mm: shrinker: make shrinker not depend on memcg kmem
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
3b32123d 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046
MG
42#include "internal.h"
43
32fcfd40
AV
44struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
47};
48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50static void __vunmap(const void *, int);
51
52static void free_work(struct work_struct *w)
53{
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
55 struct llist_node *t, *llnode;
56
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
32fcfd40
AV
59}
60
db64fe02 61/*** Page table manipulation functions ***/
b221385b 62
1da177e4
LT
63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64{
65 pte_t *pte;
66
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
72}
73
db64fe02 74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pmd_t *pmd;
77 unsigned long next;
78
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
b9820d8f
TK
82 if (pmd_clear_huge(pmd))
83 continue;
1da177e4
LT
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
88}
89
c2febafc 90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
91{
92 pud_t *pud;
93 unsigned long next;
94
c2febafc 95 pud = pud_offset(p4d, addr);
1da177e4
LT
96 do {
97 next = pud_addr_end(addr, end);
b9820d8f
TK
98 if (pud_clear_huge(pud))
99 continue;
1da177e4
LT
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
104}
105
c2febafc
KS
106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107{
108 p4d_t *p4d;
109 unsigned long next;
110
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
120}
121
db64fe02 122static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
123{
124 pgd_t *pgd;
125 unsigned long next;
1da177e4
LT
126
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
1da177e4
LT
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
c2febafc 133 vunmap_p4d_range(pgd, addr, next);
1da177e4 134 } while (pgd++, addr = next, addr != end);
1da177e4
LT
135}
136
137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
139{
140 pte_t *pte;
141
db64fe02
NP
142 /*
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
145 */
146
872fec16 147 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
148 if (!pte)
149 return -ENOMEM;
150 do {
db64fe02
NP
151 struct page *page = pages[*nr];
152
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
1da177e4
LT
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 158 (*nr)++;
1da177e4
LT
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
db64fe02 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
178}
179
c2febafc 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
185
c2febafc 186 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
db64fe02 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
195}
196
c2febafc
KS
197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199{
200 p4d_t *p4d;
201 unsigned long next;
202
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
212}
213
db64fe02
NP
214/*
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
217 *
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 */
8fc48985
TH
220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
1da177e4
LT
222{
223 pgd_t *pgd;
224 unsigned long next;
2e4e27c7 225 unsigned long addr = start;
db64fe02
NP
226 int err = 0;
227 int nr = 0;
1da177e4
LT
228
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
1da177e4
LT
231 do {
232 next = pgd_addr_end(addr, end);
c2febafc 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 234 if (err)
bf88c8c8 235 return err;
1da177e4 236 } while (pgd++, addr = next, addr != end);
db64fe02 237
db64fe02 238 return nr;
1da177e4
LT
239}
240
8fc48985
TH
241static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
243{
244 int ret;
245
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
249}
250
81ac3ad9 251int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
252{
253 /*
ab4f2ee1 254 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
257 */
258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262#endif
263 return is_vmalloc_addr(x);
264}
265
48667e7a 266/*
add688fb 267 * Walk a vmap address to the struct page it maps.
48667e7a 268 */
add688fb 269struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
270{
271 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 272 struct page *page = NULL;
48667e7a 273 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
48667e7a 278
7aa413de
IM
279 /*
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
282 */
73bdf0a6 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 284
c2febafc
KS
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
029c54b0
AB
291
292 /*
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
299 */
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
302 return NULL;
303 pmd = pmd_offset(pud, addr);
029c54b0
AB
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
306 return NULL;
307
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
add688fb 313 return page;
48667e7a 314}
add688fb 315EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
316
317/*
add688fb 318 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 319 */
add688fb 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 321{
add688fb 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 323}
add688fb 324EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 325
db64fe02
NP
326
327/*** Global kva allocator ***/
328
bb850f4d 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 331
db64fe02 332
db64fe02 333static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
334/* Export for kexec only */
335LIST_HEAD(vmap_area_list);
80c4bd7a 336static LLIST_HEAD(vmap_purge_list);
89699605 337static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 338static bool vmap_initialized __read_mostly;
89699605 339
68ad4a33
URS
340/*
341 * This kmem_cache is used for vmap_area objects. Instead of
342 * allocating from slab we reuse an object from this cache to
343 * make things faster. Especially in "no edge" splitting of
344 * free block.
345 */
346static struct kmem_cache *vmap_area_cachep;
347
348/*
349 * This linked list is used in pair with free_vmap_area_root.
350 * It gives O(1) access to prev/next to perform fast coalescing.
351 */
352static LIST_HEAD(free_vmap_area_list);
353
354/*
355 * This augment red-black tree represents the free vmap space.
356 * All vmap_area objects in this tree are sorted by va->va_start
357 * address. It is used for allocation and merging when a vmap
358 * object is released.
359 *
360 * Each vmap_area node contains a maximum available free block
361 * of its sub-tree, right or left. Therefore it is possible to
362 * find a lowest match of free area.
363 */
364static struct rb_root free_vmap_area_root = RB_ROOT;
365
82dd23e8
URS
366/*
367 * Preload a CPU with one object for "no edge" split case. The
368 * aim is to get rid of allocations from the atomic context, thus
369 * to use more permissive allocation masks.
370 */
371static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
372
68ad4a33
URS
373static __always_inline unsigned long
374va_size(struct vmap_area *va)
375{
376 return (va->va_end - va->va_start);
377}
378
379static __always_inline unsigned long
380get_subtree_max_size(struct rb_node *node)
381{
382 struct vmap_area *va;
383
384 va = rb_entry_safe(node, struct vmap_area, rb_node);
385 return va ? va->subtree_max_size : 0;
386}
89699605 387
68ad4a33
URS
388/*
389 * Gets called when remove the node and rotate.
390 */
391static __always_inline unsigned long
392compute_subtree_max_size(struct vmap_area *va)
393{
394 return max3(va_size(va),
395 get_subtree_max_size(va->rb_node.rb_left),
396 get_subtree_max_size(va->rb_node.rb_right));
397}
398
399RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
400 struct vmap_area, rb_node, unsigned long, subtree_max_size,
401 compute_subtree_max_size)
402
403static void purge_vmap_area_lazy(void);
404static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
405static unsigned long lazy_max_pages(void);
db64fe02 406
97105f0a
RG
407static atomic_long_t nr_vmalloc_pages;
408
409unsigned long vmalloc_nr_pages(void)
410{
411 return atomic_long_read(&nr_vmalloc_pages);
412}
413
db64fe02 414static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 415{
db64fe02
NP
416 struct rb_node *n = vmap_area_root.rb_node;
417
418 while (n) {
419 struct vmap_area *va;
420
421 va = rb_entry(n, struct vmap_area, rb_node);
422 if (addr < va->va_start)
423 n = n->rb_left;
cef2ac3f 424 else if (addr >= va->va_end)
db64fe02
NP
425 n = n->rb_right;
426 else
427 return va;
428 }
429
430 return NULL;
431}
432
68ad4a33
URS
433/*
434 * This function returns back addresses of parent node
435 * and its left or right link for further processing.
436 */
437static __always_inline struct rb_node **
438find_va_links(struct vmap_area *va,
439 struct rb_root *root, struct rb_node *from,
440 struct rb_node **parent)
441{
442 struct vmap_area *tmp_va;
443 struct rb_node **link;
444
445 if (root) {
446 link = &root->rb_node;
447 if (unlikely(!*link)) {
448 *parent = NULL;
449 return link;
450 }
451 } else {
452 link = &from;
453 }
db64fe02 454
68ad4a33
URS
455 /*
456 * Go to the bottom of the tree. When we hit the last point
457 * we end up with parent rb_node and correct direction, i name
458 * it link, where the new va->rb_node will be attached to.
459 */
460 do {
461 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 462
68ad4a33
URS
463 /*
464 * During the traversal we also do some sanity check.
465 * Trigger the BUG() if there are sides(left/right)
466 * or full overlaps.
467 */
468 if (va->va_start < tmp_va->va_end &&
469 va->va_end <= tmp_va->va_start)
470 link = &(*link)->rb_left;
471 else if (va->va_end > tmp_va->va_start &&
472 va->va_start >= tmp_va->va_end)
473 link = &(*link)->rb_right;
db64fe02
NP
474 else
475 BUG();
68ad4a33
URS
476 } while (*link);
477
478 *parent = &tmp_va->rb_node;
479 return link;
480}
481
482static __always_inline struct list_head *
483get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
484{
485 struct list_head *list;
486
487 if (unlikely(!parent))
488 /*
489 * The red-black tree where we try to find VA neighbors
490 * before merging or inserting is empty, i.e. it means
491 * there is no free vmap space. Normally it does not
492 * happen but we handle this case anyway.
493 */
494 return NULL;
495
496 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
497 return (&parent->rb_right == link ? list->next : list);
498}
499
500static __always_inline void
501link_va(struct vmap_area *va, struct rb_root *root,
502 struct rb_node *parent, struct rb_node **link, struct list_head *head)
503{
504 /*
505 * VA is still not in the list, but we can
506 * identify its future previous list_head node.
507 */
508 if (likely(parent)) {
509 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
510 if (&parent->rb_right != link)
511 head = head->prev;
db64fe02
NP
512 }
513
68ad4a33
URS
514 /* Insert to the rb-tree */
515 rb_link_node(&va->rb_node, parent, link);
516 if (root == &free_vmap_area_root) {
517 /*
518 * Some explanation here. Just perform simple insertion
519 * to the tree. We do not set va->subtree_max_size to
520 * its current size before calling rb_insert_augmented().
521 * It is because of we populate the tree from the bottom
522 * to parent levels when the node _is_ in the tree.
523 *
524 * Therefore we set subtree_max_size to zero after insertion,
525 * to let __augment_tree_propagate_from() puts everything to
526 * the correct order later on.
527 */
528 rb_insert_augmented(&va->rb_node,
529 root, &free_vmap_area_rb_augment_cb);
530 va->subtree_max_size = 0;
531 } else {
532 rb_insert_color(&va->rb_node, root);
533 }
db64fe02 534
68ad4a33
URS
535 /* Address-sort this list */
536 list_add(&va->list, head);
db64fe02
NP
537}
538
68ad4a33
URS
539static __always_inline void
540unlink_va(struct vmap_area *va, struct rb_root *root)
541{
460e42d1
URS
542 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
543 return;
db64fe02 544
460e42d1
URS
545 if (root == &free_vmap_area_root)
546 rb_erase_augmented(&va->rb_node,
547 root, &free_vmap_area_rb_augment_cb);
548 else
549 rb_erase(&va->rb_node, root);
550
551 list_del(&va->list);
552 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
553}
554
bb850f4d
URS
555#if DEBUG_AUGMENT_PROPAGATE_CHECK
556static void
557augment_tree_propagate_check(struct rb_node *n)
558{
559 struct vmap_area *va;
560 struct rb_node *node;
561 unsigned long size;
562 bool found = false;
563
564 if (n == NULL)
565 return;
566
567 va = rb_entry(n, struct vmap_area, rb_node);
568 size = va->subtree_max_size;
569 node = n;
570
571 while (node) {
572 va = rb_entry(node, struct vmap_area, rb_node);
573
574 if (get_subtree_max_size(node->rb_left) == size) {
575 node = node->rb_left;
576 } else {
577 if (va_size(va) == size) {
578 found = true;
579 break;
580 }
581
582 node = node->rb_right;
583 }
584 }
585
586 if (!found) {
587 va = rb_entry(n, struct vmap_area, rb_node);
588 pr_emerg("tree is corrupted: %lu, %lu\n",
589 va_size(va), va->subtree_max_size);
590 }
591
592 augment_tree_propagate_check(n->rb_left);
593 augment_tree_propagate_check(n->rb_right);
594}
595#endif
596
68ad4a33
URS
597/*
598 * This function populates subtree_max_size from bottom to upper
599 * levels starting from VA point. The propagation must be done
600 * when VA size is modified by changing its va_start/va_end. Or
601 * in case of newly inserting of VA to the tree.
602 *
603 * It means that __augment_tree_propagate_from() must be called:
604 * - After VA has been inserted to the tree(free path);
605 * - After VA has been shrunk(allocation path);
606 * - After VA has been increased(merging path).
607 *
608 * Please note that, it does not mean that upper parent nodes
609 * and their subtree_max_size are recalculated all the time up
610 * to the root node.
611 *
612 * 4--8
613 * /\
614 * / \
615 * / \
616 * 2--2 8--8
617 *
618 * For example if we modify the node 4, shrinking it to 2, then
619 * no any modification is required. If we shrink the node 2 to 1
620 * its subtree_max_size is updated only, and set to 1. If we shrink
621 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
622 * node becomes 4--6.
623 */
624static __always_inline void
625augment_tree_propagate_from(struct vmap_area *va)
626{
627 struct rb_node *node = &va->rb_node;
628 unsigned long new_va_sub_max_size;
629
630 while (node) {
631 va = rb_entry(node, struct vmap_area, rb_node);
632 new_va_sub_max_size = compute_subtree_max_size(va);
633
634 /*
635 * If the newly calculated maximum available size of the
636 * subtree is equal to the current one, then it means that
637 * the tree is propagated correctly. So we have to stop at
638 * this point to save cycles.
