mm/page_poison: update comment after code moved
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02 23#include <linux/list.h>
4da56b99 24#include <linux/notifier.h>
db64fe02
NP
25#include <linux/rbtree.h>
26#include <linux/radix-tree.h>
27#include <linux/rcupdate.h>
f0aa6617 28#include <linux/pfn.h>
89219d37 29#include <linux/kmemleak.h>
60063497 30#include <linux/atomic.h>
3b32123d 31#include <linux/compiler.h>
32fcfd40 32#include <linux/llist.h>
0f616be1 33#include <linux/bitops.h>
3b32123d 34
7c0f6ba6 35#include <linux/uaccess.h>
1da177e4 36#include <asm/tlbflush.h>
2dca6999 37#include <asm/shmparam.h>
1da177e4 38
dd56b046
MG
39#include "internal.h"
40
32fcfd40
AV
41struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44};
45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47static void __vunmap(const void *, int);
48
49static void free_work(struct work_struct *w)
50{
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
52 struct llist_node *t, *llnode;
53
54 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
55 __vunmap((void *)llnode, 1);
32fcfd40
AV
56}
57
db64fe02 58/*** Page table manipulation functions ***/
b221385b 59
1da177e4
LT
60static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
61{
62 pte_t *pte;
63
64 pte = pte_offset_kernel(pmd, addr);
65 do {
66 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
67 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
68 } while (pte++, addr += PAGE_SIZE, addr != end);
69}
70
db64fe02 71static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
72{
73 pmd_t *pmd;
74 unsigned long next;
75
76 pmd = pmd_offset(pud, addr);
77 do {
78 next = pmd_addr_end(addr, end);
b9820d8f
TK
79 if (pmd_clear_huge(pmd))
80 continue;
1da177e4
LT
81 if (pmd_none_or_clear_bad(pmd))
82 continue;
83 vunmap_pte_range(pmd, addr, next);
84 } while (pmd++, addr = next, addr != end);
85}
86
c2febafc 87static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
88{
89 pud_t *pud;
90 unsigned long next;
91
c2febafc 92 pud = pud_offset(p4d, addr);
1da177e4
LT
93 do {
94 next = pud_addr_end(addr, end);
b9820d8f
TK
95 if (pud_clear_huge(pud))
96 continue;
1da177e4
LT
97 if (pud_none_or_clear_bad(pud))
98 continue;
99 vunmap_pmd_range(pud, addr, next);
100 } while (pud++, addr = next, addr != end);
101}
102
c2febafc
KS
103static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
104{
105 p4d_t *p4d;
106 unsigned long next;
107
108 p4d = p4d_offset(pgd, addr);
109 do {
110 next = p4d_addr_end(addr, end);
111 if (p4d_clear_huge(p4d))
112 continue;
113 if (p4d_none_or_clear_bad(p4d))
114 continue;
115 vunmap_pud_range(p4d, addr, next);
116 } while (p4d++, addr = next, addr != end);
117}
118
db64fe02 119static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
120{
121 pgd_t *pgd;
122 unsigned long next;
1da177e4
LT
123
124 BUG_ON(addr >= end);
125 pgd = pgd_offset_k(addr);
1da177e4
LT
126 do {
127 next = pgd_addr_end(addr, end);
128 if (pgd_none_or_clear_bad(pgd))
129 continue;
c2febafc 130 vunmap_p4d_range(pgd, addr, next);
1da177e4 131 } while (pgd++, addr = next, addr != end);
1da177e4
LT
132}
133
134static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 135 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
136{
137 pte_t *pte;
138
db64fe02
NP
139 /*
140 * nr is a running index into the array which helps higher level
141 * callers keep track of where we're up to.
142 */
143
872fec16 144 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
145 if (!pte)
146 return -ENOMEM;
147 do {
db64fe02
NP
148 struct page *page = pages[*nr];
149
150 if (WARN_ON(!pte_none(*pte)))
151 return -EBUSY;
152 if (WARN_ON(!page))
1da177e4
LT
153 return -ENOMEM;
154 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 155 (*nr)++;
1da177e4
LT
156 } while (pte++, addr += PAGE_SIZE, addr != end);
157 return 0;
158}
159
db64fe02
NP
160static int vmap_pmd_range(pud_t *pud, unsigned long addr,
161 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
162{
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc(&init_mm, pud, addr);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
db64fe02 171 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
172 return -ENOMEM;
173 } while (pmd++, addr = next, addr != end);
174 return 0;
175}
176
c2febafc 177static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 178 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
179{
180 pud_t *pud;
181 unsigned long next;
182
c2febafc 183 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
184 if (!pud)
185 return -ENOMEM;
186 do {
187 next = pud_addr_end(addr, end);
db64fe02 188 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
189 return -ENOMEM;
190 } while (pud++, addr = next, addr != end);
191 return 0;
192}
193
c2febafc
KS
194static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
195 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
196{
197 p4d_t *p4d;
198 unsigned long next;
199
200 p4d = p4d_alloc(&init_mm, pgd, addr);
201 if (!p4d)
202 return -ENOMEM;
203 do {
204 next = p4d_addr_end(addr, end);
205 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
206 return -ENOMEM;
207 } while (p4d++, addr = next, addr != end);
208 return 0;
209}
210
db64fe02
NP
211/*
212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
213 * will have pfns corresponding to the "pages" array.
214 *
215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
216 */
8fc48985
TH
217static int vmap_page_range_noflush(unsigned long start, unsigned long end,
218 pgprot_t prot, struct page **pages)
1da177e4
LT
219{
220 pgd_t *pgd;
221 unsigned long next;
2e4e27c7 222 unsigned long addr = start;
db64fe02
NP
223 int err = 0;
224 int nr = 0;
1da177e4
LT
225
226 BUG_ON(addr >= end);
227 pgd = pgd_offset_k(addr);
1da177e4
LT
228 do {
229 next = pgd_addr_end(addr, end);
c2febafc 230 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 231 if (err)
bf88c8c8 232 return err;
1da177e4 233 } while (pgd++, addr = next, addr != end);
db64fe02 234
db64fe02 235 return nr;
1da177e4
LT
236}
237
8fc48985
TH
238static int vmap_page_range(unsigned long start, unsigned long end,
239 pgprot_t prot, struct page **pages)
240{
241 int ret;
242
243 ret = vmap_page_range_noflush(start, end, prot, pages);
244 flush_cache_vmap(start, end);
245 return ret;
246}
247
81ac3ad9 248int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
249{
250 /*
ab4f2ee1 251 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
252 * and fall back on vmalloc() if that fails. Others
253 * just put it in the vmalloc space.
254 */
255#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
256 unsigned long addr = (unsigned long)x;
257 if (addr >= MODULES_VADDR && addr < MODULES_END)
258 return 1;
259#endif
260 return is_vmalloc_addr(x);
261}
262
48667e7a 263/*
add688fb 264 * Walk a vmap address to the struct page it maps.
48667e7a 265 */
add688fb 266struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
267{
268 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 269 struct page *page = NULL;
48667e7a 270 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
271 p4d_t *p4d;
272 pud_t *pud;
273 pmd_t *pmd;
274 pte_t *ptep, pte;
48667e7a 275
7aa413de
IM
276 /*
277 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
278 * architectures that do not vmalloc module space
279 */
73bdf0a6 280 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 281
c2febafc
KS
282 if (pgd_none(*pgd))
283 return NULL;
284 p4d = p4d_offset(pgd, addr);
285 if (p4d_none(*p4d))
286 return NULL;
287 pud = pud_offset(p4d, addr);
029c54b0
AB
288
289 /*
290 * Don't dereference bad PUD or PMD (below) entries. This will also
291 * identify huge mappings, which we may encounter on architectures
292 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
293 * identified as vmalloc addresses by is_vmalloc_addr(), but are
294 * not [unambiguously] associated with a struct page, so there is
295 * no correct value to return for them.
296 */
297 WARN_ON_ONCE(pud_bad(*pud));
298 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
299 return NULL;
300 pmd = pmd_offset(pud, addr);
029c54b0
AB
301 WARN_ON_ONCE(pmd_bad(*pmd));
302 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
303 return NULL;
304
305 ptep = pte_offset_map(pmd, addr);
306 pte = *ptep;
307 if (pte_present(pte))
308 page = pte_page(pte);
309 pte_unmap(ptep);
add688fb 310 return page;
48667e7a 311}
add688fb 312EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
313
314/*
add688fb 315 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 316 */
add688fb 317unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 318{
add688fb 319 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 320}
add688fb 321EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 322
db64fe02
NP
323
324/*** Global kva allocator ***/
325
78c72746 326#define VM_LAZY_FREE 0x02
db64fe02
NP
327#define VM_VM_AREA 0x04
328
db64fe02 329static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
330/* Export for kexec only */
331LIST_HEAD(vmap_area_list);
80c4bd7a 332static LLIST_HEAD(vmap_purge_list);
89699605
NP
333static struct rb_root vmap_area_root = RB_ROOT;
334
335/* The vmap cache globals are protected by vmap_area_lock */
336static struct rb_node *free_vmap_cache;
337static unsigned long cached_hole_size;
338static unsigned long cached_vstart;
339static unsigned long cached_align;
340
ca23e405 341static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
342
343static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 344{
db64fe02
NP
345 struct rb_node *n = vmap_area_root.rb_node;
346
347 while (n) {
348 struct vmap_area *va;
349
350 va = rb_entry(n, struct vmap_area, rb_node);
351 if (addr < va->va_start)
352 n = n->rb_left;
cef2ac3f 353 else if (addr >= va->va_end)
db64fe02
NP
354 n = n->rb_right;
355 else
356 return va;
357 }
358
359 return NULL;
360}
361
362static void __insert_vmap_area(struct vmap_area *va)
363{
364 struct rb_node **p = &vmap_area_root.rb_node;
365 struct rb_node *parent = NULL;
366 struct rb_node *tmp;
367
368 while (*p) {
170168d0 369 struct vmap_area *tmp_va;
db64fe02
NP
370
371 parent = *p;
170168d0
NK
372 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
373 if (va->va_start < tmp_va->va_end)
db64fe02 374 p = &(*p)->rb_left;
170168d0 375 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
376 p = &(*p)->rb_right;
377 else
378 BUG();
379 }
380
381 rb_link_node(&va->rb_node, parent, p);
382 rb_insert_color(&va->rb_node, &vmap_area_root);
383
4341fa45 384 /* address-sort this list */
db64fe02
NP
385 tmp = rb_prev(&va->rb_node);
386 if (tmp) {
387 struct vmap_area *prev;
388 prev = rb_entry(tmp, struct vmap_area, rb_node);
389 list_add_rcu(&va->list, &prev->list);
390 } else
391 list_add_rcu(&va->list, &vmap_area_list);
392}
393
394static void purge_vmap_area_lazy(void);
395
4da56b99
CW
396static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
397
db64fe02
NP
398/*
399 * Allocate a region of KVA of the specified size and alignment, within the
400 * vstart and vend.
