mm/vmalloc: make sure to dump unpurged areas in /proc/vmallocinfo
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
5da96bdd 28#include <linux/io.h>
db64fe02 29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
bdebd6a2 37#include <linux/overflow.h>
c0eb315a 38#include <linux/pgtable.h>
7c0f6ba6 39#include <linux/uaccess.h>
f7ee1f13 40#include <linux/hugetlb.h>
1da177e4 41#include <asm/tlbflush.h>
2dca6999 42#include <asm/shmparam.h>
1da177e4 43
dd56b046 44#include "internal.h"
2a681cfa 45#include "pgalloc-track.h"
dd56b046 46
82a70ce0
CH
47#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
48static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
49
50static int __init set_nohugeiomap(char *str)
51{
52 ioremap_max_page_shift = PAGE_SHIFT;
53 return 0;
54}
55early_param("nohugeiomap", set_nohugeiomap);
56#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
57static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
58#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59
121e6f32
NP
60#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
61static bool __ro_after_init vmap_allow_huge = true;
62
63static int __init set_nohugevmalloc(char *str)
64{
65 vmap_allow_huge = false;
66 return 0;
67}
68early_param("nohugevmalloc", set_nohugevmalloc);
69#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
70static const bool vmap_allow_huge = false;
71#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72
186525bd
IM
73bool is_vmalloc_addr(const void *x)
74{
75 unsigned long addr = (unsigned long)x;
76
77 return addr >= VMALLOC_START && addr < VMALLOC_END;
78}
79EXPORT_SYMBOL(is_vmalloc_addr);
80
32fcfd40
AV
81struct vfree_deferred {
82 struct llist_head list;
83 struct work_struct wq;
84};
85static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
86
87static void __vunmap(const void *, int);
88
89static void free_work(struct work_struct *w)
90{
91 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
92 struct llist_node *t, *llnode;
93
94 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
95 __vunmap((void *)llnode, 1);
32fcfd40
AV
96}
97
db64fe02 98/*** Page table manipulation functions ***/
5e9e3d77
NP
99static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
100 phys_addr_t phys_addr, pgprot_t prot,
f7ee1f13 101 unsigned int max_page_shift, pgtbl_mod_mask *mask)
5e9e3d77
NP
102{
103 pte_t *pte;
104 u64 pfn;
f7ee1f13 105 unsigned long size = PAGE_SIZE;
5e9e3d77
NP
106
107 pfn = phys_addr >> PAGE_SHIFT;
108 pte = pte_alloc_kernel_track(pmd, addr, mask);
109 if (!pte)
110 return -ENOMEM;
111 do {
112 BUG_ON(!pte_none(*pte));
f7ee1f13
CL
113
114#ifdef CONFIG_HUGETLB_PAGE
115 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
116 if (size != PAGE_SIZE) {
117 pte_t entry = pfn_pte(pfn, prot);
118
119 entry = pte_mkhuge(entry);
120 entry = arch_make_huge_pte(entry, ilog2(size), 0);
121 set_huge_pte_at(&init_mm, addr, pte, entry);
122 pfn += PFN_DOWN(size);
123 continue;
124 }
125#endif
5e9e3d77
NP
126 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
127 pfn++;
f7ee1f13 128 } while (pte += PFN_DOWN(size), addr += size, addr != end);
5e9e3d77
NP
129 *mask |= PGTBL_PTE_MODIFIED;
130 return 0;
131}
132
133static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
134 phys_addr_t phys_addr, pgprot_t prot,
135 unsigned int max_page_shift)
136{
137 if (max_page_shift < PMD_SHIFT)
138 return 0;
139
140 if (!arch_vmap_pmd_supported(prot))
141 return 0;
142
143 if ((end - addr) != PMD_SIZE)
144 return 0;
145
146 if (!IS_ALIGNED(addr, PMD_SIZE))
147 return 0;
148
149 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
150 return 0;
151
152 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
153 return 0;
154
155 return pmd_set_huge(pmd, phys_addr, prot);
156}
157
158static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
159 phys_addr_t phys_addr, pgprot_t prot,
160 unsigned int max_page_shift, pgtbl_mod_mask *mask)
161{
162 pmd_t *pmd;
163 unsigned long next;
164
165 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
166 if (!pmd)
167 return -ENOMEM;
168 do {
169 next = pmd_addr_end(addr, end);
170
171 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
172 max_page_shift)) {
173 *mask |= PGTBL_PMD_MODIFIED;
174 continue;
175 }
176
f7ee1f13 177 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
5e9e3d77
NP
178 return -ENOMEM;
179 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
180 return 0;
181}
182
183static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
184 phys_addr_t phys_addr, pgprot_t prot,
185 unsigned int max_page_shift)
186{
187 if (max_page_shift < PUD_SHIFT)
188 return 0;
189
190 if (!arch_vmap_pud_supported(prot))
191 return 0;
192
193 if ((end - addr) != PUD_SIZE)
194 return 0;
195
196 if (!IS_ALIGNED(addr, PUD_SIZE))
197 return 0;
198
199 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
200 return 0;
201
202 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
203 return 0;
204
205 return pud_set_huge(pud, phys_addr, prot);
206}
207
208static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
209 phys_addr_t phys_addr, pgprot_t prot,
210 unsigned int max_page_shift, pgtbl_mod_mask *mask)
211{
212 pud_t *pud;
213 unsigned long next;
214
215 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
216 if (!pud)
217 return -ENOMEM;
218 do {
219 next = pud_addr_end(addr, end);
220
221 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
222 max_page_shift)) {
223 *mask |= PGTBL_PUD_MODIFIED;
224 continue;
225 }
226
227 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
228 max_page_shift, mask))
229 return -ENOMEM;
230 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
231 return 0;
232}
233
234static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
235 phys_addr_t phys_addr, pgprot_t prot,
236 unsigned int max_page_shift)
237{
238 if (max_page_shift < P4D_SHIFT)
239 return 0;
240
241 if (!arch_vmap_p4d_supported(prot))
242 return 0;
243
244 if ((end - addr) != P4D_SIZE)
245 return 0;
246
247 if (!IS_ALIGNED(addr, P4D_SIZE))
248 return 0;
249
250 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
251 return 0;
252
253 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
254 return 0;
255
256 return p4d_set_huge(p4d, phys_addr, prot);
257}
258
259static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
260 phys_addr_t phys_addr, pgprot_t prot,
261 unsigned int max_page_shift, pgtbl_mod_mask *mask)
262{
263 p4d_t *p4d;
264 unsigned long next;
265
266 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
267 if (!p4d)
268 return -ENOMEM;
269 do {
270 next = p4d_addr_end(addr, end);
271
272 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
273 max_page_shift)) {
274 *mask |= PGTBL_P4D_MODIFIED;
275 continue;
276 }
277
278 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
279 max_page_shift, mask))
280 return -ENOMEM;
281 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
282 return 0;
283}
284
5d87510d 285static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
286 phys_addr_t phys_addr, pgprot_t prot,
287 unsigned int max_page_shift)
288{
289 pgd_t *pgd;
290 unsigned long start;
291 unsigned long next;
292 int err;
293 pgtbl_mod_mask mask = 0;
294
295 might_sleep();
296 BUG_ON(addr >= end);
297
298 start = addr;
299 pgd = pgd_offset_k(addr);
300 do {
301 next = pgd_addr_end(addr, end);
302 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
303 max_page_shift, &mask);
304 if (err)
305 break;
306 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
307
5e9e3d77
NP
308 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
309 arch_sync_kernel_mappings(start, end);
310
311 return err;
312}
b221385b 313
82a70ce0
CH
314int ioremap_page_range(unsigned long addr, unsigned long end,
315 phys_addr_t phys_addr, pgprot_t prot)
5d87510d
NP
316{
317 int err;
318
8491502f 319 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
82a70ce0 320 ioremap_max_page_shift);
5d87510d 321 flush_cache_vmap(addr, end);
5d87510d
NP
322 return err;
323}
324
2ba3e694
JR
325static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
326 pgtbl_mod_mask *mask)
1da177e4
LT
327{
328 pte_t *pte;
329
330 pte = pte_offset_kernel(pmd, addr);
331 do {
332 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
333 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
334 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 335 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
336}
337
2ba3e694
JR
338static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
339 pgtbl_mod_mask *mask)
1da177e4
LT
340{
341 pmd_t *pmd;
342 unsigned long next;
2ba3e694 343 int cleared;
1da177e4
LT
344
345 pmd = pmd_offset(pud, addr);
346 do {
347 next = pmd_addr_end(addr, end);
2ba3e694
JR
348
349 cleared = pmd_clear_huge(pmd);
350 if (cleared || pmd_bad(*pmd))
351 *mask |= PGTBL_PMD_MODIFIED;
352
353 if (cleared)
b9820d8f 354 continue;
1da177e4
LT
355 if (pmd_none_or_clear_bad(pmd))
356 continue;
2ba3e694 357 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
358
359 cond_resched();
1da177e4
LT
360 } while (pmd++, addr = next, addr != end);
361}
362
2ba3e694
JR
363static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
364 pgtbl_mod_mask *mask)
1da177e4
LT
365{
366 pud_t *pud;
367 unsigned long next;
2ba3e694 368 int cleared;
1da177e4 369
c2febafc 370 pud = pud_offset(p4d, addr);
1da177e4
LT
371 do {
372 next = pud_addr_end(addr, end);
2ba3e694
JR
373
374 cleared = pud_clear_huge(pud);
375 if (cleared || pud_bad(*pud))
376 *mask |= PGTBL_PUD_MODIFIED;
377
378 if (cleared)
b9820d8f 379 continue;
1da177e4
LT
380 if (pud_none_or_clear_bad(pud))
381 continue;
2ba3e694 382 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
383 } while (pud++, addr = next, addr != end);
384}
385
2ba3e694
JR
386static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
387 pgtbl_mod_mask *mask)
c2febafc
KS
388{
389 p4d_t *p4d;
390 unsigned long next;
2ba3e694 391 int cleared;
c2febafc
KS
392
393 p4d = p4d_offset(pgd, addr);
394 do {
395 next = p4d_addr_end(addr, end);
2ba3e694
JR
396
397 cleared = p4d_clear_huge(p4d);
398 if (cleared || p4d_bad(*p4d))
399 *mask |= PGTBL_P4D_MODIFIED;
400
401 if (cleared)
c2febafc
KS
402 continue;
403 if (p4d_none_or_clear_bad(p4d))
404 continue;
2ba3e694 405 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
406 } while (p4d++, addr = next, addr != end);
407}
408
4ad0ae8c
NP
409/*
410 * vunmap_range_noflush is similar to vunmap_range, but does not
411 * flush caches or TLBs.
b521c43f 412 *
4ad0ae8c
NP
413 * The caller is responsible for calling flush_cache_vmap() before calling
414 * this function, and flush_tlb_kernel_range after it has returned
415 * successfully (and before the addresses are expected to cause a page fault
416 * or be re-mapped for something else, if TLB flushes are being delayed or
417 * coalesced).
b521c43f 418 *
4ad0ae8c 419 * This is an internal function only. Do not use outside mm/.
b521c43f 420 */
4ad0ae8c 421void vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 422{
1da177e4 423 unsigned long next;
b521c43f 424 pgd_t *pgd;
2ba3e694
JR
425 unsigned long addr = start;
426 pgtbl_mod_mask mask = 0;
1da177e4
LT
427
428 BUG_ON(addr >= end);
429 pgd = pgd_offset_k(addr);
1da177e4
LT
430 do {
431 next = pgd_addr_end(addr, end);
2ba3e694
JR
432 if (pgd_bad(*pgd))
433 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
434 if (pgd_none_or_clear_bad(pgd))
435 continue;
2ba3e694 436 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 437 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
438
439 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
440 arch_sync_kernel_mappings(start, end);
1da177e4
LT
441}
442
4ad0ae8c
NP
443/**
444 * vunmap_range - unmap kernel virtual addresses
445 * @addr: start of the VM area to unmap
446 * @end: end of the VM area to unmap (non-inclusive)
447 *
448 * Clears any present PTEs in the virtual address range, flushes TLBs and
449 * caches. Any subsequent access to the address before it has been re-mapped
450 * is a kernel bug.
451 */
452void vunmap_range(unsigned long addr, unsigned long end)
453{
454 flush_cache_vunmap(addr, end);
455 vunmap_range_noflush(addr, end);
456 flush_tlb_kernel_range(addr, end);
457}
458
0a264884 459static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
460 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
461 pgtbl_mod_mask *mask)
1da177e4
LT
462{
463 pte_t *pte;
464
db64fe02
NP
465 /*
466 * nr is a running index into the array which helps higher level
467 * callers keep track of where we're up to.
468 */
469
2ba3e694 470 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
471 if (!pte)
472 return -ENOMEM;
473 do {
db64fe02
NP
474 struct page *page = pages[*nr];
475
476 if (WARN_ON(!pte_none(*pte)))
477 return -EBUSY;
478 if (WARN_ON(!page))
1da177e4
LT
479 return -ENOMEM;
480 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 481 (*nr)++;
1da177e4 482 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 483 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
484 return 0;
485}
486
0a264884 487static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
488 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
489 pgtbl_mod_mask *mask)
1da177e4
LT
490{
491 pmd_t *pmd;
492 unsigned long next;
493
2ba3e694 494 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
495 if (!pmd)
496 return -ENOMEM;
497 do {
498 next = pmd_addr_end(addr, end);
0a264884 499 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
500 return -ENOMEM;
501 } while (pmd++, addr = next, addr != end);
502 return 0;
503}
504
0a264884 505static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
506 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
507 pgtbl_mod_mask *mask)
1da177e4
LT
508{
509 pud_t *pud;
510 unsigned long next;
511
2ba3e694 512 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
513 if (!pud)
514 return -ENOMEM;
515 do {
516 next = pud_addr_end(addr, end);
0a264884 517 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
518 return -ENOMEM;
519 } while (pud++, addr = next, addr != end);
520 return 0;
521}
522
0a264884 523static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
524 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
525 pgtbl_mod_mask *mask)
c2febafc
KS
526{
527 p4d_t *p4d;
528 unsigned long next;
529
2ba3e694 530 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
531 if (!p4d)
532 return -ENOMEM;
533 do {
534 next = p4d_addr_end(addr, end);
0a264884 535 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
536 return -ENOMEM;
537 } while (p4d++, addr = next, addr != end);
538 return 0;
539}
540
121e6f32
NP
541static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
542 pgprot_t prot, struct page **pages)
1da177e4 543{
2ba3e694 544 unsigned long start = addr;
b521c43f 545 pgd_t *pgd;
121e6f32 546 unsigned long next;
db64fe02
NP
547 int err = 0;
548 int nr = 0;
2ba3e694 549 pgtbl_mod_mask mask = 0;
1da177e4
LT
550
551 BUG_ON(addr >= end);
552 pgd = pgd_offset_k(addr);
1da177e4
LT
553 do {
554 next = pgd_addr_end(addr, end);
2ba3e694
JR
555 if (pgd_bad(*pgd))
556 mask |= PGTBL_PGD_MODIFIED;
0a264884 557 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 558 if (err)
bf88c8c8 559 return err;
1da177e4 560 } while (pgd++, addr = next, addr != end);
db64fe02 561
2ba3e694
JR
562 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
563 arch_sync_kernel_mappings(start, end);
564
60bb4465 565 return 0;
1da177e4
LT
566}
567
b67177ec
NP
568/*
569 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
570 * flush caches.
571 *
572 * The caller is responsible for calling flush_cache_vmap() after this
573 * function returns successfully and before the addresses are accessed.
574 *
575 * This is an internal function only. Do not use outside mm/.
