mm, vmalloc: remove list management of vmlist after initializing vmalloc
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
60063497 29#include <linux/atomic.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
2dca6999 32#include <asm/shmparam.h>
1da177e4 33
db64fe02 34/*** Page table manipulation functions ***/
b221385b 35
1da177e4
LT
36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37{
38 pte_t *pte;
39
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
45}
46
db64fe02 47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
48{
49 pmd_t *pmd;
50 unsigned long next;
51
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
59}
60
db64fe02 61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
62{
63 pud_t *pud;
64 unsigned long next;
65
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
73}
74
db64fe02 75static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
76{
77 pgd_t *pgd;
78 unsigned long next;
1da177e4
LT
79
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
1da177e4
LT
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
1da177e4
LT
88}
89
90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
92{
93 pte_t *pte;
94
db64fe02
NP
95 /*
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
98 */
99
872fec16 100 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
101 if (!pte)
102 return -ENOMEM;
103 do {
db64fe02
NP
104 struct page *page = pages[*nr];
105
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
1da177e4
LT
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 111 (*nr)++;
1da177e4
LT
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
114}
115
db64fe02
NP
116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
118{
119 pmd_t *pmd;
120 unsigned long next;
121
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
db64fe02 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
131}
132
db64fe02
NP
133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
135{
136 pud_t *pud;
137 unsigned long next;
138
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
db64fe02 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
148}
149
db64fe02
NP
150/*
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
153 *
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 */
8fc48985
TH
156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
1da177e4
LT
158{
159 pgd_t *pgd;
160 unsigned long next;
2e4e27c7 161 unsigned long addr = start;
db64fe02
NP
162 int err = 0;
163 int nr = 0;
1da177e4
LT
164
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
1da177e4
LT
167 do {
168 next = pgd_addr_end(addr, end);
db64fe02 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 170 if (err)
bf88c8c8 171 return err;
1da177e4 172 } while (pgd++, addr = next, addr != end);
db64fe02 173
db64fe02 174 return nr;
1da177e4
LT
175}
176
8fc48985
TH
177static int vmap_page_range(unsigned long start, unsigned long end,
178 pgprot_t prot, struct page **pages)
179{
180 int ret;
181
182 ret = vmap_page_range_noflush(start, end, prot, pages);
183 flush_cache_vmap(start, end);
184 return ret;
185}
186
81ac3ad9 187int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
188{
189 /*
ab4f2ee1 190 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
193 */
194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr = (unsigned long)x;
196 if (addr >= MODULES_VADDR && addr < MODULES_END)
197 return 1;
198#endif
199 return is_vmalloc_addr(x);
200}
201
48667e7a 202/*
db64fe02 203 * Walk a vmap address to the struct page it maps.
48667e7a 204 */
b3bdda02 205struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
206{
207 unsigned long addr = (unsigned long) vmalloc_addr;
208 struct page *page = NULL;
209 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 210
7aa413de
IM
211 /*
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
214 */
73bdf0a6 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 216
48667e7a 217 if (!pgd_none(*pgd)) {
db64fe02 218 pud_t *pud = pud_offset(pgd, addr);
48667e7a 219 if (!pud_none(*pud)) {
db64fe02 220 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 221 if (!pmd_none(*pmd)) {
db64fe02
NP
222 pte_t *ptep, pte;
223
48667e7a
CL
224 ptep = pte_offset_map(pmd, addr);
225 pte = *ptep;
226 if (pte_present(pte))
227 page = pte_page(pte);
228 pte_unmap(ptep);
229 }
230 }
231 }
232 return page;
233}
234EXPORT_SYMBOL(vmalloc_to_page);
235
236/*
237 * Map a vmalloc()-space virtual address to the physical page frame number.
238 */
b3bdda02 239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
240{
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242}
243EXPORT_SYMBOL(vmalloc_to_pfn);
244
db64fe02
NP
245
246/*** Global kva allocator ***/
247
248#define VM_LAZY_FREE 0x01
249#define VM_LAZY_FREEING 0x02
250#define VM_VM_AREA 0x04
251
252struct vmap_area {
253 unsigned long va_start;
254 unsigned long va_end;
255 unsigned long flags;
256 struct rb_node rb_node; /* address sorted rbtree */
257 struct list_head list; /* address sorted list */
258 struct list_head purge_list; /* "lazy purge" list */
db1aecaf 259 struct vm_struct *vm;
db64fe02
NP
260 struct rcu_head rcu_head;
261};
262
263static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
264/* Export for kexec only */
265LIST_HEAD(vmap_area_list);
89699605
NP
266static struct rb_root vmap_area_root = RB_ROOT;
267
268/* The vmap cache globals are protected by vmap_area_lock */
269static struct rb_node *free_vmap_cache;
270static unsigned long cached_hole_size;
271static unsigned long cached_vstart;
272static unsigned long cached_align;
273
ca23e405 274static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
275
276static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 277{
db64fe02
NP
278 struct rb_node *n = vmap_area_root.rb_node;
279
280 while (n) {
281 struct vmap_area *va;
282
283 va = rb_entry(n, struct vmap_area, rb_node);
284 if (addr < va->va_start)
285 n = n->rb_left;
286 else if (addr > va->va_start)
287 n = n->rb_right;
288 else
289 return va;
290 }
291
292 return NULL;
293}
294
295static void __insert_vmap_area(struct vmap_area *va)
296{
297 struct rb_node **p = &vmap_area_root.rb_node;
298 struct rb_node *parent = NULL;
299 struct rb_node *tmp;
300
301 while (*p) {
170168d0 302 struct vmap_area *tmp_va;
db64fe02
NP
303
304 parent = *p;
170168d0
NK
305 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
306 if (va->va_start < tmp_va->va_end)
db64fe02 307 p = &(*p)->rb_left;
170168d0 308 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
309 p = &(*p)->rb_right;
310 else
311 BUG();
312 }
313
314 rb_link_node(&va->rb_node, parent, p);
315 rb_insert_color(&va->rb_node, &vmap_area_root);
316
4341fa45 317 /* address-sort this list */
db64fe02
NP
318 tmp = rb_prev(&va->rb_node);
319 if (tmp) {
320 struct vmap_area *prev;
321 prev = rb_entry(tmp, struct vmap_area, rb_node);
322 list_add_rcu(&va->list, &prev->list);
323 } else
324 list_add_rcu(&va->list, &vmap_area_list);
325}
326
327static void purge_vmap_area_lazy(void);
328
329/*
330 * Allocate a region of KVA of the specified size and alignment, within the
331 * vstart and vend.
332 */
333static struct vmap_area *alloc_vmap_area(unsigned long size,
334 unsigned long align,
335 unsigned long vstart, unsigned long vend,
336 int node, gfp_t gfp_mask)
337{
338 struct vmap_area *va;
339 struct rb_node *n;
1da177e4 340 unsigned long addr;
db64fe02 341 int purged = 0;
89699605 342 struct vmap_area *first;
db64fe02 343
7766970c 344 BUG_ON(!size);
db64fe02 345 BUG_ON(size & ~PAGE_MASK);
89699605 346 BUG_ON(!is_power_of_2(align));
db64fe02 347
db64fe02
NP
348 va = kmalloc_node(sizeof(struct vmap_area),
349 gfp_mask & GFP_RECLAIM_MASK, node);
350 if (unlikely(!va))
351 return ERR_PTR(-ENOMEM);
352
353retry:
354 spin_lock(&vmap_area_lock);
89699605
NP
355 /*
356 * Invalidate cache if we have more permissive parameters.
357 * cached_hole_size notes the largest hole noticed _below_
358 * the vmap_area cached in free_vmap_cache: if size fits
359 * into that hole, we want to scan from vstart to reuse
360 * the hole instead of allocating above free_vmap_cache.
361 * Note that __free_vmap_area may update free_vmap_cache
362 * without updating cached_hole_size or cached_align.
363 */
364 if (!free_vmap_cache ||
365 size < cached_hole_size ||
366 vstart < cached_vstart ||
367 align < cached_align) {
368nocache:
369 cached_hole_size = 0;
370 free_vmap_cache = NULL;
371 }
372 /* record if we encounter less permissive parameters */
373 cached_vstart = vstart;
374 cached_align = align;
375
376 /* find starting point for our search */
377 if (free_vmap_cache) {
378 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 379 addr = ALIGN(first->va_end, align);
89699605
NP
380 if (addr < vstart)
381 goto nocache;
382 if (addr + size - 1 < addr)
383 goto overflow;
384
385 } else {
386 addr = ALIGN(vstart, align);
387 if (addr + size - 1 < addr)
388 goto overflow;
389
390 n = vmap_area_root.rb_node;
391 first = NULL;
392
393 while (n) {
db64fe02
NP
394 struct vmap_area *tmp;
395 tmp = rb_entry(n, struct vmap_area, rb_node);
396 if (tmp->va_end >= addr) {
db64fe02 397 first = tmp;
89699605
NP
398 if (tmp->va_start <= addr)
399 break;
400 n = n->rb_left;
401 } else
db64fe02 402 n = n->rb_right;
89699605 403 }
db64fe02
NP
404
405 if (!first)
406 goto found;
db64fe02 407 }
89699605
NP
408
409 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 410 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
411 if (addr + cached_hole_size < first->va_start)
412 cached_hole_size = first->va_start - addr;
248ac0e1 413 addr = ALIGN(first->va_end, align);
89699605
NP
414 if (addr + size - 1 < addr)
415 goto overflow;
416
92ca922f 417 if (list_is_last(&first->list, &vmap_area_list))
89699605 418 goto found;
92ca922f
H
419
420 first = list_entry(first->list.next,
421 struct vmap_area, list);
db64fe02
NP
422 }
423
89699605
NP
424found:
425 if (addr + size > vend)
426 goto overflow;
db64fe02
NP
427
428 va->va_start = addr;
429 va->va_end = addr + size;
430 va->flags = 0;
431 __insert_vmap_area(va);
89699605 432 free_vmap_cache = &va->rb_node;
db64fe02
NP
433 spin_unlock(&vmap_area_lock);
434
89699605
NP
435 BUG_ON(va->va_start & (align-1));
436 BUG_ON(va->va_start < vstart);
437 BUG_ON(va->va_end > vend);
438
db64fe02 439 return va;
89699605
NP
440
441overflow:
442 spin_unlock(&vmap_area_lock);
443 if (!purged) {
444 purge_vmap_area_lazy();
445 purged = 1;
446 goto retry;
447 }
448 if (printk_ratelimit())
449 printk(KERN_WARNING
450 "vmap allocation for size %lu failed: "
451 "use vmalloc=<size> to increase size.\n", size);
452 kfree(va);
453 return ERR_PTR(-EBUSY);
db64fe02
NP
454}
455
db64fe02
NP
456static void __free_vmap_area(struct vmap_area *va)
457{
458 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
459
460 if (free_vmap_cache) {
461 if (va->va_end < cached_vstart) {
462 free_vmap_cache = NULL;
463 } else {
464 struct vmap_area *cache;
465 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
466 if (va->va_start <= cache->va_start) {
467 free_vmap_cache = rb_prev(&va->rb_node);
468 /*
469 * We don't try to update cached_hole_size or
470 * cached_align, but it won't go very wrong.
