886 unlink_va(va, &free_vmap_area_root);
887 kmem_cache_free(vmap_area_cachep, va);
888 } else if (type == LE_FIT_TYPE) {
889 /*
890 * Split left edge of fit VA.
891 *
892 * | |
893 * V NVA V R
894 * |-------|-------|
895 */
896 va->va_start += size;
897 } else if (type == RE_FIT_TYPE) {
898 /*
899 * Split right edge of fit VA.
900 *
901 * | |
902 * L V NVA V
903 * |-------|-------|
904 */
905 va->va_end = nva_start_addr;
906 } else if (type == NE_FIT_TYPE) {
907 /*
908 * Split no edge of fit VA.
909 *
910 * | |
911 * L V NVA V R
912 * |---|-------|---|
913 */
914 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
915 if (unlikely(!lva))
916 return -1;
917
918 /*
919 * Build the remainder.
920 */
921 lva->va_start = va->va_start;
922 lva->va_end = nva_start_addr;
923
924 /*
925 * Shrink this VA to remaining size.
926 */
927 va->va_start = nva_start_addr + size;
928 } else {
929 return -1;
930 }
931
932 if (type != FL_FIT_TYPE) {
933 augment_tree_propagate_from(va);
934
935 if (type == NE_FIT_TYPE)
936 insert_vmap_area_augment(lva, &va->rb_node,
937 &free_vmap_area_root, &free_vmap_area_list);
938 }
939
940 return 0;
941}
942
943/*
944 * Returns a start address of the newly allocated area, if success.
945 * Otherwise a vend is returned that indicates failure.
946 */
947static __always_inline unsigned long
948__alloc_vmap_area(unsigned long size, unsigned long align,
949 unsigned long vstart, unsigned long vend, int node)
950{
951 unsigned long nva_start_addr;
952 struct vmap_area *va;
953 enum fit_type type;
954 int ret;
955
956 va = find_vmap_lowest_match(size, align, vstart);
957 if (unlikely(!va))
958 return vend;
959
960 if (va->va_start > vstart)
961 nva_start_addr = ALIGN(va->va_start, align);
962 else
963 nva_start_addr = ALIGN(vstart, align);
964
965 /* Check the "vend" restriction. */
966 if (nva_start_addr + size > vend)
967 return vend;
968
969 /* Classify what we have found. */
970 type = classify_va_fit_type(va, nva_start_addr, size);
971 if (WARN_ON_ONCE(type == NOTHING_FIT))
972 return vend;
973
974 /* Update the free vmap_area. */
975 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
976 if (ret)
977 return vend;
978
979 return nva_start_addr;
980}
4da56b99 981
db64fe02
NP
982/*
983 * Allocate a region of KVA of the specified size and alignment, within the
984 * vstart and vend.
985 */
986static struct vmap_area *alloc_vmap_area(unsigned long size,
987 unsigned long align,
988 unsigned long vstart, unsigned long vend,
989 int node, gfp_t gfp_mask)
990{
991 struct vmap_area *va;
1da177e4 992 unsigned long addr;
db64fe02
NP
993 int purged = 0;
994
7766970c 995 BUG_ON(!size);
891c49ab 996 BUG_ON(offset_in_page(size));
89699605 997 BUG_ON(!is_power_of_2(align));
db64fe02 998
68ad4a33
URS
999 if (unlikely(!vmap_initialized))
1000 return ERR_PTR(-EBUSY);
1001
5803ed29 1002 might_sleep();
4da56b99 1003
68ad4a33 1004 va = kmem_cache_alloc_node(vmap_area_cachep,
db64fe02
NP
1005 gfp_mask & GFP_RECLAIM_MASK, node);
1006 if (unlikely(!va))
1007 return ERR_PTR(-ENOMEM);
1008
7f88f88f
CM
1009 /*
1010 * Only scan the relevant parts containing pointers to other objects
1011 * to avoid false negatives.
1012 */
1013 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1014
db64fe02
NP
1015retry:
1016 spin_lock(&vmap_area_lock);
89699605 1017
afd07389 1018 /*
68ad4a33
URS
1019 * If an allocation fails, the "vend" address is
1020 * returned. Therefore trigger the overflow path.
afd07389 1021 */
68ad4a33
URS
1022 addr = __alloc_vmap_area(size, align, vstart, vend, node);
1023 if (unlikely(addr == vend))
89699605 1024 goto overflow;
db64fe02
NP
1025
1026 va->va_start = addr;
1027 va->va_end = addr + size;
1028 va->flags = 0;
68ad4a33
URS
1029 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1030
db64fe02
NP
1031 spin_unlock(&vmap_area_lock);
1032
61e16557 1033 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1034 BUG_ON(va->va_start < vstart);
1035 BUG_ON(va->va_end > vend);
1036
db64fe02 1037 return va;
89699605
NP
1038
1039overflow:
1040 spin_unlock(&vmap_area_lock);
1041 if (!purged) {
1042 purge_vmap_area_lazy();
1043 purged = 1;
1044 goto retry;
1045 }
4da56b99
CW
1046
1047 if (gfpflags_allow_blocking(gfp_mask)) {
1048 unsigned long freed = 0;
1049 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1050 if (freed > 0) {
1051 purged = 0;
1052 goto retry;
1053 }
1054 }
1055
03497d76 1056 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1057 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1058 size);
68ad4a33
URS
1059
1060 kmem_cache_free(vmap_area_cachep, va);
89699605 1061 return ERR_PTR(-EBUSY);
db64fe02
NP
1062}
1063
4da56b99
CW
1064int register_vmap_purge_notifier(struct notifier_block *nb)
1065{
1066 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1067}
1068EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1069
1070int unregister_vmap_purge_notifier(struct notifier_block *nb)
1071{
1072 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1073}
1074EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1075
db64fe02
NP
1076static void __free_vmap_area(struct vmap_area *va)
1077{
1078 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605 1079
ca23e405 1080 /*
68ad4a33 1081 * Remove from the busy tree/list.
ca23e405 1082 */
68ad4a33 1083 unlink_va(va, &vmap_area_root);
ca23e405 1084
68ad4a33
URS
1085 /*
1086 * Merge VA with its neighbors, otherwise just add it.
1087 */
1088 merge_or_add_vmap_area(va,
1089 &free_vmap_area_root, &free_vmap_area_list);
db64fe02
NP
1090}
1091
1092/*
1093 * Free a region of KVA allocated by alloc_vmap_area
1094 */
1095static void free_vmap_area(struct vmap_area *va)
1096{
1097 spin_lock(&vmap_area_lock);
1098 __free_vmap_area(va);
1099 spin_unlock(&vmap_area_lock);
1100}
1101
1102/*
1103 * Clear the pagetable entries of a given vmap_area
1104 */
1105static void unmap_vmap_area(struct vmap_area *va)
1106{
1107 vunmap_page_range(va->va_start, va->va_end);
1108}
1109
1110/*
1111 * lazy_max_pages is the maximum amount of virtual address space we gather up
1112 * before attempting to purge with a TLB flush.
1113 *
1114 * There is a tradeoff here: a larger number will cover more kernel page tables
1115 * and take slightly longer to purge, but it will linearly reduce the number of
1116 * global TLB flushes that must be performed. It would seem natural to scale
1117 * this number up linearly with the number of CPUs (because vmapping activity
1118 * could also scale linearly with the number of CPUs), however it is likely
1119 * that in practice, workloads might be constrained in other ways that mean
1120 * vmap activity will not scale linearly with CPUs. Also, I want to be
1121 * conservative and not introduce a big latency on huge systems, so go with
1122 * a less aggressive log scale. It will still be an improvement over the old
1123 * code, and it will be simple to change the scale factor if we find that it
1124 * becomes a problem on bigger systems.
1125 */
1126static unsigned long lazy_max_pages(void)
1127{
1128 unsigned int log;
1129
1130 log = fls(num_online_cpus());
1131
1132 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1133}
1134
4d36e6f8 1135static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1136
0574ecd1
CH
1137/*
1138 * Serialize vmap purging. There is no actual criticial section protected
1139 * by this look, but we want to avoid concurrent calls for performance
1140 * reasons and to make the pcpu_get_vm_areas more deterministic.
1141 */
f9e09977 1142static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1143
02b709df
NP
1144/* for per-CPU blocks */
1145static void purge_fragmented_blocks_allcpus(void);
1146
3ee48b6a
CW
1147/*
1148 * called before a call to iounmap() if the caller wants vm_area_struct's
1149 * immediately freed.
1150 */
1151void set_iounmap_nonlazy(void)
1152{
4d36e6f8 1153 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1154}
1155
db64fe02
NP
1156/*
1157 * Purges all lazily-freed vmap areas.
db64fe02 1158 */
0574ecd1 1159static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1160{
4d36e6f8 1161 unsigned long resched_threshold;
80c4bd7a 1162 struct llist_node *valist;
db64fe02 1163 struct vmap_area *va;
cbb76676 1164 struct vmap_area *n_va;
db64fe02 1165
0574ecd1 1166 lockdep_assert_held(&vmap_purge_lock);
02b709df 1167
80c4bd7a 1168 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1169 if (unlikely(valist == NULL))
1170 return false;
1171
1172 /*
1173 * TODO: to calculate a flush range without looping.
1174 * The list can be up to lazy_max_pages() elements.
1175 */
80c4bd7a 1176 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1177 if (va->va_start < start)
1178 start = va->va_start;
1179 if (va->va_end > end)
1180 end = va->va_end;
db64fe02 1181 }
db64fe02 1182
0574ecd1 1183 flush_tlb_kernel_range(start, end);
4d36e6f8 1184 resched_threshold = lazy_max_pages() << 1;
db64fe02 1185
0574ecd1 1186 spin_lock(&vmap_area_lock);
763b218d 1187 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1188 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
763b218d 1189
0574ecd1 1190 __free_vmap_area(va);
4d36e6f8 1191 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1192
4d36e6f8 1193 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
68571be9 1194 cond_resched_lock(&vmap_area_lock);
763b218d 1195 }
0574ecd1
CH
1196 spin_unlock(&vmap_area_lock);
1197 return true;
db64fe02
NP
1198}
1199
496850e5
NP
1200/*
1201 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1202 * is already purging.
