treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 98
[linux-2.6-block.git] / mm / util.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
16d69265 2#include <linux/mm.h>
30992c97
MM
3#include <linux/slab.h>
4#include <linux/string.h>
3b32123d 5#include <linux/compiler.h>
b95f1b31 6#include <linux/export.h>
96840aa0 7#include <linux/err.h>
3b8f14b4 8#include <linux/sched.h>
6e84f315 9#include <linux/sched/mm.h>
68db0cf1 10#include <linux/sched/task_stack.h>
eb36c587 11#include <linux/security.h>
9800339b 12#include <linux/swap.h>
33806f06 13#include <linux/swapops.h>
00619bcc
JM
14#include <linux/mman.h>
15#include <linux/hugetlb.h>
39f1f78d 16#include <linux/vmalloc.h>
897ab3e0 17#include <linux/userfaultfd_k.h>
00619bcc 18
7c0f6ba6 19#include <linux/uaccess.h>
30992c97 20
6038def0
NK
21#include "internal.h"
22
a4bb1e43
AH
23/**
24 * kfree_const - conditionally free memory
25 * @x: pointer to the memory
26 *
27 * Function calls kfree only if @x is not in .rodata section.
28 */
29void kfree_const(const void *x)
30{
31 if (!is_kernel_rodata((unsigned long)x))
32 kfree(x);
33}
34EXPORT_SYMBOL(kfree_const);
35
30992c97 36/**
30992c97 37 * kstrdup - allocate space for and copy an existing string
30992c97
MM
38 * @s: the string to duplicate
39 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
40 *
41 * Return: newly allocated copy of @s or %NULL in case of error
30992c97
MM
42 */
43char *kstrdup(const char *s, gfp_t gfp)
44{
45 size_t len;
46 char *buf;
47
48 if (!s)
49 return NULL;
50
51 len = strlen(s) + 1;
1d2c8eea 52 buf = kmalloc_track_caller(len, gfp);
30992c97
MM
53 if (buf)
54 memcpy(buf, s, len);
55 return buf;
56}
57EXPORT_SYMBOL(kstrdup);
96840aa0 58
a4bb1e43
AH
59/**
60 * kstrdup_const - conditionally duplicate an existing const string
61 * @s: the string to duplicate
62 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
63 *
a862f68a
MR
64 * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
65 *
66 * Return: source string if it is in .rodata section otherwise
67 * fallback to kstrdup.
a4bb1e43
AH
68 */
69const char *kstrdup_const(const char *s, gfp_t gfp)
70{
71 if (is_kernel_rodata((unsigned long)s))
72 return s;
73
74 return kstrdup(s, gfp);
75}
76EXPORT_SYMBOL(kstrdup_const);
77
1e66df3e
JF
78/**
79 * kstrndup - allocate space for and copy an existing string
80 * @s: the string to duplicate
81 * @max: read at most @max chars from @s
82 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
f3515741
DH
83 *
84 * Note: Use kmemdup_nul() instead if the size is known exactly.
a862f68a
MR
85 *
86 * Return: newly allocated copy of @s or %NULL in case of error
1e66df3e
JF
87 */
88char *kstrndup(const char *s, size_t max, gfp_t gfp)
89{
90 size_t len;
91 char *buf;
92
93 if (!s)
94 return NULL;
95
96 len = strnlen(s, max);
97 buf = kmalloc_track_caller(len+1, gfp);
98 if (buf) {
99 memcpy(buf, s, len);
100 buf[len] = '\0';
101 }
102 return buf;
103}
104EXPORT_SYMBOL(kstrndup);
105
1a2f67b4
AD
106/**
107 * kmemdup - duplicate region of memory
108 *
109 * @src: memory region to duplicate
110 * @len: memory region length
111 * @gfp: GFP mask to use
a862f68a
MR
112 *
113 * Return: newly allocated copy of @src or %NULL in case of error
1a2f67b4
AD
114 */
115void *kmemdup(const void *src, size_t len, gfp_t gfp)
116{
117 void *p;
118
1d2c8eea 119 p = kmalloc_track_caller(len, gfp);
1a2f67b4
AD
120 if (p)
121 memcpy(p, src, len);
122 return p;
123}
124EXPORT_SYMBOL(kmemdup);
125
f3515741
DH
126/**
127 * kmemdup_nul - Create a NUL-terminated string from unterminated data
128 * @s: The data to stringify
129 * @len: The size of the data
130 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
131 *
132 * Return: newly allocated copy of @s with NUL-termination or %NULL in
133 * case of error
f3515741
DH
134 */
135char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
136{
137 char *buf;
138
139 if (!s)
140 return NULL;
141
142 buf = kmalloc_track_caller(len + 1, gfp);
143 if (buf) {
144 memcpy(buf, s, len);
145 buf[len] = '\0';
146 }
147 return buf;
148}
149EXPORT_SYMBOL(kmemdup_nul);
150
610a77e0
LZ
151/**
152 * memdup_user - duplicate memory region from user space
153 *
154 * @src: source address in user space
155 * @len: number of bytes to copy
156 *
a862f68a 157 * Return: an ERR_PTR() on failure. Result is physically
50fd2f29 158 * contiguous, to be freed by kfree().