401 */
402static struct vmap_area *alloc_vmap_area(unsigned long size,
403 unsigned long align,
404 unsigned long vstart, unsigned long vend,
405 int node, gfp_t gfp_mask)
406{
407 struct vmap_area *va;
408 struct rb_node *n;
1da177e4 409 unsigned long addr;
db64fe02 410 int purged = 0;
89699605 411 struct vmap_area *first;
db64fe02 412
7766970c 413 BUG_ON(!size);
891c49ab 414 BUG_ON(offset_in_page(size));
89699605 415 BUG_ON(!is_power_of_2(align));
db64fe02 416
5803ed29 417 might_sleep();
4da56b99 418
db64fe02
NP
419 va = kmalloc_node(sizeof(struct vmap_area),
420 gfp_mask & GFP_RECLAIM_MASK, node);
421 if (unlikely(!va))
422 return ERR_PTR(-ENOMEM);
423
7f88f88f
CM
424 /*
425 * Only scan the relevant parts containing pointers to other objects
426 * to avoid false negatives.
427 */
428 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
429
db64fe02
NP
430retry:
431 spin_lock(&vmap_area_lock);
89699605
NP
432 /*
433 * Invalidate cache if we have more permissive parameters.
434 * cached_hole_size notes the largest hole noticed _below_
435 * the vmap_area cached in free_vmap_cache: if size fits
436 * into that hole, we want to scan from vstart to reuse
437 * the hole instead of allocating above free_vmap_cache.
438 * Note that __free_vmap_area may update free_vmap_cache
439 * without updating cached_hole_size or cached_align.
440 */
441 if (!free_vmap_cache ||
442 size < cached_hole_size ||
443 vstart < cached_vstart ||
444 align < cached_align) {
445nocache:
446 cached_hole_size = 0;
447 free_vmap_cache = NULL;
448 }
449 /* record if we encounter less permissive parameters */
450 cached_vstart = vstart;
451 cached_align = align;
452
453 /* find starting point for our search */
454 if (free_vmap_cache) {
455 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 456 addr = ALIGN(first->va_end, align);
89699605
NP
457 if (addr < vstart)
458 goto nocache;
bcb615a8 459 if (addr + size < addr)
89699605
NP
460 goto overflow;
461
462 } else {
463 addr = ALIGN(vstart, align);
bcb615a8 464 if (addr + size < addr)
89699605
NP
465 goto overflow;
466
467 n = vmap_area_root.rb_node;
468 first = NULL;
469
470 while (n) {
db64fe02
NP
471 struct vmap_area *tmp;
472 tmp = rb_entry(n, struct vmap_area, rb_node);
473 if (tmp->va_end >= addr) {
db64fe02 474 first = tmp;
89699605
NP
475 if (tmp->va_start <= addr)
476 break;
477 n = n->rb_left;
478 } else
db64fe02 479 n = n->rb_right;
89699605 480 }
db64fe02
NP
481
482 if (!first)
483 goto found;
db64fe02 484 }
89699605
NP
485
486 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 487 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
488 if (addr + cached_hole_size < first->va_start)
489 cached_hole_size = first->va_start - addr;
248ac0e1 490 addr = ALIGN(first->va_end, align);
bcb615a8 491 if (addr + size < addr)
89699605
NP
492 goto overflow;
493
92ca922f 494 if (list_is_last(&first->list, &vmap_area_list))
89699605 495 goto found;
92ca922f 496
6219c2a2 497 first = list_next_entry(first, list);
db64fe02
NP
498 }
499
89699605 500found:
afd07389
URS
501 /*
502 * Check also calculated address against the vstart,
503 * because it can be 0 because of big align request.
504 */
505 if (addr + size > vend || addr < vstart)
89699605 506 goto overflow;
db64fe02
NP
507
508 va->va_start = addr;
509 va->va_end = addr + size;
510 va->flags = 0;
511 __insert_vmap_area(va);
89699605 512 free_vmap_cache = &va->rb_node;
db64fe02
NP
513 spin_unlock(&vmap_area_lock);
514
61e16557 515 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
516 BUG_ON(va->va_start < vstart);
517 BUG_ON(va->va_end > vend);
518
db64fe02 519 return va;
89699605
NP
520
521overflow:
522 spin_unlock(&vmap_area_lock);
523 if (!purged) {
524 purge_vmap_area_lazy();
525 purged = 1;
526 goto retry;
527 }
4da56b99
CW
528
529 if (gfpflags_allow_blocking(gfp_mask)) {
530 unsigned long freed = 0;
531 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
532 if (freed > 0) {
533 purged = 0;
534 goto retry;
535 }
536 }
537
03497d76 538 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
539 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
540 size);
89699605
NP
541 kfree(va);
542 return ERR_PTR(-EBUSY);
db64fe02
NP
543}
544
4da56b99
CW
545int register_vmap_purge_notifier(struct notifier_block *nb)
546{
547 return blocking_notifier_chain_register(&vmap_notify_list, nb);
548}
549EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
550
551int unregister_vmap_purge_notifier(struct notifier_block *nb)
552{
553 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
554}
555EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
556
db64fe02
NP
557static void __free_vmap_area(struct vmap_area *va)
558{
559 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
560
561 if (free_vmap_cache) {
562 if (va->va_end < cached_vstart) {
563 free_vmap_cache = NULL;
564 } else {
565 struct vmap_area *cache;
566 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
567 if (va->va_start <= cache->va_start) {
568 free_vmap_cache = rb_prev(&va->rb_node);
569 /*
570 * We don't try to update cached_hole_size or
571 * cached_align, but it won't go very wrong.
572 */
573 }
574 }
575 }
db64fe02
NP
576 rb_erase(&va->rb_node, &vmap_area_root);
577 RB_CLEAR_NODE(&va->rb_node);
578 list_del_rcu(&va->list);
579
ca23e405
TH
580 /*
581 * Track the highest possible candidate for pcpu area
582 * allocation. Areas outside of vmalloc area can be returned
583 * here too, consider only end addresses which fall inside
584 * vmalloc area proper.
585 */
586 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
587 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
588
14769de9 589 kfree_rcu(va, rcu_head);
db64fe02
NP
590}
591
592/*
593 * Free a region of KVA allocated by alloc_vmap_area
594 */
595static void free_vmap_area(struct vmap_area *va)
596{
597 spin_lock(&vmap_area_lock);
598 __free_vmap_area(va);
599 spin_unlock(&vmap_area_lock);
600}
601
602/*
603 * Clear the pagetable entries of a given vmap_area
604 */
605static void unmap_vmap_area(struct vmap_area *va)
606{
607 vunmap_page_range(va->va_start, va->va_end);
608}
609
610/*
611 * lazy_max_pages is the maximum amount of virtual address space we gather up
612 * before attempting to purge with a TLB flush.
613 *
614 * There is a tradeoff here: a larger number will cover more kernel page tables
615 * and take slightly longer to purge, but it will linearly reduce the number of
616 * global TLB flushes that must be performed. It would seem natural to scale
617 * this number up linearly with the number of CPUs (because vmapping activity
618 * could also scale linearly with the number of CPUs), however it is likely
619 * that in practice, workloads might be constrained in other ways that mean
620 * vmap activity will not scale linearly with CPUs. Also, I want to be
621 * conservative and not introduce a big latency on huge systems, so go with
622 * a less aggressive log scale. It will still be an improvement over the old
623 * code, and it will be simple to change the scale factor if we find that it
624 * becomes a problem on bigger systems.
625 */
626static unsigned long lazy_max_pages(void)
627{
628 unsigned int log;
629
630 log = fls(num_online_cpus());
631
632 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
633}
634
635static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
636
0574ecd1
CH
637/*
638 * Serialize vmap purging. There is no actual criticial section protected
639 * by this look, but we want to avoid concurrent calls for performance
640 * reasons and to make the pcpu_get_vm_areas more deterministic.
641 */
f9e09977 642static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 643
02b709df
NP
644/* for per-CPU blocks */
645static void purge_fragmented_blocks_allcpus(void);
646
3ee48b6a
CW
647/*
648 * called before a call to iounmap() if the caller wants vm_area_struct's
649 * immediately freed.
650 */
651void set_iounmap_nonlazy(void)
652{
653 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
654}
655
db64fe02
NP
656/*
657 * Purges all lazily-freed vmap areas.
db64fe02 658 */
0574ecd1 659static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 660{
80c4bd7a 661 struct llist_node *valist;
db64fe02 662 struct vmap_area *va;
cbb76676 663 struct vmap_area *n_va;
763b218d 664 bool do_free = false;
db64fe02 665
0574ecd1 666 lockdep_assert_held(&vmap_purge_lock);
02b709df 667
80c4bd7a
CW
668 valist = llist_del_all(&vmap_purge_list);
669 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
670 if (va->va_start < start)
671 start = va->va_start;
672 if (va->va_end > end)
673 end = va->va_end;
763b218d 674 do_free = true;
db64fe02 675 }
db64fe02 676
763b218d 677 if (!do_free)
0574ecd1 678 return false;
db64fe02 679
0574ecd1 680 flush_tlb_kernel_range(start, end);
db64fe02 681
0574ecd1 682 spin_lock(&vmap_area_lock);
763b218d
JF
683 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
684 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
685
0574ecd1 686 __free_vmap_area(va);
763b218d
JF
687 atomic_sub(nr, &vmap_lazy_nr);
688 cond_resched_lock(&vmap_area_lock);
689 }
0574ecd1
CH
690 spin_unlock(&vmap_area_lock);
691 return true;
db64fe02
NP
692}
693
496850e5
NP
694/*
695 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
696 * is already purging.
697 */
698static void try_purge_vmap_area_lazy(void)
699{
f9e09977 700 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 701 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 702 mutex_unlock(&vmap_purge_lock);
0574ecd1 703 }
496850e5
NP
704}
705
db64fe02
NP
706/*
707 * Kick off a purge of the outstanding lazy areas.
