mm, swap: add sysfs interface for VMA based swap readahead
[linux-block.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
78ecba08 63static int least_priority;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88static PLIST_HEAD(swap_avail_head);
89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
8d69aaee 99static inline unsigned char swap_count(unsigned char ent)
355cfa73 100{
570a335b 101 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
102}
103
efa90a98 104/* returns 1 if swap entry is freed */
c9e44410
KH
105static int
106__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
107{
efa90a98 108 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
109 struct page *page;
110 int ret = 0;
111
f6ab1f7f 112 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
113 if (!page)
114 return 0;
115 /*
116 * This function is called from scan_swap_map() and it's called
117 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
118 * We have to use trylock for avoiding deadlock. This is a special
119 * case and you should use try_to_free_swap() with explicit lock_page()
120 * in usual operations.
121 */
122 if (trylock_page(page)) {
123 ret = try_to_free_swap(page);
124 unlock_page(page);
125 }
09cbfeaf 126 put_page(page);
c9e44410
KH
127 return ret;
128}
355cfa73 129
6a6ba831
HD
130/*
131 * swapon tell device that all the old swap contents can be discarded,
132 * to allow the swap device to optimize its wear-levelling.
133 */
134static int discard_swap(struct swap_info_struct *si)
135{
136 struct swap_extent *se;
9625a5f2
HD
137 sector_t start_block;
138 sector_t nr_blocks;
6a6ba831
HD
139 int err = 0;
140
9625a5f2
HD
141 /* Do not discard the swap header page! */
142 se = &si->first_swap_extent;
143 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 if (nr_blocks) {
146 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 147 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
148 if (err)
149 return err;
150 cond_resched();
151 }
6a6ba831 152
9625a5f2
HD
153 list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 start_block = se->start_block << (PAGE_SHIFT - 9);
155 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
156
157 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 158 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
159 if (err)
160 break;
161
162 cond_resched();
163 }
164 return err; /* That will often be -EOPNOTSUPP */
165}
166
7992fde7
HD
167/*
168 * swap allocation tell device that a cluster of swap can now be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static void discard_swap_cluster(struct swap_info_struct *si,
172 pgoff_t start_page, pgoff_t nr_pages)
173{
174 struct swap_extent *se = si->curr_swap_extent;
175 int found_extent = 0;
176
177 while (nr_pages) {
7992fde7
HD
178 if (se->start_page <= start_page &&
179 start_page < se->start_page + se->nr_pages) {
180 pgoff_t offset = start_page - se->start_page;
181 sector_t start_block = se->start_block + offset;
858a2990 182 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
183
184 if (nr_blocks > nr_pages)
185 nr_blocks = nr_pages;
186 start_page += nr_blocks;
187 nr_pages -= nr_blocks;
188
189 if (!found_extent++)
190 si->curr_swap_extent = se;
191
192 start_block <<= PAGE_SHIFT - 9;
193 nr_blocks <<= PAGE_SHIFT - 9;
194 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 195 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
196 break;
197 }
198
a8ae4991 199 se = list_next_entry(se, list);
7992fde7
HD
200 }
201}
202
38d8b4e6
HY
203#ifdef CONFIG_THP_SWAP
204#define SWAPFILE_CLUSTER HPAGE_PMD_NR
205#else
048c27fd 206#define SWAPFILE_CLUSTER 256
38d8b4e6 207#endif
048c27fd
HD
208#define LATENCY_LIMIT 256
209
2a8f9449
SL
210static inline void cluster_set_flag(struct swap_cluster_info *info,
211 unsigned int flag)
212{
213 info->flags = flag;
214}
215
216static inline unsigned int cluster_count(struct swap_cluster_info *info)
217{
218 return info->data;
219}
220
221static inline void cluster_set_count(struct swap_cluster_info *info,
222 unsigned int c)
223{
224 info->data = c;
225}
226
227static inline void cluster_set_count_flag(struct swap_cluster_info *info,
228 unsigned int c, unsigned int f)
229{
230 info->flags = f;
231 info->data = c;
232}
233
234static inline unsigned int cluster_next(struct swap_cluster_info *info)
235{
236 return info->data;
237}
238
239static inline void cluster_set_next(struct swap_cluster_info *info,