1203 */
1204static void try_purge_vmap_area_lazy(void)
1205{
f9e09977 1206 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1207 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1208 mutex_unlock(&vmap_purge_lock);
0574ecd1 1209 }
496850e5
NP
1210}
1211
db64fe02
NP
1212/*
1213 * Kick off a purge of the outstanding lazy areas.
1214 */
1215static void purge_vmap_area_lazy(void)
1216{
f9e09977 1217 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1218 purge_fragmented_blocks_allcpus();
1219 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1220 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1221}
1222
1223/*
64141da5
JF
1224 * Free a vmap area, caller ensuring that the area has been unmapped
1225 * and flush_cache_vunmap had been called for the correct range
1226 * previously.
db64fe02 1227 */
64141da5 1228static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1229{
4d36e6f8 1230 unsigned long nr_lazy;
80c4bd7a 1231
4d36e6f8
URS
1232 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1233 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1234
1235 /* After this point, we may free va at any time */
1236 llist_add(&va->purge_list, &vmap_purge_list);
1237
1238 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1239 try_purge_vmap_area_lazy();
db64fe02
NP
1240}
1241
b29acbdc
NP
1242/*
1243 * Free and unmap a vmap area
1244 */
1245static void free_unmap_vmap_area(struct vmap_area *va)
1246{
1247 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1248 unmap_vmap_area(va);
82a2e924
CP
1249 if (debug_pagealloc_enabled())
1250 flush_tlb_kernel_range(va->va_start, va->va_end);
1251
c8eef01e 1252 free_vmap_area_noflush(va);
b29acbdc
NP
1253}
1254
db64fe02
NP
1255static struct vmap_area *find_vmap_area(unsigned long addr)
1256{
1257 struct vmap_area *va;
1258
1259 spin_lock(&vmap_area_lock);
1260 va = __find_vmap_area(addr);
1261 spin_unlock(&vmap_area_lock);
1262
1263 return va;
1264}
1265
db64fe02
NP
1266/*** Per cpu kva allocator ***/
1267
1268/*
1269 * vmap space is limited especially on 32 bit architectures. Ensure there is
1270 * room for at least 16 percpu vmap blocks per CPU.
1271 */
1272/*
1273 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1274 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1275 * instead (we just need a rough idea)
1276 */
1277#if BITS_PER_LONG == 32
1278#define VMALLOC_SPACE (128UL*1024*1024)
1279#else
1280#define VMALLOC_SPACE (128UL*1024*1024*1024)
1281#endif
1282
1283#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1284#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1285#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1286#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1287#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1288#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1289#define VMAP_BBMAP_BITS \
1290 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1291 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1292 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1293
1294#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1295
1296struct vmap_block_queue {
1297 spinlock_t lock;
1298 struct list_head free;
db64fe02
NP
1299};
1300
1301struct vmap_block {
1302 spinlock_t lock;
1303 struct vmap_area *va;
db64fe02 1304 unsigned long free, dirty;
7d61bfe8 1305 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1306 struct list_head free_list;
1307 struct rcu_head rcu_head;
02b709df 1308 struct list_head purge;
db64fe02
NP
1309};
1310
1311/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1312static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1313
1314/*
1315 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1316 * in the free path. Could get rid of this if we change the API to return a
1317 * "cookie" from alloc, to be passed to free. But no big deal yet.
1318 */
1319static DEFINE_SPINLOCK(vmap_block_tree_lock);
1320static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1321
1322/*
1323 * We should probably have a fallback mechanism to allocate virtual memory
1324 * out of partially filled vmap blocks. However vmap block sizing should be
1325 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1326 * big problem.
1327 */
1328
1329static unsigned long addr_to_vb_idx(unsigned long addr)
1330{
1331 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1332 addr /= VMAP_BLOCK_SIZE;
1333 return addr;
1334}
1335
cf725ce2
RP
1336static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1337{
1338 unsigned long addr;
1339
1340 addr = va_start + (pages_off << PAGE_SHIFT);
1341 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1342 return (void *)addr;
1343}
1344
1345/**
1346 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1347 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1348 * @order: how many 2^order pages should be occupied in newly allocated block
1349 * @gfp_mask: flags for the page level allocator
1350 *
a862f68a 1351 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1352 */
1353static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1354{
1355 struct vmap_block_queue *vbq;
1356 struct vmap_block *vb;
1357 struct vmap_area *va;
1358 unsigned long vb_idx;
1359 int node, err;
cf725ce2 1360 void *vaddr;
db64fe02
NP
1361
1362 node = numa_node_id();
1363
1364 vb = kmalloc_node(sizeof(struct vmap_block),
1365 gfp_mask & GFP_RECLAIM_MASK, node);
1366 if (unlikely(!vb))
1367 return ERR_PTR(-ENOMEM);
1368
1369 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1370 VMALLOC_START, VMALLOC_END,
1371 node, gfp_mask);
ddf9c6d4 1372 if (IS_ERR(va)) {
db64fe02 1373 kfree(vb);
e7d86340 1374 return ERR_CAST(va);
db64fe02
NP
1375 }
1376
1377 err = radix_tree_preload(gfp_mask);
1378 if (unlikely(err)) {
1379 kfree(vb);
1380 free_vmap_area(va);
1381 return ERR_PTR(err);
1382 }
1383
cf725ce2 1384 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1385 spin_lock_init(&vb->lock);
1386 vb->va = va;
cf725ce2
RP
1387 /* At least something should be left free */
1388 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1389 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1390 vb->dirty = 0;
7d61bfe8
RP
1391 vb->dirty_min = VMAP_BBMAP_BITS;
1392 vb->dirty_max = 0;
db64fe02 1393 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1394
1395 vb_idx = addr_to_vb_idx(va->va_start);
1396 spin_lock(&vmap_block_tree_lock);
1397 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1398 spin_unlock(&vmap_block_tree_lock);
1399 BUG_ON(err);
1400 radix_tree_preload_end();
1401
1402 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1403 spin_lock(&vbq->lock);
68ac546f 1404 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1405 spin_unlock(&vbq->lock);
3f04ba85 1406 put_cpu_var(vmap_block_queue);
db64fe02 1407
cf725ce2 1408 return vaddr;
db64fe02
NP
1409}
1410
db64fe02
NP
1411static void free_vmap_block(struct vmap_block *vb)
1412{
1413 struct vmap_block *tmp;
1414 unsigned long vb_idx;
1415
db64fe02
NP
1416 vb_idx = addr_to_vb_idx(vb->va->va_start);
1417 spin_lock(&vmap_block_tree_lock);
1418 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1419 spin_unlock(&vmap_block_tree_lock);
1420 BUG_ON(tmp != vb);
1421
64141da5 1422 free_vmap_area_noflush(vb->va);
22a3c7d1 1423 kfree_rcu(vb, rcu_head);
db64fe02
NP
1424}
1425
02b709df
NP
1426static void purge_fragmented_blocks(int cpu)
1427{
1428 LIST_HEAD(purge);
1429 struct vmap_block *vb;
1430 struct vmap_block *n_vb;
1431 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1432
1433 rcu_read_lock();
1434 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1435
1436 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1437 continue;
1438
1439 spin_lock(&vb->lock);
1440 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1441 vb->free = 0; /* prevent further allocs after releasing lock */
1442 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1443 vb->dirty_min = 0;
1444 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1445 spin_lock(&vbq->lock);
1446 list_del_rcu(&vb->free_list);
1447 spin_unlock(&vbq->lock);
1448 spin_unlock(&vb->lock);
1449 list_add_tail(&vb->purge, &purge);
1450 } else
1451 spin_unlock(&vb->lock);
1452 }
1453 rcu_read_unlock();
1454
1455 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1456 list_del(&vb->purge);
1457 free_vmap_block(vb);
1458 }
1459}
1460
02b709df
NP
1461static void purge_fragmented_blocks_allcpus(void)
1462{
1463 int cpu;
1464
1465 for_each_possible_cpu(cpu)
1466 purge_fragmented_blocks(cpu);
1467}
1468
db64fe02
NP
1469static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1470{
1471 struct vmap_block_queue *vbq;
1472 struct vmap_block *vb;
cf725ce2 1473 void *vaddr = NULL;
db64fe02
NP
1474 unsigned int order;
1475
891c49ab 1476 BUG_ON(offset_in_page(size));
db64fe02 1477 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1478 if (WARN_ON(size == 0)) {
1479 /*
1480 * Allocating 0 bytes isn't what caller wants since
1481 * get_order(0) returns funny result. Just warn and terminate
1482 * early.