708 */
709static void purge_vmap_area_lazy(void)
710{
f9e09977 711 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
712 purge_fragmented_blocks_allcpus();
713 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 714 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
715}
716
717/*
64141da5
JF
718 * Free a vmap area, caller ensuring that the area has been unmapped
719 * and flush_cache_vunmap had been called for the correct range
720 * previously.
db64fe02 721 */
64141da5 722static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 723{
80c4bd7a
CW
724 int nr_lazy;
725
726 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
727 &vmap_lazy_nr);
728
729 /* After this point, we may free va at any time */
730 llist_add(&va->purge_list, &vmap_purge_list);
731
732 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 733 try_purge_vmap_area_lazy();
db64fe02
NP
734}
735
b29acbdc
NP
736/*
737 * Free and unmap a vmap area
738 */
739static void free_unmap_vmap_area(struct vmap_area *va)
740{
741 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 742 unmap_vmap_area(va);
82a2e924
CP
743 if (debug_pagealloc_enabled())
744 flush_tlb_kernel_range(va->va_start, va->va_end);
745
c8eef01e 746 free_vmap_area_noflush(va);
b29acbdc
NP
747}
748
db64fe02
NP
749static struct vmap_area *find_vmap_area(unsigned long addr)
750{
751 struct vmap_area *va;
752
753 spin_lock(&vmap_area_lock);
754 va = __find_vmap_area(addr);
755 spin_unlock(&vmap_area_lock);
756
757 return va;
758}
759
db64fe02
NP
760/*** Per cpu kva allocator ***/
761
762/*
763 * vmap space is limited especially on 32 bit architectures. Ensure there is
764 * room for at least 16 percpu vmap blocks per CPU.
765 */
766/*
767 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
768 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
769 * instead (we just need a rough idea)
770 */
771#if BITS_PER_LONG == 32
772#define VMALLOC_SPACE (128UL*1024*1024)
773#else
774#define VMALLOC_SPACE (128UL*1024*1024*1024)
775#endif
776
777#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
778#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
779#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
780#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
781#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
782#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
783#define VMAP_BBMAP_BITS \
784 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
785 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
786 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
787
788#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
789
9b463334
JF
790static bool vmap_initialized __read_mostly = false;
791
db64fe02
NP
792struct vmap_block_queue {
793 spinlock_t lock;
794 struct list_head free;
db64fe02
NP
795};
796
797struct vmap_block {
798 spinlock_t lock;
799 struct vmap_area *va;
db64fe02 800 unsigned long free, dirty;
7d61bfe8 801 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
802 struct list_head free_list;
803 struct rcu_head rcu_head;
02b709df 804 struct list_head purge;
db64fe02
NP
805};
806
807/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
808static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
809
810/*
811 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
812 * in the free path. Could get rid of this if we change the API to return a
813 * "cookie" from alloc, to be passed to free. But no big deal yet.
814 */
815static DEFINE_SPINLOCK(vmap_block_tree_lock);
816static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
817
818/*
819 * We should probably have a fallback mechanism to allocate virtual memory
820 * out of partially filled vmap blocks. However vmap block sizing should be
821 * fairly reasonable according to the vmalloc size, so it shouldn't be a
822 * big problem.
823 */
824
825static unsigned long addr_to_vb_idx(unsigned long addr)
826{
827 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
828 addr /= VMAP_BLOCK_SIZE;
829 return addr;
830}
831
cf725ce2
RP
832static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
833{
834 unsigned long addr;
835
836 addr = va_start + (pages_off << PAGE_SHIFT);
837 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
838 return (void *)addr;
839}
840
841/**
842 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
843 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
844 * @order: how many 2^order pages should be occupied in newly allocated block
845 * @gfp_mask: flags for the page level allocator
846 *
847 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
848 */
849static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
850{
851 struct vmap_block_queue *vbq;
852 struct vmap_block *vb;
853 struct vmap_area *va;
854 unsigned long vb_idx;
855 int node, err;
cf725ce2 856 void *vaddr;
db64fe02
NP
857
858 node = numa_node_id();
859
860 vb = kmalloc_node(sizeof(struct vmap_block),
861 gfp_mask & GFP_RECLAIM_MASK, node);
862 if (unlikely(!vb))
863 return ERR_PTR(-ENOMEM);
864
865 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
866 VMALLOC_START, VMALLOC_END,
867 node, gfp_mask);
ddf9c6d4 868 if (IS_ERR(va)) {
db64fe02 869 kfree(vb);
e7d86340 870 return ERR_CAST(va);
db64fe02
NP
871 }
872
873 err = radix_tree_preload(gfp_mask);
874 if (unlikely(err)) {
875 kfree(vb);
876 free_vmap_area(va);
877 return ERR_PTR(err);
878 }
879
cf725ce2 880 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
881 spin_lock_init(&vb->lock);
882 vb->va = va;
cf725ce2
RP
883 /* At least something should be left free */
884 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
885 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 886 vb->dirty = 0;
7d61bfe8
RP
887 vb->dirty_min = VMAP_BBMAP_BITS;
888 vb->dirty_max = 0;
db64fe02 889 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
890
891 vb_idx = addr_to_vb_idx(va->va_start);
892 spin_lock(&vmap_block_tree_lock);
893 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
894 spin_unlock(&vmap_block_tree_lock);
895 BUG_ON(err);
896 radix_tree_preload_end();
897
898 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 899 spin_lock(&vbq->lock);
68ac546f 900 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 901 spin_unlock(&vbq->lock);
3f04ba85 902 put_cpu_var(vmap_block_queue);
db64fe02 903
cf725ce2 904 return vaddr;
db64fe02
NP
905}
906
db64fe02
NP
907static void free_vmap_block(struct vmap_block *vb)
908{
909 struct vmap_block *tmp;
910 unsigned long vb_idx;
911
db64fe02
NP
912 vb_idx = addr_to_vb_idx(vb->va->va_start);
913 spin_lock(&vmap_block_tree_lock);
914 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
915 spin_unlock(&vmap_block_tree_lock);
916 BUG_ON(tmp != vb);
917
64141da5 918 free_vmap_area_noflush(vb->va);
22a3c7d1 919 kfree_rcu(vb, rcu_head);
db64fe02
NP
920}
921
02b709df
NP
922static void purge_fragmented_blocks(int cpu)
923{
924 LIST_HEAD(purge);
925 struct vmap_block *vb;
926 struct vmap_block *n_vb;
927 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
928
929 rcu_read_lock();
930 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
931
932 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
933 continue;
934
935 spin_lock(&vb->lock);
936 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
937 vb->free = 0; /* prevent further allocs after releasing lock */
938 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
939 vb->dirty_min = 0;
940 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
941 spin_lock(&vbq->lock);
942 list_del_rcu(&vb->free_list);
943 spin_unlock(&vbq->lock);
944 spin_unlock(&vb->lock);
945 list_add_tail(&vb->purge, &purge);
946 } else
947 spin_unlock(&vb->lock);
948 }
949 rcu_read_unlock();
950
951 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
952 list_del(&vb->purge);
953 free_vmap_block(vb);
954 }
955}
956
02b709df
NP
957static void purge_fragmented_blocks_allcpus(void)
958{
959 int cpu;
960
961 for_each_possible_cpu(cpu)
962 purge_fragmented_blocks(cpu);
963}
964
db64fe02
NP
965static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
966{
967 struct vmap_block_queue *vbq;
968 struct vmap_block *vb;
cf725ce2 969 void *vaddr = NULL;
db64fe02
NP
970 unsigned int order;
971
891c49ab 972 BUG_ON(offset_in_page(size));
db64fe02 973 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
974 if (WARN_ON(size == 0)) {
975 /*
976 * Allocating 0 bytes isn't what caller wants since
977 * get_order(0) returns funny result. Just warn and terminate
978 * early.
979 */
980 return NULL;
981 }
db64fe02
NP
982 order = get_order(size);
983
db64fe02
NP
984 rcu_read_lock();
985 vbq = &get_cpu_var(vmap_block_queue);
986 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 987 unsigned long pages_off;
db64fe02
NP
988
989 spin_lock(&vb->lock);
cf725ce2
RP
990 if (vb->free < (1UL << order)) {
991 spin_unlock(&vb->lock);
992 continue;
993 }
02b709df 994
cf725ce2
RP
995 pages_off = VMAP_BBMAP_BITS - vb->free;
996 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
997 vb->free -= 1UL << order;
998 if (vb->free == 0) {
999 spin_lock(&vbq->lock);
1000 list_del_rcu(&vb->free_list);
1001 spin_unlock(&vbq->lock);
1002 }
cf725ce2 1003
02b709df
NP
1004 spin_unlock(&vb->lock);
1005 break;
db64fe02 1006 }
02b709df 1007
3f04ba85 1008 put_cpu_var(vmap_block_queue);
db64fe02
NP
1009 rcu_read_unlock();
1010
cf725ce2
RP
1011 /* Allocate new block if nothing was found */
1012 if (!vaddr)
1013 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1014
cf725ce2 1015 return vaddr;
db64fe02
NP
1016}
1017
1018static void vb_free(const void *addr, unsigned long size)
1019{
1020 unsigned long offset;
1021 unsigned long vb_idx;
1022 unsigned int order;
1023 struct vmap_block *vb;
1024
891c49ab 1025 BUG_ON(offset_in_page(size));
db64fe02 1026 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1027
1028 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1029
db64fe02
NP
1030 order = get_order(size);
1031
1032 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1033 offset >>= PAGE_SHIFT;
db64fe02
NP
1034
1035 vb_idx = addr_to_vb_idx((unsigned long)addr);
1036 rcu_read_lock();
1037 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1038 rcu_read_unlock();
1039 BUG_ON(!vb);
1040
64141da5
JF
1041 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1042
82a2e924
CP
1043 if (debug_pagealloc_enabled())
1044 flush_tlb_kernel_range((unsigned long)addr,
1045 (unsigned long)addr + size);
1046
db64fe02 1047 spin_lock(&vb->lock);
7d61bfe8
RP
1048
1049 /* Expand dirty range */
1050 vb->dirty_min = min(vb->dirty_min, offset);
1051 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1052
db64fe02
NP
1053 vb->dirty += 1UL << order;
1054 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1055 BUG_ON(vb->free);
db64fe02
NP
1056 spin_unlock(&vb->lock);
1057 free_vmap_block(vb);
1058 } else
1059 spin_unlock(&vb->lock);
1060}
1061
1062/**
1063 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1064 *
1065 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1066 * to amortize TLB flushing overheads. What this means is that any page you
1067 * have now, may, in a former life, have been mapped into kernel virtual
1068 * address by the vmap layer and so there might be some CPUs with TLB entries
1069 * still referencing that page (additional to the regular 1:1 kernel mapping).
1070 *
1071 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1072 * be sure that none of the pages we have control over will have any aliases
1073 * from the vmap layer.