471 */
472 }
473 }
474 }
db64fe02
NP
475 rb_erase(&va->rb_node, &vmap_area_root);
476 RB_CLEAR_NODE(&va->rb_node);
477 list_del_rcu(&va->list);
478
ca23e405
TH
479 /*
480 * Track the highest possible candidate for pcpu area
481 * allocation. Areas outside of vmalloc area can be returned
482 * here too, consider only end addresses which fall inside
483 * vmalloc area proper.
484 */
485 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
486 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
487
14769de9 488 kfree_rcu(va, rcu_head);
db64fe02
NP
489}
490
491/*
492 * Free a region of KVA allocated by alloc_vmap_area
493 */
494static void free_vmap_area(struct vmap_area *va)
495{
496 spin_lock(&vmap_area_lock);
497 __free_vmap_area(va);
498 spin_unlock(&vmap_area_lock);
499}
500
501/*
502 * Clear the pagetable entries of a given vmap_area
503 */
504static void unmap_vmap_area(struct vmap_area *va)
505{
506 vunmap_page_range(va->va_start, va->va_end);
507}
508
cd52858c
NP
509static void vmap_debug_free_range(unsigned long start, unsigned long end)
510{
511 /*
512 * Unmap page tables and force a TLB flush immediately if
513 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
514 * bugs similarly to those in linear kernel virtual address
515 * space after a page has been freed.
516 *
517 * All the lazy freeing logic is still retained, in order to
518 * minimise intrusiveness of this debugging feature.
519 *
520 * This is going to be *slow* (linear kernel virtual address
521 * debugging doesn't do a broadcast TLB flush so it is a lot
522 * faster).
523 */
524#ifdef CONFIG_DEBUG_PAGEALLOC
525 vunmap_page_range(start, end);
526 flush_tlb_kernel_range(start, end);
527#endif
528}
529
db64fe02
NP
530/*
531 * lazy_max_pages is the maximum amount of virtual address space we gather up
532 * before attempting to purge with a TLB flush.
533 *
534 * There is a tradeoff here: a larger number will cover more kernel page tables
535 * and take slightly longer to purge, but it will linearly reduce the number of
536 * global TLB flushes that must be performed. It would seem natural to scale
537 * this number up linearly with the number of CPUs (because vmapping activity
538 * could also scale linearly with the number of CPUs), however it is likely
539 * that in practice, workloads might be constrained in other ways that mean
540 * vmap activity will not scale linearly with CPUs. Also, I want to be
541 * conservative and not introduce a big latency on huge systems, so go with
542 * a less aggressive log scale. It will still be an improvement over the old
543 * code, and it will be simple to change the scale factor if we find that it
544 * becomes a problem on bigger systems.
545 */
546static unsigned long lazy_max_pages(void)
547{
548 unsigned int log;
549
550 log = fls(num_online_cpus());
551
552 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
553}
554
555static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
556
02b709df
NP
557/* for per-CPU blocks */
558static void purge_fragmented_blocks_allcpus(void);
559
3ee48b6a
CW
560/*
561 * called before a call to iounmap() if the caller wants vm_area_struct's
562 * immediately freed.
563 */
564void set_iounmap_nonlazy(void)
565{
566 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
567}
568
db64fe02
NP
569/*
570 * Purges all lazily-freed vmap areas.
571 *
572 * If sync is 0 then don't purge if there is already a purge in progress.
573 * If force_flush is 1, then flush kernel TLBs between *start and *end even
574 * if we found no lazy vmap areas to unmap (callers can use this to optimise
575 * their own TLB flushing).
576 * Returns with *start = min(*start, lowest purged address)
577 * *end = max(*end, highest purged address)
578 */
579static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
580 int sync, int force_flush)
581{
46666d8a 582 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
583 LIST_HEAD(valist);
584 struct vmap_area *va;
cbb76676 585 struct vmap_area *n_va;
db64fe02
NP
586 int nr = 0;
587
588 /*
589 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
590 * should not expect such behaviour. This just simplifies locking for
591 * the case that isn't actually used at the moment anyway.
592 */
593 if (!sync && !force_flush) {
46666d8a 594 if (!spin_trylock(&purge_lock))
db64fe02
NP
595 return;
596 } else
46666d8a 597 spin_lock(&purge_lock);
db64fe02 598
02b709df
NP
599 if (sync)
600 purge_fragmented_blocks_allcpus();
601
db64fe02
NP
602 rcu_read_lock();
603 list_for_each_entry_rcu(va, &vmap_area_list, list) {
604 if (va->flags & VM_LAZY_FREE) {
605 if (va->va_start < *start)
606 *start = va->va_start;
607 if (va->va_end > *end)
608 *end = va->va_end;
609 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02
NP
610 list_add_tail(&va->purge_list, &valist);
611 va->flags |= VM_LAZY_FREEING;
612 va->flags &= ~VM_LAZY_FREE;
613 }
614 }
615 rcu_read_unlock();
616
88f50044 617 if (nr)
db64fe02 618 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
619
620 if (nr || force_flush)
621 flush_tlb_kernel_range(*start, *end);
622
623 if (nr) {
624 spin_lock(&vmap_area_lock);
cbb76676 625 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
626 __free_vmap_area(va);
627 spin_unlock(&vmap_area_lock);
628 }
46666d8a 629 spin_unlock(&purge_lock);
db64fe02
NP
630}
631
496850e5
NP
632/*
633 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
634 * is already purging.
635 */
636static void try_purge_vmap_area_lazy(void)
637{
638 unsigned long start = ULONG_MAX, end = 0;
639
640 __purge_vmap_area_lazy(&start, &end, 0, 0);
641}
642
db64fe02
NP
643/*
644 * Kick off a purge of the outstanding lazy areas.
645 */
646static void purge_vmap_area_lazy(void)
647{
648 unsigned long start = ULONG_MAX, end = 0;
649
496850e5 650 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
651}
652
653/*
64141da5
JF
654 * Free a vmap area, caller ensuring that the area has been unmapped
655 * and flush_cache_vunmap had been called for the correct range
656 * previously.
db64fe02 657 */
64141da5 658static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
659{
660 va->flags |= VM_LAZY_FREE;
661 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
662 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 663 try_purge_vmap_area_lazy();
db64fe02
NP
664}
665
64141da5
JF
666/*
667 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
668 * called for the correct range previously.
669 */
670static void free_unmap_vmap_area_noflush(struct vmap_area *va)
671{
672 unmap_vmap_area(va);
673 free_vmap_area_noflush(va);
674}
675
b29acbdc
NP
676/*
677 * Free and unmap a vmap area
678 */
679static void free_unmap_vmap_area(struct vmap_area *va)
680{
681 flush_cache_vunmap(va->va_start, va->va_end);
682 free_unmap_vmap_area_noflush(va);
683}
684
db64fe02
NP
685static struct vmap_area *find_vmap_area(unsigned long addr)
686{
687 struct vmap_area *va;
688
689 spin_lock(&vmap_area_lock);
690 va = __find_vmap_area(addr);
691 spin_unlock(&vmap_area_lock);
692
693 return va;
694}
695
696static void free_unmap_vmap_area_addr(unsigned long addr)
697{
698 struct vmap_area *va;
699
700 va = find_vmap_area(addr);
701 BUG_ON(!va);
702 free_unmap_vmap_area(va);
703}
704
705
706/*** Per cpu kva allocator ***/
707
708/*
709 * vmap space is limited especially on 32 bit architectures. Ensure there is
710 * room for at least 16 percpu vmap blocks per CPU.
711 */
712/*
713 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
714 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
715 * instead (we just need a rough idea)
716 */
717#if BITS_PER_LONG == 32
718#define VMALLOC_SPACE (128UL*1024*1024)
719#else
720#define VMALLOC_SPACE (128UL*1024*1024*1024)
721#endif
722
723#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
724#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
725#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
726#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
727#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
728#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
729#define VMAP_BBMAP_BITS \
730 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
731 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
732 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
733
734#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
735
9b463334
JF
736static bool vmap_initialized __read_mostly = false;
737
db64fe02
NP
738struct vmap_block_queue {
739 spinlock_t lock;
740 struct list_head free;
db64fe02
NP
741};
742
743struct vmap_block {
744 spinlock_t lock;
745 struct vmap_area *va;
746 struct vmap_block_queue *vbq;
747 unsigned long free, dirty;
748 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
749 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
de560423
NP
750 struct list_head free_list;
751 struct rcu_head rcu_head;
02b709df 752 struct list_head purge;
db64fe02
NP
753};
754
755/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
756static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
757
758/*
759 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
760 * in the free path. Could get rid of this if we change the API to return a
761 * "cookie" from alloc, to be passed to free. But no big deal yet.
762 */
763static DEFINE_SPINLOCK(vmap_block_tree_lock);
764static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
765
766/*
767 * We should probably have a fallback mechanism to allocate virtual memory
768 * out of partially filled vmap blocks. However vmap block sizing should be
769 * fairly reasonable according to the vmalloc size, so it shouldn't be a
770 * big problem.