610a77e0
LZ
159 */
160void *memdup_user(const void __user *src, size_t len)
161{
162 void *p;
163
6c8fcc09 164 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
610a77e0
LZ
165 if (!p)
166 return ERR_PTR(-ENOMEM);
167
168 if (copy_from_user(p, src, len)) {
169 kfree(p);
170 return ERR_PTR(-EFAULT);
171 }
172
173 return p;
174}
175EXPORT_SYMBOL(memdup_user);
176
50fd2f29
AV
177/**
178 * vmemdup_user - duplicate memory region from user space
179 *
180 * @src: source address in user space
181 * @len: number of bytes to copy
182 *
a862f68a 183 * Return: an ERR_PTR() on failure. Result may be not
50fd2f29
AV
184 * physically contiguous. Use kvfree() to free.
185 */
186void *vmemdup_user(const void __user *src, size_t len)
187{
188 void *p;
189
190 p = kvmalloc(len, GFP_USER);
191 if (!p)
192 return ERR_PTR(-ENOMEM);
193
194 if (copy_from_user(p, src, len)) {
195 kvfree(p);
196 return ERR_PTR(-EFAULT);
197 }
198
199 return p;
200}
201EXPORT_SYMBOL(vmemdup_user);
202
b86181f1 203/**
96840aa0 204 * strndup_user - duplicate an existing string from user space
96840aa0
DA
205 * @s: The string to duplicate
206 * @n: Maximum number of bytes to copy, including the trailing NUL.
a862f68a 207 *
e9145521 208 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
96840aa0
DA
209 */
210char *strndup_user(const char __user *s, long n)
211{
212 char *p;
213 long length;
214
215 length = strnlen_user(s, n);
216
217 if (!length)
218 return ERR_PTR(-EFAULT);
219
220 if (length > n)
221 return ERR_PTR(-EINVAL);
222
90d74045 223 p = memdup_user(s, length);
96840aa0 224
90d74045
JL
225 if (IS_ERR(p))
226 return p;
96840aa0
DA
227
228 p[length - 1] = '\0';
229
230 return p;
231}
232EXPORT_SYMBOL(strndup_user);
16d69265 233
e9d408e1
AV
234/**
235 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
236 *
237 * @src: source address in user space
238 * @len: number of bytes to copy
239 *
a862f68a 240 * Return: an ERR_PTR() on failure.
e9d408e1
AV
241 */
242void *memdup_user_nul(const void __user *src, size_t len)
243{
244 char *p;
245
246 /*
247 * Always use GFP_KERNEL, since copy_from_user() can sleep and
248 * cause pagefault, which makes it pointless to use GFP_NOFS
249 * or GFP_ATOMIC.
