mm: move lib/ioremap.c to mm/
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
bdebd6a2 37#include <linux/overflow.h>
3b32123d 38
7c0f6ba6 39#include <linux/uaccess.h>
1da177e4 40#include <asm/tlbflush.h>
2dca6999 41#include <asm/shmparam.h>
1da177e4 42
dd56b046
MG
43#include "internal.h"
44
186525bd
IM
45bool is_vmalloc_addr(const void *x)
46{
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50}
51EXPORT_SYMBOL(is_vmalloc_addr);
52
32fcfd40
AV
53struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56};
57static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59static void __vunmap(const void *, int);
60
61static void free_work(struct work_struct *w)
62{
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
32fcfd40
AV
68}
69
db64fe02 70/*** Page table manipulation functions ***/
b221385b 71
2ba3e694
JR
72static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 pgtbl_mod_mask *mask)
1da177e4
LT
74{
75 pte_t *pte;
76
77 pte = pte_offset_kernel(pmd, addr);
78 do {
79 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 82 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
83}
84
2ba3e694
JR
85static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 pgtbl_mod_mask *mask)
1da177e4
LT
87{
88 pmd_t *pmd;
89 unsigned long next;
2ba3e694 90 int cleared;
1da177e4
LT
91
92 pmd = pmd_offset(pud, addr);
93 do {
94 next = pmd_addr_end(addr, end);
2ba3e694
JR
95
96 cleared = pmd_clear_huge(pmd);
97 if (cleared || pmd_bad(*pmd))
98 *mask |= PGTBL_PMD_MODIFIED;
99
100 if (cleared)
b9820d8f 101 continue;
1da177e4
LT
102 if (pmd_none_or_clear_bad(pmd))
103 continue;
2ba3e694 104 vunmap_pte_range(pmd, addr, next, mask);
1da177e4
LT
105 } while (pmd++, addr = next, addr != end);
106}
107
2ba3e694
JR
108static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
109 pgtbl_mod_mask *mask)
1da177e4
LT
110{
111 pud_t *pud;
112 unsigned long next;
2ba3e694 113 int cleared;
1da177e4 114
c2febafc 115 pud = pud_offset(p4d, addr);
1da177e4
LT
116 do {
117 next = pud_addr_end(addr, end);
2ba3e694
JR
118
119 cleared = pud_clear_huge(pud);
120 if (cleared || pud_bad(*pud))
121 *mask |= PGTBL_PUD_MODIFIED;
122
123 if (cleared)
b9820d8f 124 continue;
1da177e4
LT
125 if (pud_none_or_clear_bad(pud))
126 continue;
2ba3e694 127 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
128 } while (pud++, addr = next, addr != end);
129}
130
2ba3e694
JR
131static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
132 pgtbl_mod_mask *mask)
c2febafc
KS
133{
134 p4d_t *p4d;
135 unsigned long next;
2ba3e694 136 int cleared;
c2febafc
KS
137
138 p4d = p4d_offset(pgd, addr);
139 do {
140 next = p4d_addr_end(addr, end);
2ba3e694
JR
141
142 cleared = p4d_clear_huge(p4d);
143 if (cleared || p4d_bad(*p4d))
144 *mask |= PGTBL_P4D_MODIFIED;
145
146 if (cleared)
c2febafc
KS
147 continue;
148 if (p4d_none_or_clear_bad(p4d))
149 continue;
2ba3e694 150 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
151 } while (p4d++, addr = next, addr != end);
152}
153
b521c43f
CH
154/**
155 * unmap_kernel_range_noflush - unmap kernel VM area
2ba3e694 156 * @start: start of the VM area to unmap
b521c43f
CH
157 * @size: size of the VM area to unmap
158 *
159 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
160 * should have been allocated using get_vm_area() and its friends.
161 *
162 * NOTE:
163 * This function does NOT do any cache flushing. The caller is responsible
164 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
165 * function and flush_tlb_kernel_range() after.
166 */
2ba3e694 167void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
1da177e4 168{
2ba3e694 169 unsigned long end = start + size;
1da177e4 170 unsigned long next;
b521c43f 171 pgd_t *pgd;
2ba3e694
JR
172 unsigned long addr = start;
173 pgtbl_mod_mask mask = 0;
1da177e4
LT
174
175 BUG_ON(addr >= end);
2ba3e694 176 start = addr;
1da177e4 177 pgd = pgd_offset_k(addr);
1da177e4
LT
178 do {
179 next = pgd_addr_end(addr, end);
2ba3e694
JR
180 if (pgd_bad(*pgd))
181 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
182 if (pgd_none_or_clear_bad(pgd))
183 continue;
2ba3e694 184 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 185 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
186
187 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
188 arch_sync_kernel_mappings(start, end);
1da177e4
LT
189}
190
191static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
192 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
193 pgtbl_mod_mask *mask)
1da177e4
LT
194{
195 pte_t *pte;
196
db64fe02
NP
197 /*
198 * nr is a running index into the array which helps higher level
199 * callers keep track of where we're up to.
200 */
201
2ba3e694 202 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
203 if (!pte)
204 return -ENOMEM;
205 do {
db64fe02
NP
206 struct page *page = pages[*nr];
207
208 if (WARN_ON(!pte_none(*pte)))
209 return -EBUSY;
210 if (WARN_ON(!page))
1da177e4
LT
211 return -ENOMEM;
212 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 213 (*nr)++;
1da177e4 214 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 215 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
216 return 0;
217}
218
db64fe02 219static int vmap_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
220 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
221 pgtbl_mod_mask *mask)
1da177e4
LT
222{
223 pmd_t *pmd;
224 unsigned long next;
225
2ba3e694 226 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
227 if (!pmd)
228 return -ENOMEM;
229 do {
230 next = pmd_addr_end(addr, end);
2ba3e694 231 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
232 return -ENOMEM;
233 } while (pmd++, addr = next, addr != end);
234 return 0;
235}
236
c2febafc 237static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
238 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
239 pgtbl_mod_mask *mask)
1da177e4
LT
240{
241 pud_t *pud;
242 unsigned long next;
243
2ba3e694 244 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
245 if (!pud)
246 return -ENOMEM;
247 do {
248 next = pud_addr_end(addr, end);
2ba3e694 249 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
250 return -ENOMEM;
251 } while (pud++, addr = next, addr != end);
252 return 0;
253}
254
c2febafc 255static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
256 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
257 pgtbl_mod_mask *mask)
c2febafc
KS
258{
259 p4d_t *p4d;
260 unsigned long next;
261
2ba3e694 262 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
263 if (!p4d)
264 return -ENOMEM;
265 do {
266 next = p4d_addr_end(addr, end);
2ba3e694 267 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
268 return -ENOMEM;
269 } while (p4d++, addr = next, addr != end);
270 return 0;
271}
272
b521c43f
CH
273/**
274 * map_kernel_range_noflush - map kernel VM area with the specified pages
275 * @addr: start of the VM area to map
276 * @size: size of the VM area to map
277 * @prot: page protection flags to use
278 * @pages: pages to map
db64fe02 279 *
b521c43f
CH
280 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
281 * have been allocated using get_vm_area() and its friends.
282 *
283 * NOTE:
284 * This function does NOT do any cache flushing. The caller is responsible for
285 * calling flush_cache_vmap() on to-be-mapped areas before calling this
286 * function.
287 *
288 * RETURNS:
60bb4465 289 * 0 on success, -errno on failure.
db64fe02 290 */
b521c43f
CH
291int map_kernel_range_noflush(unsigned long addr, unsigned long size,
292 pgprot_t prot, struct page **pages)
1da177e4 293{
2ba3e694 294 unsigned long start = addr;
b521c43f 295 unsigned long end = addr + size;
1da177e4 296 unsigned long next;
b521c43f 297 pgd_t *pgd;
db64fe02
NP
298 int err = 0;
299 int nr = 0;
2ba3e694 300 pgtbl_mod_mask mask = 0;
1da177e4
LT
301
302 BUG_ON(addr >= end);
303 pgd = pgd_offset_k(addr);
1da177e4
LT
304 do {
305 next = pgd_addr_end(addr, end);
2ba3e694
JR
306 if (pgd_bad(*pgd))
307 mask |= PGTBL_PGD_MODIFIED;
308 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 309 if (err)
bf88c8c8 310 return err;
1da177e4 311 } while (pgd++, addr = next, addr != end);
db64fe02 312
2ba3e694
JR
313 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
314 arch_sync_kernel_mappings(start, end);
315
60bb4465 316 return 0;
1da177e4
LT
317}
318
ed1f324c
CH
319int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
320 struct page **pages)
8fc48985
TH
321{
322 int ret;
323
a29adb62
CH
324 ret = map_kernel_range_noflush(start, size, prot, pages);
325 flush_cache_vmap(start, start + size);
8fc48985
TH
326 return ret;
327}
328
81ac3ad9 329int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
330{
331 /*
ab4f2ee1 332 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
333 * and fall back on vmalloc() if that fails. Others
334 * just put it in the vmalloc space.
335 */
336#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
337 unsigned long addr = (unsigned long)x;
338 if (addr >= MODULES_VADDR && addr < MODULES_END)
339 return 1;
340#endif
341 return is_vmalloc_addr(x);
342}
343
48667e7a 344/*
add688fb 345 * Walk a vmap address to the struct page it maps.
48667e7a 346 */
add688fb 347struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
348{
349 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 350 struct page *page = NULL;
48667e7a 351 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
352 p4d_t *p4d;
353 pud_t *pud;
354 pmd_t *pmd;
355 pte_t *ptep, pte;
48667e7a 356
7aa413de
IM
357 /*
358 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
359 * architectures that do not vmalloc module space
360 */
73bdf0a6 361 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 362
c2febafc
KS
363 if (pgd_none(*pgd))
364 return NULL;
365 p4d = p4d_offset(pgd, addr);
366 if (p4d_none(*p4d))
367 return NULL;
368 pud = pud_offset(p4d, addr);
029c54b0
AB
369
370 /*
371 * Don't dereference bad PUD or PMD (below) entries. This will also
372 * identify huge mappings, which we may encounter on architectures
373 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
374 * identified as vmalloc addresses by is_vmalloc_addr(), but are
375 * not [unambiguously] associated with a struct page, so there is
376 * no correct value to return for them.
377 */
378 WARN_ON_ONCE(pud_bad(*pud));
379 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
380 return NULL;
381 pmd = pmd_offset(pud, addr);
029c54b0
AB
382 WARN_ON_ONCE(pmd_bad(*pmd));
383 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
384 return NULL;
385
386 ptep = pte_offset_map(pmd, addr);
387 pte = *ptep;
388 if (pte_present(pte))
389 page = pte_page(pte);
390 pte_unmap(ptep);
add688fb 391 return page;
48667e7a 392}
add688fb 393EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
394
395/*
add688fb 396 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 397 */
add688fb 398unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 399{
add688fb 400 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 401}
add688fb 402EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 403
db64fe02
NP
404
405/*** Global kva allocator ***/
406
bb850f4d 407#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 408#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 409
db64fe02 410
db64fe02 411static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 412static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
413/* Export for kexec only */
414LIST_HEAD(vmap_area_list);
80c4bd7a 415static LLIST_HEAD(vmap_purge_list);
89699605 416static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 417static bool vmap_initialized __read_mostly;
89699605 418
68ad4a33
URS
419/*
420 * This kmem_cache is used for vmap_area objects. Instead of
421 * allocating from slab we reuse an object from this cache to
422 * make things faster. Especially in "no edge" splitting of
423 * free block.
424 */
425static struct kmem_cache *vmap_area_cachep;
426
427/*
428 * This linked list is used in pair with free_vmap_area_root.
429 * It gives O(1) access to prev/next to perform fast coalescing.
430 */
431static LIST_HEAD(free_vmap_area_list);
432
433/*
434 * This augment red-black tree represents the free vmap space.
435 * All vmap_area objects in this tree are sorted by va->va_start
436 * address. It is used for allocation and merging when a vmap
437 * object is released.
438 *
439 * Each vmap_area node contains a maximum available free block
440 * of its sub-tree, right or left. Therefore it is possible to
441 * find a lowest match of free area.
442 */
443static struct rb_root free_vmap_area_root = RB_ROOT;
444
82dd23e8
URS
445/*
446 * Preload a CPU with one object for "no edge" split case. The
447 * aim is to get rid of allocations from the atomic context, thus
448 * to use more permissive allocation masks.
449 */
450static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
451
68ad4a33
URS
452static __always_inline unsigned long
453va_size(struct vmap_area *va)
454{
455 return (va->va_end - va->va_start);
456}
457
458static __always_inline unsigned long
459get_subtree_max_size(struct rb_node *node)
460{
461 struct vmap_area *va;
462
463 va = rb_entry_safe(node, struct vmap_area, rb_node);
464 return va ? va->subtree_max_size : 0;
465}
89699605 466
68ad4a33
URS
467/*
468 * Gets called when remove the node and rotate.
469 */
470static __always_inline unsigned long
471compute_subtree_max_size(struct vmap_area *va)
472{
473 return max3(va_size(va),
474 get_subtree_max_size(va->rb_node.rb_left),
475 get_subtree_max_size(va->rb_node.rb_right));
476}
477
315cc066
ML
478RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
479 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
480
481static void purge_vmap_area_lazy(void);
482static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
483static unsigned long lazy_max_pages(void);
db64fe02 484
97105f0a
RG
485static atomic_long_t nr_vmalloc_pages;
486
487unsigned long vmalloc_nr_pages(void)
488{
489 return atomic_long_read(&nr_vmalloc_pages);
490}
491
db64fe02 492static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 493{
db64fe02
NP
494 struct rb_node *n = vmap_area_root.rb_node;
495
496 while (n) {
497 struct vmap_area *va;
498
499 va = rb_entry(n, struct vmap_area, rb_node);
500 if (addr < va->va_start)
501 n = n->rb_left;
cef2ac3f 502 else if (addr >= va->va_end)
db64fe02
NP
503 n = n->rb_right;
504 else
505 return va;
506 }
507
508 return NULL;
509}
510
68ad4a33
URS
511/*
512 * This function returns back addresses of parent node
513 * and its left or right link for further processing.