771 */
772
773static unsigned long addr_to_vb_idx(unsigned long addr)
774{
775 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
776 addr /= VMAP_BLOCK_SIZE;
777 return addr;
778}
779
780static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
781{
782 struct vmap_block_queue *vbq;
783 struct vmap_block *vb;
784 struct vmap_area *va;
785 unsigned long vb_idx;
786 int node, err;
787
788 node = numa_node_id();
789
790 vb = kmalloc_node(sizeof(struct vmap_block),
791 gfp_mask & GFP_RECLAIM_MASK, node);
792 if (unlikely(!vb))
793 return ERR_PTR(-ENOMEM);
794
795 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
796 VMALLOC_START, VMALLOC_END,
797 node, gfp_mask);
ddf9c6d4 798 if (IS_ERR(va)) {
db64fe02 799 kfree(vb);
e7d86340 800 return ERR_CAST(va);
db64fe02
NP
801 }
802
803 err = radix_tree_preload(gfp_mask);
804 if (unlikely(err)) {
805 kfree(vb);
806 free_vmap_area(va);
807 return ERR_PTR(err);
808 }
809
810 spin_lock_init(&vb->lock);
811 vb->va = va;
812 vb->free = VMAP_BBMAP_BITS;
813 vb->dirty = 0;
814 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
815 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
816 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
817
818 vb_idx = addr_to_vb_idx(va->va_start);
819 spin_lock(&vmap_block_tree_lock);
820 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
821 spin_unlock(&vmap_block_tree_lock);
822 BUG_ON(err);
823 radix_tree_preload_end();
824
825 vbq = &get_cpu_var(vmap_block_queue);
826 vb->vbq = vbq;
827 spin_lock(&vbq->lock);
de560423 828 list_add_rcu(&vb->free_list, &vbq->free);
db64fe02 829 spin_unlock(&vbq->lock);
3f04ba85 830 put_cpu_var(vmap_block_queue);
db64fe02
NP
831
832 return vb;
833}
834
db64fe02
NP
835static void free_vmap_block(struct vmap_block *vb)
836{
837 struct vmap_block *tmp;
838 unsigned long vb_idx;
839
db64fe02
NP
840 vb_idx = addr_to_vb_idx(vb->va->va_start);
841 spin_lock(&vmap_block_tree_lock);
842 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
843 spin_unlock(&vmap_block_tree_lock);
844 BUG_ON(tmp != vb);
845
64141da5 846 free_vmap_area_noflush(vb->va);
22a3c7d1 847 kfree_rcu(vb, rcu_head);
db64fe02
NP
848}
849
02b709df
NP
850static void purge_fragmented_blocks(int cpu)
851{
852 LIST_HEAD(purge);
853 struct vmap_block *vb;
854 struct vmap_block *n_vb;
855 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
856
857 rcu_read_lock();
858 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
859
860 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
861 continue;
862
863 spin_lock(&vb->lock);
864 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
865 vb->free = 0; /* prevent further allocs after releasing lock */
866 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
867 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
868 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
869 spin_lock(&vbq->lock);
870 list_del_rcu(&vb->free_list);
871 spin_unlock(&vbq->lock);
872 spin_unlock(&vb->lock);
873 list_add_tail(&vb->purge, &purge);
874 } else
875 spin_unlock(&vb->lock);
876 }
877 rcu_read_unlock();
878
879 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
880 list_del(&vb->purge);
881 free_vmap_block(vb);
882 }
883}
884
885static void purge_fragmented_blocks_thiscpu(void)
886{
887 purge_fragmented_blocks(smp_processor_id());
888}
889
890static void purge_fragmented_blocks_allcpus(void)
891{
892 int cpu;
893
894 for_each_possible_cpu(cpu)
895 purge_fragmented_blocks(cpu);
896}
897
db64fe02
NP
898static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
899{
900 struct vmap_block_queue *vbq;
901 struct vmap_block *vb;
902 unsigned long addr = 0;
903 unsigned int order;
02b709df 904 int purge = 0;
db64fe02
NP
905
906 BUG_ON(size & ~PAGE_MASK);
907 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
908 if (WARN_ON(size == 0)) {
909 /*
910 * Allocating 0 bytes isn't what caller wants since
911 * get_order(0) returns funny result. Just warn and terminate
912 * early.
913 */
914 return NULL;
915 }
db64fe02
NP
916 order = get_order(size);
917
918again:
919 rcu_read_lock();
920 vbq = &get_cpu_var(vmap_block_queue);
921 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
922 int i;
923
924 spin_lock(&vb->lock);
02b709df
NP
925 if (vb->free < 1UL << order)
926 goto next;
927
db64fe02
NP
928 i = bitmap_find_free_region(vb->alloc_map,
929 VMAP_BBMAP_BITS, order);
930
02b709df
NP
931 if (i < 0) {
932 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
933 /* fragmented and no outstanding allocations */
934 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
935 purge = 1;
db64fe02 936 }
02b709df 937 goto next;
db64fe02 938 }
02b709df
NP
939 addr = vb->va->va_start + (i << PAGE_SHIFT);
940 BUG_ON(addr_to_vb_idx(addr) !=
941 addr_to_vb_idx(vb->va->va_start));
942 vb->free -= 1UL << order;
943 if (vb->free == 0) {
944 spin_lock(&vbq->lock);
945 list_del_rcu(&vb->free_list);
946 spin_unlock(&vbq->lock);
947 }
948 spin_unlock(&vb->lock);
949 break;
950next:
db64fe02
NP
951 spin_unlock(&vb->lock);
952 }
02b709df
NP
953
954 if (purge)
955 purge_fragmented_blocks_thiscpu();
956
3f04ba85 957 put_cpu_var(vmap_block_queue);
db64fe02
NP
958 rcu_read_unlock();
959
960 if (!addr) {
961 vb = new_vmap_block(gfp_mask);
962 if (IS_ERR(vb))
963 return vb;
964 goto again;
965 }
966
967 return (void *)addr;
968}
969
970static void vb_free(const void *addr, unsigned long size)
971{
972 unsigned long offset;
973 unsigned long vb_idx;
974 unsigned int order;
975 struct vmap_block *vb;
976
977 BUG_ON(size & ~PAGE_MASK);
978 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
979
980 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
981
db64fe02
NP
982 order = get_order(size);
983
984 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
985
986 vb_idx = addr_to_vb_idx((unsigned long)addr);
987 rcu_read_lock();
988 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
989 rcu_read_unlock();
990 BUG_ON(!vb);
991
64141da5
JF
992 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
993
db64fe02 994 spin_lock(&vb->lock);
de560423 995 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
d086817d 996
db64fe02
NP
997 vb->dirty += 1UL << order;
998 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 999 BUG_ON(vb->free);
db64fe02
NP
1000 spin_unlock(&vb->lock);
1001 free_vmap_block(vb);
1002 } else
1003 spin_unlock(&vb->lock);
1004}
1005
1006/**
1007 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1008 *
1009 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1010 * to amortize TLB flushing overheads. What this means is that any page you
1011 * have now, may, in a former life, have been mapped into kernel virtual
1012 * address by the vmap layer and so there might be some CPUs with TLB entries
1013 * still referencing that page (additional to the regular 1:1 kernel mapping).
1014 *
1015 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1016 * be sure that none of the pages we have control over will have any aliases
1017 * from the vmap layer.
1018 */
1019void vm_unmap_aliases(void)
1020{
1021 unsigned long start = ULONG_MAX, end = 0;
1022 int cpu;
1023 int flush = 0;
1024
9b463334
JF
1025 if (unlikely(!vmap_initialized))
1026 return;
1027
db64fe02
NP
1028 for_each_possible_cpu(cpu) {
1029 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1030 struct vmap_block *vb;
1031
1032 rcu_read_lock();
1033 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1034 int i;
1035
1036 spin_lock(&vb->lock);
1037 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1038 while (i < VMAP_BBMAP_BITS) {
1039 unsigned long s, e;
1040 int j;
1041 j = find_next_zero_bit(vb->dirty_map,
1042 VMAP_BBMAP_BITS, i);
1043
1044 s = vb->va->va_start + (i << PAGE_SHIFT);
1045 e = vb->va->va_start + (j << PAGE_SHIFT);
db64fe02
NP
1046 flush = 1;
1047
1048 if (s < start)
1049 start = s;
1050 if (e > end)
1051 end = e;
1052
1053 i = j;
1054 i = find_next_bit(vb->dirty_map,
1055 VMAP_BBMAP_BITS, i);
1056 }
1057 spin_unlock(&vb->lock);
1058 }
1059 rcu_read_unlock();
1060 }
1061
1062 __purge_vmap_area_lazy(&start, &end, 1, flush);
1063}
1064EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1065
1066/**
1067 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1068 * @mem: the pointer returned by vm_map_ram
1069 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1070 */
1071void vm_unmap_ram(const void *mem, unsigned int count)
1072{
1073 unsigned long size = count << PAGE_SHIFT;
1074 unsigned long addr = (unsigned long)mem;
1075
1076 BUG_ON(!addr);
1077 BUG_ON(addr < VMALLOC_START);
1078 BUG_ON(addr > VMALLOC_END);
1079 BUG_ON(addr & (PAGE_SIZE-1));
1080
1081 debug_check_no_locks_freed(mem, size);
cd52858c 1082 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1083
1084 if (likely(count <= VMAP_MAX_ALLOC))
1085 vb_free(mem, size);
1086 else
1087 free_unmap_vmap_area_addr(addr);
1088}
1089EXPORT_SYMBOL(vm_unmap_ram);
1090
1091/**
1092 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1093 * @pages: an array of pointers to the pages to be mapped
1094 * @count: number of pages
1095 * @node: prefer to allocate data structures on this node
1096 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
1097 *
1098 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1099 */
1100void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1101{
1102 unsigned long size = count << PAGE_SHIFT;
1103 unsigned long addr;
1104 void *mem;
1105
1106 if (likely(count <= VMAP_MAX_ALLOC)) {
1107 mem = vb_alloc(size, GFP_KERNEL);
1108 if (IS_ERR(mem))
1109 return NULL;
1110 addr = (unsigned long)mem;
1111 } else {
1112 struct vmap_area *va;
1113 va = alloc_vmap_area(size, PAGE_SIZE,
1114 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1115 if (IS_ERR(va))
1116 return NULL;
1117
1118 addr = va->va_start;
1119 mem = (void *)addr;
1120 }
1121 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1122 vm_unmap_ram(mem, count);
1123 return NULL;
1124 }
1125 return mem;
1126}
1127EXPORT_SYMBOL(vm_map_ram);
1128
4341fa45 1129static struct vm_struct *vmlist __initdata;
be9b7335
NP
1130/**
1131 * vm_area_add_early - add vmap area early during boot
1132 * @vm: vm_struct to add
1133 *
1134 * This function is used to add fixed kernel vm area to vmlist before
1135 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1136 * should contain proper values and the other fields should be zero.