639 */
640 if (va->subtree_max_size == new_va_sub_max_size)
641 break;
642
643 va->subtree_max_size = new_va_sub_max_size;
644 node = rb_parent(&va->rb_node);
645 }
bb850f4d
URS
646
647#if DEBUG_AUGMENT_PROPAGATE_CHECK
648 augment_tree_propagate_check(free_vmap_area_root.rb_node);
649#endif
68ad4a33
URS
650}
651
652static void
653insert_vmap_area(struct vmap_area *va,
654 struct rb_root *root, struct list_head *head)
655{
656 struct rb_node **link;
657 struct rb_node *parent;
658
659 link = find_va_links(va, root, NULL, &parent);
660 link_va(va, root, parent, link, head);
661}
662
663static void
664insert_vmap_area_augment(struct vmap_area *va,
665 struct rb_node *from, struct rb_root *root,
666 struct list_head *head)
667{
668 struct rb_node **link;
669 struct rb_node *parent;
670
671 if (from)
672 link = find_va_links(va, NULL, from, &parent);
673 else
674 link = find_va_links(va, root, NULL, &parent);
675
676 link_va(va, root, parent, link, head);
677 augment_tree_propagate_from(va);
678}
679
680/*
681 * Merge de-allocated chunk of VA memory with previous
682 * and next free blocks. If coalesce is not done a new
683 * free area is inserted. If VA has been merged, it is
684 * freed.
685 */
686static __always_inline void
687merge_or_add_vmap_area(struct vmap_area *va,
688 struct rb_root *root, struct list_head *head)
689{
690 struct vmap_area *sibling;
691 struct list_head *next;
692 struct rb_node **link;
693 struct rb_node *parent;
694 bool merged = false;
695
696 /*
697 * Find a place in the tree where VA potentially will be
698 * inserted, unless it is merged with its sibling/siblings.
699 */
700 link = find_va_links(va, root, NULL, &parent);
701
702 /*
703 * Get next node of VA to check if merging can be done.
704 */
705 next = get_va_next_sibling(parent, link);
706 if (unlikely(next == NULL))
707 goto insert;
708
709 /*
710 * start end
711 * | |
712 * |<------VA------>|<-----Next----->|
713 * | |
714 * start end
715 */
716 if (next != head) {
717 sibling = list_entry(next, struct vmap_area, list);
718 if (sibling->va_start == va->va_end) {
719 sibling->va_start = va->va_start;
720
721 /* Check and update the tree if needed. */
722 augment_tree_propagate_from(sibling);
723
68ad4a33
URS
724 /* Free vmap_area object. */
725 kmem_cache_free(vmap_area_cachep, va);
726
727 /* Point to the new merged area. */
728 va = sibling;
729 merged = true;
730 }
731 }
732
733 /*
734 * start end
735 * | |
736 * |<-----Prev----->|<------VA------>|
737 * | |
738 * start end
739 */
740 if (next->prev != head) {
741 sibling = list_entry(next->prev, struct vmap_area, list);
742 if (sibling->va_end == va->va_start) {
743 sibling->va_end = va->va_end;
744
745 /* Check and update the tree if needed. */
746 augment_tree_propagate_from(sibling);
747
54f63d9d
URS
748 if (merged)
749 unlink_va(va, root);
68ad4a33
URS
750
751 /* Free vmap_area object. */
752 kmem_cache_free(vmap_area_cachep, va);
68ad4a33
URS
753 return;
754 }
755 }
756
757insert:
758 if (!merged) {
759 link_va(va, root, parent, link, head);
760 augment_tree_propagate_from(va);
761 }
762}
763
764static __always_inline bool
765is_within_this_va(struct vmap_area *va, unsigned long size,
766 unsigned long align, unsigned long vstart)
767{
768 unsigned long nva_start_addr;
769
770 if (va->va_start > vstart)
771 nva_start_addr = ALIGN(va->va_start, align);
772 else
773 nva_start_addr = ALIGN(vstart, align);
774
775 /* Can be overflowed due to big size or alignment. */
776 if (nva_start_addr + size < nva_start_addr ||
777 nva_start_addr < vstart)
778 return false;
779
780 return (nva_start_addr + size <= va->va_end);
781}
782
783/*
784 * Find the first free block(lowest start address) in the tree,
785 * that will accomplish the request corresponding to passing
786 * parameters.
787 */
788static __always_inline struct vmap_area *
789find_vmap_lowest_match(unsigned long size,
790 unsigned long align, unsigned long vstart)
791{
792 struct vmap_area *va;
793 struct rb_node *node;
794 unsigned long length;
795
796 /* Start from the root. */
797 node = free_vmap_area_root.rb_node;
798
799 /* Adjust the search size for alignment overhead. */
800 length = size + align - 1;
801
802 while (node) {
803 va = rb_entry(node, struct vmap_area, rb_node);
804
805 if (get_subtree_max_size(node->rb_left) >= length &&
806 vstart < va->va_start) {
807 node = node->rb_left;
808 } else {
809 if (is_within_this_va(va, size, align, vstart))
810 return va;
811
812 /*
813 * Does not make sense to go deeper towards the right
814 * sub-tree if it does not have a free block that is
815 * equal or bigger to the requested search length.
816 */
817 if (get_subtree_max_size(node->rb_right) >= length) {
818 node = node->rb_right;
819 continue;
820 }
821
822 /*
3806b041 823 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
824 * that will satisfy the search criteria. It can happen
825 * only once due to "vstart" restriction.
826 */
827 while ((node = rb_parent(node))) {
828 va = rb_entry(node, struct vmap_area, rb_node);
829 if (is_within_this_va(va, size, align, vstart))
830 return va;
831
832 if (get_subtree_max_size(node->rb_right) >= length &&
833 vstart <= va->va_start) {
834 node = node->rb_right;
835 break;
836 }
837 }
838 }
839 }
840
841 return NULL;
842}
843
a6cf4e0f
URS
844#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
845#include <linux/random.h>
846
847static struct vmap_area *
848find_vmap_lowest_linear_match(unsigned long size,
849 unsigned long align, unsigned long vstart)
850{
851 struct vmap_area *va;
852
853 list_for_each_entry(va, &free_vmap_area_list, list) {
854 if (!is_within_this_va(va, size, align, vstart))
855 continue;
856
857 return va;
858 }
859
860 return NULL;
861}
862
863static void
864find_vmap_lowest_match_check(unsigned long size)
865{
866 struct vmap_area *va_1, *va_2;
867 unsigned long vstart;
868 unsigned int rnd;
869
870 get_random_bytes(&rnd, sizeof(rnd));
871 vstart = VMALLOC_START + rnd;
872
873 va_1 = find_vmap_lowest_match(size, 1, vstart);
874 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
875
876 if (va_1 != va_2)
877 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
878 va_1, va_2, vstart);
879}
880#endif
881
68ad4a33
URS
882enum fit_type {
883 NOTHING_FIT = 0,
884 FL_FIT_TYPE = 1, /* full fit */
885 LE_FIT_TYPE = 2, /* left edge fit */
886 RE_FIT_TYPE = 3, /* right edge fit */
887 NE_FIT_TYPE = 4 /* no edge fit */
888};
889
890static __always_inline enum fit_type
891classify_va_fit_type(struct vmap_area *va,
892 unsigned long nva_start_addr, unsigned long size)
893{
894 enum fit_type type;
895
896 /* Check if it is within VA. */
897 if (nva_start_addr < va->va_start ||
898 nva_start_addr + size > va->va_end)
899 return NOTHING_FIT;
900
901 /* Now classify. */
902 if (va->va_start == nva_start_addr) {
903 if (va->va_end == nva_start_addr + size)
904 type = FL_FIT_TYPE;
905 else
906 type = LE_FIT_TYPE;
907 } else if (va->va_end == nva_start_addr + size) {
908 type = RE_FIT_TYPE;
909 } else {
910 type = NE_FIT_TYPE;
911 }
912
913 return type;
914}
915
916static __always_inline int
917adjust_va_to_fit_type(struct vmap_area *va,
918 unsigned long nva_start_addr, unsigned long size,
919 enum fit_type type)
920{
2c929233 921 struct vmap_area *lva = NULL;
68ad4a33
URS
922
923 if (type == FL_FIT_TYPE) {
924 /*
925 * No need to split VA, it fully fits.
926 *
927 * | |
928 * V NVA V
929 * |---------------|
930 */
931 unlink_va(va, &free_vmap_area_root);
932 kmem_cache_free(vmap_area_cachep, va);
933 } else if (type == LE_FIT_TYPE) {
934 /*
935 * Split left edge of fit VA.
936 *
937 * | |
938 * V NVA V R
939 * |-------|-------|
940 */
941 va->va_start += size;
942 } else if (type == RE_FIT_TYPE) {
943 /*
944 * Split right edge of fit VA.
945 *
946 * | |
947 * L V NVA V
948 * |-------|-------|
949 */
950 va->va_end = nva_start_addr;
951 } else if (type == NE_FIT_TYPE) {
952 /*
953 * Split no edge of fit VA.
954 *
955 * | |
956 * L V NVA V R
957 * |---|-------|---|
958 */
82dd23e8
URS
959 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
960 if (unlikely(!lva)) {
961 /*
962 * For percpu allocator we do not do any pre-allocation
963 * and leave it as it is. The reason is it most likely
964 * never ends up with NE_FIT_TYPE splitting. In case of
965 * percpu allocations offsets and sizes are aligned to
966 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
967 * are its main fitting cases.
968 *
969 * There are a few exceptions though, as an example it is
970 * a first allocation (early boot up) when we have "one"
971 * big free space that has to be split.
972 */
973 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
974 if (!lva)
975 return -1;
976 }
68ad4a33
URS
977
978 /*
979 * Build the remainder.
980 */
981 lva->va_start = va->va_start;
982 lva->va_end = nva_start_addr;
983
984 /*
985 * Shrink this VA to remaining size.
986 */
987 va->va_start = nva_start_addr + size;
988 } else {
989 return -1;
990 }
991
992 if (type != FL_FIT_TYPE) {
993 augment_tree_propagate_from(va);
994
2c929233 995 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
996 insert_vmap_area_augment(lva, &va->rb_node,
997 &free_vmap_area_root, &free_vmap_area_list);
998 }
999
1000 return 0;
1001}
1002
1003/*
1004 * Returns a start address of the newly allocated area, if success.
1005 * Otherwise a vend is returned that indicates failure.
1006 */
1007static __always_inline unsigned long
1008__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1009 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1010{
1011 unsigned long nva_start_addr;
1012 struct vmap_area *va;
1013 enum fit_type type;
1014 int ret;
1015
1016 va = find_vmap_lowest_match(size, align, vstart);
1017 if (unlikely(!va))
1018 return vend;
1019
1020 if (va->va_start > vstart)
1021 nva_start_addr = ALIGN(va->va_start, align);
1022 else
1023 nva_start_addr = ALIGN(vstart, align);
1024
1025 /* Check the "vend" restriction. */
1026 if (nva_start_addr + size > vend)
1027 return vend;
1028
1029 /* Classify what we have found. */
1030 type = classify_va_fit_type(va, nva_start_addr, size);
1031 if (WARN_ON_ONCE(type == NOTHING_FIT))
1032 return vend;
1033
1034 /* Update the free vmap_area. */
1035 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1036 if (ret)
1037 return vend;
1038
a6cf4e0f
URS
1039#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1040 find_vmap_lowest_match_check(size);
1041#endif
1042
68ad4a33
URS
1043 return nva_start_addr;
1044}
4da56b99 1045
db64fe02
NP
1046/*
1047 * Allocate a region of KVA of the specified size and alignment, within the
1048 * vstart and vend.
1049 */
1050static struct vmap_area *alloc_vmap_area(unsigned long size,
1051 unsigned long align,
1052 unsigned long vstart, unsigned long vend,
1053 int node, gfp_t gfp_mask)
1054{
82dd23e8 1055 struct vmap_area *va, *pva;
1da177e4 1056 unsigned long addr;
db64fe02
NP
1057 int purged = 0;
1058
7766970c 1059 BUG_ON(!size);
891c49ab 1060 BUG_ON(offset_in_page(size));
89699605 1061 BUG_ON(!is_power_of_2(align));
db64fe02 1062
68ad4a33
URS
1063 if (unlikely(!vmap_initialized))
1064 return ERR_PTR(-EBUSY);
1065
5803ed29 1066 might_sleep();
4da56b99 1067
68ad4a33 1068 va = kmem_cache_alloc_node(vmap_area_cachep,
db64fe02
NP
1069 gfp_mask & GFP_RECLAIM_MASK, node);
1070 if (unlikely(!va))
1071 return ERR_PTR(-ENOMEM);
1072
7f88f88f
CM
1073 /*
1074 * Only scan the relevant parts containing pointers to other objects
1075 * to avoid false negatives.
1076 */
1077 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1078
db64fe02 1079retry:
82dd23e8
URS
1080 /*
1081 * Preload this CPU with one extra vmap_area object to ensure
1082 * that we have it available when fit type of free area is
1083 * NE_FIT_TYPE.
1084 *
1085 * The preload is done in non-atomic context, thus it allows us
1086 * to use more permissive allocation masks to be more stable under
1087 * low memory condition and high memory pressure.
1088 *
1089 * Even if it fails we do not really care about that. Just proceed
1090 * as it is. "overflow" path will refill the cache we allocate from.
