swap: fix races exposed by swap discard
[linux-2.6-block.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
27a7faa0 41#include <linux/page_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
ec8acf20 54static atomic_t highest_priority_index = ATOMIC_INIT(-1);
1da177e4 55
1da177e4
LT
56static const char Bad_file[] = "Bad swap file entry ";
57static const char Unused_file[] = "Unused swap file entry ";
58static const char Bad_offset[] = "Bad swap offset entry ";
59static const char Unused_offset[] = "Unused swap offset entry ";
60
38b5faf4 61struct swap_list_t swap_list = {-1, -1};
1da177e4 62
38b5faf4 63struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 64
fc0abb14 65static DEFINE_MUTEX(swapon_mutex);
1da177e4 66
66d7dd51
KS
67static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68/* Activity counter to indicate that a swapon or swapoff has occurred */
69static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
8d69aaee 71static inline unsigned char swap_count(unsigned char ent)
355cfa73 72{
570a335b 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
74}
75
efa90a98 76/* returns 1 if swap entry is freed */
c9e44410
KH
77static int
78__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79{
efa90a98 80 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
81 struct page *page;
82 int ret = 0;
83
33806f06 84 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
85 if (!page)
86 return 0;
87 /*
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
93 */
94 if (trylock_page(page)) {
95 ret = try_to_free_swap(page);
96 unlock_page(page);
97 }
98 page_cache_release(page);
99 return ret;
100}
355cfa73 101
6a6ba831
HD
102/*
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
105 */
106static int discard_swap(struct swap_info_struct *si)
107{
108 struct swap_extent *se;
9625a5f2
HD
109 sector_t start_block;
110 sector_t nr_blocks;
6a6ba831
HD
111 int err = 0;
112
9625a5f2
HD
113 /* Do not discard the swap header page! */
114 se = &si->first_swap_extent;
115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 if (nr_blocks) {
118 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 119 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
120 if (err)
121 return err;
122 cond_resched();
123 }
6a6ba831 124
9625a5f2
HD
125 list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 start_block = se->start_block << (PAGE_SHIFT - 9);
127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
128
129 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 130 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
131 if (err)
132 break;
133
134 cond_resched();
135 }
136 return err; /* That will often be -EOPNOTSUPP */
137}
138
7992fde7
HD
139/*
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
142 */
143static void discard_swap_cluster(struct swap_info_struct *si,
144 pgoff_t start_page, pgoff_t nr_pages)
145{
146 struct swap_extent *se = si->curr_swap_extent;
147 int found_extent = 0;
148
149 while (nr_pages) {
150 struct list_head *lh;
151
152 if (se->start_page <= start_page &&
153 start_page < se->start_page + se->nr_pages) {
154 pgoff_t offset = start_page - se->start_page;
155 sector_t start_block = se->start_block + offset;
858a2990 156 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
157
158 if (nr_blocks > nr_pages)
159 nr_blocks = nr_pages;
160 start_page += nr_blocks;
161 nr_pages -= nr_blocks;
162
163 if (!found_extent++)
164 si->curr_swap_extent = se;
165
166 start_block <<= PAGE_SHIFT - 9;
167 nr_blocks <<= PAGE_SHIFT - 9;
168 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 169 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
170 break;
171 }
172
173 lh = se->list.next;
7992fde7
HD
174 se = list_entry(lh, struct swap_extent, list);
175 }
176}
177
048c27fd
HD
178#define SWAPFILE_CLUSTER 256
179#define LATENCY_LIMIT 256
180
2a8f9449
SL
181static inline void cluster_set_flag(struct swap_cluster_info *info,
182 unsigned int flag)
183{
184 info->flags = flag;
185}
186
187static inline unsigned int cluster_count(struct swap_cluster_info *info)
188{
189 return info->data;
190}
191
192static inline void cluster_set_count(struct swap_cluster_info *info,
193 unsigned int c)
194{
195 info->data = c;
196}
197
198static inline void cluster_set_count_flag(struct swap_cluster_info *info,
199 unsigned int c, unsigned int f)
200{
201 info->flags = f;
202 info->data = c;
203}
204
205static inline unsigned int cluster_next(struct swap_cluster_info *info)
206{
207 return info->data;
208}
209
210static inline void cluster_set_next(struct swap_cluster_info *info,
211 unsigned int n)
212{
213 info->data = n;
214}
215
216static inline void cluster_set_next_flag(struct swap_cluster_info *info,
217 unsigned int n, unsigned int f)
218{
219 info->flags = f;
220 info->data = n;
221}
222
223static inline bool cluster_is_free(struct swap_cluster_info *info)
224{
225 return info->flags & CLUSTER_FLAG_FREE;
226}
227
228static inline bool cluster_is_null(struct swap_cluster_info *info)
229{
230 return info->flags & CLUSTER_FLAG_NEXT_NULL;
231}
232
233static inline void cluster_set_null(struct swap_cluster_info *info)
234{
235 info->flags = CLUSTER_FLAG_NEXT_NULL;
236 info->data = 0;
237}
238
815c2c54
SL
239/* Add a cluster to discard list and schedule it to do discard */
240static void swap_cluster_schedule_discard(struct swap_info_struct *si,
241 unsigned int idx)
242{
243 /*
244 * If scan_swap_map() can't find a free cluster, it will check
245 * si->swap_map directly. To make sure the discarding cluster isn't
246 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
247 * will be cleared after discard
248 */
249 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
250 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
251
252 if (cluster_is_null(&si->discard_cluster_head)) {
253 cluster_set_next_flag(&si->discard_cluster_head,
254 idx, 0);
255 cluster_set_next_flag(&si->discard_cluster_tail,
256 idx, 0);
257 } else {
258 unsigned int tail = cluster_next(&si->discard_cluster_tail);
259 cluster_set_next(&si->cluster_info[tail], idx);
260 cluster_set_next_flag(&si->discard_cluster_tail,
261 idx, 0);
262 }
263
264 schedule_work(&si->discard_work);
265}
266
267/*
268 * Doing discard actually. After a cluster discard is finished, the cluster
269 * will be added to free cluster list. caller should hold si->lock.
270*/
271static void swap_do_scheduled_discard(struct swap_info_struct *si)
272{
273 struct swap_cluster_info *info;
274 unsigned int idx;
275
276 info = si->cluster_info;
277
278 while (!cluster_is_null(&si->discard_cluster_head)) {
279 idx = cluster_next(&si->discard_cluster_head);
280
281 cluster_set_next_flag(&si->discard_cluster_head,
282 cluster_next(&info[idx]), 0);
283 if (cluster_next(&si->discard_cluster_tail) == idx) {
284 cluster_set_null(&si->discard_cluster_head);
285 cluster_set_null(&si->discard_cluster_tail);
286 }
287 spin_unlock(&si->lock);
288
289 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
290 SWAPFILE_CLUSTER);
291
292 spin_lock(&si->lock);
293 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
294 if (cluster_is_null(&si->free_cluster_head)) {
295 cluster_set_next_flag(&si->free_cluster_head,
296 idx, 0);
297 cluster_set_next_flag(&si->free_cluster_tail,
298 idx, 0);
299 } else {
300 unsigned int tail;
301
302 tail = cluster_next(&si->free_cluster_tail);
303 cluster_set_next(&info[tail], idx);
304 cluster_set_next_flag(&si->free_cluster_tail,
305 idx, 0);
306 }
307 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
308 0, SWAPFILE_CLUSTER);
309 }
310}
311
312static void swap_discard_work(struct work_struct *work)
313{
314 struct swap_info_struct *si;
315
316 si = container_of(work, struct swap_info_struct, discard_work);
317
318 spin_lock(&si->lock);
319 swap_do_scheduled_discard(si);
320 spin_unlock(&si->lock);
321}
322
2a8f9449
SL
323/*
324 * The cluster corresponding to page_nr will be used. The cluster will be
325 * removed from free cluster list and its usage counter will be increased.
326 */
327static void inc_cluster_info_page(struct swap_info_struct *p,
328 struct swap_cluster_info *cluster_info, unsigned long page_nr)
329{
330 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
331
332 if (!cluster_info)
333 return;
334 if (cluster_is_free(&cluster_info[idx])) {
335 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
336 cluster_set_next_flag(&p->free_cluster_head,
337 cluster_next(&cluster_info[idx]), 0);
338 if (cluster_next(&p->free_cluster_tail) == idx) {
339 cluster_set_null(&p->free_cluster_tail);
340 cluster_set_null(&p->free_cluster_head);
341 }
342 cluster_set_count_flag(&cluster_info[idx], 0, 0);
343 }
344
345 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
346 cluster_set_count(&cluster_info[idx],
347 cluster_count(&cluster_info[idx]) + 1);
348}
349
350/*
351 * The cluster corresponding to page_nr decreases one usage. If the usage
352 * counter becomes 0, which means no page in the cluster is in using, we can
353 * optionally discard the cluster and add it to free cluster list.
354 */
355static void dec_cluster_info_page(struct swap_info_struct *p,
356 struct swap_cluster_info *cluster_info, unsigned long page_nr)
357{
358 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
359
360 if (!cluster_info)
361 return;
362
363 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
364 cluster_set_count(&cluster_info[idx],
365 cluster_count(&cluster_info[idx]) - 1);
366
367 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
368 /*
369 * If the swap is discardable, prepare discard the cluster
370 * instead of free it immediately. The cluster will be freed
371 * after discard.
372 */
edfe23da
SL
373 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
374 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
375 swap_cluster_schedule_discard(p, idx);
376 return;
377 }
378
2a8f9449
SL
379 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
380 if (cluster_is_null(&p->free_cluster_head)) {
381 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
382 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
383 } else {
384 unsigned int tail = cluster_next(&p->free_cluster_tail);
385 cluster_set_next(&cluster_info[tail], idx);
386 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
387 }
388 }
389}
390
391/*
392 * It's possible scan_swap_map() uses a free cluster in the middle of free
393 * cluster list. Avoiding such abuse to avoid list corruption.
394 */
395static inline bool scan_swap_map_recheck_cluster(struct swap_info_struct *si,
396 unsigned long offset)
397{
398 offset /= SWAPFILE_CLUSTER;
399 return !cluster_is_null(&si->free_cluster_head) &&
400 offset != cluster_next(&si->free_cluster_head) &&
401 cluster_is_free(&si->cluster_info[offset]);
402}
403
24b8ff7c
CEB
404static unsigned long scan_swap_map(struct swap_info_struct *si,
405 unsigned char usage)
1da177e4 406{
ebebbbe9 407 unsigned long offset;
c60aa176 408 unsigned long scan_base;
7992fde7 409 unsigned long last_in_cluster = 0;
048c27fd 410 int latency_ration = LATENCY_LIMIT;
7dfad418 411
886bb7e9 412 /*
7dfad418
HD
413 * We try to cluster swap pages by allocating them sequentially
414 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
415 * way, however, we resort to first-free allocation, starting
416 * a new cluster. This prevents us from scattering swap pages
417 * all over the entire swap partition, so that we reduce
418 * overall disk seek times between swap pages. -- sct
419 * But we do now try to find an empty cluster. -Andrea
c60aa176 420 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
421 */
422
52b7efdb 423 si->flags += SWP_SCANNING;
c60aa176 424 scan_base = offset = si->cluster_next;
ebebbbe9
HD
425
426 if (unlikely(!si->cluster_nr--)) {
427 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
428 si->cluster_nr = SWAPFILE_CLUSTER - 1;
429 goto checks;
430 }
2a8f9449
SL
431check_cluster:
432 if (!cluster_is_null(&si->free_cluster_head)) {
433 offset = cluster_next(&si->free_cluster_head) *
434 SWAPFILE_CLUSTER;
435 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
436 si->cluster_next = offset;
437 si->cluster_nr = SWAPFILE_CLUSTER - 1;
2a8f9449
SL
438 goto checks;
439 } else if (si->cluster_info) {
815c2c54
SL
440 /*
441 * we don't have free cluster but have some clusters in
442 * discarding, do discard now and reclaim them
443 */
444 if (!cluster_is_null(&si->discard_cluster_head)) {
445 si->cluster_nr = 0;
446 swap_do_scheduled_discard(si);
447 scan_base = offset = si->cluster_next;
448 if (!si->cluster_nr)
449 goto check_cluster;
450 si->cluster_nr--;
451 goto checks;
452 }
453
2a8f9449
SL
454 /*
455 * Checking free cluster is fast enough, we can do the
456 * check every time
457 */
458 si->cluster_nr = 0;
2a8f9449
SL
459 goto checks;
460 }
461
ec8acf20 462 spin_unlock(&si->lock);
7dfad418 463
c60aa176
HD
464 /*
465 * If seek is expensive, start searching for new cluster from
466 * start of partition, to minimize the span of allocated swap.