514 */
515static __always_inline struct rb_node **
516find_va_links(struct vmap_area *va,
517 struct rb_root *root, struct rb_node *from,
518 struct rb_node **parent)
519{
520 struct vmap_area *tmp_va;
521 struct rb_node **link;
522
523 if (root) {
524 link = &root->rb_node;
525 if (unlikely(!*link)) {
526 *parent = NULL;
527 return link;
528 }
529 } else {
530 link = &from;
531 }
db64fe02 532
68ad4a33
URS
533 /*
534 * Go to the bottom of the tree. When we hit the last point
535 * we end up with parent rb_node and correct direction, i name
536 * it link, where the new va->rb_node will be attached to.
537 */
538 do {
539 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 540
68ad4a33
URS
541 /*
542 * During the traversal we also do some sanity check.
543 * Trigger the BUG() if there are sides(left/right)
544 * or full overlaps.
545 */
546 if (va->va_start < tmp_va->va_end &&
547 va->va_end <= tmp_va->va_start)
548 link = &(*link)->rb_left;
549 else if (va->va_end > tmp_va->va_start &&
550 va->va_start >= tmp_va->va_end)
551 link = &(*link)->rb_right;
db64fe02
NP
552 else
553 BUG();
68ad4a33
URS
554 } while (*link);
555
556 *parent = &tmp_va->rb_node;
557 return link;
558}
559
560static __always_inline struct list_head *
561get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
562{
563 struct list_head *list;
564
565 if (unlikely(!parent))
566 /*
567 * The red-black tree where we try to find VA neighbors
568 * before merging or inserting is empty, i.e. it means
569 * there is no free vmap space. Normally it does not
570 * happen but we handle this case anyway.
571 */
572 return NULL;
573
574 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
575 return (&parent->rb_right == link ? list->next : list);
576}
577
578static __always_inline void
579link_va(struct vmap_area *va, struct rb_root *root,
580 struct rb_node *parent, struct rb_node **link, struct list_head *head)
581{
582 /*
583 * VA is still not in the list, but we can
584 * identify its future previous list_head node.
585 */
586 if (likely(parent)) {
587 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
588 if (&parent->rb_right != link)
589 head = head->prev;
db64fe02
NP
590 }
591
68ad4a33
URS
592 /* Insert to the rb-tree */
593 rb_link_node(&va->rb_node, parent, link);
594 if (root == &free_vmap_area_root) {
595 /*
596 * Some explanation here. Just perform simple insertion
597 * to the tree. We do not set va->subtree_max_size to
598 * its current size before calling rb_insert_augmented().
599 * It is because of we populate the tree from the bottom
600 * to parent levels when the node _is_ in the tree.
601 *
602 * Therefore we set subtree_max_size to zero after insertion,
603 * to let __augment_tree_propagate_from() puts everything to
604 * the correct order later on.
605 */
606 rb_insert_augmented(&va->rb_node,
607 root, &free_vmap_area_rb_augment_cb);
608 va->subtree_max_size = 0;
609 } else {
610 rb_insert_color(&va->rb_node, root);
611 }
db64fe02 612
68ad4a33
URS
613 /* Address-sort this list */
614 list_add(&va->list, head);
db64fe02
NP
615}
616
68ad4a33
URS
617static __always_inline void
618unlink_va(struct vmap_area *va, struct rb_root *root)
619{
460e42d1
URS
620 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
621 return;
db64fe02 622
460e42d1
URS
623 if (root == &free_vmap_area_root)
624 rb_erase_augmented(&va->rb_node,
625 root, &free_vmap_area_rb_augment_cb);
626 else
627 rb_erase(&va->rb_node, root);
628
629 list_del(&va->list);
630 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
631}
632
bb850f4d
URS
633#if DEBUG_AUGMENT_PROPAGATE_CHECK
634static void
635augment_tree_propagate_check(struct rb_node *n)
636{
637 struct vmap_area *va;
638 struct rb_node *node;
639 unsigned long size;
640 bool found = false;
641
642 if (n == NULL)
643 return;
644
645 va = rb_entry(n, struct vmap_area, rb_node);
646 size = va->subtree_max_size;
647 node = n;
648
649 while (node) {
650 va = rb_entry(node, struct vmap_area, rb_node);
651
652 if (get_subtree_max_size(node->rb_left) == size) {
653 node = node->rb_left;
654 } else {
655 if (va_size(va) == size) {
656 found = true;
657 break;
658 }
659
660 node = node->rb_right;
661 }
662 }
663
664 if (!found) {
665 va = rb_entry(n, struct vmap_area, rb_node);
666 pr_emerg("tree is corrupted: %lu, %lu\n",
667 va_size(va), va->subtree_max_size);
668 }
669
670 augment_tree_propagate_check(n->rb_left);
671 augment_tree_propagate_check(n->rb_right);
672}
673#endif
674
68ad4a33
URS
675/*
676 * This function populates subtree_max_size from bottom to upper
677 * levels starting from VA point. The propagation must be done
678 * when VA size is modified by changing its va_start/va_end. Or
679 * in case of newly inserting of VA to the tree.
680 *
681 * It means that __augment_tree_propagate_from() must be called:
682 * - After VA has been inserted to the tree(free path);
683 * - After VA has been shrunk(allocation path);
684 * - After VA has been increased(merging path).
685 *
686 * Please note that, it does not mean that upper parent nodes
687 * and their subtree_max_size are recalculated all the time up
688 * to the root node.
689 *
690 * 4--8
691 * /\
692 * / \
693 * / \
694 * 2--2 8--8
695 *
696 * For example if we modify the node 4, shrinking it to 2, then
697 * no any modification is required. If we shrink the node 2 to 1
698 * its subtree_max_size is updated only, and set to 1. If we shrink
699 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
700 * node becomes 4--6.
701 */
702static __always_inline void
703augment_tree_propagate_from(struct vmap_area *va)
704{
705 struct rb_node *node = &va->rb_node;
706 unsigned long new_va_sub_max_size;
707
708 while (node) {
709 va = rb_entry(node, struct vmap_area, rb_node);
710 new_va_sub_max_size = compute_subtree_max_size(va);
711
712 /*
713 * If the newly calculated maximum available size of the
714 * subtree is equal to the current one, then it means that
715 * the tree is propagated correctly. So we have to stop at
716 * this point to save cycles.
717 */
718 if (va->subtree_max_size == new_va_sub_max_size)
719 break;
720
721 va->subtree_max_size = new_va_sub_max_size;
722 node = rb_parent(&va->rb_node);
723 }
bb850f4d
URS
724
725#if DEBUG_AUGMENT_PROPAGATE_CHECK
726 augment_tree_propagate_check(free_vmap_area_root.rb_node);
727#endif
68ad4a33
URS
728}
729
730static void
731insert_vmap_area(struct vmap_area *va,
732 struct rb_root *root, struct list_head *head)
733{
734 struct rb_node **link;
735 struct rb_node *parent;
736
737 link = find_va_links(va, root, NULL, &parent);
738 link_va(va, root, parent, link, head);
739}
740
741static void
742insert_vmap_area_augment(struct vmap_area *va,
743 struct rb_node *from, struct rb_root *root,
744 struct list_head *head)
745{
746 struct rb_node **link;
747 struct rb_node *parent;
748
749 if (from)
750 link = find_va_links(va, NULL, from, &parent);
751 else
752 link = find_va_links(va, root, NULL, &parent);
753
754 link_va(va, root, parent, link, head);
755 augment_tree_propagate_from(va);
756}
757
758/*
759 * Merge de-allocated chunk of VA memory with previous
760 * and next free blocks. If coalesce is not done a new
761 * free area is inserted. If VA has been merged, it is
762 * freed.
763 */
3c5c3cfb 764static __always_inline struct vmap_area *
68ad4a33
URS
765merge_or_add_vmap_area(struct vmap_area *va,
766 struct rb_root *root, struct list_head *head)
767{
768 struct vmap_area *sibling;
769 struct list_head *next;
770 struct rb_node **link;
771 struct rb_node *parent;
772 bool merged = false;
773
774 /*
775 * Find a place in the tree where VA potentially will be
776 * inserted, unless it is merged with its sibling/siblings.
777 */
778 link = find_va_links(va, root, NULL, &parent);
779
780 /*
781 * Get next node of VA to check if merging can be done.
782 */
783 next = get_va_next_sibling(parent, link);
784 if (unlikely(next == NULL))
785 goto insert;
786
787 /*
788 * start end
789 * | |
790 * |<------VA------>|<-----Next----->|
791 * | |
792 * start end
793 */
794 if (next != head) {
795 sibling = list_entry(next, struct vmap_area, list);
796 if (sibling->va_start == va->va_end) {
797 sibling->va_start = va->va_start;
798
799 /* Check and update the tree if needed. */
800 augment_tree_propagate_from(sibling);
801
68ad4a33
URS
802 /* Free vmap_area object. */
803 kmem_cache_free(vmap_area_cachep, va);
804
805 /* Point to the new merged area. */
806 va = sibling;
807 merged = true;
808 }
809 }
810
811 /*
812 * start end
813 * | |
814 * |<-----Prev----->|<------VA------>|
815 * | |
816 * start end
817 */
818 if (next->prev != head) {
819 sibling = list_entry(next->prev, struct vmap_area, list);
820 if (sibling->va_end == va->va_start) {
821 sibling->va_end = va->va_end;
822
823 /* Check and update the tree if needed. */
824 augment_tree_propagate_from(sibling);
825
54f63d9d
URS
826 if (merged)
827 unlink_va(va, root);
68ad4a33
URS
828
829 /* Free vmap_area object. */
830 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
831
832 /* Point to the new merged area. */
833 va = sibling;
834 merged = true;
68ad4a33
URS
835 }
836 }
837
838insert:
839 if (!merged) {
840 link_va(va, root, parent, link, head);
841 augment_tree_propagate_from(va);
842 }
3c5c3cfb
DA
843
844 return va;
68ad4a33
URS
845}
846
847static __always_inline bool
848is_within_this_va(struct vmap_area *va, unsigned long size,
849 unsigned long align, unsigned long vstart)
850{
851 unsigned long nva_start_addr;
852
853 if (va->va_start > vstart)
854 nva_start_addr = ALIGN(va->va_start, align);
855 else
856 nva_start_addr = ALIGN(vstart, align);
857
858 /* Can be overflowed due to big size or alignment. */
859 if (nva_start_addr + size < nva_start_addr ||
860 nva_start_addr < vstart)
861 return false;
862
863 return (nva_start_addr + size <= va->va_end);
864}
865
866/*
867 * Find the first free block(lowest start address) in the tree,
868 * that will accomplish the request corresponding to passing
869 * parameters.
870 */
871static __always_inline struct vmap_area *
872find_vmap_lowest_match(unsigned long size,
873 unsigned long align, unsigned long vstart)
874{
875 struct vmap_area *va;
876 struct rb_node *node;
877 unsigned long length;
878
879 /* Start from the root. */
880 node = free_vmap_area_root.rb_node;
881
882 /* Adjust the search size for alignment overhead. */
883 length = size + align - 1;
884
885 while (node) {
886 va = rb_entry(node, struct vmap_area, rb_node);
887
888 if (get_subtree_max_size(node->rb_left) >= length &&
889 vstart < va->va_start) {
890 node = node->rb_left;
891 } else {
892 if (is_within_this_va(va, size, align, vstart))
893 return va;
894
895 /*
896 * Does not make sense to go deeper towards the right
897 * sub-tree if it does not have a free block that is
898 * equal or bigger to the requested search length.
899 */
900 if (get_subtree_max_size(node->rb_right) >= length) {
901 node = node->rb_right;
902 continue;
903 }
904
905 /*
3806b041 906 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
907 * that will satisfy the search criteria. It can happen
908 * only once due to "vstart" restriction.
909 */
910 while ((node = rb_parent(node))) {
911 va = rb_entry(node, struct vmap_area, rb_node);
912 if (is_within_this_va(va, size, align, vstart))
913 return va;
914
915 if (get_subtree_max_size(node->rb_right) >= length &&
916 vstart <= va->va_start) {
917 node = node->rb_right;
918 break;
919 }
920 }
921 }
922 }
923
924 return NULL;
925}
926
a6cf4e0f
URS
927#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
928#include <linux/random.h>
929
930static struct vmap_area *
931find_vmap_lowest_linear_match(unsigned long size,
932 unsigned long align, unsigned long vstart)
933{
934 struct vmap_area *va;
935
936 list_for_each_entry(va, &free_vmap_area_list, list) {
937 if (!is_within_this_va(va, size, align, vstart))
938 continue;
939
940 return va;
941 }
942
943 return NULL;
944}
945
946static void
947find_vmap_lowest_match_check(unsigned long size)
948{
949 struct vmap_area *va_1, *va_2;
950 unsigned long vstart;
951 unsigned int rnd;
952
953 get_random_bytes(&rnd, sizeof(rnd));
954 vstart = VMALLOC_START + rnd;
955
956 va_1 = find_vmap_lowest_match(size, 1, vstart);
957 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
958
959 if (va_1 != va_2)
960 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
961 va_1, va_2, vstart);
962}
963#endif
964
68ad4a33
URS
965enum fit_type {
966 NOTHING_FIT = 0,
967 FL_FIT_TYPE = 1, /* full fit */
968 LE_FIT_TYPE = 2, /* left edge fit */
969 RE_FIT_TYPE = 3, /* right edge fit */
970 NE_FIT_TYPE = 4 /* no edge fit */
971};
972
973static __always_inline enum fit_type
974classify_va_fit_type(struct vmap_area *va,
975 unsigned long nva_start_addr, unsigned long size)
976{
977 enum fit_type type;
978
979 /* Check if it is within VA. */
980 if (nva_start_addr < va->va_start ||
981 nva_start_addr + size > va->va_end)
982 return NOTHING_FIT;
983
984 /* Now classify. */
985 if (va->va_start == nva_start_addr) {
986 if (va->va_end == nva_start_addr + size)
987 type = FL_FIT_TYPE;
988 else
989 type = LE_FIT_TYPE;
990 } else if (va->va_end == nva_start_addr + size) {
991 type = RE_FIT_TYPE;
992 } else {
993 type = NE_FIT_TYPE;
994 }
995
996 return type;
997}
998
999static __always_inline int
1000adjust_va_to_fit_type(struct vmap_area *va,
1001 unsigned long nva_start_addr, unsigned long size,
1002 enum fit_type type)
1003{
2c929233 1004 struct vmap_area *lva = NULL;
68ad4a33
URS
1005
1006 if (type == FL_FIT_TYPE) {
1007 /*
1008 * No need to split VA, it fully fits.