1074 */
1075void vm_unmap_aliases(void)
1076{
1077 unsigned long start = ULONG_MAX, end = 0;
1078 int cpu;
1079 int flush = 0;
1080
9b463334
JF
1081 if (unlikely(!vmap_initialized))
1082 return;
1083
5803ed29
CH
1084 might_sleep();
1085
db64fe02
NP
1086 for_each_possible_cpu(cpu) {
1087 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1088 struct vmap_block *vb;
1089
1090 rcu_read_lock();
1091 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1092 spin_lock(&vb->lock);
7d61bfe8
RP
1093 if (vb->dirty) {
1094 unsigned long va_start = vb->va->va_start;
db64fe02 1095 unsigned long s, e;
b136be5e 1096
7d61bfe8
RP
1097 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1098 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1099
7d61bfe8
RP
1100 start = min(s, start);
1101 end = max(e, end);
db64fe02 1102
7d61bfe8 1103 flush = 1;
db64fe02
NP
1104 }
1105 spin_unlock(&vb->lock);
1106 }
1107 rcu_read_unlock();
1108 }
1109
f9e09977 1110 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1111 purge_fragmented_blocks_allcpus();
1112 if (!__purge_vmap_area_lazy(start, end) && flush)
1113 flush_tlb_kernel_range(start, end);
f9e09977 1114 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1115}
1116EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1117
1118/**
1119 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1120 * @mem: the pointer returned by vm_map_ram
1121 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1122 */
1123void vm_unmap_ram(const void *mem, unsigned int count)
1124{
65ee03c4 1125 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1126 unsigned long addr = (unsigned long)mem;
9c3acf60 1127 struct vmap_area *va;
db64fe02 1128
5803ed29 1129 might_sleep();
db64fe02
NP
1130 BUG_ON(!addr);
1131 BUG_ON(addr < VMALLOC_START);
1132 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1133 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1134
9c3acf60 1135 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1136 debug_check_no_locks_freed(mem, size);
db64fe02 1137 vb_free(mem, size);
9c3acf60
CH
1138 return;
1139 }
1140
1141 va = find_vmap_area(addr);
1142 BUG_ON(!va);
05e3ff95
CP
1143 debug_check_no_locks_freed((void *)va->va_start,
1144 (va->va_end - va->va_start));
9c3acf60 1145 free_unmap_vmap_area(va);
db64fe02
NP
1146}
1147EXPORT_SYMBOL(vm_unmap_ram);
1148
1149/**
1150 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1151 * @pages: an array of pointers to the pages to be mapped
1152 * @count: number of pages
1153 * @node: prefer to allocate data structures on this node
1154 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1155 *
36437638
GK
1156 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1157 * faster than vmap so it's good. But if you mix long-life and short-life
1158 * objects with vm_map_ram(), it could consume lots of address space through
1159 * fragmentation (especially on a 32bit machine). You could see failures in
1160 * the end. Please use this function for short-lived objects.
1161 *
e99c97ad 1162 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1163 */
1164void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1165{
65ee03c4 1166 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1167 unsigned long addr;
1168 void *mem;
1169
1170 if (likely(count <= VMAP_MAX_ALLOC)) {
1171 mem = vb_alloc(size, GFP_KERNEL);
1172 if (IS_ERR(mem))
1173 return NULL;
1174 addr = (unsigned long)mem;
1175 } else {
1176 struct vmap_area *va;
1177 va = alloc_vmap_area(size, PAGE_SIZE,
1178 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1179 if (IS_ERR(va))
1180 return NULL;
1181
1182 addr = va->va_start;
1183 mem = (void *)addr;
1184 }
1185 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1186 vm_unmap_ram(mem, count);
1187 return NULL;
1188 }
1189 return mem;
1190}
1191EXPORT_SYMBOL(vm_map_ram);
1192
4341fa45 1193static struct vm_struct *vmlist __initdata;
be9b7335
NP
1194/**
1195 * vm_area_add_early - add vmap area early during boot
1196 * @vm: vm_struct to add
1197 *
1198 * This function is used to add fixed kernel vm area to vmlist before
1199 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1200 * should contain proper values and the other fields should be zero.
1201 *
1202 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1203 */
1204void __init vm_area_add_early(struct vm_struct *vm)
1205{
1206 struct vm_struct *tmp, **p;
1207
1208 BUG_ON(vmap_initialized);
1209 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1210 if (tmp->addr >= vm->addr) {
1211 BUG_ON(tmp->addr < vm->addr + vm->size);
1212 break;
1213 } else
1214 BUG_ON(tmp->addr + tmp->size > vm->addr);
1215 }
1216 vm->next = *p;
1217 *p = vm;
1218}
1219
f0aa6617
TH
1220/**
1221 * vm_area_register_early - register vmap area early during boot
1222 * @vm: vm_struct to register
c0c0a293 1223 * @align: requested alignment
f0aa6617
TH
1224 *
1225 * This function is used to register kernel vm area before
1226 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1227 * proper values on entry and other fields should be zero. On return,
1228 * vm->addr contains the allocated address.
1229 *
1230 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1231 */
c0c0a293 1232void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1233{
1234 static size_t vm_init_off __initdata;
c0c0a293
TH
1235 unsigned long addr;
1236
1237 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1238 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1239
c0c0a293 1240 vm->addr = (void *)addr;
f0aa6617 1241
be9b7335 1242 vm_area_add_early(vm);
f0aa6617
TH
1243}
1244
db64fe02
NP
1245void __init vmalloc_init(void)
1246{
822c18f2
IK
1247 struct vmap_area *va;
1248 struct vm_struct *tmp;
db64fe02
NP
1249 int i;
1250
1251 for_each_possible_cpu(i) {
1252 struct vmap_block_queue *vbq;
32fcfd40 1253 struct vfree_deferred *p;
db64fe02
NP
1254
1255 vbq = &per_cpu(vmap_block_queue, i);
1256 spin_lock_init(&vbq->lock);
1257 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1258 p = &per_cpu(vfree_deferred, i);
1259 init_llist_head(&p->list);
1260 INIT_WORK(&p->wq, free_work);
db64fe02 1261 }
9b463334 1262
822c18f2
IK
1263 /* Import existing vmlist entries. */
1264 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1265 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1266 va->flags = VM_VM_AREA;
822c18f2
IK
1267 va->va_start = (unsigned long)tmp->addr;
1268 va->va_end = va->va_start + tmp->size;
dbda591d 1269 va->vm = tmp;
822c18f2
IK
1270 __insert_vmap_area(va);
1271 }
ca23e405
TH
1272
1273 vmap_area_pcpu_hole = VMALLOC_END;
1274
9b463334 1275 vmap_initialized = true;
db64fe02
NP
1276}
1277
8fc48985
TH
1278/**
1279 * map_kernel_range_noflush - map kernel VM area with the specified pages
1280 * @addr: start of the VM area to map
1281 * @size: size of the VM area to map
1282 * @prot: page protection flags to use
1283 * @pages: pages to map
1284 *
1285 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1286 * specify should have been allocated using get_vm_area() and its
1287 * friends.
1288 *
1289 * NOTE:
1290 * This function does NOT do any cache flushing. The caller is
1291 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1292 * before calling this function.
1293 *
1294 * RETURNS:
1295 * The number of pages mapped on success, -errno on failure.
1296 */
1297int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1298 pgprot_t prot, struct page **pages)
1299{
1300 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1301}
1302
1303/**
1304 * unmap_kernel_range_noflush - unmap kernel VM area
1305 * @addr: start of the VM area to unmap
1306 * @size: size of the VM area to unmap
1307 *
1308 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1309 * specify should have been allocated using get_vm_area() and its
1310 * friends.
1311 *
1312 * NOTE:
1313 * This function does NOT do any cache flushing. The caller is
1314 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1315 * before calling this function and flush_tlb_kernel_range() after.
1316 */
1317void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1318{
1319 vunmap_page_range(addr, addr + size);
1320}
81e88fdc 1321EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1322
1323/**
1324 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1325 * @addr: start of the VM area to unmap
1326 * @size: size of the VM area to unmap
1327 *
1328 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1329 * the unmapping and tlb after.
1330 */
db64fe02
NP
1331void unmap_kernel_range(unsigned long addr, unsigned long size)
1332{
1333 unsigned long end = addr + size;
f6fcba70
TH
1334
1335 flush_cache_vunmap(addr, end);
db64fe02
NP
1336 vunmap_page_range(addr, end);
1337 flush_tlb_kernel_range(addr, end);
1338}
93ef6d6c 1339EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1340
f6f8ed47 1341int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1342{
1343 unsigned long addr = (unsigned long)area->addr;
762216ab 1344 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1345 int err;
1346
f6f8ed47 1347 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1348
f6f8ed47 1349 return err > 0 ? 0 : err;
db64fe02
NP
1350}
1351EXPORT_SYMBOL_GPL(map_vm_area);
1352
f5252e00 1353static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1354 unsigned long flags, const void *caller)
cf88c790 1355{
c69480ad 1356 spin_lock(&vmap_area_lock);
cf88c790
TH
1357 vm->flags = flags;
1358 vm->addr = (void *)va->va_start;
1359 vm->size = va->va_end - va->va_start;
1360 vm->caller = caller;
db1aecaf 1361 va->vm = vm;
cf88c790 1362 va->flags |= VM_VM_AREA;
c69480ad 1363 spin_unlock(&vmap_area_lock);
f5252e00 1364}
cf88c790 1365
20fc02b4 1366static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1367{
d4033afd 1368 /*
20fc02b4 1369 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1370 * we should make sure that vm has proper values.
1371 * Pair with smp_rmb() in show_numa_info().
1372 */
1373 smp_wmb();
20fc02b4 1374 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1375}
1376
db64fe02 1377static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1378 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1379 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1380{
0006526d 1381 struct vmap_area *va;
db64fe02 1382 struct vm_struct *area;
1da177e4 1383
52fd24ca 1384 BUG_ON(in_interrupt());
1da177e4 1385 size = PAGE_ALIGN(size);
31be8309
OH
1386 if (unlikely(!size))
1387 return NULL;
1da177e4 1388
252e5c6e 1389 if (flags & VM_IOREMAP)
1390 align = 1ul << clamp_t(int, get_count_order_long(size),
1391 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1392
cf88c790 1393 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1394 if (unlikely(!area))
1395 return NULL;
1396
71394fe5
AR
1397 if (!(flags & VM_NO_GUARD))
1398 size += PAGE_SIZE;
1da177e4 1399
db64fe02
NP
1400 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1401 if (IS_ERR(va)) {
1402 kfree(area);
1403 return NULL;
1da177e4 1404 }
1da177e4 1405
d82b1d85 1406 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1407
1da177e4 1408 return area;
1da177e4
LT
1409}
1410
930fc45a
CL
1411struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1412 unsigned long start, unsigned long end)
1413{
00ef2d2f
DR
1414 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1415 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1416}
5992b6da 1417EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1418
c2968612
BH
1419struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1420 unsigned long start, unsigned long end,
5e6cafc8 1421 const void *caller)
c2968612 1422{
00ef2d2f
DR
1423 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1424 GFP_KERNEL, caller);
c2968612
BH
1425}
1426
1da177e4 1427/**
183ff22b 1428 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1429 * @size: size of the area
1430 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1431 *
1432 * Search an area of @size in the kernel virtual mapping area,
1433 * and reserved it for out purposes. Returns the area descriptor
1434 * on success or %NULL on failure.