467 * But if seek is cheap, search from our current position, so
468 * that swap is allocated from all over the partition: if the
469 * Flash Translation Layer only remaps within limited zones,
470 * we don't want to wear out the first zone too quickly.
471 */
472 if (!(si->flags & SWP_SOLIDSTATE))
473 scan_base = offset = si->lowest_bit;
7dfad418
HD
474 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
475
476 /* Locate the first empty (unaligned) cluster */
477 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 478 if (si->swap_map[offset])
7dfad418
HD
479 last_in_cluster = offset + SWAPFILE_CLUSTER;
480 else if (offset == last_in_cluster) {
ec8acf20 481 spin_lock(&si->lock);
ebebbbe9
HD
482 offset -= SWAPFILE_CLUSTER - 1;
483 si->cluster_next = offset;
484 si->cluster_nr = SWAPFILE_CLUSTER - 1;
485 goto checks;
1da177e4 486 }
048c27fd
HD
487 if (unlikely(--latency_ration < 0)) {
488 cond_resched();
489 latency_ration = LATENCY_LIMIT;
490 }
7dfad418 491 }
ebebbbe9
HD
492
493 offset = si->lowest_bit;
c60aa176
HD
494 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
495
496 /* Locate the first empty (unaligned) cluster */
497 for (; last_in_cluster < scan_base; offset++) {
498 if (si->swap_map[offset])
499 last_in_cluster = offset + SWAPFILE_CLUSTER;
500 else if (offset == last_in_cluster) {
ec8acf20 501 spin_lock(&si->lock);
c60aa176
HD
502 offset -= SWAPFILE_CLUSTER - 1;
503 si->cluster_next = offset;
504 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
505 goto checks;
506 }
507 if (unlikely(--latency_ration < 0)) {
508 cond_resched();
509 latency_ration = LATENCY_LIMIT;
510 }
511 }
512
513 offset = scan_base;
ec8acf20 514 spin_lock(&si->lock);
ebebbbe9 515 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 516 }
7dfad418 517
ebebbbe9 518checks:
2a8f9449
SL
519 if (scan_swap_map_recheck_cluster(si, offset))
520 goto check_cluster;
ebebbbe9 521 if (!(si->flags & SWP_WRITEOK))
52b7efdb 522 goto no_page;
7dfad418
HD
523 if (!si->highest_bit)
524 goto no_page;
ebebbbe9 525 if (offset > si->highest_bit)
c60aa176 526 scan_base = offset = si->lowest_bit;
c9e44410 527
b73d7fce
HD
528 /* reuse swap entry of cache-only swap if not busy. */
529 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 530 int swap_was_freed;
ec8acf20 531 spin_unlock(&si->lock);
c9e44410 532 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 533 spin_lock(&si->lock);
c9e44410
KH
534 /* entry was freed successfully, try to use this again */
535 if (swap_was_freed)
536 goto checks;
537 goto scan; /* check next one */
538 }
539
ebebbbe9
HD
540 if (si->swap_map[offset])
541 goto scan;
542
543 if (offset == si->lowest_bit)
544 si->lowest_bit++;
545 if (offset == si->highest_bit)
546 si->highest_bit--;
547 si->inuse_pages++;
548 if (si->inuse_pages == si->pages) {
549 si->lowest_bit = si->max;
550 si->highest_bit = 0;
1da177e4 551 }
253d553b 552 si->swap_map[offset] = usage;
2a8f9449 553 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
554 si->cluster_next = offset + 1;
555 si->flags -= SWP_SCANNING;
7992fde7 556
ebebbbe9 557 return offset;
7dfad418 558
ebebbbe9 559scan:
ec8acf20 560 spin_unlock(&si->lock);
7dfad418 561 while (++offset <= si->highest_bit) {
52b7efdb 562 if (!si->swap_map[offset]) {
ec8acf20 563 spin_lock(&si->lock);
52b7efdb
HD
564 goto checks;
565 }
c9e44410 566 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 567 spin_lock(&si->lock);
c9e44410
KH
568 goto checks;
569 }
048c27fd
HD
570 if (unlikely(--latency_ration < 0)) {
571 cond_resched();
572 latency_ration = LATENCY_LIMIT;
573 }
7dfad418 574 }
c60aa176
HD
575 offset = si->lowest_bit;
576 while (++offset < scan_base) {
577 if (!si->swap_map[offset]) {
ec8acf20 578 spin_lock(&si->lock);
c60aa176
HD
579 goto checks;
580 }
c9e44410 581 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 582 spin_lock(&si->lock);
c9e44410
KH
583 goto checks;
584 }
c60aa176
HD
585 if (unlikely(--latency_ration < 0)) {
586 cond_resched();
587 latency_ration = LATENCY_LIMIT;
588 }
589 }
ec8acf20 590 spin_lock(&si->lock);
7dfad418
HD
591
592no_page:
52b7efdb 593 si->flags -= SWP_SCANNING;
1da177e4
LT
594 return 0;
595}
596
597swp_entry_t get_swap_page(void)
598{
fb4f88dc
HD
599 struct swap_info_struct *si;
600 pgoff_t offset;
601 int type, next;
602 int wrapped = 0;
ec8acf20 603 int hp_index;
1da177e4 604
5d337b91 605 spin_lock(&swap_lock);
ec8acf20 606 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 607 goto noswap;
ec8acf20 608 atomic_long_dec(&nr_swap_pages);
fb4f88dc
HD
609
610 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
ec8acf20
SL
611 hp_index = atomic_xchg(&highest_priority_index, -1);
612 /*
613 * highest_priority_index records current highest priority swap
614 * type which just frees swap entries. If its priority is
615 * higher than that of swap_list.next swap type, we use it. It
616 * isn't protected by swap_lock, so it can be an invalid value
617 * if the corresponding swap type is swapoff. We double check
618 * the flags here. It's even possible the swap type is swapoff
619 * and swapon again and its priority is changed. In such rare
620 * case, low prority swap type might be used, but eventually
621 * high priority swap will be used after several rounds of
622 * swap.
623 */
624 if (hp_index != -1 && hp_index != type &&
625 swap_info[type]->prio < swap_info[hp_index]->prio &&
626 (swap_info[hp_index]->flags & SWP_WRITEOK)) {
627 type = hp_index;
628 swap_list.next = type;
629 }
630
efa90a98 631 si = swap_info[type];
fb4f88dc
HD
632 next = si->next;
633 if (next < 0 ||
efa90a98 634 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
635 next = swap_list.head;
636 wrapped++;
1da177e4 637 }
fb4f88dc 638
ec8acf20
SL
639 spin_lock(&si->lock);
640 if (!si->highest_bit) {
641 spin_unlock(&si->lock);
fb4f88dc 642 continue;
ec8acf20
SL
643 }
644 if (!(si->flags & SWP_WRITEOK)) {
645 spin_unlock(&si->lock);
fb4f88dc 646 continue;
ec8acf20 647 }
fb4f88dc
HD
648
649 swap_list.next = next;
ec8acf20
SL
650
651 spin_unlock(&swap_lock);
355cfa73 652 /* This is called for allocating swap entry for cache */
253d553b 653 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
654 spin_unlock(&si->lock);
655 if (offset)
fb4f88dc 656 return swp_entry(type, offset);
ec8acf20 657 spin_lock(&swap_lock);
fb4f88dc 658 next = swap_list.next;
1da177e4 659 }
fb4f88dc 660
ec8acf20 661 atomic_long_inc(&nr_swap_pages);
fb4f88dc 662noswap:
5d337b91 663 spin_unlock(&swap_lock);
fb4f88dc 664 return (swp_entry_t) {0};
1da177e4
LT
665}
666
910321ea
HD
667/* The only caller of this function is now susupend routine */
668swp_entry_t get_swap_page_of_type(int type)
669{
670 struct swap_info_struct *si;
671 pgoff_t offset;
672
910321ea 673 si = swap_info[type];
ec8acf20 674 spin_lock(&si->lock);
910321ea 675 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 676 atomic_long_dec(&nr_swap_pages);
910321ea
HD
677 /* This is called for allocating swap entry, not cache */
678 offset = scan_swap_map(si, 1);
679 if (offset) {
ec8acf20 680 spin_unlock(&si->lock);
910321ea
HD
681 return swp_entry(type, offset);
682 }
ec8acf20 683 atomic_long_inc(&nr_swap_pages);
910321ea 684 }
ec8acf20 685 spin_unlock(&si->lock);
910321ea
HD
686 return (swp_entry_t) {0};
687}
688
73c34b6a 689static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 690{
73c34b6a 691 struct swap_info_struct *p;
1da177e4
LT
692 unsigned long offset, type;
693
694 if (!entry.val)
695 goto out;
696 type = swp_type(entry);
697 if (type >= nr_swapfiles)
698 goto bad_nofile;
efa90a98 699 p = swap_info[type];
1da177e4
LT
700 if (!(p->flags & SWP_USED))
701 goto bad_device;
702 offset = swp_offset(entry);
703 if (offset >= p->max)
704 goto bad_offset;
705 if (!p->swap_map[offset])
706 goto bad_free;
ec8acf20 707 spin_lock(&p->lock);
1da177e4
LT
708 return p;
709
710bad_free:
465c47fd 711 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
712 goto out;
713bad_offset:
465c47fd 714 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
715 goto out;
716bad_device:
465c47fd 717 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
718 goto out;
719bad_nofile:
465c47fd 720 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
721out:
722 return NULL;
886bb7e9 723}
1da177e4 724
ec8acf20
SL
725/*
726 * This swap type frees swap entry, check if it is the highest priority swap
727 * type which just frees swap entry. get_swap_page() uses
728 * highest_priority_index to search highest priority swap type. The
729 * swap_info_struct.lock can't protect us if there are multiple swap types
730 * active, so we use atomic_cmpxchg.
731 */
732static void set_highest_priority_index(int type)
733{
734 int old_hp_index, new_hp_index;
735
736 do {
737 old_hp_index = atomic_read(&highest_priority_index);
738 if (old_hp_index != -1 &&
739 swap_info[old_hp_index]->prio >= swap_info[type]->prio)
740 break;
741 new_hp_index = type;
742 } while (atomic_cmpxchg(&highest_priority_index,
743 old_hp_index, new_hp_index) != old_hp_index);
744}
745
8d69aaee
HD
746static unsigned char swap_entry_free(struct swap_info_struct *p,
747 swp_entry_t entry, unsigned char usage)
1da177e4 748{
253d553b 749 unsigned long offset = swp_offset(entry);
8d69aaee
HD
750 unsigned char count;
751 unsigned char has_cache;
355cfa73 752
253d553b
HD
753 count = p->swap_map[offset];
754 has_cache = count & SWAP_HAS_CACHE;
755 count &= ~SWAP_HAS_CACHE;
355cfa73 756
253d553b 757 if (usage == SWAP_HAS_CACHE) {
355cfa73 758 VM_BUG_ON(!has_cache);
253d553b 759 has_cache = 0;
aaa46865
HD
760 } else if (count == SWAP_MAP_SHMEM) {
761 /*
762 * Or we could insist on shmem.c using a special
763 * swap_shmem_free() and free_shmem_swap_and_cache()...