1009 *
1010 * | |
1011 * V NVA V
1012 * |---------------|
1013 */
1014 unlink_va(va, &free_vmap_area_root);
1015 kmem_cache_free(vmap_area_cachep, va);
1016 } else if (type == LE_FIT_TYPE) {
1017 /*
1018 * Split left edge of fit VA.
1019 *
1020 * | |
1021 * V NVA V R
1022 * |-------|-------|
1023 */
1024 va->va_start += size;
1025 } else if (type == RE_FIT_TYPE) {
1026 /*
1027 * Split right edge of fit VA.
1028 *
1029 * | |
1030 * L V NVA V
1031 * |-------|-------|
1032 */
1033 va->va_end = nva_start_addr;
1034 } else if (type == NE_FIT_TYPE) {
1035 /*
1036 * Split no edge of fit VA.
1037 *
1038 * | |
1039 * L V NVA V R
1040 * |---|-------|---|
1041 */
82dd23e8
URS
1042 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1043 if (unlikely(!lva)) {
1044 /*
1045 * For percpu allocator we do not do any pre-allocation
1046 * and leave it as it is. The reason is it most likely
1047 * never ends up with NE_FIT_TYPE splitting. In case of
1048 * percpu allocations offsets and sizes are aligned to
1049 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1050 * are its main fitting cases.
1051 *
1052 * There are a few exceptions though, as an example it is
1053 * a first allocation (early boot up) when we have "one"
1054 * big free space that has to be split.
060650a2
URS
1055 *
1056 * Also we can hit this path in case of regular "vmap"
1057 * allocations, if "this" current CPU was not preloaded.
1058 * See the comment in alloc_vmap_area() why. If so, then
1059 * GFP_NOWAIT is used instead to get an extra object for
1060 * split purpose. That is rare and most time does not
1061 * occur.
1062 *
1063 * What happens if an allocation gets failed. Basically,
1064 * an "overflow" path is triggered to purge lazily freed
1065 * areas to free some memory, then, the "retry" path is
1066 * triggered to repeat one more time. See more details
1067 * in alloc_vmap_area() function.
82dd23e8
URS
1068 */
1069 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1070 if (!lva)
1071 return -1;
1072 }
68ad4a33
URS
1073
1074 /*
1075 * Build the remainder.
1076 */
1077 lva->va_start = va->va_start;
1078 lva->va_end = nva_start_addr;
1079
1080 /*
1081 * Shrink this VA to remaining size.
1082 */
1083 va->va_start = nva_start_addr + size;
1084 } else {
1085 return -1;
1086 }
1087
1088 if (type != FL_FIT_TYPE) {
1089 augment_tree_propagate_from(va);
1090
2c929233 1091 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1092 insert_vmap_area_augment(lva, &va->rb_node,
1093 &free_vmap_area_root, &free_vmap_area_list);
1094 }
1095
1096 return 0;
1097}
1098
1099/*
1100 * Returns a start address of the newly allocated area, if success.
1101 * Otherwise a vend is returned that indicates failure.
1102 */
1103static __always_inline unsigned long
1104__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1105 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1106{
1107 unsigned long nva_start_addr;
1108 struct vmap_area *va;
1109 enum fit_type type;
1110 int ret;
1111
1112 va = find_vmap_lowest_match(size, align, vstart);
1113 if (unlikely(!va))
1114 return vend;
1115
1116 if (va->va_start > vstart)
1117 nva_start_addr = ALIGN(va->va_start, align);
1118 else
1119 nva_start_addr = ALIGN(vstart, align);
1120
1121 /* Check the "vend" restriction. */
1122 if (nva_start_addr + size > vend)
1123 return vend;
1124
1125 /* Classify what we have found. */
1126 type = classify_va_fit_type(va, nva_start_addr, size);
1127 if (WARN_ON_ONCE(type == NOTHING_FIT))
1128 return vend;
1129
1130 /* Update the free vmap_area. */
1131 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1132 if (ret)
1133 return vend;
1134
a6cf4e0f
URS
1135#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1136 find_vmap_lowest_match_check(size);
1137#endif
1138
68ad4a33
URS
1139 return nva_start_addr;
1140}
4da56b99 1141
d98c9e83
AR
1142/*
1143 * Free a region of KVA allocated by alloc_vmap_area
1144 */
1145static void free_vmap_area(struct vmap_area *va)
1146{
1147 /*
1148 * Remove from the busy tree/list.
1149 */
1150 spin_lock(&vmap_area_lock);
1151 unlink_va(va, &vmap_area_root);
1152 spin_unlock(&vmap_area_lock);
1153
1154 /*
1155 * Insert/Merge it back to the free tree/list.
1156 */
1157 spin_lock(&free_vmap_area_lock);
1158 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1159 spin_unlock(&free_vmap_area_lock);
1160}
1161
db64fe02
NP
1162/*
1163 * Allocate a region of KVA of the specified size and alignment, within the
1164 * vstart and vend.
1165 */
1166static struct vmap_area *alloc_vmap_area(unsigned long size,
1167 unsigned long align,
1168 unsigned long vstart, unsigned long vend,
1169 int node, gfp_t gfp_mask)
1170{
82dd23e8 1171 struct vmap_area *va, *pva;
1da177e4 1172 unsigned long addr;
db64fe02 1173 int purged = 0;
d98c9e83 1174 int ret;
db64fe02 1175
7766970c 1176 BUG_ON(!size);
891c49ab 1177 BUG_ON(offset_in_page(size));
89699605 1178 BUG_ON(!is_power_of_2(align));
db64fe02 1179
68ad4a33
URS
1180 if (unlikely(!vmap_initialized))
1181 return ERR_PTR(-EBUSY);
1182
5803ed29 1183 might_sleep();
f07116d7 1184 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1185
f07116d7 1186 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1187 if (unlikely(!va))
1188 return ERR_PTR(-ENOMEM);
1189
7f88f88f
CM
1190 /*
1191 * Only scan the relevant parts containing pointers to other objects
1192 * to avoid false negatives.
1193 */
f07116d7 1194 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1195
db64fe02 1196retry:
82dd23e8 1197 /*
81f1ba58
URS
1198 * Preload this CPU with one extra vmap_area object. It is used
1199 * when fit type of free area is NE_FIT_TYPE. Please note, it
1200 * does not guarantee that an allocation occurs on a CPU that
1201 * is preloaded, instead we minimize the case when it is not.
1202 * It can happen because of cpu migration, because there is a
1203 * race until the below spinlock is taken.
82dd23e8
URS
1204 *
1205 * The preload is done in non-atomic context, thus it allows us
1206 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1207 * low memory condition and high memory pressure. In rare case,
1208 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1209 *
81f1ba58 1210 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1211 */
81f1ba58 1212 pva = NULL;
82dd23e8 1213
81f1ba58
URS
1214 if (!this_cpu_read(ne_fit_preload_node))
1215 /*
1216 * Even if it fails we do not really care about that.
1217 * Just proceed as it is. If needed "overflow" path
1218 * will refill the cache we allocate from.
1219 */
f07116d7 1220 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1221
e36176be 1222 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1223
1224 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1225 kmem_cache_free(vmap_area_cachep, pva);
89699605 1226
afd07389 1227 /*
68ad4a33
URS
1228 * If an allocation fails, the "vend" address is
1229 * returned. Therefore trigger the overflow path.
afd07389 1230 */
cacca6ba 1231 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1232 spin_unlock(&free_vmap_area_lock);
1233
68ad4a33 1234 if (unlikely(addr == vend))
89699605 1235 goto overflow;
db64fe02
NP
1236
1237 va->va_start = addr;
1238 va->va_end = addr + size;
688fcbfc 1239 va->vm = NULL;
68ad4a33 1240
d98c9e83 1241
e36176be
URS
1242 spin_lock(&vmap_area_lock);
1243 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1244 spin_unlock(&vmap_area_lock);
1245
61e16557 1246 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1247 BUG_ON(va->va_start < vstart);
1248 BUG_ON(va->va_end > vend);
1249
d98c9e83
AR
1250 ret = kasan_populate_vmalloc(addr, size);
1251 if (ret) {
1252 free_vmap_area(va);
1253 return ERR_PTR(ret);
1254 }
1255
db64fe02 1256 return va;
89699605
NP
1257
1258overflow:
89699605
NP
1259 if (!purged) {
1260 purge_vmap_area_lazy();
1261 purged = 1;
1262 goto retry;
1263 }
4da56b99
CW
1264
1265 if (gfpflags_allow_blocking(gfp_mask)) {
1266 unsigned long freed = 0;
1267 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1268 if (freed > 0) {
1269 purged = 0;
1270 goto retry;
1271 }
1272 }
1273
03497d76 1274 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1275 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1276 size);
68ad4a33
URS
1277
1278 kmem_cache_free(vmap_area_cachep, va);
89699605 1279 return ERR_PTR(-EBUSY);
db64fe02
NP
1280}
1281
4da56b99
CW
1282int register_vmap_purge_notifier(struct notifier_block *nb)
1283{
1284 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1285}
1286EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1287
1288int unregister_vmap_purge_notifier(struct notifier_block *nb)
1289{
1290 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1291}
1292EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1293
db64fe02
NP
1294/*
1295 * lazy_max_pages is the maximum amount of virtual address space we gather up
1296 * before attempting to purge with a TLB flush.
1297 *
1298 * There is a tradeoff here: a larger number will cover more kernel page tables
1299 * and take slightly longer to purge, but it will linearly reduce the number of
1300 * global TLB flushes that must be performed. It would seem natural to scale
1301 * this number up linearly with the number of CPUs (because vmapping activity
1302 * could also scale linearly with the number of CPUs), however it is likely
1303 * that in practice, workloads might be constrained in other ways that mean
1304 * vmap activity will not scale linearly with CPUs. Also, I want to be
1305 * conservative and not introduce a big latency on huge systems, so go with
1306 * a less aggressive log scale. It will still be an improvement over the old
1307 * code, and it will be simple to change the scale factor if we find that it
1308 * becomes a problem on bigger systems.
1309 */
1310static unsigned long lazy_max_pages(void)
1311{
1312 unsigned int log;
1313
1314 log = fls(num_online_cpus());
1315
1316 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1317}
1318
4d36e6f8 1319static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1320
0574ecd1
CH
1321/*
1322 * Serialize vmap purging. There is no actual criticial section protected
1323 * by this look, but we want to avoid concurrent calls for performance
1324 * reasons and to make the pcpu_get_vm_areas more deterministic.
1325 */
f9e09977 1326static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1327
02b709df
NP
1328/* for per-CPU blocks */
1329static void purge_fragmented_blocks_allcpus(void);
1330
3ee48b6a
CW
1331/*
1332 * called before a call to iounmap() if the caller wants vm_area_struct's
1333 * immediately freed.
1334 */
1335void set_iounmap_nonlazy(void)
1336{
4d36e6f8 1337 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1338}
1339
db64fe02
NP
1340/*
1341 * Purges all lazily-freed vmap areas.
db64fe02 1342 */
0574ecd1 1343static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1344{
4d36e6f8 1345 unsigned long resched_threshold;
80c4bd7a 1346 struct llist_node *valist;
db64fe02 1347 struct vmap_area *va;
cbb76676 1348 struct vmap_area *n_va;
db64fe02 1349
0574ecd1 1350 lockdep_assert_held(&vmap_purge_lock);
02b709df 1351
80c4bd7a 1352 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1353 if (unlikely(valist == NULL))
1354 return false;
1355
1356 /*
1357 * TODO: to calculate a flush range without looping.
1358 * The list can be up to lazy_max_pages() elements.
1359 */
80c4bd7a 1360 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1361 if (va->va_start < start)
1362 start = va->va_start;
1363 if (va->va_end > end)
1364 end = va->va_end;
db64fe02 1365 }
db64fe02 1366
0574ecd1 1367 flush_tlb_kernel_range(start, end);
4d36e6f8 1368 resched_threshold = lazy_max_pages() << 1;
db64fe02 1369
e36176be 1370 spin_lock(&free_vmap_area_lock);
763b218d 1371 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1372 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1373 unsigned long orig_start = va->va_start;
1374 unsigned long orig_end = va->va_end;
763b218d 1375
dd3b8353
URS
1376 /*
1377 * Finally insert or merge lazily-freed area. It is
1378 * detached and there is no need to "unlink" it from
1379 * anything.
1380 */
3c5c3cfb
DA
1381 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1382 &free_vmap_area_list);
1383
1384 if (is_vmalloc_or_module_addr((void *)orig_start))
1385 kasan_release_vmalloc(orig_start, orig_end,
1386 va->va_start, va->va_end);
dd3b8353 1387
4d36e6f8 1388 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1389
4d36e6f8 1390 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1391 cond_resched_lock(&free_vmap_area_lock);
763b218d 1392 }
e36176be 1393 spin_unlock(&free_vmap_area_lock);
0574ecd1 1394 return true;
db64fe02
NP
1395}
1396
496850e5
NP
1397/*
1398 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1399 * is already purging.
1400 */
1401static void try_purge_vmap_area_lazy(void)
1402{
f9e09977 1403 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1404 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1405 mutex_unlock(&vmap_purge_lock);
0574ecd1 1406 }
496850e5
NP
1407}
1408
db64fe02
NP
1409/*
1410 * Kick off a purge of the outstanding lazy areas.