1435 */
1436struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1437{
2dca6999 1438 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1439 NUMA_NO_NODE, GFP_KERNEL,
1440 __builtin_return_address(0));
23016969
CL
1441}
1442
1443struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1444 const void *caller)
23016969 1445{
2dca6999 1446 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1447 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1448}
1449
e9da6e99
MS
1450/**
1451 * find_vm_area - find a continuous kernel virtual area
1452 * @addr: base address
1453 *
1454 * Search for the kernel VM area starting at @addr, and return it.
1455 * It is up to the caller to do all required locking to keep the returned
1456 * pointer valid.
1457 */
1458struct vm_struct *find_vm_area(const void *addr)
83342314 1459{
db64fe02 1460 struct vmap_area *va;
83342314 1461
db64fe02
NP
1462 va = find_vmap_area((unsigned long)addr);
1463 if (va && va->flags & VM_VM_AREA)
db1aecaf 1464 return va->vm;
1da177e4 1465
1da177e4 1466 return NULL;
1da177e4
LT
1467}
1468
7856dfeb 1469/**
183ff22b 1470 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1471 * @addr: base address
1472 *
1473 * Search for the kernel VM area starting at @addr, and remove it.
1474 * This function returns the found VM area, but using it is NOT safe
1475 * on SMP machines, except for its size or flags.
1476 */
b3bdda02 1477struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1478{
db64fe02
NP
1479 struct vmap_area *va;
1480
5803ed29
CH
1481 might_sleep();
1482
db64fe02
NP
1483 va = find_vmap_area((unsigned long)addr);
1484 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1485 struct vm_struct *vm = va->vm;
f5252e00 1486
c69480ad
JK
1487 spin_lock(&vmap_area_lock);
1488 va->vm = NULL;
1489 va->flags &= ~VM_VM_AREA;
78c72746 1490 va->flags |= VM_LAZY_FREE;
c69480ad
JK
1491 spin_unlock(&vmap_area_lock);
1492
a5af5aa8 1493 kasan_free_shadow(vm);
dd32c279 1494 free_unmap_vmap_area(va);
dd32c279 1495
db64fe02
NP
1496 return vm;
1497 }
1498 return NULL;
7856dfeb
AK
1499}
1500
b3bdda02 1501static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1502{
1503 struct vm_struct *area;
1504
1505 if (!addr)
1506 return;
1507
e69e9d4a 1508 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1509 addr))
1da177e4 1510 return;
1da177e4 1511
6ade2032 1512 area = find_vm_area(addr);
1da177e4 1513 if (unlikely(!area)) {
4c8573e2 1514 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1515 addr);
1da177e4
LT
1516 return;
1517 }
1518
05e3ff95
CP
1519 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
1520 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 1521
f3c01d2f 1522 remove_vm_area(addr);
1da177e4
LT
1523 if (deallocate_pages) {
1524 int i;
1525
1526 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1527 struct page *page = area->pages[i];
1528
1529 BUG_ON(!page);
4949148a 1530 __free_pages(page, 0);
1da177e4
LT
1531 }
1532
244d63ee 1533 kvfree(area->pages);
1da177e4
LT
1534 }
1535
1536 kfree(area);
1537 return;
1538}
bf22e37a
AR
1539
1540static inline void __vfree_deferred(const void *addr)
1541{
1542 /*
1543 * Use raw_cpu_ptr() because this can be called from preemptible
1544 * context. Preemption is absolutely fine here, because the llist_add()
1545 * implementation is lockless, so it works even if we are adding to
1546 * nother cpu's list. schedule_work() should be fine with this too.
1547 */
1548 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1549
1550 if (llist_add((struct llist_node *)addr, &p->list))
1551 schedule_work(&p->wq);
1552}
1553
1554/**
1555 * vfree_atomic - release memory allocated by vmalloc()
1556 * @addr: memory base address
1557 *
1558 * This one is just like vfree() but can be called in any atomic context
1559 * except NMIs.
1560 */
1561void vfree_atomic(const void *addr)
1562{
1563 BUG_ON(in_nmi());
1564
1565 kmemleak_free(addr);
1566
1567 if (!addr)
1568 return;
1569 __vfree_deferred(addr);
1570}
1571
c67dc624
RP
1572static void __vfree(const void *addr)
1573{
1574 if (unlikely(in_interrupt()))
1575 __vfree_deferred(addr);
1576 else
1577 __vunmap(addr, 1);
1578}
1579
1da177e4
LT
1580/**
1581 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1582 * @addr: memory base address
1583 *
183ff22b 1584 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1585 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1586 * NULL, no operation is performed.
1da177e4 1587 *
32fcfd40
AV
1588 * Must not be called in NMI context (strictly speaking, only if we don't
1589 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1590 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 1591 *
3ca4ea3a
AR
1592 * May sleep if called *not* from interrupt context.
1593 *
0e056eb5 1594 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 1595 */
b3bdda02 1596void vfree(const void *addr)
1da177e4 1597{
32fcfd40 1598 BUG_ON(in_nmi());
89219d37
CM
1599
1600 kmemleak_free(addr);
1601
a8dda165
AR
1602 might_sleep_if(!in_interrupt());
1603
32fcfd40
AV
1604 if (!addr)
1605 return;
c67dc624
RP
1606
1607 __vfree(addr);
1da177e4 1608}
1da177e4
LT
1609EXPORT_SYMBOL(vfree);
1610
1611/**
1612 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1613 * @addr: memory base address
1614 *
1615 * Free the virtually contiguous memory area starting at @addr,
1616 * which was created from the page array passed to vmap().
1617 *
80e93eff 1618 * Must not be called in interrupt context.
1da177e4 1619 */
b3bdda02 1620void vunmap(const void *addr)
1da177e4
LT
1621{
1622 BUG_ON(in_interrupt());
34754b69 1623 might_sleep();
32fcfd40
AV
1624 if (addr)
1625 __vunmap(addr, 0);
1da177e4 1626}
1da177e4
LT
1627EXPORT_SYMBOL(vunmap);
1628
1629/**
1630 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1631 * @pages: array of page pointers
1632 * @count: number of pages to map
1633 * @flags: vm_area->flags
1634 * @prot: page protection for the mapping
1635 *
1636 * Maps @count pages from @pages into contiguous kernel virtual
1637 * space.
1638 */
1639void *vmap(struct page **pages, unsigned int count,
1640 unsigned long flags, pgprot_t prot)
1641{
1642 struct vm_struct *area;
65ee03c4 1643 unsigned long size; /* In bytes */
1da177e4 1644
34754b69
PZ
1645 might_sleep();
1646
ca79b0c2 1647 if (count > totalram_pages())
1da177e4
LT
1648 return NULL;
1649
65ee03c4
GJM
1650 size = (unsigned long)count << PAGE_SHIFT;
1651 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
1652 if (!area)
1653 return NULL;
23016969 1654
f6f8ed47 1655 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1656 vunmap(area->addr);
1657 return NULL;
1658 }
1659
1660 return area->addr;
1661}
1da177e4
LT
1662EXPORT_SYMBOL(vmap);
1663
8594a21c
MH
1664static void *__vmalloc_node(unsigned long size, unsigned long align,
1665 gfp_t gfp_mask, pgprot_t prot,
1666 int node, const void *caller);
e31d9eb5 1667static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1668 pgprot_t prot, int node)
1da177e4
LT
1669{
1670 struct page **pages;
1671 unsigned int nr_pages, array_size, i;
930f036b 1672 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
1673 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1674 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1675 0 :
1676 __GFP_HIGHMEM;
1da177e4 1677
762216ab 1678 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1679 array_size = (nr_pages * sizeof(struct page *));
1680
1681 area->nr_pages = nr_pages;
1682 /* Please note that the recursion is strictly bounded. */
8757d5fa 1683 if (array_size > PAGE_SIZE) {
704b862f 1684 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 1685 PAGE_KERNEL, node, area->caller);
286e1ea3 1686 } else {
976d6dfb 1687 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1688 }
1da177e4
LT
1689 area->pages = pages;
1690 if (!area->pages) {
1691 remove_vm_area(area->addr);
1692 kfree(area);
1693 return NULL;
1694 }
1da177e4
LT
1695
1696 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1697 struct page *page;
1698
4b90951c 1699 if (node == NUMA_NO_NODE)
704b862f 1700 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 1701 else
704b862f 1702 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
1703
1704 if (unlikely(!page)) {
1da177e4
LT
1705 /* Successfully allocated i pages, free them in __vunmap() */
1706 area->nr_pages = i;
1707 goto fail;
1708 }
bf53d6f8 1709 area->pages[i] = page;
704b862f 1710 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
660654f9 1711 cond_resched();
1da177e4
LT
1712 }
1713
f6f8ed47 1714 if (map_vm_area(area, prot, pages))
1da177e4
LT
1715 goto fail;
1716 return area->addr;
1717
1718fail:
a8e99259 1719 warn_alloc(gfp_mask, NULL,
7877cdcc 1720 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 1721 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 1722 __vfree(area->addr);
1da177e4
LT
1723 return NULL;
1724}
1725
1726/**
d0a21265 1727 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1728 * @size: allocation size
2dca6999 1729 * @align: desired alignment
d0a21265
DR
1730 * @start: vm area range start
1731 * @end: vm area range end
1da177e4
LT
1732 * @gfp_mask: flags for the page level allocator
1733 * @prot: protection mask for the allocated pages
cb9e3c29 1734 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1735 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1736 * @caller: caller's return address
1da177e4
LT
1737 *
1738 * Allocate enough pages to cover @size from the page level
1739 * allocator with @gfp_mask flags. Map them into contiguous
1740 * kernel virtual space, using a pagetable protection of @prot.