764 */
765 count = 0;
570a335b
HD
766 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
767 if (count == COUNT_CONTINUED) {
768 if (swap_count_continued(p, offset, count))
769 count = SWAP_MAP_MAX | COUNT_CONTINUED;
770 else
771 count = SWAP_MAP_MAX;
772 } else
773 count--;
774 }
253d553b
HD
775
776 if (!count)
777 mem_cgroup_uncharge_swap(entry);
778
779 usage = count | has_cache;
780 p->swap_map[offset] = usage;
355cfa73 781
355cfa73 782 /* free if no reference */
253d553b 783 if (!usage) {
2a8f9449 784 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
785 if (offset < p->lowest_bit)
786 p->lowest_bit = offset;
787 if (offset > p->highest_bit)
788 p->highest_bit = offset;
ec8acf20
SL
789 set_highest_priority_index(p->type);
790 atomic_long_inc(&nr_swap_pages);
355cfa73 791 p->inuse_pages--;
38b5faf4 792 frontswap_invalidate_page(p->type, offset);
73744923
MG
793 if (p->flags & SWP_BLKDEV) {
794 struct gendisk *disk = p->bdev->bd_disk;
795 if (disk->fops->swap_slot_free_notify)
796 disk->fops->swap_slot_free_notify(p->bdev,
797 offset);
798 }
1da177e4 799 }
253d553b
HD
800
801 return usage;
1da177e4
LT
802}
803
804/*
805 * Caller has made sure that the swapdevice corresponding to entry
806 * is still around or has not been recycled.
807 */
808void swap_free(swp_entry_t entry)
809{
73c34b6a 810 struct swap_info_struct *p;
1da177e4
LT
811
812 p = swap_info_get(entry);
813 if (p) {
253d553b 814 swap_entry_free(p, entry, 1);
ec8acf20 815 spin_unlock(&p->lock);
1da177e4
LT
816 }
817}
818
cb4b86ba
KH
819/*
820 * Called after dropping swapcache to decrease refcnt to swap entries.
821 */
822void swapcache_free(swp_entry_t entry, struct page *page)
823{
355cfa73 824 struct swap_info_struct *p;
8d69aaee 825 unsigned char count;
355cfa73 826
355cfa73
KH
827 p = swap_info_get(entry);
828 if (p) {
253d553b
HD
829 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
830 if (page)
831 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
ec8acf20 832 spin_unlock(&p->lock);
355cfa73 833 }
cb4b86ba
KH
834}
835
1da177e4 836/*
c475a8ab 837 * How many references to page are currently swapped out?
570a335b
HD
838 * This does not give an exact answer when swap count is continued,
839 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 840 */
bde05d1c 841int page_swapcount(struct page *page)
1da177e4 842{
c475a8ab
HD
843 int count = 0;
844 struct swap_info_struct *p;
1da177e4
LT
845 swp_entry_t entry;
846
4c21e2f2 847 entry.val = page_private(page);
1da177e4
LT
848 p = swap_info_get(entry);
849 if (p) {
355cfa73 850 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 851 spin_unlock(&p->lock);
1da177e4 852 }
c475a8ab 853 return count;
1da177e4
LT
854}
855
856/*
7b1fe597
HD
857 * We can write to an anon page without COW if there are no other references
858 * to it. And as a side-effect, free up its swap: because the old content
859 * on disk will never be read, and seeking back there to write new content
860 * later would only waste time away from clustering.
1da177e4 861 */
7b1fe597 862int reuse_swap_page(struct page *page)
1da177e4 863{
c475a8ab
HD
864 int count;
865
51726b12 866 VM_BUG_ON(!PageLocked(page));
5ad64688
HD
867 if (unlikely(PageKsm(page)))
868 return 0;
c475a8ab 869 count = page_mapcount(page);
7b1fe597 870 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 871 count += page_swapcount(page);
7b1fe597
HD
872 if (count == 1 && !PageWriteback(page)) {
873 delete_from_swap_cache(page);
874 SetPageDirty(page);
875 }
876 }
5ad64688 877 return count <= 1;
1da177e4
LT
878}
879
880/*
a2c43eed
HD
881 * If swap is getting full, or if there are no more mappings of this page,
882 * then try_to_free_swap is called to free its swap space.
1da177e4 883 */
a2c43eed 884int try_to_free_swap(struct page *page)
1da177e4 885{
51726b12 886 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
887
888 if (!PageSwapCache(page))
889 return 0;
890 if (PageWriteback(page))
891 return 0;
a2c43eed 892 if (page_swapcount(page))
1da177e4
LT
893 return 0;
894
b73d7fce
HD
895 /*
896 * Once hibernation has begun to create its image of memory,
897 * there's a danger that one of the calls to try_to_free_swap()
898 * - most probably a call from __try_to_reclaim_swap() while
899 * hibernation is allocating its own swap pages for the image,
900 * but conceivably even a call from memory reclaim - will free
901 * the swap from a page which has already been recorded in the
902 * image as a clean swapcache page, and then reuse its swap for
903 * another page of the image. On waking from hibernation, the
904 * original page might be freed under memory pressure, then
905 * later read back in from swap, now with the wrong data.
906 *
f90ac398
MG
907 * Hibration suspends storage while it is writing the image
908 * to disk so check that here.
b73d7fce 909 */
f90ac398 910 if (pm_suspended_storage())
b73d7fce
HD
911 return 0;
912
a2c43eed
HD
913 delete_from_swap_cache(page);
914 SetPageDirty(page);
915 return 1;
68a22394
RR
916}
917
1da177e4
LT
918/*
919 * Free the swap entry like above, but also try to
920 * free the page cache entry if it is the last user.
921 */
2509ef26 922int free_swap_and_cache(swp_entry_t entry)
1da177e4 923{
2509ef26 924 struct swap_info_struct *p;
1da177e4
LT
925 struct page *page = NULL;
926
a7420aa5 927 if (non_swap_entry(entry))
2509ef26 928 return 1;
0697212a 929
1da177e4
LT
930 p = swap_info_get(entry);
931 if (p) {
253d553b 932 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
933 page = find_get_page(swap_address_space(entry),
934 entry.val);
8413ac9d 935 if (page && !trylock_page(page)) {
93fac704
NP
936 page_cache_release(page);
937 page = NULL;
938 }
939 }
ec8acf20 940 spin_unlock(&p->lock);
1da177e4
LT
941 }
942 if (page) {
a2c43eed
HD
943 /*
944 * Not mapped elsewhere, or swap space full? Free it!
945 * Also recheck PageSwapCache now page is locked (above).
946 */
93fac704 947 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 948 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
949 delete_from_swap_cache(page);
950 SetPageDirty(page);
951 }
952 unlock_page(page);
953 page_cache_release(page);
954 }
2509ef26 955 return p != NULL;
1da177e4
LT
956}
957
b0cb1a19 958#ifdef CONFIG_HIBERNATION
f577eb30 959/*
915bae9e 960 * Find the swap type that corresponds to given device (if any).
f577eb30 961 *
915bae9e
RW
962 * @offset - number of the PAGE_SIZE-sized block of the device, starting
963 * from 0, in which the swap header is expected to be located.
964 *
965 * This is needed for the suspend to disk (aka swsusp).
f577eb30 966 */
7bf23687 967int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 968{
915bae9e 969 struct block_device *bdev = NULL;
efa90a98 970 int type;
f577eb30 971
915bae9e
RW
972 if (device)
973 bdev = bdget(device);
974
f577eb30 975 spin_lock(&swap_lock);
efa90a98
HD
976 for (type = 0; type < nr_swapfiles; type++) {
977 struct swap_info_struct *sis = swap_info[type];
f577eb30 978
915bae9e 979 if (!(sis->flags & SWP_WRITEOK))
f577eb30 980 continue;
b6b5bce3 981
915bae9e 982 if (!bdev) {
7bf23687 983 if (bdev_p)
dddac6a7 984 *bdev_p = bdgrab(sis->bdev);
7bf23687 985
6e1819d6 986 spin_unlock(&swap_lock);
efa90a98 987 return type;
6e1819d6 988 }
915bae9e 989 if (bdev == sis->bdev) {
9625a5f2 990 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 991
915bae9e 992 if (se->start_block == offset) {
7bf23687 993 if (bdev_p)
dddac6a7 994 *bdev_p = bdgrab(sis->bdev);
7bf23687 995
915bae9e
RW
996 spin_unlock(&swap_lock);
997 bdput(bdev);
efa90a98 998 return type;
915bae9e 999 }
f577eb30
RW
1000 }
1001 }
1002 spin_unlock(&swap_lock);
915bae9e
RW
1003 if (bdev)
1004 bdput(bdev);
1005
f577eb30
RW
1006 return -ENODEV;
1007}
1008
73c34b6a
HD
1009/*
1010 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1011 * corresponding to given index in swap_info (swap type).
1012 */
1013sector_t swapdev_block(int type, pgoff_t offset)
1014{
1015 struct block_device *bdev;
1016
1017 if ((unsigned int)type >= nr_swapfiles)
1018 return 0;
1019 if (!(swap_info[type]->flags & SWP_WRITEOK))
1020 return 0;
d4906e1a 1021 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1022}
1023
f577eb30
RW
1024/*
1025 * Return either the total number of swap pages of given type, or the number
1026 * of free pages of that type (depending on @free)
1027 *
1028 * This is needed for software suspend
1029 */
1030unsigned int count_swap_pages(int type, int free)
1031{
1032 unsigned int n = 0;
1033
efa90a98
HD
1034 spin_lock(&swap_lock);
1035 if ((unsigned int)type < nr_swapfiles) {
1036 struct swap_info_struct *sis = swap_info[type];
1037
ec8acf20 1038 spin_lock(&sis->lock);
efa90a98
HD
1039 if (sis->flags & SWP_WRITEOK) {
1040 n = sis->pages;
f577eb30 1041 if (free)
efa90a98 1042 n -= sis->inuse_pages;
f577eb30 1043 }
ec8acf20 1044 spin_unlock(&sis->lock);
f577eb30 1045 }
efa90a98 1046 spin_unlock(&swap_lock);
f577eb30
RW
1047 return n;
1048}
73c34b6a 1049#endif /* CONFIG_HIBERNATION */
f577eb30 1050
179ef71c
CG
1051static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1052{
1053#ifdef CONFIG_MEM_SOFT_DIRTY
1054 /*
1055 * When pte keeps soft dirty bit the pte generated
1056 * from swap entry does not has it, still it's same
1057 * pte from logical point of view.
1058 */
1059 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1060 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1061#else
1062 return pte_same(pte, swp_pte);
1063#endif
1064}
1065
1da177e4 1066/*
72866f6f
HD
1067 * No need to decide whether this PTE shares the swap entry with others,
1068 * just let do_wp_page work it out if a write is requested later - to
1069 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1070 */
044d66c1 1071static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1072 unsigned long addr, swp_entry_t entry, struct page *page)
1073{
9e16b7fb 1074 struct page *swapcache;
72835c86 1075 struct mem_cgroup *memcg;
044d66c1
HD
1076 spinlock_t *ptl;
1077 pte_t *pte;
1078 int ret = 1;
1079
9e16b7fb
HD
1080 swapcache = page;
1081 page = ksm_might_need_to_copy(page, vma, addr);
1082 if (unlikely(!page))
1083 return -ENOMEM;
1084
72835c86
JW
1085 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1086 GFP_KERNEL, &memcg)) {
044d66c1 1087 ret = -ENOMEM;
85d9fc89
KH
1088 goto out_nolock;
1089 }
044d66c1
HD
1090
1091 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
179ef71c 1092 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
5d84c776 1093 mem_cgroup_cancel_charge_swapin(memcg);
044d66c1
HD
1094 ret = 0;
1095 goto out;
1096 }
8a9f3ccd 1097
b084d435 1098 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1099 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1100 get_page(page);
1101 set_pte_at(vma->vm_mm, addr, pte,
1102 pte_mkold(mk_pte(page, vma->vm_page_prot)));
9e16b7fb
HD
1103 if (page == swapcache)
1104 page_add_anon_rmap(page, vma, addr);
1105 else /* ksm created a completely new copy */
1106 page_add_new_anon_rmap(page, vma, addr);
72835c86 1107 mem_cgroup_commit_charge_swapin(page, memcg);
1da177e4
LT
1108 swap_free(entry);
1109 /*
1110 * Move the page to the active list so it is not
1111 * immediately swapped out again after swapon.
