mips: ralink: add missing of_node_put() call in ill_acc_of_setup()
[linux-2.6-block.git] / mm / truncate.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
e1f8e874 7 * 10Sep2002 Andrew Morton
1da177e4
LT
8 * Initial version.
9 */
10
11#include <linux/kernel.h>
4af3c9cc 12#include <linux/backing-dev.h>
f9fe48be 13#include <linux/dax.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4 15#include <linux/mm.h>
0fd0e6b0 16#include <linux/swap.h>
b95f1b31 17#include <linux/export.h>
1da177e4 18#include <linux/pagemap.h>
01f2705d 19#include <linux/highmem.h>
1da177e4 20#include <linux/pagevec.h>
e08748ce 21#include <linux/task_io_accounting_ops.h>
1da177e4 22#include <linux/buffer_head.h> /* grr. try_to_release_page,
aaa4059b 23 do_invalidatepage */
3a4f8a0b 24#include <linux/shmem_fs.h>
c515e1fd 25#include <linux/cleancache.h>
90a80202 26#include <linux/rmap.h>
ba470de4 27#include "internal.h"
1da177e4 28
f2187599
MG
29/*
30 * Regular page slots are stabilized by the page lock even without the tree
31 * itself locked. These unlocked entries need verification under the tree
32 * lock.
33 */
34static inline void __clear_shadow_entry(struct address_space *mapping,
35 pgoff_t index, void *entry)
0cd6144a 36{
69b6c131 37 XA_STATE(xas, &mapping->i_pages, index);
449dd698 38
69b6c131
MW
39 xas_set_update(&xas, workingset_update_node);
40 if (xas_load(&xas) != entry)
f2187599 41 return;
69b6c131 42 xas_store(&xas, NULL);
f2187599
MG
43}
44
45static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
46 void *entry)
47{
51b8c1fe 48 spin_lock(&mapping->host->i_lock);
b93b0163 49 xa_lock_irq(&mapping->i_pages);
f2187599 50 __clear_shadow_entry(mapping, index, entry);
b93b0163 51 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
52 if (mapping_shrinkable(mapping))
53 inode_add_lru(mapping->host);
54 spin_unlock(&mapping->host->i_lock);
0cd6144a 55}
1da177e4 56
c6dcf52c 57/*
f2187599
MG
58 * Unconditionally remove exceptional entries. Usually called from truncate
59 * path. Note that the pagevec may be altered by this function by removing
60 * exceptional entries similar to what pagevec_remove_exceptionals does.
c6dcf52c 61 */
f2187599 62static void truncate_exceptional_pvec_entries(struct address_space *mapping,
31d270fd 63 struct pagevec *pvec, pgoff_t *indices)
c6dcf52c 64{
f2187599 65 int i, j;
31d270fd 66 bool dax;
f2187599 67
c6dcf52c
JK
68 /* Handled by shmem itself */
69 if (shmem_mapping(mapping))
70 return;
71
f2187599 72 for (j = 0; j < pagevec_count(pvec); j++)
3159f943 73 if (xa_is_value(pvec->pages[j]))
f2187599
MG
74 break;
75
76 if (j == pagevec_count(pvec))
c6dcf52c 77 return;
f2187599
MG
78
79 dax = dax_mapping(mapping);
51b8c1fe
JW
80 if (!dax) {
81 spin_lock(&mapping->host->i_lock);
b93b0163 82 xa_lock_irq(&mapping->i_pages);
51b8c1fe 83 }
f2187599
MG
84
85 for (i = j; i < pagevec_count(pvec); i++) {
86 struct page *page = pvec->pages[i];
87 pgoff_t index = indices[i];
88
3159f943 89 if (!xa_is_value(page)) {
f2187599
MG
90 pvec->pages[j++] = page;
91 continue;
92 }
93
f2187599
MG
94 if (unlikely(dax)) {
95 dax_delete_mapping_entry(mapping, index);
96 continue;
97 }
98
99 __clear_shadow_entry(mapping, index, page);
c6dcf52c 100 }
f2187599 101
51b8c1fe 102 if (!dax) {
b93b0163 103 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
104 if (mapping_shrinkable(mapping))
105 inode_add_lru(mapping->host);
106 spin_unlock(&mapping->host->i_lock);
107 }
f2187599 108 pvec->nr = j;
c6dcf52c
JK
109}
110
111/*
112 * Invalidate exceptional entry if easily possible. This handles exceptional
4636e70b 113 * entries for invalidate_inode_pages().