250 */
251 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
252 if (!p)
253 return ERR_PTR(-ENOMEM);
254
255 if (copy_from_user(p, src, len)) {
256 kfree(p);
257 return ERR_PTR(-EFAULT);
258 }
259 p[len] = '\0';
260
261 return p;
262}
263EXPORT_SYMBOL(memdup_user_nul);
264
6038def0
NK
265void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
266 struct vm_area_struct *prev, struct rb_node *rb_parent)
267{
268 struct vm_area_struct *next;
269
270 vma->vm_prev = prev;
271 if (prev) {
272 next = prev->vm_next;
273 prev->vm_next = vma;
274 } else {
275 mm->mmap = vma;
276 if (rb_parent)
277 next = rb_entry(rb_parent,
278 struct vm_area_struct, vm_rb);
279 else
280 next = NULL;
281 }
282 vma->vm_next = next;
283 if (next)
284 next->vm_prev = vma;
285}
286
b7643757 287/* Check if the vma is being used as a stack by this task */
d17af505 288int vma_is_stack_for_current(struct vm_area_struct *vma)
b7643757 289{
d17af505
AL
290 struct task_struct * __maybe_unused t = current;
291
b7643757
SP
292 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
293}
294
efc1a3b1 295#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
8f2af155 296void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
16d69265
AM
297{
298 mm->mmap_base = TASK_UNMAPPED_BASE;
299 mm->get_unmapped_area = arch_get_unmapped_area;
16d69265
AM
300}
301#endif
912985dc 302
45888a0c
XG
303/*
304 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
305 * back to the regular GUP.
d0811078
MT
306 * Note a difference with get_user_pages_fast: this always returns the
307 * number of pages pinned, 0 if no pages were pinned.
308 * If the architecture does not support this function, simply return with no
309 * pages pinned.
45888a0c 310 */
3b32123d 311int __weak __get_user_pages_fast(unsigned long start,
45888a0c
XG
312 int nr_pages, int write, struct page **pages)
313{
314 return 0;
315}
316EXPORT_SYMBOL_GPL(__get_user_pages_fast);
317
9de100d0
AG
318/**
319 * get_user_pages_fast() - pin user pages in memory
320 * @start: starting user address
321 * @nr_pages: number of pages from start to pin
73b0140b 322 * @gup_flags: flags modifying pin behaviour
9de100d0
AG
323 * @pages: array that receives pointers to the pages pinned.
324 * Should be at least nr_pages long.
325 *
d2bf6be8
NP
326 * get_user_pages_fast provides equivalent functionality to get_user_pages,
327 * operating on current and current->mm, with force=0 and vma=NULL. However
328 * unlike get_user_pages, it must be called without mmap_sem held.
329 *
330 * get_user_pages_fast may take mmap_sem and page table locks, so no
331 * assumptions can be made about lack of locking. get_user_pages_fast is to be
332 * implemented in a way that is advantageous (vs get_user_pages()) when the
333 * user memory area is already faulted in and present in ptes. However if the
334 * pages have to be faulted in, it may turn out to be slightly slower so
335 * callers need to carefully consider what to use. On many architectures,
336 * get_user_pages_fast simply falls back to get_user_pages.
a862f68a
MR
337 *
338 * Return: number of pages pinned. This may be fewer than the number
339 * requested. If nr_pages is 0 or negative, returns 0. If no pages
340 * were pinned, returns -errno.
9de100d0 341 */
3b32123d 342int __weak get_user_pages_fast(unsigned long start,
73b0140b
IW
343 int nr_pages, unsigned int gup_flags,
344 struct page **pages)
912985dc 345{
73b0140b 346 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
912985dc
RR
347}
348EXPORT_SYMBOL_GPL(get_user_pages_fast);
ca2b84cb 349
eb36c587
AV
350unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
351 unsigned long len, unsigned long prot,
9fbeb5ab 352 unsigned long flag, unsigned long pgoff)
eb36c587
AV
353{
354 unsigned long ret;
355 struct mm_struct *mm = current->mm;
41badc15 356 unsigned long populate;
897ab3e0 357 LIST_HEAD(uf);
eb36c587
AV
358
359 ret = security_mmap_file(file, prot, flag);
360 if (!ret) {
9fbeb5ab
MH
361 if (down_write_killable(&mm->mmap_sem))
362 return -EINTR;
bebeb3d6 363 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
897ab3e0 364 &populate, &uf);
eb36c587 365 up_write(&mm->mmap_sem);
897ab3e0 366 userfaultfd_unmap_complete(mm, &uf);
41badc15
ML
367 if (populate)
368 mm_populate(ret, populate);
eb36c587
AV
369 }
370 return ret;
371}
372
373unsigned long vm_mmap(struct file *file, unsigned long addr,
374 unsigned long len, unsigned long prot,
375 unsigned long flag, unsigned long offset)
376{
377 if (unlikely(offset + PAGE_ALIGN(len) < offset))
378 return -EINVAL;
ea53cde0 379 if (unlikely(offset_in_page(offset)))
eb36c587
AV
380 return -EINVAL;
381
9fbeb5ab 382 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
eb36c587
AV
383}
384EXPORT_SYMBOL(vm_mmap);
385
a7c3e901
MH
386/**
387 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
388 * failure, fall back to non-contiguous (vmalloc) allocation.