1483 */
1484 return NULL;
1485 }
db64fe02
NP
1486 order = get_order(size);
1487
db64fe02
NP
1488 rcu_read_lock();
1489 vbq = &get_cpu_var(vmap_block_queue);
1490 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1491 unsigned long pages_off;
db64fe02
NP
1492
1493 spin_lock(&vb->lock);
cf725ce2
RP
1494 if (vb->free < (1UL << order)) {
1495 spin_unlock(&vb->lock);
1496 continue;
1497 }
02b709df 1498
cf725ce2
RP
1499 pages_off = VMAP_BBMAP_BITS - vb->free;
1500 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1501 vb->free -= 1UL << order;
1502 if (vb->free == 0) {
1503 spin_lock(&vbq->lock);
1504 list_del_rcu(&vb->free_list);
1505 spin_unlock(&vbq->lock);
1506 }
cf725ce2 1507
02b709df
NP
1508 spin_unlock(&vb->lock);
1509 break;
db64fe02 1510 }
02b709df 1511
3f04ba85 1512 put_cpu_var(vmap_block_queue);
db64fe02
NP
1513 rcu_read_unlock();
1514
cf725ce2
RP
1515 /* Allocate new block if nothing was found */
1516 if (!vaddr)
1517 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1518
cf725ce2 1519 return vaddr;
db64fe02
NP
1520}
1521
1522static void vb_free(const void *addr, unsigned long size)
1523{
1524 unsigned long offset;
1525 unsigned long vb_idx;
1526 unsigned int order;
1527 struct vmap_block *vb;
1528
891c49ab 1529 BUG_ON(offset_in_page(size));
db64fe02 1530 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1531
1532 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1533
db64fe02
NP
1534 order = get_order(size);
1535
1536 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1537 offset >>= PAGE_SHIFT;
db64fe02
NP
1538
1539 vb_idx = addr_to_vb_idx((unsigned long)addr);
1540 rcu_read_lock();
1541 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1542 rcu_read_unlock();
1543 BUG_ON(!vb);
1544
64141da5
JF
1545 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1546
82a2e924
CP
1547 if (debug_pagealloc_enabled())
1548 flush_tlb_kernel_range((unsigned long)addr,
1549 (unsigned long)addr + size);
1550
db64fe02 1551 spin_lock(&vb->lock);
7d61bfe8
RP
1552
1553 /* Expand dirty range */
1554 vb->dirty_min = min(vb->dirty_min, offset);
1555 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1556
db64fe02
NP
1557 vb->dirty += 1UL << order;
1558 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1559 BUG_ON(vb->free);
db64fe02
NP
1560 spin_unlock(&vb->lock);
1561 free_vmap_block(vb);
1562 } else
1563 spin_unlock(&vb->lock);
1564}
1565
868b104d 1566static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1567{
db64fe02 1568 int cpu;
db64fe02 1569
9b463334
JF
1570 if (unlikely(!vmap_initialized))
1571 return;
1572
5803ed29
CH
1573 might_sleep();
1574
db64fe02
NP
1575 for_each_possible_cpu(cpu) {
1576 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1577 struct vmap_block *vb;
1578
1579 rcu_read_lock();
1580 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1581 spin_lock(&vb->lock);
7d61bfe8
RP
1582 if (vb->dirty) {
1583 unsigned long va_start = vb->va->va_start;
db64fe02 1584 unsigned long s, e;
b136be5e 1585
7d61bfe8
RP
1586 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1587 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1588
7d61bfe8
RP
1589 start = min(s, start);
1590 end = max(e, end);
db64fe02 1591
7d61bfe8 1592 flush = 1;
db64fe02
NP
1593 }
1594 spin_unlock(&vb->lock);
1595 }
1596 rcu_read_unlock();
1597 }
1598
f9e09977 1599 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1600 purge_fragmented_blocks_allcpus();
1601 if (!__purge_vmap_area_lazy(start, end) && flush)
1602 flush_tlb_kernel_range(start, end);
f9e09977 1603 mutex_unlock(&vmap_purge_lock);
db64fe02 1604}
868b104d
RE
1605
1606/**
1607 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1608 *
1609 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1610 * to amortize TLB flushing overheads. What this means is that any page you
1611 * have now, may, in a former life, have been mapped into kernel virtual
1612 * address by the vmap layer and so there might be some CPUs with TLB entries
1613 * still referencing that page (additional to the regular 1:1 kernel mapping).
1614 *
1615 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1616 * be sure that none of the pages we have control over will have any aliases
1617 * from the vmap layer.
1618 */
1619void vm_unmap_aliases(void)
1620{
1621 unsigned long start = ULONG_MAX, end = 0;
1622 int flush = 0;
1623
1624 _vm_unmap_aliases(start, end, flush);
1625}
db64fe02
NP
1626EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1627
1628/**
1629 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1630 * @mem: the pointer returned by vm_map_ram
1631 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1632 */
1633void vm_unmap_ram(const void *mem, unsigned int count)
1634{
65ee03c4 1635 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1636 unsigned long addr = (unsigned long)mem;
9c3acf60 1637 struct vmap_area *va;
db64fe02 1638
5803ed29 1639 might_sleep();
db64fe02
NP
1640 BUG_ON(!addr);
1641 BUG_ON(addr < VMALLOC_START);
1642 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1643 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1644
9c3acf60 1645 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1646 debug_check_no_locks_freed(mem, size);
db64fe02 1647 vb_free(mem, size);
9c3acf60
CH
1648 return;
1649 }
1650
1651 va = find_vmap_area(addr);
1652 BUG_ON(!va);
05e3ff95
CP
1653 debug_check_no_locks_freed((void *)va->va_start,
1654 (va->va_end - va->va_start));
9c3acf60 1655 free_unmap_vmap_area(va);
db64fe02
NP
1656}
1657EXPORT_SYMBOL(vm_unmap_ram);
1658
1659/**
1660 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1661 * @pages: an array of pointers to the pages to be mapped
1662 * @count: number of pages
1663 * @node: prefer to allocate data structures on this node
1664 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1665 *
36437638
GK
1666 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1667 * faster than vmap so it's good. But if you mix long-life and short-life
1668 * objects with vm_map_ram(), it could consume lots of address space through
1669 * fragmentation (especially on a 32bit machine). You could see failures in
1670 * the end. Please use this function for short-lived objects.
1671 *
e99c97ad 1672 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1673 */
1674void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1675{
65ee03c4 1676 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1677 unsigned long addr;
1678 void *mem;
1679
1680 if (likely(count <= VMAP_MAX_ALLOC)) {
1681 mem = vb_alloc(size, GFP_KERNEL);
1682 if (IS_ERR(mem))
1683 return NULL;
1684 addr = (unsigned long)mem;
1685 } else {
1686 struct vmap_area *va;
1687 va = alloc_vmap_area(size, PAGE_SIZE,
1688 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1689 if (IS_ERR(va))
1690 return NULL;
1691
1692 addr = va->va_start;
1693 mem = (void *)addr;
1694 }
1695 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1696 vm_unmap_ram(mem, count);
1697 return NULL;
1698 }
1699 return mem;
1700}
1701EXPORT_SYMBOL(vm_map_ram);
1702
4341fa45 1703static struct vm_struct *vmlist __initdata;
92eac168 1704
be9b7335
NP
1705/**
1706 * vm_area_add_early - add vmap area early during boot
1707 * @vm: vm_struct to add
1708 *
1709 * This function is used to add fixed kernel vm area to vmlist before
1710 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1711 * should contain proper values and the other fields should be zero.
1712 *
1713 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1714 */
1715void __init vm_area_add_early(struct vm_struct *vm)
1716{
1717 struct vm_struct *tmp, **p;
1718
1719 BUG_ON(vmap_initialized);
1720 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1721 if (tmp->addr >= vm->addr) {
1722 BUG_ON(tmp->addr < vm->addr + vm->size);
1723 break;
1724 } else
1725 BUG_ON(tmp->addr + tmp->size > vm->addr);
1726 }
1727 vm->next = *p;
1728 *p = vm;
1729}
1730
f0aa6617
TH
1731/**
1732 * vm_area_register_early - register vmap area early during boot
1733 * @vm: vm_struct to register
c0c0a293 1734 * @align: requested alignment
f0aa6617
TH
1735 *
1736 * This function is used to register kernel vm area before
1737 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1738 * proper values on entry and other fields should be zero. On return,
1739 * vm->addr contains the allocated address.
1740 *
1741 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1742 */
c0c0a293 1743void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1744{
1745 static size_t vm_init_off __initdata;
c0c0a293
TH
1746 unsigned long addr;
1747
1748 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1749 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1750
c0c0a293 1751 vm->addr = (void *)addr;
f0aa6617 1752
be9b7335 1753 vm_area_add_early(vm);
f0aa6617
TH
1754}
1755
68ad4a33
URS
1756static void vmap_init_free_space(void)
1757{
1758 unsigned long vmap_start = 1;
1759 const unsigned long vmap_end = ULONG_MAX;
1760 struct vmap_area *busy, *free;
1761
1762 /*
1763 * B F B B B F
1764 * -|-----|.....|-----|-----|-----|.....|-
1765 * | The KVA space |
1766 * |<--------------------------------->|
1767 */
1768 list_for_each_entry(busy, &vmap_area_list, list) {
1769 if (busy->va_start - vmap_start > 0) {
1770 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1771 if (!WARN_ON_ONCE(!free)) {
1772 free->va_start = vmap_start;
1773 free->va_end = busy->va_start;
1774
1775 insert_vmap_area_augment(free, NULL,
1776 &free_vmap_area_root,
1777 &free_vmap_area_list);
1778 }
1779 }
1780
1781 vmap_start = busy->va_end;
1782 }
1783
1784 if (vmap_end - vmap_start > 0) {
1785 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1786 if (!WARN_ON_ONCE(!free)) {
1787 free->va_start = vmap_start;
1788 free->va_end = vmap_end;
1789
1790 insert_vmap_area_augment(free, NULL,
1791 &free_vmap_area_root,
1792 &free_vmap_area_list);
1793 }
1794 }
1795}
1796
db64fe02
NP
1797void __init vmalloc_init(void)
1798{
822c18f2
IK
1799 struct vmap_area *va;
1800 struct vm_struct *tmp;
db64fe02
NP
1801 int i;
1802
68ad4a33
URS
1803 /*
1804 * Create the cache for vmap_area objects.
1805 */
1806 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1807
db64fe02
NP
1808 for_each_possible_cpu(i) {
1809 struct vmap_block_queue *vbq;
32fcfd40 1810 struct vfree_deferred *p;
db64fe02
NP
1811
1812 vbq = &per_cpu(vmap_block_queue, i);
1813 spin_lock_init(&vbq->lock);
1814 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1815 p = &per_cpu(vfree_deferred, i);
1816 init_llist_head(&p->list);
1817 INIT_WORK(&p->wq, free_work);
db64fe02 1818 }
9b463334 1819
822c18f2
IK
1820 /* Import existing vmlist entries. */
1821 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1822 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1823 if (WARN_ON_ONCE(!va))
1824 continue;
1825
dbda591d 1826 va->flags = VM_VM_AREA;
822c18f2
IK
1827 va->va_start = (unsigned long)tmp->addr;
1828 va->va_end = va->va_start + tmp->size;
dbda591d 1829 va->vm = tmp;
68ad4a33 1830 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1831 }
ca23e405 1832
68ad4a33
URS
1833 /*
1834 * Now we can initialize a free vmap space.
1835 */
1836 vmap_init_free_space();
9b463334 1837 vmap_initialized = true;
db64fe02
NP
1838}
1839
8fc48985
TH
1840/**
1841 * map_kernel_range_noflush - map kernel VM area with the specified pages
1842 * @addr: start of the VM area to map
1843 * @size: size of the VM area to map
1844 * @prot: page protection flags to use
1845 * @pages: pages to map
1846 *
1847 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1848 * specify should have been allocated using get_vm_area() and its
1849 * friends.
1850 *
1851 * NOTE:
1852 * This function does NOT do any cache flushing. The caller is
1853 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1854 * before calling this function.
1855 *
1856 * RETURNS:
1857 * The number of pages mapped on success, -errno on failure.