c6dcf52c
JK
114 */
115static int invalidate_exceptional_entry(struct address_space *mapping,
116 pgoff_t index, void *entry)
117{
4636e70b
RZ
118 /* Handled by shmem itself, or for DAX we do nothing. */
119 if (shmem_mapping(mapping) || dax_mapping(mapping))
c6dcf52c 120 return 1;
c6dcf52c
JK
121 clear_shadow_entry(mapping, index, entry);
122 return 1;
123}
124
125/*
126 * Invalidate exceptional entry if clean. This handles exceptional entries for
127 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
128 */
129static int invalidate_exceptional_entry2(struct address_space *mapping,
130 pgoff_t index, void *entry)
131{
132 /* Handled by shmem itself */
133 if (shmem_mapping(mapping))
134 return 1;
135 if (dax_mapping(mapping))
136 return dax_invalidate_mapping_entry_sync(mapping, index);
137 clear_shadow_entry(mapping, index, entry);
138 return 1;
139}
140
cf9a2ae8 141/**
28bc44d7 142 * do_invalidatepage - invalidate part or all of a page
cf9a2ae8 143 * @page: the page which is affected
d47992f8
LC
144 * @offset: start of the range to invalidate
145 * @length: length of the range to invalidate
cf9a2ae8
DH
146 *
147 * do_invalidatepage() is called when all or part of the page has become
148 * invalidated by a truncate operation.
149 *
150 * do_invalidatepage() does not have to release all buffers, but it must
151 * ensure that no dirty buffer is left outside @offset and that no I/O
152 * is underway against any of the blocks which are outside the truncation
153 * point. Because the caller is about to free (and possibly reuse) those
154 * blocks on-disk.
155 */
d47992f8
LC
156void do_invalidatepage(struct page *page, unsigned int offset,
157 unsigned int length)
cf9a2ae8 158{
d47992f8
LC
159 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
160
cf9a2ae8 161 invalidatepage = page->mapping->a_ops->invalidatepage;
9361401e 162#ifdef CONFIG_BLOCK
cf9a2ae8
DH
163 if (!invalidatepage)
164 invalidatepage = block_invalidatepage;
9361401e 165#endif
cf9a2ae8 166 if (invalidatepage)
d47992f8 167 (*invalidatepage)(page, offset, length);
cf9a2ae8
DH
168}
169
1da177e4
LT
170/*
171 * If truncate cannot remove the fs-private metadata from the page, the page
62e1c553 172 * becomes orphaned. It will be left on the LRU and may even be mapped into
54cb8821 173 * user pagetables if we're racing with filemap_fault().
1da177e4 174 *
fc3a5ac5 175 * We need to bail out if page->mapping is no longer equal to the original
1da177e4 176 * mapping. This happens a) when the VM reclaimed the page while we waited on
fc0ecff6 177 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
1da177e4
LT
178 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
179 */
22061a1f 180static void truncate_cleanup_page(struct page *page)
1da177e4 181{
22061a1f
HD
182 if (page_mapped(page))
183 unmap_mapping_page(page);
1da177e4 184
266cf658 185 if (page_has_private(page))
fc3a5ac5 186 do_invalidatepage(page, 0, thp_size(page));
1da177e4 187
b9ea2515
KK
188 /*
189 * Some filesystems seem to re-dirty the page even after
190 * the VM has canceled the dirty bit (eg ext3 journaling).
191 * Hence dirty accounting check is placed after invalidation.
192 */
11f81bec 193 cancel_dirty_page(page);
1da177e4 194 ClearPageMappedToDisk(page);
1da177e4
LT
195}
196
197/*
fc0ecff6 198 * This is for invalidate_mapping_pages(). That function can be called at
1da177e4 199 * any time, and is not supposed to throw away dirty pages. But pages can
0fd0e6b0
NP
200 * be marked dirty at any time too, so use remove_mapping which safely
201 * discards clean, unused pages.
1da177e4
LT
202 *
203 * Returns non-zero if the page was successfully invalidated.