1411 */
1412static void purge_vmap_area_lazy(void)
1413{
f9e09977 1414 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1415 purge_fragmented_blocks_allcpus();
1416 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1417 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1418}
1419
1420/*
64141da5
JF
1421 * Free a vmap area, caller ensuring that the area has been unmapped
1422 * and flush_cache_vunmap had been called for the correct range
1423 * previously.
db64fe02 1424 */
64141da5 1425static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1426{
4d36e6f8 1427 unsigned long nr_lazy;
80c4bd7a 1428
dd3b8353
URS
1429 spin_lock(&vmap_area_lock);
1430 unlink_va(va, &vmap_area_root);
1431 spin_unlock(&vmap_area_lock);
1432
4d36e6f8
URS
1433 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1434 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1435
1436 /* After this point, we may free va at any time */
1437 llist_add(&va->purge_list, &vmap_purge_list);
1438
1439 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1440 try_purge_vmap_area_lazy();
db64fe02
NP
1441}
1442
b29acbdc
NP
1443/*
1444 * Free and unmap a vmap area
1445 */
1446static void free_unmap_vmap_area(struct vmap_area *va)
1447{
1448 flush_cache_vunmap(va->va_start, va->va_end);
855e57a1 1449 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
8e57f8ac 1450 if (debug_pagealloc_enabled_static())
82a2e924
CP
1451 flush_tlb_kernel_range(va->va_start, va->va_end);
1452
c8eef01e 1453 free_vmap_area_noflush(va);
b29acbdc
NP
1454}
1455
db64fe02
NP
1456static struct vmap_area *find_vmap_area(unsigned long addr)
1457{
1458 struct vmap_area *va;
1459
1460 spin_lock(&vmap_area_lock);
1461 va = __find_vmap_area(addr);
1462 spin_unlock(&vmap_area_lock);
1463
1464 return va;
1465}
1466
db64fe02
NP
1467/*** Per cpu kva allocator ***/
1468
1469/*
1470 * vmap space is limited especially on 32 bit architectures. Ensure there is
1471 * room for at least 16 percpu vmap blocks per CPU.
1472 */
1473/*
1474 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1475 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1476 * instead (we just need a rough idea)
1477 */
1478#if BITS_PER_LONG == 32
1479#define VMALLOC_SPACE (128UL*1024*1024)
1480#else
1481#define VMALLOC_SPACE (128UL*1024*1024*1024)
1482#endif
1483
1484#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1485#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1486#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1487#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1488#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1489#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1490#define VMAP_BBMAP_BITS \
1491 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1492 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1493 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1494
1495#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1496
1497struct vmap_block_queue {
1498 spinlock_t lock;
1499 struct list_head free;
db64fe02
NP
1500};
1501
1502struct vmap_block {
1503 spinlock_t lock;
1504 struct vmap_area *va;
db64fe02 1505 unsigned long free, dirty;
7d61bfe8 1506 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1507 struct list_head free_list;
1508 struct rcu_head rcu_head;
02b709df 1509 struct list_head purge;
db64fe02
NP
1510};
1511
1512/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1513static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1514
1515/*
1516 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1517 * in the free path. Could get rid of this if we change the API to return a
1518 * "cookie" from alloc, to be passed to free. But no big deal yet.
1519 */
1520static DEFINE_SPINLOCK(vmap_block_tree_lock);
1521static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1522
1523/*
1524 * We should probably have a fallback mechanism to allocate virtual memory
1525 * out of partially filled vmap blocks. However vmap block sizing should be
1526 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1527 * big problem.
1528 */
1529
1530static unsigned long addr_to_vb_idx(unsigned long addr)
1531{
1532 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1533 addr /= VMAP_BLOCK_SIZE;
1534 return addr;
1535}
1536
cf725ce2
RP
1537static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1538{
1539 unsigned long addr;
1540
1541 addr = va_start + (pages_off << PAGE_SHIFT);
1542 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1543 return (void *)addr;
1544}
1545
1546/**
1547 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1548 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1549 * @order: how many 2^order pages should be occupied in newly allocated block
1550 * @gfp_mask: flags for the page level allocator
1551 *
a862f68a 1552 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1553 */
1554static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1555{
1556 struct vmap_block_queue *vbq;
1557 struct vmap_block *vb;
1558 struct vmap_area *va;
1559 unsigned long vb_idx;
1560 int node, err;
cf725ce2 1561 void *vaddr;
db64fe02
NP
1562
1563 node = numa_node_id();
1564
1565 vb = kmalloc_node(sizeof(struct vmap_block),
1566 gfp_mask & GFP_RECLAIM_MASK, node);
1567 if (unlikely(!vb))
1568 return ERR_PTR(-ENOMEM);
1569
1570 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1571 VMALLOC_START, VMALLOC_END,
1572 node, gfp_mask);
ddf9c6d4 1573 if (IS_ERR(va)) {
db64fe02 1574 kfree(vb);
e7d86340 1575 return ERR_CAST(va);
db64fe02
NP
1576 }
1577
1578 err = radix_tree_preload(gfp_mask);
1579 if (unlikely(err)) {
1580 kfree(vb);
1581 free_vmap_area(va);
1582 return ERR_PTR(err);
1583 }
1584
cf725ce2 1585 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1586 spin_lock_init(&vb->lock);
1587 vb->va = va;
cf725ce2
RP
1588 /* At least something should be left free */
1589 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1590 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1591 vb->dirty = 0;
7d61bfe8
RP
1592 vb->dirty_min = VMAP_BBMAP_BITS;
1593 vb->dirty_max = 0;
db64fe02 1594 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1595
1596 vb_idx = addr_to_vb_idx(va->va_start);
1597 spin_lock(&vmap_block_tree_lock);
1598 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1599 spin_unlock(&vmap_block_tree_lock);
1600 BUG_ON(err);
1601 radix_tree_preload_end();
1602
1603 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1604 spin_lock(&vbq->lock);
68ac546f 1605 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1606 spin_unlock(&vbq->lock);
3f04ba85 1607 put_cpu_var(vmap_block_queue);
db64fe02 1608
cf725ce2 1609 return vaddr;
db64fe02
NP
1610}
1611
db64fe02
NP
1612static void free_vmap_block(struct vmap_block *vb)
1613{
1614 struct vmap_block *tmp;
1615 unsigned long vb_idx;
1616
db64fe02
NP
1617 vb_idx = addr_to_vb_idx(vb->va->va_start);
1618 spin_lock(&vmap_block_tree_lock);
1619 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1620 spin_unlock(&vmap_block_tree_lock);
1621 BUG_ON(tmp != vb);
1622
64141da5 1623 free_vmap_area_noflush(vb->va);
22a3c7d1 1624 kfree_rcu(vb, rcu_head);
db64fe02
NP
1625}
1626
02b709df
NP
1627static void purge_fragmented_blocks(int cpu)
1628{
1629 LIST_HEAD(purge);
1630 struct vmap_block *vb;
1631 struct vmap_block *n_vb;
1632 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1633
1634 rcu_read_lock();
1635 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1636
1637 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1638 continue;
1639
1640 spin_lock(&vb->lock);
1641 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1642 vb->free = 0; /* prevent further allocs after releasing lock */
1643 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1644 vb->dirty_min = 0;
1645 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1646 spin_lock(&vbq->lock);
1647 list_del_rcu(&vb->free_list);
1648 spin_unlock(&vbq->lock);
1649 spin_unlock(&vb->lock);
1650 list_add_tail(&vb->purge, &purge);
1651 } else
1652 spin_unlock(&vb->lock);
1653 }
1654 rcu_read_unlock();
1655
1656 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1657 list_del(&vb->purge);
1658 free_vmap_block(vb);
1659 }
1660}
1661
02b709df
NP
1662static void purge_fragmented_blocks_allcpus(void)
1663{
1664 int cpu;
1665
1666 for_each_possible_cpu(cpu)
1667 purge_fragmented_blocks(cpu);
1668}
1669
db64fe02
NP
1670static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1671{
1672 struct vmap_block_queue *vbq;
1673 struct vmap_block *vb;
cf725ce2 1674 void *vaddr = NULL;
db64fe02
NP
1675 unsigned int order;
1676
891c49ab 1677 BUG_ON(offset_in_page(size));
db64fe02 1678 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1679 if (WARN_ON(size == 0)) {
1680 /*
1681 * Allocating 0 bytes isn't what caller wants since
1682 * get_order(0) returns funny result. Just warn and terminate
1683 * early.
1684 */
1685 return NULL;
1686 }
db64fe02
NP
1687 order = get_order(size);
1688
db64fe02
NP
1689 rcu_read_lock();
1690 vbq = &get_cpu_var(vmap_block_queue);
1691 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1692 unsigned long pages_off;
db64fe02
NP
1693
1694 spin_lock(&vb->lock);
cf725ce2
RP
1695 if (vb->free < (1UL << order)) {
1696 spin_unlock(&vb->lock);
1697 continue;
1698 }
02b709df 1699
cf725ce2
RP
1700 pages_off = VMAP_BBMAP_BITS - vb->free;
1701 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1702 vb->free -= 1UL << order;
1703 if (vb->free == 0) {
1704 spin_lock(&vbq->lock);
1705 list_del_rcu(&vb->free_list);
1706 spin_unlock(&vbq->lock);
1707 }
cf725ce2 1708
02b709df
NP
1709 spin_unlock(&vb->lock);
1710 break;
db64fe02 1711 }
02b709df 1712
3f04ba85 1713 put_cpu_var(vmap_block_queue);
db64fe02
NP
1714 rcu_read_unlock();
1715
cf725ce2
RP
1716 /* Allocate new block if nothing was found */
1717 if (!vaddr)
1718 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1719
cf725ce2 1720 return vaddr;
db64fe02
NP
1721}
1722
78a0e8c4 1723static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
1724{
1725 unsigned long offset;
1726 unsigned long vb_idx;
1727 unsigned int order;
1728 struct vmap_block *vb;
1729
891c49ab 1730 BUG_ON(offset_in_page(size));
db64fe02 1731 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 1732
78a0e8c4 1733 flush_cache_vunmap(addr, addr + size);
b29acbdc 1734
db64fe02
NP
1735 order = get_order(size);
1736
78a0e8c4 1737 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
db64fe02 1738
78a0e8c4 1739 vb_idx = addr_to_vb_idx(addr);
db64fe02
NP
1740 rcu_read_lock();
1741 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1742 rcu_read_unlock();
1743 BUG_ON(!vb);
1744
b521c43f 1745 unmap_kernel_range_noflush(addr, size);
64141da5 1746
8e57f8ac 1747 if (debug_pagealloc_enabled_static())
78a0e8c4 1748 flush_tlb_kernel_range(addr, addr + size);
82a2e924 1749
db64fe02 1750 spin_lock(&vb->lock);
7d61bfe8
RP
1751
1752 /* Expand dirty range */
1753 vb->dirty_min = min(vb->dirty_min, offset);
1754 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1755
db64fe02
NP
1756 vb->dirty += 1UL << order;
1757 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1758 BUG_ON(vb->free);
db64fe02
NP
1759 spin_unlock(&vb->lock);
1760 free_vmap_block(vb);
1761 } else
1762 spin_unlock(&vb->lock);
1763}
1764
868b104d 1765static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1766{
db64fe02 1767 int cpu;
db64fe02 1768
9b463334
JF
1769 if (unlikely(!vmap_initialized))
1770 return;
1771
5803ed29
CH
1772 might_sleep();
1773
db64fe02
NP
1774 for_each_possible_cpu(cpu) {
1775 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1776 struct vmap_block *vb;
1777
1778 rcu_read_lock();
1779 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1780 spin_lock(&vb->lock);
7d61bfe8
RP
1781 if (vb->dirty) {
1782 unsigned long va_start = vb->va->va_start;
db64fe02 1783 unsigned long s, e;
b136be5e 1784
7d61bfe8
RP
1785 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1786 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1787
7d61bfe8
RP
1788 start = min(s, start);
1789 end = max(e, end);
db64fe02 1790
7d61bfe8 1791 flush = 1;
db64fe02
NP
1792 }
1793 spin_unlock(&vb->lock);
1794 }
1795 rcu_read_unlock();
1796 }
1797
f9e09977 1798 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1799 purge_fragmented_blocks_allcpus();
1800 if (!__purge_vmap_area_lazy(start, end) && flush)
1801 flush_tlb_kernel_range(start, end);
f9e09977 1802 mutex_unlock(&vmap_purge_lock);
db64fe02 1803}
868b104d
RE
1804
1805/**
1806 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1807 *
1808 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1809 * to amortize TLB flushing overheads. What this means is that any page you
1810 * have now, may, in a former life, have been mapped into kernel virtual
1811 * address by the vmap layer and so there might be some CPUs with TLB entries
1812 * still referencing that page (additional to the regular 1:1 kernel mapping).
1813 *
1814 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1815 * be sure that none of the pages we have control over will have any aliases
1816 * from the vmap layer.
1817 */
1818void vm_unmap_aliases(void)
1819{
1820 unsigned long start = ULONG_MAX, end = 0;
1821 int flush = 0;
1822
1823 _vm_unmap_aliases(start, end, flush);
1824}
db64fe02
NP
1825EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1826
1827/**
1828 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1829 * @mem: the pointer returned by vm_map_ram
1830 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1831 */
1832void vm_unmap_ram(const void *mem, unsigned int count)
1833{
65ee03c4 1834 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1835 unsigned long addr = (unsigned long)mem;
9c3acf60 1836 struct vmap_area *va;
db64fe02 1837
5803ed29 1838 might_sleep();
db64fe02
NP
1839 BUG_ON(!addr);
1840 BUG_ON(addr < VMALLOC_START);
1841 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1842 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1843
d98c9e83
AR
1844 kasan_poison_vmalloc(mem, size);
1845
9c3acf60 1846 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1847 debug_check_no_locks_freed(mem, size);
78a0e8c4 1848 vb_free(addr, size);
9c3acf60
CH
1849 return;
1850 }
1851
1852 va = find_vmap_area(addr);
1853 BUG_ON(!va);
05e3ff95
CP
1854 debug_check_no_locks_freed((void *)va->va_start,
1855 (va->va_end - va->va_start));
9c3acf60 1856 free_unmap_vmap_area(va);
db64fe02
NP
1857}
1858EXPORT_SYMBOL(vm_unmap_ram);
1859
1860/**
1861 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1862 * @pages: an array of pointers to the pages to be mapped
1863 * @count: number of pages
1864 * @node: prefer to allocate data structures on this node
e99c97ad 1865 *
36437638
GK
1866 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1867 * faster than vmap so it's good. But if you mix long-life and short-life
1868 * objects with vm_map_ram(), it could consume lots of address space through
1869 * fragmentation (especially on a 32bit machine). You could see failures in
1870 * the end. Please use this function for short-lived objects.