1112 */
1113 activate_page(page);
044d66c1
HD
1114out:
1115 pte_unmap_unlock(pte, ptl);
85d9fc89 1116out_nolock:
9e16b7fb
HD
1117 if (page != swapcache) {
1118 unlock_page(page);
1119 put_page(page);
1120 }
044d66c1 1121 return ret;
1da177e4
LT
1122}
1123
1124static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1125 unsigned long addr, unsigned long end,
1126 swp_entry_t entry, struct page *page)
1127{
1da177e4 1128 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1129 pte_t *pte;
8a9f3ccd 1130 int ret = 0;
1da177e4 1131
044d66c1
HD
1132 /*
1133 * We don't actually need pte lock while scanning for swp_pte: since
1134 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1135 * page table while we're scanning; though it could get zapped, and on
1136 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1137 * of unmatched parts which look like swp_pte, so unuse_pte must
1138 * recheck under pte lock. Scanning without pte lock lets it be
1139 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1140 */
1141 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1142 do {
1143 /*
1144 * swapoff spends a _lot_ of time in this loop!
1145 * Test inline before going to call unuse_pte.
1146 */
179ef71c 1147 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
044d66c1
HD
1148 pte_unmap(pte);
1149 ret = unuse_pte(vma, pmd, addr, entry, page);
1150 if (ret)
1151 goto out;
1152 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1153 }
1154 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1155 pte_unmap(pte - 1);
1156out:
8a9f3ccd 1157 return ret;
1da177e4
LT
1158}
1159
1160static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1161 unsigned long addr, unsigned long end,
1162 swp_entry_t entry, struct page *page)
1163{
1164 pmd_t *pmd;
1165 unsigned long next;
8a9f3ccd 1166 int ret;
1da177e4
LT
1167
1168 pmd = pmd_offset(pud, addr);
1169 do {
1170 next = pmd_addr_end(addr, end);
1a5a9906 1171 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1172 continue;
8a9f3ccd
BS
1173 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1174 if (ret)
1175 return ret;
1da177e4
LT
1176 } while (pmd++, addr = next, addr != end);
1177 return 0;
1178}
1179
1180static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1181 unsigned long addr, unsigned long end,
1182 swp_entry_t entry, struct page *page)
1183{
1184 pud_t *pud;
1185 unsigned long next;
8a9f3ccd 1186 int ret;
1da177e4
LT
1187
1188 pud = pud_offset(pgd, addr);
1189 do {
1190 next = pud_addr_end(addr, end);
1191 if (pud_none_or_clear_bad(pud))
1192 continue;
8a9f3ccd
BS
1193 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1194 if (ret)
1195 return ret;
1da177e4
LT
1196 } while (pud++, addr = next, addr != end);
1197 return 0;
1198}
1199
1200static int unuse_vma(struct vm_area_struct *vma,
1201 swp_entry_t entry, struct page *page)
1202{
1203 pgd_t *pgd;
1204 unsigned long addr, end, next;
8a9f3ccd 1205 int ret;
1da177e4 1206
3ca7b3c5 1207 if (page_anon_vma(page)) {
1da177e4
LT
1208 addr = page_address_in_vma(page, vma);
1209 if (addr == -EFAULT)
1210 return 0;
1211 else
1212 end = addr + PAGE_SIZE;
1213 } else {
1214 addr = vma->vm_start;
1215 end = vma->vm_end;
1216 }
1217
1218 pgd = pgd_offset(vma->vm_mm, addr);
1219 do {
1220 next = pgd_addr_end(addr, end);
1221 if (pgd_none_or_clear_bad(pgd))
1222 continue;
8a9f3ccd
BS
1223 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1224 if (ret)
1225 return ret;
1da177e4
LT
1226 } while (pgd++, addr = next, addr != end);
1227 return 0;
1228}
1229
1230static int unuse_mm(struct mm_struct *mm,
1231 swp_entry_t entry, struct page *page)
1232{
1233 struct vm_area_struct *vma;
8a9f3ccd 1234 int ret = 0;
1da177e4
LT
1235
1236 if (!down_read_trylock(&mm->mmap_sem)) {
1237 /*
7d03431c
FLVC
1238 * Activate page so shrink_inactive_list is unlikely to unmap
1239 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1240 */
c475a8ab 1241 activate_page(page);
1da177e4
LT
1242 unlock_page(page);
1243 down_read(&mm->mmap_sem);
1244 lock_page(page);
1245 }
1da177e4 1246 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1247 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1248 break;
1249 }
1da177e4 1250 up_read(&mm->mmap_sem);
8a9f3ccd 1251 return (ret < 0)? ret: 0;
1da177e4
LT
1252}
1253
1254/*
38b5faf4
DM
1255 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1256 * from current position to next entry still in use.
1da177e4
LT
1257 * Recycle to start on reaching the end, returning 0 when empty.
1258 */
6eb396dc 1259static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1260 unsigned int prev, bool frontswap)
1da177e4 1261{
6eb396dc
HD
1262 unsigned int max = si->max;
1263 unsigned int i = prev;
8d69aaee 1264 unsigned char count;
1da177e4
LT
1265
1266 /*
5d337b91 1267 * No need for swap_lock here: we're just looking
1da177e4
LT
1268 * for whether an entry is in use, not modifying it; false
1269 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1270 * allocations from this area (while holding swap_lock).
1da177e4
LT
1271 */
1272 for (;;) {
1273 if (++i >= max) {
1274 if (!prev) {
1275 i = 0;
1276 break;
1277 }
1278 /*
1279 * No entries in use at top of swap_map,
1280 * loop back to start and recheck there.
1281 */
1282 max = prev + 1;
1283 prev = 0;
1284 i = 1;
1285 }
38b5faf4
DM
1286 if (frontswap) {
1287 if (frontswap_test(si, i))
1288 break;
1289 else
1290 continue;
1291 }
edfe23da 1292 count = ACCESS_ONCE(si->swap_map[i]);
355cfa73 1293 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1294 break;
1295 }
1296 return i;
1297}
1298
1299/*
1300 * We completely avoid races by reading each swap page in advance,
1301 * and then search for the process using it. All the necessary
1302 * page table adjustments can then be made atomically.
38b5faf4
DM
1303 *
1304 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1305 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1306 */
38b5faf4
DM
1307int try_to_unuse(unsigned int type, bool frontswap,
1308 unsigned long pages_to_unuse)
1da177e4 1309{
efa90a98 1310 struct swap_info_struct *si = swap_info[type];
1da177e4 1311 struct mm_struct *start_mm;
edfe23da
SL
1312 volatile unsigned char *swap_map; /* swap_map is accessed without
1313 * locking. Mark it as volatile
1314 * to prevent compiler doing
1315 * something odd.
1316 */
8d69aaee 1317 unsigned char swcount;
1da177e4
LT
1318 struct page *page;
1319 swp_entry_t entry;
6eb396dc 1320 unsigned int i = 0;
1da177e4 1321 int retval = 0;
1da177e4
LT
1322
1323 /*
1324 * When searching mms for an entry, a good strategy is to
1325 * start at the first mm we freed the previous entry from
1326 * (though actually we don't notice whether we or coincidence
1327 * freed the entry). Initialize this start_mm with a hold.
1328 *
1329 * A simpler strategy would be to start at the last mm we
1330 * freed the previous entry from; but that would take less
1331 * advantage of mmlist ordering, which clusters forked mms
1332 * together, child after parent. If we race with dup_mmap(), we
1333 * prefer to resolve parent before child, lest we miss entries
1334 * duplicated after we scanned child: using last mm would invert
570a335b 1335 * that.
1da177e4
LT
1336 */
1337 start_mm = &init_mm;
1338 atomic_inc(&init_mm.mm_users);
1339
1340 /*
1341 * Keep on scanning until all entries have gone. Usually,
1342 * one pass through swap_map is enough, but not necessarily:
1343 * there are races when an instance of an entry might be missed.
1344 */
38b5faf4 1345 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1346 if (signal_pending(current)) {
1347 retval = -EINTR;
1348 break;
1349 }
1350
886bb7e9 1351 /*
1da177e4
LT
1352 * Get a page for the entry, using the existing swap
1353 * cache page if there is one. Otherwise, get a clean
886bb7e9 1354 * page and read the swap into it.
1da177e4
LT
1355 */
1356 swap_map = &si->swap_map[i];
1357 entry = swp_entry(type, i);
02098fea
HD
1358 page = read_swap_cache_async(entry,
1359 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1360 if (!page) {
1361 /*
1362 * Either swap_duplicate() failed because entry
1363 * has been freed independently, and will not be
1364 * reused since sys_swapoff() already disabled
1365 * allocation from here, or alloc_page() failed.
1366 */
edfe23da
SL
1367 swcount = *swap_map;
1368 /*
1369 * We don't hold lock here, so the swap entry could be
1370 * SWAP_MAP_BAD (when the cluster is discarding).
1371 * Instead of fail out, We can just skip the swap
1372 * entry because swapoff will wait for discarding
1373 * finish anyway.
1374 */
1375 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1376 continue;
1377 retval = -ENOMEM;
1378 break;
1379 }
1380
1381 /*
1382 * Don't hold on to start_mm if it looks like exiting.
1383 */
1384 if (atomic_read(&start_mm->mm_users) == 1) {
1385 mmput(start_mm);
1386 start_mm = &init_mm;
1387 atomic_inc(&init_mm.mm_users);
1388 }
1389
1390 /*
1391 * Wait for and lock page. When do_swap_page races with
1392 * try_to_unuse, do_swap_page can handle the fault much
1393 * faster than try_to_unuse can locate the entry. This
1394 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1395 * defer to do_swap_page in such a case - in some tests,
1396 * do_swap_page and try_to_unuse repeatedly compete.
1397 */
1398 wait_on_page_locked(page);
1399 wait_on_page_writeback(page);
1400 lock_page(page);
1401 wait_on_page_writeback(page);
1402
1403 /*
1404 * Remove all references to entry.
1da177e4 1405 */
1da177e4 1406 swcount = *swap_map;
aaa46865
HD
1407 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1408 retval = shmem_unuse(entry, page);
1409 /* page has already been unlocked and released */
1410 if (retval < 0)
1411 break;
1412 continue;
1da177e4 1413 }
aaa46865
HD
1414 if (swap_count(swcount) && start_mm != &init_mm)
1415 retval = unuse_mm(start_mm, entry, page);
1416
355cfa73 1417 if (swap_count(*swap_map)) {
1da177e4
LT
1418 int set_start_mm = (*swap_map >= swcount);
1419 struct list_head *p = &start_mm->mmlist;
1420 struct mm_struct *new_start_mm = start_mm;
1421 struct mm_struct *prev_mm = start_mm;
1422 struct mm_struct *mm;
1423
1424 atomic_inc(&new_start_mm->mm_users);
1425 atomic_inc(&prev_mm->mm_users);
1426 spin_lock(&mmlist_lock);
aaa46865 1427 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1428 (p = p->next) != &start_mm->mmlist) {
1429 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1430 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1431 continue;
1da177e4
LT
1432 spin_unlock(&mmlist_lock);
1433 mmput(prev_mm);
1434 prev_mm = mm;
1435
1436 cond_resched();
1437
1438 swcount = *swap_map;
355cfa73 1439 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1440 ;
aaa46865 1441 else if (mm == &init_mm)
1da177e4 1442 set_start_mm = 1;
aaa46865 1443 else
1da177e4 1444 retval = unuse_mm(mm, entry, page);
355cfa73 1445
32c5fc10 1446 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1447 mmput(new_start_mm);
1448 atomic_inc(&mm->mm_users);
1449 new_start_mm = mm;
1450 set_start_mm = 0;
1451 }
1452 spin_lock(&mmlist_lock);
1453 }
1454 spin_unlock(&mmlist_lock);
1455 mmput(prev_mm);
1456 mmput(start_mm);
1457 start_mm = new_start_mm;
1458 }
1459 if (retval) {
1460 unlock_page(page);
1461 page_cache_release(page);
1462 break;
1463 }
1464
1da177e4
LT
1465 /*
1466 * If a reference remains (rare), we would like to leave
1467 * the page in the swap cache; but try_to_unmap could
1468 * then re-duplicate the entry once we drop page lock,
1469 * so we might loop indefinitely; also, that page could
1470 * not be swapped out to other storage meanwhile. So:
1471 * delete from cache even if there's another reference,
1472 * after ensuring that the data has been saved to disk -
1473 * since if the reference remains (rarer), it will be
1474 * read from disk into another page. Splitting into two
1475 * pages would be incorrect if swap supported "shared
1476 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1477 *
1478 * Given how unuse_vma() targets one particular offset
1479 * in an anon_vma, once the anon_vma has been determined,
1480 * this splitting happens to be just what is needed to
1481 * handle where KSM pages have been swapped out: re-reading
1482 * is unnecessarily slow, but we can fix that later on.