1858 */
1859int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1860 pgprot_t prot, struct page **pages)
1861{
1862 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1863}
1864
1865/**
1866 * unmap_kernel_range_noflush - unmap kernel VM area
1867 * @addr: start of the VM area to unmap
1868 * @size: size of the VM area to unmap
1869 *
1870 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1871 * specify should have been allocated using get_vm_area() and its
1872 * friends.
1873 *
1874 * NOTE:
1875 * This function does NOT do any cache flushing. The caller is
1876 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1877 * before calling this function and flush_tlb_kernel_range() after.
1878 */
1879void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1880{
1881 vunmap_page_range(addr, addr + size);
1882}
81e88fdc 1883EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1884
1885/**
1886 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1887 * @addr: start of the VM area to unmap
1888 * @size: size of the VM area to unmap
1889 *
1890 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1891 * the unmapping and tlb after.
1892 */
db64fe02
NP
1893void unmap_kernel_range(unsigned long addr, unsigned long size)
1894{
1895 unsigned long end = addr + size;
f6fcba70
TH
1896
1897 flush_cache_vunmap(addr, end);
db64fe02
NP
1898 vunmap_page_range(addr, end);
1899 flush_tlb_kernel_range(addr, end);
1900}
93ef6d6c 1901EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1902
f6f8ed47 1903int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1904{
1905 unsigned long addr = (unsigned long)area->addr;
762216ab 1906 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1907 int err;
1908
f6f8ed47 1909 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1910
f6f8ed47 1911 return err > 0 ? 0 : err;
db64fe02
NP
1912}
1913EXPORT_SYMBOL_GPL(map_vm_area);
1914
f5252e00 1915static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1916 unsigned long flags, const void *caller)
cf88c790 1917{
c69480ad 1918 spin_lock(&vmap_area_lock);
cf88c790
TH
1919 vm->flags = flags;
1920 vm->addr = (void *)va->va_start;
1921 vm->size = va->va_end - va->va_start;
1922 vm->caller = caller;
db1aecaf 1923 va->vm = vm;
cf88c790 1924 va->flags |= VM_VM_AREA;
c69480ad 1925 spin_unlock(&vmap_area_lock);
f5252e00 1926}
cf88c790 1927
20fc02b4 1928static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1929{
d4033afd 1930 /*
20fc02b4 1931 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1932 * we should make sure that vm has proper values.
1933 * Pair with smp_rmb() in show_numa_info().
1934 */
1935 smp_wmb();
20fc02b4 1936 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1937}
1938
db64fe02 1939static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1940 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1941 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1942{
0006526d 1943 struct vmap_area *va;
db64fe02 1944 struct vm_struct *area;
1da177e4 1945
52fd24ca 1946 BUG_ON(in_interrupt());
1da177e4 1947 size = PAGE_ALIGN(size);
31be8309
OH
1948 if (unlikely(!size))
1949 return NULL;
1da177e4 1950
252e5c6e 1951 if (flags & VM_IOREMAP)
1952 align = 1ul << clamp_t(int, get_count_order_long(size),
1953 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1954
cf88c790 1955 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1956 if (unlikely(!area))
1957 return NULL;
1958
71394fe5
AR
1959 if (!(flags & VM_NO_GUARD))
1960 size += PAGE_SIZE;
1da177e4 1961
db64fe02
NP
1962 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1963 if (IS_ERR(va)) {
1964 kfree(area);
1965 return NULL;
1da177e4 1966 }
1da177e4 1967
d82b1d85 1968 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1969
1da177e4 1970 return area;
1da177e4
LT
1971}
1972
930fc45a
CL
1973struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1974 unsigned long start, unsigned long end)
1975{
00ef2d2f
DR
1976 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1977 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1978}
5992b6da 1979EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1980
c2968612
BH
1981struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1982 unsigned long start, unsigned long end,
5e6cafc8 1983 const void *caller)
c2968612 1984{
00ef2d2f
DR
1985 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1986 GFP_KERNEL, caller);
c2968612
BH
1987}
1988
1da177e4 1989/**
92eac168
MR
1990 * get_vm_area - reserve a contiguous kernel virtual area
1991 * @size: size of the area
1992 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 1993 *
92eac168
MR
1994 * Search an area of @size in the kernel virtual mapping area,
1995 * and reserved it for out purposes. Returns the area descriptor
1996 * on success or %NULL on failure.
a862f68a
MR
1997 *
1998 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
1999 */
2000struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2001{
2dca6999 2002 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2003 NUMA_NO_NODE, GFP_KERNEL,
2004 __builtin_return_address(0));
23016969
CL
2005}
2006
2007struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2008 const void *caller)
23016969 2009{
2dca6999 2010 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2011 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2012}
2013
e9da6e99 2014/**
92eac168
MR
2015 * find_vm_area - find a continuous kernel virtual area
2016 * @addr: base address
e9da6e99 2017 *
92eac168
MR
2018 * Search for the kernel VM area starting at @addr, and return it.
2019 * It is up to the caller to do all required locking to keep the returned
2020 * pointer valid.
a862f68a
MR
2021 *
2022 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2023 */
2024struct vm_struct *find_vm_area(const void *addr)
83342314 2025{
db64fe02 2026 struct vmap_area *va;
83342314 2027
db64fe02
NP
2028 va = find_vmap_area((unsigned long)addr);
2029 if (va && va->flags & VM_VM_AREA)
db1aecaf 2030 return va->vm;
1da177e4 2031
1da177e4 2032 return NULL;
1da177e4
LT
2033}
2034
7856dfeb 2035/**
92eac168
MR
2036 * remove_vm_area - find and remove a continuous kernel virtual area
2037 * @addr: base address
7856dfeb 2038 *
92eac168
MR
2039 * Search for the kernel VM area starting at @addr, and remove it.
2040 * This function returns the found VM area, but using it is NOT safe
2041 * on SMP machines, except for its size or flags.
a862f68a
MR
2042 *
2043 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2044 */
b3bdda02 2045struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2046{
db64fe02
NP
2047 struct vmap_area *va;
2048
5803ed29
CH
2049 might_sleep();
2050
db64fe02
NP
2051 va = find_vmap_area((unsigned long)addr);
2052 if (va && va->flags & VM_VM_AREA) {
db1aecaf 2053 struct vm_struct *vm = va->vm;
f5252e00 2054
c69480ad
JK
2055 spin_lock(&vmap_area_lock);
2056 va->vm = NULL;
2057 va->flags &= ~VM_VM_AREA;
78c72746 2058 va->flags |= VM_LAZY_FREE;
c69480ad
JK
2059 spin_unlock(&vmap_area_lock);
2060
a5af5aa8 2061 kasan_free_shadow(vm);
dd32c279 2062 free_unmap_vmap_area(va);
dd32c279 2063
db64fe02
NP
2064 return vm;
2065 }
2066 return NULL;
7856dfeb
AK
2067}
2068
868b104d
RE
2069static inline void set_area_direct_map(const struct vm_struct *area,
2070 int (*set_direct_map)(struct page *page))
2071{
2072 int i;
2073
2074 for (i = 0; i < area->nr_pages; i++)
2075 if (page_address(area->pages[i]))
2076 set_direct_map(area->pages[i]);
2077}
2078
2079/* Handle removing and resetting vm mappings related to the vm_struct. */
2080static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2081{
2082 unsigned long addr = (unsigned long)area->addr;
2083 unsigned long start = ULONG_MAX, end = 0;
2084 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2085 int i;
2086
2087 /*
2088 * The below block can be removed when all architectures that have
2089 * direct map permissions also have set_direct_map_() implementations.
2090 * This is concerned with resetting the direct map any an vm alias with
2091 * execute permissions, without leaving a RW+X window.
2092 */
2093 if (flush_reset && !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
2094 set_memory_nx(addr, area->nr_pages);
2095 set_memory_rw(addr, area->nr_pages);
2096 }
2097
2098 remove_vm_area(area->addr);
2099
2100 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2101 if (!flush_reset)
2102 return;
2103
2104 /*
2105 * If not deallocating pages, just do the flush of the VM area and
2106 * return.
2107 */
2108 if (!deallocate_pages) {
2109 vm_unmap_aliases();
2110 return;
2111 }
2112
2113 /*
2114 * If execution gets here, flush the vm mapping and reset the direct
2115 * map. Find the start and end range of the direct mappings to make sure
2116 * the vm_unmap_aliases() flush includes the direct map.
2117 */
2118 for (i = 0; i < area->nr_pages; i++) {
2119 if (page_address(area->pages[i])) {
2120 start = min(addr, start);
2121 end = max(addr, end);
2122 }
2123 }
2124
2125 /*
2126 * Set direct map to something invalid so that it won't be cached if
2127 * there are any accesses after the TLB flush, then flush the TLB and
2128 * reset the direct map permissions to the default.
2129 */
2130 set_area_direct_map(area, set_direct_map_invalid_noflush);
2131 _vm_unmap_aliases(start, end, 1);
2132 set_area_direct_map(area, set_direct_map_default_noflush);
2133}
2134
b3bdda02 2135static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2136{
2137 struct vm_struct *area;
2138
2139 if (!addr)
2140 return;
2141
e69e9d4a 2142 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2143 addr))
1da177e4 2144 return;
1da177e4 2145
6ade2032 2146 area = find_vm_area(addr);
1da177e4 2147 if (unlikely(!area)) {
4c8573e2 2148 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2149 addr);
1da177e4
LT
2150 return;
2151 }
2152
05e3ff95
CP
2153 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2154 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2155
868b104d
RE
2156 vm_remove_mappings(area, deallocate_pages);
2157
1da177e4
LT
2158 if (deallocate_pages) {
2159 int i;
2160
2161 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2162 struct page *page = area->pages[i];
2163
2164 BUG_ON(!page);
4949148a 2165 __free_pages(page, 0);
1da177e4
LT
2166 }
2167
244d63ee 2168 kvfree(area->pages);
1da177e4
LT
2169 }
2170
2171 kfree(area);
2172 return;
2173}
bf22e37a
AR
2174
2175static inline void __vfree_deferred(const void *addr)
2176{
2177 /*
2178 * Use raw_cpu_ptr() because this can be called from preemptible
2179 * context. Preemption is absolutely fine here, because the llist_add()
2180 * implementation is lockless, so it works even if we are adding to
2181 * nother cpu's list. schedule_work() should be fine with this too.