1871 *
e99c97ad 1872 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 1873 */
d4efd79a 1874void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 1875{
65ee03c4 1876 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1877 unsigned long addr;
1878 void *mem;
1879
1880 if (likely(count <= VMAP_MAX_ALLOC)) {
1881 mem = vb_alloc(size, GFP_KERNEL);
1882 if (IS_ERR(mem))
1883 return NULL;
1884 addr = (unsigned long)mem;
1885 } else {
1886 struct vmap_area *va;
1887 va = alloc_vmap_area(size, PAGE_SIZE,
1888 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1889 if (IS_ERR(va))
1890 return NULL;
1891
1892 addr = va->va_start;
1893 mem = (void *)addr;
1894 }
d98c9e83
AR
1895
1896 kasan_unpoison_vmalloc(mem, size);
1897
d4efd79a 1898 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
db64fe02
NP
1899 vm_unmap_ram(mem, count);
1900 return NULL;
1901 }
1902 return mem;
1903}
1904EXPORT_SYMBOL(vm_map_ram);
1905
4341fa45 1906static struct vm_struct *vmlist __initdata;
92eac168 1907
be9b7335
NP
1908/**
1909 * vm_area_add_early - add vmap area early during boot
1910 * @vm: vm_struct to add
1911 *
1912 * This function is used to add fixed kernel vm area to vmlist before
1913 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1914 * should contain proper values and the other fields should be zero.
1915 *
1916 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1917 */
1918void __init vm_area_add_early(struct vm_struct *vm)
1919{
1920 struct vm_struct *tmp, **p;
1921
1922 BUG_ON(vmap_initialized);
1923 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1924 if (tmp->addr >= vm->addr) {
1925 BUG_ON(tmp->addr < vm->addr + vm->size);
1926 break;
1927 } else
1928 BUG_ON(tmp->addr + tmp->size > vm->addr);
1929 }
1930 vm->next = *p;
1931 *p = vm;
1932}
1933
f0aa6617
TH
1934/**
1935 * vm_area_register_early - register vmap area early during boot
1936 * @vm: vm_struct to register
c0c0a293 1937 * @align: requested alignment
f0aa6617
TH
1938 *
1939 * This function is used to register kernel vm area before
1940 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1941 * proper values on entry and other fields should be zero. On return,
1942 * vm->addr contains the allocated address.
1943 *
1944 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1945 */
c0c0a293 1946void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1947{
1948 static size_t vm_init_off __initdata;
c0c0a293
TH
1949 unsigned long addr;
1950
1951 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1952 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1953
c0c0a293 1954 vm->addr = (void *)addr;
f0aa6617 1955
be9b7335 1956 vm_area_add_early(vm);
f0aa6617
TH
1957}
1958
68ad4a33
URS
1959static void vmap_init_free_space(void)
1960{
1961 unsigned long vmap_start = 1;
1962 const unsigned long vmap_end = ULONG_MAX;
1963 struct vmap_area *busy, *free;
1964
1965 /*
1966 * B F B B B F
1967 * -|-----|.....|-----|-----|-----|.....|-
1968 * | The KVA space |
1969 * |<--------------------------------->|
1970 */
1971 list_for_each_entry(busy, &vmap_area_list, list) {
1972 if (busy->va_start - vmap_start > 0) {
1973 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1974 if (!WARN_ON_ONCE(!free)) {
1975 free->va_start = vmap_start;
1976 free->va_end = busy->va_start;
1977
1978 insert_vmap_area_augment(free, NULL,
1979 &free_vmap_area_root,
1980 &free_vmap_area_list);
1981 }
1982 }
1983
1984 vmap_start = busy->va_end;
1985 }
1986
1987 if (vmap_end - vmap_start > 0) {
1988 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1989 if (!WARN_ON_ONCE(!free)) {
1990 free->va_start = vmap_start;
1991 free->va_end = vmap_end;
1992
1993 insert_vmap_area_augment(free, NULL,
1994 &free_vmap_area_root,
1995 &free_vmap_area_list);
1996 }
1997 }
1998}
1999
db64fe02
NP
2000void __init vmalloc_init(void)
2001{
822c18f2
IK
2002 struct vmap_area *va;
2003 struct vm_struct *tmp;
db64fe02
NP
2004 int i;
2005
68ad4a33
URS
2006 /*
2007 * Create the cache for vmap_area objects.
2008 */
2009 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2010
db64fe02
NP
2011 for_each_possible_cpu(i) {
2012 struct vmap_block_queue *vbq;
32fcfd40 2013 struct vfree_deferred *p;
db64fe02
NP
2014
2015 vbq = &per_cpu(vmap_block_queue, i);
2016 spin_lock_init(&vbq->lock);
2017 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2018 p = &per_cpu(vfree_deferred, i);
2019 init_llist_head(&p->list);
2020 INIT_WORK(&p->wq, free_work);
db64fe02 2021 }
9b463334 2022
822c18f2
IK
2023 /* Import existing vmlist entries. */
2024 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2025 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2026 if (WARN_ON_ONCE(!va))
2027 continue;
2028
822c18f2
IK
2029 va->va_start = (unsigned long)tmp->addr;
2030 va->va_end = va->va_start + tmp->size;
dbda591d 2031 va->vm = tmp;
68ad4a33 2032 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2033 }
ca23e405 2034
68ad4a33
URS
2035 /*
2036 * Now we can initialize a free vmap space.
2037 */
2038 vmap_init_free_space();
9b463334 2039 vmap_initialized = true;
db64fe02
NP
2040}
2041
8fc48985
TH
2042/**
2043 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2044 * @addr: start of the VM area to unmap
2045 * @size: size of the VM area to unmap
2046 *
2047 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2048 * the unmapping and tlb after.
2049 */
db64fe02
NP
2050void unmap_kernel_range(unsigned long addr, unsigned long size)
2051{
2052 unsigned long end = addr + size;
f6fcba70
TH
2053
2054 flush_cache_vunmap(addr, end);
b521c43f 2055 unmap_kernel_range_noflush(addr, size);
db64fe02
NP
2056 flush_tlb_kernel_range(addr, end);
2057}
2058
e36176be
URS
2059static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2060 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2061{
cf88c790
TH
2062 vm->flags = flags;
2063 vm->addr = (void *)va->va_start;
2064 vm->size = va->va_end - va->va_start;
2065 vm->caller = caller;
db1aecaf 2066 va->vm = vm;
e36176be
URS
2067}
2068
2069static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2070 unsigned long flags, const void *caller)
2071{
2072 spin_lock(&vmap_area_lock);
2073 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2074 spin_unlock(&vmap_area_lock);
f5252e00 2075}
cf88c790 2076
20fc02b4 2077static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2078{
d4033afd 2079 /*
20fc02b4 2080 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2081 * we should make sure that vm has proper values.
2082 * Pair with smp_rmb() in show_numa_info().
2083 */
2084 smp_wmb();
20fc02b4 2085 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2086}
2087
db64fe02 2088static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2089 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2090 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2091{
0006526d 2092 struct vmap_area *va;
db64fe02 2093 struct vm_struct *area;
d98c9e83 2094 unsigned long requested_size = size;
1da177e4 2095
52fd24ca 2096 BUG_ON(in_interrupt());
1da177e4 2097 size = PAGE_ALIGN(size);
31be8309
OH
2098 if (unlikely(!size))
2099 return NULL;
1da177e4 2100
252e5c6e 2101 if (flags & VM_IOREMAP)
2102 align = 1ul << clamp_t(int, get_count_order_long(size),
2103 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2104
cf88c790 2105 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2106 if (unlikely(!area))
2107 return NULL;
2108
71394fe5
AR
2109 if (!(flags & VM_NO_GUARD))
2110 size += PAGE_SIZE;
1da177e4 2111
db64fe02
NP
2112 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2113 if (IS_ERR(va)) {
2114 kfree(area);
2115 return NULL;
1da177e4 2116 }
1da177e4 2117
d98c9e83 2118 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2119
d98c9e83 2120 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2121
1da177e4 2122 return area;
1da177e4
LT
2123}
2124
c2968612
BH
2125struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2126 unsigned long start, unsigned long end,
5e6cafc8 2127 const void *caller)
c2968612 2128{
00ef2d2f
DR
2129 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2130 GFP_KERNEL, caller);
c2968612
BH
2131}
2132
1da177e4 2133/**
92eac168
MR
2134 * get_vm_area - reserve a contiguous kernel virtual area
2135 * @size: size of the area
2136 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2137 *
92eac168
MR
2138 * Search an area of @size in the kernel virtual mapping area,
2139 * and reserved it for out purposes. Returns the area descriptor
2140 * on success or %NULL on failure.
a862f68a
MR
2141 *
2142 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2143 */
2144struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2145{
2dca6999 2146 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2147 NUMA_NO_NODE, GFP_KERNEL,
2148 __builtin_return_address(0));
23016969
CL
2149}
2150
2151struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2152 const void *caller)
23016969 2153{
2dca6999 2154 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2155 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2156}
2157
e9da6e99 2158/**
92eac168
MR
2159 * find_vm_area - find a continuous kernel virtual area
2160 * @addr: base address
e9da6e99 2161 *
92eac168
MR
2162 * Search for the kernel VM area starting at @addr, and return it.
2163 * It is up to the caller to do all required locking to keep the returned
2164 * pointer valid.
a862f68a
MR
2165 *
2166 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2167 */
2168struct vm_struct *find_vm_area(const void *addr)
83342314 2169{
db64fe02 2170 struct vmap_area *va;
83342314 2171
db64fe02 2172 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2173 if (!va)
2174 return NULL;
1da177e4 2175
688fcbfc 2176 return va->vm;
1da177e4
LT
2177}
2178
7856dfeb 2179/**
92eac168
MR
2180 * remove_vm_area - find and remove a continuous kernel virtual area
2181 * @addr: base address
7856dfeb 2182 *
92eac168
MR
2183 * Search for the kernel VM area starting at @addr, and remove it.
2184 * This function returns the found VM area, but using it is NOT safe
2185 * on SMP machines, except for its size or flags.
a862f68a
MR
2186 *
2187 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2188 */
b3bdda02 2189struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2190{
db64fe02
NP
2191 struct vmap_area *va;
2192
5803ed29
CH
2193 might_sleep();
2194
dd3b8353
URS
2195 spin_lock(&vmap_area_lock);
2196 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2197 if (va && va->vm) {
db1aecaf 2198 struct vm_struct *vm = va->vm;
f5252e00 2199
c69480ad 2200 va->vm = NULL;
c69480ad
JK
2201 spin_unlock(&vmap_area_lock);
2202
a5af5aa8 2203 kasan_free_shadow(vm);
dd32c279 2204 free_unmap_vmap_area(va);
dd32c279 2205
db64fe02
NP
2206 return vm;
2207 }
dd3b8353
URS
2208
2209 spin_unlock(&vmap_area_lock);
db64fe02 2210 return NULL;
7856dfeb
AK
2211}
2212
868b104d
RE
2213static inline void set_area_direct_map(const struct vm_struct *area,
2214 int (*set_direct_map)(struct page *page))
2215{
2216 int i;
2217
2218 for (i = 0; i < area->nr_pages; i++)
2219 if (page_address(area->pages[i]))
2220 set_direct_map(area->pages[i]);
2221}
2222
2223/* Handle removing and resetting vm mappings related to the vm_struct. */
2224static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2225{
868b104d
RE
2226 unsigned long start = ULONG_MAX, end = 0;
2227 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2228 int flush_dmap = 0;
868b104d
RE
2229 int i;
2230
868b104d
RE
2231 remove_vm_area(area->addr);
2232
2233 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2234 if (!flush_reset)
2235 return;
2236
2237 /*
2238 * If not deallocating pages, just do the flush of the VM area and
2239 * return.
2240 */
2241 if (!deallocate_pages) {
2242 vm_unmap_aliases();
2243 return;
2244 }
2245
2246 /*
2247 * If execution gets here, flush the vm mapping and reset the direct
2248 * map. Find the start and end range of the direct mappings to make sure
2249 * the vm_unmap_aliases() flush includes the direct map.
2250 */
2251 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2252 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2253 if (addr) {
868b104d 2254 start = min(addr, start);
8e41f872 2255 end = max(addr + PAGE_SIZE, end);
31e67340 2256 flush_dmap = 1;
868b104d
RE
2257 }
2258 }
2259
2260 /*
2261 * Set direct map to something invalid so that it won't be cached if
2262 * there are any accesses after the TLB flush, then flush the TLB and
2263 * reset the direct map permissions to the default.
2264 */
2265 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2266 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2267 set_area_direct_map(area, set_direct_map_default_noflush);
2268}
2269
b3bdda02 2270static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2271{
2272 struct vm_struct *area;
2273
2274 if (!addr)
2275 return;
2276
e69e9d4a 2277 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2278 addr))
1da177e4 2279 return;
1da177e4 2280
6ade2032 2281 area = find_vm_area(addr);
1da177e4 2282 if (unlikely(!area)) {
4c8573e2 2283 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2284 addr);
1da177e4
LT
2285 return;
2286 }
2287
05e3ff95
CP
2288 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2289 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2290
d98c9e83 2291 kasan_poison_vmalloc(area->addr, area->size);
3c5c3cfb 2292
868b104d
RE
2293 vm_remove_mappings(area, deallocate_pages);
2294
1da177e4
LT
2295 if (deallocate_pages) {
2296 int i;
2297
2298 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2299 struct page *page = area->pages[i];
2300
2301 BUG_ON(!page);
4949148a 2302 __free_pages(page, 0);
1da177e4 2303 }
97105f0a 2304 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2305
244d63ee 2306 kvfree(area->pages);
1da177e4
LT
2307 }
2308
2309 kfree(area);
2310 return;
2311}
bf22e37a
AR
2312
2313static inline void __vfree_deferred(const void *addr)
2314{
2315 /*
2316 * Use raw_cpu_ptr() because this can be called from preemptible
2317 * context. Preemption is absolutely fine here, because the llist_add()
2318 * implementation is lockless, so it works even if we are adding to
73221d88 2319 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2320 */
2321 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2322
2323 if (llist_add((struct llist_node *)addr, &p->list))
2324 schedule_work(&p->wq);
2325}
2326
2327/**
92eac168
MR
2328 * vfree_atomic - release memory allocated by vmalloc()
2329 * @addr: memory base address
bf22e37a 2330 *
92eac168
MR
2331 * This one is just like vfree() but can be called in any atomic context
2332 * except NMIs.
bf22e37a
AR
2333 */
2334void vfree_atomic(const void *addr)
2335{
2336 BUG_ON(in_nmi());
2337
2338 kmemleak_free(addr);
2339
2340 if (!addr)
2341 return;
2342 __vfree_deferred(addr);
2343}
2344
c67dc624
RP
2345static void __vfree(const void *addr)
2346{
2347 if (unlikely(in_interrupt()))
2348 __vfree_deferred(addr);
2349 else
2350 __vunmap(addr, 1);
2351}
2352
1da177e4 2353/**
92eac168
MR
2354 * vfree - release memory allocated by vmalloc()
2355 * @addr: memory base address
1da177e4 2356 *
92eac168
MR
2357 * Free the virtually continuous memory area starting at @addr, as
2358 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2359 * NULL, no operation is performed.