1da177e4 1483 */
355cfa73
KH
1484 if (swap_count(*swap_map) &&
1485 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1486 struct writeback_control wbc = {
1487 .sync_mode = WB_SYNC_NONE,
1488 };
1489
1490 swap_writepage(page, &wbc);
1491 lock_page(page);
1492 wait_on_page_writeback(page);
1493 }
68bdc8d6
HD
1494
1495 /*
1496 * It is conceivable that a racing task removed this page from
1497 * swap cache just before we acquired the page lock at the top,
1498 * or while we dropped it in unuse_mm(). The page might even
1499 * be back in swap cache on another swap area: that we must not
1500 * delete, since it may not have been written out to swap yet.
1501 */
1502 if (PageSwapCache(page) &&
1503 likely(page_private(page) == entry.val))
2e0e26c7 1504 delete_from_swap_cache(page);
1da177e4
LT
1505
1506 /*
1507 * So we could skip searching mms once swap count went
1508 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1509 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1510 */
1511 SetPageDirty(page);
1512 unlock_page(page);
1513 page_cache_release(page);
1514
1515 /*
1516 * Make sure that we aren't completely killing
1517 * interactive performance.
1518 */
1519 cond_resched();
38b5faf4
DM
1520 if (frontswap && pages_to_unuse > 0) {
1521 if (!--pages_to_unuse)
1522 break;
1523 }
1da177e4
LT
1524 }
1525
1526 mmput(start_mm);
1da177e4
LT
1527 return retval;
1528}
1529
1530/*
5d337b91
HD
1531 * After a successful try_to_unuse, if no swap is now in use, we know
1532 * we can empty the mmlist. swap_lock must be held on entry and exit.
1533 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1534 * added to the mmlist just after page_duplicate - before would be racy.
1535 */
1536static void drain_mmlist(void)
1537{
1538 struct list_head *p, *next;
efa90a98 1539 unsigned int type;
1da177e4 1540
efa90a98
HD
1541 for (type = 0; type < nr_swapfiles; type++)
1542 if (swap_info[type]->inuse_pages)
1da177e4
LT
1543 return;
1544 spin_lock(&mmlist_lock);
1545 list_for_each_safe(p, next, &init_mm.mmlist)
1546 list_del_init(p);
1547 spin_unlock(&mmlist_lock);
1548}
1549
1550/*
1551 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1552 * corresponds to page offset for the specified swap entry.
1553 * Note that the type of this function is sector_t, but it returns page offset
1554 * into the bdev, not sector offset.
1da177e4 1555 */
d4906e1a 1556static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1557{
f29ad6a9
HD
1558 struct swap_info_struct *sis;
1559 struct swap_extent *start_se;
1560 struct swap_extent *se;
1561 pgoff_t offset;
1562
efa90a98 1563 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1564 *bdev = sis->bdev;
1565
1566 offset = swp_offset(entry);
1567 start_se = sis->curr_swap_extent;
1568 se = start_se;
1da177e4
LT
1569
1570 for ( ; ; ) {
1571 struct list_head *lh;
1572
1573 if (se->start_page <= offset &&
1574 offset < (se->start_page + se->nr_pages)) {
1575 return se->start_block + (offset - se->start_page);
1576 }
11d31886 1577 lh = se->list.next;
1da177e4
LT
1578 se = list_entry(lh, struct swap_extent, list);
1579 sis->curr_swap_extent = se;
1580 BUG_ON(se == start_se); /* It *must* be present */
1581 }
1582}
1583
d4906e1a
LS
1584/*
1585 * Returns the page offset into bdev for the specified page's swap entry.
1586 */
1587sector_t map_swap_page(struct page *page, struct block_device **bdev)
1588{
1589 swp_entry_t entry;
1590 entry.val = page_private(page);
1591 return map_swap_entry(entry, bdev);
1592}
1593
1da177e4
LT
1594/*
1595 * Free all of a swapdev's extent information
1596 */
1597static void destroy_swap_extents(struct swap_info_struct *sis)
1598{
9625a5f2 1599 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1600 struct swap_extent *se;
1601
9625a5f2 1602 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1603 struct swap_extent, list);
1604 list_del(&se->list);
1605 kfree(se);
1606 }
62c230bc
MG
1607
1608 if (sis->flags & SWP_FILE) {
1609 struct file *swap_file = sis->swap_file;
1610 struct address_space *mapping = swap_file->f_mapping;
1611
1612 sis->flags &= ~SWP_FILE;
1613 mapping->a_ops->swap_deactivate(swap_file);
1614 }
1da177e4
LT
1615}
1616
1617/*
1618 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1619 * extent list. The extent list is kept sorted in page order.
1da177e4 1620 *
11d31886 1621 * This function rather assumes that it is called in ascending page order.
1da177e4 1622 */
a509bc1a 1623int
1da177e4
LT
1624add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1625 unsigned long nr_pages, sector_t start_block)
1626{
1627 struct swap_extent *se;
1628 struct swap_extent *new_se;
1629 struct list_head *lh;
1630
9625a5f2
HD
1631 if (start_page == 0) {
1632 se = &sis->first_swap_extent;
1633 sis->curr_swap_extent = se;
1634 se->start_page = 0;
1635 se->nr_pages = nr_pages;
1636 se->start_block = start_block;
1637 return 1;
1638 } else {
1639 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1640 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1641 BUG_ON(se->start_page + se->nr_pages != start_page);
1642 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1643 /* Merge it */
1644 se->nr_pages += nr_pages;
1645 return 0;
1646 }
1da177e4
LT
1647 }
1648
1649 /*
1650 * No merge. Insert a new extent, preserving ordering.
1651 */
1652 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1653 if (new_se == NULL)
1654 return -ENOMEM;
1655 new_se->start_page = start_page;
1656 new_se->nr_pages = nr_pages;
1657 new_se->start_block = start_block;
1658
9625a5f2 1659 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1660 return 1;
1da177e4
LT
1661}
1662
1663/*
1664 * A `swap extent' is a simple thing which maps a contiguous range of pages
1665 * onto a contiguous range of disk blocks. An ordered list of swap extents
1666 * is built at swapon time and is then used at swap_writepage/swap_readpage
1667 * time for locating where on disk a page belongs.
1668 *
1669 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1670 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1671 * swap files identically.
1672 *
1673 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1674 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1675 * swapfiles are handled *identically* after swapon time.
1676 *
1677 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1678 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1679 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1680 * requirements, they are simply tossed out - we will never use those blocks
1681 * for swapping.
1682 *
b0d9bcd4 1683 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1684 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1685 * which will scribble on the fs.
1686 *
1687 * The amount of disk space which a single swap extent represents varies.
1688 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1689 * extents in the list. To avoid much list walking, we cache the previous
1690 * search location in `curr_swap_extent', and start new searches from there.
1691 * This is extremely effective. The average number of iterations in
1692 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1693 */
53092a74 1694static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1695{
62c230bc
MG
1696 struct file *swap_file = sis->swap_file;
1697 struct address_space *mapping = swap_file->f_mapping;
1698 struct inode *inode = mapping->host;
1da177e4
LT
1699 int ret;
1700
1da177e4
LT
1701 if (S_ISBLK(inode->i_mode)) {
1702 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1703 *span = sis->pages;
a509bc1a 1704 return ret;
1da177e4
LT
1705 }
1706
62c230bc 1707 if (mapping->a_ops->swap_activate) {
a509bc1a 1708 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1709 if (!ret) {
1710 sis->flags |= SWP_FILE;
1711 ret = add_swap_extent(sis, 0, sis->max, 0);
1712 *span = sis->pages;
1713 }
a509bc1a 1714 return ret;
62c230bc
MG
1715 }
1716
a509bc1a 1717 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1718}
1719
cf0cac0a 1720static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1721 unsigned char *swap_map,
1722 struct swap_cluster_info *cluster_info)
40531542
CEB
1723{
1724 int i, prev;
1725
40531542
CEB
1726 if (prio >= 0)
1727 p->prio = prio;
1728 else
1729 p->prio = --least_priority;
1730 p->swap_map = swap_map;
2a8f9449 1731 p->cluster_info = cluster_info;
40531542 1732 p->flags |= SWP_WRITEOK;
ec8acf20 1733 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1734 total_swap_pages += p->pages;
1735
1736 /* insert swap space into swap_list: */
1737 prev = -1;
1738 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1739 if (p->prio >= swap_info[i]->prio)
1740 break;
1741 prev = i;
1742 }
1743 p->next = i;
1744 if (prev < 0)
1745 swap_list.head = swap_list.next = p->type;
1746 else
1747 swap_info[prev]->next = p->type;
cf0cac0a
CEB
1748}
1749
1750static void enable_swap_info(struct swap_info_struct *p, int prio,
1751 unsigned char *swap_map,
2a8f9449 1752 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1753 unsigned long *frontswap_map)
1754{
4f89849d 1755 frontswap_init(p->type, frontswap_map);
cf0cac0a 1756 spin_lock(&swap_lock);
ec8acf20 1757 spin_lock(&p->lock);
2a8f9449 1758 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1759 spin_unlock(&p->lock);
cf0cac0a
CEB
1760 spin_unlock(&swap_lock);
1761}
1762
1763static void reinsert_swap_info(struct swap_info_struct *p)
1764{
1765 spin_lock(&swap_lock);
ec8acf20 1766 spin_lock(&p->lock);
2a8f9449 1767 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1768 spin_unlock(&p->lock);
40531542
CEB
1769 spin_unlock(&swap_lock);
1770}
1771
c4ea37c2 1772SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1773{
73c34b6a 1774 struct swap_info_struct *p = NULL;
8d69aaee 1775 unsigned char *swap_map;
2a8f9449 1776 struct swap_cluster_info *cluster_info;
4f89849d 1777 unsigned long *frontswap_map;
1da177e4
LT
1778 struct file *swap_file, *victim;
1779 struct address_space *mapping;
1780 struct inode *inode;
91a27b2a 1781 struct filename *pathname;
1da177e4
LT
1782 int i, type, prev;
1783 int err;
886bb7e9 1784
1da177e4
LT
1785 if (!capable(CAP_SYS_ADMIN))
1786 return -EPERM;
1787
191c5424
AV
1788 BUG_ON(!current->mm);
1789
1da177e4 1790 pathname = getname(specialfile);
1da177e4 1791 if (IS_ERR(pathname))
f58b59c1 1792 return PTR_ERR(pathname);
1da177e4 1793
669abf4e 1794 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1795 err = PTR_ERR(victim);
1796 if (IS_ERR(victim))
1797 goto out;
1798
1799 mapping = victim->f_mapping;
1800 prev = -1;
5d337b91 1801 spin_lock(&swap_lock);
efa90a98
HD
1802 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1803 p = swap_info[type];
22c6f8fd 1804 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1805 if (p->swap_file->f_mapping == mapping)
1806 break;
1807 }
1808 prev = type;
1809 }
1810 if (type < 0) {
1811 err = -EINVAL;
5d337b91 1812 spin_unlock(&swap_lock);
1da177e4
LT
1813 goto out_dput;
1814 }
191c5424 1815 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1816 vm_unacct_memory(p->pages);
1817 else {
1818 err = -ENOMEM;