1741 */
d0a21265
DR
1742void *__vmalloc_node_range(unsigned long size, unsigned long align,
1743 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1744 pgprot_t prot, unsigned long vm_flags, int node,
1745 const void *caller)
1da177e4
LT
1746{
1747 struct vm_struct *area;
89219d37
CM
1748 void *addr;
1749 unsigned long real_size = size;
1da177e4
LT
1750
1751 size = PAGE_ALIGN(size);
ca79b0c2 1752 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 1753 goto fail;
1da177e4 1754
cb9e3c29
AR
1755 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1756 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1757 if (!area)
de7d2b56 1758 goto fail;
1da177e4 1759
3722e13c 1760 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1761 if (!addr)
b82225f3 1762 return NULL;
89219d37 1763
f5252e00 1764 /*
20fc02b4
ZY
1765 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1766 * flag. It means that vm_struct is not fully initialized.
4341fa45 1767 * Now, it is fully initialized, so remove this flag here.
f5252e00 1768 */
20fc02b4 1769 clear_vm_uninitialized_flag(area);
f5252e00 1770
94f4a161 1771 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
1772
1773 return addr;
de7d2b56
JP
1774
1775fail:
a8e99259 1776 warn_alloc(gfp_mask, NULL,
7877cdcc 1777 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 1778 return NULL;
1da177e4
LT
1779}
1780
153178ed
URS
1781/*
1782 * This is only for performance analysis of vmalloc and stress purpose.
1783 * It is required by vmalloc test module, therefore do not use it other
1784 * than that.
1785 */
1786#ifdef CONFIG_TEST_VMALLOC_MODULE
1787EXPORT_SYMBOL_GPL(__vmalloc_node_range);
1788#endif
1789
d0a21265
DR
1790/**
1791 * __vmalloc_node - allocate virtually contiguous memory
1792 * @size: allocation size
1793 * @align: desired alignment
1794 * @gfp_mask: flags for the page level allocator
1795 * @prot: protection mask for the allocated pages
00ef2d2f 1796 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1797 * @caller: caller's return address
1798 *
1799 * Allocate enough pages to cover @size from the page level
1800 * allocator with @gfp_mask flags. Map them into contiguous
1801 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 1802 *
dcda9b04 1803 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
a7c3e901
MH
1804 * and __GFP_NOFAIL are not supported
1805 *
1806 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1807 * with mm people.
1808 *
d0a21265 1809 */
8594a21c 1810static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 1811 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1812 int node, const void *caller)
d0a21265
DR
1813{
1814 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1815 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1816}
1817
930fc45a
CL
1818void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1819{
00ef2d2f 1820 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1821 __builtin_return_address(0));
930fc45a 1822}
1da177e4
LT
1823EXPORT_SYMBOL(__vmalloc);
1824
8594a21c
MH
1825static inline void *__vmalloc_node_flags(unsigned long size,
1826 int node, gfp_t flags)
1827{
1828 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1829 node, __builtin_return_address(0));
1830}
1831
1832
1833void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1834 void *caller)
1835{
1836 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1837}
1838
1da177e4
LT
1839/**
1840 * vmalloc - allocate virtually contiguous memory
1da177e4 1841 * @size: allocation size
1da177e4
LT
1842 * Allocate enough pages to cover @size from the page level
1843 * allocator and map them into contiguous kernel virtual space.
1844 *
c1c8897f 1845 * For tight control over page level allocator and protection flags
1da177e4
LT
1846 * use __vmalloc() instead.
1847 */
1848void *vmalloc(unsigned long size)
1849{
00ef2d2f 1850 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 1851 GFP_KERNEL);
1da177e4 1852}
1da177e4
LT
1853EXPORT_SYMBOL(vmalloc);
1854
e1ca7788
DY
1855/**
1856 * vzalloc - allocate virtually contiguous memory with zero fill
1857 * @size: allocation size
1858 * Allocate enough pages to cover @size from the page level
1859 * allocator and map them into contiguous kernel virtual space.
1860 * The memory allocated is set to zero.
1861 *
1862 * For tight control over page level allocator and protection flags
1863 * use __vmalloc() instead.
1864 */
1865void *vzalloc(unsigned long size)
1866{
00ef2d2f 1867 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 1868 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
1869}
1870EXPORT_SYMBOL(vzalloc);
1871
83342314 1872/**
ead04089
REB
1873 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1874 * @size: allocation size
83342314 1875 *
ead04089
REB
1876 * The resulting memory area is zeroed so it can be mapped to userspace
1877 * without leaking data.
83342314
NP
1878 */
1879void *vmalloc_user(unsigned long size)
1880{
bc84c535
RP
1881 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
1882 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
1883 VM_USERMAP, NUMA_NO_NODE,
1884 __builtin_return_address(0));
83342314
NP
1885}
1886EXPORT_SYMBOL(vmalloc_user);
1887
930fc45a
CL
1888/**
1889 * vmalloc_node - allocate memory on a specific node
930fc45a 1890 * @size: allocation size
d44e0780 1891 * @node: numa node
930fc45a
CL
1892 *
1893 * Allocate enough pages to cover @size from the page level
1894 * allocator and map them into contiguous kernel virtual space.
1895 *
c1c8897f 1896 * For tight control over page level allocator and protection flags
930fc45a
CL
1897 * use __vmalloc() instead.
1898 */
1899void *vmalloc_node(unsigned long size, int node)
1900{
19809c2d 1901 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 1902 node, __builtin_return_address(0));
930fc45a
CL
1903}
1904EXPORT_SYMBOL(vmalloc_node);
1905
e1ca7788
DY
1906/**
1907 * vzalloc_node - allocate memory on a specific node with zero fill
1908 * @size: allocation size
1909 * @node: numa node
1910 *
1911 * Allocate enough pages to cover @size from the page level
1912 * allocator and map them into contiguous kernel virtual space.
1913 * The memory allocated is set to zero.
1914 *
1915 * For tight control over page level allocator and protection flags
1916 * use __vmalloc_node() instead.
1917 */
1918void *vzalloc_node(unsigned long size, int node)
1919{
1920 return __vmalloc_node_flags(size, node,
19809c2d 1921 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
1922}
1923EXPORT_SYMBOL(vzalloc_node);
1924
1da177e4
LT
1925/**
1926 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1927 * @size: allocation size
1928 *
1929 * Kernel-internal function to allocate enough pages to cover @size
1930 * the page level allocator and map them into contiguous and
1931 * executable kernel virtual space.
1932 *
c1c8897f 1933 * For tight control over page level allocator and protection flags
1da177e4
LT
1934 * use __vmalloc() instead.
1935 */
1936
1da177e4
LT
1937void *vmalloc_exec(unsigned long size)
1938{
19809c2d 1939 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
00ef2d2f 1940 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1941}
1942
0d08e0d3 1943#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 1944#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 1945#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 1946#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 1947#else
698d0831
MH
1948/*
1949 * 64b systems should always have either DMA or DMA32 zones. For others
1950 * GFP_DMA32 should do the right thing and use the normal zone.
1951 */
1952#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
1953#endif
1954
1da177e4
LT
1955/**
1956 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1957 * @size: allocation size
1958 *
1959 * Allocate enough 32bit PA addressable pages to cover @size from the
1960 * page level allocator and map them into contiguous kernel virtual space.
1961 */
1962void *vmalloc_32(unsigned long size)
1963{
2dca6999 1964 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1965 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1966}
1da177e4
LT
1967EXPORT_SYMBOL(vmalloc_32);
1968
83342314 1969/**
ead04089 1970 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1971 * @size: allocation size
ead04089
REB
1972 *
1973 * The resulting memory area is 32bit addressable and zeroed so it can be
1974 * mapped to userspace without leaking data.
83342314
NP
1975 */
1976void *vmalloc_32_user(unsigned long size)
1977{
bc84c535
RP
1978 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
1979 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1980 VM_USERMAP, NUMA_NO_NODE,
1981 __builtin_return_address(0));
83342314
NP
1982}
1983EXPORT_SYMBOL(vmalloc_32_user);
1984
d0107eb0
KH
1985/*
1986 * small helper routine , copy contents to buf from addr.
1987 * If the page is not present, fill zero.
1988 */
1989
1990static int aligned_vread(char *buf, char *addr, unsigned long count)
1991{
1992 struct page *p;
1993 int copied = 0;
1994
1995 while (count) {
1996 unsigned long offset, length;
1997
891c49ab 1998 offset = offset_in_page(addr);
d0107eb0
KH
1999 length = PAGE_SIZE - offset;
2000 if (length > count)
2001 length = count;
2002 p = vmalloc_to_page(addr);
2003 /*
2004 * To do safe access to this _mapped_ area, we need
2005 * lock. But adding lock here means that we need to add
2006 * overhead of vmalloc()/vfree() calles for this _debug_
2007 * interface, rarely used. Instead of that, we'll use
2008 * kmap() and get small overhead in this access function.
2009 */
2010 if (p) {
2011 /*
2012 * we can expect USER0 is not used (see vread/vwrite's
2013 * function description)
2014 */
9b04c5fe 2015 void *map = kmap_atomic(p);
d0107eb0 2016 memcpy(buf, map + offset, length);
9b04c5fe 2017 kunmap_atomic(map);
d0107eb0
KH
2018 } else
2019 memset(buf, 0, length);
2020
2021 addr += length;
2022 buf += length;
2023 copied += length;
2024 count -= length;
2025 }
2026 return copied;
2027}
2028
2029static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2030{
2031 struct page *p;
2032 int copied = 0;
2033
2034 while (count) {
2035 unsigned long offset, length;
2036
891c49ab 2037 offset = offset_in_page(addr);
d0107eb0
KH
2038 length = PAGE_SIZE - offset;
2039 if (length > count)
2040 length = count;
2041 p = vmalloc_to_page(addr);
2042 /*
2043 * To do safe access to this _mapped_ area, we need
2044 * lock. But adding lock here means that we need to add
2045 * overhead of vmalloc()/vfree() calles for this _debug_
2046 * interface, rarely used. Instead of that, we'll use
2047 * kmap() and get small overhead in this access function.
2048 */
2049 if (p) {
2050 /*
2051 * we can expect USER0 is not used (see vread/vwrite's
2052 * function description)
2053 */
9b04c5fe 2054 void *map = kmap_atomic(p);
d0107eb0 2055 memcpy(map + offset, buf, length);
9b04c5fe 2056 kunmap_atomic(map);
d0107eb0
KH
2057 }
2058 addr += length;
2059 buf += length;
2060 copied += length;
2061 count -= length;
2062 }
2063 return copied;
2064}
2065
2066/**
2067 * vread() - read vmalloc area in a safe way.
2068 * @buf: buffer for reading data
2069 * @addr: vm address.
2070 * @count: number of bytes to be read.
2071 *
2072 * Returns # of bytes which addr and buf should be increased.
2073 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2074 * includes any intersect with alive vmalloc area.
2075 *
2076 * This function checks that addr is a valid vmalloc'ed area, and
2077 * copy data from that area to a given buffer. If the given memory range
2078 * of [addr...addr+count) includes some valid address, data is copied to
2079 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2080 * IOREMAP area is treated as memory hole and no copy is done.