1091 */
1092 preempt_disable();
1093 if (!__this_cpu_read(ne_fit_preload_node)) {
1094 preempt_enable();
1095 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1096 preempt_disable();
1097
1098 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1099 if (pva)
1100 kmem_cache_free(vmap_area_cachep, pva);
1101 }
1102 }
1103
db64fe02 1104 spin_lock(&vmap_area_lock);
82dd23e8 1105 preempt_enable();
89699605 1106
afd07389 1107 /*
68ad4a33
URS
1108 * If an allocation fails, the "vend" address is
1109 * returned. Therefore trigger the overflow path.
afd07389 1110 */
cacca6ba 1111 addr = __alloc_vmap_area(size, align, vstart, vend);
68ad4a33 1112 if (unlikely(addr == vend))
89699605 1113 goto overflow;
db64fe02
NP
1114
1115 va->va_start = addr;
1116 va->va_end = addr + size;
688fcbfc 1117 va->vm = NULL;
68ad4a33
URS
1118 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1119
db64fe02
NP
1120 spin_unlock(&vmap_area_lock);
1121
61e16557 1122 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1123 BUG_ON(va->va_start < vstart);
1124 BUG_ON(va->va_end > vend);
1125
db64fe02 1126 return va;
89699605
NP
1127
1128overflow:
1129 spin_unlock(&vmap_area_lock);
1130 if (!purged) {
1131 purge_vmap_area_lazy();
1132 purged = 1;
1133 goto retry;
1134 }
4da56b99
CW
1135
1136 if (gfpflags_allow_blocking(gfp_mask)) {
1137 unsigned long freed = 0;
1138 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1139 if (freed > 0) {
1140 purged = 0;
1141 goto retry;
1142 }
1143 }
1144
03497d76 1145 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1146 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1147 size);
68ad4a33
URS
1148
1149 kmem_cache_free(vmap_area_cachep, va);
89699605 1150 return ERR_PTR(-EBUSY);
db64fe02
NP
1151}
1152
4da56b99
CW
1153int register_vmap_purge_notifier(struct notifier_block *nb)
1154{
1155 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1156}
1157EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1158
1159int unregister_vmap_purge_notifier(struct notifier_block *nb)
1160{
1161 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1162}
1163EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1164
db64fe02
NP
1165static void __free_vmap_area(struct vmap_area *va)
1166{
ca23e405 1167 /*
68ad4a33 1168 * Remove from the busy tree/list.
ca23e405 1169 */
68ad4a33 1170 unlink_va(va, &vmap_area_root);
ca23e405 1171
68ad4a33
URS
1172 /*
1173 * Merge VA with its neighbors, otherwise just add it.
1174 */
1175 merge_or_add_vmap_area(va,
1176 &free_vmap_area_root, &free_vmap_area_list);
db64fe02
NP
1177}
1178
1179/*
1180 * Free a region of KVA allocated by alloc_vmap_area
1181 */
1182static void free_vmap_area(struct vmap_area *va)
1183{
1184 spin_lock(&vmap_area_lock);
1185 __free_vmap_area(va);
1186 spin_unlock(&vmap_area_lock);
1187}
1188
1189/*
1190 * Clear the pagetable entries of a given vmap_area
1191 */
1192static void unmap_vmap_area(struct vmap_area *va)
1193{
1194 vunmap_page_range(va->va_start, va->va_end);
1195}
1196
1197/*
1198 * lazy_max_pages is the maximum amount of virtual address space we gather up
1199 * before attempting to purge with a TLB flush.
1200 *
1201 * There is a tradeoff here: a larger number will cover more kernel page tables
1202 * and take slightly longer to purge, but it will linearly reduce the number of
1203 * global TLB flushes that must be performed. It would seem natural to scale
1204 * this number up linearly with the number of CPUs (because vmapping activity
1205 * could also scale linearly with the number of CPUs), however it is likely
1206 * that in practice, workloads might be constrained in other ways that mean
1207 * vmap activity will not scale linearly with CPUs. Also, I want to be
1208 * conservative and not introduce a big latency on huge systems, so go with
1209 * a less aggressive log scale. It will still be an improvement over the old
1210 * code, and it will be simple to change the scale factor if we find that it
1211 * becomes a problem on bigger systems.
1212 */
1213static unsigned long lazy_max_pages(void)
1214{
1215 unsigned int log;
1216
1217 log = fls(num_online_cpus());
1218
1219 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1220}
1221
4d36e6f8 1222static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1223
0574ecd1
CH
1224/*
1225 * Serialize vmap purging. There is no actual criticial section protected
1226 * by this look, but we want to avoid concurrent calls for performance
1227 * reasons and to make the pcpu_get_vm_areas more deterministic.
1228 */
f9e09977 1229static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1230
02b709df
NP
1231/* for per-CPU blocks */
1232static void purge_fragmented_blocks_allcpus(void);
1233
3ee48b6a
CW
1234/*
1235 * called before a call to iounmap() if the caller wants vm_area_struct's
1236 * immediately freed.
1237 */
1238void set_iounmap_nonlazy(void)
1239{
4d36e6f8 1240 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1241}
1242
db64fe02
NP
1243/*
1244 * Purges all lazily-freed vmap areas.
db64fe02 1245 */
0574ecd1 1246static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1247{
4d36e6f8 1248 unsigned long resched_threshold;
80c4bd7a 1249 struct llist_node *valist;
db64fe02 1250 struct vmap_area *va;
cbb76676 1251 struct vmap_area *n_va;
db64fe02 1252
0574ecd1 1253 lockdep_assert_held(&vmap_purge_lock);
02b709df 1254
80c4bd7a 1255 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1256 if (unlikely(valist == NULL))
1257 return false;
1258
3f8fd02b
JR
1259 /*
1260 * First make sure the mappings are removed from all page-tables
1261 * before they are freed.
1262 */
1263 vmalloc_sync_all();
1264
68571be9
URS
1265 /*
1266 * TODO: to calculate a flush range without looping.
1267 * The list can be up to lazy_max_pages() elements.
1268 */
80c4bd7a 1269 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1270 if (va->va_start < start)
1271 start = va->va_start;
1272 if (va->va_end > end)
1273 end = va->va_end;
db64fe02 1274 }
db64fe02 1275
0574ecd1 1276 flush_tlb_kernel_range(start, end);
4d36e6f8 1277 resched_threshold = lazy_max_pages() << 1;
db64fe02 1278
0574ecd1 1279 spin_lock(&vmap_area_lock);
763b218d 1280 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1281 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
763b218d 1282
dd3b8353
URS
1283 /*
1284 * Finally insert or merge lazily-freed area. It is
1285 * detached and there is no need to "unlink" it from
1286 * anything.
1287 */
1288 merge_or_add_vmap_area(va,
1289 &free_vmap_area_root, &free_vmap_area_list);
1290
4d36e6f8 1291 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1292
4d36e6f8 1293 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
68571be9 1294 cond_resched_lock(&vmap_area_lock);
763b218d 1295 }
0574ecd1
CH
1296 spin_unlock(&vmap_area_lock);
1297 return true;
db64fe02
NP
1298}
1299
496850e5
NP
1300/*
1301 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1302 * is already purging.
1303 */
1304static void try_purge_vmap_area_lazy(void)
1305{
f9e09977 1306 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1307 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1308 mutex_unlock(&vmap_purge_lock);
0574ecd1 1309 }
496850e5
NP
1310}
1311
db64fe02
NP
1312/*
1313 * Kick off a purge of the outstanding lazy areas.
1314 */
1315static void purge_vmap_area_lazy(void)
1316{
f9e09977 1317 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1318 purge_fragmented_blocks_allcpus();
1319 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1320 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1321}
1322
1323/*
64141da5
JF
1324 * Free a vmap area, caller ensuring that the area has been unmapped
1325 * and flush_cache_vunmap had been called for the correct range
1326 * previously.
db64fe02 1327 */
64141da5 1328static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1329{
4d36e6f8 1330 unsigned long nr_lazy;
80c4bd7a 1331
dd3b8353
URS
1332 spin_lock(&vmap_area_lock);
1333 unlink_va(va, &vmap_area_root);
1334 spin_unlock(&vmap_area_lock);
1335
4d36e6f8
URS
1336 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1337 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1338
1339 /* After this point, we may free va at any time */
1340 llist_add(&va->purge_list, &vmap_purge_list);
1341
1342 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1343 try_purge_vmap_area_lazy();
db64fe02
NP
1344}
1345
b29acbdc
NP
1346/*
1347 * Free and unmap a vmap area
1348 */
1349static void free_unmap_vmap_area(struct vmap_area *va)
1350{
1351 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1352 unmap_vmap_area(va);
82a2e924
CP
1353 if (debug_pagealloc_enabled())
1354 flush_tlb_kernel_range(va->va_start, va->va_end);
1355
c8eef01e 1356 free_vmap_area_noflush(va);
b29acbdc
NP
1357}
1358
db64fe02
NP
1359static struct vmap_area *find_vmap_area(unsigned long addr)
1360{
1361 struct vmap_area *va;
1362
1363 spin_lock(&vmap_area_lock);
1364 va = __find_vmap_area(addr);
1365 spin_unlock(&vmap_area_lock);
1366
1367 return va;
1368}
1369
db64fe02
NP
1370/*** Per cpu kva allocator ***/
1371
1372/*
1373 * vmap space is limited especially on 32 bit architectures. Ensure there is
1374 * room for at least 16 percpu vmap blocks per CPU.
1375 */
1376/*
1377 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1378 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1379 * instead (we just need a rough idea)
1380 */
1381#if BITS_PER_LONG == 32
1382#define VMALLOC_SPACE (128UL*1024*1024)
1383#else
1384#define VMALLOC_SPACE (128UL*1024*1024*1024)
1385#endif
1386
1387#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1388#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1389#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1390#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1391#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1392#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1393#define VMAP_BBMAP_BITS \
1394 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1395 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1396 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1397
1398#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1399
1400struct vmap_block_queue {
1401 spinlock_t lock;
1402 struct list_head free;
db64fe02
NP
1403};
1404
1405struct vmap_block {
1406 spinlock_t lock;
1407 struct vmap_area *va;
db64fe02 1408 unsigned long free, dirty;
7d61bfe8 1409 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1410 struct list_head free_list;
1411 struct rcu_head rcu_head;
02b709df 1412 struct list_head purge;
db64fe02
NP
1413};
1414
1415/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1416static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1417
1418/*
1419 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1420 * in the free path. Could get rid of this if we change the API to return a
1421 * "cookie" from alloc, to be passed to free. But no big deal yet.
1422 */
1423static DEFINE_SPINLOCK(vmap_block_tree_lock);
1424static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1425
1426/*
1427 * We should probably have a fallback mechanism to allocate virtual memory
1428 * out of partially filled vmap blocks. However vmap block sizing should be
1429 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1430 * big problem.
1431 */
1432
1433static unsigned long addr_to_vb_idx(unsigned long addr)
1434{
1435 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1436 addr /= VMAP_BLOCK_SIZE;
1437 return addr;
1438}
1439
cf725ce2
RP
1440static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1441{
1442 unsigned long addr;
1443
1444 addr = va_start + (pages_off << PAGE_SHIFT);
1445 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1446 return (void *)addr;
1447}
1448
1449/**
1450 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1451 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1452 * @order: how many 2^order pages should be occupied in newly allocated block
1453 * @gfp_mask: flags for the page level allocator
1454 *
a862f68a 1455 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1456 */
1457static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1458{
1459 struct vmap_block_queue *vbq;
1460 struct vmap_block *vb;
1461 struct vmap_area *va;
1462 unsigned long vb_idx;
1463 int node, err;
cf725ce2 1464 void *vaddr;
db64fe02
NP
1465
1466 node = numa_node_id();
1467
1468 vb = kmalloc_node(sizeof(struct vmap_block),
1469 gfp_mask & GFP_RECLAIM_MASK, node);
1470 if (unlikely(!vb))
1471 return ERR_PTR(-ENOMEM);
1472
1473 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1474 VMALLOC_START, VMALLOC_END,
1475 node, gfp_mask);
ddf9c6d4 1476 if (IS_ERR(va)) {
db64fe02 1477 kfree(vb);
e7d86340 1478 return ERR_CAST(va);
db64fe02
NP
1479 }
1480
1481 err = radix_tree_preload(gfp_mask);
1482 if (unlikely(err)) {
1483 kfree(vb);
1484 free_vmap_area(va);
1485 return ERR_PTR(err);
1486 }
1487
cf725ce2 1488 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1489 spin_lock_init(&vb->lock);
1490 vb->va = va;
cf725ce2
RP
1491 /* At least something should be left free */
1492 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1493 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1494 vb->dirty = 0;
7d61bfe8
RP
1495 vb->dirty_min = VMAP_BBMAP_BITS;
1496 vb->dirty_max = 0;
db64fe02 1497 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1498
1499 vb_idx = addr_to_vb_idx(va->va_start);
1500 spin_lock(&vmap_block_tree_lock);
1501 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1502 spin_unlock(&vmap_block_tree_lock);
1503 BUG_ON(err);
1504 radix_tree_preload_end();
1505
1506 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1507 spin_lock(&vbq->lock);
68ac546f 1508 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1509 spin_unlock(&vbq->lock);
3f04ba85 1510 put_cpu_var(vmap_block_queue);
db64fe02 1511
cf725ce2 1512 return vaddr;
db64fe02
NP
1513}
1514
db64fe02
NP
1515static void free_vmap_block(struct vmap_block *vb)
1516{
1517 struct vmap_block *tmp;
1518 unsigned long vb_idx;
1519
db64fe02
NP
1520 vb_idx = addr_to_vb_idx(vb->va->va_start);
1521 spin_lock(&vmap_block_tree_lock);
1522 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1523 spin_unlock(&vmap_block_tree_lock);
1524 BUG_ON(tmp != vb);
1525
64141da5 1526 free_vmap_area_noflush(vb->va);
22a3c7d1 1527 kfree_rcu(vb, rcu_head);
db64fe02
NP
1528}
1529
02b709df
NP
1530static void purge_fragmented_blocks(int cpu)
1531{
1532 LIST_HEAD(purge);
1533 struct vmap_block *vb;
1534 struct vmap_block *n_vb;
1535 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1536
1537 rcu_read_lock();
1538 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1539
1540 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1541 continue;
1542
1543 spin_lock(&vb->lock);
1544 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1545 vb->free = 0; /* prevent further allocs after releasing lock */
1546 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1547 vb->dirty_min = 0;
1548 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1549 spin_lock(&vbq->lock);
1550 list_del_rcu(&vb->free_list);
1551 spin_unlock(&vbq->lock);
1552 spin_unlock(&vb->lock);
1553 list_add_tail(&vb->purge, &purge);
1554 } else
1555 spin_unlock(&vb->lock);
1556 }
1557 rcu_read_unlock();
1558
1559 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1560 list_del(&vb->purge);
1561 free_vmap_block(vb);
1562 }
1563}
1564
02b709df
NP
1565static void purge_fragmented_blocks_allcpus(void)
1566{
1567 int cpu;
1568
1569 for_each_possible_cpu(cpu)
1570 purge_fragmented_blocks(cpu);
1571}
1572
db64fe02
NP
1573static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1574{
1575 struct vmap_block_queue *vbq;
1576 struct vmap_block *vb;
cf725ce2 1577 void *vaddr = NULL;
db64fe02
NP
1578 unsigned int order;
1579
891c49ab 1580 BUG_ON(offset_in_page(size));
db64fe02 1581 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1582 if (WARN_ON(size == 0)) {
1583 /*
1584 * Allocating 0 bytes isn't what caller wants since
1585 * get_order(0) returns funny result. Just warn and terminate
1586 * early.