5d337b91 1819 spin_unlock(&swap_lock);
1da177e4
LT
1820 goto out_dput;
1821 }
efa90a98 1822 if (prev < 0)
1da177e4 1823 swap_list.head = p->next;
efa90a98
HD
1824 else
1825 swap_info[prev]->next = p->next;
1da177e4
LT
1826 if (type == swap_list.next) {
1827 /* just pick something that's safe... */
1828 swap_list.next = swap_list.head;
1829 }
ec8acf20 1830 spin_lock(&p->lock);
78ecba08 1831 if (p->prio < 0) {
efa90a98
HD
1832 for (i = p->next; i >= 0; i = swap_info[i]->next)
1833 swap_info[i]->prio = p->prio--;
78ecba08
HD
1834 least_priority++;
1835 }
ec8acf20 1836 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1837 total_swap_pages -= p->pages;
1838 p->flags &= ~SWP_WRITEOK;
ec8acf20 1839 spin_unlock(&p->lock);
5d337b91 1840 spin_unlock(&swap_lock);
fb4f88dc 1841
e1e12d2f 1842 set_current_oom_origin();
38b5faf4 1843 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
e1e12d2f 1844 clear_current_oom_origin();
1da177e4 1845
1da177e4
LT
1846 if (err) {
1847 /* re-insert swap space back into swap_list */
cf0cac0a 1848 reinsert_swap_info(p);
1da177e4
LT
1849 goto out_dput;
1850 }
52b7efdb 1851
815c2c54
SL
1852 flush_work(&p->discard_work);
1853
5d337b91 1854 destroy_swap_extents(p);
570a335b
HD
1855 if (p->flags & SWP_CONTINUED)
1856 free_swap_count_continuations(p);
1857
fc0abb14 1858 mutex_lock(&swapon_mutex);
5d337b91 1859 spin_lock(&swap_lock);
ec8acf20 1860 spin_lock(&p->lock);
5d337b91
HD
1861 drain_mmlist();
1862
52b7efdb 1863 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1864 p->highest_bit = 0; /* cuts scans short */
1865 while (p->flags >= SWP_SCANNING) {
ec8acf20 1866 spin_unlock(&p->lock);
5d337b91 1867 spin_unlock(&swap_lock);
13e4b57f 1868 schedule_timeout_uninterruptible(1);
5d337b91 1869 spin_lock(&swap_lock);
ec8acf20 1870 spin_lock(&p->lock);
52b7efdb 1871 }
52b7efdb 1872
1da177e4
LT
1873 swap_file = p->swap_file;
1874 p->swap_file = NULL;
1875 p->max = 0;
1876 swap_map = p->swap_map;
1877 p->swap_map = NULL;
2a8f9449
SL
1878 cluster_info = p->cluster_info;
1879 p->cluster_info = NULL;
1da177e4 1880 p->flags = 0;
4f89849d
MK
1881 frontswap_map = frontswap_map_get(p);
1882 frontswap_map_set(p, NULL);
ec8acf20 1883 spin_unlock(&p->lock);
5d337b91 1884 spin_unlock(&swap_lock);
4f89849d 1885 frontswap_invalidate_area(type);
fc0abb14 1886 mutex_unlock(&swapon_mutex);
1da177e4 1887 vfree(swap_map);
2a8f9449 1888 vfree(cluster_info);
4f89849d 1889 vfree(frontswap_map);
27a7faa0
KH
1890 /* Destroy swap account informatin */
1891 swap_cgroup_swapoff(type);
1892
1da177e4
LT
1893 inode = mapping->host;
1894 if (S_ISBLK(inode->i_mode)) {
1895 struct block_device *bdev = I_BDEV(inode);
1896 set_blocksize(bdev, p->old_block_size);
e525fd89 1897 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1898 } else {
1b1dcc1b 1899 mutex_lock(&inode->i_mutex);
1da177e4 1900 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1901 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1902 }
1903 filp_close(swap_file, NULL);
1904 err = 0;
66d7dd51
KS
1905 atomic_inc(&proc_poll_event);
1906 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1907
1908out_dput:
1909 filp_close(victim, NULL);
1910out:
f58b59c1 1911 putname(pathname);
1da177e4
LT
1912 return err;
1913}
1914
1915#ifdef CONFIG_PROC_FS
66d7dd51
KS
1916static unsigned swaps_poll(struct file *file, poll_table *wait)
1917{
f1514638 1918 struct seq_file *seq = file->private_data;
66d7dd51
KS
1919
1920 poll_wait(file, &proc_poll_wait, wait);
1921
f1514638
KS
1922 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1923 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1924 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1925 }
1926
1927 return POLLIN | POLLRDNORM;
1928}
1929
1da177e4
LT
1930/* iterator */
1931static void *swap_start(struct seq_file *swap, loff_t *pos)
1932{
efa90a98
HD
1933 struct swap_info_struct *si;
1934 int type;
1da177e4
LT
1935 loff_t l = *pos;
1936
fc0abb14 1937 mutex_lock(&swapon_mutex);
1da177e4 1938
881e4aab
SS
1939 if (!l)
1940 return SEQ_START_TOKEN;
1941
efa90a98
HD
1942 for (type = 0; type < nr_swapfiles; type++) {
1943 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1944 si = swap_info[type];
1945 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1946 continue;
881e4aab 1947 if (!--l)
efa90a98 1948 return si;
1da177e4
LT
1949 }
1950
1951 return NULL;
1952}
1953
1954static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1955{
efa90a98
HD
1956 struct swap_info_struct *si = v;
1957 int type;
1da177e4 1958
881e4aab 1959 if (v == SEQ_START_TOKEN)
efa90a98
HD
1960 type = 0;
1961 else
1962 type = si->type + 1;
881e4aab 1963
efa90a98
HD
1964 for (; type < nr_swapfiles; type++) {
1965 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1966 si = swap_info[type];
1967 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1968 continue;
1969 ++*pos;
efa90a98 1970 return si;
1da177e4
LT
1971 }
1972
1973 return NULL;
1974}
1975
1976static void swap_stop(struct seq_file *swap, void *v)
1977{
fc0abb14 1978 mutex_unlock(&swapon_mutex);
1da177e4
LT
1979}
1980
1981static int swap_show(struct seq_file *swap, void *v)
1982{
efa90a98 1983 struct swap_info_struct *si = v;
1da177e4
LT
1984 struct file *file;
1985 int len;
1986
efa90a98 1987 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1988 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1989 return 0;
1990 }
1da177e4 1991
efa90a98 1992 file = si->swap_file;
c32c2f63 1993 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1994 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 1995 len < 40 ? 40 - len : 1, " ",
496ad9aa 1996 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 1997 "partition" : "file\t",
efa90a98
HD
1998 si->pages << (PAGE_SHIFT - 10),
1999 si->inuse_pages << (PAGE_SHIFT - 10),
2000 si->prio);
1da177e4
LT
2001 return 0;
2002}
2003
15ad7cdc 2004static const struct seq_operations swaps_op = {
1da177e4
LT
2005 .start = swap_start,
2006 .next = swap_next,
2007 .stop = swap_stop,
2008 .show = swap_show
2009};
2010
2011static int swaps_open(struct inode *inode, struct file *file)
2012{
f1514638 2013 struct seq_file *seq;
66d7dd51
KS
2014 int ret;
2015
66d7dd51 2016 ret = seq_open(file, &swaps_op);
f1514638 2017 if (ret)
66d7dd51 2018 return ret;
66d7dd51 2019
f1514638
KS
2020 seq = file->private_data;
2021 seq->poll_event = atomic_read(&proc_poll_event);
2022 return 0;
1da177e4
LT
2023}
2024
15ad7cdc 2025static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2026 .open = swaps_open,
2027 .read = seq_read,
2028 .llseek = seq_lseek,
2029 .release = seq_release,
66d7dd51 2030 .poll = swaps_poll,
1da177e4
LT
2031};
2032
2033static int __init procswaps_init(void)
2034{
3d71f86f 2035 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2036 return 0;
2037}
2038__initcall(procswaps_init);
2039#endif /* CONFIG_PROC_FS */
2040
1796316a
JB
2041#ifdef MAX_SWAPFILES_CHECK
2042static int __init max_swapfiles_check(void)
2043{
2044 MAX_SWAPFILES_CHECK();
2045 return 0;
2046}
2047late_initcall(max_swapfiles_check);
2048#endif
2049
53cbb243 2050static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2051{
73c34b6a 2052 struct swap_info_struct *p;
1da177e4 2053 unsigned int type;
efa90a98
HD
2054
2055 p = kzalloc(sizeof(*p), GFP_KERNEL);
2056 if (!p)
53cbb243 2057 return ERR_PTR(-ENOMEM);
efa90a98 2058
5d337b91 2059 spin_lock(&swap_lock);
efa90a98
HD
2060 for (type = 0; type < nr_swapfiles; type++) {
2061 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2062 break;
efa90a98 2063 }
0697212a 2064 if (type >= MAX_SWAPFILES) {
5d337b91 2065 spin_unlock(&swap_lock);
efa90a98 2066 kfree(p);
730c0581 2067 return ERR_PTR(-EPERM);
1da177e4 2068 }
efa90a98
HD
2069 if (type >= nr_swapfiles) {
2070 p->type = type;
2071 swap_info[type] = p;
2072 /*
2073 * Write swap_info[type] before nr_swapfiles, in case a
2074 * racing procfs swap_start() or swap_next() is reading them.
2075 * (We never shrink nr_swapfiles, we never free this entry.)
2076 */
2077 smp_wmb();
2078 nr_swapfiles++;
2079 } else {
2080 kfree(p);
2081 p = swap_info[type];
2082 /*
2083 * Do not memset this entry: a racing procfs swap_next()
2084 * would be relying on p->type to remain valid.
2085 */
2086 }
9625a5f2 2087 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 2088 p->flags = SWP_USED;
1da177e4 2089 p->next = -1;
5d337b91 2090 spin_unlock(&swap_lock);
ec8acf20 2091 spin_lock_init(&p->lock);
efa90a98 2092
53cbb243 2093 return p;
53cbb243
CEB
2094}
2095
4d0e1e10
CEB
2096static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2097{
2098 int error;
2099
2100 if (S_ISBLK(inode->i_mode)) {
2101 p->bdev = bdgrab(I_BDEV(inode));
2102 error = blkdev_get(p->bdev,
2103 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2104 sys_swapon);
2105 if (error < 0) {
2106 p->bdev = NULL;
87ade72a 2107 return -EINVAL;
4d0e1e10
CEB
2108 }
2109 p->old_block_size = block_size(p->bdev);
2110 error = set_blocksize(p->bdev, PAGE_SIZE);
2111 if (error < 0)
87ade72a 2112 return error;
4d0e1e10
CEB
2113 p->flags |= SWP_BLKDEV;
2114 } else if (S_ISREG(inode->i_mode)) {
2115 p->bdev = inode->i_sb->s_bdev;
2116 mutex_lock(&inode->i_mutex);
87ade72a
CEB
2117 if (IS_SWAPFILE(inode))
2118 return -EBUSY;
2119 } else
2120 return -EINVAL;
4d0e1e10
CEB
2121
2122 return 0;
4d0e1e10
CEB
2123}
2124
ca8bd38b
CEB
2125static unsigned long read_swap_header(struct swap_info_struct *p,
2126 union swap_header *swap_header,
2127 struct inode *inode)
2128{
2129 int i;
2130 unsigned long maxpages;
2131 unsigned long swapfilepages;
d6bbbd29 2132 unsigned long last_page;
ca8bd38b
CEB
2133
2134 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2135 pr_err("Unable to find swap-space signature\n");
38719025 2136 return 0;
ca8bd38b
CEB
2137 }
2138
2139 /* swap partition endianess hack... */
2140 if (swab32(swap_header->info.version) == 1) {
2141 swab32s(&swap_header->info.version);
2142 swab32s(&swap_header->info.last_page);
2143 swab32s(&swap_header->info.nr_badpages);
2144 for (i = 0; i < swap_header->info.nr_badpages; i++)
2145 swab32s(&swap_header->info.badpages[i]);
2146 }
2147 /* Check the swap header's sub-version */
2148 if (swap_header->info.version != 1) {
465c47fd
AM
2149 pr_warn("Unable to handle swap header version %d\n",
2150 swap_header->info.version);
38719025 2151 return 0;
ca8bd38b
CEB
2152 }
2153
2154 p->lowest_bit = 1;
2155 p->cluster_next = 1;
2156 p->cluster_nr = 0;
2157
2158 /*
2159 * Find out how many pages are allowed for a single swap
9b15b817 2160 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2161 * of bits for the swap offset in the swp_entry_t type, and
2162 * 2) the number of bits in the swap pte as defined by the
9b15b817 2163 * different architectures. In order to find the
a2c16d6c 2164 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2165 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2166 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2167 * offset is extracted. This will mask all the bits from
2168 * the initial ~0UL mask that can't be encoded in either
2169 * the swp_entry_t or the architecture definition of a
9b15b817 2170 * swap pte.