240 unsigned int n)
241{
242 info->data = n;
243}
244
245static inline void cluster_set_next_flag(struct swap_cluster_info *info,
246 unsigned int n, unsigned int f)
247{
248 info->flags = f;
249 info->data = n;
250}
251
252static inline bool cluster_is_free(struct swap_cluster_info *info)
253{
254 return info->flags & CLUSTER_FLAG_FREE;
255}
256
257static inline bool cluster_is_null(struct swap_cluster_info *info)
258{
259 return info->flags & CLUSTER_FLAG_NEXT_NULL;
260}
261
262static inline void cluster_set_null(struct swap_cluster_info *info)
263{
264 info->flags = CLUSTER_FLAG_NEXT_NULL;
265 info->data = 0;
266}
267
e0709829
HY
268static inline bool cluster_is_huge(struct swap_cluster_info *info)
269{
270 return info->flags & CLUSTER_FLAG_HUGE;
271}
272
273static inline void cluster_clear_huge(struct swap_cluster_info *info)
274{
275 info->flags &= ~CLUSTER_FLAG_HUGE;
276}
277
235b6217
HY
278static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
279 unsigned long offset)
280{
281 struct swap_cluster_info *ci;
282
283 ci = si->cluster_info;
284 if (ci) {
285 ci += offset / SWAPFILE_CLUSTER;
286 spin_lock(&ci->lock);
287 }
288 return ci;
289}
290
291static inline void unlock_cluster(struct swap_cluster_info *ci)
292{
293 if (ci)
294 spin_unlock(&ci->lock);
295}
296
297static inline struct swap_cluster_info *lock_cluster_or_swap_info(
298 struct swap_info_struct *si,
299 unsigned long offset)
300{
301 struct swap_cluster_info *ci;
302
303 ci = lock_cluster(si, offset);
304 if (!ci)
305 spin_lock(&si->lock);
306
307 return ci;
308}
309
310static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
311 struct swap_cluster_info *ci)
312{
313 if (ci)
314 unlock_cluster(ci);
315 else
316 spin_unlock(&si->lock);
317}
318
6b534915
HY
319static inline bool cluster_list_empty(struct swap_cluster_list *list)
320{
321 return cluster_is_null(&list->head);
322}
323
324static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
325{
326 return cluster_next(&list->head);
327}
328
329static void cluster_list_init(struct swap_cluster_list *list)
330{
331 cluster_set_null(&list->head);
332 cluster_set_null(&list->tail);
333}
334
335static void cluster_list_add_tail(struct swap_cluster_list *list,
336 struct swap_cluster_info *ci,
337 unsigned int idx)
338{
339 if (cluster_list_empty(list)) {
340 cluster_set_next_flag(&list->head, idx, 0);
341 cluster_set_next_flag(&list->tail, idx, 0);
342 } else {
235b6217 343 struct swap_cluster_info *ci_tail;
6b534915
HY
344 unsigned int tail = cluster_next(&list->tail);
345
235b6217
HY
346 /*
347 * Nested cluster lock, but both cluster locks are
348 * only acquired when we held swap_info_struct->lock
349 */
350 ci_tail = ci + tail;
351 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
352 cluster_set_next(ci_tail, idx);
0ef017d1 353 spin_unlock(&ci_tail->lock);
6b534915
HY
354 cluster_set_next_flag(&list->tail, idx, 0);
355 }
356}
357
358static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
359 struct swap_cluster_info *ci)
360{
361 unsigned int idx;
362
363 idx = cluster_next(&list->head);
364 if (cluster_next(&list->tail) == idx) {
365 cluster_set_null(&list->head);
366 cluster_set_null(&list->tail);
367 } else
368 cluster_set_next_flag(&list->head,
369 cluster_next(&ci[idx]), 0);
370
371 return idx;
372}
373
815c2c54
SL
374/* Add a cluster to discard list and schedule it to do discard */
375static void swap_cluster_schedule_discard(struct swap_info_struct *si,
376 unsigned int idx)
377{
378 /*
379 * If scan_swap_map() can't find a free cluster, it will check
380 * si->swap_map directly. To make sure the discarding cluster isn't
381 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
382 * will be cleared after discard
383 */
384 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
385 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
386
6b534915 387 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
388
389 schedule_work(&si->discard_work);
390}
391
38d8b4e6
HY
392static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
393{
394 struct swap_cluster_info *ci = si->cluster_info;
395
396 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
397 cluster_list_add_tail(&si->free_clusters, ci, idx);
398}
399
815c2c54
SL
400/*
401 * Doing discard actually. After a cluster discard is finished, the cluster
402 * will be added to free cluster list. caller should hold si->lock.