1137 *
1138 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1139 */
1140void __init vm_area_add_early(struct vm_struct *vm)
1141{
1142 struct vm_struct *tmp, **p;
1143
1144 BUG_ON(vmap_initialized);
1145 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1146 if (tmp->addr >= vm->addr) {
1147 BUG_ON(tmp->addr < vm->addr + vm->size);
1148 break;
1149 } else
1150 BUG_ON(tmp->addr + tmp->size > vm->addr);
1151 }
1152 vm->next = *p;
1153 *p = vm;
1154}
1155
f0aa6617
TH
1156/**
1157 * vm_area_register_early - register vmap area early during boot
1158 * @vm: vm_struct to register
c0c0a293 1159 * @align: requested alignment
f0aa6617
TH
1160 *
1161 * This function is used to register kernel vm area before
1162 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1163 * proper values on entry and other fields should be zero. On return,
1164 * vm->addr contains the allocated address.
1165 *
1166 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1167 */
c0c0a293 1168void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1169{
1170 static size_t vm_init_off __initdata;
c0c0a293
TH
1171 unsigned long addr;
1172
1173 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1174 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1175
c0c0a293 1176 vm->addr = (void *)addr;
f0aa6617 1177
be9b7335 1178 vm_area_add_early(vm);
f0aa6617
TH
1179}
1180
db64fe02
NP
1181void __init vmalloc_init(void)
1182{
822c18f2
IK
1183 struct vmap_area *va;
1184 struct vm_struct *tmp;
db64fe02
NP
1185 int i;
1186
1187 for_each_possible_cpu(i) {
1188 struct vmap_block_queue *vbq;
1189
1190 vbq = &per_cpu(vmap_block_queue, i);
1191 spin_lock_init(&vbq->lock);
1192 INIT_LIST_HEAD(&vbq->free);
db64fe02 1193 }
9b463334 1194
822c18f2
IK
1195 /* Import existing vmlist entries. */
1196 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1197 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1198 va->flags = VM_VM_AREA;
822c18f2
IK
1199 va->va_start = (unsigned long)tmp->addr;
1200 va->va_end = va->va_start + tmp->size;
dbda591d 1201 va->vm = tmp;
822c18f2
IK
1202 __insert_vmap_area(va);
1203 }
ca23e405
TH
1204
1205 vmap_area_pcpu_hole = VMALLOC_END;
1206
9b463334 1207 vmap_initialized = true;
db64fe02
NP
1208}
1209
8fc48985
TH
1210/**
1211 * map_kernel_range_noflush - map kernel VM area with the specified pages
1212 * @addr: start of the VM area to map
1213 * @size: size of the VM area to map
1214 * @prot: page protection flags to use
1215 * @pages: pages to map
1216 *
1217 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1218 * specify should have been allocated using get_vm_area() and its
1219 * friends.
1220 *
1221 * NOTE:
1222 * This function does NOT do any cache flushing. The caller is
1223 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1224 * before calling this function.
1225 *
1226 * RETURNS:
1227 * The number of pages mapped on success, -errno on failure.
1228 */
1229int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1230 pgprot_t prot, struct page **pages)
1231{
1232 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1233}
1234
1235/**
1236 * unmap_kernel_range_noflush - unmap kernel VM area
1237 * @addr: start of the VM area to unmap
1238 * @size: size of the VM area to unmap
1239 *
1240 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1241 * specify should have been allocated using get_vm_area() and its
1242 * friends.
1243 *
1244 * NOTE:
1245 * This function does NOT do any cache flushing. The caller is
1246 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1247 * before calling this function and flush_tlb_kernel_range() after.
1248 */
1249void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1250{
1251 vunmap_page_range(addr, addr + size);
1252}
81e88fdc 1253EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1254
1255/**
1256 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1257 * @addr: start of the VM area to unmap
1258 * @size: size of the VM area to unmap
1259 *
1260 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1261 * the unmapping and tlb after.
1262 */
db64fe02
NP
1263void unmap_kernel_range(unsigned long addr, unsigned long size)
1264{
1265 unsigned long end = addr + size;
f6fcba70
TH
1266
1267 flush_cache_vunmap(addr, end);
db64fe02
NP
1268 vunmap_page_range(addr, end);
1269 flush_tlb_kernel_range(addr, end);
1270}
1271
1272int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1273{
1274 unsigned long addr = (unsigned long)area->addr;
1275 unsigned long end = addr + area->size - PAGE_SIZE;
1276 int err;
1277
1278 err = vmap_page_range(addr, end, prot, *pages);
1279 if (err > 0) {
1280 *pages += err;
1281 err = 0;
1282 }
1283
1284 return err;
1285}
1286EXPORT_SYMBOL_GPL(map_vm_area);
1287
f5252e00 1288static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1289 unsigned long flags, const void *caller)
cf88c790 1290{
c69480ad 1291 spin_lock(&vmap_area_lock);
cf88c790
TH
1292 vm->flags = flags;
1293 vm->addr = (void *)va->va_start;
1294 vm->size = va->va_end - va->va_start;
1295 vm->caller = caller;
db1aecaf 1296 va->vm = vm;
cf88c790 1297 va->flags |= VM_VM_AREA;
c69480ad 1298 spin_unlock(&vmap_area_lock);
f5252e00 1299}
cf88c790 1300
4341fa45 1301static void clear_vm_unlist(struct vm_struct *vm)
f5252e00 1302{
d4033afd
JK
1303 /*
1304 * Before removing VM_UNLIST,
1305 * we should make sure that vm has proper values.
1306 * Pair with smp_rmb() in show_numa_info().
1307 */
1308 smp_wmb();
f5252e00 1309 vm->flags &= ~VM_UNLIST;
cf88c790
TH
1310}
1311
f5252e00 1312static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1313 unsigned long flags, const void *caller)
f5252e00
MH
1314{
1315 setup_vmalloc_vm(vm, va, flags, caller);
4341fa45 1316 clear_vm_unlist(vm);
f5252e00
MH
1317}
1318
db64fe02 1319static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1320 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1321 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1322{
0006526d 1323 struct vmap_area *va;
db64fe02 1324 struct vm_struct *area;
1da177e4 1325
52fd24ca 1326 BUG_ON(in_interrupt());
1da177e4
LT
1327 if (flags & VM_IOREMAP) {
1328 int bit = fls(size);
1329
1330 if (bit > IOREMAP_MAX_ORDER)
1331 bit = IOREMAP_MAX_ORDER;
1332 else if (bit < PAGE_SHIFT)
1333 bit = PAGE_SHIFT;
1334
1335 align = 1ul << bit;
1336 }
db64fe02 1337
1da177e4 1338 size = PAGE_ALIGN(size);
31be8309
OH
1339 if (unlikely(!size))
1340 return NULL;
1da177e4 1341
cf88c790 1342 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1343 if (unlikely(!area))
1344 return NULL;
1345
1da177e4
LT
1346 /*
1347 * We always allocate a guard page.
1348 */
1349 size += PAGE_SIZE;
1350
db64fe02
NP
1351 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1352 if (IS_ERR(va)) {
1353 kfree(area);
1354 return NULL;
1da177e4 1355 }
1da177e4 1356
f5252e00
MH
1357 /*
1358 * When this function is called from __vmalloc_node_range,
4341fa45
JK
1359 * we add VM_UNLIST flag to avoid accessing uninitialized
1360 * members of vm_struct such as pages and nr_pages fields.
1361 * They will be set later.
f5252e00
MH
1362 */
1363 if (flags & VM_UNLIST)
1364 setup_vmalloc_vm(area, va, flags, caller);
1365 else
1366 insert_vmalloc_vm(area, va, flags, caller);
1367
1da177e4 1368 return area;
1da177e4
LT
1369}
1370
930fc45a
CL
1371struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1372 unsigned long start, unsigned long end)
1373{
00ef2d2f
DR
1374 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1375 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1376}
5992b6da 1377EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1378
c2968612
BH
1379struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1380 unsigned long start, unsigned long end,
5e6cafc8 1381 const void *caller)
c2968612 1382{
00ef2d2f
DR
1383 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1384 GFP_KERNEL, caller);
c2968612
BH
1385}
1386
1da177e4 1387/**
183ff22b 1388 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1389 * @size: size of the area
1390 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1391 *
1392 * Search an area of @size in the kernel virtual mapping area,
1393 * and reserved it for out purposes. Returns the area descriptor
1394 * on success or %NULL on failure.
1395 */
1396struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1397{
2dca6999 1398 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1399 NUMA_NO_NODE, GFP_KERNEL,
1400 __builtin_return_address(0));
23016969
CL
1401}
1402
1403struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1404 const void *caller)
23016969 1405{
2dca6999 1406 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1407 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1408}
1409
e9da6e99
MS
1410/**
1411 * find_vm_area - find a continuous kernel virtual area
1412 * @addr: base address
1413 *
1414 * Search for the kernel VM area starting at @addr, and return it.
1415 * It is up to the caller to do all required locking to keep the returned
1416 * pointer valid.
1417 */
1418struct vm_struct *find_vm_area(const void *addr)
83342314 1419{
db64fe02 1420 struct vmap_area *va;
83342314 1421
db64fe02
NP
1422 va = find_vmap_area((unsigned long)addr);
1423 if (va && va->flags & VM_VM_AREA)
db1aecaf 1424 return va->vm;
1da177e4 1425
1da177e4 1426 return NULL;
1da177e4
LT
1427}
1428
7856dfeb 1429/**
183ff22b 1430 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1431 * @addr: base address
1432 *
1433 * Search for the kernel VM area starting at @addr, and remove it.
1434 * This function returns the found VM area, but using it is NOT safe
1435 * on SMP machines, except for its size or flags.