1587 */
1588 return NULL;
1589 }
db64fe02
NP
1590 order = get_order(size);
1591
db64fe02
NP
1592 rcu_read_lock();
1593 vbq = &get_cpu_var(vmap_block_queue);
1594 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1595 unsigned long pages_off;
db64fe02
NP
1596
1597 spin_lock(&vb->lock);
cf725ce2
RP
1598 if (vb->free < (1UL << order)) {
1599 spin_unlock(&vb->lock);
1600 continue;
1601 }
02b709df 1602
cf725ce2
RP
1603 pages_off = VMAP_BBMAP_BITS - vb->free;
1604 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1605 vb->free -= 1UL << order;
1606 if (vb->free == 0) {
1607 spin_lock(&vbq->lock);
1608 list_del_rcu(&vb->free_list);
1609 spin_unlock(&vbq->lock);
1610 }
cf725ce2 1611
02b709df
NP
1612 spin_unlock(&vb->lock);
1613 break;
db64fe02 1614 }
02b709df 1615
3f04ba85 1616 put_cpu_var(vmap_block_queue);
db64fe02
NP
1617 rcu_read_unlock();
1618
cf725ce2
RP
1619 /* Allocate new block if nothing was found */
1620 if (!vaddr)
1621 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1622
cf725ce2 1623 return vaddr;
db64fe02
NP
1624}
1625
1626static void vb_free(const void *addr, unsigned long size)
1627{
1628 unsigned long offset;
1629 unsigned long vb_idx;
1630 unsigned int order;
1631 struct vmap_block *vb;
1632
891c49ab 1633 BUG_ON(offset_in_page(size));
db64fe02 1634 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1635
1636 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1637
db64fe02
NP
1638 order = get_order(size);
1639
1640 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1641 offset >>= PAGE_SHIFT;
db64fe02
NP
1642
1643 vb_idx = addr_to_vb_idx((unsigned long)addr);
1644 rcu_read_lock();
1645 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1646 rcu_read_unlock();
1647 BUG_ON(!vb);
1648
64141da5
JF
1649 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1650
82a2e924
CP
1651 if (debug_pagealloc_enabled())
1652 flush_tlb_kernel_range((unsigned long)addr,
1653 (unsigned long)addr + size);
1654
db64fe02 1655 spin_lock(&vb->lock);
7d61bfe8
RP
1656
1657 /* Expand dirty range */
1658 vb->dirty_min = min(vb->dirty_min, offset);
1659 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1660
db64fe02
NP
1661 vb->dirty += 1UL << order;
1662 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1663 BUG_ON(vb->free);
db64fe02
NP
1664 spin_unlock(&vb->lock);
1665 free_vmap_block(vb);
1666 } else
1667 spin_unlock(&vb->lock);
1668}
1669
868b104d 1670static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1671{
db64fe02 1672 int cpu;
db64fe02 1673
9b463334
JF
1674 if (unlikely(!vmap_initialized))
1675 return;
1676
5803ed29
CH
1677 might_sleep();
1678
db64fe02
NP
1679 for_each_possible_cpu(cpu) {
1680 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1681 struct vmap_block *vb;
1682
1683 rcu_read_lock();
1684 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1685 spin_lock(&vb->lock);
7d61bfe8
RP
1686 if (vb->dirty) {
1687 unsigned long va_start = vb->va->va_start;
db64fe02 1688 unsigned long s, e;
b136be5e 1689
7d61bfe8
RP
1690 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1691 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1692
7d61bfe8
RP
1693 start = min(s, start);
1694 end = max(e, end);
db64fe02 1695
7d61bfe8 1696 flush = 1;
db64fe02
NP
1697 }
1698 spin_unlock(&vb->lock);
1699 }
1700 rcu_read_unlock();
1701 }
1702
f9e09977 1703 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1704 purge_fragmented_blocks_allcpus();
1705 if (!__purge_vmap_area_lazy(start, end) && flush)
1706 flush_tlb_kernel_range(start, end);
f9e09977 1707 mutex_unlock(&vmap_purge_lock);
db64fe02 1708}
868b104d
RE
1709
1710/**
1711 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1712 *
1713 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1714 * to amortize TLB flushing overheads. What this means is that any page you
1715 * have now, may, in a former life, have been mapped into kernel virtual
1716 * address by the vmap layer and so there might be some CPUs with TLB entries
1717 * still referencing that page (additional to the regular 1:1 kernel mapping).
1718 *
1719 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1720 * be sure that none of the pages we have control over will have any aliases
1721 * from the vmap layer.
1722 */
1723void vm_unmap_aliases(void)
1724{
1725 unsigned long start = ULONG_MAX, end = 0;
1726 int flush = 0;
1727
1728 _vm_unmap_aliases(start, end, flush);
1729}
db64fe02
NP
1730EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1731
1732/**
1733 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1734 * @mem: the pointer returned by vm_map_ram
1735 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1736 */
1737void vm_unmap_ram(const void *mem, unsigned int count)
1738{
65ee03c4 1739 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1740 unsigned long addr = (unsigned long)mem;
9c3acf60 1741 struct vmap_area *va;
db64fe02 1742
5803ed29 1743 might_sleep();
db64fe02
NP
1744 BUG_ON(!addr);
1745 BUG_ON(addr < VMALLOC_START);
1746 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1747 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1748
9c3acf60 1749 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1750 debug_check_no_locks_freed(mem, size);
db64fe02 1751 vb_free(mem, size);
9c3acf60
CH
1752 return;
1753 }
1754
1755 va = find_vmap_area(addr);
1756 BUG_ON(!va);
05e3ff95
CP
1757 debug_check_no_locks_freed((void *)va->va_start,
1758 (va->va_end - va->va_start));
9c3acf60 1759 free_unmap_vmap_area(va);
db64fe02
NP
1760}
1761EXPORT_SYMBOL(vm_unmap_ram);
1762
1763/**
1764 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1765 * @pages: an array of pointers to the pages to be mapped
1766 * @count: number of pages
1767 * @node: prefer to allocate data structures on this node
1768 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1769 *
36437638
GK
1770 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1771 * faster than vmap so it's good. But if you mix long-life and short-life
1772 * objects with vm_map_ram(), it could consume lots of address space through
1773 * fragmentation (especially on a 32bit machine). You could see failures in
1774 * the end. Please use this function for short-lived objects.
1775 *
e99c97ad 1776 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1777 */
1778void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1779{
65ee03c4 1780 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1781 unsigned long addr;
1782 void *mem;
1783
1784 if (likely(count <= VMAP_MAX_ALLOC)) {
1785 mem = vb_alloc(size, GFP_KERNEL);
1786 if (IS_ERR(mem))
1787 return NULL;
1788 addr = (unsigned long)mem;
1789 } else {
1790 struct vmap_area *va;
1791 va = alloc_vmap_area(size, PAGE_SIZE,
1792 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1793 if (IS_ERR(va))
1794 return NULL;
1795
1796 addr = va->va_start;
1797 mem = (void *)addr;
1798 }
1799 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1800 vm_unmap_ram(mem, count);
1801 return NULL;
1802 }
1803 return mem;
1804}
1805EXPORT_SYMBOL(vm_map_ram);
1806
4341fa45 1807static struct vm_struct *vmlist __initdata;
92eac168 1808
be9b7335
NP
1809/**
1810 * vm_area_add_early - add vmap area early during boot
1811 * @vm: vm_struct to add
1812 *
1813 * This function is used to add fixed kernel vm area to vmlist before
1814 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1815 * should contain proper values and the other fields should be zero.
1816 *
1817 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1818 */
1819void __init vm_area_add_early(struct vm_struct *vm)
1820{
1821 struct vm_struct *tmp, **p;
1822
1823 BUG_ON(vmap_initialized);
1824 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1825 if (tmp->addr >= vm->addr) {
1826 BUG_ON(tmp->addr < vm->addr + vm->size);
1827 break;
1828 } else
1829 BUG_ON(tmp->addr + tmp->size > vm->addr);
1830 }
1831 vm->next = *p;
1832 *p = vm;
1833}
1834
f0aa6617
TH
1835/**
1836 * vm_area_register_early - register vmap area early during boot
1837 * @vm: vm_struct to register
c0c0a293 1838 * @align: requested alignment
f0aa6617
TH
1839 *
1840 * This function is used to register kernel vm area before
1841 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1842 * proper values on entry and other fields should be zero. On return,
1843 * vm->addr contains the allocated address.
1844 *
1845 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1846 */
c0c0a293 1847void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1848{
1849 static size_t vm_init_off __initdata;
c0c0a293
TH
1850 unsigned long addr;
1851
1852 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1853 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1854
c0c0a293 1855 vm->addr = (void *)addr;
f0aa6617 1856
be9b7335 1857 vm_area_add_early(vm);
f0aa6617
TH
1858}
1859
68ad4a33
URS
1860static void vmap_init_free_space(void)
1861{
1862 unsigned long vmap_start = 1;
1863 const unsigned long vmap_end = ULONG_MAX;
1864 struct vmap_area *busy, *free;
1865
1866 /*
1867 * B F B B B F
1868 * -|-----|.....|-----|-----|-----|.....|-
1869 * | The KVA space |
1870 * |<--------------------------------->|
1871 */
1872 list_for_each_entry(busy, &vmap_area_list, list) {
1873 if (busy->va_start - vmap_start > 0) {
1874 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1875 if (!WARN_ON_ONCE(!free)) {
1876 free->va_start = vmap_start;
1877 free->va_end = busy->va_start;
1878
1879 insert_vmap_area_augment(free, NULL,
1880 &free_vmap_area_root,
1881 &free_vmap_area_list);
1882 }
1883 }
1884
1885 vmap_start = busy->va_end;
1886 }
1887
1888 if (vmap_end - vmap_start > 0) {
1889 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1890 if (!WARN_ON_ONCE(!free)) {
1891 free->va_start = vmap_start;
1892 free->va_end = vmap_end;
1893
1894 insert_vmap_area_augment(free, NULL,
1895 &free_vmap_area_root,
1896 &free_vmap_area_list);
1897 }
1898 }
1899}
1900
db64fe02
NP
1901void __init vmalloc_init(void)
1902{
822c18f2
IK
1903 struct vmap_area *va;
1904 struct vm_struct *tmp;
db64fe02
NP
1905 int i;
1906
68ad4a33
URS
1907 /*
1908 * Create the cache for vmap_area objects.
1909 */
1910 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1911
db64fe02
NP
1912 for_each_possible_cpu(i) {
1913 struct vmap_block_queue *vbq;
32fcfd40 1914 struct vfree_deferred *p;
db64fe02
NP
1915
1916 vbq = &per_cpu(vmap_block_queue, i);
1917 spin_lock_init(&vbq->lock);
1918 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1919 p = &per_cpu(vfree_deferred, i);
1920 init_llist_head(&p->list);
1921 INIT_WORK(&p->wq, free_work);
db64fe02 1922 }
9b463334 1923
822c18f2
IK
1924 /* Import existing vmlist entries. */
1925 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1926 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1927 if (WARN_ON_ONCE(!va))
1928 continue;
1929
822c18f2
IK
1930 va->va_start = (unsigned long)tmp->addr;
1931 va->va_end = va->va_start + tmp->size;
dbda591d 1932 va->vm = tmp;
68ad4a33 1933 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1934 }
ca23e405 1935
68ad4a33
URS
1936 /*
1937 * Now we can initialize a free vmap space.