ca8bd38b
CEB
2171 */
2172 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2173 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2174 last_page = swap_header->info.last_page;
2175 if (last_page > maxpages) {
465c47fd 2176 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2177 maxpages << (PAGE_SHIFT - 10),
2178 last_page << (PAGE_SHIFT - 10));
2179 }
2180 if (maxpages > last_page) {
2181 maxpages = last_page + 1;
ca8bd38b
CEB
2182 /* p->max is an unsigned int: don't overflow it */
2183 if ((unsigned int)maxpages == 0)
2184 maxpages = UINT_MAX;
2185 }
2186 p->highest_bit = maxpages - 1;
2187
2188 if (!maxpages)
38719025 2189 return 0;
ca8bd38b
CEB
2190 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2191 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2192 pr_warn("Swap area shorter than signature indicates\n");
38719025 2193 return 0;
ca8bd38b
CEB
2194 }
2195 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2196 return 0;
ca8bd38b 2197 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2198 return 0;
ca8bd38b
CEB
2199
2200 return maxpages;
ca8bd38b
CEB
2201}
2202
915d4d7b
CEB
2203static int setup_swap_map_and_extents(struct swap_info_struct *p,
2204 union swap_header *swap_header,
2205 unsigned char *swap_map,
2a8f9449 2206 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2207 unsigned long maxpages,
2208 sector_t *span)
2209{
2210 int i;
915d4d7b
CEB
2211 unsigned int nr_good_pages;
2212 int nr_extents;
2a8f9449
SL
2213 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2214 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2215
2216 nr_good_pages = maxpages - 1; /* omit header page */
2217
2a8f9449
SL
2218 cluster_set_null(&p->free_cluster_head);
2219 cluster_set_null(&p->free_cluster_tail);
815c2c54
SL
2220 cluster_set_null(&p->discard_cluster_head);
2221 cluster_set_null(&p->discard_cluster_tail);
2a8f9449 2222
915d4d7b
CEB
2223 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2224 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2225 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2226 return -EINVAL;
915d4d7b
CEB
2227 if (page_nr < maxpages) {
2228 swap_map[page_nr] = SWAP_MAP_BAD;
2229 nr_good_pages--;
2a8f9449
SL
2230 /*
2231 * Haven't marked the cluster free yet, no list
2232 * operation involved
2233 */
2234 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2235 }
2236 }
2237
2a8f9449
SL
2238 /* Haven't marked the cluster free yet, no list operation involved */
2239 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2240 inc_cluster_info_page(p, cluster_info, i);
2241
915d4d7b
CEB
2242 if (nr_good_pages) {
2243 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2244 /*
2245 * Not mark the cluster free yet, no list
2246 * operation involved
2247 */
2248 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2249 p->max = maxpages;
2250 p->pages = nr_good_pages;
2251 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2252 if (nr_extents < 0)
2253 return nr_extents;
915d4d7b
CEB
2254 nr_good_pages = p->pages;
2255 }
2256 if (!nr_good_pages) {
465c47fd 2257 pr_warn("Empty swap-file\n");
bdb8e3f6 2258 return -EINVAL;
915d4d7b
CEB
2259 }
2260
2a8f9449
SL
2261 if (!cluster_info)
2262 return nr_extents;
2263
2264 for (i = 0; i < nr_clusters; i++) {
2265 if (!cluster_count(&cluster_info[idx])) {
2266 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2267 if (cluster_is_null(&p->free_cluster_head)) {
2268 cluster_set_next_flag(&p->free_cluster_head,
2269 idx, 0);
2270 cluster_set_next_flag(&p->free_cluster_tail,
2271 idx, 0);
2272 } else {
2273 unsigned int tail;
2274
2275 tail = cluster_next(&p->free_cluster_tail);
2276 cluster_set_next(&cluster_info[tail], idx);
2277 cluster_set_next_flag(&p->free_cluster_tail,
2278 idx, 0);
2279 }
2280 }
2281 idx++;
2282 if (idx == nr_clusters)
2283 idx = 0;
2284 }
915d4d7b 2285 return nr_extents;
915d4d7b
CEB
2286}
2287
dcf6b7dd
RA
2288/*
2289 * Helper to sys_swapon determining if a given swap
2290 * backing device queue supports DISCARD operations.
2291 */
2292static bool swap_discardable(struct swap_info_struct *si)
2293{
2294 struct request_queue *q = bdev_get_queue(si->bdev);
2295
2296 if (!q || !blk_queue_discard(q))
2297 return false;
2298
2299 return true;
2300}
2301
53cbb243
CEB
2302SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2303{
2304 struct swap_info_struct *p;
91a27b2a 2305 struct filename *name;
53cbb243
CEB
2306 struct file *swap_file = NULL;
2307 struct address_space *mapping;
40531542
CEB
2308 int i;
2309 int prio;
53cbb243
CEB
2310 int error;
2311 union swap_header *swap_header;
915d4d7b 2312 int nr_extents;
53cbb243
CEB
2313 sector_t span;
2314 unsigned long maxpages;
53cbb243 2315 unsigned char *swap_map = NULL;
2a8f9449 2316 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2317 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2318 struct page *page = NULL;
2319 struct inode *inode = NULL;
53cbb243 2320
d15cab97
HD
2321 if (swap_flags & ~SWAP_FLAGS_VALID)
2322 return -EINVAL;
2323
53cbb243
CEB
2324 if (!capable(CAP_SYS_ADMIN))
2325 return -EPERM;
2326
2327 p = alloc_swap_info();
2542e513
CEB
2328 if (IS_ERR(p))
2329 return PTR_ERR(p);
53cbb243 2330
815c2c54
SL
2331 INIT_WORK(&p->discard_work, swap_discard_work);
2332
1da177e4 2333 name = getname(specialfile);
1da177e4 2334 if (IS_ERR(name)) {
7de7fb6b 2335 error = PTR_ERR(name);
1da177e4 2336 name = NULL;
bd69010b 2337 goto bad_swap;
1da177e4 2338 }
669abf4e 2339 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2340 if (IS_ERR(swap_file)) {
7de7fb6b 2341 error = PTR_ERR(swap_file);
1da177e4 2342 swap_file = NULL;
bd69010b 2343 goto bad_swap;
1da177e4
LT
2344 }
2345
2346 p->swap_file = swap_file;
2347 mapping = swap_file->f_mapping;
1da177e4 2348
1da177e4 2349 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 2350 struct swap_info_struct *q = swap_info[i];
1da177e4 2351
e8e6c2ec 2352 if (q == p || !q->swap_file)
1da177e4 2353 continue;
7de7fb6b
CEB
2354 if (mapping == q->swap_file->f_mapping) {
2355 error = -EBUSY;
1da177e4 2356 goto bad_swap;
7de7fb6b 2357 }
1da177e4
LT
2358 }
2359
2130781e
CEB
2360 inode = mapping->host;
2361 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2362 error = claim_swapfile(p, inode);
2363 if (unlikely(error))
1da177e4 2364 goto bad_swap;
1da177e4 2365
1da177e4
LT
2366 /*
2367 * Read the swap header.
2368 */
2369 if (!mapping->a_ops->readpage) {
2370 error = -EINVAL;
2371 goto bad_swap;
2372 }
090d2b18 2373 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2374 if (IS_ERR(page)) {
2375 error = PTR_ERR(page);
2376 goto bad_swap;
2377 }
81e33971 2378 swap_header = kmap(page);
1da177e4 2379
ca8bd38b
CEB
2380 maxpages = read_swap_header(p, swap_header, inode);
2381 if (unlikely(!maxpages)) {
1da177e4
LT
2382 error = -EINVAL;
2383 goto bad_swap;
2384 }
886bb7e9 2385
81e33971 2386 /* OK, set up the swap map and apply the bad block list */
803d0c83 2387 swap_map = vzalloc(maxpages);
81e33971
HD
2388 if (!swap_map) {
2389 error = -ENOMEM;
2390 goto bad_swap;
2391 }
2a8f9449
SL
2392 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2393 p->flags |= SWP_SOLIDSTATE;
2394 /*
2395 * select a random position to start with to help wear leveling
2396 * SSD
2397 */
2398 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2399
2400 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2401 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2402 if (!cluster_info) {
2403 error = -ENOMEM;
2404 goto bad_swap;
2405 }
2406 }
1da177e4 2407
1421ef3c
CEB
2408 error = swap_cgroup_swapon(p->type, maxpages);
2409 if (error)
2410 goto bad_swap;
2411
915d4d7b 2412 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2413 cluster_info, maxpages, &span);
915d4d7b
CEB
2414 if (unlikely(nr_extents < 0)) {
2415 error = nr_extents;
1da177e4
LT
2416 goto bad_swap;
2417 }
38b5faf4
DM
2418 /* frontswap enabled? set up bit-per-page map for frontswap */
2419 if (frontswap_enabled)
7b57976d 2420 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2421
2a8f9449
SL
2422 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2423 /*
2424 * When discard is enabled for swap with no particular
2425 * policy flagged, we set all swap discard flags here in
2426 * order to sustain backward compatibility with older
2427 * swapon(8) releases.
2428 */
2429 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2430 SWP_PAGE_DISCARD);
dcf6b7dd 2431
2a8f9449
SL
2432 /*
2433 * By flagging sys_swapon, a sysadmin can tell us to
2434 * either do single-time area discards only, or to just
2435 * perform discards for released swap page-clusters.
2436 * Now it's time to adjust the p->flags accordingly.
2437 */
2438 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2439 p->flags &= ~SWP_PAGE_DISCARD;
2440 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2441 p->flags &= ~SWP_AREA_DISCARD;
2442
2443 /* issue a swapon-time discard if it's still required */
2444 if (p->flags & SWP_AREA_DISCARD) {
2445 int err = discard_swap(p);
2446 if (unlikely(err))
2447 pr_err("swapon: discard_swap(%p): %d\n",
2448 p, err);
dcf6b7dd 2449 }
20137a49 2450 }
6a6ba831 2451
fc0abb14 2452 mutex_lock(&swapon_mutex);
40531542 2453 prio = -1;
78ecba08 2454 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2455 prio =
78ecba08 2456 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2457 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2458
465c47fd 2459 pr_info("Adding %uk swap on %s. "
dcf6b7dd 2460 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2461 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2462 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2463 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2464 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2465 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2466 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2467 (frontswap_map) ? "FS" : "");
c69dbfb8 2468
fc0abb14 2469 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2470 atomic_inc(&proc_poll_event);
2471 wake_up_interruptible(&proc_poll_wait);
2472
9b01c350
CEB
2473 if (S_ISREG(inode->i_mode))
2474 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2475 error = 0;
2476 goto out;
2477bad_swap:
bd69010b 2478 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2479 set_blocksize(p->bdev, p->old_block_size);
2480 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2481 }
4cd3bb10 2482 destroy_swap_extents(p);
e8e6c2ec 2483 swap_cgroup_swapoff(p->type);
5d337b91 2484 spin_lock(&swap_lock);
1da177e4 2485 p->swap_file = NULL;
1da177e4 2486 p->flags = 0;
5d337b91 2487 spin_unlock(&swap_lock);
1da177e4 2488 vfree(swap_map);
2a8f9449 2489 vfree(cluster_info);
52c50567 2490 if (swap_file) {
2130781e 2491 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2492 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2493 inode = NULL;
2494 }
1da177e4 2495 filp_close(swap_file, NULL);
52c50567 2496 }
1da177e4
LT
2497out:
2498 if (page && !IS_ERR(page)) {
2499 kunmap(page);
2500 page_cache_release(page);
2501 }
2502 if (name)
2503 putname(name);
9b01c350 2504 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2505 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2506 return error;
2507}
2508
2509void si_swapinfo(struct sysinfo *val)
2510{
efa90a98 2511 unsigned int type;
1da177e4
LT
2512 unsigned long nr_to_be_unused = 0;
2513
5d337b91 2514 spin_lock(&swap_lock);
efa90a98
HD
2515 for (type = 0; type < nr_swapfiles; type++) {
2516 struct swap_info_struct *si = swap_info[type];
2517
2518 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2519 nr_to_be_unused += si->inuse_pages;
1da177e4 2520 }
ec8acf20 2521 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2522 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2523 spin_unlock(&swap_lock);
1da177e4
LT
2524}
2525
2526/*
2527 * Verify that a swap entry is valid and increment its swap map count.