204 */
205static int
206invalidate_complete_page(struct address_space *mapping, struct page *page)
207{
0fd0e6b0
NP
208 int ret;
209
1da177e4
LT
210 if (page->mapping != mapping)
211 return 0;
212
266cf658 213 if (page_has_private(page) && !try_to_release_page(page, 0))
1da177e4
LT
214 return 0;
215
0fd0e6b0 216 ret = remove_mapping(mapping, page);
0fd0e6b0
NP
217
218 return ret;
1da177e4
LT
219}
220
750b4987
NP
221int truncate_inode_page(struct address_space *mapping, struct page *page)
222{
fc127da0
KS
223 VM_BUG_ON_PAGE(PageTail(page), page);
224
9f4e41f4
JK
225 if (page->mapping != mapping)
226 return -EIO;
227
22061a1f 228 truncate_cleanup_page(page);
9f4e41f4
JK
229 delete_from_page_cache(page);
230 return 0;
750b4987
NP
231}
232
25718736
AK
233/*
234 * Used to get rid of pages on hardware memory corruption.
235 */
236int generic_error_remove_page(struct address_space *mapping, struct page *page)
237{
238 if (!mapping)
239 return -EINVAL;
240 /*
241 * Only punch for normal data pages for now.
242 * Handling other types like directories would need more auditing.
243 */
244 if (!S_ISREG(mapping->host->i_mode))
245 return -EIO;
246 return truncate_inode_page(mapping, page);
247}
248EXPORT_SYMBOL(generic_error_remove_page);
249
83f78668
WF
250/*
251 * Safely invalidate one page from its pagecache mapping.
252 * It only drops clean, unused pages. The page must be locked.
253 *
254 * Returns 1 if the page is successfully invalidated, otherwise 0.
255 */
256int invalidate_inode_page(struct page *page)
257{
258 struct address_space *mapping = page_mapping(page);
259 if (!mapping)
260 return 0;
261 if (PageDirty(page) || PageWriteback(page))
262 return 0;
263 if (page_mapped(page))
264 return 0;
265 return invalidate_complete_page(mapping, page);
266}
267
1da177e4 268/**
73c1e204 269 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
1da177e4
LT
270 * @mapping: mapping to truncate
271 * @lstart: offset from which to truncate
5a720394 272 * @lend: offset to which to truncate (inclusive)
1da177e4 273 *
d7339071 274 * Truncate the page cache, removing the pages that are between
5a720394
LC
275 * specified offsets (and zeroing out partial pages
276 * if lstart or lend + 1 is not page aligned).
1da177e4
LT
277 *
278 * Truncate takes two passes - the first pass is nonblocking. It will not
279 * block on page locks and it will not block on writeback. The second pass
280 * will wait. This is to prevent as much IO as possible in the affected region.
281 * The first pass will remove most pages, so the search cost of the second pass
282 * is low.
283 *
1da177e4
LT
284 * We pass down the cache-hot hint to the page freeing code. Even if the
285 * mapping is large, it is probably the case that the final pages are the most
286 * recently touched, and freeing happens in ascending file offset order.
5a720394
LC
287 *
288 * Note that since ->invalidatepage() accepts range to invalidate
289 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
290 * page aligned properly.
1da177e4 291 */
d7339071
HR
292void truncate_inode_pages_range(struct address_space *mapping,
293 loff_t lstart, loff_t lend)
1da177e4 294{
5a720394
LC
295 pgoff_t start; /* inclusive */
296 pgoff_t end; /* exclusive */
297 unsigned int partial_start; /* inclusive */
298 unsigned int partial_end; /* exclusive */
299 struct pagevec pvec;
0cd6144a 300 pgoff_t indices[PAGEVEC_SIZE];
5a720394
LC
301 pgoff_t index;
302 int i;
1da177e4 303
7716506a 304 if (mapping_empty(mapping))
34ccb69e 305 goto out;
1da177e4 306
5a720394 307 /* Offsets within partial pages */
09cbfeaf
KS
308 partial_start = lstart & (PAGE_SIZE - 1);
309 partial_end = (lend + 1) & (PAGE_SIZE - 1);
5a720394
LC
310
311 /*
312 * 'start' and 'end' always covers the range of pages to be fully
313 * truncated. Partial pages are covered with 'partial_start' at the
314 * start of the range and 'partial_end' at the end of the range.
315 * Note that 'end' is exclusive while 'lend' is inclusive.
316 */
09cbfeaf 317 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
5a720394
LC
318 if (lend == -1)
319 /*
320 * lend == -1 indicates end-of-file so we have to set 'end'
321 * to the highest possible pgoff_t and since the type is
322 * unsigned we're using -1.