1da177e4 2360 *
92eac168
MR
2361 * Must not be called in NMI context (strictly speaking, only if we don't
2362 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2363 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2364 *
92eac168 2365 * May sleep if called *not* from interrupt context.
3ca4ea3a 2366 *
92eac168 2367 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2368 */
b3bdda02 2369void vfree(const void *addr)
1da177e4 2370{
32fcfd40 2371 BUG_ON(in_nmi());
89219d37
CM
2372
2373 kmemleak_free(addr);
2374
a8dda165
AR
2375 might_sleep_if(!in_interrupt());
2376
32fcfd40
AV
2377 if (!addr)
2378 return;
c67dc624
RP
2379
2380 __vfree(addr);
1da177e4 2381}
1da177e4
LT
2382EXPORT_SYMBOL(vfree);
2383
2384/**
92eac168
MR
2385 * vunmap - release virtual mapping obtained by vmap()
2386 * @addr: memory base address
1da177e4 2387 *
92eac168
MR
2388 * Free the virtually contiguous memory area starting at @addr,
2389 * which was created from the page array passed to vmap().
1da177e4 2390 *
92eac168 2391 * Must not be called in interrupt context.
1da177e4 2392 */
b3bdda02 2393void vunmap(const void *addr)
1da177e4
LT
2394{
2395 BUG_ON(in_interrupt());
34754b69 2396 might_sleep();
32fcfd40
AV
2397 if (addr)
2398 __vunmap(addr, 0);
1da177e4 2399}
1da177e4
LT
2400EXPORT_SYMBOL(vunmap);
2401
2402/**
92eac168
MR
2403 * vmap - map an array of pages into virtually contiguous space
2404 * @pages: array of page pointers
2405 * @count: number of pages to map
2406 * @flags: vm_area->flags
2407 * @prot: page protection for the mapping
2408 *
2409 * Maps @count pages from @pages into contiguous kernel virtual
2410 * space.
a862f68a
MR
2411 *
2412 * Return: the address of the area or %NULL on failure
1da177e4
LT
2413 */
2414void *vmap(struct page **pages, unsigned int count,
92eac168 2415 unsigned long flags, pgprot_t prot)
1da177e4
LT
2416{
2417 struct vm_struct *area;
65ee03c4 2418 unsigned long size; /* In bytes */
1da177e4 2419
34754b69
PZ
2420 might_sleep();
2421
ca79b0c2 2422 if (count > totalram_pages())
1da177e4
LT
2423 return NULL;
2424
65ee03c4
GJM
2425 size = (unsigned long)count << PAGE_SHIFT;
2426 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2427 if (!area)
2428 return NULL;
23016969 2429
cca98e9f 2430 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
ed1f324c 2431 pages) < 0) {
1da177e4
LT
2432 vunmap(area->addr);
2433 return NULL;
2434 }
2435
2436 return area->addr;
2437}
1da177e4
LT
2438EXPORT_SYMBOL(vmap);
2439
e31d9eb5 2440static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2441 pgprot_t prot, int node)
1da177e4
LT
2442{
2443 struct page **pages;
2444 unsigned int nr_pages, array_size, i;
930f036b 2445 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2446 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2447 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2448 0 :
2449 __GFP_HIGHMEM;
1da177e4 2450
762216ab 2451 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2452 array_size = (nr_pages * sizeof(struct page *));
2453
1da177e4 2454 /* Please note that the recursion is strictly bounded. */
8757d5fa 2455 if (array_size > PAGE_SIZE) {
704b862f 2456 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
f38fcb9c 2457 node, area->caller);
286e1ea3 2458 } else {
976d6dfb 2459 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2460 }
7ea36242
AK
2461
2462 if (!pages) {
1da177e4
LT
2463 remove_vm_area(area->addr);
2464 kfree(area);
2465 return NULL;
2466 }
1da177e4 2467
7ea36242
AK
2468 area->pages = pages;
2469 area->nr_pages = nr_pages;
2470
1da177e4 2471 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2472 struct page *page;
2473
4b90951c 2474 if (node == NUMA_NO_NODE)
704b862f 2475 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2476 else
704b862f 2477 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2478
2479 if (unlikely(!page)) {
1da177e4
LT
2480 /* Successfully allocated i pages, free them in __vunmap() */
2481 area->nr_pages = i;
97105f0a 2482 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2483 goto fail;
2484 }
bf53d6f8 2485 area->pages[i] = page;
dcf61ff0 2486 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2487 cond_resched();
1da177e4 2488 }
97105f0a 2489 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2490
ed1f324c
CH
2491 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2492 prot, pages) < 0)
1da177e4 2493 goto fail;
ed1f324c 2494
1da177e4
LT
2495 return area->addr;
2496
2497fail:
a8e99259 2498 warn_alloc(gfp_mask, NULL,
7877cdcc 2499 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2500 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2501 __vfree(area->addr);
1da177e4
LT
2502 return NULL;
2503}
2504
2505/**
92eac168
MR
2506 * __vmalloc_node_range - allocate virtually contiguous memory
2507 * @size: allocation size
2508 * @align: desired alignment
2509 * @start: vm area range start
2510 * @end: vm area range end
2511 * @gfp_mask: flags for the page level allocator
2512 * @prot: protection mask for the allocated pages
2513 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2514 * @node: node to use for allocation or NUMA_NO_NODE
2515 * @caller: caller's return address
2516 *
2517 * Allocate enough pages to cover @size from the page level
2518 * allocator with @gfp_mask flags. Map them into contiguous
2519 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2520 *
2521 * Return: the address of the area or %NULL on failure
1da177e4 2522 */
d0a21265
DR
2523void *__vmalloc_node_range(unsigned long size, unsigned long align,
2524 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2525 pgprot_t prot, unsigned long vm_flags, int node,
2526 const void *caller)
1da177e4
LT
2527{
2528 struct vm_struct *area;
89219d37
CM
2529 void *addr;
2530 unsigned long real_size = size;
1da177e4
LT
2531
2532 size = PAGE_ALIGN(size);
ca79b0c2 2533 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2534 goto fail;
1da177e4 2535
d98c9e83 2536 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
cb9e3c29 2537 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2538 if (!area)
de7d2b56 2539 goto fail;
1da177e4 2540
3722e13c 2541 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2542 if (!addr)
b82225f3 2543 return NULL;
89219d37 2544
f5252e00 2545 /*
20fc02b4
ZY
2546 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2547 * flag. It means that vm_struct is not fully initialized.
4341fa45 2548 * Now, it is fully initialized, so remove this flag here.
f5252e00 2549 */
20fc02b4 2550 clear_vm_uninitialized_flag(area);
f5252e00 2551
94f4a161 2552 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2553
2554 return addr;
de7d2b56
JP
2555
2556fail:
a8e99259 2557 warn_alloc(gfp_mask, NULL,
7877cdcc 2558 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2559 return NULL;
1da177e4
LT
2560}
2561
d0a21265 2562/**
92eac168
MR
2563 * __vmalloc_node - allocate virtually contiguous memory
2564 * @size: allocation size
2565 * @align: desired alignment
2566 * @gfp_mask: flags for the page level allocator
92eac168
MR
2567 * @node: node to use for allocation or NUMA_NO_NODE
2568 * @caller: caller's return address
a7c3e901 2569 *
f38fcb9c
CH
2570 * Allocate enough pages to cover @size from the page level allocator with
2571 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 2572 *
92eac168
MR
2573 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2574 * and __GFP_NOFAIL are not supported
a7c3e901 2575 *
92eac168
MR
2576 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2577 * with mm people.
a862f68a
MR
2578 *
2579 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2580 */
2b905948 2581void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 2582 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
2583{
2584 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 2585 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 2586}
c3f896dc
CH
2587/*
2588 * This is only for performance analysis of vmalloc and stress purpose.
2589 * It is required by vmalloc test module, therefore do not use it other
2590 * than that.
2591 */
2592#ifdef CONFIG_TEST_VMALLOC_MODULE
2593EXPORT_SYMBOL_GPL(__vmalloc_node);
2594#endif
d0a21265 2595
88dca4ca 2596void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 2597{
f38fcb9c 2598 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 2599 __builtin_return_address(0));
930fc45a 2600}
1da177e4
LT
2601EXPORT_SYMBOL(__vmalloc);
2602
2603/**
92eac168
MR
2604 * vmalloc - allocate virtually contiguous memory
2605 * @size: allocation size
2606 *
2607 * Allocate enough pages to cover @size from the page level
2608 * allocator and map them into contiguous kernel virtual space.
1da177e4 2609 *
92eac168
MR
2610 * For tight control over page level allocator and protection flags
2611 * use __vmalloc() instead.
a862f68a
MR
2612 *
2613 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2614 */
2615void *vmalloc(unsigned long size)
2616{
4d39d728
CH
2617 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2618 __builtin_return_address(0));
1da177e4 2619}
1da177e4
LT
2620EXPORT_SYMBOL(vmalloc);
2621
e1ca7788 2622/**
92eac168
MR
2623 * vzalloc - allocate virtually contiguous memory with zero fill
2624 * @size: allocation size
2625 *
2626 * Allocate enough pages to cover @size from the page level
2627 * allocator and map them into contiguous kernel virtual space.
2628 * The memory allocated is set to zero.
2629 *
2630 * For tight control over page level allocator and protection flags
2631 * use __vmalloc() instead.
a862f68a
MR
2632 *
2633 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2634 */
2635void *vzalloc(unsigned long size)
2636{
4d39d728
CH
2637 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2638 __builtin_return_address(0));
e1ca7788
DY
2639}
2640EXPORT_SYMBOL(vzalloc);
2641
83342314 2642/**
ead04089
REB
2643 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2644 * @size: allocation size
83342314 2645 *
ead04089
REB
2646 * The resulting memory area is zeroed so it can be mapped to userspace
2647 * without leaking data.
a862f68a
MR
2648 *
2649 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2650 */
2651void *vmalloc_user(unsigned long size)
2652{
bc84c535
RP
2653 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2654 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2655 VM_USERMAP, NUMA_NO_NODE,
2656 __builtin_return_address(0));
83342314
NP
2657}
2658EXPORT_SYMBOL(vmalloc_user);
2659
930fc45a 2660/**
92eac168
MR
2661 * vmalloc_node - allocate memory on a specific node
2662 * @size: allocation size
2663 * @node: numa node
930fc45a 2664 *
92eac168
MR
2665 * Allocate enough pages to cover @size from the page level
2666 * allocator and map them into contiguous kernel virtual space.
930fc45a 2667 *
92eac168
MR
2668 * For tight control over page level allocator and protection flags
2669 * use __vmalloc() instead.
a862f68a
MR
2670 *
2671 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2672 */
2673void *vmalloc_node(unsigned long size, int node)
2674{
f38fcb9c
CH
2675 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2676 __builtin_return_address(0));
930fc45a
CL
2677}
2678EXPORT_SYMBOL(vmalloc_node);
2679
e1ca7788
DY
2680/**
2681 * vzalloc_node - allocate memory on a specific node with zero fill
2682 * @size: allocation size
2683 * @node: numa node
2684 *
2685 * Allocate enough pages to cover @size from the page level
2686 * allocator and map them into contiguous kernel virtual space.
2687 * The memory allocated is set to zero.
2688 *
a862f68a 2689 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2690 */
2691void *vzalloc_node(unsigned long size, int node)
2692{
4d39d728
CH
2693 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2694 __builtin_return_address(0));
e1ca7788
DY
2695}
2696EXPORT_SYMBOL(vzalloc_node);
2697
0d08e0d3 2698#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2699#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2700#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2701#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2702#else
698d0831
MH
2703/*
2704 * 64b systems should always have either DMA or DMA32 zones. For others
2705 * GFP_DMA32 should do the right thing and use the normal zone.
2706 */
2707#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2708#endif
2709
1da177e4 2710/**
92eac168
MR
2711 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2712 * @size: allocation size
1da177e4 2713 *
92eac168
MR
2714 * Allocate enough 32bit PA addressable pages to cover @size from the
2715 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2716 *
2717 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2718 */
2719void *vmalloc_32(unsigned long size)
2720{
f38fcb9c
CH
2721 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2722 __builtin_return_address(0));
1da177e4 2723}
1da177e4
LT
2724EXPORT_SYMBOL(vmalloc_32);
2725
83342314 2726/**
ead04089 2727 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2728 * @size: allocation size
ead04089
REB
2729 *
2730 * The resulting memory area is 32bit addressable and zeroed so it can be
2731 * mapped to userspace without leaking data.
a862f68a
MR
2732 *
2733 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2734 */
2735void *vmalloc_32_user(unsigned long size)
2736{
bc84c535
RP
2737 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2738 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2739 VM_USERMAP, NUMA_NO_NODE,
2740 __builtin_return_address(0));
83342314
NP
2741}
2742EXPORT_SYMBOL(vmalloc_32_user);
2743
d0107eb0
KH
2744/*
2745 * small helper routine , copy contents to buf from addr.
2746 * If the page is not present, fill zero.
2747 */
2748
2749static int aligned_vread(char *buf, char *addr, unsigned long count)
2750{
2751 struct page *p;
2752 int copied = 0;
2753
2754 while (count) {
2755 unsigned long offset, length;
2756
891c49ab 2757 offset = offset_in_page(addr);
d0107eb0
KH
2758 length = PAGE_SIZE - offset;
2759 if (length > count)
2760 length = count;
2761 p = vmalloc_to_page(addr);
2762 /*
2763 * To do safe access to this _mapped_ area, we need
2764 * lock. But adding lock here means that we need to add
2765 * overhead of vmalloc()/vfree() calles for this _debug_
2766 * interface, rarely used. Instead of that, we'll use
2767 * kmap() and get small overhead in this access function.