576 */
577int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
578 pgprot_t prot, struct page **pages, unsigned int page_shift)
579{
580 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
581
582 WARN_ON(page_shift < PAGE_SHIFT);
583
584 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
585 page_shift == PAGE_SHIFT)
586 return vmap_small_pages_range_noflush(addr, end, prot, pages);
587
588 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
589 int err;
590
591 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
592 __pa(page_address(pages[i])), prot,
593 page_shift);
594 if (err)
595 return err;
596
597 addr += 1UL << page_shift;
598 }
599
600 return 0;
601}
602
121e6f32 603/**
b67177ec 604 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 605 * @addr: start of the VM area to map
b67177ec 606 * @end: end of the VM area to map (non-inclusive)
121e6f32 607 * @prot: page protection flags to use
b67177ec
NP
608 * @pages: pages to map (always PAGE_SIZE pages)
609 * @page_shift: maximum shift that the pages may be mapped with, @pages must
610 * be aligned and contiguous up to at least this shift.
121e6f32
NP
611 *
612 * RETURNS:
613 * 0 on success, -errno on failure.
614 */
b67177ec
NP
615static int vmap_pages_range(unsigned long addr, unsigned long end,
616 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 617{
b67177ec 618 int err;
8fc48985 619
b67177ec
NP
620 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
621 flush_cache_vmap(addr, end);
622 return err;
8fc48985
TH
623}
624
81ac3ad9 625int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
626{
627 /*
ab4f2ee1 628 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
629 * and fall back on vmalloc() if that fails. Others
630 * just put it in the vmalloc space.
631 */
632#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
633 unsigned long addr = (unsigned long)x;
634 if (addr >= MODULES_VADDR && addr < MODULES_END)
635 return 1;
636#endif
637 return is_vmalloc_addr(x);
638}
639
48667e7a 640/*
c0eb315a
NP
641 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
642 * return the tail page that corresponds to the base page address, which
643 * matches small vmap mappings.
48667e7a 644 */
add688fb 645struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
646{
647 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 648 struct page *page = NULL;
48667e7a 649 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
650 p4d_t *p4d;
651 pud_t *pud;
652 pmd_t *pmd;
653 pte_t *ptep, pte;
48667e7a 654
7aa413de
IM
655 /*
656 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
657 * architectures that do not vmalloc module space
658 */
73bdf0a6 659 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 660
c2febafc
KS
661 if (pgd_none(*pgd))
662 return NULL;
c0eb315a
NP
663 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
664 return NULL; /* XXX: no allowance for huge pgd */
665 if (WARN_ON_ONCE(pgd_bad(*pgd)))
666 return NULL;
667
c2febafc
KS
668 p4d = p4d_offset(pgd, addr);
669 if (p4d_none(*p4d))
670 return NULL;
c0eb315a
NP
671 if (p4d_leaf(*p4d))
672 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
673 if (WARN_ON_ONCE(p4d_bad(*p4d)))
674 return NULL;
029c54b0 675
c0eb315a
NP
676 pud = pud_offset(p4d, addr);
677 if (pud_none(*pud))
678 return NULL;
679 if (pud_leaf(*pud))
680 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
681 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 682 return NULL;
c0eb315a 683
c2febafc 684 pmd = pmd_offset(pud, addr);
c0eb315a
NP
685 if (pmd_none(*pmd))
686 return NULL;
687 if (pmd_leaf(*pmd))
688 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
689 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
690 return NULL;
691
692 ptep = pte_offset_map(pmd, addr);
693 pte = *ptep;
694 if (pte_present(pte))
695 page = pte_page(pte);
696 pte_unmap(ptep);
c0eb315a 697
add688fb 698 return page;
48667e7a 699}
add688fb 700EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
701
702/*
add688fb 703 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 704 */
add688fb 705unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 706{
add688fb 707 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 708}
add688fb 709EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 710
db64fe02
NP
711
712/*** Global kva allocator ***/
713
bb850f4d 714#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 715#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 716
db64fe02 717
db64fe02 718static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 719static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
720/* Export for kexec only */
721LIST_HEAD(vmap_area_list);
89699605 722static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 723static bool vmap_initialized __read_mostly;
89699605 724
96e2db45
URS
725static struct rb_root purge_vmap_area_root = RB_ROOT;
726static LIST_HEAD(purge_vmap_area_list);
727static DEFINE_SPINLOCK(purge_vmap_area_lock);
728
68ad4a33
URS
729/*
730 * This kmem_cache is used for vmap_area objects. Instead of
731 * allocating from slab we reuse an object from this cache to
732 * make things faster. Especially in "no edge" splitting of
733 * free block.
734 */
735static struct kmem_cache *vmap_area_cachep;
736
737/*
738 * This linked list is used in pair with free_vmap_area_root.
739 * It gives O(1) access to prev/next to perform fast coalescing.
740 */
741static LIST_HEAD(free_vmap_area_list);
742
743/*
744 * This augment red-black tree represents the free vmap space.
745 * All vmap_area objects in this tree are sorted by va->va_start
746 * address. It is used for allocation and merging when a vmap
747 * object is released.
748 *
749 * Each vmap_area node contains a maximum available free block
750 * of its sub-tree, right or left. Therefore it is possible to
751 * find a lowest match of free area.
752 */
753static struct rb_root free_vmap_area_root = RB_ROOT;
754
82dd23e8
URS
755/*
756 * Preload a CPU with one object for "no edge" split case. The
757 * aim is to get rid of allocations from the atomic context, thus
758 * to use more permissive allocation masks.
759 */
760static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
761
68ad4a33
URS
762static __always_inline unsigned long
763va_size(struct vmap_area *va)
764{
765 return (va->va_end - va->va_start);
766}
767
768static __always_inline unsigned long
769get_subtree_max_size(struct rb_node *node)
770{
771 struct vmap_area *va;
772
773 va = rb_entry_safe(node, struct vmap_area, rb_node);
774 return va ? va->subtree_max_size : 0;
775}
89699605 776
68ad4a33
URS
777/*
778 * Gets called when remove the node and rotate.
779 */
780static __always_inline unsigned long
781compute_subtree_max_size(struct vmap_area *va)
782{
783 return max3(va_size(va),
784 get_subtree_max_size(va->rb_node.rb_left),
785 get_subtree_max_size(va->rb_node.rb_right));
786}
787
315cc066
ML
788RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
789 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
790
791static void purge_vmap_area_lazy(void);
792static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
793static unsigned long lazy_max_pages(void);
db64fe02 794
97105f0a
RG
795static atomic_long_t nr_vmalloc_pages;
796
797unsigned long vmalloc_nr_pages(void)
798{
799 return atomic_long_read(&nr_vmalloc_pages);
800}
801
f181234a
CW
802static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
803{
804 struct vmap_area *va = NULL;
805 struct rb_node *n = vmap_area_root.rb_node;
806
807 while (n) {
808 struct vmap_area *tmp;
809
810 tmp = rb_entry(n, struct vmap_area, rb_node);
811 if (tmp->va_end > addr) {
812 va = tmp;
813 if (tmp->va_start <= addr)
814 break;
815
816 n = n->rb_left;
817 } else
818 n = n->rb_right;
819 }
820
821 return va;
822}
823
db64fe02 824static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 825{
db64fe02
NP
826 struct rb_node *n = vmap_area_root.rb_node;
827
828 while (n) {
829 struct vmap_area *va;
830
831 va = rb_entry(n, struct vmap_area, rb_node);
832 if (addr < va->va_start)
833 n = n->rb_left;
cef2ac3f 834 else if (addr >= va->va_end)
db64fe02
NP
835 n = n->rb_right;
836 else
837 return va;
838 }
839
840 return NULL;
841}
842
68ad4a33
URS
843/*
844 * This function returns back addresses of parent node
845 * and its left or right link for further processing.
9c801f61
URS
846 *
847 * Otherwise NULL is returned. In that case all further
848 * steps regarding inserting of conflicting overlap range
849 * have to be declined and actually considered as a bug.
68ad4a33
URS
850 */
851static __always_inline struct rb_node **
852find_va_links(struct vmap_area *va,
853 struct rb_root *root, struct rb_node *from,
854 struct rb_node **parent)
855{
856 struct vmap_area *tmp_va;
857 struct rb_node **link;
858
859 if (root) {
860 link = &root->rb_node;
861 if (unlikely(!*link)) {
862 *parent = NULL;
863 return link;
864 }
865 } else {
866 link = &from;
867 }
db64fe02 868
68ad4a33
URS
869 /*
870 * Go to the bottom of the tree. When we hit the last point
871 * we end up with parent rb_node and correct direction, i name
872 * it link, where the new va->rb_node will be attached to.
873 */
874 do {
875 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 876
68ad4a33
URS
877 /*
878 * During the traversal we also do some sanity check.
879 * Trigger the BUG() if there are sides(left/right)
880 * or full overlaps.
881 */
882 if (va->va_start < tmp_va->va_end &&
883 va->va_end <= tmp_va->va_start)
884 link = &(*link)->rb_left;
885 else if (va->va_end > tmp_va->va_start &&
886 va->va_start >= tmp_va->va_end)
887 link = &(*link)->rb_right;
9c801f61
URS
888 else {
889 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
890 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
891
892 return NULL;
893 }
68ad4a33
URS
894 } while (*link);
895
896 *parent = &tmp_va->rb_node;
897 return link;
898}
899
900static __always_inline struct list_head *
901get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
902{
903 struct list_head *list;
904
905 if (unlikely(!parent))
906 /*
907 * The red-black tree where we try to find VA neighbors
908 * before merging or inserting is empty, i.e. it means
909 * there is no free vmap space. Normally it does not
910 * happen but we handle this case anyway.
911 */
912 return NULL;
913
914 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
915 return (&parent->rb_right == link ? list->next : list);
916}
917
918static __always_inline void
919link_va(struct vmap_area *va, struct rb_root *root,
920 struct rb_node *parent, struct rb_node **link, struct list_head *head)
921{
922 /*
923 * VA is still not in the list, but we can
924 * identify its future previous list_head node.
925 */
926 if (likely(parent)) {
927 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
928 if (&parent->rb_right != link)
929 head = head->prev;
db64fe02
NP
930 }
931
68ad4a33
URS
932 /* Insert to the rb-tree */
933 rb_link_node(&va->rb_node, parent, link);
934 if (root == &free_vmap_area_root) {
935 /*
936 * Some explanation here. Just perform simple insertion
937 * to the tree. We do not set va->subtree_max_size to
938 * its current size before calling rb_insert_augmented().
939 * It is because of we populate the tree from the bottom
940 * to parent levels when the node _is_ in the tree.
941 *
942 * Therefore we set subtree_max_size to zero after insertion,
943 * to let __augment_tree_propagate_from() puts everything to
944 * the correct order later on.
945 */
946 rb_insert_augmented(&va->rb_node,
947 root, &free_vmap_area_rb_augment_cb);
948 va->subtree_max_size = 0;
949 } else {
950 rb_insert_color(&va->rb_node, root);
951 }
db64fe02 952
68ad4a33
URS
953 /* Address-sort this list */
954 list_add(&va->list, head);
db64fe02
NP
955}
956
68ad4a33
URS
957static __always_inline void
958unlink_va(struct vmap_area *va, struct rb_root *root)
959{
460e42d1
URS
960 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
961 return;
db64fe02 962
460e42d1
URS
963 if (root == &free_vmap_area_root)
964 rb_erase_augmented(&va->rb_node,
965 root, &free_vmap_area_rb_augment_cb);
966 else
967 rb_erase(&va->rb_node, root);
968
969 list_del(&va->list);
970 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
971}
972
bb850f4d
URS
973#if DEBUG_AUGMENT_PROPAGATE_CHECK
974static void
da27c9ed 975augment_tree_propagate_check(void)
bb850f4d
URS
976{
977 struct vmap_area *va;
da27c9ed 978 unsigned long computed_size;
bb850f4d 979
da27c9ed
URS
980 list_for_each_entry(va, &free_vmap_area_list, list) {
981 computed_size = compute_subtree_max_size(va);
982 if (computed_size != va->subtree_max_size)
983 pr_emerg("tree is corrupted: %lu, %lu\n",
984 va_size(va), va->subtree_max_size);
bb850f4d 985 }
bb850f4d
URS
986}
987#endif
988
68ad4a33
URS
989/*
990 * This function populates subtree_max_size from bottom to upper
991 * levels starting from VA point. The propagation must be done
992 * when VA size is modified by changing its va_start/va_end. Or
993 * in case of newly inserting of VA to the tree.
994 *
995 * It means that __augment_tree_propagate_from() must be called:
996 * - After VA has been inserted to the tree(free path);
997 * - After VA has been shrunk(allocation path);
998 * - After VA has been increased(merging path).
999 *
1000 * Please note that, it does not mean that upper parent nodes
1001 * and their subtree_max_size are recalculated all the time up
1002 * to the root node.
1003 *
1004 * 4--8
1005 * /\
1006 * / \
1007 * / \
1008 * 2--2 8--8
1009 *
1010 * For example if we modify the node 4, shrinking it to 2, then
1011 * no any modification is required. If we shrink the node 2 to 1
1012 * its subtree_max_size is updated only, and set to 1. If we shrink
1013 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1014 * node becomes 4--6.
1015 */
1016static __always_inline void
1017augment_tree_propagate_from(struct vmap_area *va)
1018{
15ae144f
URS
1019 /*
1020 * Populate the tree from bottom towards the root until
1021 * the calculated maximum available size of checked node
1022 * is equal to its current one.
1023 */
1024 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
1025
1026#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 1027 augment_tree_propagate_check();
bb850f4d 1028#endif
68ad4a33
URS
1029}
1030
1031static void
1032insert_vmap_area(struct vmap_area *va,
1033 struct rb_root *root, struct list_head *head)
1034{
1035 struct rb_node **link;
1036 struct rb_node *parent;
1037
1038 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1039 if (link)
1040 link_va(va, root, parent, link, head);
68ad4a33
URS
1041}
1042
1043static void
1044insert_vmap_area_augment(struct vmap_area *va,
1045 struct rb_node *from, struct rb_root *root,
1046 struct list_head *head)
1047{
1048 struct rb_node **link;
1049 struct rb_node *parent;
1050
1051 if (from)
1052 link = find_va_links(va, NULL, from, &parent);
1053 else
1054 link = find_va_links(va, root, NULL, &parent);
1055
9c801f61
URS
1056 if (link) {
1057 link_va(va, root, parent, link, head);
1058 augment_tree_propagate_from(va);
1059 }
68ad4a33
URS
1060}
1061
1062/*
1063 * Merge de-allocated chunk of VA memory with previous
1064 * and next free blocks. If coalesce is not done a new
1065 * free area is inserted. If VA has been merged, it is
1066 * freed.
9c801f61
URS
1067 *
1068 * Please note, it can return NULL in case of overlap
1069 * ranges, followed by WARN() report. Despite it is a
1070 * buggy behaviour, a system can be alive and keep
1071 * ongoing.
68ad4a33 1072 */
3c5c3cfb 1073static __always_inline struct vmap_area *
68ad4a33
URS
1074merge_or_add_vmap_area(struct vmap_area *va,
1075 struct rb_root *root, struct list_head *head)
1076{
1077 struct vmap_area *sibling;
1078 struct list_head *next;
1079 struct rb_node **link;
1080 struct rb_node *parent;
1081 bool merged = false;
1082
1083 /*
1084 * Find a place in the tree where VA potentially will be
1085 * inserted, unless it is merged with its sibling/siblings.
1086 */
1087 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1088 if (!link)
1089 return NULL;
68ad4a33
URS
1090
1091 /*
1092 * Get next node of VA to check if merging can be done.