2081 *
2082 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2083 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2084 *
2085 * Note: In usual ops, vread() is never necessary because the caller
2086 * should know vmalloc() area is valid and can use memcpy().
2087 * This is for routines which have to access vmalloc area without
2088 * any informaion, as /dev/kmem.
2089 *
2090 */
2091
1da177e4
LT
2092long vread(char *buf, char *addr, unsigned long count)
2093{
e81ce85f
JK
2094 struct vmap_area *va;
2095 struct vm_struct *vm;
1da177e4 2096 char *vaddr, *buf_start = buf;
d0107eb0 2097 unsigned long buflen = count;
1da177e4
LT
2098 unsigned long n;
2099
2100 /* Don't allow overflow */
2101 if ((unsigned long) addr + count < count)
2102 count = -(unsigned long) addr;
2103
e81ce85f
JK
2104 spin_lock(&vmap_area_lock);
2105 list_for_each_entry(va, &vmap_area_list, list) {
2106 if (!count)
2107 break;
2108
2109 if (!(va->flags & VM_VM_AREA))
2110 continue;
2111
2112 vm = va->vm;
2113 vaddr = (char *) vm->addr;
762216ab 2114 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2115 continue;
2116 while (addr < vaddr) {
2117 if (count == 0)
2118 goto finished;
2119 *buf = '\0';
2120 buf++;
2121 addr++;
2122 count--;
2123 }
762216ab 2124 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2125 if (n > count)
2126 n = count;
e81ce85f 2127 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2128 aligned_vread(buf, addr, n);
2129 else /* IOREMAP area is treated as memory hole */
2130 memset(buf, 0, n);
2131 buf += n;
2132 addr += n;
2133 count -= n;
1da177e4
LT
2134 }
2135finished:
e81ce85f 2136 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2137
2138 if (buf == buf_start)
2139 return 0;
2140 /* zero-fill memory holes */
2141 if (buf != buf_start + buflen)
2142 memset(buf, 0, buflen - (buf - buf_start));
2143
2144 return buflen;
1da177e4
LT
2145}
2146
d0107eb0
KH
2147/**
2148 * vwrite() - write vmalloc area in a safe way.
2149 * @buf: buffer for source data
2150 * @addr: vm address.
2151 * @count: number of bytes to be read.
2152 *
2153 * Returns # of bytes which addr and buf should be incresed.
2154 * (same number to @count).
2155 * If [addr...addr+count) doesn't includes any intersect with valid
2156 * vmalloc area, returns 0.
2157 *
2158 * This function checks that addr is a valid vmalloc'ed area, and
2159 * copy data from a buffer to the given addr. If specified range of
2160 * [addr...addr+count) includes some valid address, data is copied from
2161 * proper area of @buf. If there are memory holes, no copy to hole.
2162 * IOREMAP area is treated as memory hole and no copy is done.
2163 *
2164 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2165 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2166 *
2167 * Note: In usual ops, vwrite() is never necessary because the caller
2168 * should know vmalloc() area is valid and can use memcpy().
2169 * This is for routines which have to access vmalloc area without
2170 * any informaion, as /dev/kmem.
d0107eb0
KH
2171 */
2172
1da177e4
LT
2173long vwrite(char *buf, char *addr, unsigned long count)
2174{
e81ce85f
JK
2175 struct vmap_area *va;
2176 struct vm_struct *vm;
d0107eb0
KH
2177 char *vaddr;
2178 unsigned long n, buflen;
2179 int copied = 0;
1da177e4
LT
2180
2181 /* Don't allow overflow */
2182 if ((unsigned long) addr + count < count)
2183 count = -(unsigned long) addr;
d0107eb0 2184 buflen = count;
1da177e4 2185
e81ce85f
JK
2186 spin_lock(&vmap_area_lock);
2187 list_for_each_entry(va, &vmap_area_list, list) {
2188 if (!count)
2189 break;
2190
2191 if (!(va->flags & VM_VM_AREA))
2192 continue;
2193
2194 vm = va->vm;
2195 vaddr = (char *) vm->addr;
762216ab 2196 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2197 continue;
2198 while (addr < vaddr) {
2199 if (count == 0)
2200 goto finished;
2201 buf++;
2202 addr++;
2203 count--;
2204 }
762216ab 2205 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2206 if (n > count)
2207 n = count;
e81ce85f 2208 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2209 aligned_vwrite(buf, addr, n);
2210 copied++;
2211 }
2212 buf += n;
2213 addr += n;
2214 count -= n;
1da177e4
LT
2215 }
2216finished:
e81ce85f 2217 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2218 if (!copied)
2219 return 0;
2220 return buflen;
1da177e4 2221}
83342314
NP
2222
2223/**
e69e9d4a
HD
2224 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2225 * @vma: vma to cover
2226 * @uaddr: target user address to start at
2227 * @kaddr: virtual address of vmalloc kernel memory
2228 * @size: size of map area
7682486b
RD
2229 *
2230 * Returns: 0 for success, -Exxx on failure
83342314 2231 *
e69e9d4a
HD
2232 * This function checks that @kaddr is a valid vmalloc'ed area,
2233 * and that it is big enough to cover the range starting at
2234 * @uaddr in @vma. Will return failure if that criteria isn't
2235 * met.
83342314 2236 *
72fd4a35 2237 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2238 */
e69e9d4a
HD
2239int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2240 void *kaddr, unsigned long size)
83342314
NP
2241{
2242 struct vm_struct *area;
83342314 2243
e69e9d4a
HD
2244 size = PAGE_ALIGN(size);
2245
2246 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2247 return -EINVAL;
2248
e69e9d4a 2249 area = find_vm_area(kaddr);
83342314 2250 if (!area)
db64fe02 2251 return -EINVAL;
83342314
NP
2252
2253 if (!(area->flags & VM_USERMAP))
db64fe02 2254 return -EINVAL;
83342314 2255
401592d2 2256 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 2257 return -EINVAL;
83342314 2258
83342314 2259 do {
e69e9d4a 2260 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2261 int ret;
2262
83342314
NP
2263 ret = vm_insert_page(vma, uaddr, page);
2264 if (ret)
2265 return ret;
2266
2267 uaddr += PAGE_SIZE;
e69e9d4a
HD
2268 kaddr += PAGE_SIZE;
2269 size -= PAGE_SIZE;
2270 } while (size > 0);
83342314 2271
314e51b9 2272 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2273
db64fe02 2274 return 0;
83342314 2275}
e69e9d4a
HD
2276EXPORT_SYMBOL(remap_vmalloc_range_partial);
2277
2278/**
2279 * remap_vmalloc_range - map vmalloc pages to userspace
2280 * @vma: vma to cover (map full range of vma)
2281 * @addr: vmalloc memory
2282 * @pgoff: number of pages into addr before first page to map
2283 *
2284 * Returns: 0 for success, -Exxx on failure
2285 *
2286 * This function checks that addr is a valid vmalloc'ed area, and
2287 * that it is big enough to cover the vma. Will return failure if
2288 * that criteria isn't met.
2289 *
2290 * Similar to remap_pfn_range() (see mm/memory.c)
2291 */
2292int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2293 unsigned long pgoff)
2294{
2295 return remap_vmalloc_range_partial(vma, vma->vm_start,
2296 addr + (pgoff << PAGE_SHIFT),
2297 vma->vm_end - vma->vm_start);
2298}
83342314
NP
2299EXPORT_SYMBOL(remap_vmalloc_range);
2300
1eeb66a1
CH
2301/*
2302 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2303 * have one.
2304 */
3b32123d 2305void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2306{
2307}
5f4352fb
JF
2308
2309
2f569afd 2310static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2311{
cd12909c
DV
2312 pte_t ***p = data;
2313
2314 if (p) {
2315 *(*p) = pte;
2316 (*p)++;
2317 }
5f4352fb
JF
2318 return 0;
2319}
2320
2321/**
2322 * alloc_vm_area - allocate a range of kernel address space
2323 * @size: size of the area
cd12909c 2324 * @ptes: returns the PTEs for the address space
7682486b
RD
2325 *
2326 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2327 *
2328 * This function reserves a range of kernel address space, and
2329 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2330 * are created.
2331 *
2332 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2333 * allocated for the VM area are returned.
5f4352fb 2334 */
cd12909c 2335struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2336{
2337 struct vm_struct *area;
2338
23016969
CL
2339 area = get_vm_area_caller(size, VM_IOREMAP,
2340 __builtin_return_address(0));
5f4352fb
JF
2341 if (area == NULL)
2342 return NULL;
2343
2344 /*
2345 * This ensures that page tables are constructed for this region
2346 * of kernel virtual address space and mapped into init_mm.
2347 */
2348 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2349 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2350 free_vm_area(area);
2351 return NULL;
2352 }
2353
5f4352fb
JF
2354 return area;
2355}
2356EXPORT_SYMBOL_GPL(alloc_vm_area);
2357
2358void free_vm_area(struct vm_struct *area)
2359{
2360 struct vm_struct *ret;
2361 ret = remove_vm_area(area->addr);
2362 BUG_ON(ret != area);
2363 kfree(area);
2364}
2365EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2366
4f8b02b4 2367#ifdef CONFIG_SMP
ca23e405
TH
2368static struct vmap_area *node_to_va(struct rb_node *n)
2369{
4583e773 2370 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
2371}
2372
2373/**
2374 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2375 * @end: target address
2376 * @pnext: out arg for the next vmap_area
2377 * @pprev: out arg for the previous vmap_area
2378 *
2379 * Returns: %true if either or both of next and prev are found,
2380 * %false if no vmap_area exists
2381 *
2382 * Find vmap_areas end addresses of which enclose @end. ie. if not
2383 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2384 */
2385static bool pvm_find_next_prev(unsigned long end,
2386 struct vmap_area **pnext,
2387 struct vmap_area **pprev)
2388{
2389 struct rb_node *n = vmap_area_root.rb_node;
2390 struct vmap_area *va = NULL;
2391
2392 while (n) {
2393 va = rb_entry(n, struct vmap_area, rb_node);
2394 if (end < va->va_end)
2395 n = n->rb_left;
2396 else if (end > va->va_end)
2397 n = n->rb_right;
2398 else
2399 break;
2400 }
2401
2402 if (!va)
2403 return false;
2404
2405 if (va->va_end > end) {
2406 *pnext = va;
2407 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2408 } else {
2409 *pprev = va;
2410 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2411 }
2412 return true;
2413}
2414
2415/**
2416 * pvm_determine_end - find the highest aligned address between two vmap_areas
2417 * @pnext: in/out arg for the next vmap_area
2418 * @pprev: in/out arg for the previous vmap_area
2419 * @align: alignment
2420 *
2421 * Returns: determined end address
2422 *
2423 * Find the highest aligned address between *@pnext and *@pprev below
2424 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2425 * down address is between the end addresses of the two vmap_areas.