403*/
404static void swap_do_scheduled_discard(struct swap_info_struct *si)
405{
235b6217 406 struct swap_cluster_info *info, *ci;
815c2c54
SL
407 unsigned int idx;
408
409 info = si->cluster_info;
410
6b534915
HY
411 while (!cluster_list_empty(&si->discard_clusters)) {
412 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
413 spin_unlock(&si->lock);
414
415 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
416 SWAPFILE_CLUSTER);
417
418 spin_lock(&si->lock);
235b6217 419 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 420 __free_cluster(si, idx);
815c2c54
SL
421 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
422 0, SWAPFILE_CLUSTER);
235b6217 423 unlock_cluster(ci);
815c2c54
SL
424 }
425}
426
427static void swap_discard_work(struct work_struct *work)
428{
429 struct swap_info_struct *si;
430
431 si = container_of(work, struct swap_info_struct, discard_work);
432
433 spin_lock(&si->lock);
434 swap_do_scheduled_discard(si);
435 spin_unlock(&si->lock);
436}
437
38d8b4e6
HY
438static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
439{
440 struct swap_cluster_info *ci = si->cluster_info;
441
442 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
443 cluster_list_del_first(&si->free_clusters, ci);
444 cluster_set_count_flag(ci + idx, 0, 0);
445}
446
447static void free_cluster(struct swap_info_struct *si, unsigned long idx)
448{
449 struct swap_cluster_info *ci = si->cluster_info + idx;
450
451 VM_BUG_ON(cluster_count(ci) != 0);
452 /*
453 * If the swap is discardable, prepare discard the cluster
454 * instead of free it immediately. The cluster will be freed
455 * after discard.
456 */
457 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
458 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
459 swap_cluster_schedule_discard(si, idx);
460 return;
461 }
462
463 __free_cluster(si, idx);
464}
465
2a8f9449
SL
466/*
467 * The cluster corresponding to page_nr will be used. The cluster will be
468 * removed from free cluster list and its usage counter will be increased.
469 */
470static void inc_cluster_info_page(struct swap_info_struct *p,
471 struct swap_cluster_info *cluster_info, unsigned long page_nr)
472{
473 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
474
475 if (!cluster_info)
476 return;
38d8b4e6
HY
477 if (cluster_is_free(&cluster_info[idx]))
478 alloc_cluster(p, idx);
2a8f9449
SL
479
480 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
481 cluster_set_count(&cluster_info[idx],
482 cluster_count(&cluster_info[idx]) + 1);
483}
484
485/*
486 * The cluster corresponding to page_nr decreases one usage. If the usage
487 * counter becomes 0, which means no page in the cluster is in using, we can
488 * optionally discard the cluster and add it to free cluster list.