389 * @size: size of the request.
390 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
391 * @node: numa node to allocate from
392 *
393 * Uses kmalloc to get the memory but if the allocation fails then falls back
394 * to the vmalloc allocator. Use kvfree for freeing the memory.
395 *
cc965a29
MH
396 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
397 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
398 * preferable to the vmalloc fallback, due to visible performance drawbacks.
a7c3e901 399 *
ce91f6ee
MH
400 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
401 * fall back to vmalloc.
a862f68a
MR
402 *
403 * Return: pointer to the allocated memory of %NULL in case of failure
a7c3e901
MH
404 */
405void *kvmalloc_node(size_t size, gfp_t flags, int node)
406{
407 gfp_t kmalloc_flags = flags;
408 void *ret;
409
410 /*
411 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
412 * so the given set of flags has to be compatible.
413 */
ce91f6ee
MH
414 if ((flags & GFP_KERNEL) != GFP_KERNEL)
415 return kmalloc_node(size, flags, node);
a7c3e901
MH
416
417 /*
4f4f2ba9
MH
418 * We want to attempt a large physically contiguous block first because
419 * it is less likely to fragment multiple larger blocks and therefore
420 * contribute to a long term fragmentation less than vmalloc fallback.
421 * However make sure that larger requests are not too disruptive - no
422 * OOM killer and no allocation failure warnings as we have a fallback.
a7c3e901 423 */
6c5ab651
MH
424 if (size > PAGE_SIZE) {
425 kmalloc_flags |= __GFP_NOWARN;
426
cc965a29 427 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
6c5ab651
MH
428 kmalloc_flags |= __GFP_NORETRY;
429 }
a7c3e901
MH
430
431 ret = kmalloc_node(size, kmalloc_flags, node);
432
433 /*
434 * It doesn't really make sense to fallback to vmalloc for sub page
435 * requests
436 */
437 if (ret || size <= PAGE_SIZE)
438 return ret;
439
8594a21c
MH
440 return __vmalloc_node_flags_caller(size, node, flags,
441 __builtin_return_address(0));
a7c3e901
MH
442}
443EXPORT_SYMBOL(kvmalloc_node);
444
ff4dc772 445/**
04b8e946
AM
446 * kvfree() - Free memory.
447 * @addr: Pointer to allocated memory.
ff4dc772 448 *
04b8e946
AM
449 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
450 * It is slightly more efficient to use kfree() or vfree() if you are certain
451 * that you know which one to use.
452 *
52414d33 453 * Context: Either preemptible task context or not-NMI interrupt.
ff4dc772 454 */
39f1f78d
AV
455void kvfree(const void *addr)
456{
457 if (is_vmalloc_addr(addr))
458 vfree(addr);
459 else
460 kfree(addr);
461}
462EXPORT_SYMBOL(kvfree);
463
e39155ea
KS
464static inline void *__page_rmapping(struct page *page)
465{
466 unsigned long mapping;
467
468 mapping = (unsigned long)page->mapping;
469 mapping &= ~PAGE_MAPPING_FLAGS;
470
471 return (void *)mapping;
472}
473
474/* Neutral page->mapping pointer to address_space or anon_vma or other */
475void *page_rmapping(struct page *page)
476{
477 page = compound_head(page);
478 return __page_rmapping(page);
479}
480
1aa8aea5
AM
481/*
482 * Return true if this page is mapped into pagetables.
483 * For compound page it returns true if any subpage of compound page is mapped.