1093 */
1094 next = get_va_next_sibling(parent, link);
1095 if (unlikely(next == NULL))
1096 goto insert;
1097
1098 /*
1099 * start end
1100 * | |
1101 * |<------VA------>|<-----Next----->|
1102 * | |
1103 * start end
1104 */
1105 if (next != head) {
1106 sibling = list_entry(next, struct vmap_area, list);
1107 if (sibling->va_start == va->va_end) {
1108 sibling->va_start = va->va_start;
1109
68ad4a33
URS
1110 /* Free vmap_area object. */
1111 kmem_cache_free(vmap_area_cachep, va);
1112
1113 /* Point to the new merged area. */
1114 va = sibling;
1115 merged = true;
1116 }
1117 }
1118
1119 /*
1120 * start end
1121 * | |
1122 * |<-----Prev----->|<------VA------>|
1123 * | |
1124 * start end
1125 */
1126 if (next->prev != head) {
1127 sibling = list_entry(next->prev, struct vmap_area, list);
1128 if (sibling->va_end == va->va_start) {
5dd78640
URS
1129 /*
1130 * If both neighbors are coalesced, it is important
1131 * to unlink the "next" node first, followed by merging
1132 * with "previous" one. Otherwise the tree might not be
1133 * fully populated if a sibling's augmented value is
1134 * "normalized" because of rotation operations.
1135 */
54f63d9d
URS
1136 if (merged)
1137 unlink_va(va, root);
68ad4a33 1138
5dd78640
URS
1139 sibling->va_end = va->va_end;
1140
68ad4a33
URS
1141 /* Free vmap_area object. */
1142 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1143
1144 /* Point to the new merged area. */
1145 va = sibling;
1146 merged = true;
68ad4a33
URS
1147 }
1148 }
1149
1150insert:
5dd78640 1151 if (!merged)
68ad4a33 1152 link_va(va, root, parent, link, head);
3c5c3cfb 1153
96e2db45
URS
1154 return va;
1155}
1156
1157static __always_inline struct vmap_area *
1158merge_or_add_vmap_area_augment(struct vmap_area *va,
1159 struct rb_root *root, struct list_head *head)
1160{
1161 va = merge_or_add_vmap_area(va, root, head);
1162 if (va)
1163 augment_tree_propagate_from(va);
1164
3c5c3cfb 1165 return va;
68ad4a33
URS
1166}
1167
1168static __always_inline bool
1169is_within_this_va(struct vmap_area *va, unsigned long size,
1170 unsigned long align, unsigned long vstart)
1171{
1172 unsigned long nva_start_addr;
1173
1174 if (va->va_start > vstart)
1175 nva_start_addr = ALIGN(va->va_start, align);
1176 else
1177 nva_start_addr = ALIGN(vstart, align);
1178
1179 /* Can be overflowed due to big size or alignment. */
1180 if (nva_start_addr + size < nva_start_addr ||
1181 nva_start_addr < vstart)
1182 return false;
1183
1184 return (nva_start_addr + size <= va->va_end);
1185}
1186
1187/*
1188 * Find the first free block(lowest start address) in the tree,
1189 * that will accomplish the request corresponding to passing
1190 * parameters.
1191 */
1192static __always_inline struct vmap_area *
1193find_vmap_lowest_match(unsigned long size,
1194 unsigned long align, unsigned long vstart)
1195{
1196 struct vmap_area *va;
1197 struct rb_node *node;
1198 unsigned long length;
1199
1200 /* Start from the root. */
1201 node = free_vmap_area_root.rb_node;
1202
1203 /* Adjust the search size for alignment overhead. */
1204 length = size + align - 1;
1205
1206 while (node) {
1207 va = rb_entry(node, struct vmap_area, rb_node);
1208
1209 if (get_subtree_max_size(node->rb_left) >= length &&
1210 vstart < va->va_start) {
1211 node = node->rb_left;
1212 } else {
1213 if (is_within_this_va(va, size, align, vstart))
1214 return va;
1215
1216 /*
1217 * Does not make sense to go deeper towards the right
1218 * sub-tree if it does not have a free block that is
1219 * equal or bigger to the requested search length.
1220 */
1221 if (get_subtree_max_size(node->rb_right) >= length) {
1222 node = node->rb_right;
1223 continue;
1224 }
1225
1226 /*
3806b041 1227 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
1228 * that will satisfy the search criteria. It can happen
1229 * only once due to "vstart" restriction.
1230 */
1231 while ((node = rb_parent(node))) {
1232 va = rb_entry(node, struct vmap_area, rb_node);
1233 if (is_within_this_va(va, size, align, vstart))
1234 return va;
1235
1236 if (get_subtree_max_size(node->rb_right) >= length &&
1237 vstart <= va->va_start) {
1238 node = node->rb_right;
1239 break;
1240 }
1241 }
1242 }
1243 }
1244
1245 return NULL;
1246}
1247
a6cf4e0f
URS
1248#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1249#include <linux/random.h>
1250
1251static struct vmap_area *
1252find_vmap_lowest_linear_match(unsigned long size,
1253 unsigned long align, unsigned long vstart)
1254{
1255 struct vmap_area *va;
1256
1257 list_for_each_entry(va, &free_vmap_area_list, list) {
1258 if (!is_within_this_va(va, size, align, vstart))
1259 continue;
1260
1261 return va;
1262 }
1263
1264 return NULL;
1265}
1266
1267static void
1268find_vmap_lowest_match_check(unsigned long size)
1269{
1270 struct vmap_area *va_1, *va_2;
1271 unsigned long vstart;
1272 unsigned int rnd;
1273
1274 get_random_bytes(&rnd, sizeof(rnd));
1275 vstart = VMALLOC_START + rnd;
1276
1277 va_1 = find_vmap_lowest_match(size, 1, vstart);
1278 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1279
1280 if (va_1 != va_2)
1281 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1282 va_1, va_2, vstart);
1283}
1284#endif
1285
68ad4a33
URS
1286enum fit_type {
1287 NOTHING_FIT = 0,
1288 FL_FIT_TYPE = 1, /* full fit */
1289 LE_FIT_TYPE = 2, /* left edge fit */
1290 RE_FIT_TYPE = 3, /* right edge fit */
1291 NE_FIT_TYPE = 4 /* no edge fit */
1292};
1293
1294static __always_inline enum fit_type
1295classify_va_fit_type(struct vmap_area *va,
1296 unsigned long nva_start_addr, unsigned long size)
1297{
1298 enum fit_type type;
1299
1300 /* Check if it is within VA. */
1301 if (nva_start_addr < va->va_start ||
1302 nva_start_addr + size > va->va_end)
1303 return NOTHING_FIT;
1304
1305 /* Now classify. */
1306 if (va->va_start == nva_start_addr) {
1307 if (va->va_end == nva_start_addr + size)
1308 type = FL_FIT_TYPE;
1309 else
1310 type = LE_FIT_TYPE;
1311 } else if (va->va_end == nva_start_addr + size) {
1312 type = RE_FIT_TYPE;
1313 } else {
1314 type = NE_FIT_TYPE;
1315 }
1316
1317 return type;
1318}
1319
1320static __always_inline int
1321adjust_va_to_fit_type(struct vmap_area *va,
1322 unsigned long nva_start_addr, unsigned long size,
1323 enum fit_type type)
1324{
2c929233 1325 struct vmap_area *lva = NULL;
68ad4a33
URS
1326
1327 if (type == FL_FIT_TYPE) {
1328 /*
1329 * No need to split VA, it fully fits.
1330 *
1331 * | |
1332 * V NVA V
1333 * |---------------|
1334 */
1335 unlink_va(va, &free_vmap_area_root);
1336 kmem_cache_free(vmap_area_cachep, va);
1337 } else if (type == LE_FIT_TYPE) {
1338 /*
1339 * Split left edge of fit VA.
1340 *
1341 * | |
1342 * V NVA V R
1343 * |-------|-------|
1344 */
1345 va->va_start += size;
1346 } else if (type == RE_FIT_TYPE) {
1347 /*
1348 * Split right edge of fit VA.
1349 *
1350 * | |
1351 * L V NVA V
1352 * |-------|-------|
1353 */
1354 va->va_end = nva_start_addr;
1355 } else if (type == NE_FIT_TYPE) {
1356 /*
1357 * Split no edge of fit VA.
1358 *
1359 * | |
1360 * L V NVA V R
1361 * |---|-------|---|
1362 */
82dd23e8
URS
1363 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1364 if (unlikely(!lva)) {
1365 /*
1366 * For percpu allocator we do not do any pre-allocation
1367 * and leave it as it is. The reason is it most likely
1368 * never ends up with NE_FIT_TYPE splitting. In case of
1369 * percpu allocations offsets and sizes are aligned to
1370 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1371 * are its main fitting cases.
1372 *
1373 * There are a few exceptions though, as an example it is
1374 * a first allocation (early boot up) when we have "one"
1375 * big free space that has to be split.
060650a2
URS
1376 *
1377 * Also we can hit this path in case of regular "vmap"
1378 * allocations, if "this" current CPU was not preloaded.
1379 * See the comment in alloc_vmap_area() why. If so, then
1380 * GFP_NOWAIT is used instead to get an extra object for
1381 * split purpose. That is rare and most time does not
1382 * occur.
1383 *
1384 * What happens if an allocation gets failed. Basically,
1385 * an "overflow" path is triggered to purge lazily freed
1386 * areas to free some memory, then, the "retry" path is
1387 * triggered to repeat one more time. See more details
1388 * in alloc_vmap_area() function.
82dd23e8
URS
1389 */
1390 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1391 if (!lva)
1392 return -1;
1393 }
68ad4a33
URS
1394
1395 /*
1396 * Build the remainder.
1397 */
1398 lva->va_start = va->va_start;
1399 lva->va_end = nva_start_addr;
1400
1401 /*
1402 * Shrink this VA to remaining size.
1403 */
1404 va->va_start = nva_start_addr + size;
1405 } else {
1406 return -1;
1407 }
1408
1409 if (type != FL_FIT_TYPE) {
1410 augment_tree_propagate_from(va);
1411
2c929233 1412 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1413 insert_vmap_area_augment(lva, &va->rb_node,
1414 &free_vmap_area_root, &free_vmap_area_list);
1415 }
1416
1417 return 0;
1418}
1419
1420/*
1421 * Returns a start address of the newly allocated area, if success.
1422 * Otherwise a vend is returned that indicates failure.
1423 */
1424static __always_inline unsigned long
1425__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1426 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1427{
1428 unsigned long nva_start_addr;
1429 struct vmap_area *va;
1430 enum fit_type type;
1431 int ret;
1432
1433 va = find_vmap_lowest_match(size, align, vstart);
1434 if (unlikely(!va))
1435 return vend;
1436
1437 if (va->va_start > vstart)
1438 nva_start_addr = ALIGN(va->va_start, align);
1439 else
1440 nva_start_addr = ALIGN(vstart, align);
1441
1442 /* Check the "vend" restriction. */
1443 if (nva_start_addr + size > vend)
1444 return vend;
1445
1446 /* Classify what we have found. */
1447 type = classify_va_fit_type(va, nva_start_addr, size);
1448 if (WARN_ON_ONCE(type == NOTHING_FIT))
1449 return vend;
1450
1451 /* Update the free vmap_area. */
1452 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1453 if (ret)
1454 return vend;
1455
a6cf4e0f
URS
1456#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1457 find_vmap_lowest_match_check(size);
1458#endif
1459
68ad4a33
URS
1460 return nva_start_addr;
1461}
4da56b99 1462
d98c9e83
AR
1463/*
1464 * Free a region of KVA allocated by alloc_vmap_area
1465 */
1466static void free_vmap_area(struct vmap_area *va)
1467{
1468 /*
1469 * Remove from the busy tree/list.
1470 */
1471 spin_lock(&vmap_area_lock);
1472 unlink_va(va, &vmap_area_root);
1473 spin_unlock(&vmap_area_lock);
1474
1475 /*
1476 * Insert/Merge it back to the free tree/list.
1477 */
1478 spin_lock(&free_vmap_area_lock);
96e2db45 1479 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1480 spin_unlock(&free_vmap_area_lock);
1481}
1482
187f8cc4
URS
1483static inline void
1484preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1485{
1486 struct vmap_area *va = NULL;
1487
1488 /*
1489 * Preload this CPU with one extra vmap_area object. It is used
1490 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1491 * a CPU that does an allocation is preloaded.
1492 *
1493 * We do it in non-atomic context, thus it allows us to use more
1494 * permissive allocation masks to be more stable under low memory
1495 * condition and high memory pressure.
1496 */
1497 if (!this_cpu_read(ne_fit_preload_node))
1498 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1499
1500 spin_lock(lock);
1501
1502 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1503 kmem_cache_free(vmap_area_cachep, va);
1504}
1505
db64fe02
NP
1506/*
1507 * Allocate a region of KVA of the specified size and alignment, within the
1508 * vstart and vend.
1509 */
1510static struct vmap_area *alloc_vmap_area(unsigned long size,
1511 unsigned long align,
1512 unsigned long vstart, unsigned long vend,
1513 int node, gfp_t gfp_mask)
1514{
187f8cc4 1515 struct vmap_area *va;
12e376a6 1516 unsigned long freed;
1da177e4 1517 unsigned long addr;
db64fe02 1518 int purged = 0;
d98c9e83 1519 int ret;
db64fe02 1520
7766970c 1521 BUG_ON(!size);
891c49ab 1522 BUG_ON(offset_in_page(size));
89699605 1523 BUG_ON(!is_power_of_2(align));
db64fe02 1524
68ad4a33
URS
1525 if (unlikely(!vmap_initialized))
1526 return ERR_PTR(-EBUSY);
1527
5803ed29 1528 might_sleep();
f07116d7 1529 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1530
f07116d7 1531 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1532 if (unlikely(!va))
1533 return ERR_PTR(-ENOMEM);
1534
7f88f88f
CM
1535 /*
1536 * Only scan the relevant parts containing pointers to other objects
1537 * to avoid false negatives.
1538 */
f07116d7 1539 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1540
db64fe02 1541retry:
187f8cc4
URS
1542 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1543 addr = __alloc_vmap_area(size, align, vstart, vend);
1544 spin_unlock(&free_vmap_area_lock);
89699605 1545
afd07389 1546 /*
68ad4a33
URS
1547 * If an allocation fails, the "vend" address is
1548 * returned. Therefore trigger the overflow path.
afd07389 1549 */
68ad4a33 1550 if (unlikely(addr == vend))
89699605 1551 goto overflow;
db64fe02
NP
1552
1553 va->va_start = addr;
1554 va->va_end = addr + size;
688fcbfc 1555 va->vm = NULL;
68ad4a33 1556
e36176be
URS
1557 spin_lock(&vmap_area_lock);
1558 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1559 spin_unlock(&vmap_area_lock);
1560
61e16557 1561 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1562 BUG_ON(va->va_start < vstart);
1563 BUG_ON(va->va_end > vend);
1564
d98c9e83
AR
1565 ret = kasan_populate_vmalloc(addr, size);
1566 if (ret) {
1567 free_vmap_area(va);
1568 return ERR_PTR(ret);
1569 }
1570
db64fe02 1571 return va;
89699605
NP
1572
1573overflow:
89699605
NP
1574 if (!purged) {
1575 purge_vmap_area_lazy();
1576 purged = 1;
1577 goto retry;
1578 }
4da56b99 1579
12e376a6
URS
1580 freed = 0;
1581 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1582
1583 if (freed > 0) {
1584 purged = 0;
1585 goto retry;
4da56b99
CW
1586 }
1587
03497d76 1588 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1589 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1590 size);
68ad4a33
URS
1591
1592 kmem_cache_free(vmap_area_cachep, va);
89699605 1593 return ERR_PTR(-EBUSY);
db64fe02
NP
1594}
1595
4da56b99
CW
1596int register_vmap_purge_notifier(struct notifier_block *nb)
1597{
1598 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1599}
1600EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1601
1602int unregister_vmap_purge_notifier(struct notifier_block *nb)
1603{
1604 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1605}
1606EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1607
db64fe02
NP
1608/*
1609 * lazy_max_pages is the maximum amount of virtual address space we gather up
1610 * before attempting to purge with a TLB flush.