323 */
324 end = -1;
325 else
09cbfeaf 326 end = (lend + 1) >> PAGE_SHIFT;
d7339071 327
86679820 328 pagevec_init(&pvec);
b85e0eff 329 index = start;
5c211ba2
MWO
330 while (index < end && find_lock_entries(mapping, index, end - 1,
331 &pvec, indices)) {
332 index = indices[pagevec_count(&pvec) - 1] + 1;
31d270fd 333 truncate_exceptional_pvec_entries(mapping, &pvec, indices);
5c211ba2 334 for (i = 0; i < pagevec_count(&pvec); i++)
22061a1f 335 truncate_cleanup_page(pvec.pages[i]);
5c211ba2
MWO
336 delete_from_page_cache_batch(mapping, &pvec);
337 for (i = 0; i < pagevec_count(&pvec); i++)
338 unlock_page(pvec.pages[i]);
1da177e4
LT
339 pagevec_release(&pvec);
340 cond_resched();
341 }
5c211ba2 342
5a720394 343 if (partial_start) {
1da177e4
LT
344 struct page *page = find_lock_page(mapping, start - 1);
345 if (page) {
09cbfeaf 346 unsigned int top = PAGE_SIZE;
5a720394
LC
347 if (start > end) {
348 /* Truncation within a single page */
349 top = partial_end;
350 partial_end = 0;
351 }
1da177e4 352 wait_on_page_writeback(page);
5a720394
LC
353 zero_user_segment(page, partial_start, top);
354 cleancache_invalidate_page(mapping, page);
355 if (page_has_private(page))
356 do_invalidatepage(page, partial_start,
357 top - partial_start);
1da177e4 358 unlock_page(page);
09cbfeaf 359 put_page(page);
1da177e4
LT
360 }
361 }
5a720394
LC
362 if (partial_end) {
363 struct page *page = find_lock_page(mapping, end);
364 if (page) {
365 wait_on_page_writeback(page);
366 zero_user_segment(page, 0, partial_end);
367 cleancache_invalidate_page(mapping, page);
368 if (page_has_private(page))
369 do_invalidatepage(page, 0,
370 partial_end);
371 unlock_page(page);
09cbfeaf 372 put_page(page);
5a720394
LC
373 }
374 }
375 /*
376 * If the truncation happened within a single page no pages
377 * will be released, just zeroed, so we can bail out now.
378 */
379 if (start >= end)
34ccb69e 380 goto out;
1da177e4 381
b85e0eff 382 index = start;
1da177e4
LT
383 for ( ; ; ) {
384 cond_resched();
a656a202 385 if (!find_get_entries(mapping, index, end - 1, &pvec,
38cefeb3 386 indices)) {
792ceaef 387 /* If all gone from start onwards, we're done */
b85e0eff 388 if (index == start)
1da177e4 389 break;
792ceaef 390 /* Otherwise restart to make sure all gone */
b85e0eff 391 index = start;
1da177e4
LT
392 continue;
393 }
f2187599 394
1da177e4
LT
395 for (i = 0; i < pagevec_count(&pvec); i++) {
396 struct page *page = pvec.pages[i];
397
b85e0eff 398 /* We rely upon deletion not changing page->index */
0cd6144a 399 index = indices[i];
b85e0eff 400
3159f943 401 if (xa_is_value(page))
0cd6144a 402 continue;
0cd6144a 403
1da177e4 404 lock_page(page);
5cbc198a 405 WARN_ON(page_to_index(page) != index);
1da177e4 406 wait_on_page_writeback(page);
750b4987 407 truncate_inode_page(mapping, page);
1da177e4
LT
408 unlock_page(page);
409 }
31d270fd 410 truncate_exceptional_pvec_entries(mapping, &pvec, indices);
1da177e4 411 pagevec_release(&pvec);
b85e0eff 412 index++;
1da177e4 413 }
34ccb69e
AR
414
415out:
3167760f 416 cleancache_invalidate_inode(mapping);
1da177e4 417}
d7339071 418EXPORT_SYMBOL(truncate_inode_pages_range);
1da177e4 419
d7339071
HR
420/**
421 * truncate_inode_pages - truncate *all* the pages from an offset
422 * @mapping: mapping to truncate
423 * @lstart: offset from which to truncate
424 *
730633f0
JK
425 * Called under (and serialised by) inode->i_rwsem and
426 * mapping->invalidate_lock.