484 */
485bool page_mapped(struct page *page)
486{
487 int i;
488
489 if (likely(!PageCompound(page)))
490 return atomic_read(&page->_mapcount) >= 0;
491 page = compound_head(page);
492 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
493 return true;
494 if (PageHuge(page))
495 return false;
8ab88c71 496 for (i = 0; i < (1 << compound_order(page)); i++) {
1aa8aea5
AM
497 if (atomic_read(&page[i]._mapcount) >= 0)
498 return true;
499 }
500 return false;
501}
502EXPORT_SYMBOL(page_mapped);
503
e39155ea
KS
504struct anon_vma *page_anon_vma(struct page *page)
505{
506 unsigned long mapping;
507
508 page = compound_head(page);
509 mapping = (unsigned long)page->mapping;
510 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
511 return NULL;
512 return __page_rmapping(page);
513}
514
9800339b
SL
515struct address_space *page_mapping(struct page *page)
516{
1c290f64
KS
517 struct address_space *mapping;
518
519 page = compound_head(page);
9800339b 520
03e5ac2f
MP
521 /* This happens if someone calls flush_dcache_page on slab page */
522 if (unlikely(PageSlab(page)))
523 return NULL;
524
33806f06
SL
525 if (unlikely(PageSwapCache(page))) {
526 swp_entry_t entry;
527
528 entry.val = page_private(page);
e39155ea
KS
529 return swap_address_space(entry);
530 }
531
1c290f64 532 mapping = page->mapping;
bda807d4 533 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
e39155ea 534 return NULL;
bda807d4
MK
535
536 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
9800339b 537}
bda807d4 538EXPORT_SYMBOL(page_mapping);
9800339b 539
cb9f753a
HY
540/*
541 * For file cache pages, return the address_space, otherwise return NULL
542 */
543struct address_space *page_mapping_file(struct page *page)
544{
545 if (unlikely(PageSwapCache(page)))
546 return NULL;
547 return page_mapping(page);
548}
549
b20ce5e0
KS
550/* Slow path of page_mapcount() for compound pages */
551int __page_mapcount(struct page *page)
552{
553 int ret;
554
555 ret = atomic_read(&page->_mapcount) + 1;
dd78fedd
KS
556 /*
557 * For file THP page->_mapcount contains total number of mapping
558 * of the page: no need to look into compound_mapcount.
559 */
560 if (!PageAnon(page) && !PageHuge(page))
561 return ret;
b20ce5e0
KS
562 page = compound_head(page);
563 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
564 if (PageDoubleMap(page))
565 ret--;
566 return ret;
567}
568EXPORT_SYMBOL_GPL(__page_mapcount);
569
39a1aa8e
AR
570int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
571int sysctl_overcommit_ratio __read_mostly = 50;
572unsigned long sysctl_overcommit_kbytes __read_mostly;
573int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
574unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
575unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
576
49f0ce5f
JM
577int overcommit_ratio_handler(struct ctl_table *table, int write,
578 void __user *buffer, size_t *lenp,
579 loff_t *ppos)
580{
581 int ret;
582
583 ret = proc_dointvec(table, write, buffer, lenp, ppos);
584 if (ret == 0 && write)
585 sysctl_overcommit_kbytes = 0;
586 return ret;
587}
588
589int overcommit_kbytes_handler(struct ctl_table *table, int write,
590 void __user *buffer, size_t *lenp,
591 loff_t *ppos)
592{
593 int ret;
594
595 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
596 if (ret == 0 && write)
597 sysctl_overcommit_ratio = 0;
598 return ret;
599}
600
00619bcc
JM
601/*
602 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
603 */
604unsigned long vm_commit_limit(void)
605{
49f0ce5f
JM
606 unsigned long allowed;
607
608 if (sysctl_overcommit_kbytes)
609 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
610 else
ca79b0c2 611 allowed = ((totalram_pages() - hugetlb_total_pages())
49f0ce5f
JM
612 * sysctl_overcommit_ratio / 100);
613 allowed += total_swap_pages;
614
615 return allowed;
00619bcc
JM
616}
617
39a1aa8e
AR
618/*
619 * Make sure vm_committed_as in one cacheline and not cacheline shared with
620 * other variables. It can be updated by several CPUs frequently.