1611 *
1612 * There is a tradeoff here: a larger number will cover more kernel page tables
1613 * and take slightly longer to purge, but it will linearly reduce the number of
1614 * global TLB flushes that must be performed. It would seem natural to scale
1615 * this number up linearly with the number of CPUs (because vmapping activity
1616 * could also scale linearly with the number of CPUs), however it is likely
1617 * that in practice, workloads might be constrained in other ways that mean
1618 * vmap activity will not scale linearly with CPUs. Also, I want to be
1619 * conservative and not introduce a big latency on huge systems, so go with
1620 * a less aggressive log scale. It will still be an improvement over the old
1621 * code, and it will be simple to change the scale factor if we find that it
1622 * becomes a problem on bigger systems.
1623 */
1624static unsigned long lazy_max_pages(void)
1625{
1626 unsigned int log;
1627
1628 log = fls(num_online_cpus());
1629
1630 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1631}
1632
4d36e6f8 1633static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1634
0574ecd1 1635/*
f0953a1b 1636 * Serialize vmap purging. There is no actual critical section protected
0574ecd1
CH
1637 * by this look, but we want to avoid concurrent calls for performance
1638 * reasons and to make the pcpu_get_vm_areas more deterministic.
1639 */
f9e09977 1640static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1641
02b709df
NP
1642/* for per-CPU blocks */
1643static void purge_fragmented_blocks_allcpus(void);
1644
5da96bdd 1645#ifdef CONFIG_X86_64
3ee48b6a
CW
1646/*
1647 * called before a call to iounmap() if the caller wants vm_area_struct's
1648 * immediately freed.
1649 */
1650void set_iounmap_nonlazy(void)
1651{
4d36e6f8 1652 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a 1653}
5da96bdd 1654#endif /* CONFIG_X86_64 */
3ee48b6a 1655
db64fe02
NP
1656/*
1657 * Purges all lazily-freed vmap areas.
db64fe02 1658 */
0574ecd1 1659static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1660{
4d36e6f8 1661 unsigned long resched_threshold;
96e2db45
URS
1662 struct list_head local_pure_list;
1663 struct vmap_area *va, *n_va;
db64fe02 1664
0574ecd1 1665 lockdep_assert_held(&vmap_purge_lock);
02b709df 1666
96e2db45
URS
1667 spin_lock(&purge_vmap_area_lock);
1668 purge_vmap_area_root = RB_ROOT;
1669 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1670 spin_unlock(&purge_vmap_area_lock);
1671
1672 if (unlikely(list_empty(&local_pure_list)))
68571be9
URS
1673 return false;
1674
96e2db45
URS
1675 start = min(start,
1676 list_first_entry(&local_pure_list,
1677 struct vmap_area, list)->va_start);
1678
1679 end = max(end,
1680 list_last_entry(&local_pure_list,
1681 struct vmap_area, list)->va_end);
db64fe02 1682
0574ecd1 1683 flush_tlb_kernel_range(start, end);
4d36e6f8 1684 resched_threshold = lazy_max_pages() << 1;
db64fe02 1685
e36176be 1686 spin_lock(&free_vmap_area_lock);
96e2db45 1687 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
4d36e6f8 1688 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1689 unsigned long orig_start = va->va_start;
1690 unsigned long orig_end = va->va_end;
763b218d 1691
dd3b8353
URS
1692 /*
1693 * Finally insert or merge lazily-freed area. It is
1694 * detached and there is no need to "unlink" it from
1695 * anything.
1696 */
96e2db45
URS
1697 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1698 &free_vmap_area_list);
3c5c3cfb 1699
9c801f61
URS
1700 if (!va)
1701 continue;
1702
3c5c3cfb
DA
1703 if (is_vmalloc_or_module_addr((void *)orig_start))
1704 kasan_release_vmalloc(orig_start, orig_end,
1705 va->va_start, va->va_end);
dd3b8353 1706
4d36e6f8 1707 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1708
4d36e6f8 1709 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1710 cond_resched_lock(&free_vmap_area_lock);
763b218d 1711 }
e36176be 1712 spin_unlock(&free_vmap_area_lock);
0574ecd1 1713 return true;
db64fe02
NP
1714}
1715
496850e5
NP
1716/*
1717 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1718 * is already purging.
1719 */
1720static void try_purge_vmap_area_lazy(void)
1721{
f9e09977 1722 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1723 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1724 mutex_unlock(&vmap_purge_lock);
0574ecd1 1725 }
496850e5
NP
1726}
1727
db64fe02
NP
1728/*
1729 * Kick off a purge of the outstanding lazy areas.
1730 */
1731static void purge_vmap_area_lazy(void)
1732{
f9e09977 1733 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1734 purge_fragmented_blocks_allcpus();
1735 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1736 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1737}
1738
1739/*
64141da5
JF
1740 * Free a vmap area, caller ensuring that the area has been unmapped
1741 * and flush_cache_vunmap had been called for the correct range
1742 * previously.
db64fe02 1743 */
64141da5 1744static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1745{
4d36e6f8 1746 unsigned long nr_lazy;
80c4bd7a 1747
dd3b8353
URS
1748 spin_lock(&vmap_area_lock);
1749 unlink_va(va, &vmap_area_root);
1750 spin_unlock(&vmap_area_lock);
1751
4d36e6f8
URS
1752 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1753 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1754
96e2db45
URS
1755 /*
1756 * Merge or place it to the purge tree/list.
1757 */
1758 spin_lock(&purge_vmap_area_lock);
1759 merge_or_add_vmap_area(va,
1760 &purge_vmap_area_root, &purge_vmap_area_list);
1761 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1762
96e2db45 1763 /* After this point, we may free va at any time */
80c4bd7a 1764 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1765 try_purge_vmap_area_lazy();
db64fe02
NP
1766}
1767
b29acbdc
NP
1768/*
1769 * Free and unmap a vmap area
1770 */
1771static void free_unmap_vmap_area(struct vmap_area *va)
1772{
1773 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1774 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1775 if (debug_pagealloc_enabled_static())
82a2e924
CP
1776 flush_tlb_kernel_range(va->va_start, va->va_end);
1777
c8eef01e 1778 free_vmap_area_noflush(va);
b29acbdc
NP
1779}
1780
db64fe02
NP
1781static struct vmap_area *find_vmap_area(unsigned long addr)
1782{
1783 struct vmap_area *va;
1784
1785 spin_lock(&vmap_area_lock);
1786 va = __find_vmap_area(addr);
1787 spin_unlock(&vmap_area_lock);
1788
1789 return va;
1790}
1791
db64fe02
NP
1792/*** Per cpu kva allocator ***/
1793
1794/*
1795 * vmap space is limited especially on 32 bit architectures. Ensure there is
1796 * room for at least 16 percpu vmap blocks per CPU.
1797 */
1798/*
1799 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1800 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1801 * instead (we just need a rough idea)
1802 */
1803#if BITS_PER_LONG == 32
1804#define VMALLOC_SPACE (128UL*1024*1024)
1805#else
1806#define VMALLOC_SPACE (128UL*1024*1024*1024)
1807#endif
1808
1809#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1810#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1811#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1812#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1813#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1814#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1815#define VMAP_BBMAP_BITS \
1816 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1817 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1818 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1819
1820#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1821
1822struct vmap_block_queue {
1823 spinlock_t lock;
1824 struct list_head free;
db64fe02
NP
1825};
1826
1827struct vmap_block {
1828 spinlock_t lock;
1829 struct vmap_area *va;
db64fe02 1830 unsigned long free, dirty;
7d61bfe8 1831 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1832 struct list_head free_list;
1833 struct rcu_head rcu_head;
02b709df 1834 struct list_head purge;
db64fe02
NP
1835};
1836
1837/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1838static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1839
1840/*
0f14599c 1841 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1842 * in the free path. Could get rid of this if we change the API to return a
1843 * "cookie" from alloc, to be passed to free. But no big deal yet.
1844 */
0f14599c 1845static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1846
1847/*
1848 * We should probably have a fallback mechanism to allocate virtual memory
1849 * out of partially filled vmap blocks. However vmap block sizing should be
1850 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1851 * big problem.
1852 */
1853
1854static unsigned long addr_to_vb_idx(unsigned long addr)
1855{
1856 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1857 addr /= VMAP_BLOCK_SIZE;
1858 return addr;
1859}
1860
cf725ce2
RP
1861static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1862{
1863 unsigned long addr;
1864
1865 addr = va_start + (pages_off << PAGE_SHIFT);
1866 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1867 return (void *)addr;
1868}
1869
1870/**
1871 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1872 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1873 * @order: how many 2^order pages should be occupied in newly allocated block
1874 * @gfp_mask: flags for the page level allocator
1875 *
a862f68a 1876 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1877 */
1878static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1879{
1880 struct vmap_block_queue *vbq;
1881 struct vmap_block *vb;
1882 struct vmap_area *va;
1883 unsigned long vb_idx;
1884 int node, err;
cf725ce2 1885 void *vaddr;
db64fe02
NP
1886
1887 node = numa_node_id();
1888
1889 vb = kmalloc_node(sizeof(struct vmap_block),
1890 gfp_mask & GFP_RECLAIM_MASK, node);
1891 if (unlikely(!vb))
1892 return ERR_PTR(-ENOMEM);
1893
1894 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1895 VMALLOC_START, VMALLOC_END,
1896 node, gfp_mask);
ddf9c6d4 1897 if (IS_ERR(va)) {
db64fe02 1898 kfree(vb);
e7d86340 1899 return ERR_CAST(va);
db64fe02
NP
1900 }
1901
cf725ce2 1902 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1903 spin_lock_init(&vb->lock);
1904 vb->va = va;
cf725ce2
RP
1905 /* At least something should be left free */
1906 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1907 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1908 vb->dirty = 0;
7d61bfe8
RP
1909 vb->dirty_min = VMAP_BBMAP_BITS;
1910 vb->dirty_max = 0;
db64fe02 1911 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1912
1913 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
1914 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1915 if (err) {
1916 kfree(vb);
1917 free_vmap_area(va);
1918 return ERR_PTR(err);
1919 }
db64fe02
NP
1920
1921 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1922 spin_lock(&vbq->lock);
68ac546f 1923 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1924 spin_unlock(&vbq->lock);
3f04ba85 1925 put_cpu_var(vmap_block_queue);
db64fe02 1926
cf725ce2 1927 return vaddr;
db64fe02
NP
1928}
1929
db64fe02
NP
1930static void free_vmap_block(struct vmap_block *vb)
1931{
1932 struct vmap_block *tmp;
db64fe02 1933
0f14599c 1934 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
1935 BUG_ON(tmp != vb);
1936
64141da5 1937 free_vmap_area_noflush(vb->va);
22a3c7d1 1938 kfree_rcu(vb, rcu_head);
db64fe02
NP
1939}
1940
02b709df
NP
1941static void purge_fragmented_blocks(int cpu)
1942{
1943 LIST_HEAD(purge);
1944 struct vmap_block *vb;
1945 struct vmap_block *n_vb;
1946 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1947
1948 rcu_read_lock();
1949 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1950
1951 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1952 continue;
1953
1954 spin_lock(&vb->lock);
1955 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1956 vb->free = 0; /* prevent further allocs after releasing lock */
1957 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1958 vb->dirty_min = 0;
1959 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1960 spin_lock(&vbq->lock);
1961 list_del_rcu(&vb->free_list);
1962 spin_unlock(&vbq->lock);
1963 spin_unlock(&vb->lock);
1964 list_add_tail(&vb->purge, &purge);
1965 } else
1966 spin_unlock(&vb->lock);
1967 }
1968 rcu_read_unlock();
1969
1970 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1971 list_del(&vb->purge);
1972 free_vmap_block(vb);
1973 }
1974}
1975
02b709df
NP
1976static void purge_fragmented_blocks_allcpus(void)
1977{
1978 int cpu;
1979
1980 for_each_possible_cpu(cpu)
1981 purge_fragmented_blocks(cpu);
1982}
1983
db64fe02
NP
1984static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1985{
1986 struct vmap_block_queue *vbq;
1987 struct vmap_block *vb;
cf725ce2 1988 void *vaddr = NULL;
db64fe02
NP
1989 unsigned int order;
1990
891c49ab 1991 BUG_ON(offset_in_page(size));
db64fe02 1992 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1993 if (WARN_ON(size == 0)) {
1994 /*
1995 * Allocating 0 bytes isn't what caller wants since
1996 * get_order(0) returns funny result. Just warn and terminate
1997 * early.
1998 */
1999 return NULL;
2000 }
db64fe02
NP
2001 order = get_order(size);
2002
db64fe02
NP
2003 rcu_read_lock();
2004 vbq = &get_cpu_var(vmap_block_queue);
2005 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 2006 unsigned long pages_off;
db64fe02
NP
2007
2008 spin_lock(&vb->lock);
cf725ce2
RP
2009 if (vb->free < (1UL << order)) {
2010 spin_unlock(&vb->lock);
2011 continue;
2012 }
02b709df 2013
cf725ce2
RP
2014 pages_off = VMAP_BBMAP_BITS - vb->free;
2015 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
2016 vb->free -= 1UL << order;
2017 if (vb->free == 0) {
2018 spin_lock(&vbq->lock);
2019 list_del_rcu(&vb->free_list);
2020 spin_unlock(&vbq->lock);
2021 }
cf725ce2 2022
02b709df
NP
2023 spin_unlock(&vb->lock);
2024 break;
db64fe02 2025 }
02b709df 2026
3f04ba85 2027 put_cpu_var(vmap_block_queue);
db64fe02
NP
2028 rcu_read_unlock();
2029
cf725ce2
RP
2030 /* Allocate new block if nothing was found */
2031 if (!vaddr)
2032 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 2033
cf725ce2 2034 return vaddr;
db64fe02
NP
2035}
2036
78a0e8c4 2037static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
2038{
2039 unsigned long offset;
db64fe02
NP
2040 unsigned int order;
2041 struct vmap_block *vb;
2042
891c49ab 2043 BUG_ON(offset_in_page(size));
db64fe02 2044 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2045
78a0e8c4 2046 flush_cache_vunmap(addr, addr + size);
b29acbdc 2047
db64fe02 2048 order = get_order(size);
78a0e8c4 2049 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 2050 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 2051
4ad0ae8c 2052 vunmap_range_noflush(addr, addr + size);
64141da5 2053
8e57f8ac 2054 if (debug_pagealloc_enabled_static())
78a0e8c4 2055 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2056
db64fe02 2057 spin_lock(&vb->lock);
7d61bfe8
RP
2058
2059 /* Expand dirty range */
2060 vb->dirty_min = min(vb->dirty_min, offset);
2061 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2062
db64fe02
NP
2063 vb->dirty += 1UL << order;
2064 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2065 BUG_ON(vb->free);
db64fe02
NP
2066 spin_unlock(&vb->lock);
2067 free_vmap_block(vb);
2068 } else
2069 spin_unlock(&vb->lock);
2070}
2071
868b104d 2072static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2073{
db64fe02 2074 int cpu;
db64fe02 2075
9b463334
JF
2076 if (unlikely(!vmap_initialized))
2077 return;
2078
5803ed29
CH
2079 might_sleep();
2080
db64fe02
NP
2081 for_each_possible_cpu(cpu) {
2082 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2083 struct vmap_block *vb;
2084
2085 rcu_read_lock();
2086 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 2087 spin_lock(&vb->lock);
ad216c03 2088 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2089 unsigned long va_start = vb->va->va_start;
db64fe02 2090 unsigned long s, e;
b136be5e 2091
7d61bfe8
RP
2092 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2093 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2094
7d61bfe8
RP
2095 start = min(s, start);
2096 end = max(e, end);
db64fe02 2097
7d61bfe8 2098 flush = 1;
db64fe02
NP
2099 }
2100 spin_unlock(&vb->lock);
2101 }
2102 rcu_read_unlock();
2103 }
2104
f9e09977 2105 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
2106 purge_fragmented_blocks_allcpus();
2107 if (!__purge_vmap_area_lazy(start, end) && flush)
2108 flush_tlb_kernel_range(start, end);
f9e09977 2109 mutex_unlock(&vmap_purge_lock);
db64fe02 2110}
868b104d
RE
2111
2112/**
2113 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2114 *
2115 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2116 * to amortize TLB flushing overheads. What this means is that any page you
2117 * have now, may, in a former life, have been mapped into kernel virtual
2118 * address by the vmap layer and so there might be some CPUs with TLB entries
2119 * still referencing that page (additional to the regular 1:1 kernel mapping).