1436 */
b3bdda02 1437struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1438{
db64fe02
NP
1439 struct vmap_area *va;
1440
1441 va = find_vmap_area((unsigned long)addr);
1442 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1443 struct vm_struct *vm = va->vm;
f5252e00 1444
c69480ad
JK
1445 spin_lock(&vmap_area_lock);
1446 va->vm = NULL;
1447 va->flags &= ~VM_VM_AREA;
1448 spin_unlock(&vmap_area_lock);
1449
dd32c279
KH
1450 vmap_debug_free_range(va->va_start, va->va_end);
1451 free_unmap_vmap_area(va);
1452 vm->size -= PAGE_SIZE;
1453
db64fe02
NP
1454 return vm;
1455 }
1456 return NULL;
7856dfeb
AK
1457}
1458
b3bdda02 1459static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1460{
1461 struct vm_struct *area;
1462
1463 if (!addr)
1464 return;
1465
1466 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1467 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1468 return;
1469 }
1470
1471 area = remove_vm_area(addr);
1472 if (unlikely(!area)) {
4c8573e2 1473 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1474 addr);
1da177e4
LT
1475 return;
1476 }
1477
9a11b49a 1478 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1479 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1480
1da177e4
LT
1481 if (deallocate_pages) {
1482 int i;
1483
1484 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1485 struct page *page = area->pages[i];
1486
1487 BUG_ON(!page);
1488 __free_page(page);
1da177e4
LT
1489 }
1490
8757d5fa 1491 if (area->flags & VM_VPAGES)
1da177e4
LT
1492 vfree(area->pages);
1493 else
1494 kfree(area->pages);
1495 }
1496
1497 kfree(area);
1498 return;
1499}
1500
1501/**
1502 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1503 * @addr: memory base address
1504 *
183ff22b 1505 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1506 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1507 * NULL, no operation is performed.
1da177e4 1508 *
80e93eff 1509 * Must not be called in interrupt context.
1da177e4 1510 */
b3bdda02 1511void vfree(const void *addr)
1da177e4
LT
1512{
1513 BUG_ON(in_interrupt());
89219d37
CM
1514
1515 kmemleak_free(addr);
1516
1da177e4
LT
1517 __vunmap(addr, 1);
1518}
1da177e4
LT
1519EXPORT_SYMBOL(vfree);
1520
1521/**
1522 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1523 * @addr: memory base address
1524 *
1525 * Free the virtually contiguous memory area starting at @addr,
1526 * which was created from the page array passed to vmap().
1527 *
80e93eff 1528 * Must not be called in interrupt context.
1da177e4 1529 */
b3bdda02 1530void vunmap(const void *addr)
1da177e4
LT
1531{
1532 BUG_ON(in_interrupt());
34754b69 1533 might_sleep();
1da177e4
LT
1534 __vunmap(addr, 0);
1535}
1da177e4
LT
1536EXPORT_SYMBOL(vunmap);
1537
1538/**
1539 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1540 * @pages: array of page pointers
1541 * @count: number of pages to map
1542 * @flags: vm_area->flags
1543 * @prot: page protection for the mapping
1544 *
1545 * Maps @count pages from @pages into contiguous kernel virtual
1546 * space.
1547 */
1548void *vmap(struct page **pages, unsigned int count,
1549 unsigned long flags, pgprot_t prot)
1550{
1551 struct vm_struct *area;
1552
34754b69
PZ
1553 might_sleep();
1554
4481374c 1555 if (count > totalram_pages)
1da177e4
LT
1556 return NULL;
1557
23016969
CL
1558 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1559 __builtin_return_address(0));
1da177e4
LT
1560 if (!area)
1561 return NULL;
23016969 1562
1da177e4
LT
1563 if (map_vm_area(area, prot, &pages)) {
1564 vunmap(area->addr);
1565 return NULL;
1566 }
1567
1568 return area->addr;
1569}
1da177e4
LT
1570EXPORT_SYMBOL(vmap);
1571
2dca6999
DM
1572static void *__vmalloc_node(unsigned long size, unsigned long align,
1573 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1574 int node, const void *caller);
e31d9eb5 1575static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
5e6cafc8 1576 pgprot_t prot, int node, const void *caller)
1da177e4 1577{
22943ab1 1578 const int order = 0;
1da177e4
LT
1579 struct page **pages;
1580 unsigned int nr_pages, array_size, i;
976d6dfb 1581 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1da177e4
LT
1582
1583 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1584 array_size = (nr_pages * sizeof(struct page *));
1585
1586 area->nr_pages = nr_pages;
1587 /* Please note that the recursion is strictly bounded. */
8757d5fa 1588 if (array_size > PAGE_SIZE) {
976d6dfb 1589 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
23016969 1590 PAGE_KERNEL, node, caller);
8757d5fa 1591 area->flags |= VM_VPAGES;
286e1ea3 1592 } else {
976d6dfb 1593 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1594 }
1da177e4 1595 area->pages = pages;
23016969 1596 area->caller = caller;
1da177e4
LT
1597 if (!area->pages) {
1598 remove_vm_area(area->addr);
1599 kfree(area);
1600 return NULL;
1601 }
1da177e4
LT
1602
1603 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8 1604 struct page *page;
22943ab1 1605 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
bf53d6f8 1606
930fc45a 1607 if (node < 0)
22943ab1 1608 page = alloc_page(tmp_mask);
930fc45a 1609 else
22943ab1 1610 page = alloc_pages_node(node, tmp_mask, order);
bf53d6f8
CL
1611
1612 if (unlikely(!page)) {
1da177e4
LT
1613 /* Successfully allocated i pages, free them in __vunmap() */
1614 area->nr_pages = i;
1615 goto fail;
1616 }
bf53d6f8 1617 area->pages[i] = page;
1da177e4
LT
1618 }
1619
1620 if (map_vm_area(area, prot, &pages))
1621 goto fail;
1622 return area->addr;
1623
1624fail:
3ee9a4f0
JP
1625 warn_alloc_failed(gfp_mask, order,
1626 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
22943ab1 1627 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1628 vfree(area->addr);
1629 return NULL;
1630}
1631
1632/**
d0a21265 1633 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1634 * @size: allocation size
2dca6999 1635 * @align: desired alignment
d0a21265
DR
1636 * @start: vm area range start
1637 * @end: vm area range end
1da177e4
LT
1638 * @gfp_mask: flags for the page level allocator
1639 * @prot: protection mask for the allocated pages
00ef2d2f 1640 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1641 * @caller: caller's return address
1da177e4
LT
1642 *
1643 * Allocate enough pages to cover @size from the page level
1644 * allocator with @gfp_mask flags. Map them into contiguous
1645 * kernel virtual space, using a pagetable protection of @prot.
1646 */
d0a21265
DR
1647void *__vmalloc_node_range(unsigned long size, unsigned long align,
1648 unsigned long start, unsigned long end, gfp_t gfp_mask,
5e6cafc8 1649 pgprot_t prot, int node, const void *caller)
1da177e4
LT
1650{
1651 struct vm_struct *area;
89219d37
CM
1652 void *addr;
1653 unsigned long real_size = size;
1da177e4
LT
1654
1655 size = PAGE_ALIGN(size);
4481374c 1656 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1657 goto fail;
1da177e4 1658
f5252e00
MH
1659 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1660 start, end, node, gfp_mask, caller);
1da177e4 1661 if (!area)
de7d2b56 1662 goto fail;
1da177e4 1663
89219d37 1664 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1368edf0
MG
1665 if (!addr)
1666 return NULL;
89219d37 1667
f5252e00 1668 /*
4341fa45
JK
1669 * In this function, newly allocated vm_struct has VM_UNLIST flag.
1670 * It means that vm_struct is not fully initialized.
1671 * Now, it is fully initialized, so remove this flag here.
f5252e00 1672 */
4341fa45 1673 clear_vm_unlist(area);
f5252e00 1674
89219d37
CM
1675 /*
1676 * A ref_count = 3 is needed because the vm_struct and vmap_area
1677 * structures allocated in the __get_vm_area_node() function contain
1678 * references to the virtual address of the vmalloc'ed block.
1679 */
1680 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1681
1682 return addr;
de7d2b56
JP
1683
1684fail:
1685 warn_alloc_failed(gfp_mask, 0,
1686 "vmalloc: allocation failure: %lu bytes\n",
1687 real_size);
1688 return NULL;
1da177e4
LT
1689}
1690
d0a21265
DR
1691/**
1692 * __vmalloc_node - allocate virtually contiguous memory
1693 * @size: allocation size
1694 * @align: desired alignment
1695 * @gfp_mask: flags for the page level allocator
1696 * @prot: protection mask for the allocated pages
00ef2d2f 1697 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1698 * @caller: caller's return address
1699 *
1700 * Allocate enough pages to cover @size from the page level
1701 * allocator with @gfp_mask flags. Map them into contiguous
1702 * kernel virtual space, using a pagetable protection of @prot.
1703 */
1704static void *__vmalloc_node(unsigned long size, unsigned long align,
1705 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1706 int node, const void *caller)
d0a21265
DR
1707{
1708 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1709 gfp_mask, prot, node, caller);
1710}
1711
930fc45a
CL
1712void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1713{
00ef2d2f 1714 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1715 __builtin_return_address(0));
930fc45a 1716}
1da177e4
LT
1717EXPORT_SYMBOL(__vmalloc);
1718
e1ca7788
DY
1719static inline void *__vmalloc_node_flags(unsigned long size,
1720 int node, gfp_t flags)
1721{
1722 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1723 node, __builtin_return_address(0));
1724}
1725
1da177e4
LT
1726/**
1727 * vmalloc - allocate virtually contiguous memory
1da177e4 1728 * @size: allocation size
1da177e4
LT
1729 * Allocate enough pages to cover @size from the page level
1730 * allocator and map them into contiguous kernel virtual space.
1731 *
c1c8897f 1732 * For tight control over page level allocator and protection flags
1da177e4
LT
1733 * use __vmalloc() instead.
1734 */
1735void *vmalloc(unsigned long size)
1736{
00ef2d2f
DR
1737 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1738 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1739}
1da177e4
LT
1740EXPORT_SYMBOL(vmalloc);
1741
e1ca7788
DY
1742/**
1743 * vzalloc - allocate virtually contiguous memory with zero fill
1744 * @size: allocation size
1745 * Allocate enough pages to cover @size from the page level
1746 * allocator and map them into contiguous kernel virtual space.
1747 * The memory allocated is set to zero.
1748 *
1749 * For tight control over page level allocator and protection flags
1750 * use __vmalloc() instead.