2182 */
2183 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2184
2185 if (llist_add((struct llist_node *)addr, &p->list))
2186 schedule_work(&p->wq);
2187}
2188
2189/**
92eac168
MR
2190 * vfree_atomic - release memory allocated by vmalloc()
2191 * @addr: memory base address
bf22e37a 2192 *
92eac168
MR
2193 * This one is just like vfree() but can be called in any atomic context
2194 * except NMIs.
bf22e37a
AR
2195 */
2196void vfree_atomic(const void *addr)
2197{
2198 BUG_ON(in_nmi());
2199
2200 kmemleak_free(addr);
2201
2202 if (!addr)
2203 return;
2204 __vfree_deferred(addr);
2205}
2206
c67dc624
RP
2207static void __vfree(const void *addr)
2208{
2209 if (unlikely(in_interrupt()))
2210 __vfree_deferred(addr);
2211 else
2212 __vunmap(addr, 1);
2213}
2214
1da177e4 2215/**
92eac168
MR
2216 * vfree - release memory allocated by vmalloc()
2217 * @addr: memory base address
1da177e4 2218 *
92eac168
MR
2219 * Free the virtually continuous memory area starting at @addr, as
2220 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2221 * NULL, no operation is performed.
1da177e4 2222 *
92eac168
MR
2223 * Must not be called in NMI context (strictly speaking, only if we don't
2224 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2225 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2226 *
92eac168 2227 * May sleep if called *not* from interrupt context.
3ca4ea3a 2228 *
92eac168 2229 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2230 */
b3bdda02 2231void vfree(const void *addr)
1da177e4 2232{
32fcfd40 2233 BUG_ON(in_nmi());
89219d37
CM
2234
2235 kmemleak_free(addr);
2236
a8dda165
AR
2237 might_sleep_if(!in_interrupt());
2238
32fcfd40
AV
2239 if (!addr)
2240 return;
c67dc624
RP
2241
2242 __vfree(addr);
1da177e4 2243}
1da177e4
LT
2244EXPORT_SYMBOL(vfree);
2245
2246/**
92eac168
MR
2247 * vunmap - release virtual mapping obtained by vmap()
2248 * @addr: memory base address
1da177e4 2249 *
92eac168
MR
2250 * Free the virtually contiguous memory area starting at @addr,
2251 * which was created from the page array passed to vmap().
1da177e4 2252 *
92eac168 2253 * Must not be called in interrupt context.
1da177e4 2254 */
b3bdda02 2255void vunmap(const void *addr)
1da177e4
LT
2256{
2257 BUG_ON(in_interrupt());
34754b69 2258 might_sleep();
32fcfd40
AV
2259 if (addr)
2260 __vunmap(addr, 0);
1da177e4 2261}
1da177e4
LT
2262EXPORT_SYMBOL(vunmap);
2263
2264/**
92eac168
MR
2265 * vmap - map an array of pages into virtually contiguous space
2266 * @pages: array of page pointers
2267 * @count: number of pages to map
2268 * @flags: vm_area->flags
2269 * @prot: page protection for the mapping
2270 *
2271 * Maps @count pages from @pages into contiguous kernel virtual
2272 * space.
a862f68a
MR
2273 *
2274 * Return: the address of the area or %NULL on failure
1da177e4
LT
2275 */
2276void *vmap(struct page **pages, unsigned int count,
92eac168 2277 unsigned long flags, pgprot_t prot)
1da177e4
LT
2278{
2279 struct vm_struct *area;
65ee03c4 2280 unsigned long size; /* In bytes */
1da177e4 2281
34754b69
PZ
2282 might_sleep();
2283
ca79b0c2 2284 if (count > totalram_pages())
1da177e4
LT
2285 return NULL;
2286
65ee03c4
GJM
2287 size = (unsigned long)count << PAGE_SHIFT;
2288 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2289 if (!area)
2290 return NULL;
23016969 2291
f6f8ed47 2292 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2293 vunmap(area->addr);
2294 return NULL;
2295 }
2296
2297 return area->addr;
2298}
1da177e4
LT
2299EXPORT_SYMBOL(vmap);
2300
8594a21c
MH
2301static void *__vmalloc_node(unsigned long size, unsigned long align,
2302 gfp_t gfp_mask, pgprot_t prot,
2303 int node, const void *caller);
e31d9eb5 2304static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2305 pgprot_t prot, int node)
1da177e4
LT
2306{
2307 struct page **pages;
2308 unsigned int nr_pages, array_size, i;
930f036b 2309 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2310 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2311 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2312 0 :
2313 __GFP_HIGHMEM;
1da177e4 2314
762216ab 2315 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2316 array_size = (nr_pages * sizeof(struct page *));
2317
2318 area->nr_pages = nr_pages;
2319 /* Please note that the recursion is strictly bounded. */
8757d5fa 2320 if (array_size > PAGE_SIZE) {
704b862f 2321 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2322 PAGE_KERNEL, node, area->caller);
286e1ea3 2323 } else {
976d6dfb 2324 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2325 }
1da177e4
LT
2326 area->pages = pages;
2327 if (!area->pages) {
2328 remove_vm_area(area->addr);
2329 kfree(area);
2330 return NULL;
2331 }
1da177e4
LT
2332
2333 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2334 struct page *page;
2335
4b90951c 2336 if (node == NUMA_NO_NODE)
704b862f 2337 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2338 else
704b862f 2339 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2340
2341 if (unlikely(!page)) {
1da177e4
LT
2342 /* Successfully allocated i pages, free them in __vunmap() */
2343 area->nr_pages = i;
2344 goto fail;
2345 }
bf53d6f8 2346 area->pages[i] = page;
704b862f 2347 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
660654f9 2348 cond_resched();
1da177e4
LT
2349 }
2350
f6f8ed47 2351 if (map_vm_area(area, prot, pages))
1da177e4
LT
2352 goto fail;
2353 return area->addr;
2354
2355fail:
a8e99259 2356 warn_alloc(gfp_mask, NULL,
7877cdcc 2357 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2358 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2359 __vfree(area->addr);
1da177e4
LT
2360 return NULL;
2361}
2362
2363/**
92eac168
MR
2364 * __vmalloc_node_range - allocate virtually contiguous memory
2365 * @size: allocation size
2366 * @align: desired alignment
2367 * @start: vm area range start
2368 * @end: vm area range end
2369 * @gfp_mask: flags for the page level allocator
2370 * @prot: protection mask for the allocated pages
2371 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2372 * @node: node to use for allocation or NUMA_NO_NODE
2373 * @caller: caller's return address
2374 *
2375 * Allocate enough pages to cover @size from the page level
2376 * allocator with @gfp_mask flags. Map them into contiguous
2377 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2378 *
2379 * Return: the address of the area or %NULL on failure
1da177e4 2380 */
d0a21265
DR
2381void *__vmalloc_node_range(unsigned long size, unsigned long align,
2382 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2383 pgprot_t prot, unsigned long vm_flags, int node,
2384 const void *caller)
1da177e4
LT
2385{
2386 struct vm_struct *area;
89219d37
CM
2387 void *addr;
2388 unsigned long real_size = size;
1da177e4
LT
2389
2390 size = PAGE_ALIGN(size);
ca79b0c2 2391 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2392 goto fail;
1da177e4 2393
cb9e3c29
AR
2394 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2395 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2396 if (!area)
de7d2b56 2397 goto fail;
1da177e4 2398
3722e13c 2399 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2400 if (!addr)
b82225f3 2401 return NULL;
89219d37 2402
f5252e00 2403 /*
20fc02b4
ZY
2404 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2405 * flag. It means that vm_struct is not fully initialized.
4341fa45 2406 * Now, it is fully initialized, so remove this flag here.
f5252e00 2407 */
20fc02b4 2408 clear_vm_uninitialized_flag(area);
f5252e00 2409
94f4a161 2410 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2411
2412 return addr;
de7d2b56
JP
2413
2414fail:
a8e99259 2415 warn_alloc(gfp_mask, NULL,
7877cdcc 2416 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2417 return NULL;
1da177e4
LT
2418}
2419
153178ed
URS
2420/*
2421 * This is only for performance analysis of vmalloc and stress purpose.
2422 * It is required by vmalloc test module, therefore do not use it other
2423 * than that.
2424 */
2425#ifdef CONFIG_TEST_VMALLOC_MODULE
2426EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2427#endif
2428
d0a21265 2429/**
92eac168
MR
2430 * __vmalloc_node - allocate virtually contiguous memory
2431 * @size: allocation size
2432 * @align: desired alignment
2433 * @gfp_mask: flags for the page level allocator
2434 * @prot: protection mask for the allocated pages
2435 * @node: node to use for allocation or NUMA_NO_NODE
2436 * @caller: caller's return address
a7c3e901 2437 *
92eac168
MR
2438 * Allocate enough pages to cover @size from the page level
2439 * allocator with @gfp_mask flags. Map them into contiguous
2440 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2441 *
92eac168
MR
2442 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2443 * and __GFP_NOFAIL are not supported
a7c3e901 2444 *
92eac168
MR
2445 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2446 * with mm people.
a862f68a
MR
2447 *
2448 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2449 */
8594a21c 2450static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2451 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2452 int node, const void *caller)
d0a21265
DR
2453{
2454 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2455 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2456}
2457
930fc45a
CL
2458void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2459{
00ef2d2f 2460 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2461 __builtin_return_address(0));
930fc45a 2462}
1da177e4
LT
2463EXPORT_SYMBOL(__vmalloc);
2464
8594a21c
MH
2465static inline void *__vmalloc_node_flags(unsigned long size,
2466 int node, gfp_t flags)
2467{
2468 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2469 node, __builtin_return_address(0));
2470}
2471
2472
2473void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2474 void *caller)
2475{
2476 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2477}
2478
1da177e4 2479/**
92eac168
MR
2480 * vmalloc - allocate virtually contiguous memory
2481 * @size: allocation size
2482 *
2483 * Allocate enough pages to cover @size from the page level
2484 * allocator and map them into contiguous kernel virtual space.