2120 *
2121 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2122 * be sure that none of the pages we have control over will have any aliases
2123 * from the vmap layer.
2124 */
2125void vm_unmap_aliases(void)
2126{
2127 unsigned long start = ULONG_MAX, end = 0;
2128 int flush = 0;
2129
2130 _vm_unmap_aliases(start, end, flush);
2131}
db64fe02
NP
2132EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2133
2134/**
2135 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2136 * @mem: the pointer returned by vm_map_ram
2137 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2138 */
2139void vm_unmap_ram(const void *mem, unsigned int count)
2140{
65ee03c4 2141 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 2142 unsigned long addr = (unsigned long)mem;
9c3acf60 2143 struct vmap_area *va;
db64fe02 2144
5803ed29 2145 might_sleep();
db64fe02
NP
2146 BUG_ON(!addr);
2147 BUG_ON(addr < VMALLOC_START);
2148 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2149 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2150
d98c9e83
AR
2151 kasan_poison_vmalloc(mem, size);
2152
9c3acf60 2153 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2154 debug_check_no_locks_freed(mem, size);
78a0e8c4 2155 vb_free(addr, size);
9c3acf60
CH
2156 return;
2157 }
2158
2159 va = find_vmap_area(addr);
2160 BUG_ON(!va);
05e3ff95
CP
2161 debug_check_no_locks_freed((void *)va->va_start,
2162 (va->va_end - va->va_start));
9c3acf60 2163 free_unmap_vmap_area(va);
db64fe02
NP
2164}
2165EXPORT_SYMBOL(vm_unmap_ram);
2166
2167/**
2168 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2169 * @pages: an array of pointers to the pages to be mapped
2170 * @count: number of pages
2171 * @node: prefer to allocate data structures on this node
e99c97ad 2172 *
36437638
GK
2173 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2174 * faster than vmap so it's good. But if you mix long-life and short-life
2175 * objects with vm_map_ram(), it could consume lots of address space through
2176 * fragmentation (especially on a 32bit machine). You could see failures in
2177 * the end. Please use this function for short-lived objects.
2178 *
e99c97ad 2179 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2180 */
d4efd79a 2181void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2182{
65ee03c4 2183 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2184 unsigned long addr;
2185 void *mem;
2186
2187 if (likely(count <= VMAP_MAX_ALLOC)) {
2188 mem = vb_alloc(size, GFP_KERNEL);
2189 if (IS_ERR(mem))
2190 return NULL;
2191 addr = (unsigned long)mem;
2192 } else {
2193 struct vmap_area *va;
2194 va = alloc_vmap_area(size, PAGE_SIZE,
2195 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2196 if (IS_ERR(va))
2197 return NULL;
2198
2199 addr = va->va_start;
2200 mem = (void *)addr;
2201 }
d98c9e83
AR
2202
2203 kasan_unpoison_vmalloc(mem, size);
2204
b67177ec
NP
2205 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2206 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2207 vm_unmap_ram(mem, count);
2208 return NULL;
2209 }
b67177ec 2210
db64fe02
NP
2211 return mem;
2212}
2213EXPORT_SYMBOL(vm_map_ram);
2214
4341fa45 2215static struct vm_struct *vmlist __initdata;
92eac168 2216
121e6f32
NP
2217static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2218{
2219#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2220 return vm->page_order;
2221#else
2222 return 0;
2223#endif
2224}
2225
2226static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2227{
2228#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2229 vm->page_order = order;
2230#else
2231 BUG_ON(order != 0);
2232#endif
2233}
2234
be9b7335
NP
2235/**
2236 * vm_area_add_early - add vmap area early during boot
2237 * @vm: vm_struct to add
2238 *
2239 * This function is used to add fixed kernel vm area to vmlist before
2240 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2241 * should contain proper values and the other fields should be zero.
2242 *
2243 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2244 */
2245void __init vm_area_add_early(struct vm_struct *vm)
2246{
2247 struct vm_struct *tmp, **p;
2248
2249 BUG_ON(vmap_initialized);
2250 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2251 if (tmp->addr >= vm->addr) {
2252 BUG_ON(tmp->addr < vm->addr + vm->size);
2253 break;
2254 } else
2255 BUG_ON(tmp->addr + tmp->size > vm->addr);
2256 }
2257 vm->next = *p;
2258 *p = vm;
2259}
2260
f0aa6617
TH
2261/**
2262 * vm_area_register_early - register vmap area early during boot
2263 * @vm: vm_struct to register
c0c0a293 2264 * @align: requested alignment
f0aa6617
TH
2265 *
2266 * This function is used to register kernel vm area before
2267 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2268 * proper values on entry and other fields should be zero. On return,
2269 * vm->addr contains the allocated address.
2270 *
2271 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2272 */
c0c0a293 2273void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
2274{
2275 static size_t vm_init_off __initdata;
c0c0a293
TH
2276 unsigned long addr;
2277
2278 addr = ALIGN(VMALLOC_START + vm_init_off, align);
2279 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 2280
c0c0a293 2281 vm->addr = (void *)addr;
f0aa6617 2282
be9b7335 2283 vm_area_add_early(vm);
f0aa6617
TH
2284}
2285
68ad4a33
URS
2286static void vmap_init_free_space(void)
2287{
2288 unsigned long vmap_start = 1;
2289 const unsigned long vmap_end = ULONG_MAX;
2290 struct vmap_area *busy, *free;
2291
2292 /*
2293 * B F B B B F
2294 * -|-----|.....|-----|-----|-----|.....|-
2295 * | The KVA space |
2296 * |<--------------------------------->|
2297 */
2298 list_for_each_entry(busy, &vmap_area_list, list) {
2299 if (busy->va_start - vmap_start > 0) {
2300 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2301 if (!WARN_ON_ONCE(!free)) {
2302 free->va_start = vmap_start;
2303 free->va_end = busy->va_start;
2304
2305 insert_vmap_area_augment(free, NULL,
2306 &free_vmap_area_root,
2307 &free_vmap_area_list);
2308 }
2309 }
2310
2311 vmap_start = busy->va_end;
2312 }
2313
2314 if (vmap_end - vmap_start > 0) {
2315 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2316 if (!WARN_ON_ONCE(!free)) {
2317 free->va_start = vmap_start;
2318 free->va_end = vmap_end;
2319
2320 insert_vmap_area_augment(free, NULL,
2321 &free_vmap_area_root,
2322 &free_vmap_area_list);
2323 }
2324 }
2325}
2326
db64fe02
NP
2327void __init vmalloc_init(void)
2328{
822c18f2
IK
2329 struct vmap_area *va;
2330 struct vm_struct *tmp;
db64fe02
NP
2331 int i;
2332
68ad4a33
URS
2333 /*
2334 * Create the cache for vmap_area objects.
2335 */
2336 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2337
db64fe02
NP
2338 for_each_possible_cpu(i) {
2339 struct vmap_block_queue *vbq;
32fcfd40 2340 struct vfree_deferred *p;
db64fe02
NP
2341
2342 vbq = &per_cpu(vmap_block_queue, i);
2343 spin_lock_init(&vbq->lock);
2344 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2345 p = &per_cpu(vfree_deferred, i);
2346 init_llist_head(&p->list);
2347 INIT_WORK(&p->wq, free_work);
db64fe02 2348 }
9b463334 2349
822c18f2
IK
2350 /* Import existing vmlist entries. */
2351 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2352 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2353 if (WARN_ON_ONCE(!va))
2354 continue;
2355
822c18f2
IK
2356 va->va_start = (unsigned long)tmp->addr;
2357 va->va_end = va->va_start + tmp->size;
dbda591d 2358 va->vm = tmp;
68ad4a33 2359 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2360 }
ca23e405 2361
68ad4a33
URS
2362 /*
2363 * Now we can initialize a free vmap space.
2364 */
2365 vmap_init_free_space();
9b463334 2366 vmap_initialized = true;
db64fe02
NP
2367}
2368
e36176be
URS
2369static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2370 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2371{
cf88c790
TH
2372 vm->flags = flags;
2373 vm->addr = (void *)va->va_start;
2374 vm->size = va->va_end - va->va_start;
2375 vm->caller = caller;
db1aecaf 2376 va->vm = vm;
e36176be
URS
2377}
2378
2379static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2380 unsigned long flags, const void *caller)
2381{
2382 spin_lock(&vmap_area_lock);
2383 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2384 spin_unlock(&vmap_area_lock);
f5252e00 2385}
cf88c790 2386
20fc02b4 2387static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2388{
d4033afd 2389 /*
20fc02b4 2390 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2391 * we should make sure that vm has proper values.
2392 * Pair with smp_rmb() in show_numa_info().
2393 */
2394 smp_wmb();
20fc02b4 2395 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2396}
2397
db64fe02 2398static struct vm_struct *__get_vm_area_node(unsigned long size,
7ca3027b
DA
2399 unsigned long align, unsigned long shift, unsigned long flags,
2400 unsigned long start, unsigned long end, int node,
2401 gfp_t gfp_mask, const void *caller)
db64fe02 2402{
0006526d 2403 struct vmap_area *va;
db64fe02 2404 struct vm_struct *area;
d98c9e83 2405 unsigned long requested_size = size;
1da177e4 2406
52fd24ca 2407 BUG_ON(in_interrupt());
7ca3027b 2408 size = ALIGN(size, 1ul << shift);
31be8309
OH
2409 if (unlikely(!size))
2410 return NULL;
1da177e4 2411
252e5c6e 2412 if (flags & VM_IOREMAP)
2413 align = 1ul << clamp_t(int, get_count_order_long(size),
2414 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2415
cf88c790 2416 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2417 if (unlikely(!area))
2418 return NULL;
2419
71394fe5
AR
2420 if (!(flags & VM_NO_GUARD))
2421 size += PAGE_SIZE;
1da177e4 2422
db64fe02
NP
2423 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2424 if (IS_ERR(va)) {
2425 kfree(area);
2426 return NULL;
1da177e4 2427 }
1da177e4 2428
d98c9e83 2429 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2430
d98c9e83 2431 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2432
1da177e4 2433 return area;
1da177e4
LT
2434}
2435
c2968612
BH
2436struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2437 unsigned long start, unsigned long end,
5e6cafc8 2438 const void *caller)
c2968612 2439{
7ca3027b
DA
2440 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2441 NUMA_NO_NODE, GFP_KERNEL, caller);
c2968612
BH
2442}
2443
1da177e4 2444/**
92eac168
MR
2445 * get_vm_area - reserve a contiguous kernel virtual area
2446 * @size: size of the area
2447 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2448 *
92eac168
MR
2449 * Search an area of @size in the kernel virtual mapping area,
2450 * and reserved it for out purposes. Returns the area descriptor
2451 * on success or %NULL on failure.
a862f68a
MR
2452 *
2453 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2454 */
2455struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2456{
7ca3027b
DA
2457 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2458 VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2459 NUMA_NO_NODE, GFP_KERNEL,
2460 __builtin_return_address(0));
23016969
CL
2461}
2462
2463struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2464 const void *caller)
23016969 2465{
7ca3027b
DA
2466 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2467 VMALLOC_START, VMALLOC_END,
00ef2d2f 2468 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2469}
2470
e9da6e99 2471/**
92eac168
MR
2472 * find_vm_area - find a continuous kernel virtual area
2473 * @addr: base address
e9da6e99 2474 *
92eac168
MR
2475 * Search for the kernel VM area starting at @addr, and return it.
2476 * It is up to the caller to do all required locking to keep the returned
2477 * pointer valid.
a862f68a 2478 *
74640617 2479 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2480 */
2481struct vm_struct *find_vm_area(const void *addr)
83342314 2482{
db64fe02 2483 struct vmap_area *va;
83342314 2484
db64fe02 2485 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2486 if (!va)
2487 return NULL;
1da177e4 2488
688fcbfc 2489 return va->vm;
1da177e4
LT
2490}
2491
7856dfeb 2492/**
92eac168
MR
2493 * remove_vm_area - find and remove a continuous kernel virtual area
2494 * @addr: base address
7856dfeb 2495 *
92eac168
MR
2496 * Search for the kernel VM area starting at @addr, and remove it.
2497 * This function returns the found VM area, but using it is NOT safe
2498 * on SMP machines, except for its size or flags.
a862f68a 2499 *
74640617 2500 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2501 */
b3bdda02 2502struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2503{
db64fe02
NP
2504 struct vmap_area *va;
2505
5803ed29
CH
2506 might_sleep();
2507
dd3b8353
URS
2508 spin_lock(&vmap_area_lock);
2509 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2510 if (va && va->vm) {
db1aecaf 2511 struct vm_struct *vm = va->vm;
f5252e00 2512
c69480ad 2513 va->vm = NULL;
c69480ad
JK
2514 spin_unlock(&vmap_area_lock);
2515
a5af5aa8 2516 kasan_free_shadow(vm);
dd32c279 2517 free_unmap_vmap_area(va);
dd32c279 2518
db64fe02
NP
2519 return vm;
2520 }
dd3b8353
URS
2521
2522 spin_unlock(&vmap_area_lock);
db64fe02 2523 return NULL;
7856dfeb
AK
2524}
2525
868b104d
RE
2526static inline void set_area_direct_map(const struct vm_struct *area,
2527 int (*set_direct_map)(struct page *page))
2528{
2529 int i;
2530
121e6f32 2531 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2532 for (i = 0; i < area->nr_pages; i++)
2533 if (page_address(area->pages[i]))
2534 set_direct_map(area->pages[i]);
2535}
2536
2537/* Handle removing and resetting vm mappings related to the vm_struct. */
2538static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2539{
868b104d 2540 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2541 unsigned int page_order = vm_area_page_order(area);
868b104d 2542 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2543 int flush_dmap = 0;
868b104d
RE
2544 int i;
2545
868b104d
RE
2546 remove_vm_area(area->addr);
2547
2548 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2549 if (!flush_reset)
2550 return;
2551
2552 /*
2553 * If not deallocating pages, just do the flush of the VM area and
2554 * return.
2555 */
2556 if (!deallocate_pages) {
2557 vm_unmap_aliases();
2558 return;
2559 }
2560
2561 /*
2562 * If execution gets here, flush the vm mapping and reset the direct
2563 * map. Find the start and end range of the direct mappings to make sure
2564 * the vm_unmap_aliases() flush includes the direct map.
2565 */
121e6f32 2566 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872
RE
2567 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2568 if (addr) {
121e6f32
NP
2569 unsigned long page_size;
2570
2571 page_size = PAGE_SIZE << page_order;
868b104d 2572 start = min(addr, start);
121e6f32 2573 end = max(addr + page_size, end);
31e67340 2574 flush_dmap = 1;
868b104d
RE
2575 }
2576 }
2577
2578 /*
2579 * Set direct map to something invalid so that it won't be cached if
2580 * there are any accesses after the TLB flush, then flush the TLB and
2581 * reset the direct map permissions to the default.