08142579
JK
427 *
428 * Note: When this function returns, there can be a page in the process of
429 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
430 * mapping->nrpages can be non-zero when this function returns even after
431 * truncation of the whole mapping.
d7339071
HR
432 */
433void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
434{
435 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
436}
1da177e4
LT
437EXPORT_SYMBOL(truncate_inode_pages);
438
91b0abe3
JW
439/**
440 * truncate_inode_pages_final - truncate *all* pages before inode dies
441 * @mapping: mapping to truncate
442 *
9608703e 443 * Called under (and serialized by) inode->i_rwsem.
91b0abe3
JW
444 *
445 * Filesystems have to use this in the .evict_inode path to inform the
446 * VM that this is the final truncate and the inode is going away.
447 */
448void truncate_inode_pages_final(struct address_space *mapping)
449{
91b0abe3
JW
450 /*
451 * Page reclaim can not participate in regular inode lifetime
452 * management (can't call iput()) and thus can race with the
453 * inode teardown. Tell it when the address space is exiting,
454 * so that it does not install eviction information after the
455 * final truncate has begun.
456 */
457 mapping_set_exiting(mapping);
458
7716506a 459 if (!mapping_empty(mapping)) {
91b0abe3
JW
460 /*
461 * As truncation uses a lockless tree lookup, cycle
462 * the tree lock to make sure any ongoing tree
463 * modification that does not see AS_EXITING is
464 * completed before starting the final truncate.
465 */
b93b0163
MW
466 xa_lock_irq(&mapping->i_pages);
467 xa_unlock_irq(&mapping->i_pages);
91b0abe3 468 }
6ff38bd4
PT
469
470 /*
471 * Cleancache needs notification even if there are no pages or shadow
472 * entries.
473 */
474 truncate_inode_pages(mapping, 0);
91b0abe3
JW
475}
476EXPORT_SYMBOL(truncate_inode_pages_final);
477
a77eedbc 478static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
eb1d7a65 479 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
1da177e4 480{
0cd6144a 481 pgoff_t indices[PAGEVEC_SIZE];
1da177e4 482 struct pagevec pvec;
b85e0eff 483 pgoff_t index = start;
31560180
MK
484 unsigned long ret;
485 unsigned long count = 0;
1da177e4
LT
486 int i;
487
86679820 488 pagevec_init(&pvec);
5c211ba2 489 while (find_lock_entries(mapping, index, end, &pvec, indices)) {
1da177e4
LT
490 for (i = 0; i < pagevec_count(&pvec); i++) {
491 struct page *page = pvec.pages[i];
e0f23603 492
b85e0eff 493 /* We rely upon deletion not changing page->index */
0cd6144a 494 index = indices[i];
e0f23603 495
3159f943 496 if (xa_is_value(page)) {
7ae12c80
JW
497 count += invalidate_exceptional_entry(mapping,
498 index,
499 page);
0cd6144a
JW
500 continue;
501 }
5c211ba2 502 index += thp_nr_pages(page) - 1;
fc127da0 503
31560180 504 ret = invalidate_inode_page(page);
1da177e4 505 unlock_page(page);
31560180
MK
506 /*
507 * Invalidation is a hint that the page is no longer
508 * of interest and try to speed up its reclaim.
509 */
eb1d7a65 510 if (!ret) {
cc5993bd 511 deactivate_file_page(page);
eb1d7a65
YS
512 /* It is likely on the pagevec of a remote CPU */
513 if (nr_pagevec)
514 (*nr_pagevec)++;
515 }
31560180 516 count += ret;
1da177e4 517 }
0cd6144a 518 pagevec_remove_exceptionals(&pvec);
1da177e4 519 pagevec_release(&pvec);
28697355 520 cond_resched();
b85e0eff 521 index++;
1da177e4 522 }
31560180 523 return count;
1da177e4 524}
eb1d7a65
YS
525
526/**
7ae12c80
JW
527 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
528 * @mapping: the address_space which holds the cache to invalidate
eb1d7a65
YS
529 * @start: the offset 'from' which to invalidate
530 * @end: the offset 'to' which to invalidate (inclusive)
531 *
7ae12c80
JW
532 * This function removes pages that are clean, unmapped and unlocked,
533 * as well as shadow entries. It will not block on IO activity.
eb1d7a65 534 *
7ae12c80
JW
535 * If you want to remove all the pages of one inode, regardless of
536 * their use and writeback state, use truncate_inode_pages().