2426 *
2427 * Please note that the address returned by this function may fall
2428 * inside *@pnext vmap_area. The caller is responsible for checking
2429 * that.
2430 */
2431static unsigned long pvm_determine_end(struct vmap_area **pnext,
2432 struct vmap_area **pprev,
2433 unsigned long align)
2434{
2435 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2436 unsigned long addr;
2437
2438 if (*pnext)
2439 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2440 else
2441 addr = vmalloc_end;
2442
2443 while (*pprev && (*pprev)->va_end > addr) {
2444 *pnext = *pprev;
2445 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2446 }
2447
2448 return addr;
2449}
2450
2451/**
2452 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2453 * @offsets: array containing offset of each area
2454 * @sizes: array containing size of each area
2455 * @nr_vms: the number of areas to allocate
2456 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2457 *
2458 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2459 * vm_structs on success, %NULL on failure
2460 *
2461 * Percpu allocator wants to use congruent vm areas so that it can
2462 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2463 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2464 * be scattered pretty far, distance between two areas easily going up
2465 * to gigabytes. To avoid interacting with regular vmallocs, these
2466 * areas are allocated from top.
ca23e405
TH
2467 *
2468 * Despite its complicated look, this allocator is rather simple. It
2469 * does everything top-down and scans areas from the end looking for
2470 * matching slot. While scanning, if any of the areas overlaps with
2471 * existing vmap_area, the base address is pulled down to fit the
2472 * area. Scanning is repeated till all the areas fit and then all
c568da28 2473 * necessary data structures are inserted and the result is returned.
ca23e405
TH
2474 */
2475struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2476 const size_t *sizes, int nr_vms,
ec3f64fc 2477 size_t align)
ca23e405
TH
2478{
2479 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2480 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2481 struct vmap_area **vas, *prev, *next;
2482 struct vm_struct **vms;
2483 int area, area2, last_area, term_area;
2484 unsigned long base, start, end, last_end;
2485 bool purged = false;
2486
ca23e405 2487 /* verify parameters and allocate data structures */
891c49ab 2488 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2489 for (last_area = 0, area = 0; area < nr_vms; area++) {
2490 start = offsets[area];
2491 end = start + sizes[area];
2492
2493 /* is everything aligned properly? */
2494 BUG_ON(!IS_ALIGNED(offsets[area], align));
2495 BUG_ON(!IS_ALIGNED(sizes[area], align));
2496
2497 /* detect the area with the highest address */
2498 if (start > offsets[last_area])
2499 last_area = area;
2500
c568da28 2501 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
2502 unsigned long start2 = offsets[area2];
2503 unsigned long end2 = start2 + sizes[area2];
2504
c568da28 2505 BUG_ON(start2 < end && start < end2);
ca23e405
TH
2506 }
2507 }
2508 last_end = offsets[last_area] + sizes[last_area];
2509
2510 if (vmalloc_end - vmalloc_start < last_end) {
2511 WARN_ON(true);
2512 return NULL;
2513 }
2514
4d67d860
TM
2515 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2516 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2517 if (!vas || !vms)
f1db7afd 2518 goto err_free2;
ca23e405
TH
2519
2520 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2521 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2522 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2523 if (!vas[area] || !vms[area])
2524 goto err_free;
2525 }
2526retry:
2527 spin_lock(&vmap_area_lock);
2528
2529 /* start scanning - we scan from the top, begin with the last area */
2530 area = term_area = last_area;
2531 start = offsets[area];
2532 end = start + sizes[area];
2533
2534 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2535 base = vmalloc_end - last_end;
2536 goto found;
2537 }
2538 base = pvm_determine_end(&next, &prev, align) - end;
2539
2540 while (true) {
2541 BUG_ON(next && next->va_end <= base + end);
2542 BUG_ON(prev && prev->va_end > base + end);
2543
2544 /*
2545 * base might have underflowed, add last_end before
2546 * comparing.
2547 */
2548 if (base + last_end < vmalloc_start + last_end) {
2549 spin_unlock(&vmap_area_lock);
2550 if (!purged) {
2551 purge_vmap_area_lazy();
2552 purged = true;
2553 goto retry;
2554 }
2555 goto err_free;
2556 }
2557
2558 /*
2559 * If next overlaps, move base downwards so that it's
2560 * right below next and then recheck.
2561 */
2562 if (next && next->va_start < base + end) {
2563 base = pvm_determine_end(&next, &prev, align) - end;
2564 term_area = area;
2565 continue;
2566 }
2567
2568 /*
2569 * If prev overlaps, shift down next and prev and move
2570 * base so that it's right below new next and then
2571 * recheck.
2572 */
2573 if (prev && prev->va_end > base + start) {
2574 next = prev;
2575 prev = node_to_va(rb_prev(&next->rb_node));
2576 base = pvm_determine_end(&next, &prev, align) - end;
2577 term_area = area;
2578 continue;
2579 }
2580
2581 /*
2582 * This area fits, move on to the previous one. If
2583 * the previous one is the terminal one, we're done.
2584 */
2585 area = (area + nr_vms - 1) % nr_vms;
2586 if (area == term_area)
2587 break;
2588 start = offsets[area];
2589 end = start + sizes[area];
2590 pvm_find_next_prev(base + end, &next, &prev);
2591 }
2592found:
2593 /* we've found a fitting base, insert all va's */
2594 for (area = 0; area < nr_vms; area++) {
2595 struct vmap_area *va = vas[area];
2596
2597 va->va_start = base + offsets[area];
2598 va->va_end = va->va_start + sizes[area];
2599 __insert_vmap_area(va);
2600 }
2601
2602 vmap_area_pcpu_hole = base + offsets[last_area];
2603
2604 spin_unlock(&vmap_area_lock);
2605
2606 /* insert all vm's */
2607 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2608 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2609 pcpu_get_vm_areas);
ca23e405
TH
2610
2611 kfree(vas);
2612 return vms;
2613
2614err_free:
2615 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2616 kfree(vas[area]);
2617 kfree(vms[area]);
ca23e405 2618 }
f1db7afd 2619err_free2:
ca23e405
TH
2620 kfree(vas);
2621 kfree(vms);
2622 return NULL;
2623}
2624
2625/**
2626 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2627 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2628 * @nr_vms: the number of allocated areas
2629 *
2630 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2631 */
2632void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2633{
2634 int i;
2635
2636 for (i = 0; i < nr_vms; i++)
2637 free_vm_area(vms[i]);
2638 kfree(vms);
2639}
4f8b02b4 2640#endif /* CONFIG_SMP */
a10aa579
CL
2641
2642#ifdef CONFIG_PROC_FS
2643static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2644 __acquires(&vmap_area_lock)
a10aa579 2645{
d4033afd 2646 spin_lock(&vmap_area_lock);
3f500069 2647 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
2648}
2649
2650static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2651{
3f500069 2652 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
2653}
2654
2655static void s_stop(struct seq_file *m, void *p)
d4033afd 2656 __releases(&vmap_area_lock)
a10aa579 2657{
d4033afd 2658 spin_unlock(&vmap_area_lock);
a10aa579
CL
2659}
2660
a47a126a
ED
2661static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2662{
e5adfffc 2663 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2664 unsigned int nr, *counters = m->private;
2665
2666 if (!counters)
2667 return;
2668
af12346c
WL
2669 if (v->flags & VM_UNINITIALIZED)
2670 return;
7e5b528b
DV
2671 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2672 smp_rmb();
af12346c 2673
a47a126a
ED
2674 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2675
2676 for (nr = 0; nr < v->nr_pages; nr++)
2677 counters[page_to_nid(v->pages[nr])]++;
2678
2679 for_each_node_state(nr, N_HIGH_MEMORY)
2680 if (counters[nr])
2681 seq_printf(m, " N%u=%u", nr, counters[nr]);
2682 }
2683}
2684
a10aa579
CL
2685static int s_show(struct seq_file *m, void *p)
2686{
3f500069 2687 struct vmap_area *va;
d4033afd
JK
2688 struct vm_struct *v;
2689
3f500069 2690 va = list_entry(p, struct vmap_area, list);
2691
c2ce8c14
WL
2692 /*
2693 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2694 * behalf of vmap area is being tear down or vm_map_ram allocation.
2695 */
78c72746
YX
2696 if (!(va->flags & VM_VM_AREA)) {
2697 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2698 (void *)va->va_start, (void *)va->va_end,
2699 va->va_end - va->va_start,
2700 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2701
d4033afd 2702 return 0;
78c72746 2703 }
d4033afd
JK
2704
2705 v = va->vm;
a10aa579 2706
45ec1690 2707 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2708 v->addr, v->addr + v->size, v->size);
2709
62c70bce
JP
2710 if (v->caller)
2711 seq_printf(m, " %pS", v->caller);
23016969 2712
a10aa579
CL
2713 if (v->nr_pages)
2714 seq_printf(m, " pages=%d", v->nr_pages);
2715
2716 if (v->phys_addr)
199eaa05 2717 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
2718
2719 if (v->flags & VM_IOREMAP)
f4527c90 2720 seq_puts(m, " ioremap");
a10aa579
CL
2721
2722 if (v->flags & VM_ALLOC)
f4527c90 2723 seq_puts(m, " vmalloc");
a10aa579
CL
2724
2725 if (v->flags & VM_MAP)
f4527c90 2726 seq_puts(m, " vmap");
a10aa579
CL
2727
2728 if (v->flags & VM_USERMAP)
f4527c90 2729 seq_puts(m, " user");
a10aa579 2730
244d63ee 2731 if (is_vmalloc_addr(v->pages))
f4527c90 2732 seq_puts(m, " vpages");
a10aa579 2733
a47a126a 2734 show_numa_info(m, v);
a10aa579
CL
2735 seq_putc(m, '\n');
2736 return 0;
2737}
2738
5f6a6a9c 2739static const struct seq_operations vmalloc_op = {
a10aa579
CL
2740 .start = s_start,
2741 .next = s_next,
2742 .stop = s_stop,
2743 .show = s_show,
2744};
5f6a6a9c 2745
5f6a6a9c
AD
2746static int __init proc_vmalloc_init(void)
2747{
fddda2b7 2748 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 2749 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
2750 &vmalloc_op,
2751 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 2752 else
0825a6f9 2753 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
2754 return 0;
2755}
2756module_init(proc_vmalloc_init);
db3808c1 2757
a10aa579
CL
2758#endif
2759