2582 */
2583 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2584 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2585 set_area_direct_map(area, set_direct_map_default_noflush);
2586}
2587
b3bdda02 2588static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2589{
2590 struct vm_struct *area;
2591
2592 if (!addr)
2593 return;
2594
e69e9d4a 2595 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2596 addr))
1da177e4 2597 return;
1da177e4 2598
6ade2032 2599 area = find_vm_area(addr);
1da177e4 2600 if (unlikely(!area)) {
4c8573e2 2601 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2602 addr);
1da177e4
LT
2603 return;
2604 }
2605
05e3ff95
CP
2606 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2607 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2608
c041098c 2609 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
3c5c3cfb 2610
868b104d
RE
2611 vm_remove_mappings(area, deallocate_pages);
2612
1da177e4 2613 if (deallocate_pages) {
121e6f32 2614 unsigned int page_order = vm_area_page_order(area);
1da177e4
LT
2615 int i;
2616
121e6f32 2617 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
bf53d6f8
CL
2618 struct page *page = area->pages[i];
2619
2620 BUG_ON(!page);
121e6f32 2621 __free_pages(page, page_order);
a850e932 2622 cond_resched();
1da177e4 2623 }
97105f0a 2624 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2625
244d63ee 2626 kvfree(area->pages);
1da177e4
LT
2627 }
2628
2629 kfree(area);
1da177e4 2630}
bf22e37a
AR
2631
2632static inline void __vfree_deferred(const void *addr)
2633{
2634 /*
2635 * Use raw_cpu_ptr() because this can be called from preemptible
2636 * context. Preemption is absolutely fine here, because the llist_add()
2637 * implementation is lockless, so it works even if we are adding to
73221d88 2638 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2639 */
2640 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2641
2642 if (llist_add((struct llist_node *)addr, &p->list))
2643 schedule_work(&p->wq);
2644}
2645
2646/**
92eac168
MR
2647 * vfree_atomic - release memory allocated by vmalloc()
2648 * @addr: memory base address
bf22e37a 2649 *
92eac168
MR
2650 * This one is just like vfree() but can be called in any atomic context
2651 * except NMIs.
bf22e37a
AR
2652 */
2653void vfree_atomic(const void *addr)
2654{
2655 BUG_ON(in_nmi());
2656
2657 kmemleak_free(addr);
2658
2659 if (!addr)
2660 return;
2661 __vfree_deferred(addr);
2662}
2663
c67dc624
RP
2664static void __vfree(const void *addr)
2665{
2666 if (unlikely(in_interrupt()))
2667 __vfree_deferred(addr);
2668 else
2669 __vunmap(addr, 1);
2670}
2671
1da177e4 2672/**
fa307474
MWO
2673 * vfree - Release memory allocated by vmalloc()
2674 * @addr: Memory base address
1da177e4 2675 *
fa307474
MWO
2676 * Free the virtually continuous memory area starting at @addr, as obtained
2677 * from one of the vmalloc() family of APIs. This will usually also free the
2678 * physical memory underlying the virtual allocation, but that memory is
2679 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2680 *
fa307474 2681 * If @addr is NULL, no operation is performed.
c9fcee51 2682 *
fa307474 2683 * Context:
92eac168 2684 * May sleep if called *not* from interrupt context.
fa307474
MWO
2685 * Must not be called in NMI context (strictly speaking, it could be
2686 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
f0953a1b 2687 * conventions for vfree() arch-dependent would be a really bad idea).
1da177e4 2688 */
b3bdda02 2689void vfree(const void *addr)
1da177e4 2690{
32fcfd40 2691 BUG_ON(in_nmi());
89219d37
CM
2692
2693 kmemleak_free(addr);
2694
a8dda165
AR
2695 might_sleep_if(!in_interrupt());
2696
32fcfd40
AV
2697 if (!addr)
2698 return;
c67dc624
RP
2699
2700 __vfree(addr);
1da177e4 2701}
1da177e4
LT
2702EXPORT_SYMBOL(vfree);
2703
2704/**
92eac168
MR
2705 * vunmap - release virtual mapping obtained by vmap()
2706 * @addr: memory base address
1da177e4 2707 *
92eac168
MR
2708 * Free the virtually contiguous memory area starting at @addr,
2709 * which was created from the page array passed to vmap().
1da177e4 2710 *
92eac168 2711 * Must not be called in interrupt context.
1da177e4 2712 */
b3bdda02 2713void vunmap(const void *addr)
1da177e4
LT
2714{
2715 BUG_ON(in_interrupt());
34754b69 2716 might_sleep();
32fcfd40
AV
2717 if (addr)
2718 __vunmap(addr, 0);
1da177e4 2719}
1da177e4
LT
2720EXPORT_SYMBOL(vunmap);
2721
2722/**
92eac168
MR
2723 * vmap - map an array of pages into virtually contiguous space
2724 * @pages: array of page pointers
2725 * @count: number of pages to map
2726 * @flags: vm_area->flags
2727 * @prot: page protection for the mapping
2728 *
b944afc9
CH
2729 * Maps @count pages from @pages into contiguous kernel virtual space.
2730 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2731 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2732 * are transferred from the caller to vmap(), and will be freed / dropped when
2733 * vfree() is called on the return value.
a862f68a
MR
2734 *
2735 * Return: the address of the area or %NULL on failure
1da177e4
LT
2736 */
2737void *vmap(struct page **pages, unsigned int count,
92eac168 2738 unsigned long flags, pgprot_t prot)
1da177e4
LT
2739{
2740 struct vm_struct *area;
b67177ec 2741 unsigned long addr;
65ee03c4 2742 unsigned long size; /* In bytes */
1da177e4 2743
34754b69
PZ
2744 might_sleep();
2745
bd1a8fb2
PZ
2746 /*
2747 * Your top guard is someone else's bottom guard. Not having a top
2748 * guard compromises someone else's mappings too.
2749 */
2750 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2751 flags &= ~VM_NO_GUARD;
2752
ca79b0c2 2753 if (count > totalram_pages())
1da177e4
LT
2754 return NULL;
2755
65ee03c4
GJM
2756 size = (unsigned long)count << PAGE_SHIFT;
2757 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2758 if (!area)
2759 return NULL;
23016969 2760
b67177ec
NP
2761 addr = (unsigned long)area->addr;
2762 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2763 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2764 vunmap(area->addr);
2765 return NULL;
2766 }
2767
c22ee528 2768 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2769 area->pages = pages;
c22ee528
ML
2770 area->nr_pages = count;
2771 }
1da177e4
LT
2772 return area->addr;
2773}
1da177e4
LT
2774EXPORT_SYMBOL(vmap);
2775
3e9a9e25
CH
2776#ifdef CONFIG_VMAP_PFN
2777struct vmap_pfn_data {
2778 unsigned long *pfns;
2779 pgprot_t prot;
2780 unsigned int idx;
2781};
2782
2783static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2784{
2785 struct vmap_pfn_data *data = private;
2786
2787 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2788 return -EINVAL;
2789 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2790 return 0;
2791}
2792
2793/**
2794 * vmap_pfn - map an array of PFNs into virtually contiguous space
2795 * @pfns: array of PFNs
2796 * @count: number of pages to map
2797 * @prot: page protection for the mapping
2798 *
2799 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2800 * the start address of the mapping.
2801 */
2802void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2803{
2804 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2805 struct vm_struct *area;
2806
2807 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2808 __builtin_return_address(0));
2809 if (!area)
2810 return NULL;
2811 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2812 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2813 free_vm_area(area);
2814 return NULL;
2815 }
2816 return area->addr;
2817}
2818EXPORT_SYMBOL_GPL(vmap_pfn);
2819#endif /* CONFIG_VMAP_PFN */
2820
12b9f873
UR
2821static inline unsigned int
2822vm_area_alloc_pages(gfp_t gfp, int nid,
343ab817 2823 unsigned int order, unsigned int nr_pages, struct page **pages)
12b9f873
UR
2824{
2825 unsigned int nr_allocated = 0;
ffb29b1c
CW
2826 struct page *page;
2827 int i;
12b9f873
UR
2828
2829 /*
2830 * For order-0 pages we make use of bulk allocator, if
2831 * the page array is partly or not at all populated due
2832 * to fails, fallback to a single page allocator that is
2833 * more permissive.
2834 */
ffb29b1c 2835 if (!order && nid != NUMA_NO_NODE) {
343ab817
URS
2836 while (nr_allocated < nr_pages) {
2837 unsigned int nr, nr_pages_request;
2838
2839 /*
2840 * A maximum allowed request is hard-coded and is 100
2841 * pages per call. That is done in order to prevent a
2842 * long preemption off scenario in the bulk-allocator
2843 * so the range is [1:100].
2844 */
2845 nr_pages_request = min(100U, nr_pages - nr_allocated);
2846
2847 nr = alloc_pages_bulk_array_node(gfp, nid,
2848 nr_pages_request, pages + nr_allocated);
2849
2850 nr_allocated += nr;
2851 cond_resched();
2852
2853 /*
2854 * If zero or pages were obtained partly,
2855 * fallback to a single page allocator.
2856 */
2857 if (nr != nr_pages_request)
2858 break;
2859 }
ffb29b1c 2860 } else if (order)
12b9f873
UR
2861 /*
2862 * Compound pages required for remap_vmalloc_page if
2863 * high-order pages.
2864 */
2865 gfp |= __GFP_COMP;
2866
2867 /* High-order pages or fallback path if "bulk" fails. */
12b9f873 2868
ffb29b1c
CW
2869 while (nr_allocated < nr_pages) {
2870 if (nid == NUMA_NO_NODE)
2871 page = alloc_pages(gfp, order);
2872 else
2873 page = alloc_pages_node(nid, gfp, order);
12b9f873
UR
2874 if (unlikely(!page))
2875 break;
2876
2877 /*
2878 * Careful, we allocate and map page-order pages, but
2879 * tracking is done per PAGE_SIZE page so as to keep the
2880 * vm_struct APIs independent of the physical/mapped size.
2881 */
2882 for (i = 0; i < (1U << order); i++)
2883 pages[nr_allocated + i] = page + i;
2884
12e376a6 2885 cond_resched();
12b9f873
UR
2886 nr_allocated += 1U << order;
2887 }
2888
2889 return nr_allocated;
2890}
2891
e31d9eb5 2892static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
2893 pgprot_t prot, unsigned int page_shift,
2894 int node)
1da177e4 2895{
930f036b 2896 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
228f778e 2897 const gfp_t orig_gfp_mask = gfp_mask;
121e6f32
NP
2898 unsigned long addr = (unsigned long)area->addr;
2899 unsigned long size = get_vm_area_size(area);
34fe6537 2900 unsigned long array_size;
121e6f32
NP
2901 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2902 unsigned int page_order;
1da177e4 2903
121e6f32 2904 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
f255935b
CH
2905 gfp_mask |= __GFP_NOWARN;
2906 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2907 gfp_mask |= __GFP_HIGHMEM;
1da177e4 2908
1da177e4 2909 /* Please note that the recursion is strictly bounded. */
8757d5fa 2910 if (array_size > PAGE_SIZE) {
5c1f4e69 2911 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
f255935b 2912 area->caller);
286e1ea3 2913 } else {
5c1f4e69 2914 area->pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2915 }
7ea36242 2916
5c1f4e69 2917 if (!area->pages) {
228f778e 2918 warn_alloc(orig_gfp_mask, NULL,
f4bdfeaf
URS
2919 "vmalloc error: size %lu, failed to allocated page array size %lu",
2920 nr_small_pages * PAGE_SIZE, array_size);
cd61413b 2921 free_vm_area(area);
1da177e4
LT
2922 return NULL;
2923 }
1da177e4 2924
121e6f32 2925 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
121e6f32 2926 page_order = vm_area_page_order(area);
bf53d6f8 2927
12b9f873
UR
2928 area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2929 page_order, nr_small_pages, area->pages);
5c1f4e69 2930
97105f0a 2931 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2932
5c1f4e69
URS
2933 /*
2934 * If not enough pages were obtained to accomplish an
2935 * allocation request, free them via __vfree() if any.
2936 */
2937 if (area->nr_pages != nr_small_pages) {
228f778e 2938 warn_alloc(orig_gfp_mask, NULL,
f4bdfeaf 2939 "vmalloc error: size %lu, page order %u, failed to allocate pages",
5c1f4e69
URS
2940 area->nr_pages * PAGE_SIZE, page_order);
2941 goto fail;
2942 }
2943
12b9f873
UR
2944 if (vmap_pages_range(addr, addr + size, prot, area->pages,
2945 page_shift) < 0) {
228f778e 2946 warn_alloc(orig_gfp_mask, NULL,
f4bdfeaf
URS
2947 "vmalloc error: size %lu, failed to map pages",
2948 area->nr_pages * PAGE_SIZE);
1da177e4 2949 goto fail;
d70bec8c 2950 }
ed1f324c 2951
1da177e4
LT
2952 return area->addr;
2953
2954fail:
c67dc624 2955 __vfree(area->addr);
1da177e4
LT
2956 return NULL;
2957}
2958
2959/**
92eac168
MR
2960 * __vmalloc_node_range - allocate virtually contiguous memory
2961 * @size: allocation size
2962 * @align: desired alignment
2963 * @start: vm area range start
2964 * @end: vm area range end
2965 * @gfp_mask: flags for the page level allocator
2966 * @prot: protection mask for the allocated pages
2967 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2968 * @node: node to use for allocation or NUMA_NO_NODE
2969 * @caller: caller's return address
2970 *
2971 * Allocate enough pages to cover @size from the page level
2972 * allocator with @gfp_mask flags. Map them into contiguous
2973 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2974 *
2975 * Return: the address of the area or %NULL on failure
1da177e4 2976 */
d0a21265
DR
2977void *__vmalloc_node_range(unsigned long size, unsigned long align,
2978 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2979 pgprot_t prot, unsigned long vm_flags, int node,
2980 const void *caller)
1da177e4
LT
2981{
2982 struct vm_struct *area;
89219d37
CM
2983 void *addr;
2984 unsigned long real_size = size;
121e6f32
NP
2985 unsigned long real_align = align;
2986 unsigned int shift = PAGE_SHIFT;
1da177e4 2987
d70bec8c
NP
2988 if (WARN_ON_ONCE(!size))
2989 return NULL;
2990
2991 if ((size >> PAGE_SHIFT) > totalram_pages()) {
2992 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
2993 "vmalloc error: size %lu, exceeds total pages",
2994 real_size);
d70bec8c 2995 return NULL;
121e6f32
NP
2996 }
2997
3382bbee 2998 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
121e6f32 2999 unsigned long size_per_node;
1da177e4 3000
121e6f32
NP
3001 /*
3002 * Try huge pages. Only try for PAGE_KERNEL allocations,
3003 * others like modules don't yet expect huge pages in
3004 * their allocations due to apply_to_page_range not
3005 * supporting them.
3006 */
3007
3008 size_per_node = size;
3009 if (node == NUMA_NO_NODE)
3010 size_per_node /= num_online_nodes();
3382bbee 3011 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
121e6f32 3012 shift = PMD_SHIFT;
3382bbee
CL
3013 else
3014 shift = arch_vmap_pte_supported_shift(size_per_node);
3015
3016 align = max(real_align, 1UL << shift);
3017 size = ALIGN(real_size, 1UL << shift);
121e6f32
NP
3018 }
3019
3020again:
7ca3027b
DA
3021 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3022 VM_UNINITIALIZED | vm_flags, start, end, node,
3023 gfp_mask, caller);
d70bec8c
NP
3024 if (!area) {
3025 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3026 "vmalloc error: size %lu, vm_struct allocation failed",
3027 real_size);
de7d2b56 3028 goto fail;
d70bec8c 3029 }
1da177e4 3030
121e6f32 3031 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
1368edf0 3032 if (!addr)
121e6f32 3033 goto fail;
89219d37 3034
f5252e00 3035 /*
20fc02b4
ZY
3036 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3037 * flag. It means that vm_struct is not fully initialized.