1938 */
1939 vmap_init_free_space();
9b463334 1940 vmap_initialized = true;
db64fe02
NP
1941}
1942
8fc48985
TH
1943/**
1944 * map_kernel_range_noflush - map kernel VM area with the specified pages
1945 * @addr: start of the VM area to map
1946 * @size: size of the VM area to map
1947 * @prot: page protection flags to use
1948 * @pages: pages to map
1949 *
1950 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1951 * specify should have been allocated using get_vm_area() and its
1952 * friends.
1953 *
1954 * NOTE:
1955 * This function does NOT do any cache flushing. The caller is
1956 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1957 * before calling this function.
1958 *
1959 * RETURNS:
1960 * The number of pages mapped on success, -errno on failure.
1961 */
1962int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1963 pgprot_t prot, struct page **pages)
1964{
1965 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1966}
1967
1968/**
1969 * unmap_kernel_range_noflush - unmap kernel VM area
1970 * @addr: start of the VM area to unmap
1971 * @size: size of the VM area to unmap
1972 *
1973 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1974 * specify should have been allocated using get_vm_area() and its
1975 * friends.
1976 *
1977 * NOTE:
1978 * This function does NOT do any cache flushing. The caller is
1979 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1980 * before calling this function and flush_tlb_kernel_range() after.
1981 */
1982void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1983{
1984 vunmap_page_range(addr, addr + size);
1985}
81e88fdc 1986EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1987
1988/**
1989 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1990 * @addr: start of the VM area to unmap
1991 * @size: size of the VM area to unmap
1992 *
1993 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1994 * the unmapping and tlb after.
1995 */
db64fe02
NP
1996void unmap_kernel_range(unsigned long addr, unsigned long size)
1997{
1998 unsigned long end = addr + size;
f6fcba70
TH
1999
2000 flush_cache_vunmap(addr, end);
db64fe02
NP
2001 vunmap_page_range(addr, end);
2002 flush_tlb_kernel_range(addr, end);
2003}
93ef6d6c 2004EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 2005
f6f8ed47 2006int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
2007{
2008 unsigned long addr = (unsigned long)area->addr;
762216ab 2009 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
2010 int err;
2011
f6f8ed47 2012 err = vmap_page_range(addr, end, prot, pages);
db64fe02 2013
f6f8ed47 2014 return err > 0 ? 0 : err;
db64fe02
NP
2015}
2016EXPORT_SYMBOL_GPL(map_vm_area);
2017
f5252e00 2018static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 2019 unsigned long flags, const void *caller)
cf88c790 2020{
c69480ad 2021 spin_lock(&vmap_area_lock);
cf88c790
TH
2022 vm->flags = flags;
2023 vm->addr = (void *)va->va_start;
2024 vm->size = va->va_end - va->va_start;
2025 vm->caller = caller;
db1aecaf 2026 va->vm = vm;
c69480ad 2027 spin_unlock(&vmap_area_lock);
f5252e00 2028}
cf88c790 2029
20fc02b4 2030static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2031{
d4033afd 2032 /*
20fc02b4 2033 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2034 * we should make sure that vm has proper values.
2035 * Pair with smp_rmb() in show_numa_info().
2036 */
2037 smp_wmb();
20fc02b4 2038 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2039}
2040
db64fe02 2041static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2042 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2043 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2044{
0006526d 2045 struct vmap_area *va;
db64fe02 2046 struct vm_struct *area;
1da177e4 2047
52fd24ca 2048 BUG_ON(in_interrupt());
1da177e4 2049 size = PAGE_ALIGN(size);
31be8309
OH
2050 if (unlikely(!size))
2051 return NULL;
1da177e4 2052
252e5c6e 2053 if (flags & VM_IOREMAP)
2054 align = 1ul << clamp_t(int, get_count_order_long(size),
2055 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2056
cf88c790 2057 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2058 if (unlikely(!area))
2059 return NULL;
2060
71394fe5
AR
2061 if (!(flags & VM_NO_GUARD))
2062 size += PAGE_SIZE;
1da177e4 2063
db64fe02
NP
2064 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2065 if (IS_ERR(va)) {
2066 kfree(area);
2067 return NULL;
1da177e4 2068 }
1da177e4 2069
d82b1d85 2070 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 2071
1da177e4 2072 return area;
1da177e4
LT
2073}
2074
930fc45a
CL
2075struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2076 unsigned long start, unsigned long end)
2077{
00ef2d2f
DR
2078 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2079 GFP_KERNEL, __builtin_return_address(0));
930fc45a 2080}
5992b6da 2081EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 2082
c2968612
BH
2083struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2084 unsigned long start, unsigned long end,
5e6cafc8 2085 const void *caller)
c2968612 2086{
00ef2d2f
DR
2087 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2088 GFP_KERNEL, caller);
c2968612
BH
2089}
2090
1da177e4 2091/**
92eac168
MR
2092 * get_vm_area - reserve a contiguous kernel virtual area
2093 * @size: size of the area
2094 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2095 *
92eac168
MR
2096 * Search an area of @size in the kernel virtual mapping area,
2097 * and reserved it for out purposes. Returns the area descriptor
2098 * on success or %NULL on failure.
a862f68a
MR
2099 *
2100 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2101 */
2102struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2103{
2dca6999 2104 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2105 NUMA_NO_NODE, GFP_KERNEL,
2106 __builtin_return_address(0));
23016969
CL
2107}
2108
2109struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2110 const void *caller)
23016969 2111{
2dca6999 2112 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2113 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2114}
2115
e9da6e99 2116/**
92eac168
MR
2117 * find_vm_area - find a continuous kernel virtual area
2118 * @addr: base address
e9da6e99 2119 *
92eac168
MR
2120 * Search for the kernel VM area starting at @addr, and return it.
2121 * It is up to the caller to do all required locking to keep the returned
2122 * pointer valid.
a862f68a
MR
2123 *
2124 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2125 */
2126struct vm_struct *find_vm_area(const void *addr)
83342314 2127{
db64fe02 2128 struct vmap_area *va;
83342314 2129
db64fe02 2130 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2131 if (!va)
2132 return NULL;
1da177e4 2133
688fcbfc 2134 return va->vm;
1da177e4
LT
2135}
2136
7856dfeb 2137/**
92eac168
MR
2138 * remove_vm_area - find and remove a continuous kernel virtual area
2139 * @addr: base address
7856dfeb 2140 *
92eac168
MR
2141 * Search for the kernel VM area starting at @addr, and remove it.
2142 * This function returns the found VM area, but using it is NOT safe
2143 * on SMP machines, except for its size or flags.
a862f68a
MR
2144 *
2145 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2146 */
b3bdda02 2147struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2148{
db64fe02
NP
2149 struct vmap_area *va;
2150
5803ed29
CH
2151 might_sleep();
2152
dd3b8353
URS
2153 spin_lock(&vmap_area_lock);
2154 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2155 if (va && va->vm) {
db1aecaf 2156 struct vm_struct *vm = va->vm;
f5252e00 2157
c69480ad 2158 va->vm = NULL;
c69480ad
JK
2159 spin_unlock(&vmap_area_lock);
2160
a5af5aa8 2161 kasan_free_shadow(vm);
dd32c279 2162 free_unmap_vmap_area(va);
dd32c279 2163
db64fe02
NP
2164 return vm;
2165 }
dd3b8353
URS
2166
2167 spin_unlock(&vmap_area_lock);
db64fe02 2168 return NULL;
7856dfeb
AK
2169}
2170
868b104d
RE
2171static inline void set_area_direct_map(const struct vm_struct *area,
2172 int (*set_direct_map)(struct page *page))
2173{
2174 int i;
2175
2176 for (i = 0; i < area->nr_pages; i++)
2177 if (page_address(area->pages[i]))
2178 set_direct_map(area->pages[i]);
2179}
2180
2181/* Handle removing and resetting vm mappings related to the vm_struct. */
2182static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2183{
868b104d
RE
2184 unsigned long start = ULONG_MAX, end = 0;
2185 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2186 int flush_dmap = 0;
868b104d
RE
2187 int i;
2188
868b104d
RE
2189 remove_vm_area(area->addr);
2190
2191 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2192 if (!flush_reset)
2193 return;
2194
2195 /*
2196 * If not deallocating pages, just do the flush of the VM area and
2197 * return.
2198 */
2199 if (!deallocate_pages) {
2200 vm_unmap_aliases();
2201 return;
2202 }
2203
2204 /*
2205 * If execution gets here, flush the vm mapping and reset the direct
2206 * map. Find the start and end range of the direct mappings to make sure
2207 * the vm_unmap_aliases() flush includes the direct map.
2208 */
2209 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2210 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2211 if (addr) {
868b104d 2212 start = min(addr, start);
8e41f872 2213 end = max(addr + PAGE_SIZE, end);
31e67340 2214 flush_dmap = 1;
868b104d
RE
2215 }
2216 }
2217
2218 /*
2219 * Set direct map to something invalid so that it won't be cached if
2220 * there are any accesses after the TLB flush, then flush the TLB and
2221 * reset the direct map permissions to the default.
2222 */
2223 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2224 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2225 set_area_direct_map(area, set_direct_map_default_noflush);
2226}
2227
b3bdda02 2228static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2229{
2230 struct vm_struct *area;
2231
2232 if (!addr)
2233 return;
2234
e69e9d4a 2235 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2236 addr))
1da177e4 2237 return;
1da177e4 2238
6ade2032 2239 area = find_vm_area(addr);
1da177e4 2240 if (unlikely(!area)) {
4c8573e2 2241 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2242 addr);
1da177e4
LT
2243 return;
2244 }
2245
05e3ff95
CP
2246 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2247 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2248
868b104d
RE
2249 vm_remove_mappings(area, deallocate_pages);
2250
1da177e4
LT
2251 if (deallocate_pages) {
2252 int i;
2253
2254 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2255 struct page *page = area->pages[i];
2256
2257 BUG_ON(!page);
4949148a 2258 __free_pages(page, 0);
1da177e4 2259 }
97105f0a 2260 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2261
244d63ee 2262 kvfree(area->pages);
1da177e4
LT
2263 }
2264
2265 kfree(area);
2266 return;
2267}
bf22e37a
AR
2268
2269static inline void __vfree_deferred(const void *addr)
2270{
2271 /*
2272 * Use raw_cpu_ptr() because this can be called from preemptible
2273 * context. Preemption is absolutely fine here, because the llist_add()
2274 * implementation is lockless, so it works even if we are adding to
2275 * nother cpu's list. schedule_work() should be fine with this too.
2276 */
2277 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2278
2279 if (llist_add((struct llist_node *)addr, &p->list))
2280 schedule_work(&p->wq);
2281}
2282
2283/**
92eac168
MR
2284 * vfree_atomic - release memory allocated by vmalloc()
2285 * @addr: memory base address
bf22e37a 2286 *
92eac168
MR
2287 * This one is just like vfree() but can be called in any atomic context
2288 * except NMIs.
bf22e37a
AR
2289 */
2290void vfree_atomic(const void *addr)
2291{
2292 BUG_ON(in_nmi());
2293
2294 kmemleak_free(addr);
2295
2296 if (!addr)
2297 return;
2298 __vfree_deferred(addr);
2299}
2300
c67dc624
RP
2301static void __vfree(const void *addr)
2302{
2303 if (unlikely(in_interrupt()))
2304 __vfree_deferred(addr);
2305 else
2306 __vunmap(addr, 1);
2307}
2308
1da177e4 2309/**
92eac168
MR
2310 * vfree - release memory allocated by vmalloc()
2311 * @addr: memory base address
1da177e4 2312 *
92eac168
MR
2313 * Free the virtually continuous memory area starting at @addr, as
2314 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2315 * NULL, no operation is performed.
1da177e4 2316 *
92eac168
MR
2317 * Must not be called in NMI context (strictly speaking, only if we don't
2318 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2319 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2320 *
92eac168 2321 * May sleep if called *not* from interrupt context.
3ca4ea3a 2322 *
92eac168 2323 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2324 */
b3bdda02 2325void vfree(const void *addr)
1da177e4 2326{
32fcfd40 2327 BUG_ON(in_nmi());
89219d37
CM
2328
2329 kmemleak_free(addr);
2330
a8dda165
AR
2331 might_sleep_if(!in_interrupt());
2332
32fcfd40
AV
2333 if (!addr)
2334 return;
c67dc624
RP
2335
2336 __vfree(addr);
1da177e4 2337}
1da177e4
LT
2338EXPORT_SYMBOL(vfree);
2339
2340/**
92eac168
MR
2341 * vunmap - release virtual mapping obtained by vmap()
2342 * @addr: memory base address
1da177e4 2343 *
92eac168
MR
2344 * Free the virtually contiguous memory area starting at @addr,
2345 * which was created from the page array passed to vmap().
1da177e4 2346 *
92eac168 2347 * Must not be called in interrupt context.