1da177e4 2485 *
92eac168
MR
2486 * For tight control over page level allocator and protection flags
2487 * use __vmalloc() instead.
a862f68a
MR
2488 *
2489 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2490 */
2491void *vmalloc(unsigned long size)
2492{
00ef2d2f 2493 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2494 GFP_KERNEL);
1da177e4 2495}
1da177e4
LT
2496EXPORT_SYMBOL(vmalloc);
2497
e1ca7788 2498/**
92eac168
MR
2499 * vzalloc - allocate virtually contiguous memory with zero fill
2500 * @size: allocation size
2501 *
2502 * Allocate enough pages to cover @size from the page level
2503 * allocator and map them into contiguous kernel virtual space.
2504 * The memory allocated is set to zero.
2505 *
2506 * For tight control over page level allocator and protection flags
2507 * use __vmalloc() instead.
a862f68a
MR
2508 *
2509 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2510 */
2511void *vzalloc(unsigned long size)
2512{
00ef2d2f 2513 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2514 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2515}
2516EXPORT_SYMBOL(vzalloc);
2517
83342314 2518/**
ead04089
REB
2519 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2520 * @size: allocation size
83342314 2521 *
ead04089
REB
2522 * The resulting memory area is zeroed so it can be mapped to userspace
2523 * without leaking data.
a862f68a
MR
2524 *
2525 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2526 */
2527void *vmalloc_user(unsigned long size)
2528{
bc84c535
RP
2529 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2530 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2531 VM_USERMAP, NUMA_NO_NODE,
2532 __builtin_return_address(0));
83342314
NP
2533}
2534EXPORT_SYMBOL(vmalloc_user);
2535
930fc45a 2536/**
92eac168
MR
2537 * vmalloc_node - allocate memory on a specific node
2538 * @size: allocation size
2539 * @node: numa node
930fc45a 2540 *
92eac168
MR
2541 * Allocate enough pages to cover @size from the page level
2542 * allocator and map them into contiguous kernel virtual space.
930fc45a 2543 *
92eac168
MR
2544 * For tight control over page level allocator and protection flags
2545 * use __vmalloc() instead.
a862f68a
MR
2546 *
2547 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2548 */
2549void *vmalloc_node(unsigned long size, int node)
2550{
19809c2d 2551 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2552 node, __builtin_return_address(0));
930fc45a
CL
2553}
2554EXPORT_SYMBOL(vmalloc_node);
2555
e1ca7788
DY
2556/**
2557 * vzalloc_node - allocate memory on a specific node with zero fill
2558 * @size: allocation size
2559 * @node: numa node
2560 *
2561 * Allocate enough pages to cover @size from the page level
2562 * allocator and map them into contiguous kernel virtual space.
2563 * The memory allocated is set to zero.
2564 *
2565 * For tight control over page level allocator and protection flags
2566 * use __vmalloc_node() instead.
a862f68a
MR
2567 *
2568 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2569 */
2570void *vzalloc_node(unsigned long size, int node)
2571{
2572 return __vmalloc_node_flags(size, node,
19809c2d 2573 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2574}
2575EXPORT_SYMBOL(vzalloc_node);
2576
1da177e4 2577/**
92eac168
MR
2578 * vmalloc_exec - allocate virtually contiguous, executable memory
2579 * @size: allocation size
1da177e4 2580 *
92eac168
MR
2581 * Kernel-internal function to allocate enough pages to cover @size
2582 * the page level allocator and map them into contiguous and
2583 * executable kernel virtual space.
1da177e4 2584 *
92eac168
MR
2585 * For tight control over page level allocator and protection flags
2586 * use __vmalloc() instead.
a862f68a
MR
2587 *
2588 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2589 */
1da177e4
LT
2590void *vmalloc_exec(unsigned long size)
2591{
868b104d
RE
2592 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2593 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2594 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2595}
2596
0d08e0d3 2597#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2598#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2599#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2600#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2601#else
698d0831
MH
2602/*
2603 * 64b systems should always have either DMA or DMA32 zones. For others
2604 * GFP_DMA32 should do the right thing and use the normal zone.
2605 */
2606#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2607#endif
2608
1da177e4 2609/**
92eac168
MR
2610 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2611 * @size: allocation size
1da177e4 2612 *
92eac168
MR
2613 * Allocate enough 32bit PA addressable pages to cover @size from the
2614 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2615 *
2616 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2617 */
2618void *vmalloc_32(unsigned long size)
2619{
2dca6999 2620 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2621 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2622}
1da177e4
LT
2623EXPORT_SYMBOL(vmalloc_32);
2624
83342314 2625/**
ead04089 2626 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2627 * @size: allocation size
ead04089
REB
2628 *
2629 * The resulting memory area is 32bit addressable and zeroed so it can be
2630 * mapped to userspace without leaking data.
a862f68a
MR
2631 *
2632 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2633 */
2634void *vmalloc_32_user(unsigned long size)
2635{
bc84c535
RP
2636 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2637 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2638 VM_USERMAP, NUMA_NO_NODE,
2639 __builtin_return_address(0));
83342314
NP
2640}
2641EXPORT_SYMBOL(vmalloc_32_user);
2642
d0107eb0
KH
2643/*
2644 * small helper routine , copy contents to buf from addr.
2645 * If the page is not present, fill zero.
2646 */
2647
2648static int aligned_vread(char *buf, char *addr, unsigned long count)
2649{
2650 struct page *p;
2651 int copied = 0;
2652
2653 while (count) {
2654 unsigned long offset, length;
2655
891c49ab 2656 offset = offset_in_page(addr);
d0107eb0
KH
2657 length = PAGE_SIZE - offset;
2658 if (length > count)
2659 length = count;
2660 p = vmalloc_to_page(addr);
2661 /*
2662 * To do safe access to this _mapped_ area, we need
2663 * lock. But adding lock here means that we need to add
2664 * overhead of vmalloc()/vfree() calles for this _debug_
2665 * interface, rarely used. Instead of that, we'll use
2666 * kmap() and get small overhead in this access function.
2667 */
2668 if (p) {
2669 /*
2670 * we can expect USER0 is not used (see vread/vwrite's
2671 * function description)
2672 */
9b04c5fe 2673 void *map = kmap_atomic(p);
d0107eb0 2674 memcpy(buf, map + offset, length);
9b04c5fe 2675 kunmap_atomic(map);
d0107eb0
KH
2676 } else
2677 memset(buf, 0, length);
2678
2679 addr += length;
2680 buf += length;
2681 copied += length;
2682 count -= length;
2683 }
2684 return copied;
2685}
2686
2687static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2688{
2689 struct page *p;
2690 int copied = 0;
2691
2692 while (count) {
2693 unsigned long offset, length;
2694
891c49ab 2695 offset = offset_in_page(addr);
d0107eb0
KH
2696 length = PAGE_SIZE - offset;
2697 if (length > count)
2698 length = count;
2699 p = vmalloc_to_page(addr);
2700 /*
2701 * To do safe access to this _mapped_ area, we need
2702 * lock. But adding lock here means that we need to add
2703 * overhead of vmalloc()/vfree() calles for this _debug_
2704 * interface, rarely used. Instead of that, we'll use
2705 * kmap() and get small overhead in this access function.
2706 */
2707 if (p) {
2708 /*
2709 * we can expect USER0 is not used (see vread/vwrite's
2710 * function description)
2711 */
9b04c5fe 2712 void *map = kmap_atomic(p);
d0107eb0 2713 memcpy(map + offset, buf, length);
9b04c5fe 2714 kunmap_atomic(map);
d0107eb0
KH
2715 }
2716 addr += length;
2717 buf += length;
2718 copied += length;
2719 count -= length;
2720 }
2721 return copied;
2722}
2723
2724/**
92eac168
MR
2725 * vread() - read vmalloc area in a safe way.
2726 * @buf: buffer for reading data
2727 * @addr: vm address.
2728 * @count: number of bytes to be read.
2729 *
92eac168
MR
2730 * This function checks that addr is a valid vmalloc'ed area, and
2731 * copy data from that area to a given buffer. If the given memory range
2732 * of [addr...addr+count) includes some valid address, data is copied to
2733 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2734 * IOREMAP area is treated as memory hole and no copy is done.
2735 *
2736 * If [addr...addr+count) doesn't includes any intersects with alive
2737 * vm_struct area, returns 0. @buf should be kernel's buffer.
2738 *
2739 * Note: In usual ops, vread() is never necessary because the caller
2740 * should know vmalloc() area is valid and can use memcpy().
2741 * This is for routines which have to access vmalloc area without
2742 * any informaion, as /dev/kmem.
a862f68a
MR
2743 *
2744 * Return: number of bytes for which addr and buf should be increased
2745 * (same number as @count) or %0 if [addr...addr+count) doesn't
2746 * include any intersection with valid vmalloc area
d0107eb0 2747 */
1da177e4
LT
2748long vread(char *buf, char *addr, unsigned long count)
2749{
e81ce85f
JK
2750 struct vmap_area *va;
2751 struct vm_struct *vm;
1da177e4 2752 char *vaddr, *buf_start = buf;
d0107eb0 2753 unsigned long buflen = count;
1da177e4
LT
2754 unsigned long n;
2755
2756 /* Don't allow overflow */
2757 if ((unsigned long) addr + count < count)
2758 count = -(unsigned long) addr;
2759
e81ce85f
JK
2760 spin_lock(&vmap_area_lock);
2761 list_for_each_entry(va, &vmap_area_list, list) {
2762 if (!count)
2763 break;
2764
2765 if (!(va->flags & VM_VM_AREA))
2766 continue;
2767
2768 vm = va->vm;
2769 vaddr = (char *) vm->addr;
762216ab 2770 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2771 continue;
2772 while (addr < vaddr) {
2773 if (count == 0)
2774 goto finished;
2775 *buf = '\0';
2776 buf++;
2777 addr++;
2778 count--;
2779 }
762216ab 2780 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2781 if (n > count)
2782 n = count;
e81ce85f 2783 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2784 aligned_vread(buf, addr, n);
2785 else /* IOREMAP area is treated as memory hole */
2786 memset(buf, 0, n);
2787 buf += n;
2788 addr += n;
2789 count -= n;
1da177e4
LT
2790 }
2791finished:
e81ce85f 2792 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2793
2794 if (buf == buf_start)
2795 return 0;
2796 /* zero-fill memory holes */
2797 if (buf != buf_start + buflen)
2798 memset(buf, 0, buflen - (buf - buf_start));
2799
2800 return buflen;
1da177e4
LT
2801}
2802
d0107eb0 2803/**
92eac168
MR
2804 * vwrite() - write vmalloc area in a safe way.