4341fa45 3038 * Now, it is fully initialized, so remove this flag here.
f5252e00 3039 */
20fc02b4 3040 clear_vm_uninitialized_flag(area);
f5252e00 3041
7ca3027b 3042 size = PAGE_ALIGN(size);
94f4a161 3043 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
3044
3045 return addr;
de7d2b56
JP
3046
3047fail:
121e6f32
NP
3048 if (shift > PAGE_SHIFT) {
3049 shift = PAGE_SHIFT;
3050 align = real_align;
3051 size = real_size;
3052 goto again;
3053 }
3054
de7d2b56 3055 return NULL;
1da177e4
LT
3056}
3057
d0a21265 3058/**
92eac168
MR
3059 * __vmalloc_node - allocate virtually contiguous memory
3060 * @size: allocation size
3061 * @align: desired alignment
3062 * @gfp_mask: flags for the page level allocator
92eac168
MR
3063 * @node: node to use for allocation or NUMA_NO_NODE
3064 * @caller: caller's return address
a7c3e901 3065 *
f38fcb9c
CH
3066 * Allocate enough pages to cover @size from the page level allocator with
3067 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 3068 *
92eac168
MR
3069 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3070 * and __GFP_NOFAIL are not supported
a7c3e901 3071 *
92eac168
MR
3072 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3073 * with mm people.
a862f68a
MR
3074 *
3075 * Return: pointer to the allocated memory or %NULL on error
d0a21265 3076 */
2b905948 3077void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 3078 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
3079{
3080 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 3081 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 3082}
c3f896dc
CH
3083/*
3084 * This is only for performance analysis of vmalloc and stress purpose.
3085 * It is required by vmalloc test module, therefore do not use it other
3086 * than that.
3087 */
3088#ifdef CONFIG_TEST_VMALLOC_MODULE
3089EXPORT_SYMBOL_GPL(__vmalloc_node);
3090#endif
d0a21265 3091
88dca4ca 3092void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 3093{
f38fcb9c 3094 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 3095 __builtin_return_address(0));
930fc45a 3096}
1da177e4
LT
3097EXPORT_SYMBOL(__vmalloc);
3098
3099/**
92eac168
MR
3100 * vmalloc - allocate virtually contiguous memory
3101 * @size: allocation size
3102 *
3103 * Allocate enough pages to cover @size from the page level
3104 * allocator and map them into contiguous kernel virtual space.
1da177e4 3105 *
92eac168
MR
3106 * For tight control over page level allocator and protection flags
3107 * use __vmalloc() instead.
a862f68a
MR
3108 *
3109 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3110 */
3111void *vmalloc(unsigned long size)
3112{
4d39d728
CH
3113 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3114 __builtin_return_address(0));
1da177e4 3115}
1da177e4
LT
3116EXPORT_SYMBOL(vmalloc);
3117
15a64f5a
CI
3118/**
3119 * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3120 * @size: allocation size
3121 *
3122 * Allocate enough non-huge pages to cover @size from the page level
3123 * allocator and map them into contiguous kernel virtual space.
3124 *
3125 * Return: pointer to the allocated memory or %NULL on error
3126 */
3127void *vmalloc_no_huge(unsigned long size)
3128{
3129 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3130 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3131 NUMA_NO_NODE, __builtin_return_address(0));
3132}
3133EXPORT_SYMBOL(vmalloc_no_huge);
3134
e1ca7788 3135/**
92eac168
MR
3136 * vzalloc - allocate virtually contiguous memory with zero fill
3137 * @size: allocation size
3138 *
3139 * Allocate enough pages to cover @size from the page level
3140 * allocator and map them into contiguous kernel virtual space.
3141 * The memory allocated is set to zero.
3142 *
3143 * For tight control over page level allocator and protection flags
3144 * use __vmalloc() instead.
a862f68a
MR
3145 *
3146 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3147 */
3148void *vzalloc(unsigned long size)
3149{
4d39d728
CH
3150 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3151 __builtin_return_address(0));
e1ca7788
DY
3152}
3153EXPORT_SYMBOL(vzalloc);
3154
83342314 3155/**
ead04089
REB
3156 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3157 * @size: allocation size
83342314 3158 *
ead04089
REB
3159 * The resulting memory area is zeroed so it can be mapped to userspace
3160 * without leaking data.
a862f68a
MR
3161 *
3162 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3163 */
3164void *vmalloc_user(unsigned long size)
3165{
bc84c535
RP
3166 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3167 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3168 VM_USERMAP, NUMA_NO_NODE,
3169 __builtin_return_address(0));
83342314
NP
3170}
3171EXPORT_SYMBOL(vmalloc_user);
3172
930fc45a 3173/**
92eac168
MR
3174 * vmalloc_node - allocate memory on a specific node
3175 * @size: allocation size
3176 * @node: numa node
930fc45a 3177 *
92eac168
MR
3178 * Allocate enough pages to cover @size from the page level
3179 * allocator and map them into contiguous kernel virtual space.
930fc45a 3180 *
92eac168
MR
3181 * For tight control over page level allocator and protection flags
3182 * use __vmalloc() instead.
a862f68a
MR
3183 *
3184 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3185 */
3186void *vmalloc_node(unsigned long size, int node)
3187{
f38fcb9c
CH
3188 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3189 __builtin_return_address(0));
930fc45a
CL
3190}
3191EXPORT_SYMBOL(vmalloc_node);
3192
e1ca7788
DY
3193/**
3194 * vzalloc_node - allocate memory on a specific node with zero fill
3195 * @size: allocation size
3196 * @node: numa node
3197 *
3198 * Allocate enough pages to cover @size from the page level
3199 * allocator and map them into contiguous kernel virtual space.
3200 * The memory allocated is set to zero.
3201 *
a862f68a 3202 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3203 */
3204void *vzalloc_node(unsigned long size, int node)
3205{
4d39d728
CH
3206 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3207 __builtin_return_address(0));
e1ca7788
DY
3208}
3209EXPORT_SYMBOL(vzalloc_node);
3210
0d08e0d3 3211#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3212#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3213#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3214#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3215#else
698d0831
MH
3216/*
3217 * 64b systems should always have either DMA or DMA32 zones. For others
3218 * GFP_DMA32 should do the right thing and use the normal zone.
3219 */
68d68ff6 3220#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
3221#endif
3222
1da177e4 3223/**
92eac168
MR
3224 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3225 * @size: allocation size
1da177e4 3226 *
92eac168
MR
3227 * Allocate enough 32bit PA addressable pages to cover @size from the
3228 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3229 *
3230 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3231 */
3232void *vmalloc_32(unsigned long size)
3233{
f38fcb9c
CH
3234 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3235 __builtin_return_address(0));
1da177e4 3236}
1da177e4
LT
3237EXPORT_SYMBOL(vmalloc_32);
3238
83342314 3239/**
ead04089 3240 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3241 * @size: allocation size
ead04089
REB
3242 *
3243 * The resulting memory area is 32bit addressable and zeroed so it can be
3244 * mapped to userspace without leaking data.
a862f68a
MR
3245 *
3246 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3247 */
3248void *vmalloc_32_user(unsigned long size)
3249{
bc84c535
RP
3250 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3251 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3252 VM_USERMAP, NUMA_NO_NODE,
3253 __builtin_return_address(0));
83342314
NP
3254}
3255EXPORT_SYMBOL(vmalloc_32_user);
3256
d0107eb0
KH
3257/*
3258 * small helper routine , copy contents to buf from addr.
3259 * If the page is not present, fill zero.
3260 */
3261
3262static int aligned_vread(char *buf, char *addr, unsigned long count)
3263{
3264 struct page *p;
3265 int copied = 0;
3266
3267 while (count) {
3268 unsigned long offset, length;
3269
891c49ab 3270 offset = offset_in_page(addr);
d0107eb0
KH
3271 length = PAGE_SIZE - offset;
3272 if (length > count)
3273 length = count;
3274 p = vmalloc_to_page(addr);
3275 /*
3276 * To do safe access to this _mapped_ area, we need
3277 * lock. But adding lock here means that we need to add
f0953a1b 3278 * overhead of vmalloc()/vfree() calls for this _debug_
d0107eb0
KH
3279 * interface, rarely used. Instead of that, we'll use
3280 * kmap() and get small overhead in this access function.
3281 */
3282 if (p) {
f7c8ce44 3283 /* We can expect USER0 is not used -- see vread() */
9b04c5fe 3284 void *map = kmap_atomic(p);
d0107eb0 3285 memcpy(buf, map + offset, length);
9b04c5fe 3286 kunmap_atomic(map);
d0107eb0
KH
3287 } else
3288 memset(buf, 0, length);
3289
3290 addr += length;
3291 buf += length;
3292 copied += length;
3293 count -= length;
3294 }
3295 return copied;
3296}
3297
d0107eb0 3298/**
92eac168
MR
3299 * vread() - read vmalloc area in a safe way.
3300 * @buf: buffer for reading data
3301 * @addr: vm address.
3302 * @count: number of bytes to be read.
3303 *
92eac168
MR
3304 * This function checks that addr is a valid vmalloc'ed area, and
3305 * copy data from that area to a given buffer. If the given memory range
3306 * of [addr...addr+count) includes some valid address, data is copied to
3307 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3308 * IOREMAP area is treated as memory hole and no copy is done.
3309 *
3310 * If [addr...addr+count) doesn't includes any intersects with alive
3311 * vm_struct area, returns 0. @buf should be kernel's buffer.
3312 *
3313 * Note: In usual ops, vread() is never necessary because the caller
3314 * should know vmalloc() area is valid and can use memcpy().
3315 * This is for routines which have to access vmalloc area without
bbcd53c9 3316 * any information, as /proc/kcore.
a862f68a
MR
3317 *
3318 * Return: number of bytes for which addr and buf should be increased
3319 * (same number as @count) or %0 if [addr...addr+count) doesn't
3320 * include any intersection with valid vmalloc area
d0107eb0 3321 */
1da177e4
LT
3322long vread(char *buf, char *addr, unsigned long count)
3323{
e81ce85f
JK
3324 struct vmap_area *va;
3325 struct vm_struct *vm;
1da177e4 3326 char *vaddr, *buf_start = buf;
d0107eb0 3327 unsigned long buflen = count;
1da177e4
LT
3328 unsigned long n;
3329
3330 /* Don't allow overflow */
3331 if ((unsigned long) addr + count < count)
3332 count = -(unsigned long) addr;
3333
e81ce85f 3334 spin_lock(&vmap_area_lock);
f181234a 3335 va = find_vmap_area_exceed_addr((unsigned long)addr);
f608788c
SD
3336 if (!va)
3337 goto finished;
f181234a
CW
3338
3339 /* no intersects with alive vmap_area */
3340 if ((unsigned long)addr + count <= va->va_start)
3341 goto finished;
3342
f608788c 3343 list_for_each_entry_from(va, &vmap_area_list, list) {
e81ce85f
JK
3344 if (!count)
3345 break;
3346
688fcbfc 3347 if (!va->vm)
e81ce85f
JK
3348 continue;
3349
3350 vm = va->vm;
3351 vaddr = (char *) vm->addr;
762216ab 3352 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3353 continue;
3354 while (addr < vaddr) {
3355 if (count == 0)
3356 goto finished;
3357 *buf = '\0';
3358 buf++;
3359 addr++;
3360 count--;
3361 }
762216ab 3362 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3363 if (n > count)
3364 n = count;
e81ce85f 3365 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
3366 aligned_vread(buf, addr, n);
3367 else /* IOREMAP area is treated as memory hole */
3368 memset(buf, 0, n);
3369 buf += n;
3370 addr += n;
3371 count -= n;
1da177e4
LT
3372 }
3373finished:
e81ce85f 3374 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3375
3376 if (buf == buf_start)
3377 return 0;
3378 /* zero-fill memory holes */
3379 if (buf != buf_start + buflen)
3380 memset(buf, 0, buflen - (buf - buf_start));
3381
3382 return buflen;
1da177e4
LT
3383}
3384
83342314 3385/**
92eac168
MR
3386 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3387 * @vma: vma to cover
3388 * @uaddr: target user address to start at
3389 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3390 * @pgoff: offset from @kaddr to start at
92eac168 3391 * @size: size of map area
7682486b 3392 *
92eac168 3393 * Returns: 0 for success, -Exxx on failure
83342314 3394 *
92eac168
MR
3395 * This function checks that @kaddr is a valid vmalloc'ed area,
3396 * and that it is big enough to cover the range starting at
3397 * @uaddr in @vma. Will return failure if that criteria isn't
3398 * met.
83342314 3399 *
92eac168 3400 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3401 */
e69e9d4a 3402int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3403 void *kaddr, unsigned long pgoff,
3404 unsigned long size)
83342314
NP
3405{
3406 struct vm_struct *area;
bdebd6a2
JH
3407 unsigned long off;
3408 unsigned long end_index;
3409
3410 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3411 return -EINVAL;
83342314 3412
e69e9d4a
HD
3413 size = PAGE_ALIGN(size);
3414
3415 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3416 return -EINVAL;
3417
e69e9d4a 3418 area = find_vm_area(kaddr);
83342314 3419 if (!area)
db64fe02 3420 return -EINVAL;
83342314 3421
fe9041c2 3422 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3423 return -EINVAL;
83342314 3424
bdebd6a2
JH
3425 if (check_add_overflow(size, off, &end_index) ||
3426 end_index > get_vm_area_size(area))
db64fe02 3427 return -EINVAL;
bdebd6a2 3428 kaddr += off;
83342314 3429
83342314 3430 do {
e69e9d4a 3431 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3432 int ret;
3433
83342314
NP
3434 ret = vm_insert_page(vma, uaddr, page);
3435 if (ret)
3436 return ret;
3437
3438 uaddr += PAGE_SIZE;
e69e9d4a
HD
3439 kaddr += PAGE_SIZE;
3440 size -= PAGE_SIZE;
3441 } while (size > 0);
83342314 3442
314e51b9 3443 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3444
db64fe02 3445 return 0;
83342314 3446}
e69e9d4a
HD
3447
3448/**
92eac168
MR
3449 * remap_vmalloc_range - map vmalloc pages to userspace
3450 * @vma: vma to cover (map full range of vma)
3451 * @addr: vmalloc memory
3452 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3453 *
92eac168 3454 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3455 *
92eac168
MR
3456 * This function checks that addr is a valid vmalloc'ed area, and
3457 * that it is big enough to cover the vma. Will return failure if
3458 * that criteria isn't met.
e69e9d4a 3459 *
92eac168 3460 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3461 */
3462int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3463 unsigned long pgoff)
3464{
3465 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3466 addr, pgoff,
e69e9d4a
HD
3467 vma->vm_end - vma->vm_start);
3468}
83342314
NP
3469EXPORT_SYMBOL(remap_vmalloc_range);
3470
5f4352fb
JF
3471void free_vm_area(struct vm_struct *area)
3472{
3473 struct vm_struct *ret;
3474 ret = remove_vm_area(area->addr);
3475 BUG_ON(ret != area);
3476 kfree(area);
3477}
3478EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3479
4f8b02b4 3480#ifdef CONFIG_SMP
ca23e405
TH
3481static struct vmap_area *node_to_va(struct rb_node *n)
3482{
4583e773 3483 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3484}
3485
3486/**
68ad4a33
URS
3487 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3488 * @addr: target address
ca23e405 3489 *
68ad4a33
URS
3490 * Returns: vmap_area if it is found. If there is no such area
3491 * the first highest(reverse order) vmap_area is returned
3492 * i.e. va->va_start < addr && va->va_end < addr or NULL
3493 * if there are no any areas before @addr.
ca23e405 3494 */
68ad4a33
URS
3495static struct vmap_area *
3496pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3497{
68ad4a33
URS
3498 struct vmap_area *va, *tmp;
3499 struct rb_node *n;
3500
3501 n = free_vmap_area_root.rb_node;
3502 va = NULL;
ca23e405
TH
3503
3504 while (n) {
68ad4a33
URS
3505 tmp = rb_entry(n, struct vmap_area, rb_node);
3506 if (tmp->va_start <= addr) {
3507 va = tmp;
3508 if (tmp->va_end >= addr)
3509 break;
3510
ca23e405 3511 n = n->rb_right;
68ad4a33
URS
3512 } else {
3513 n = n->rb_left;
3514 }
ca23e405
TH
3515 }
3516
68ad4a33 3517 return va;
ca23e405
TH
3518}
3519
3520/**
68ad4a33
URS
3521 * pvm_determine_end_from_reverse - find the highest aligned address
3522 * of free block below VMALLOC_END
3523 * @va:
3524 * in - the VA we start the search(reverse order);
3525 * out - the VA with the highest aligned end address.