1751 */
1752void *vzalloc(unsigned long size)
1753{
00ef2d2f 1754 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1755 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1756}
1757EXPORT_SYMBOL(vzalloc);
1758
83342314 1759/**
ead04089
REB
1760 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1761 * @size: allocation size
83342314 1762 *
ead04089
REB
1763 * The resulting memory area is zeroed so it can be mapped to userspace
1764 * without leaking data.
83342314
NP
1765 */
1766void *vmalloc_user(unsigned long size)
1767{
1768 struct vm_struct *area;
1769 void *ret;
1770
2dca6999
DM
1771 ret = __vmalloc_node(size, SHMLBA,
1772 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1773 PAGE_KERNEL, NUMA_NO_NODE,
1774 __builtin_return_address(0));
2b4ac44e 1775 if (ret) {
db64fe02 1776 area = find_vm_area(ret);
2b4ac44e 1777 area->flags |= VM_USERMAP;
2b4ac44e 1778 }
83342314
NP
1779 return ret;
1780}
1781EXPORT_SYMBOL(vmalloc_user);
1782
930fc45a
CL
1783/**
1784 * vmalloc_node - allocate memory on a specific node
930fc45a 1785 * @size: allocation size
d44e0780 1786 * @node: numa node
930fc45a
CL
1787 *
1788 * Allocate enough pages to cover @size from the page level
1789 * allocator and map them into contiguous kernel virtual space.
1790 *
c1c8897f 1791 * For tight control over page level allocator and protection flags
930fc45a
CL
1792 * use __vmalloc() instead.
1793 */
1794void *vmalloc_node(unsigned long size, int node)
1795{
2dca6999 1796 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1797 node, __builtin_return_address(0));
930fc45a
CL
1798}
1799EXPORT_SYMBOL(vmalloc_node);
1800
e1ca7788
DY
1801/**
1802 * vzalloc_node - allocate memory on a specific node with zero fill
1803 * @size: allocation size
1804 * @node: numa node
1805 *
1806 * Allocate enough pages to cover @size from the page level
1807 * allocator and map them into contiguous kernel virtual space.
1808 * The memory allocated is set to zero.
1809 *
1810 * For tight control over page level allocator and protection flags
1811 * use __vmalloc_node() instead.
1812 */
1813void *vzalloc_node(unsigned long size, int node)
1814{
1815 return __vmalloc_node_flags(size, node,
1816 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1817}
1818EXPORT_SYMBOL(vzalloc_node);
1819
4dc3b16b
PP
1820#ifndef PAGE_KERNEL_EXEC
1821# define PAGE_KERNEL_EXEC PAGE_KERNEL
1822#endif
1823
1da177e4
LT
1824/**
1825 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1826 * @size: allocation size
1827 *
1828 * Kernel-internal function to allocate enough pages to cover @size
1829 * the page level allocator and map them into contiguous and
1830 * executable kernel virtual space.
1831 *
c1c8897f 1832 * For tight control over page level allocator and protection flags
1da177e4
LT
1833 * use __vmalloc() instead.
1834 */
1835
1da177e4
LT
1836void *vmalloc_exec(unsigned long size)
1837{
2dca6999 1838 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1839 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1840}
1841
0d08e0d3 1842#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1843#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1844#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1845#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1846#else
1847#define GFP_VMALLOC32 GFP_KERNEL
1848#endif
1849
1da177e4
LT
1850/**
1851 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1852 * @size: allocation size
1853 *
1854 * Allocate enough 32bit PA addressable pages to cover @size from the
1855 * page level allocator and map them into contiguous kernel virtual space.
1856 */
1857void *vmalloc_32(unsigned long size)
1858{
2dca6999 1859 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1860 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1861}
1da177e4
LT
1862EXPORT_SYMBOL(vmalloc_32);
1863
83342314 1864/**
ead04089 1865 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1866 * @size: allocation size
ead04089
REB
1867 *
1868 * The resulting memory area is 32bit addressable and zeroed so it can be
1869 * mapped to userspace without leaking data.
83342314
NP
1870 */
1871void *vmalloc_32_user(unsigned long size)
1872{
1873 struct vm_struct *area;
1874 void *ret;
1875
2dca6999 1876 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1877 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1878 if (ret) {
db64fe02 1879 area = find_vm_area(ret);
2b4ac44e 1880 area->flags |= VM_USERMAP;
2b4ac44e 1881 }
83342314
NP
1882 return ret;
1883}
1884EXPORT_SYMBOL(vmalloc_32_user);
1885
d0107eb0
KH
1886/*
1887 * small helper routine , copy contents to buf from addr.
1888 * If the page is not present, fill zero.
1889 */
1890
1891static int aligned_vread(char *buf, char *addr, unsigned long count)
1892{
1893 struct page *p;
1894 int copied = 0;
1895
1896 while (count) {
1897 unsigned long offset, length;
1898
1899 offset = (unsigned long)addr & ~PAGE_MASK;
1900 length = PAGE_SIZE - offset;
1901 if (length > count)
1902 length = count;
1903 p = vmalloc_to_page(addr);
1904 /*
1905 * To do safe access to this _mapped_ area, we need
1906 * lock. But adding lock here means that we need to add
1907 * overhead of vmalloc()/vfree() calles for this _debug_
1908 * interface, rarely used. Instead of that, we'll use
1909 * kmap() and get small overhead in this access function.
1910 */
1911 if (p) {
1912 /*
1913 * we can expect USER0 is not used (see vread/vwrite's
1914 * function description)
1915 */
9b04c5fe 1916 void *map = kmap_atomic(p);
d0107eb0 1917 memcpy(buf, map + offset, length);
9b04c5fe 1918 kunmap_atomic(map);
d0107eb0
KH
1919 } else
1920 memset(buf, 0, length);
1921
1922 addr += length;
1923 buf += length;
1924 copied += length;
1925 count -= length;
1926 }
1927 return copied;
1928}
1929
1930static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1931{
1932 struct page *p;
1933 int copied = 0;
1934
1935 while (count) {
1936 unsigned long offset, length;
1937
1938 offset = (unsigned long)addr & ~PAGE_MASK;
1939 length = PAGE_SIZE - offset;
1940 if (length > count)
1941 length = count;
1942 p = vmalloc_to_page(addr);
1943 /*
1944 * To do safe access to this _mapped_ area, we need
1945 * lock. But adding lock here means that we need to add
1946 * overhead of vmalloc()/vfree() calles for this _debug_
1947 * interface, rarely used. Instead of that, we'll use
1948 * kmap() and get small overhead in this access function.
1949 */
1950 if (p) {
1951 /*
1952 * we can expect USER0 is not used (see vread/vwrite's
1953 * function description)
1954 */
9b04c5fe 1955 void *map = kmap_atomic(p);
d0107eb0 1956 memcpy(map + offset, buf, length);
9b04c5fe 1957 kunmap_atomic(map);
d0107eb0
KH
1958 }
1959 addr += length;
1960 buf += length;
1961 copied += length;
1962 count -= length;
1963 }
1964 return copied;
1965}
1966
1967/**
1968 * vread() - read vmalloc area in a safe way.
1969 * @buf: buffer for reading data
1970 * @addr: vm address.
1971 * @count: number of bytes to be read.
1972 *
1973 * Returns # of bytes which addr and buf should be increased.
1974 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1975 * includes any intersect with alive vmalloc area.
1976 *
1977 * This function checks that addr is a valid vmalloc'ed area, and
1978 * copy data from that area to a given buffer. If the given memory range
1979 * of [addr...addr+count) includes some valid address, data is copied to
1980 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1981 * IOREMAP area is treated as memory hole and no copy is done.
1982 *
1983 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 1984 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
1985 *
1986 * Note: In usual ops, vread() is never necessary because the caller
1987 * should know vmalloc() area is valid and can use memcpy().
1988 * This is for routines which have to access vmalloc area without
1989 * any informaion, as /dev/kmem.
1990 *
1991 */
1992
1da177e4
LT
1993long vread(char *buf, char *addr, unsigned long count)
1994{
e81ce85f
JK
1995 struct vmap_area *va;
1996 struct vm_struct *vm;
1da177e4 1997 char *vaddr, *buf_start = buf;
d0107eb0 1998 unsigned long buflen = count;
1da177e4
LT
1999 unsigned long n;
2000
2001 /* Don't allow overflow */
2002 if ((unsigned long) addr + count < count)
2003 count = -(unsigned long) addr;
2004
e81ce85f
JK
2005 spin_lock(&vmap_area_lock);
2006 list_for_each_entry(va, &vmap_area_list, list) {
2007 if (!count)
2008 break;
2009
2010 if (!(va->flags & VM_VM_AREA))
2011 continue;
2012
2013 vm = va->vm;
2014 vaddr = (char *) vm->addr;
2015 if (addr >= vaddr + vm->size - PAGE_SIZE)
1da177e4
LT
2016 continue;
2017 while (addr < vaddr) {
2018 if (count == 0)
2019 goto finished;
2020 *buf = '\0';
2021 buf++;
2022 addr++;
2023 count--;
2024 }
e81ce85f 2025 n = vaddr + vm->size - PAGE_SIZE - addr;
d0107eb0
KH
2026 if (n > count)
2027 n = count;
e81ce85f 2028 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2029 aligned_vread(buf, addr, n);
2030 else /* IOREMAP area is treated as memory hole */
2031 memset(buf, 0, n);
2032 buf += n;
2033 addr += n;
2034 count -= n;
1da177e4
LT
2035 }
2036finished:
e81ce85f 2037 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2038
2039 if (buf == buf_start)
2040 return 0;
2041 /* zero-fill memory holes */
2042 if (buf != buf_start + buflen)
2043 memset(buf, 0, buflen - (buf - buf_start));
2044
2045 return buflen;
1da177e4
LT
2046}
2047
d0107eb0
KH
2048/**
2049 * vwrite() - write vmalloc area in a safe way.
2050 * @buf: buffer for source data
2051 * @addr: vm address.
2052 * @count: number of bytes to be read.
2053 *
2054 * Returns # of bytes which addr and buf should be incresed.
2055 * (same number to @count).
2056 * If [addr...addr+count) doesn't includes any intersect with valid
2057 * vmalloc area, returns 0.
2058 *
2059 * This function checks that addr is a valid vmalloc'ed area, and
2060 * copy data from a buffer to the given addr. If specified range of
2061 * [addr...addr+count) includes some valid address, data is copied from
2062 * proper area of @buf. If there are memory holes, no copy to hole.