eb1d7a65 537 *
7ae12c80 538 * Return: the number of the cache entries that were invalidated
eb1d7a65
YS
539 */
540unsigned long invalidate_mapping_pages(struct address_space *mapping,
541 pgoff_t start, pgoff_t end)
542{
543 return __invalidate_mapping_pages(mapping, start, end, NULL);
544}
54bc4855 545EXPORT_SYMBOL(invalidate_mapping_pages);
1da177e4 546
eb1d7a65 547/**
649c6dfe
AS
548 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
549 * @mapping: the address_space which holds the pages to invalidate
550 * @start: the offset 'from' which to invalidate
551 * @end: the offset 'to' which to invalidate (inclusive)
552 * @nr_pagevec: invalidate failed page number for caller
553 *
a00cda3f
MCC
554 * This helper is similar to invalidate_mapping_pages(), except that it accounts
555 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
556 * will be used by the caller.
eb1d7a65
YS
557 */
558void invalidate_mapping_pagevec(struct address_space *mapping,
559 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
560{
561 __invalidate_mapping_pages(mapping, start, end, nr_pagevec);
562}
563
bd4c8ce4
AM
564/*
565 * This is like invalidate_complete_page(), except it ignores the page's
566 * refcount. We do this because invalidate_inode_pages2() needs stronger
567 * invalidation guarantees, and cannot afford to leave pages behind because
2706a1b8
AB
568 * shrink_page_list() has a temp ref on them, or because they're transiently
569 * sitting in the lru_cache_add() pagevecs.
bd4c8ce4
AM
570 */
571static int
572invalidate_complete_page2(struct address_space *mapping, struct page *page)
573{
574 if (page->mapping != mapping)
575 return 0;
576
266cf658 577 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
bd4c8ce4
AM
578 return 0;
579
51b8c1fe 580 spin_lock(&mapping->host->i_lock);
30472509 581 xa_lock_irq(&mapping->i_pages);
bd4c8ce4
AM
582 if (PageDirty(page))
583 goto failed;
584
266cf658 585 BUG_ON(page_has_private(page));
62cccb8c 586 __delete_from_page_cache(page, NULL);
30472509 587 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
588 if (mapping_shrinkable(mapping))
589 inode_add_lru(mapping->host);
590 spin_unlock(&mapping->host->i_lock);
6072d13c
LT
591
592 if (mapping->a_ops->freepage)
593 mapping->a_ops->freepage(page);
594
09cbfeaf 595 put_page(page); /* pagecache ref */
bd4c8ce4
AM
596 return 1;
597failed:
30472509 598 xa_unlock_irq(&mapping->i_pages);
51b8c1fe 599 spin_unlock(&mapping->host->i_lock);
bd4c8ce4
AM
600 return 0;
601}
602
e3db7691
TM
603static int do_launder_page(struct address_space *mapping, struct page *page)
604{
605 if (!PageDirty(page))
606 return 0;
607 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
608 return 0;
609 return mapping->a_ops->launder_page(page);
610}
611
1da177e4
LT
612/**
613 * invalidate_inode_pages2_range - remove range of pages from an address_space
67be2dd1 614 * @mapping: the address_space
1da177e4
LT
615 * @start: the page offset 'from' which to invalidate
616 * @end: the page offset 'to' which to invalidate (inclusive)
617 *
618 * Any pages which are found to be mapped into pagetables are unmapped prior to
619 * invalidation.
620 *
a862f68a 621 * Return: -EBUSY if any pages could not be invalidated.
1da177e4
LT
622 */
623int invalidate_inode_pages2_range(struct address_space *mapping,
624 pgoff_t start, pgoff_t end)
625{
0cd6144a 626 pgoff_t indices[PAGEVEC_SIZE];
1da177e4 627 struct pagevec pvec;
b85e0eff 628 pgoff_t index;
1da177e4
LT
629 int i;
630 int ret = 0;
0dd1334f 631 int ret2 = 0;
1da177e4 632 int did_range_unmap = 0;
1da177e4 633
7716506a 634 if (mapping_empty(mapping))
34ccb69e 635 goto out;
32691f0f 636
86679820 637 pagevec_init(&pvec);
b85e0eff 638 index = start;
a656a202 639 while (find_get_entries(mapping, index, end, &pvec, indices)) {
7b965e08 640 for (i = 0; i < pagevec_count(&pvec); i++) {
1da177e4 641 struct page *page = pvec.pages[i];
b85e0eff
HD
642
643 /* We rely upon deletion not changing page->index */
0cd6144a 644 index = indices[i];
1da177e4 645
3159f943 646 if (xa_is_value(page)) {
c6dcf52c
JK
647 if (!invalidate_exceptional_entry2(mapping,
648 index, page))
649 ret = -EBUSY;
0cd6144a
JW
650 continue;
651 }
652
22061a1f
HD
653 if (!did_range_unmap && page_mapped(page)) {
654 /*
655 * If page is mapped, before taking its lock,
656 * zap the rest of the file in one hit.