1da177e4 2348 */
b3bdda02 2349void vunmap(const void *addr)
1da177e4
LT
2350{
2351 BUG_ON(in_interrupt());
34754b69 2352 might_sleep();
32fcfd40
AV
2353 if (addr)
2354 __vunmap(addr, 0);
1da177e4 2355}
1da177e4
LT
2356EXPORT_SYMBOL(vunmap);
2357
2358/**
92eac168
MR
2359 * vmap - map an array of pages into virtually contiguous space
2360 * @pages: array of page pointers
2361 * @count: number of pages to map
2362 * @flags: vm_area->flags
2363 * @prot: page protection for the mapping
2364 *
2365 * Maps @count pages from @pages into contiguous kernel virtual
2366 * space.
a862f68a
MR
2367 *
2368 * Return: the address of the area or %NULL on failure
1da177e4
LT
2369 */
2370void *vmap(struct page **pages, unsigned int count,
92eac168 2371 unsigned long flags, pgprot_t prot)
1da177e4
LT
2372{
2373 struct vm_struct *area;
65ee03c4 2374 unsigned long size; /* In bytes */
1da177e4 2375
34754b69
PZ
2376 might_sleep();
2377
ca79b0c2 2378 if (count > totalram_pages())
1da177e4
LT
2379 return NULL;
2380
65ee03c4
GJM
2381 size = (unsigned long)count << PAGE_SHIFT;
2382 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2383 if (!area)
2384 return NULL;
23016969 2385
f6f8ed47 2386 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2387 vunmap(area->addr);
2388 return NULL;
2389 }
2390
2391 return area->addr;
2392}
1da177e4
LT
2393EXPORT_SYMBOL(vmap);
2394
8594a21c
MH
2395static void *__vmalloc_node(unsigned long size, unsigned long align,
2396 gfp_t gfp_mask, pgprot_t prot,
2397 int node, const void *caller);
e31d9eb5 2398static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2399 pgprot_t prot, int node)
1da177e4
LT
2400{
2401 struct page **pages;
2402 unsigned int nr_pages, array_size, i;
930f036b 2403 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2404 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2405 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2406 0 :
2407 __GFP_HIGHMEM;
1da177e4 2408
762216ab 2409 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2410 array_size = (nr_pages * sizeof(struct page *));
2411
1da177e4 2412 /* Please note that the recursion is strictly bounded. */
8757d5fa 2413 if (array_size > PAGE_SIZE) {
704b862f 2414 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2415 PAGE_KERNEL, node, area->caller);
286e1ea3 2416 } else {
976d6dfb 2417 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2418 }
7ea36242
AK
2419
2420 if (!pages) {
1da177e4
LT
2421 remove_vm_area(area->addr);
2422 kfree(area);
2423 return NULL;
2424 }
1da177e4 2425
7ea36242
AK
2426 area->pages = pages;
2427 area->nr_pages = nr_pages;
2428
1da177e4 2429 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2430 struct page *page;
2431
4b90951c 2432 if (node == NUMA_NO_NODE)
704b862f 2433 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2434 else
704b862f 2435 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2436
2437 if (unlikely(!page)) {
1da177e4
LT
2438 /* Successfully allocated i pages, free them in __vunmap() */
2439 area->nr_pages = i;
97105f0a 2440 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2441 goto fail;
2442 }
bf53d6f8 2443 area->pages[i] = page;
704b862f 2444 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
660654f9 2445 cond_resched();
1da177e4 2446 }
97105f0a 2447 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2448
f6f8ed47 2449 if (map_vm_area(area, prot, pages))
1da177e4
LT
2450 goto fail;
2451 return area->addr;
2452
2453fail:
a8e99259 2454 warn_alloc(gfp_mask, NULL,
7877cdcc 2455 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2456 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2457 __vfree(area->addr);
1da177e4
LT
2458 return NULL;
2459}
2460
2461/**
92eac168
MR
2462 * __vmalloc_node_range - allocate virtually contiguous memory
2463 * @size: allocation size
2464 * @align: desired alignment
2465 * @start: vm area range start
2466 * @end: vm area range end
2467 * @gfp_mask: flags for the page level allocator
2468 * @prot: protection mask for the allocated pages
2469 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2470 * @node: node to use for allocation or NUMA_NO_NODE
2471 * @caller: caller's return address
2472 *
2473 * Allocate enough pages to cover @size from the page level
2474 * allocator with @gfp_mask flags. Map them into contiguous
2475 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2476 *
2477 * Return: the address of the area or %NULL on failure
1da177e4 2478 */
d0a21265
DR
2479void *__vmalloc_node_range(unsigned long size, unsigned long align,
2480 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2481 pgprot_t prot, unsigned long vm_flags, int node,
2482 const void *caller)
1da177e4
LT
2483{
2484 struct vm_struct *area;
89219d37
CM
2485 void *addr;
2486 unsigned long real_size = size;
1da177e4
LT
2487
2488 size = PAGE_ALIGN(size);
ca79b0c2 2489 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2490 goto fail;
1da177e4 2491
cb9e3c29
AR
2492 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2493 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2494 if (!area)
de7d2b56 2495 goto fail;
1da177e4 2496
3722e13c 2497 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2498 if (!addr)
b82225f3 2499 return NULL;
89219d37 2500
f5252e00 2501 /*
20fc02b4
ZY
2502 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2503 * flag. It means that vm_struct is not fully initialized.
4341fa45 2504 * Now, it is fully initialized, so remove this flag here.
f5252e00 2505 */
20fc02b4 2506 clear_vm_uninitialized_flag(area);
f5252e00 2507
94f4a161 2508 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2509
2510 return addr;
de7d2b56
JP
2511
2512fail:
a8e99259 2513 warn_alloc(gfp_mask, NULL,
7877cdcc 2514 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2515 return NULL;
1da177e4
LT
2516}
2517
153178ed
URS
2518/*
2519 * This is only for performance analysis of vmalloc and stress purpose.
2520 * It is required by vmalloc test module, therefore do not use it other
2521 * than that.
2522 */
2523#ifdef CONFIG_TEST_VMALLOC_MODULE
2524EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2525#endif
2526
d0a21265 2527/**
92eac168
MR
2528 * __vmalloc_node - allocate virtually contiguous memory
2529 * @size: allocation size
2530 * @align: desired alignment
2531 * @gfp_mask: flags for the page level allocator
2532 * @prot: protection mask for the allocated pages
2533 * @node: node to use for allocation or NUMA_NO_NODE
2534 * @caller: caller's return address
a7c3e901 2535 *
92eac168
MR
2536 * Allocate enough pages to cover @size from the page level
2537 * allocator with @gfp_mask flags. Map them into contiguous
2538 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2539 *
92eac168
MR
2540 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2541 * and __GFP_NOFAIL are not supported
a7c3e901 2542 *
92eac168
MR
2543 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2544 * with mm people.
a862f68a
MR
2545 *
2546 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2547 */
8594a21c 2548static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2549 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2550 int node, const void *caller)
d0a21265
DR
2551{
2552 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2553 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2554}
2555
930fc45a
CL
2556void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2557{
00ef2d2f 2558 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2559 __builtin_return_address(0));
930fc45a 2560}
1da177e4
LT
2561EXPORT_SYMBOL(__vmalloc);
2562
8594a21c
MH
2563static inline void *__vmalloc_node_flags(unsigned long size,
2564 int node, gfp_t flags)
2565{
2566 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2567 node, __builtin_return_address(0));
2568}
2569
2570
2571void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2572 void *caller)
2573{
2574 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2575}
2576
1da177e4 2577/**
92eac168
MR
2578 * vmalloc - allocate virtually contiguous memory
2579 * @size: allocation size
2580 *
2581 * Allocate enough pages to cover @size from the page level
2582 * allocator and map them into contiguous kernel virtual space.
1da177e4 2583 *
92eac168
MR
2584 * For tight control over page level allocator and protection flags
2585 * use __vmalloc() instead.
a862f68a
MR
2586 *
2587 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2588 */
2589void *vmalloc(unsigned long size)
2590{
00ef2d2f 2591 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2592 GFP_KERNEL);
1da177e4 2593}
1da177e4
LT
2594EXPORT_SYMBOL(vmalloc);
2595
e1ca7788 2596/**
92eac168
MR
2597 * vzalloc - allocate virtually contiguous memory with zero fill
2598 * @size: allocation size
2599 *
2600 * Allocate enough pages to cover @size from the page level
2601 * allocator and map them into contiguous kernel virtual space.
2602 * The memory allocated is set to zero.
2603 *
2604 * For tight control over page level allocator and protection flags
2605 * use __vmalloc() instead.
a862f68a
MR
2606 *
2607 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2608 */
2609void *vzalloc(unsigned long size)
2610{
00ef2d2f 2611 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2612 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2613}
2614EXPORT_SYMBOL(vzalloc);
2615
83342314 2616/**
ead04089
REB
2617 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2618 * @size: allocation size
83342314 2619 *
ead04089
REB
2620 * The resulting memory area is zeroed so it can be mapped to userspace
2621 * without leaking data.
a862f68a
MR
2622 *
2623 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2624 */
2625void *vmalloc_user(unsigned long size)
2626{
bc84c535
RP
2627 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2628 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2629 VM_USERMAP, NUMA_NO_NODE,
2630 __builtin_return_address(0));
83342314
NP
2631}
2632EXPORT_SYMBOL(vmalloc_user);
2633
930fc45a 2634/**
92eac168
MR
2635 * vmalloc_node - allocate memory on a specific node
2636 * @size: allocation size
2637 * @node: numa node
930fc45a 2638 *
92eac168
MR
2639 * Allocate enough pages to cover @size from the page level
2640 * allocator and map them into contiguous kernel virtual space.
930fc45a 2641 *
92eac168
MR
2642 * For tight control over page level allocator and protection flags
2643 * use __vmalloc() instead.
a862f68a
MR
2644 *
2645 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2646 */
2647void *vmalloc_node(unsigned long size, int node)
2648{
19809c2d 2649 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2650 node, __builtin_return_address(0));
930fc45a
CL
2651}
2652EXPORT_SYMBOL(vmalloc_node);
2653
e1ca7788
DY
2654/**
2655 * vzalloc_node - allocate memory on a specific node with zero fill
2656 * @size: allocation size
2657 * @node: numa node
2658 *
2659 * Allocate enough pages to cover @size from the page level
2660 * allocator and map them into contiguous kernel virtual space.
2661 * The memory allocated is set to zero.
2662 *
2663 * For tight control over page level allocator and protection flags
2664 * use __vmalloc_node() instead.
a862f68a
MR
2665 *
2666 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2667 */
2668void *vzalloc_node(unsigned long size, int node)
2669{
2670 return __vmalloc_node_flags(size, node,
19809c2d 2671 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2672}
2673EXPORT_SYMBOL(vzalloc_node);
2674
1da177e4 2675/**
92eac168
MR
2676 * vmalloc_exec - allocate virtually contiguous, executable memory
2677 * @size: allocation size
1da177e4 2678 *
92eac168
MR
2679 * Kernel-internal function to allocate enough pages to cover @size
2680 * the page level allocator and map them into contiguous and
2681 * executable kernel virtual space.
1da177e4 2682 *
92eac168
MR
2683 * For tight control over page level allocator and protection flags
2684 * use __vmalloc() instead.
a862f68a
MR
2685 *
2686 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2687 */
1da177e4
LT
2688void *vmalloc_exec(unsigned long size)
2689{
868b104d
RE
2690 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2691 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2692 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2693}
2694
0d08e0d3 2695#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2696#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2697#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2698#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2699#else
698d0831
MH
2700/*
2701 * 64b systems should always have either DMA or DMA32 zones. For others
2702 * GFP_DMA32 should do the right thing and use the normal zone.
2703 */
2704#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2705#endif
2706
1da177e4 2707/**
92eac168
MR
2708 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2709 * @size: allocation size
1da177e4 2710 *
92eac168
MR
2711 * Allocate enough 32bit PA addressable pages to cover @size from the
2712 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2713 *
2714 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2715 */
2716void *vmalloc_32(unsigned long size)
2717{
2dca6999 2718 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2719 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2720}
1da177e4
LT
2721EXPORT_SYMBOL(vmalloc_32);
2722
83342314 2723/**
ead04089 2724 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2725 * @size: allocation size
ead04089
REB
2726 *
2727 * The resulting memory area is 32bit addressable and zeroed so it can be
2728 * mapped to userspace without leaking data.
a862f68a
MR
2729 *
2730 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2731 */
2732void *vmalloc_32_user(unsigned long size)
2733{
bc84c535
RP
2734 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2735 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2736 VM_USERMAP, NUMA_NO_NODE,
2737 __builtin_return_address(0));
83342314
NP
2738}
2739EXPORT_SYMBOL(vmalloc_32_user);
2740
d0107eb0
KH
2741/*
2742 * small helper routine , copy contents to buf from addr.
2743 * If the page is not present, fill zero.
2744 */
2745
2746static int aligned_vread(char *buf, char *addr, unsigned long count)
2747{
2748 struct page *p;
2749 int copied = 0;
2750
2751 while (count) {
2752 unsigned long offset, length;
2753
891c49ab 2754 offset = offset_in_page(addr);
d0107eb0
KH
2755 length = PAGE_SIZE - offset;
2756 if (length > count)
2757 length = count;
2758 p = vmalloc_to_page(addr);
2759 /*
2760 * To do safe access to this _mapped_ area, we need
2761 * lock. But adding lock here means that we need to add
2762 * overhead of vmalloc()/vfree() calles for this _debug_
2763 * interface, rarely used. Instead of that, we'll use
2764 * kmap() and get small overhead in this access function.