2063 * IOREMAP area is treated as memory hole and no copy is done.
2064 *
2065 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2066 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2067 *
2068 * Note: In usual ops, vwrite() is never necessary because the caller
2069 * should know vmalloc() area is valid and can use memcpy().
2070 * This is for routines which have to access vmalloc area without
2071 * any informaion, as /dev/kmem.
d0107eb0
KH
2072 */
2073
1da177e4
LT
2074long vwrite(char *buf, char *addr, unsigned long count)
2075{
e81ce85f
JK
2076 struct vmap_area *va;
2077 struct vm_struct *vm;
d0107eb0
KH
2078 char *vaddr;
2079 unsigned long n, buflen;
2080 int copied = 0;
1da177e4
LT
2081
2082 /* Don't allow overflow */
2083 if ((unsigned long) addr + count < count)
2084 count = -(unsigned long) addr;
d0107eb0 2085 buflen = count;
1da177e4 2086
e81ce85f
JK
2087 spin_lock(&vmap_area_lock);
2088 list_for_each_entry(va, &vmap_area_list, list) {
2089 if (!count)
2090 break;
2091
2092 if (!(va->flags & VM_VM_AREA))
2093 continue;
2094
2095 vm = va->vm;
2096 vaddr = (char *) vm->addr;
2097 if (addr >= vaddr + vm->size - PAGE_SIZE)
1da177e4
LT
2098 continue;
2099 while (addr < vaddr) {
2100 if (count == 0)
2101 goto finished;
2102 buf++;
2103 addr++;
2104 count--;
2105 }
e81ce85f 2106 n = vaddr + vm->size - PAGE_SIZE - addr;
d0107eb0
KH
2107 if (n > count)
2108 n = count;
e81ce85f 2109 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2110 aligned_vwrite(buf, addr, n);
2111 copied++;
2112 }
2113 buf += n;
2114 addr += n;
2115 count -= n;
1da177e4
LT
2116 }
2117finished:
e81ce85f 2118 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2119 if (!copied)
2120 return 0;
2121 return buflen;
1da177e4 2122}
83342314
NP
2123
2124/**
2125 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
2126 * @vma: vma to cover (map full range of vma)
2127 * @addr: vmalloc memory
2128 * @pgoff: number of pages into addr before first page to map
7682486b
RD
2129 *
2130 * Returns: 0 for success, -Exxx on failure
83342314
NP
2131 *
2132 * This function checks that addr is a valid vmalloc'ed area, and
2133 * that it is big enough to cover the vma. Will return failure if
2134 * that criteria isn't met.
2135 *
72fd4a35 2136 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
2137 */
2138int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2139 unsigned long pgoff)
2140{
2141 struct vm_struct *area;
2142 unsigned long uaddr = vma->vm_start;
2143 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
2144
2145 if ((PAGE_SIZE-1) & (unsigned long)addr)
2146 return -EINVAL;
2147
db64fe02 2148 area = find_vm_area(addr);
83342314 2149 if (!area)
db64fe02 2150 return -EINVAL;
83342314
NP
2151
2152 if (!(area->flags & VM_USERMAP))
db64fe02 2153 return -EINVAL;
83342314
NP
2154
2155 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 2156 return -EINVAL;
83342314
NP
2157
2158 addr += pgoff << PAGE_SHIFT;
2159 do {
2160 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
2161 int ret;
2162
83342314
NP
2163 ret = vm_insert_page(vma, uaddr, page);
2164 if (ret)
2165 return ret;
2166
2167 uaddr += PAGE_SIZE;
2168 addr += PAGE_SIZE;
2169 usize -= PAGE_SIZE;
2170 } while (usize > 0);
2171
314e51b9 2172 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2173
db64fe02 2174 return 0;
83342314
NP
2175}
2176EXPORT_SYMBOL(remap_vmalloc_range);
2177
1eeb66a1
CH
2178/*
2179 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2180 * have one.
2181 */
2182void __attribute__((weak)) vmalloc_sync_all(void)
2183{
2184}
5f4352fb
JF
2185
2186
2f569afd 2187static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2188{
cd12909c
DV
2189 pte_t ***p = data;
2190
2191 if (p) {
2192 *(*p) = pte;
2193 (*p)++;
2194 }
5f4352fb
JF
2195 return 0;
2196}
2197
2198/**
2199 * alloc_vm_area - allocate a range of kernel address space
2200 * @size: size of the area
cd12909c 2201 * @ptes: returns the PTEs for the address space
7682486b
RD
2202 *
2203 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2204 *
2205 * This function reserves a range of kernel address space, and
2206 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2207 * are created.
2208 *
2209 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2210 * allocated for the VM area are returned.
5f4352fb 2211 */
cd12909c 2212struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2213{
2214 struct vm_struct *area;
2215
23016969
CL
2216 area = get_vm_area_caller(size, VM_IOREMAP,
2217 __builtin_return_address(0));
5f4352fb
JF
2218 if (area == NULL)
2219 return NULL;
2220
2221 /*
2222 * This ensures that page tables are constructed for this region
2223 * of kernel virtual address space and mapped into init_mm.
2224 */
2225 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2226 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2227 free_vm_area(area);
2228 return NULL;
2229 }
2230
5f4352fb
JF
2231 return area;
2232}
2233EXPORT_SYMBOL_GPL(alloc_vm_area);
2234
2235void free_vm_area(struct vm_struct *area)
2236{
2237 struct vm_struct *ret;
2238 ret = remove_vm_area(area->addr);
2239 BUG_ON(ret != area);
2240 kfree(area);
2241}
2242EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2243
4f8b02b4 2244#ifdef CONFIG_SMP
ca23e405
TH
2245static struct vmap_area *node_to_va(struct rb_node *n)
2246{
2247 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2248}
2249
2250/**
2251 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2252 * @end: target address
2253 * @pnext: out arg for the next vmap_area
2254 * @pprev: out arg for the previous vmap_area
2255 *
2256 * Returns: %true if either or both of next and prev are found,
2257 * %false if no vmap_area exists
2258 *
2259 * Find vmap_areas end addresses of which enclose @end. ie. if not
2260 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2261 */
2262static bool pvm_find_next_prev(unsigned long end,
2263 struct vmap_area **pnext,
2264 struct vmap_area **pprev)
2265{
2266 struct rb_node *n = vmap_area_root.rb_node;
2267 struct vmap_area *va = NULL;
2268
2269 while (n) {
2270 va = rb_entry(n, struct vmap_area, rb_node);
2271 if (end < va->va_end)
2272 n = n->rb_left;
2273 else if (end > va->va_end)
2274 n = n->rb_right;
2275 else
2276 break;
2277 }
2278
2279 if (!va)
2280 return false;
2281
2282 if (va->va_end > end) {
2283 *pnext = va;
2284 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2285 } else {
2286 *pprev = va;
2287 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2288 }
2289 return true;
2290}
2291
2292/**
2293 * pvm_determine_end - find the highest aligned address between two vmap_areas
2294 * @pnext: in/out arg for the next vmap_area
2295 * @pprev: in/out arg for the previous vmap_area
2296 * @align: alignment
2297 *
2298 * Returns: determined end address
2299 *
2300 * Find the highest aligned address between *@pnext and *@pprev below
2301 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2302 * down address is between the end addresses of the two vmap_areas.
2303 *
2304 * Please note that the address returned by this function may fall
2305 * inside *@pnext vmap_area. The caller is responsible for checking
2306 * that.
2307 */
2308static unsigned long pvm_determine_end(struct vmap_area **pnext,
2309 struct vmap_area **pprev,
2310 unsigned long align)
2311{
2312 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2313 unsigned long addr;
2314
2315 if (*pnext)
2316 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2317 else
2318 addr = vmalloc_end;
2319
2320 while (*pprev && (*pprev)->va_end > addr) {
2321 *pnext = *pprev;
2322 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2323 }
2324
2325 return addr;
2326}
2327
2328/**
2329 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2330 * @offsets: array containing offset of each area
2331 * @sizes: array containing size of each area
2332 * @nr_vms: the number of areas to allocate
2333 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2334 *
2335 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2336 * vm_structs on success, %NULL on failure
2337 *
2338 * Percpu allocator wants to use congruent vm areas so that it can
2339 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2340 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2341 * be scattered pretty far, distance between two areas easily going up
2342 * to gigabytes. To avoid interacting with regular vmallocs, these
2343 * areas are allocated from top.
ca23e405
TH
2344 *
2345 * Despite its complicated look, this allocator is rather simple. It
2346 * does everything top-down and scans areas from the end looking for
2347 * matching slot. While scanning, if any of the areas overlaps with
2348 * existing vmap_area, the base address is pulled down to fit the
2349 * area. Scanning is repeated till all the areas fit and then all
2350 * necessary data structres are inserted and the result is returned.
2351 */
2352struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2353 const size_t *sizes, int nr_vms,
ec3f64fc 2354 size_t align)
ca23e405
TH
2355{
2356 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2357 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2358 struct vmap_area **vas, *prev, *next;
2359 struct vm_struct **vms;
2360 int area, area2, last_area, term_area;
2361 unsigned long base, start, end, last_end;
2362 bool purged = false;
2363
ca23e405
TH
2364 /* verify parameters and allocate data structures */
2365 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2366 for (last_area = 0, area = 0; area < nr_vms; area++) {
2367 start = offsets[area];
2368 end = start + sizes[area];
2369
2370 /* is everything aligned properly? */
2371 BUG_ON(!IS_ALIGNED(offsets[area], align));
2372 BUG_ON(!IS_ALIGNED(sizes[area], align));
2373
2374 /* detect the area with the highest address */
2375 if (start > offsets[last_area])
2376 last_area = area;
2377
2378 for (area2 = 0; area2 < nr_vms; area2++) {
2379 unsigned long start2 = offsets[area2];
2380 unsigned long end2 = start2 + sizes[area2];
2381
2382 if (area2 == area)
2383 continue;
2384
2385 BUG_ON(start2 >= start && start2 < end);
2386 BUG_ON(end2 <= end && end2 > start);
2387 }
2388 }
2389 last_end = offsets[last_area] + sizes[last_area];
2390
2391 if (vmalloc_end - vmalloc_start < last_end) {
2392 WARN_ON(true);
2393 return NULL;
2394 }
2395
4d67d860
TM
2396 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2397 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2398 if (!vas || !vms)
f1db7afd 2399 goto err_free2;
ca23e405
TH
2400
2401 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2402 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2403 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2404 if (!vas[area] || !vms[area])
2405 goto err_free;
2406 }
2407retry:
2408 spin_lock(&vmap_area_lock);
2409
2410 /* start scanning - we scan from the top, begin with the last area */
2411 area = term_area = last_area;
2412 start = offsets[area];
2413 end = start + sizes[area];
2414
2415 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2416 base = vmalloc_end - last_end;
2417 goto found;
2418 }
2419 base = pvm_determine_end(&next, &prev, align) - end;
2420
2421 while (true) {
2422 BUG_ON(next && next->va_end <= base + end);
2423 BUG_ON(prev && prev->va_end > base + end);
2424
2425 /*
2426 * base might have underflowed, add last_end before
2427 * comparing.