2805 * @buf: buffer for source data
2806 * @addr: vm address.
2807 * @count: number of bytes to be read.
2808 *
92eac168
MR
2809 * This function checks that addr is a valid vmalloc'ed area, and
2810 * copy data from a buffer to the given addr. If specified range of
2811 * [addr...addr+count) includes some valid address, data is copied from
2812 * proper area of @buf. If there are memory holes, no copy to hole.
2813 * IOREMAP area is treated as memory hole and no copy is done.
2814 *
2815 * If [addr...addr+count) doesn't includes any intersects with alive
2816 * vm_struct area, returns 0. @buf should be kernel's buffer.
2817 *
2818 * Note: In usual ops, vwrite() is never necessary because the caller
2819 * should know vmalloc() area is valid and can use memcpy().
2820 * This is for routines which have to access vmalloc area without
2821 * any informaion, as /dev/kmem.
a862f68a
MR
2822 *
2823 * Return: number of bytes for which addr and buf should be
2824 * increased (same number as @count) or %0 if [addr...addr+count)
2825 * doesn't include any intersection with valid vmalloc area
d0107eb0 2826 */
1da177e4
LT
2827long vwrite(char *buf, char *addr, unsigned long count)
2828{
e81ce85f
JK
2829 struct vmap_area *va;
2830 struct vm_struct *vm;
d0107eb0
KH
2831 char *vaddr;
2832 unsigned long n, buflen;
2833 int copied = 0;
1da177e4
LT
2834
2835 /* Don't allow overflow */
2836 if ((unsigned long) addr + count < count)
2837 count = -(unsigned long) addr;
d0107eb0 2838 buflen = count;
1da177e4 2839
e81ce85f
JK
2840 spin_lock(&vmap_area_lock);
2841 list_for_each_entry(va, &vmap_area_list, list) {
2842 if (!count)
2843 break;
2844
2845 if (!(va->flags & VM_VM_AREA))
2846 continue;
2847
2848 vm = va->vm;
2849 vaddr = (char *) vm->addr;
762216ab 2850 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2851 continue;
2852 while (addr < vaddr) {
2853 if (count == 0)
2854 goto finished;
2855 buf++;
2856 addr++;
2857 count--;
2858 }
762216ab 2859 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2860 if (n > count)
2861 n = count;
e81ce85f 2862 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2863 aligned_vwrite(buf, addr, n);
2864 copied++;
2865 }
2866 buf += n;
2867 addr += n;
2868 count -= n;
1da177e4
LT
2869 }
2870finished:
e81ce85f 2871 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2872 if (!copied)
2873 return 0;
2874 return buflen;
1da177e4 2875}
83342314
NP
2876
2877/**
92eac168
MR
2878 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2879 * @vma: vma to cover
2880 * @uaddr: target user address to start at
2881 * @kaddr: virtual address of vmalloc kernel memory
2882 * @size: size of map area
7682486b 2883 *
92eac168 2884 * Returns: 0 for success, -Exxx on failure
83342314 2885 *
92eac168
MR
2886 * This function checks that @kaddr is a valid vmalloc'ed area,
2887 * and that it is big enough to cover the range starting at
2888 * @uaddr in @vma. Will return failure if that criteria isn't
2889 * met.
83342314 2890 *
92eac168 2891 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2892 */
e69e9d4a
HD
2893int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2894 void *kaddr, unsigned long size)
83342314
NP
2895{
2896 struct vm_struct *area;
83342314 2897
e69e9d4a
HD
2898 size = PAGE_ALIGN(size);
2899
2900 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2901 return -EINVAL;
2902
e69e9d4a 2903 area = find_vm_area(kaddr);
83342314 2904 if (!area)
db64fe02 2905 return -EINVAL;
83342314
NP
2906
2907 if (!(area->flags & VM_USERMAP))
db64fe02 2908 return -EINVAL;
83342314 2909
401592d2 2910 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 2911 return -EINVAL;
83342314 2912
83342314 2913 do {
e69e9d4a 2914 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2915 int ret;
2916
83342314
NP
2917 ret = vm_insert_page(vma, uaddr, page);
2918 if (ret)
2919 return ret;
2920
2921 uaddr += PAGE_SIZE;
e69e9d4a
HD
2922 kaddr += PAGE_SIZE;
2923 size -= PAGE_SIZE;
2924 } while (size > 0);
83342314 2925
314e51b9 2926 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2927
db64fe02 2928 return 0;
83342314 2929}
e69e9d4a
HD
2930EXPORT_SYMBOL(remap_vmalloc_range_partial);
2931
2932/**
92eac168
MR
2933 * remap_vmalloc_range - map vmalloc pages to userspace
2934 * @vma: vma to cover (map full range of vma)
2935 * @addr: vmalloc memory
2936 * @pgoff: number of pages into addr before first page to map
e69e9d4a 2937 *
92eac168 2938 * Returns: 0 for success, -Exxx on failure
e69e9d4a 2939 *
92eac168
MR
2940 * This function checks that addr is a valid vmalloc'ed area, and
2941 * that it is big enough to cover the vma. Will return failure if
2942 * that criteria isn't met.
e69e9d4a 2943 *
92eac168 2944 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
2945 */
2946int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2947 unsigned long pgoff)
2948{
2949 return remap_vmalloc_range_partial(vma, vma->vm_start,
2950 addr + (pgoff << PAGE_SHIFT),
2951 vma->vm_end - vma->vm_start);
2952}
83342314
NP
2953EXPORT_SYMBOL(remap_vmalloc_range);
2954
1eeb66a1
CH
2955/*
2956 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2957 * have one.
2958 */
3b32123d 2959void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2960{
2961}
5f4352fb
JF
2962
2963
2f569afd 2964static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2965{
cd12909c
DV
2966 pte_t ***p = data;
2967
2968 if (p) {
2969 *(*p) = pte;
2970 (*p)++;
2971 }
5f4352fb
JF
2972 return 0;
2973}
2974
2975/**
92eac168
MR
2976 * alloc_vm_area - allocate a range of kernel address space
2977 * @size: size of the area
2978 * @ptes: returns the PTEs for the address space
7682486b 2979 *
92eac168 2980 * Returns: NULL on failure, vm_struct on success
5f4352fb 2981 *
92eac168
MR
2982 * This function reserves a range of kernel address space, and
2983 * allocates pagetables to map that range. No actual mappings
2984 * are created.
cd12909c 2985 *
92eac168
MR
2986 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2987 * allocated for the VM area are returned.
5f4352fb 2988 */
cd12909c 2989struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2990{
2991 struct vm_struct *area;
2992
23016969
CL
2993 area = get_vm_area_caller(size, VM_IOREMAP,
2994 __builtin_return_address(0));
5f4352fb
JF
2995 if (area == NULL)
2996 return NULL;
2997
2998 /*
2999 * This ensures that page tables are constructed for this region
3000 * of kernel virtual address space and mapped into init_mm.
3001 */
3002 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3003 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3004 free_vm_area(area);
3005 return NULL;
3006 }
3007
5f4352fb
JF
3008 return area;
3009}
3010EXPORT_SYMBOL_GPL(alloc_vm_area);
3011
3012void free_vm_area(struct vm_struct *area)
3013{
3014 struct vm_struct *ret;
3015 ret = remove_vm_area(area->addr);
3016 BUG_ON(ret != area);
3017 kfree(area);
3018}
3019EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3020
4f8b02b4 3021#ifdef CONFIG_SMP
ca23e405
TH
3022static struct vmap_area *node_to_va(struct rb_node *n)
3023{
4583e773 3024 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3025}
3026
3027/**
68ad4a33
URS
3028 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3029 * @addr: target address
ca23e405 3030 *
68ad4a33
URS
3031 * Returns: vmap_area if it is found. If there is no such area
3032 * the first highest(reverse order) vmap_area is returned
3033 * i.e. va->va_start < addr && va->va_end < addr or NULL
3034 * if there are no any areas before @addr.
ca23e405 3035 */
68ad4a33
URS
3036static struct vmap_area *
3037pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3038{
68ad4a33
URS
3039 struct vmap_area *va, *tmp;
3040 struct rb_node *n;
3041
3042 n = free_vmap_area_root.rb_node;
3043 va = NULL;
ca23e405
TH
3044
3045 while (n) {
68ad4a33
URS
3046 tmp = rb_entry(n, struct vmap_area, rb_node);
3047 if (tmp->va_start <= addr) {
3048 va = tmp;
3049 if (tmp->va_end >= addr)
3050 break;
3051
ca23e405 3052 n = n->rb_right;
68ad4a33
URS
3053 } else {
3054 n = n->rb_left;
3055 }
ca23e405
TH
3056 }
3057
68ad4a33 3058 return va;
ca23e405
TH
3059}
3060
3061/**
68ad4a33
URS
3062 * pvm_determine_end_from_reverse - find the highest aligned address
3063 * of free block below VMALLOC_END
3064 * @va:
3065 * in - the VA we start the search(reverse order);
3066 * out - the VA with the highest aligned end address.
ca23e405 3067 *
68ad4a33 3068 * Returns: determined end address within vmap_area
ca23e405 3069 */
68ad4a33
URS
3070static unsigned long
3071pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3072{
68ad4a33 3073 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3074 unsigned long addr;
3075
68ad4a33
URS
3076 if (likely(*va)) {
3077 list_for_each_entry_from_reverse((*va),
3078 &free_vmap_area_list, list) {
3079 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3080 if ((*va)->va_start < addr)
3081 return addr;
3082 }
ca23e405
TH
3083 }
3084
68ad4a33 3085 return 0;
ca23e405
TH
3086}
3087
3088/**
3089 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3090 * @offsets: array containing offset of each area
3091 * @sizes: array containing size of each area
3092 * @nr_vms: the number of areas to allocate
3093 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3094 *
3095 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3096 * vm_structs on success, %NULL on failure
3097 *
3098 * Percpu allocator wants to use congruent vm areas so that it can
3099 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3100 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3101 * be scattered pretty far, distance between two areas easily going up
3102 * to gigabytes. To avoid interacting with regular vmallocs, these
3103 * areas are allocated from top.