2528 *
355cfa73
KH
2529 * Returns error code in following case.
2530 * - success -> 0
2531 * - swp_entry is invalid -> EINVAL
2532 * - swp_entry is migration entry -> EINVAL
2533 * - swap-cache reference is requested but there is already one. -> EEXIST
2534 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2535 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2536 */
8d69aaee 2537static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2538{
73c34b6a 2539 struct swap_info_struct *p;
1da177e4 2540 unsigned long offset, type;
8d69aaee
HD
2541 unsigned char count;
2542 unsigned char has_cache;
253d553b 2543 int err = -EINVAL;
1da177e4 2544
a7420aa5 2545 if (non_swap_entry(entry))
253d553b 2546 goto out;
0697212a 2547
1da177e4
LT
2548 type = swp_type(entry);
2549 if (type >= nr_swapfiles)
2550 goto bad_file;
efa90a98 2551 p = swap_info[type];
1da177e4
LT
2552 offset = swp_offset(entry);
2553
ec8acf20 2554 spin_lock(&p->lock);
355cfa73
KH
2555 if (unlikely(offset >= p->max))
2556 goto unlock_out;
2557
253d553b 2558 count = p->swap_map[offset];
edfe23da
SL
2559
2560 /*
2561 * swapin_readahead() doesn't check if a swap entry is valid, so the
2562 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2563 */
2564 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2565 err = -ENOENT;
2566 goto unlock_out;
2567 }
2568
253d553b
HD
2569 has_cache = count & SWAP_HAS_CACHE;
2570 count &= ~SWAP_HAS_CACHE;
2571 err = 0;
355cfa73 2572
253d553b 2573 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2574
2575 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2576 if (!has_cache && count)
2577 has_cache = SWAP_HAS_CACHE;
2578 else if (has_cache) /* someone else added cache */
2579 err = -EEXIST;
2580 else /* no users remaining */
2581 err = -ENOENT;
355cfa73
KH
2582
2583 } else if (count || has_cache) {
253d553b 2584
570a335b
HD
2585 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2586 count += usage;
2587 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2588 err = -EINVAL;
570a335b
HD
2589 else if (swap_count_continued(p, offset, count))
2590 count = COUNT_CONTINUED;
2591 else
2592 err = -ENOMEM;
355cfa73 2593 } else
253d553b
HD
2594 err = -ENOENT; /* unused swap entry */
2595
2596 p->swap_map[offset] = count | has_cache;
2597
355cfa73 2598unlock_out:
ec8acf20 2599 spin_unlock(&p->lock);
1da177e4 2600out:
253d553b 2601 return err;
1da177e4
LT
2602
2603bad_file:
465c47fd 2604 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2605 goto out;
2606}
253d553b 2607
aaa46865
HD
2608/*
2609 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2610 * (in which case its reference count is never incremented).
2611 */
2612void swap_shmem_alloc(swp_entry_t entry)
2613{
2614 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2615}
2616
355cfa73 2617/*
08259d58
HD
2618 * Increase reference count of swap entry by 1.
2619 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2620 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2621 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2622 * might occur if a page table entry has got corrupted.
355cfa73 2623 */
570a335b 2624int swap_duplicate(swp_entry_t entry)
355cfa73 2625{
570a335b
HD
2626 int err = 0;
2627
2628 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2629 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2630 return err;
355cfa73 2631}
1da177e4 2632
cb4b86ba 2633/*
355cfa73
KH
2634 * @entry: swap entry for which we allocate swap cache.
2635 *
73c34b6a 2636 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2637 * This can return error codes. Returns 0 at success.
2638 * -EBUSY means there is a swap cache.
2639 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2640 */
2641int swapcache_prepare(swp_entry_t entry)
2642{
253d553b 2643 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2644}
2645
f981c595
MG
2646struct swap_info_struct *page_swap_info(struct page *page)
2647{
2648 swp_entry_t swap = { .val = page_private(page) };
2649 BUG_ON(!PageSwapCache(page));
2650 return swap_info[swp_type(swap)];
2651}
2652
2653/*
2654 * out-of-line __page_file_ methods to avoid include hell.
2655 */
2656struct address_space *__page_file_mapping(struct page *page)
2657{
2658 VM_BUG_ON(!PageSwapCache(page));
2659 return page_swap_info(page)->swap_file->f_mapping;
2660}
2661EXPORT_SYMBOL_GPL(__page_file_mapping);
2662
2663pgoff_t __page_file_index(struct page *page)
2664{
2665 swp_entry_t swap = { .val = page_private(page) };
2666 VM_BUG_ON(!PageSwapCache(page));
2667 return swp_offset(swap);
2668}
2669EXPORT_SYMBOL_GPL(__page_file_index);
2670
570a335b
HD
2671/*
2672 * add_swap_count_continuation - called when a swap count is duplicated
2673 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2674 * page of the original vmalloc'ed swap_map, to hold the continuation count
2675 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2676 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2677 *
2678 * These continuation pages are seldom referenced: the common paths all work
2679 * on the original swap_map, only referring to a continuation page when the
2680 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2681 *
2682 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2683 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2684 * can be called after dropping locks.
2685 */
2686int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2687{
2688 struct swap_info_struct *si;
2689 struct page *head;
2690 struct page *page;
2691 struct page *list_page;
2692 pgoff_t offset;
2693 unsigned char count;
2694
2695 /*
2696 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2697 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2698 */
2699 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2700
2701 si = swap_info_get(entry);
2702 if (!si) {
2703 /*
2704 * An acceptable race has occurred since the failing
2705 * __swap_duplicate(): the swap entry has been freed,
2706 * perhaps even the whole swap_map cleared for swapoff.
2707 */
2708 goto outer;
2709 }
2710
2711 offset = swp_offset(entry);
2712 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2713
2714 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2715 /*
2716 * The higher the swap count, the more likely it is that tasks
2717 * will race to add swap count continuation: we need to avoid
2718 * over-provisioning.
2719 */
2720 goto out;
2721 }
2722
2723 if (!page) {
ec8acf20 2724 spin_unlock(&si->lock);
570a335b
HD
2725 return -ENOMEM;
2726 }
2727
2728 /*
2729 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2730 * no architecture is using highmem pages for kernel pagetables: so it
2731 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2732 */
2733 head = vmalloc_to_page(si->swap_map + offset);
2734 offset &= ~PAGE_MASK;
2735
2736 /*
2737 * Page allocation does not initialize the page's lru field,
2738 * but it does always reset its private field.
2739 */
2740 if (!page_private(head)) {
2741 BUG_ON(count & COUNT_CONTINUED);
2742 INIT_LIST_HEAD(&head->lru);
2743 set_page_private(head, SWP_CONTINUED);
2744 si->flags |= SWP_CONTINUED;
2745 }
2746
2747 list_for_each_entry(list_page, &head->lru, lru) {
2748 unsigned char *map;
2749
2750 /*
2751 * If the previous map said no continuation, but we've found
2752 * a continuation page, free our allocation and use this one.
2753 */
2754 if (!(count & COUNT_CONTINUED))
2755 goto out;
2756
9b04c5fe 2757 map = kmap_atomic(list_page) + offset;
570a335b 2758 count = *map;
9b04c5fe 2759 kunmap_atomic(map);
570a335b
HD
2760
2761 /*
2762 * If this continuation count now has some space in it,
2763 * free our allocation and use this one.
2764 */
2765 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2766 goto out;
2767 }
2768
2769 list_add_tail(&page->lru, &head->lru);
2770 page = NULL; /* now it's attached, don't free it */
2771out:
ec8acf20 2772 spin_unlock(&si->lock);
570a335b
HD
2773outer:
2774 if (page)
2775 __free_page(page);
2776 return 0;
2777}
2778
2779/*
2780 * swap_count_continued - when the original swap_map count is incremented
2781 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2782 * into, carry if so, or else fail until a new continuation page is allocated;
2783 * when the original swap_map count is decremented from 0 with continuation,
2784 * borrow from the continuation and report whether it still holds more.
2785 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2786 */
2787static bool swap_count_continued(struct swap_info_struct *si,
2788 pgoff_t offset, unsigned char count)
2789{
2790 struct page *head;
2791 struct page *page;
2792 unsigned char *map;
2793
2794 head = vmalloc_to_page(si->swap_map + offset);
2795 if (page_private(head) != SWP_CONTINUED) {
2796 BUG_ON(count & COUNT_CONTINUED);
2797 return false; /* need to add count continuation */
2798 }
2799
2800 offset &= ~PAGE_MASK;
2801 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2802 map = kmap_atomic(page) + offset;
570a335b
HD
2803
2804 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2805 goto init_map; /* jump over SWAP_CONT_MAX checks */
2806
2807 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2808 /*
2809 * Think of how you add 1 to 999
2810 */
2811 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2812 kunmap_atomic(map);
570a335b
HD
2813 page = list_entry(page->lru.next, struct page, lru);
2814 BUG_ON(page == head);
9b04c5fe 2815 map = kmap_atomic(page) + offset;
570a335b
HD
2816 }
2817 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2818 kunmap_atomic(map);
570a335b
HD
2819 page = list_entry(page->lru.next, struct page, lru);
2820 if (page == head)
2821 return false; /* add count continuation */
9b04c5fe 2822 map = kmap_atomic(page) + offset;
570a335b
HD
2823init_map: *map = 0; /* we didn't zero the page */
2824 }
2825 *map += 1;
9b04c5fe 2826 kunmap_atomic(map);
570a335b
HD
2827 page = list_entry(page->lru.prev, struct page, lru);
2828 while (page != head) {
9b04c5fe 2829 map = kmap_atomic(page) + offset;
570a335b 2830 *map = COUNT_CONTINUED;
9b04c5fe 2831 kunmap_atomic(map);
570a335b
HD
2832 page = list_entry(page->lru.prev, struct page, lru);
2833 }
2834 return true; /* incremented */
2835
2836 } else { /* decrementing */
2837 /*
2838 * Think of how you subtract 1 from 1000
2839 */
2840 BUG_ON(count != COUNT_CONTINUED);
2841 while (*map == COUNT_CONTINUED) {
9b04c5fe 2842 kunmap_atomic(map);
570a335b
HD
2843 page = list_entry(page->lru.next, struct page, lru);
2844 BUG_ON(page == head);
9b04c5fe 2845 map = kmap_atomic(page) + offset;
570a335b
HD
2846 }
2847 BUG_ON(*map == 0);
2848 *map -= 1;
2849 if (*map == 0)
2850 count = 0;
9b04c5fe 2851 kunmap_atomic(map);
570a335b
HD
2852 page = list_entry(page->lru.prev, struct page, lru);
2853 while (page != head) {
9b04c5fe 2854 map = kmap_atomic(page) + offset;
570a335b
HD
2855 *map = SWAP_CONT_MAX | count;
2856 count = COUNT_CONTINUED;
9b04c5fe 2857 kunmap_atomic(map);
570a335b
HD
2858 page = list_entry(page->lru.prev, struct page, lru);
2859 }
2860 return count == COUNT_CONTINUED;
2861 }
2862}
2863
2864/*
2865 * free_swap_count_continuations - swapoff free all the continuation pages
2866 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2867 */
2868static void free_swap_count_continuations(struct swap_info_struct *si)
2869{
2870 pgoff_t offset;
2871
2872 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2873 struct page *head;
2874 head = vmalloc_to_page(si->swap_map + offset);
2875 if (page_private(head)) {
2876 struct list_head *this, *next;
2877 list_for_each_safe(this, next, &head->lru) {
2878 struct page *page;
2879 page = list_entry(this, struct page, lru);
2880 list_del(this);
2881 __free_page(page);
2882 }
2883 }
2884 }
2885}