2768 */
2769 if (p) {
2770 /*
2771 * we can expect USER0 is not used (see vread/vwrite's
2772 * function description)
2773 */
9b04c5fe 2774 void *map = kmap_atomic(p);
d0107eb0 2775 memcpy(buf, map + offset, length);
9b04c5fe 2776 kunmap_atomic(map);
d0107eb0
KH
2777 } else
2778 memset(buf, 0, length);
2779
2780 addr += length;
2781 buf += length;
2782 copied += length;
2783 count -= length;
2784 }
2785 return copied;
2786}
2787
2788static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2789{
2790 struct page *p;
2791 int copied = 0;
2792
2793 while (count) {
2794 unsigned long offset, length;
2795
891c49ab 2796 offset = offset_in_page(addr);
d0107eb0
KH
2797 length = PAGE_SIZE - offset;
2798 if (length > count)
2799 length = count;
2800 p = vmalloc_to_page(addr);
2801 /*
2802 * To do safe access to this _mapped_ area, we need
2803 * lock. But adding lock here means that we need to add
2804 * overhead of vmalloc()/vfree() calles for this _debug_
2805 * interface, rarely used. Instead of that, we'll use
2806 * kmap() and get small overhead in this access function.
2807 */
2808 if (p) {
2809 /*
2810 * we can expect USER0 is not used (see vread/vwrite's
2811 * function description)
2812 */
9b04c5fe 2813 void *map = kmap_atomic(p);
d0107eb0 2814 memcpy(map + offset, buf, length);
9b04c5fe 2815 kunmap_atomic(map);
d0107eb0
KH
2816 }
2817 addr += length;
2818 buf += length;
2819 copied += length;
2820 count -= length;
2821 }
2822 return copied;
2823}
2824
2825/**
92eac168
MR
2826 * vread() - read vmalloc area in a safe way.
2827 * @buf: buffer for reading data
2828 * @addr: vm address.
2829 * @count: number of bytes to be read.
2830 *
92eac168
MR
2831 * This function checks that addr is a valid vmalloc'ed area, and
2832 * copy data from that area to a given buffer. If the given memory range
2833 * of [addr...addr+count) includes some valid address, data is copied to
2834 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2835 * IOREMAP area is treated as memory hole and no copy is done.
2836 *
2837 * If [addr...addr+count) doesn't includes any intersects with alive
2838 * vm_struct area, returns 0. @buf should be kernel's buffer.
2839 *
2840 * Note: In usual ops, vread() is never necessary because the caller
2841 * should know vmalloc() area is valid and can use memcpy().
2842 * This is for routines which have to access vmalloc area without
d9009d67 2843 * any information, as /dev/kmem.
a862f68a
MR
2844 *
2845 * Return: number of bytes for which addr and buf should be increased
2846 * (same number as @count) or %0 if [addr...addr+count) doesn't
2847 * include any intersection with valid vmalloc area
d0107eb0 2848 */
1da177e4
LT
2849long vread(char *buf, char *addr, unsigned long count)
2850{
e81ce85f
JK
2851 struct vmap_area *va;
2852 struct vm_struct *vm;
1da177e4 2853 char *vaddr, *buf_start = buf;
d0107eb0 2854 unsigned long buflen = count;
1da177e4
LT
2855 unsigned long n;
2856
2857 /* Don't allow overflow */
2858 if ((unsigned long) addr + count < count)
2859 count = -(unsigned long) addr;
2860
e81ce85f
JK
2861 spin_lock(&vmap_area_lock);
2862 list_for_each_entry(va, &vmap_area_list, list) {
2863 if (!count)
2864 break;
2865
688fcbfc 2866 if (!va->vm)
e81ce85f
JK
2867 continue;
2868
2869 vm = va->vm;
2870 vaddr = (char *) vm->addr;
762216ab 2871 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2872 continue;
2873 while (addr < vaddr) {
2874 if (count == 0)
2875 goto finished;
2876 *buf = '\0';
2877 buf++;
2878 addr++;
2879 count--;
2880 }
762216ab 2881 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2882 if (n > count)
2883 n = count;
e81ce85f 2884 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2885 aligned_vread(buf, addr, n);
2886 else /* IOREMAP area is treated as memory hole */
2887 memset(buf, 0, n);
2888 buf += n;
2889 addr += n;
2890 count -= n;
1da177e4
LT
2891 }
2892finished:
e81ce85f 2893 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2894
2895 if (buf == buf_start)
2896 return 0;
2897 /* zero-fill memory holes */
2898 if (buf != buf_start + buflen)
2899 memset(buf, 0, buflen - (buf - buf_start));
2900
2901 return buflen;
1da177e4
LT
2902}
2903
d0107eb0 2904/**
92eac168
MR
2905 * vwrite() - write vmalloc area in a safe way.
2906 * @buf: buffer for source data
2907 * @addr: vm address.
2908 * @count: number of bytes to be read.
2909 *
92eac168
MR
2910 * This function checks that addr is a valid vmalloc'ed area, and
2911 * copy data from a buffer to the given addr. If specified range of
2912 * [addr...addr+count) includes some valid address, data is copied from
2913 * proper area of @buf. If there are memory holes, no copy to hole.
2914 * IOREMAP area is treated as memory hole and no copy is done.
2915 *
2916 * If [addr...addr+count) doesn't includes any intersects with alive
2917 * vm_struct area, returns 0. @buf should be kernel's buffer.
2918 *
2919 * Note: In usual ops, vwrite() is never necessary because the caller
2920 * should know vmalloc() area is valid and can use memcpy().
2921 * This is for routines which have to access vmalloc area without
d9009d67 2922 * any information, as /dev/kmem.
a862f68a
MR
2923 *
2924 * Return: number of bytes for which addr and buf should be
2925 * increased (same number as @count) or %0 if [addr...addr+count)
2926 * doesn't include any intersection with valid vmalloc area
d0107eb0 2927 */
1da177e4
LT
2928long vwrite(char *buf, char *addr, unsigned long count)
2929{
e81ce85f
JK
2930 struct vmap_area *va;
2931 struct vm_struct *vm;
d0107eb0
KH
2932 char *vaddr;
2933 unsigned long n, buflen;
2934 int copied = 0;
1da177e4
LT
2935
2936 /* Don't allow overflow */
2937 if ((unsigned long) addr + count < count)
2938 count = -(unsigned long) addr;
d0107eb0 2939 buflen = count;
1da177e4 2940
e81ce85f
JK
2941 spin_lock(&vmap_area_lock);
2942 list_for_each_entry(va, &vmap_area_list, list) {
2943 if (!count)
2944 break;
2945
688fcbfc 2946 if (!va->vm)
e81ce85f
JK
2947 continue;
2948
2949 vm = va->vm;
2950 vaddr = (char *) vm->addr;
762216ab 2951 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2952 continue;
2953 while (addr < vaddr) {
2954 if (count == 0)
2955 goto finished;
2956 buf++;
2957 addr++;
2958 count--;
2959 }
762216ab 2960 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2961 if (n > count)
2962 n = count;
e81ce85f 2963 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2964 aligned_vwrite(buf, addr, n);
2965 copied++;
2966 }
2967 buf += n;
2968 addr += n;
2969 count -= n;
1da177e4
LT
2970 }
2971finished:
e81ce85f 2972 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2973 if (!copied)
2974 return 0;
2975 return buflen;
1da177e4 2976}
83342314
NP
2977
2978/**
92eac168
MR
2979 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2980 * @vma: vma to cover
2981 * @uaddr: target user address to start at
2982 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 2983 * @pgoff: offset from @kaddr to start at
92eac168 2984 * @size: size of map area
7682486b 2985 *
92eac168 2986 * Returns: 0 for success, -Exxx on failure
83342314 2987 *
92eac168
MR
2988 * This function checks that @kaddr is a valid vmalloc'ed area,
2989 * and that it is big enough to cover the range starting at
2990 * @uaddr in @vma. Will return failure if that criteria isn't
2991 * met.
83342314 2992 *
92eac168 2993 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2994 */
e69e9d4a 2995int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
2996 void *kaddr, unsigned long pgoff,
2997 unsigned long size)
83342314
NP
2998{
2999 struct vm_struct *area;
bdebd6a2
JH
3000 unsigned long off;
3001 unsigned long end_index;
3002
3003 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3004 return -EINVAL;
83342314 3005
e69e9d4a
HD
3006 size = PAGE_ALIGN(size);
3007
3008 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3009 return -EINVAL;
3010
e69e9d4a 3011 area = find_vm_area(kaddr);
83342314 3012 if (!area)
db64fe02 3013 return -EINVAL;
83342314 3014
fe9041c2 3015 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3016 return -EINVAL;
83342314 3017
bdebd6a2
JH
3018 if (check_add_overflow(size, off, &end_index) ||
3019 end_index > get_vm_area_size(area))
db64fe02 3020 return -EINVAL;
bdebd6a2 3021 kaddr += off;
83342314 3022
83342314 3023 do {
e69e9d4a 3024 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3025 int ret;
3026
83342314
NP
3027 ret = vm_insert_page(vma, uaddr, page);
3028 if (ret)
3029 return ret;
3030
3031 uaddr += PAGE_SIZE;
e69e9d4a
HD
3032 kaddr += PAGE_SIZE;
3033 size -= PAGE_SIZE;
3034 } while (size > 0);
83342314 3035
314e51b9 3036 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3037
db64fe02 3038 return 0;
83342314 3039}
e69e9d4a
HD
3040EXPORT_SYMBOL(remap_vmalloc_range_partial);
3041
3042/**
92eac168
MR
3043 * remap_vmalloc_range - map vmalloc pages to userspace
3044 * @vma: vma to cover (map full range of vma)
3045 * @addr: vmalloc memory
3046 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3047 *
92eac168 3048 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3049 *
92eac168
MR
3050 * This function checks that addr is a valid vmalloc'ed area, and
3051 * that it is big enough to cover the vma. Will return failure if
3052 * that criteria isn't met.
e69e9d4a 3053 *
92eac168 3054 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3055 */
3056int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3057 unsigned long pgoff)
3058{
3059 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3060 addr, pgoff,
e69e9d4a
HD
3061 vma->vm_end - vma->vm_start);
3062}
83342314
NP
3063EXPORT_SYMBOL(remap_vmalloc_range);
3064
8b1e0f81 3065static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3066{
cd12909c
DV
3067 pte_t ***p = data;
3068
3069 if (p) {
3070 *(*p) = pte;
3071 (*p)++;
3072 }
5f4352fb
JF
3073 return 0;
3074}
3075
3076/**
92eac168
MR
3077 * alloc_vm_area - allocate a range of kernel address space
3078 * @size: size of the area
3079 * @ptes: returns the PTEs for the address space
7682486b 3080 *
92eac168 3081 * Returns: NULL on failure, vm_struct on success
5f4352fb 3082 *
92eac168
MR
3083 * This function reserves a range of kernel address space, and
3084 * allocates pagetables to map that range. No actual mappings
3085 * are created.
cd12909c 3086 *
92eac168
MR
3087 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3088 * allocated for the VM area are returned.
5f4352fb 3089 */
cd12909c 3090struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3091{
3092 struct vm_struct *area;
3093
23016969
CL
3094 area = get_vm_area_caller(size, VM_IOREMAP,
3095 __builtin_return_address(0));
5f4352fb
JF
3096 if (area == NULL)
3097 return NULL;
3098
3099 /*
3100 * This ensures that page tables are constructed for this region
3101 * of kernel virtual address space and mapped into init_mm.
3102 */
3103 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3104 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3105 free_vm_area(area);
3106 return NULL;
3107 }
3108
5f4352fb
JF
3109 return area;
3110}
3111EXPORT_SYMBOL_GPL(alloc_vm_area);
3112
3113void free_vm_area(struct vm_struct *area)
3114{
3115 struct vm_struct *ret;
3116 ret = remove_vm_area(area->addr);
3117 BUG_ON(ret != area);
3118 kfree(area);
3119}
3120EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3121
4f8b02b4 3122#ifdef CONFIG_SMP
ca23e405
TH
3123static struct vmap_area *node_to_va(struct rb_node *n)
3124{
4583e773 3125 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3126}
3127
3128/**
68ad4a33
URS
3129 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3130 * @addr: target address
ca23e405 3131 *
68ad4a33
URS
3132 * Returns: vmap_area if it is found. If there is no such area
3133 * the first highest(reverse order) vmap_area is returned
3134 * i.e. va->va_start < addr && va->va_end < addr or NULL
3135 * if there are no any areas before @addr.
ca23e405 3136 */
68ad4a33
URS
3137static struct vmap_area *
3138pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3139{
68ad4a33
URS
3140 struct vmap_area *va, *tmp;
3141 struct rb_node *n;
3142
3143 n = free_vmap_area_root.rb_node;
3144 va = NULL;
ca23e405
TH
3145
3146 while (n) {
68ad4a33
URS
3147 tmp = rb_entry(n, struct vmap_area, rb_node);
3148 if (tmp->va_start <= addr) {
3149 va = tmp;
3150 if (tmp->va_end >= addr)
3151 break;
3152
ca23e405 3153 n = n->rb_right;
68ad4a33
URS
3154 } else {
3155 n = n->rb_left;
3156 }
ca23e405
TH
3157 }
3158
68ad4a33 3159 return va;
ca23e405
TH
3160}
3161
3162/**
68ad4a33
URS
3163 * pvm_determine_end_from_reverse - find the highest aligned address
3164 * of free block below VMALLOC_END
3165 * @va:
3166 * in - the VA we start the search(reverse order);
3167 * out - the VA with the highest aligned end address.