2765 */
2766 if (p) {
2767 /*
2768 * we can expect USER0 is not used (see vread/vwrite's
2769 * function description)
2770 */
9b04c5fe 2771 void *map = kmap_atomic(p);
d0107eb0 2772 memcpy(buf, map + offset, length);
9b04c5fe 2773 kunmap_atomic(map);
d0107eb0
KH
2774 } else
2775 memset(buf, 0, length);
2776
2777 addr += length;
2778 buf += length;
2779 copied += length;
2780 count -= length;
2781 }
2782 return copied;
2783}
2784
2785static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2786{
2787 struct page *p;
2788 int copied = 0;
2789
2790 while (count) {
2791 unsigned long offset, length;
2792
891c49ab 2793 offset = offset_in_page(addr);
d0107eb0
KH
2794 length = PAGE_SIZE - offset;
2795 if (length > count)
2796 length = count;
2797 p = vmalloc_to_page(addr);
2798 /*
2799 * To do safe access to this _mapped_ area, we need
2800 * lock. But adding lock here means that we need to add
2801 * overhead of vmalloc()/vfree() calles for this _debug_
2802 * interface, rarely used. Instead of that, we'll use
2803 * kmap() and get small overhead in this access function.
2804 */
2805 if (p) {
2806 /*
2807 * we can expect USER0 is not used (see vread/vwrite's
2808 * function description)
2809 */
9b04c5fe 2810 void *map = kmap_atomic(p);
d0107eb0 2811 memcpy(map + offset, buf, length);
9b04c5fe 2812 kunmap_atomic(map);
d0107eb0
KH
2813 }
2814 addr += length;
2815 buf += length;
2816 copied += length;
2817 count -= length;
2818 }
2819 return copied;
2820}
2821
2822/**
92eac168
MR
2823 * vread() - read vmalloc area in a safe way.
2824 * @buf: buffer for reading data
2825 * @addr: vm address.
2826 * @count: number of bytes to be read.
2827 *
92eac168
MR
2828 * This function checks that addr is a valid vmalloc'ed area, and
2829 * copy data from that area to a given buffer. If the given memory range
2830 * of [addr...addr+count) includes some valid address, data is copied to
2831 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2832 * IOREMAP area is treated as memory hole and no copy is done.
2833 *
2834 * If [addr...addr+count) doesn't includes any intersects with alive
2835 * vm_struct area, returns 0. @buf should be kernel's buffer.
2836 *
2837 * Note: In usual ops, vread() is never necessary because the caller
2838 * should know vmalloc() area is valid and can use memcpy().
2839 * This is for routines which have to access vmalloc area without
d9009d67 2840 * any information, as /dev/kmem.
a862f68a
MR
2841 *
2842 * Return: number of bytes for which addr and buf should be increased
2843 * (same number as @count) or %0 if [addr...addr+count) doesn't
2844 * include any intersection with valid vmalloc area
d0107eb0 2845 */
1da177e4
LT
2846long vread(char *buf, char *addr, unsigned long count)
2847{
e81ce85f
JK
2848 struct vmap_area *va;
2849 struct vm_struct *vm;
1da177e4 2850 char *vaddr, *buf_start = buf;
d0107eb0 2851 unsigned long buflen = count;
1da177e4
LT
2852 unsigned long n;
2853
2854 /* Don't allow overflow */
2855 if ((unsigned long) addr + count < count)
2856 count = -(unsigned long) addr;
2857
e81ce85f
JK
2858 spin_lock(&vmap_area_lock);
2859 list_for_each_entry(va, &vmap_area_list, list) {
2860 if (!count)
2861 break;
2862
688fcbfc 2863 if (!va->vm)
e81ce85f
JK
2864 continue;
2865
2866 vm = va->vm;
2867 vaddr = (char *) vm->addr;
762216ab 2868 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2869 continue;
2870 while (addr < vaddr) {
2871 if (count == 0)
2872 goto finished;
2873 *buf = '\0';
2874 buf++;
2875 addr++;
2876 count--;
2877 }
762216ab 2878 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2879 if (n > count)
2880 n = count;
e81ce85f 2881 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2882 aligned_vread(buf, addr, n);
2883 else /* IOREMAP area is treated as memory hole */
2884 memset(buf, 0, n);
2885 buf += n;
2886 addr += n;
2887 count -= n;
1da177e4
LT
2888 }
2889finished:
e81ce85f 2890 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2891
2892 if (buf == buf_start)
2893 return 0;
2894 /* zero-fill memory holes */
2895 if (buf != buf_start + buflen)
2896 memset(buf, 0, buflen - (buf - buf_start));
2897
2898 return buflen;
1da177e4
LT
2899}
2900
d0107eb0 2901/**
92eac168
MR
2902 * vwrite() - write vmalloc area in a safe way.
2903 * @buf: buffer for source data
2904 * @addr: vm address.
2905 * @count: number of bytes to be read.
2906 *
92eac168
MR
2907 * This function checks that addr is a valid vmalloc'ed area, and
2908 * copy data from a buffer to the given addr. If specified range of
2909 * [addr...addr+count) includes some valid address, data is copied from
2910 * proper area of @buf. If there are memory holes, no copy to hole.
2911 * IOREMAP area is treated as memory hole and no copy is done.
2912 *
2913 * If [addr...addr+count) doesn't includes any intersects with alive
2914 * vm_struct area, returns 0. @buf should be kernel's buffer.
2915 *
2916 * Note: In usual ops, vwrite() is never necessary because the caller
2917 * should know vmalloc() area is valid and can use memcpy().
2918 * This is for routines which have to access vmalloc area without
d9009d67 2919 * any information, as /dev/kmem.
a862f68a
MR
2920 *
2921 * Return: number of bytes for which addr and buf should be
2922 * increased (same number as @count) or %0 if [addr...addr+count)
2923 * doesn't include any intersection with valid vmalloc area
d0107eb0 2924 */
1da177e4
LT
2925long vwrite(char *buf, char *addr, unsigned long count)
2926{
e81ce85f
JK
2927 struct vmap_area *va;
2928 struct vm_struct *vm;
d0107eb0
KH
2929 char *vaddr;
2930 unsigned long n, buflen;
2931 int copied = 0;
1da177e4
LT
2932
2933 /* Don't allow overflow */
2934 if ((unsigned long) addr + count < count)
2935 count = -(unsigned long) addr;
d0107eb0 2936 buflen = count;
1da177e4 2937
e81ce85f
JK
2938 spin_lock(&vmap_area_lock);
2939 list_for_each_entry(va, &vmap_area_list, list) {
2940 if (!count)
2941 break;
2942
688fcbfc 2943 if (!va->vm)
e81ce85f
JK
2944 continue;
2945
2946 vm = va->vm;
2947 vaddr = (char *) vm->addr;
762216ab 2948 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2949 continue;
2950 while (addr < vaddr) {
2951 if (count == 0)
2952 goto finished;
2953 buf++;
2954 addr++;
2955 count--;
2956 }
762216ab 2957 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2958 if (n > count)
2959 n = count;
e81ce85f 2960 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2961 aligned_vwrite(buf, addr, n);
2962 copied++;
2963 }
2964 buf += n;
2965 addr += n;
2966 count -= n;
1da177e4
LT
2967 }
2968finished:
e81ce85f 2969 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2970 if (!copied)
2971 return 0;
2972 return buflen;
1da177e4 2973}
83342314
NP
2974
2975/**
92eac168
MR
2976 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2977 * @vma: vma to cover
2978 * @uaddr: target user address to start at
2979 * @kaddr: virtual address of vmalloc kernel memory
2980 * @size: size of map area
7682486b 2981 *
92eac168 2982 * Returns: 0 for success, -Exxx on failure
83342314 2983 *
92eac168
MR
2984 * This function checks that @kaddr is a valid vmalloc'ed area,
2985 * and that it is big enough to cover the range starting at
2986 * @uaddr in @vma. Will return failure if that criteria isn't
2987 * met.
83342314 2988 *
92eac168 2989 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2990 */
e69e9d4a
HD
2991int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2992 void *kaddr, unsigned long size)
83342314
NP
2993{
2994 struct vm_struct *area;
83342314 2995
e69e9d4a
HD
2996 size = PAGE_ALIGN(size);
2997
2998 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2999 return -EINVAL;
3000
e69e9d4a 3001 area = find_vm_area(kaddr);
83342314 3002 if (!area)
db64fe02 3003 return -EINVAL;
83342314 3004
fe9041c2 3005 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3006 return -EINVAL;
83342314 3007
401592d2 3008 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 3009 return -EINVAL;
83342314 3010
83342314 3011 do {
e69e9d4a 3012 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3013 int ret;
3014
83342314
NP
3015 ret = vm_insert_page(vma, uaddr, page);
3016 if (ret)
3017 return ret;
3018
3019 uaddr += PAGE_SIZE;
e69e9d4a
HD
3020 kaddr += PAGE_SIZE;
3021 size -= PAGE_SIZE;
3022 } while (size > 0);
83342314 3023
314e51b9 3024 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3025
db64fe02 3026 return 0;
83342314 3027}
e69e9d4a
HD
3028EXPORT_SYMBOL(remap_vmalloc_range_partial);
3029
3030/**
92eac168
MR
3031 * remap_vmalloc_range - map vmalloc pages to userspace
3032 * @vma: vma to cover (map full range of vma)
3033 * @addr: vmalloc memory
3034 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3035 *
92eac168 3036 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3037 *
92eac168
MR
3038 * This function checks that addr is a valid vmalloc'ed area, and
3039 * that it is big enough to cover the vma. Will return failure if
3040 * that criteria isn't met.
e69e9d4a 3041 *
92eac168 3042 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3043 */
3044int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3045 unsigned long pgoff)
3046{
3047 return remap_vmalloc_range_partial(vma, vma->vm_start,
3048 addr + (pgoff << PAGE_SHIFT),
3049 vma->vm_end - vma->vm_start);
3050}
83342314
NP
3051EXPORT_SYMBOL(remap_vmalloc_range);
3052
1eeb66a1
CH
3053/*
3054 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3055 * have one.
3f8fd02b
JR
3056 *
3057 * The purpose of this function is to make sure the vmalloc area
3058 * mappings are identical in all page-tables in the system.
1eeb66a1 3059 */
3b32123d 3060void __weak vmalloc_sync_all(void)
1eeb66a1
CH
3061{
3062}
5f4352fb
JF
3063
3064
8b1e0f81 3065static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3066{
cd12909c
DV
3067 pte_t ***p = data;
3068
3069 if (p) {
3070 *(*p) = pte;
3071 (*p)++;
3072 }
5f4352fb
JF
3073 return 0;
3074}
3075
3076/**
92eac168
MR
3077 * alloc_vm_area - allocate a range of kernel address space
3078 * @size: size of the area
3079 * @ptes: returns the PTEs for the address space
7682486b 3080 *
92eac168 3081 * Returns: NULL on failure, vm_struct on success
5f4352fb 3082 *
92eac168
MR
3083 * This function reserves a range of kernel address space, and
3084 * allocates pagetables to map that range. No actual mappings
3085 * are created.
cd12909c 3086 *
92eac168
MR
3087 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3088 * allocated for the VM area are returned.
5f4352fb 3089 */
cd12909c 3090struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3091{
3092 struct vm_struct *area;
3093
23016969
CL
3094 area = get_vm_area_caller(size, VM_IOREMAP,
3095 __builtin_return_address(0));
5f4352fb
JF
3096 if (area == NULL)
3097 return NULL;
3098
3099 /*
3100 * This ensures that page tables are constructed for this region
3101 * of kernel virtual address space and mapped into init_mm.