621 */
622struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
623
624/*
625 * The global memory commitment made in the system can be a metric
626 * that can be used to drive ballooning decisions when Linux is hosted
627 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
628 * balancing memory across competing virtual machines that are hosted.
629 * Several metrics drive this policy engine including the guest reported
630 * memory commitment.
631 */
632unsigned long vm_memory_committed(void)
633{
634 return percpu_counter_read_positive(&vm_committed_as);
635}
636EXPORT_SYMBOL_GPL(vm_memory_committed);
637
638/*
639 * Check that a process has enough memory to allocate a new virtual
640 * mapping. 0 means there is enough memory for the allocation to
641 * succeed and -ENOMEM implies there is not.
642 *
643 * We currently support three overcommit policies, which are set via the
ad56b738 644 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
39a1aa8e
AR
645 *
646 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
647 * Additional code 2002 Jul 20 by Robert Love.
648 *
649 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
650 *
651 * Note this is a helper function intended to be used by LSMs which
652 * wish to use this logic.
653 */
654int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
655{
8c7829b0 656 long allowed;
39a1aa8e
AR
657
658 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
659 -(s64)vm_committed_as_batch * num_online_cpus(),
660 "memory commitment underflow");
661
662 vm_acct_memory(pages);
663
664 /*
665 * Sometimes we want to use more memory than we have
666 */
667 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
668 return 0;
669
670 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
8c7829b0 671 if (pages > totalram_pages() + total_swap_pages)
39a1aa8e 672 goto error;
8c7829b0 673 return 0;
39a1aa8e
AR
674 }
675
676 allowed = vm_commit_limit();
677 /*
678 * Reserve some for root
679 */
680 if (!cap_sys_admin)
681 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
682
683 /*
684 * Don't let a single process grow so big a user can't recover
685 */
686 if (mm) {
8c7829b0
JW
687 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
688
39a1aa8e
AR
689 allowed -= min_t(long, mm->total_vm / 32, reserve);
690 }
691
692 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
693 return 0;
694error:
695 vm_unacct_memory(pages);
696
697 return -ENOMEM;
698}
699
a9090253
WR
700/**
701 * get_cmdline() - copy the cmdline value to a buffer.
702 * @task: the task whose cmdline value to copy.
703 * @buffer: the buffer to copy to.
704 * @buflen: the length of the buffer. Larger cmdline values are truncated
705 * to this length.
a862f68a
MR
706 *
707 * Return: the size of the cmdline field copied. Note that the copy does
a9090253
WR
708 * not guarantee an ending NULL byte.
709 */
710int get_cmdline(struct task_struct *task, char *buffer, int buflen)
711{
712 int res = 0;
713 unsigned int len;
714 struct mm_struct *mm = get_task_mm(task);
a3b609ef 715 unsigned long arg_start, arg_end, env_start, env_end;
a9090253
WR
716 if (!mm)
717 goto out;
718 if (!mm->arg_end)
719 goto out_mm; /* Shh! No looking before we're done */
720
a3b609ef
MG
721 down_read(&mm->mmap_sem);
722 arg_start = mm->arg_start;
723 arg_end = mm->arg_end;
724 env_start = mm->env_start;
725 env_end = mm->env_end;
726 up_read(&mm->mmap_sem);
727
728 len = arg_end - arg_start;
a9090253
WR
729
730 if (len > buflen)
731 len = buflen;
732
f307ab6d 733 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
a9090253
WR
734
735 /*
736 * If the nul at the end of args has been overwritten, then
737 * assume application is using setproctitle(3).
738 */
739 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
740 len = strnlen(buffer, res);
741 if (len < res) {
742 res = len;
743 } else {
a3b609ef 744 len = env_end - env_start;
a9090253
WR
745 if (len > buflen - res)
746 len = buflen - res;
a3b609ef 747 res += access_process_vm(task, env_start,
f307ab6d
LS
748 buffer+res, len,
749 FOLL_FORCE);
a9090253
WR
750 res = strnlen(buffer, res);
751 }
752 }
753out_mm:
754 mmput(mm);
755out:
756 return res;
757}