2428 */
2429 if (base + last_end < vmalloc_start + last_end) {
2430 spin_unlock(&vmap_area_lock);
2431 if (!purged) {
2432 purge_vmap_area_lazy();
2433 purged = true;
2434 goto retry;
2435 }
2436 goto err_free;
2437 }
2438
2439 /*
2440 * If next overlaps, move base downwards so that it's
2441 * right below next and then recheck.
2442 */
2443 if (next && next->va_start < base + end) {
2444 base = pvm_determine_end(&next, &prev, align) - end;
2445 term_area = area;
2446 continue;
2447 }
2448
2449 /*
2450 * If prev overlaps, shift down next and prev and move
2451 * base so that it's right below new next and then
2452 * recheck.
2453 */
2454 if (prev && prev->va_end > base + start) {
2455 next = prev;
2456 prev = node_to_va(rb_prev(&next->rb_node));
2457 base = pvm_determine_end(&next, &prev, align) - end;
2458 term_area = area;
2459 continue;
2460 }
2461
2462 /*
2463 * This area fits, move on to the previous one. If
2464 * the previous one is the terminal one, we're done.
2465 */
2466 area = (area + nr_vms - 1) % nr_vms;
2467 if (area == term_area)
2468 break;
2469 start = offsets[area];
2470 end = start + sizes[area];
2471 pvm_find_next_prev(base + end, &next, &prev);
2472 }
2473found:
2474 /* we've found a fitting base, insert all va's */
2475 for (area = 0; area < nr_vms; area++) {
2476 struct vmap_area *va = vas[area];
2477
2478 va->va_start = base + offsets[area];
2479 va->va_end = va->va_start + sizes[area];
2480 __insert_vmap_area(va);
2481 }
2482
2483 vmap_area_pcpu_hole = base + offsets[last_area];
2484
2485 spin_unlock(&vmap_area_lock);
2486
2487 /* insert all vm's */
2488 for (area = 0; area < nr_vms; area++)
2489 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2490 pcpu_get_vm_areas);
2491
2492 kfree(vas);
2493 return vms;
2494
2495err_free:
2496 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2497 kfree(vas[area]);
2498 kfree(vms[area]);
ca23e405 2499 }
f1db7afd 2500err_free2:
ca23e405
TH
2501 kfree(vas);
2502 kfree(vms);
2503 return NULL;
2504}
2505
2506/**
2507 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2508 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2509 * @nr_vms: the number of allocated areas
2510 *
2511 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2512 */
2513void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2514{
2515 int i;
2516
2517 for (i = 0; i < nr_vms; i++)
2518 free_vm_area(vms[i]);
2519 kfree(vms);
2520}
4f8b02b4 2521#endif /* CONFIG_SMP */
a10aa579
CL
2522
2523#ifdef CONFIG_PROC_FS
2524static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2525 __acquires(&vmap_area_lock)
a10aa579
CL
2526{
2527 loff_t n = *pos;
d4033afd 2528 struct vmap_area *va;
a10aa579 2529
d4033afd
JK
2530 spin_lock(&vmap_area_lock);
2531 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2532 while (n > 0 && &va->list != &vmap_area_list) {
a10aa579 2533 n--;
d4033afd 2534 va = list_entry(va->list.next, typeof(*va), list);
a10aa579 2535 }
d4033afd
JK
2536 if (!n && &va->list != &vmap_area_list)
2537 return va;
a10aa579
CL
2538
2539 return NULL;
2540
2541}
2542
2543static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2544{
d4033afd 2545 struct vmap_area *va = p, *next;
a10aa579
CL
2546
2547 ++*pos;
d4033afd
JK
2548 next = list_entry(va->list.next, typeof(*va), list);
2549 if (&next->list != &vmap_area_list)
2550 return next;
2551
2552 return NULL;
a10aa579
CL
2553}
2554
2555static void s_stop(struct seq_file *m, void *p)
d4033afd 2556 __releases(&vmap_area_lock)
a10aa579 2557{
d4033afd 2558 spin_unlock(&vmap_area_lock);
a10aa579
CL
2559}
2560
a47a126a
ED
2561static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2562{
e5adfffc 2563 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2564 unsigned int nr, *counters = m->private;
2565
2566 if (!counters)
2567 return;
2568
4341fa45 2569 /* Pair with smp_wmb() in clear_vm_unlist() */
d4033afd
JK
2570 smp_rmb();
2571 if (v->flags & VM_UNLIST)
2572 return;
2573
a47a126a
ED
2574 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2575
2576 for (nr = 0; nr < v->nr_pages; nr++)
2577 counters[page_to_nid(v->pages[nr])]++;
2578
2579 for_each_node_state(nr, N_HIGH_MEMORY)
2580 if (counters[nr])
2581 seq_printf(m, " N%u=%u", nr, counters[nr]);
2582 }
2583}
2584
a10aa579
CL
2585static int s_show(struct seq_file *m, void *p)
2586{
d4033afd
JK
2587 struct vmap_area *va = p;
2588 struct vm_struct *v;
2589
2590 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2591 return 0;
2592
2593 if (!(va->flags & VM_VM_AREA)) {
2594 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
2595 (void *)va->va_start, (void *)va->va_end,
2596 va->va_end - va->va_start);
2597 return 0;
2598 }
2599
2600 v = va->vm;
a10aa579 2601
45ec1690 2602 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2603 v->addr, v->addr + v->size, v->size);
2604
62c70bce
JP
2605 if (v->caller)
2606 seq_printf(m, " %pS", v->caller);
23016969 2607
a10aa579
CL
2608 if (v->nr_pages)
2609 seq_printf(m, " pages=%d", v->nr_pages);
2610
2611 if (v->phys_addr)
ffa71f33 2612 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2613
2614 if (v->flags & VM_IOREMAP)
2615 seq_printf(m, " ioremap");
2616
2617 if (v->flags & VM_ALLOC)
2618 seq_printf(m, " vmalloc");
2619
2620 if (v->flags & VM_MAP)
2621 seq_printf(m, " vmap");
2622
2623 if (v->flags & VM_USERMAP)
2624 seq_printf(m, " user");
2625
2626 if (v->flags & VM_VPAGES)
2627 seq_printf(m, " vpages");
2628
a47a126a 2629 show_numa_info(m, v);
a10aa579
CL
2630 seq_putc(m, '\n');
2631 return 0;
2632}
2633
5f6a6a9c 2634static const struct seq_operations vmalloc_op = {
a10aa579
CL
2635 .start = s_start,
2636 .next = s_next,
2637 .stop = s_stop,
2638 .show = s_show,
2639};
5f6a6a9c
AD
2640
2641static int vmalloc_open(struct inode *inode, struct file *file)
2642{
2643 unsigned int *ptr = NULL;
2644 int ret;
2645
e5adfffc 2646 if (IS_ENABLED(CONFIG_NUMA)) {
5f6a6a9c 2647 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
51980ac9
KV
2648 if (ptr == NULL)
2649 return -ENOMEM;
2650 }
5f6a6a9c
AD
2651 ret = seq_open(file, &vmalloc_op);
2652 if (!ret) {
2653 struct seq_file *m = file->private_data;
2654 m->private = ptr;
2655 } else
2656 kfree(ptr);
2657 return ret;
2658}
2659
2660static const struct file_operations proc_vmalloc_operations = {
2661 .open = vmalloc_open,
2662 .read = seq_read,
2663 .llseek = seq_lseek,
2664 .release = seq_release_private,
2665};
2666
2667static int __init proc_vmalloc_init(void)
2668{
2669 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2670 return 0;
2671}
2672module_init(proc_vmalloc_init);
db3808c1
JK
2673
2674void get_vmalloc_info(struct vmalloc_info *vmi)
2675{
f98782dd 2676 struct vmap_area *va;
db3808c1
JK
2677 unsigned long free_area_size;
2678 unsigned long prev_end;
2679
2680 vmi->used = 0;
f98782dd 2681 vmi->largest_chunk = 0;
db3808c1 2682
f98782dd 2683 prev_end = VMALLOC_START;
db3808c1 2684
f98782dd 2685 spin_lock(&vmap_area_lock);
db3808c1 2686
f98782dd
JK
2687 if (list_empty(&vmap_area_list)) {
2688 vmi->largest_chunk = VMALLOC_TOTAL;
2689 goto out;
2690 }
db3808c1 2691
f98782dd
JK
2692 list_for_each_entry(va, &vmap_area_list, list) {
2693 unsigned long addr = va->va_start;
db3808c1 2694
f98782dd
JK
2695 /*
2696 * Some archs keep another range for modules in vmalloc space
2697 */
2698 if (addr < VMALLOC_START)
2699 continue;
2700 if (addr >= VMALLOC_END)
2701 break;
db3808c1 2702
f98782dd
JK
2703 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2704 continue;
db3808c1 2705
f98782dd 2706 vmi->used += (va->va_end - va->va_start);
db3808c1 2707
f98782dd
JK
2708 free_area_size = addr - prev_end;
2709 if (vmi->largest_chunk < free_area_size)
2710 vmi->largest_chunk = free_area_size;
db3808c1 2711
f98782dd 2712 prev_end = va->va_end;
db3808c1 2713 }
f98782dd
JK
2714
2715 if (VMALLOC_END - prev_end > vmi->largest_chunk)
2716 vmi->largest_chunk = VMALLOC_END - prev_end;
2717
2718out:
2719 spin_unlock(&vmap_area_lock);
db3808c1 2720}
a10aa579
CL
2721#endif
2722