3102 */
3103 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3104 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3105 free_vm_area(area);
3106 return NULL;
3107 }
3108
5f4352fb
JF
3109 return area;
3110}
3111EXPORT_SYMBOL_GPL(alloc_vm_area);
3112
3113void free_vm_area(struct vm_struct *area)
3114{
3115 struct vm_struct *ret;
3116 ret = remove_vm_area(area->addr);
3117 BUG_ON(ret != area);
3118 kfree(area);
3119}
3120EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3121
4f8b02b4 3122#ifdef CONFIG_SMP
ca23e405
TH
3123static struct vmap_area *node_to_va(struct rb_node *n)
3124{
4583e773 3125 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3126}
3127
3128/**
68ad4a33
URS
3129 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3130 * @addr: target address
ca23e405 3131 *
68ad4a33
URS
3132 * Returns: vmap_area if it is found. If there is no such area
3133 * the first highest(reverse order) vmap_area is returned
3134 * i.e. va->va_start < addr && va->va_end < addr or NULL
3135 * if there are no any areas before @addr.
ca23e405 3136 */
68ad4a33
URS
3137static struct vmap_area *
3138pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3139{
68ad4a33
URS
3140 struct vmap_area *va, *tmp;
3141 struct rb_node *n;
3142
3143 n = free_vmap_area_root.rb_node;
3144 va = NULL;
ca23e405
TH
3145
3146 while (n) {
68ad4a33
URS
3147 tmp = rb_entry(n, struct vmap_area, rb_node);
3148 if (tmp->va_start <= addr) {
3149 va = tmp;
3150 if (tmp->va_end >= addr)
3151 break;
3152
ca23e405 3153 n = n->rb_right;
68ad4a33
URS
3154 } else {
3155 n = n->rb_left;
3156 }
ca23e405
TH
3157 }
3158
68ad4a33 3159 return va;
ca23e405
TH
3160}
3161
3162/**
68ad4a33
URS
3163 * pvm_determine_end_from_reverse - find the highest aligned address
3164 * of free block below VMALLOC_END
3165 * @va:
3166 * in - the VA we start the search(reverse order);
3167 * out - the VA with the highest aligned end address.
ca23e405 3168 *
68ad4a33 3169 * Returns: determined end address within vmap_area
ca23e405 3170 */
68ad4a33
URS
3171static unsigned long
3172pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3173{
68ad4a33 3174 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3175 unsigned long addr;
3176
68ad4a33
URS
3177 if (likely(*va)) {
3178 list_for_each_entry_from_reverse((*va),
3179 &free_vmap_area_list, list) {
3180 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3181 if ((*va)->va_start < addr)
3182 return addr;
3183 }
ca23e405
TH
3184 }
3185
68ad4a33 3186 return 0;
ca23e405
TH
3187}
3188
3189/**
3190 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3191 * @offsets: array containing offset of each area
3192 * @sizes: array containing size of each area
3193 * @nr_vms: the number of areas to allocate
3194 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3195 *
3196 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3197 * vm_structs on success, %NULL on failure
3198 *
3199 * Percpu allocator wants to use congruent vm areas so that it can
3200 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3201 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3202 * be scattered pretty far, distance between two areas easily going up
3203 * to gigabytes. To avoid interacting with regular vmallocs, these
3204 * areas are allocated from top.
ca23e405 3205 *
68ad4a33
URS
3206 * Despite its complicated look, this allocator is rather simple. It
3207 * does everything top-down and scans free blocks from the end looking
3208 * for matching base. While scanning, if any of the areas do not fit the
3209 * base address is pulled down to fit the area. Scanning is repeated till
3210 * all the areas fit and then all necessary data structures are inserted
3211 * and the result is returned.
ca23e405
TH
3212 */
3213struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3214 const size_t *sizes, int nr_vms,
ec3f64fc 3215 size_t align)
ca23e405
TH
3216{
3217 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3218 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3219 struct vmap_area **vas, *va;
ca23e405
TH
3220 struct vm_struct **vms;
3221 int area, area2, last_area, term_area;
68ad4a33 3222 unsigned long base, start, size, end, last_end;
ca23e405 3223 bool purged = false;
68ad4a33 3224 enum fit_type type;
ca23e405 3225
ca23e405 3226 /* verify parameters and allocate data structures */
891c49ab 3227 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3228 for (last_area = 0, area = 0; area < nr_vms; area++) {
3229 start = offsets[area];
3230 end = start + sizes[area];
3231
3232 /* is everything aligned properly? */
3233 BUG_ON(!IS_ALIGNED(offsets[area], align));
3234 BUG_ON(!IS_ALIGNED(sizes[area], align));
3235
3236 /* detect the area with the highest address */
3237 if (start > offsets[last_area])
3238 last_area = area;
3239
c568da28 3240 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3241 unsigned long start2 = offsets[area2];
3242 unsigned long end2 = start2 + sizes[area2];
3243
c568da28 3244 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3245 }
3246 }
3247 last_end = offsets[last_area] + sizes[last_area];
3248
3249 if (vmalloc_end - vmalloc_start < last_end) {
3250 WARN_ON(true);
3251 return NULL;
3252 }
3253
4d67d860
TM
3254 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3255 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3256 if (!vas || !vms)
f1db7afd 3257 goto err_free2;
ca23e405
TH
3258
3259 for (area = 0; area < nr_vms; area++) {
68ad4a33 3260 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3261 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3262 if (!vas[area] || !vms[area])
3263 goto err_free;
3264 }
3265retry:
3266 spin_lock(&vmap_area_lock);
3267
3268 /* start scanning - we scan from the top, begin with the last area */
3269 area = term_area = last_area;
3270 start = offsets[area];
3271 end = start + sizes[area];
3272
68ad4a33
URS
3273 va = pvm_find_va_enclose_addr(vmalloc_end);
3274 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3275
3276 while (true) {
ca23e405
TH
3277 /*
3278 * base might have underflowed, add last_end before
3279 * comparing.
3280 */
68ad4a33
URS
3281 if (base + last_end < vmalloc_start + last_end)
3282 goto overflow;
ca23e405
TH
3283
3284 /*
68ad4a33 3285 * Fitting base has not been found.
ca23e405 3286 */
68ad4a33
URS
3287 if (va == NULL)
3288 goto overflow;
ca23e405 3289
5336e52c
KS
3290 /*
3291 * If required width exeeds current VA block, move
3292 * base downwards and then recheck.
3293 */
3294 if (base + end > va->va_end) {
3295 base = pvm_determine_end_from_reverse(&va, align) - end;
3296 term_area = area;
3297 continue;
3298 }
3299
ca23e405 3300 /*
68ad4a33 3301 * If this VA does not fit, move base downwards and recheck.
ca23e405 3302 */
5336e52c 3303 if (base + start < va->va_start) {
68ad4a33
URS
3304 va = node_to_va(rb_prev(&va->rb_node));
3305 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3306 term_area = area;
3307 continue;
3308 }
3309
3310 /*
3311 * This area fits, move on to the previous one. If
3312 * the previous one is the terminal one, we're done.
3313 */
3314 area = (area + nr_vms - 1) % nr_vms;
3315 if (area == term_area)
3316 break;
68ad4a33 3317
ca23e405
TH
3318 start = offsets[area];
3319 end = start + sizes[area];
68ad4a33 3320 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3321 }
68ad4a33 3322
ca23e405
TH
3323 /* we've found a fitting base, insert all va's */
3324 for (area = 0; area < nr_vms; area++) {
68ad4a33 3325 int ret;
ca23e405 3326
68ad4a33
URS
3327 start = base + offsets[area];
3328 size = sizes[area];
ca23e405 3329
68ad4a33
URS
3330 va = pvm_find_va_enclose_addr(start);
3331 if (WARN_ON_ONCE(va == NULL))
3332 /* It is a BUG(), but trigger recovery instead. */
3333 goto recovery;
3334
3335 type = classify_va_fit_type(va, start, size);
3336 if (WARN_ON_ONCE(type == NOTHING_FIT))
3337 /* It is a BUG(), but trigger recovery instead. */
3338 goto recovery;
3339
3340 ret = adjust_va_to_fit_type(va, start, size, type);
3341 if (unlikely(ret))
3342 goto recovery;
3343
3344 /* Allocated area. */
3345 va = vas[area];
3346 va->va_start = start;
3347 va->va_end = start + size;
3348
3349 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3350 }
ca23e405
TH
3351
3352 spin_unlock(&vmap_area_lock);
3353
3354 /* insert all vm's */
3355 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
3356 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3357 pcpu_get_vm_areas);
ca23e405
TH
3358
3359 kfree(vas);
3360 return vms;
3361
68ad4a33
URS
3362recovery:
3363 /* Remove previously inserted areas. */
3364 while (area--) {
3365 __free_vmap_area(vas[area]);
3366 vas[area] = NULL;
3367 }
3368
3369overflow:
3370 spin_unlock(&vmap_area_lock);
3371 if (!purged) {
3372 purge_vmap_area_lazy();
3373 purged = true;
3374
3375 /* Before "retry", check if we recover. */
3376 for (area = 0; area < nr_vms; area++) {
3377 if (vas[area])
3378 continue;
3379
3380 vas[area] = kmem_cache_zalloc(
3381 vmap_area_cachep, GFP_KERNEL);
3382 if (!vas[area])
3383 goto err_free;
3384 }
3385
3386 goto retry;
3387 }
3388
ca23e405
TH
3389err_free:
3390 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3391 if (vas[area])
3392 kmem_cache_free(vmap_area_cachep, vas[area]);
3393
f1db7afd 3394 kfree(vms[area]);
ca23e405 3395 }
f1db7afd 3396err_free2:
ca23e405
TH
3397 kfree(vas);
3398 kfree(vms);
3399 return NULL;
3400}
3401
3402/**
3403 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3404 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3405 * @nr_vms: the number of allocated areas
3406 *
3407 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3408 */
3409void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3410{
3411 int i;
3412
3413 for (i = 0; i < nr_vms; i++)
3414 free_vm_area(vms[i]);
3415 kfree(vms);
3416}
4f8b02b4 3417#endif /* CONFIG_SMP */
a10aa579
CL
3418
3419#ifdef CONFIG_PROC_FS
3420static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 3421 __acquires(&vmap_area_lock)
a10aa579 3422{
d4033afd 3423 spin_lock(&vmap_area_lock);
3f500069 3424 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3425}
3426
3427static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3428{
3f500069 3429 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3430}
3431
3432static void s_stop(struct seq_file *m, void *p)
d4033afd 3433 __releases(&vmap_area_lock)
a10aa579 3434{
d4033afd 3435 spin_unlock(&vmap_area_lock);
a10aa579
CL
3436}
3437
a47a126a
ED
3438static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3439{
e5adfffc 3440 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3441 unsigned int nr, *counters = m->private;
3442
3443 if (!counters)
3444 return;
3445
af12346c
WL
3446 if (v->flags & VM_UNINITIALIZED)
3447 return;
7e5b528b
DV
3448 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3449 smp_rmb();
af12346c 3450
a47a126a
ED
3451 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3452
3453 for (nr = 0; nr < v->nr_pages; nr++)
3454 counters[page_to_nid(v->pages[nr])]++;
3455
3456 for_each_node_state(nr, N_HIGH_MEMORY)
3457 if (counters[nr])
3458 seq_printf(m, " N%u=%u", nr, counters[nr]);
3459 }
3460}
3461
dd3b8353
URS
3462static void show_purge_info(struct seq_file *m)
3463{
3464 struct llist_node *head;
3465 struct vmap_area *va;
3466
3467 head = READ_ONCE(vmap_purge_list.first);
3468 if (head == NULL)
3469 return;
3470
3471 llist_for_each_entry(va, head, purge_list) {
3472 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3473 (void *)va->va_start, (void *)va->va_end,
3474 va->va_end - va->va_start);
3475 }
3476}
3477
a10aa579
CL
3478static int s_show(struct seq_file *m, void *p)
3479{
3f500069 3480 struct vmap_area *va;
d4033afd
JK
3481 struct vm_struct *v;
3482
3f500069 3483 va = list_entry(p, struct vmap_area, list);
3484
c2ce8c14 3485 /*
688fcbfc
PL
3486 * s_show can encounter race with remove_vm_area, !vm on behalf
3487 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3488 */
688fcbfc 3489 if (!va->vm) {
dd3b8353 3490 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3491 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3492 va->va_end - va->va_start);
78c72746 3493
d4033afd 3494 return 0;
78c72746 3495 }
d4033afd
JK
3496
3497 v = va->vm;
a10aa579 3498
45ec1690 3499 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3500 v->addr, v->addr + v->size, v->size);
3501
62c70bce
JP
3502 if (v->caller)
3503 seq_printf(m, " %pS", v->caller);
23016969 3504
a10aa579
CL
3505 if (v->nr_pages)
3506 seq_printf(m, " pages=%d", v->nr_pages);
3507
3508 if (v->phys_addr)
199eaa05 3509 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3510
3511 if (v->flags & VM_IOREMAP)
f4527c90 3512 seq_puts(m, " ioremap");
a10aa579
CL
3513
3514 if (v->flags & VM_ALLOC)
f4527c90 3515 seq_puts(m, " vmalloc");
a10aa579
CL
3516
3517 if (v->flags & VM_MAP)
f4527c90 3518 seq_puts(m, " vmap");
a10aa579
CL
3519
3520 if (v->flags & VM_USERMAP)
f4527c90 3521 seq_puts(m, " user");
a10aa579 3522
fe9041c2
CH
3523 if (v->flags & VM_DMA_COHERENT)
3524 seq_puts(m, " dma-coherent");
3525
244d63ee 3526 if (is_vmalloc_addr(v->pages))
f4527c90 3527 seq_puts(m, " vpages");
a10aa579 3528
a47a126a 3529 show_numa_info(m, v);
a10aa579 3530 seq_putc(m, '\n');
dd3b8353
URS
3531
3532 /*
3533 * As a final step, dump "unpurged" areas. Note,
3534 * that entire "/proc/vmallocinfo" output will not
3535 * be address sorted, because the purge list is not
3536 * sorted.
3537 */
3538 if (list_is_last(&va->list, &vmap_area_list))
3539 show_purge_info(m);
3540
a10aa579
CL
3541 return 0;
3542}
3543
5f6a6a9c 3544static const struct seq_operations vmalloc_op = {
a10aa579
CL
3545 .start = s_start,
3546 .next = s_next,
3547 .stop = s_stop,
3548 .show = s_show,
3549};
5f6a6a9c 3550
5f6a6a9c
AD
3551static int __init proc_vmalloc_init(void)
3552{
fddda2b7 3553 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3554 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3555 &vmalloc_op,
3556 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3557 else
0825a6f9 3558 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3559 return 0;
3560}
3561module_init(proc_vmalloc_init);
db3808c1 3562
a10aa579 3563#endif