ca23e405 3168 *
68ad4a33 3169 * Returns: determined end address within vmap_area
ca23e405 3170 */
68ad4a33
URS
3171static unsigned long
3172pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3173{
68ad4a33 3174 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3175 unsigned long addr;
3176
68ad4a33
URS
3177 if (likely(*va)) {
3178 list_for_each_entry_from_reverse((*va),
3179 &free_vmap_area_list, list) {
3180 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3181 if ((*va)->va_start < addr)
3182 return addr;
3183 }
ca23e405
TH
3184 }
3185
68ad4a33 3186 return 0;
ca23e405
TH
3187}
3188
3189/**
3190 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3191 * @offsets: array containing offset of each area
3192 * @sizes: array containing size of each area
3193 * @nr_vms: the number of areas to allocate
3194 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3195 *
3196 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3197 * vm_structs on success, %NULL on failure
3198 *
3199 * Percpu allocator wants to use congruent vm areas so that it can
3200 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3201 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3202 * be scattered pretty far, distance between two areas easily going up
3203 * to gigabytes. To avoid interacting with regular vmallocs, these
3204 * areas are allocated from top.
ca23e405 3205 *
68ad4a33
URS
3206 * Despite its complicated look, this allocator is rather simple. It
3207 * does everything top-down and scans free blocks from the end looking
3208 * for matching base. While scanning, if any of the areas do not fit the
3209 * base address is pulled down to fit the area. Scanning is repeated till
3210 * all the areas fit and then all necessary data structures are inserted
3211 * and the result is returned.
ca23e405
TH
3212 */
3213struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3214 const size_t *sizes, int nr_vms,
ec3f64fc 3215 size_t align)
ca23e405
TH
3216{
3217 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3218 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3219 struct vmap_area **vas, *va;
ca23e405
TH
3220 struct vm_struct **vms;
3221 int area, area2, last_area, term_area;
253a496d 3222 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3223 bool purged = false;
68ad4a33 3224 enum fit_type type;
ca23e405 3225
ca23e405 3226 /* verify parameters and allocate data structures */
891c49ab 3227 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3228 for (last_area = 0, area = 0; area < nr_vms; area++) {
3229 start = offsets[area];
3230 end = start + sizes[area];
3231
3232 /* is everything aligned properly? */
3233 BUG_ON(!IS_ALIGNED(offsets[area], align));
3234 BUG_ON(!IS_ALIGNED(sizes[area], align));
3235
3236 /* detect the area with the highest address */
3237 if (start > offsets[last_area])
3238 last_area = area;
3239
c568da28 3240 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3241 unsigned long start2 = offsets[area2];
3242 unsigned long end2 = start2 + sizes[area2];
3243
c568da28 3244 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3245 }
3246 }
3247 last_end = offsets[last_area] + sizes[last_area];
3248
3249 if (vmalloc_end - vmalloc_start < last_end) {
3250 WARN_ON(true);
3251 return NULL;
3252 }
3253
4d67d860
TM
3254 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3255 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3256 if (!vas || !vms)
f1db7afd 3257 goto err_free2;
ca23e405
TH
3258
3259 for (area = 0; area < nr_vms; area++) {
68ad4a33 3260 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3261 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3262 if (!vas[area] || !vms[area])
3263 goto err_free;
3264 }
3265retry:
e36176be 3266 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3267
3268 /* start scanning - we scan from the top, begin with the last area */
3269 area = term_area = last_area;
3270 start = offsets[area];
3271 end = start + sizes[area];
3272
68ad4a33
URS
3273 va = pvm_find_va_enclose_addr(vmalloc_end);
3274 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3275
3276 while (true) {
ca23e405
TH
3277 /*
3278 * base might have underflowed, add last_end before
3279 * comparing.
3280 */
68ad4a33
URS
3281 if (base + last_end < vmalloc_start + last_end)
3282 goto overflow;
ca23e405
TH
3283
3284 /*
68ad4a33 3285 * Fitting base has not been found.
ca23e405 3286 */
68ad4a33
URS
3287 if (va == NULL)
3288 goto overflow;
ca23e405 3289
5336e52c 3290 /*
d8cc323d 3291 * If required width exceeds current VA block, move
5336e52c
KS
3292 * base downwards and then recheck.
3293 */
3294 if (base + end > va->va_end) {
3295 base = pvm_determine_end_from_reverse(&va, align) - end;
3296 term_area = area;
3297 continue;
3298 }
3299
ca23e405 3300 /*
68ad4a33 3301 * If this VA does not fit, move base downwards and recheck.
ca23e405 3302 */
5336e52c 3303 if (base + start < va->va_start) {
68ad4a33
URS
3304 va = node_to_va(rb_prev(&va->rb_node));
3305 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3306 term_area = area;
3307 continue;
3308 }
3309
3310 /*
3311 * This area fits, move on to the previous one. If
3312 * the previous one is the terminal one, we're done.
3313 */
3314 area = (area + nr_vms - 1) % nr_vms;
3315 if (area == term_area)
3316 break;
68ad4a33 3317
ca23e405
TH
3318 start = offsets[area];
3319 end = start + sizes[area];
68ad4a33 3320 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3321 }
68ad4a33 3322
ca23e405
TH
3323 /* we've found a fitting base, insert all va's */
3324 for (area = 0; area < nr_vms; area++) {
68ad4a33 3325 int ret;
ca23e405 3326
68ad4a33
URS
3327 start = base + offsets[area];
3328 size = sizes[area];
ca23e405 3329
68ad4a33
URS
3330 va = pvm_find_va_enclose_addr(start);
3331 if (WARN_ON_ONCE(va == NULL))
3332 /* It is a BUG(), but trigger recovery instead. */
3333 goto recovery;
3334
3335 type = classify_va_fit_type(va, start, size);
3336 if (WARN_ON_ONCE(type == NOTHING_FIT))
3337 /* It is a BUG(), but trigger recovery instead. */
3338 goto recovery;
3339
3340 ret = adjust_va_to_fit_type(va, start, size, type);
3341 if (unlikely(ret))
3342 goto recovery;
3343
3344 /* Allocated area. */
3345 va = vas[area];
3346 va->va_start = start;
3347 va->va_end = start + size;
68ad4a33 3348 }
ca23e405 3349
e36176be 3350 spin_unlock(&free_vmap_area_lock);
ca23e405 3351
253a496d
DA
3352 /* populate the kasan shadow space */
3353 for (area = 0; area < nr_vms; area++) {
3354 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3355 goto err_free_shadow;
3356
3357 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3358 sizes[area]);
3359 }
3360
ca23e405 3361 /* insert all vm's */
e36176be
URS
3362 spin_lock(&vmap_area_lock);
3363 for (area = 0; area < nr_vms; area++) {
3364 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3365
3366 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3367 pcpu_get_vm_areas);
e36176be
URS
3368 }
3369 spin_unlock(&vmap_area_lock);
ca23e405
TH
3370
3371 kfree(vas);
3372 return vms;
3373
68ad4a33 3374recovery:
e36176be
URS
3375 /*
3376 * Remove previously allocated areas. There is no
3377 * need in removing these areas from the busy tree,
3378 * because they are inserted only on the final step
3379 * and when pcpu_get_vm_areas() is success.
3380 */
68ad4a33 3381 while (area--) {
253a496d
DA
3382 orig_start = vas[area]->va_start;
3383 orig_end = vas[area]->va_end;
3384 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3385 &free_vmap_area_list);
3386 kasan_release_vmalloc(orig_start, orig_end,
3387 va->va_start, va->va_end);
68ad4a33
URS
3388 vas[area] = NULL;
3389 }
3390
3391overflow:
e36176be 3392 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3393 if (!purged) {
3394 purge_vmap_area_lazy();
3395 purged = true;
3396
3397 /* Before "retry", check if we recover. */
3398 for (area = 0; area < nr_vms; area++) {
3399 if (vas[area])
3400 continue;
3401
3402 vas[area] = kmem_cache_zalloc(
3403 vmap_area_cachep, GFP_KERNEL);
3404 if (!vas[area])
3405 goto err_free;
3406 }
3407
3408 goto retry;
3409 }
3410
ca23e405
TH
3411err_free:
3412 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3413 if (vas[area])
3414 kmem_cache_free(vmap_area_cachep, vas[area]);
3415
f1db7afd 3416 kfree(vms[area]);
ca23e405 3417 }
f1db7afd 3418err_free2:
ca23e405
TH
3419 kfree(vas);
3420 kfree(vms);
3421 return NULL;
253a496d
DA
3422
3423err_free_shadow:
3424 spin_lock(&free_vmap_area_lock);
3425 /*
3426 * We release all the vmalloc shadows, even the ones for regions that
3427 * hadn't been successfully added. This relies on kasan_release_vmalloc
3428 * being able to tolerate this case.
3429 */
3430 for (area = 0; area < nr_vms; area++) {
3431 orig_start = vas[area]->va_start;
3432 orig_end = vas[area]->va_end;
3433 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3434 &free_vmap_area_list);
3435 kasan_release_vmalloc(orig_start, orig_end,
3436 va->va_start, va->va_end);
3437 vas[area] = NULL;
3438 kfree(vms[area]);
3439 }
3440 spin_unlock(&free_vmap_area_lock);
3441 kfree(vas);
3442 kfree(vms);
3443 return NULL;
ca23e405
TH
3444}
3445
3446/**
3447 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3448 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3449 * @nr_vms: the number of allocated areas
3450 *
3451 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3452 */
3453void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3454{
3455 int i;
3456
3457 for (i = 0; i < nr_vms; i++)
3458 free_vm_area(vms[i]);
3459 kfree(vms);
3460}
4f8b02b4 3461#endif /* CONFIG_SMP */
a10aa579
CL
3462
3463#ifdef CONFIG_PROC_FS
3464static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3465 __acquires(&vmap_purge_lock)
d4033afd 3466 __acquires(&vmap_area_lock)
a10aa579 3467{
e36176be 3468 mutex_lock(&vmap_purge_lock);
d4033afd 3469 spin_lock(&vmap_area_lock);
e36176be 3470
3f500069 3471 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3472}
3473
3474static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3475{
3f500069 3476 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3477}
3478
3479static void s_stop(struct seq_file *m, void *p)
e36176be 3480 __releases(&vmap_purge_lock)
d4033afd 3481 __releases(&vmap_area_lock)
a10aa579 3482{
e36176be 3483 mutex_unlock(&vmap_purge_lock);
d4033afd 3484 spin_unlock(&vmap_area_lock);
a10aa579
CL
3485}
3486
a47a126a
ED
3487static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3488{
e5adfffc 3489 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3490 unsigned int nr, *counters = m->private;
3491
3492 if (!counters)
3493 return;
3494
af12346c
WL
3495 if (v->flags & VM_UNINITIALIZED)
3496 return;
7e5b528b
DV
3497 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3498 smp_rmb();
af12346c 3499
a47a126a
ED
3500 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3501
3502 for (nr = 0; nr < v->nr_pages; nr++)
3503 counters[page_to_nid(v->pages[nr])]++;
3504
3505 for_each_node_state(nr, N_HIGH_MEMORY)
3506 if (counters[nr])
3507 seq_printf(m, " N%u=%u", nr, counters[nr]);
3508 }
3509}
3510
dd3b8353
URS
3511static void show_purge_info(struct seq_file *m)
3512{
3513 struct llist_node *head;
3514 struct vmap_area *va;
3515
3516 head = READ_ONCE(vmap_purge_list.first);
3517 if (head == NULL)
3518 return;
3519
3520 llist_for_each_entry(va, head, purge_list) {
3521 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3522 (void *)va->va_start, (void *)va->va_end,
3523 va->va_end - va->va_start);
3524 }
3525}
3526
a10aa579
CL
3527static int s_show(struct seq_file *m, void *p)
3528{
3f500069 3529 struct vmap_area *va;
d4033afd
JK
3530 struct vm_struct *v;
3531
3f500069 3532 va = list_entry(p, struct vmap_area, list);
3533
c2ce8c14 3534 /*
688fcbfc
PL
3535 * s_show can encounter race with remove_vm_area, !vm on behalf
3536 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3537 */
688fcbfc 3538 if (!va->vm) {
dd3b8353 3539 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3540 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3541 va->va_end - va->va_start);
78c72746 3542
d4033afd 3543 return 0;
78c72746 3544 }
d4033afd
JK
3545
3546 v = va->vm;
a10aa579 3547
45ec1690 3548 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3549 v->addr, v->addr + v->size, v->size);
3550
62c70bce
JP
3551 if (v->caller)
3552 seq_printf(m, " %pS", v->caller);
23016969 3553
a10aa579
CL
3554 if (v->nr_pages)
3555 seq_printf(m, " pages=%d", v->nr_pages);
3556
3557 if (v->phys_addr)
199eaa05 3558 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3559
3560 if (v->flags & VM_IOREMAP)
f4527c90 3561 seq_puts(m, " ioremap");
a10aa579
CL
3562
3563 if (v->flags & VM_ALLOC)
f4527c90 3564 seq_puts(m, " vmalloc");
a10aa579
CL
3565
3566 if (v->flags & VM_MAP)
f4527c90 3567 seq_puts(m, " vmap");
a10aa579
CL
3568
3569 if (v->flags & VM_USERMAP)
f4527c90 3570 seq_puts(m, " user");
a10aa579 3571
fe9041c2
CH
3572 if (v->flags & VM_DMA_COHERENT)
3573 seq_puts(m, " dma-coherent");
3574
244d63ee 3575 if (is_vmalloc_addr(v->pages))
f4527c90 3576 seq_puts(m, " vpages");
a10aa579 3577
a47a126a 3578 show_numa_info(m, v);
a10aa579 3579 seq_putc(m, '\n');
dd3b8353
URS
3580
3581 /*
3582 * As a final step, dump "unpurged" areas. Note,
3583 * that entire "/proc/vmallocinfo" output will not
3584 * be address sorted, because the purge list is not
3585 * sorted.
3586 */
3587 if (list_is_last(&va->list, &vmap_area_list))
3588 show_purge_info(m);
3589
a10aa579
CL
3590 return 0;
3591}
3592
5f6a6a9c 3593static const struct seq_operations vmalloc_op = {
a10aa579
CL
3594 .start = s_start,
3595 .next = s_next,
3596 .stop = s_stop,
3597 .show = s_show,
3598};
5f6a6a9c 3599
5f6a6a9c
AD
3600static int __init proc_vmalloc_init(void)
3601{
fddda2b7 3602 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3603 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3604 &vmalloc_op,
3605 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3606 else
0825a6f9 3607 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3608 return 0;
3609}
3610module_init(proc_vmalloc_init);
db3808c1 3611
a10aa579 3612#endif