657 */
658 unmap_mapping_pages(mapping, index,
659 (1 + end - index), false);
660 did_range_unmap = 1;
661 }
662
1da177e4 663 lock_page(page);
5cbc198a 664 WARN_ON(page_to_index(page) != index);
1da177e4
LT
665 if (page->mapping != mapping) {
666 unlock_page(page);
667 continue;
668 }
1da177e4 669 wait_on_page_writeback(page);
22061a1f
HD
670
671 if (page_mapped(page))
672 unmap_mapping_page(page);
d00806b1 673 BUG_ON(page_mapped(page));
22061a1f 674
0dd1334f
HH
675 ret2 = do_launder_page(mapping, page);
676 if (ret2 == 0) {
677 if (!invalidate_complete_page2(mapping, page))
6ccfa806 678 ret2 = -EBUSY;
0dd1334f
HH
679 }
680 if (ret2 < 0)
681 ret = ret2;
1da177e4
LT
682 unlock_page(page);
683 }
0cd6144a 684 pagevec_remove_exceptionals(&pvec);
1da177e4
LT
685 pagevec_release(&pvec);
686 cond_resched();
b85e0eff 687 index++;
1da177e4 688 }
cd656375 689 /*
69b6c131 690 * For DAX we invalidate page tables after invalidating page cache. We
cd656375
JK
691 * could invalidate page tables while invalidating each entry however
692 * that would be expensive. And doing range unmapping before doesn't
69b6c131 693 * work as we have no cheap way to find whether page cache entry didn't
cd656375
JK
694 * get remapped later.
695 */
696 if (dax_mapping(mapping)) {
977fbdcd 697 unmap_mapping_pages(mapping, start, end - start + 1, false);
cd656375 698 }
34ccb69e 699out:
3167760f 700 cleancache_invalidate_inode(mapping);
1da177e4
LT
701 return ret;
702}
703EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
704
705/**
706 * invalidate_inode_pages2 - remove all pages from an address_space
67be2dd1 707 * @mapping: the address_space
1da177e4
LT
708 *
709 * Any pages which are found to be mapped into pagetables are unmapped prior to
710 * invalidation.
711 *
a862f68a 712 * Return: -EBUSY if any pages could not be invalidated.
1da177e4
LT
713 */
714int invalidate_inode_pages2(struct address_space *mapping)
715{
716 return invalidate_inode_pages2_range(mapping, 0, -1);
717}
718EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
25d9e2d1 719
720/**
721 * truncate_pagecache - unmap and remove pagecache that has been truncated
722 * @inode: inode
8a549bea 723 * @newsize: new file size
25d9e2d1 724 *
725 * inode's new i_size must already be written before truncate_pagecache
726 * is called.
727 *
728 * This function should typically be called before the filesystem
729 * releases resources associated with the freed range (eg. deallocates
730 * blocks). This way, pagecache will always stay logically coherent
731 * with on-disk format, and the filesystem would not have to deal with
732 * situations such as writepage being called for a page that has already
733 * had its underlying blocks deallocated.
734 */
7caef267 735void truncate_pagecache(struct inode *inode, loff_t newsize)
25d9e2d1 736{
cedabed4 737 struct address_space *mapping = inode->i_mapping;
8a549bea 738 loff_t holebegin = round_up(newsize, PAGE_SIZE);
cedabed4
OH
739
740 /*
741 * unmap_mapping_range is called twice, first simply for
742 * efficiency so that truncate_inode_pages does fewer
743 * single-page unmaps. However after this first call, and
744 * before truncate_inode_pages finishes, it is possible for
745 * private pages to be COWed, which remain after
746 * truncate_inode_pages finishes, hence the second
747 * unmap_mapping_range call must be made for correctness.
748 */
8a549bea
HD
749 unmap_mapping_range(mapping, holebegin, 0, 1);
750 truncate_inode_pages(mapping, newsize);
751 unmap_mapping_range(mapping, holebegin, 0, 1);
25d9e2d1 752}
753EXPORT_SYMBOL(truncate_pagecache);
754
2c27c65e
CH
755/**
756 * truncate_setsize - update inode and pagecache for a new file size
757 * @inode: inode
758 * @newsize: new file size
759 *
382e27da
JK
760 * truncate_setsize updates i_size and performs pagecache truncation (if
761 * necessary) to @newsize. It will be typically be called from the filesystem's
762 * setattr function when ATTR_SIZE is passed in.