ca23e405 3104 *
68ad4a33
URS
3105 * Despite its complicated look, this allocator is rather simple. It
3106 * does everything top-down and scans free blocks from the end looking
3107 * for matching base. While scanning, if any of the areas do not fit the
3108 * base address is pulled down to fit the area. Scanning is repeated till
3109 * all the areas fit and then all necessary data structures are inserted
3110 * and the result is returned.
ca23e405
TH
3111 */
3112struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3113 const size_t *sizes, int nr_vms,
ec3f64fc 3114 size_t align)
ca23e405
TH
3115{
3116 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3117 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3118 struct vmap_area **vas, *va;
ca23e405
TH
3119 struct vm_struct **vms;
3120 int area, area2, last_area, term_area;
68ad4a33 3121 unsigned long base, start, size, end, last_end;
ca23e405 3122 bool purged = false;
68ad4a33 3123 enum fit_type type;
ca23e405 3124
ca23e405 3125 /* verify parameters and allocate data structures */
891c49ab 3126 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3127 for (last_area = 0, area = 0; area < nr_vms; area++) {
3128 start = offsets[area];
3129 end = start + sizes[area];
3130
3131 /* is everything aligned properly? */
3132 BUG_ON(!IS_ALIGNED(offsets[area], align));
3133 BUG_ON(!IS_ALIGNED(sizes[area], align));
3134
3135 /* detect the area with the highest address */
3136 if (start > offsets[last_area])
3137 last_area = area;
3138
c568da28 3139 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3140 unsigned long start2 = offsets[area2];
3141 unsigned long end2 = start2 + sizes[area2];
3142
c568da28 3143 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3144 }
3145 }
3146 last_end = offsets[last_area] + sizes[last_area];
3147
3148 if (vmalloc_end - vmalloc_start < last_end) {
3149 WARN_ON(true);
3150 return NULL;
3151 }
3152
4d67d860
TM
3153 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3154 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3155 if (!vas || !vms)
f1db7afd 3156 goto err_free2;
ca23e405
TH
3157
3158 for (area = 0; area < nr_vms; area++) {
68ad4a33 3159 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3160 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3161 if (!vas[area] || !vms[area])
3162 goto err_free;
3163 }
3164retry:
3165 spin_lock(&vmap_area_lock);
3166
3167 /* start scanning - we scan from the top, begin with the last area */
3168 area = term_area = last_area;
3169 start = offsets[area];
3170 end = start + sizes[area];
3171
68ad4a33
URS
3172 va = pvm_find_va_enclose_addr(vmalloc_end);
3173 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3174
3175 while (true) {
ca23e405
TH
3176 /*
3177 * base might have underflowed, add last_end before
3178 * comparing.
3179 */
68ad4a33
URS
3180 if (base + last_end < vmalloc_start + last_end)
3181 goto overflow;
ca23e405
TH
3182
3183 /*
68ad4a33 3184 * Fitting base has not been found.
ca23e405 3185 */
68ad4a33
URS
3186 if (va == NULL)
3187 goto overflow;
ca23e405
TH
3188
3189 /*
68ad4a33 3190 * If this VA does not fit, move base downwards and recheck.
ca23e405 3191 */
68ad4a33
URS
3192 if (base + start < va->va_start || base + end > va->va_end) {
3193 va = node_to_va(rb_prev(&va->rb_node));
3194 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3195 term_area = area;
3196 continue;
3197 }
3198
3199 /*
3200 * This area fits, move on to the previous one. If
3201 * the previous one is the terminal one, we're done.
3202 */
3203 area = (area + nr_vms - 1) % nr_vms;
3204 if (area == term_area)
3205 break;
68ad4a33 3206
ca23e405
TH
3207 start = offsets[area];
3208 end = start + sizes[area];
68ad4a33 3209 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3210 }
68ad4a33 3211
ca23e405
TH
3212 /* we've found a fitting base, insert all va's */
3213 for (area = 0; area < nr_vms; area++) {
68ad4a33 3214 int ret;
ca23e405 3215
68ad4a33
URS
3216 start = base + offsets[area];
3217 size = sizes[area];
ca23e405 3218
68ad4a33
URS
3219 va = pvm_find_va_enclose_addr(start);
3220 if (WARN_ON_ONCE(va == NULL))
3221 /* It is a BUG(), but trigger recovery instead. */
3222 goto recovery;
3223
3224 type = classify_va_fit_type(va, start, size);
3225 if (WARN_ON_ONCE(type == NOTHING_FIT))
3226 /* It is a BUG(), but trigger recovery instead. */
3227 goto recovery;
3228
3229 ret = adjust_va_to_fit_type(va, start, size, type);
3230 if (unlikely(ret))
3231 goto recovery;
3232
3233 /* Allocated area. */
3234 va = vas[area];
3235 va->va_start = start;
3236 va->va_end = start + size;
3237
3238 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3239 }
ca23e405
TH
3240
3241 spin_unlock(&vmap_area_lock);
3242
3243 /* insert all vm's */
3244 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
3245 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3246 pcpu_get_vm_areas);
ca23e405
TH
3247
3248 kfree(vas);
3249 return vms;
3250
68ad4a33
URS
3251recovery:
3252 /* Remove previously inserted areas. */
3253 while (area--) {
3254 __free_vmap_area(vas[area]);
3255 vas[area] = NULL;
3256 }
3257
3258overflow:
3259 spin_unlock(&vmap_area_lock);
3260 if (!purged) {
3261 purge_vmap_area_lazy();
3262 purged = true;
3263
3264 /* Before "retry", check if we recover. */
3265 for (area = 0; area < nr_vms; area++) {
3266 if (vas[area])
3267 continue;
3268
3269 vas[area] = kmem_cache_zalloc(
3270 vmap_area_cachep, GFP_KERNEL);
3271 if (!vas[area])
3272 goto err_free;
3273 }
3274
3275 goto retry;
3276 }
3277
ca23e405
TH
3278err_free:
3279 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3280 if (vas[area])
3281 kmem_cache_free(vmap_area_cachep, vas[area]);
3282
f1db7afd 3283 kfree(vms[area]);
ca23e405 3284 }
f1db7afd 3285err_free2:
ca23e405
TH
3286 kfree(vas);
3287 kfree(vms);
3288 return NULL;
3289}
3290
3291/**
3292 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3293 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3294 * @nr_vms: the number of allocated areas
3295 *
3296 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3297 */
3298void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3299{
3300 int i;
3301
3302 for (i = 0; i < nr_vms; i++)
3303 free_vm_area(vms[i]);
3304 kfree(vms);
3305}
4f8b02b4 3306#endif /* CONFIG_SMP */
a10aa579
CL
3307
3308#ifdef CONFIG_PROC_FS
3309static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 3310 __acquires(&vmap_area_lock)
a10aa579 3311{
d4033afd 3312 spin_lock(&vmap_area_lock);
3f500069 3313 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3314}
3315
3316static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3317{
3f500069 3318 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3319}
3320
3321static void s_stop(struct seq_file *m, void *p)
d4033afd 3322 __releases(&vmap_area_lock)
a10aa579 3323{
d4033afd 3324 spin_unlock(&vmap_area_lock);
a10aa579
CL
3325}
3326
a47a126a
ED
3327static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3328{
e5adfffc 3329 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3330 unsigned int nr, *counters = m->private;
3331
3332 if (!counters)
3333 return;
3334
af12346c
WL
3335 if (v->flags & VM_UNINITIALIZED)
3336 return;
7e5b528b
DV
3337 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3338 smp_rmb();
af12346c 3339
a47a126a
ED
3340 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3341
3342 for (nr = 0; nr < v->nr_pages; nr++)
3343 counters[page_to_nid(v->pages[nr])]++;
3344
3345 for_each_node_state(nr, N_HIGH_MEMORY)
3346 if (counters[nr])
3347 seq_printf(m, " N%u=%u", nr, counters[nr]);
3348 }
3349}
3350
a10aa579
CL
3351static int s_show(struct seq_file *m, void *p)
3352{
3f500069 3353 struct vmap_area *va;
d4033afd
JK
3354 struct vm_struct *v;
3355
3f500069 3356 va = list_entry(p, struct vmap_area, list);
3357
c2ce8c14
WL
3358 /*
3359 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3360 * behalf of vmap area is being tear down or vm_map_ram allocation.
3361 */
78c72746
YX
3362 if (!(va->flags & VM_VM_AREA)) {
3363 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3364 (void *)va->va_start, (void *)va->va_end,
3365 va->va_end - va->va_start,
3366 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3367
d4033afd 3368 return 0;
78c72746 3369 }
d4033afd
JK
3370
3371 v = va->vm;
a10aa579 3372
45ec1690 3373 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3374 v->addr, v->addr + v->size, v->size);
3375
62c70bce
JP
3376 if (v->caller)
3377 seq_printf(m, " %pS", v->caller);
23016969 3378
a10aa579
CL
3379 if (v->nr_pages)
3380 seq_printf(m, " pages=%d", v->nr_pages);
3381
3382 if (v->phys_addr)
199eaa05 3383 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3384
3385 if (v->flags & VM_IOREMAP)
f4527c90 3386 seq_puts(m, " ioremap");
a10aa579
CL
3387
3388 if (v->flags & VM_ALLOC)
f4527c90 3389 seq_puts(m, " vmalloc");
a10aa579
CL
3390
3391 if (v->flags & VM_MAP)
f4527c90 3392 seq_puts(m, " vmap");
a10aa579
CL
3393
3394 if (v->flags & VM_USERMAP)
f4527c90 3395 seq_puts(m, " user");
a10aa579 3396
244d63ee 3397 if (is_vmalloc_addr(v->pages))
f4527c90 3398 seq_puts(m, " vpages");
a10aa579 3399
a47a126a 3400 show_numa_info(m, v);
a10aa579
CL
3401 seq_putc(m, '\n');
3402 return 0;
3403}
3404
5f6a6a9c 3405static const struct seq_operations vmalloc_op = {
a10aa579
CL
3406 .start = s_start,
3407 .next = s_next,
3408 .stop = s_stop,
3409 .show = s_show,
3410};
5f6a6a9c 3411
5f6a6a9c
AD
3412static int __init proc_vmalloc_init(void)
3413{
fddda2b7 3414 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3415 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3416 &vmalloc_op,
3417 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3418 else
0825a6f9 3419 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3420 return 0;
3421}
3422module_init(proc_vmalloc_init);
db3808c1 3423
a10aa579 3424#endif