799fa85d 3526 * @align: alignment for required highest address
ca23e405 3527 *
68ad4a33 3528 * Returns: determined end address within vmap_area
ca23e405 3529 */
68ad4a33
URS
3530static unsigned long
3531pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3532{
68ad4a33 3533 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3534 unsigned long addr;
3535
68ad4a33
URS
3536 if (likely(*va)) {
3537 list_for_each_entry_from_reverse((*va),
3538 &free_vmap_area_list, list) {
3539 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3540 if ((*va)->va_start < addr)
3541 return addr;
3542 }
ca23e405
TH
3543 }
3544
68ad4a33 3545 return 0;
ca23e405
TH
3546}
3547
3548/**
3549 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3550 * @offsets: array containing offset of each area
3551 * @sizes: array containing size of each area
3552 * @nr_vms: the number of areas to allocate
3553 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3554 *
3555 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3556 * vm_structs on success, %NULL on failure
3557 *
3558 * Percpu allocator wants to use congruent vm areas so that it can
3559 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3560 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3561 * be scattered pretty far, distance between two areas easily going up
3562 * to gigabytes. To avoid interacting with regular vmallocs, these
3563 * areas are allocated from top.
ca23e405 3564 *
68ad4a33
URS
3565 * Despite its complicated look, this allocator is rather simple. It
3566 * does everything top-down and scans free blocks from the end looking
3567 * for matching base. While scanning, if any of the areas do not fit the
3568 * base address is pulled down to fit the area. Scanning is repeated till
3569 * all the areas fit and then all necessary data structures are inserted
3570 * and the result is returned.
ca23e405
TH
3571 */
3572struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3573 const size_t *sizes, int nr_vms,
ec3f64fc 3574 size_t align)
ca23e405
TH
3575{
3576 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3577 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3578 struct vmap_area **vas, *va;
ca23e405
TH
3579 struct vm_struct **vms;
3580 int area, area2, last_area, term_area;
253a496d 3581 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3582 bool purged = false;
68ad4a33 3583 enum fit_type type;
ca23e405 3584
ca23e405 3585 /* verify parameters and allocate data structures */
891c49ab 3586 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3587 for (last_area = 0, area = 0; area < nr_vms; area++) {
3588 start = offsets[area];
3589 end = start + sizes[area];
3590
3591 /* is everything aligned properly? */
3592 BUG_ON(!IS_ALIGNED(offsets[area], align));
3593 BUG_ON(!IS_ALIGNED(sizes[area], align));
3594
3595 /* detect the area with the highest address */
3596 if (start > offsets[last_area])
3597 last_area = area;
3598
c568da28 3599 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3600 unsigned long start2 = offsets[area2];
3601 unsigned long end2 = start2 + sizes[area2];
3602
c568da28 3603 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3604 }
3605 }
3606 last_end = offsets[last_area] + sizes[last_area];
3607
3608 if (vmalloc_end - vmalloc_start < last_end) {
3609 WARN_ON(true);
3610 return NULL;
3611 }
3612
4d67d860
TM
3613 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3614 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3615 if (!vas || !vms)
f1db7afd 3616 goto err_free2;
ca23e405
TH
3617
3618 for (area = 0; area < nr_vms; area++) {
68ad4a33 3619 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3620 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3621 if (!vas[area] || !vms[area])
3622 goto err_free;
3623 }
3624retry:
e36176be 3625 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3626
3627 /* start scanning - we scan from the top, begin with the last area */
3628 area = term_area = last_area;
3629 start = offsets[area];
3630 end = start + sizes[area];
3631
68ad4a33
URS
3632 va = pvm_find_va_enclose_addr(vmalloc_end);
3633 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3634
3635 while (true) {
ca23e405
TH
3636 /*
3637 * base might have underflowed, add last_end before
3638 * comparing.
3639 */
68ad4a33
URS
3640 if (base + last_end < vmalloc_start + last_end)
3641 goto overflow;
ca23e405
TH
3642
3643 /*
68ad4a33 3644 * Fitting base has not been found.
ca23e405 3645 */
68ad4a33
URS
3646 if (va == NULL)
3647 goto overflow;
ca23e405 3648
5336e52c 3649 /*
d8cc323d 3650 * If required width exceeds current VA block, move
5336e52c
KS
3651 * base downwards and then recheck.
3652 */
3653 if (base + end > va->va_end) {
3654 base = pvm_determine_end_from_reverse(&va, align) - end;
3655 term_area = area;
3656 continue;
3657 }
3658
ca23e405 3659 /*
68ad4a33 3660 * If this VA does not fit, move base downwards and recheck.
ca23e405 3661 */
5336e52c 3662 if (base + start < va->va_start) {
68ad4a33
URS
3663 va = node_to_va(rb_prev(&va->rb_node));
3664 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3665 term_area = area;
3666 continue;
3667 }
3668
3669 /*
3670 * This area fits, move on to the previous one. If
3671 * the previous one is the terminal one, we're done.
3672 */
3673 area = (area + nr_vms - 1) % nr_vms;
3674 if (area == term_area)
3675 break;
68ad4a33 3676
ca23e405
TH
3677 start = offsets[area];
3678 end = start + sizes[area];
68ad4a33 3679 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3680 }
68ad4a33 3681
ca23e405
TH
3682 /* we've found a fitting base, insert all va's */
3683 for (area = 0; area < nr_vms; area++) {
68ad4a33 3684 int ret;
ca23e405 3685
68ad4a33
URS
3686 start = base + offsets[area];
3687 size = sizes[area];
ca23e405 3688
68ad4a33
URS
3689 va = pvm_find_va_enclose_addr(start);
3690 if (WARN_ON_ONCE(va == NULL))
3691 /* It is a BUG(), but trigger recovery instead. */
3692 goto recovery;
3693
3694 type = classify_va_fit_type(va, start, size);
3695 if (WARN_ON_ONCE(type == NOTHING_FIT))
3696 /* It is a BUG(), but trigger recovery instead. */
3697 goto recovery;
3698
3699 ret = adjust_va_to_fit_type(va, start, size, type);
3700 if (unlikely(ret))
3701 goto recovery;
3702
3703 /* Allocated area. */
3704 va = vas[area];
3705 va->va_start = start;
3706 va->va_end = start + size;
68ad4a33 3707 }
ca23e405 3708
e36176be 3709 spin_unlock(&free_vmap_area_lock);
ca23e405 3710
253a496d
DA
3711 /* populate the kasan shadow space */
3712 for (area = 0; area < nr_vms; area++) {
3713 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3714 goto err_free_shadow;
3715
3716 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3717 sizes[area]);
3718 }
3719
ca23e405 3720 /* insert all vm's */
e36176be
URS
3721 spin_lock(&vmap_area_lock);
3722 for (area = 0; area < nr_vms; area++) {
3723 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3724
3725 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3726 pcpu_get_vm_areas);
e36176be
URS
3727 }
3728 spin_unlock(&vmap_area_lock);
ca23e405
TH
3729
3730 kfree(vas);
3731 return vms;
3732
68ad4a33 3733recovery:
e36176be
URS
3734 /*
3735 * Remove previously allocated areas. There is no
3736 * need in removing these areas from the busy tree,
3737 * because they are inserted only on the final step
3738 * and when pcpu_get_vm_areas() is success.
3739 */
68ad4a33 3740 while (area--) {
253a496d
DA
3741 orig_start = vas[area]->va_start;
3742 orig_end = vas[area]->va_end;
96e2db45
URS
3743 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3744 &free_vmap_area_list);
9c801f61
URS
3745 if (va)
3746 kasan_release_vmalloc(orig_start, orig_end,
3747 va->va_start, va->va_end);
68ad4a33
URS
3748 vas[area] = NULL;
3749 }
3750
3751overflow:
e36176be 3752 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3753 if (!purged) {
3754 purge_vmap_area_lazy();
3755 purged = true;
3756
3757 /* Before "retry", check if we recover. */
3758 for (area = 0; area < nr_vms; area++) {
3759 if (vas[area])
3760 continue;
3761
3762 vas[area] = kmem_cache_zalloc(
3763 vmap_area_cachep, GFP_KERNEL);
3764 if (!vas[area])
3765 goto err_free;
3766 }
3767
3768 goto retry;
3769 }
3770
ca23e405
TH
3771err_free:
3772 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3773 if (vas[area])
3774 kmem_cache_free(vmap_area_cachep, vas[area]);
3775
f1db7afd 3776 kfree(vms[area]);
ca23e405 3777 }
f1db7afd 3778err_free2:
ca23e405
TH
3779 kfree(vas);
3780 kfree(vms);
3781 return NULL;
253a496d
DA
3782
3783err_free_shadow:
3784 spin_lock(&free_vmap_area_lock);
3785 /*
3786 * We release all the vmalloc shadows, even the ones for regions that
3787 * hadn't been successfully added. This relies on kasan_release_vmalloc
3788 * being able to tolerate this case.
3789 */
3790 for (area = 0; area < nr_vms; area++) {
3791 orig_start = vas[area]->va_start;
3792 orig_end = vas[area]->va_end;
96e2db45
URS
3793 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3794 &free_vmap_area_list);
9c801f61
URS
3795 if (va)
3796 kasan_release_vmalloc(orig_start, orig_end,
3797 va->va_start, va->va_end);
253a496d
DA
3798 vas[area] = NULL;
3799 kfree(vms[area]);
3800 }
3801 spin_unlock(&free_vmap_area_lock);
3802 kfree(vas);
3803 kfree(vms);
3804 return NULL;
ca23e405
TH
3805}
3806
3807/**
3808 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3809 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3810 * @nr_vms: the number of allocated areas
3811 *
3812 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3813 */
3814void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3815{
3816 int i;
3817
3818 for (i = 0; i < nr_vms; i++)
3819 free_vm_area(vms[i]);
3820 kfree(vms);
3821}
4f8b02b4 3822#endif /* CONFIG_SMP */
a10aa579 3823
5bb1bb35 3824#ifdef CONFIG_PRINTK
98f18083
PM
3825bool vmalloc_dump_obj(void *object)
3826{
3827 struct vm_struct *vm;
3828 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3829
3830 vm = find_vm_area(objp);
3831 if (!vm)
3832 return false;
bd34dcd4
PM
3833 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3834 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
3835 return true;
3836}
5bb1bb35 3837#endif
98f18083 3838
a10aa579
CL
3839#ifdef CONFIG_PROC_FS
3840static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3841 __acquires(&vmap_purge_lock)
d4033afd 3842 __acquires(&vmap_area_lock)
a10aa579 3843{
e36176be 3844 mutex_lock(&vmap_purge_lock);
d4033afd 3845 spin_lock(&vmap_area_lock);
e36176be 3846
3f500069 3847 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3848}
3849
3850static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3851{
3f500069 3852 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3853}
3854
3855static void s_stop(struct seq_file *m, void *p)
d4033afd 3856 __releases(&vmap_area_lock)
0a7dd4e9 3857 __releases(&vmap_purge_lock)
a10aa579 3858{
d4033afd 3859 spin_unlock(&vmap_area_lock);
0a7dd4e9 3860 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
3861}
3862
a47a126a
ED
3863static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3864{
e5adfffc 3865 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a 3866 unsigned int nr, *counters = m->private;
51e50b3a 3867 unsigned int step = 1U << vm_area_page_order(v);
a47a126a
ED
3868
3869 if (!counters)
3870 return;
3871
af12346c
WL
3872 if (v->flags & VM_UNINITIALIZED)
3873 return;
7e5b528b
DV
3874 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3875 smp_rmb();
af12346c 3876
a47a126a
ED
3877 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3878
51e50b3a
ED
3879 for (nr = 0; nr < v->nr_pages; nr += step)
3880 counters[page_to_nid(v->pages[nr])] += step;
a47a126a
ED
3881 for_each_node_state(nr, N_HIGH_MEMORY)
3882 if (counters[nr])
3883 seq_printf(m, " N%u=%u", nr, counters[nr]);
3884 }
3885}
3886
dd3b8353
URS
3887static void show_purge_info(struct seq_file *m)
3888{
dd3b8353
URS
3889 struct vmap_area *va;
3890
96e2db45
URS
3891 spin_lock(&purge_vmap_area_lock);
3892 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
3893 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3894 (void *)va->va_start, (void *)va->va_end,
3895 va->va_end - va->va_start);
3896 }
96e2db45 3897 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
3898}
3899
a10aa579
CL
3900static int s_show(struct seq_file *m, void *p)
3901{
3f500069 3902 struct vmap_area *va;
d4033afd
JK
3903 struct vm_struct *v;
3904
3f500069 3905 va = list_entry(p, struct vmap_area, list);
3906
c2ce8c14 3907 /*
688fcbfc
PL
3908 * s_show can encounter race with remove_vm_area, !vm on behalf
3909 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3910 */
688fcbfc 3911 if (!va->vm) {
dd3b8353 3912 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3913 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3914 va->va_end - va->va_start);
78c72746 3915
7cc7913e 3916 goto final;
78c72746 3917 }
d4033afd
JK
3918
3919 v = va->vm;
a10aa579 3920
45ec1690 3921 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3922 v->addr, v->addr + v->size, v->size);
3923
62c70bce
JP
3924 if (v->caller)
3925 seq_printf(m, " %pS", v->caller);
23016969 3926
a10aa579
CL
3927 if (v->nr_pages)
3928 seq_printf(m, " pages=%d", v->nr_pages);
3929
3930 if (v->phys_addr)
199eaa05 3931 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3932
3933 if (v->flags & VM_IOREMAP)
f4527c90 3934 seq_puts(m, " ioremap");
a10aa579
CL
3935
3936 if (v->flags & VM_ALLOC)
f4527c90 3937 seq_puts(m, " vmalloc");
a10aa579
CL
3938
3939 if (v->flags & VM_MAP)
f4527c90 3940 seq_puts(m, " vmap");
a10aa579
CL
3941
3942 if (v->flags & VM_USERMAP)
f4527c90 3943 seq_puts(m, " user");
a10aa579 3944
fe9041c2
CH
3945 if (v->flags & VM_DMA_COHERENT)
3946 seq_puts(m, " dma-coherent");
3947
244d63ee 3948 if (is_vmalloc_addr(v->pages))
f4527c90 3949 seq_puts(m, " vpages");
a10aa579 3950
a47a126a 3951 show_numa_info(m, v);
a10aa579 3952 seq_putc(m, '\n');
dd3b8353
URS
3953
3954 /*
96e2db45 3955 * As a final step, dump "unpurged" areas.
dd3b8353 3956 */
7cc7913e 3957final:
dd3b8353
URS
3958 if (list_is_last(&va->list, &vmap_area_list))
3959 show_purge_info(m);
3960
a10aa579
CL
3961 return 0;
3962}
3963
5f6a6a9c 3964static const struct seq_operations vmalloc_op = {
a10aa579
CL
3965 .start = s_start,
3966 .next = s_next,
3967 .stop = s_stop,
3968 .show = s_show,
3969};
5f6a6a9c 3970
5f6a6a9c
AD
3971static int __init proc_vmalloc_init(void)
3972{
fddda2b7 3973 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3974 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3975 &vmalloc_op,
3976 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3977 else
0825a6f9 3978 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3979 return 0;
3980}
3981module_init(proc_vmalloc_init);
db3808c1 3982
a10aa579 3983#endif