2c27c65e 763 *
77783d06 764 * Must be called with a lock serializing truncates and writes (generally
9608703e 765 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
77783d06 766 * specific block truncation has been performed.
2c27c65e
CH
767 */
768void truncate_setsize(struct inode *inode, loff_t newsize)
769{
90a80202
JK
770 loff_t oldsize = inode->i_size;
771
2c27c65e 772 i_size_write(inode, newsize);
90a80202
JK
773 if (newsize > oldsize)
774 pagecache_isize_extended(inode, oldsize, newsize);
7caef267 775 truncate_pagecache(inode, newsize);
2c27c65e
CH
776}
777EXPORT_SYMBOL(truncate_setsize);
778
90a80202
JK
779/**
780 * pagecache_isize_extended - update pagecache after extension of i_size
781 * @inode: inode for which i_size was extended
782 * @from: original inode size
783 * @to: new inode size
784 *
785 * Handle extension of inode size either caused by extending truncate or by
786 * write starting after current i_size. We mark the page straddling current
787 * i_size RO so that page_mkwrite() is called on the nearest write access to
788 * the page. This way filesystem can be sure that page_mkwrite() is called on
789 * the page before user writes to the page via mmap after the i_size has been
790 * changed.
791 *
792 * The function must be called after i_size is updated so that page fault
793 * coming after we unlock the page will already see the new i_size.
9608703e 794 * The function must be called while we still hold i_rwsem - this not only
90a80202
JK
795 * makes sure i_size is stable but also that userspace cannot observe new
796 * i_size value before we are prepared to store mmap writes at new inode size.
797 */
798void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
799{
93407472 800 int bsize = i_blocksize(inode);
90a80202
JK
801 loff_t rounded_from;
802 struct page *page;
803 pgoff_t index;
804
90a80202
JK
805 WARN_ON(to > inode->i_size);
806
09cbfeaf 807 if (from >= to || bsize == PAGE_SIZE)
90a80202
JK
808 return;
809 /* Page straddling @from will not have any hole block created? */
810 rounded_from = round_up(from, bsize);
09cbfeaf 811 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
90a80202
JK
812 return;
813
09cbfeaf 814 index = from >> PAGE_SHIFT;
90a80202
JK
815 page = find_lock_page(inode->i_mapping, index);
816 /* Page not cached? Nothing to do */
817 if (!page)
818 return;
819 /*
820 * See clear_page_dirty_for_io() for details why set_page_dirty()
821 * is needed.
822 */
823 if (page_mkclean(page))
824 set_page_dirty(page);
825 unlock_page(page);
09cbfeaf 826 put_page(page);
90a80202
JK
827}
828EXPORT_SYMBOL(pagecache_isize_extended);
829
623e3db9
HD
830/**
831 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
832 * @inode: inode
833 * @lstart: offset of beginning of hole
834 * @lend: offset of last byte of hole
835 *
836 * This function should typically be called before the filesystem
837 * releases resources associated with the freed range (eg. deallocates
838 * blocks). This way, pagecache will always stay logically coherent
839 * with on-disk format, and the filesystem would not have to deal with
840 * situations such as writepage being called for a page that has already
841 * had its underlying blocks deallocated.
842 */
843void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
844{
845 struct address_space *mapping = inode->i_mapping;
846 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
847 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
848 /*
849 * This rounding is currently just for example: unmap_mapping_range
850 * expands its hole outwards, whereas we want it to contract the hole
851 * inwards. However, existing callers of truncate_pagecache_range are
5a720394
LC
852 * doing their own page rounding first. Note that unmap_mapping_range
853 * allows holelen 0 for all, and we allow lend -1 for end of file.
623e3db9
HD
854 */
855
856 /*
857 * Unlike in truncate_pagecache, unmap_mapping_range is called only
858 * once (before truncating pagecache), and without "even_cows" flag:
859 * hole-punching should not remove private COWed pages from the hole.
860 */
861 if ((u64)unmap_end > (u64)unmap_start)
862 unmap_mapping_range(mapping, unmap_start,
863 1 + unmap_end - unmap_start, 0);
864 truncate_inode_pages_range(mapping, lstart, lend);
865}
866EXPORT_SYMBOL(truncate_pagecache_range);