489 */
490static void dec_cluster_info_page(struct swap_info_struct *p,
491 struct swap_cluster_info *cluster_info, unsigned long page_nr)
492{
493 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
494
495 if (!cluster_info)
496 return;
497
498 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
499 cluster_set_count(&cluster_info[idx],
500 cluster_count(&cluster_info[idx]) - 1);
501
38d8b4e6
HY
502 if (cluster_count(&cluster_info[idx]) == 0)
503 free_cluster(p, idx);
2a8f9449
SL
504}
505
506/*
507 * It's possible scan_swap_map() uses a free cluster in the middle of free
508 * cluster list. Avoiding such abuse to avoid list corruption.
509 */
ebc2a1a6
SL
510static bool
511scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
512 unsigned long offset)
513{
ebc2a1a6
SL
514 struct percpu_cluster *percpu_cluster;
515 bool conflict;
516
2a8f9449 517 offset /= SWAPFILE_CLUSTER;
6b534915
HY
518 conflict = !cluster_list_empty(&si->free_clusters) &&
519 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 520 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
521
522 if (!conflict)
523 return false;
524
525 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
526 cluster_set_null(&percpu_cluster->index);
527 return true;
528}
529
530/*
531 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
532 * might involve allocating a new cluster for current CPU too.
533 */
36005bae 534static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
535 unsigned long *offset, unsigned long *scan_base)
536{
537 struct percpu_cluster *cluster;
235b6217 538 struct swap_cluster_info *ci;
ebc2a1a6 539 bool found_free;
235b6217 540 unsigned long tmp, max;
ebc2a1a6
SL
541
542new_cluster:
543 cluster = this_cpu_ptr(si->percpu_cluster);
544 if (cluster_is_null(&cluster->index)) {
6b534915
HY
545 if (!cluster_list_empty(&si->free_clusters)) {
546 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
547 cluster->next = cluster_next(&cluster->index) *
548 SWAPFILE_CLUSTER;
6b534915 549 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
550 /*
551 * we don't have free cluster but have some clusters in
552 * discarding, do discard now and reclaim them
553 */
554 swap_do_scheduled_discard(si);
555 *scan_base = *offset = si->cluster_next;
556 goto new_cluster;
557 } else
36005bae 558 return false;
ebc2a1a6
SL
559 }
560
561 found_free = false;
562
563 /*
564 * Other CPUs can use our cluster if they can't find a free cluster,
565 * check if there is still free entry in the cluster
566 */
567 tmp = cluster->next;
235b6217
HY
568 max = min_t(unsigned long, si->max,
569 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
570 if (tmp >= max) {
571 cluster_set_null(&cluster->index);
572 goto new_cluster;
573 }
574 ci = lock_cluster(si, tmp);
575 while (tmp < max) {
ebc2a1a6
SL
576 if (!si->swap_map[tmp]) {
577 found_free = true;
578 break;
579 }
580 tmp++;
581 }
235b6217 582 unlock_cluster(ci);
ebc2a1a6
SL
583 if (!found_free) {
584 cluster_set_null(&cluster->index);
585 goto new_cluster;
586 }
587 cluster->next = tmp + 1;
588 *offset = tmp;
589 *scan_base = tmp;
36005bae 590 return found_free;
2a8f9449
SL
591}
592
38d8b4e6
HY
593static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
594 unsigned int nr_entries)
595{
596 unsigned int end = offset + nr_entries - 1;
597
598 if (offset == si->lowest_bit)
599 si->lowest_bit += nr_entries;
600 if (end == si->highest_bit)
601 si->highest_bit -= nr_entries;
602 si->inuse_pages += nr_entries;
603 if (si->inuse_pages == si->pages) {
604 si->lowest_bit = si->max;
605 si->highest_bit = 0;
606 spin_lock(&swap_avail_lock);
607 plist_del(&si->avail_list, &swap_avail_head);
608 spin_unlock(&swap_avail_lock);
609 }
610}
611
612static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
613 unsigned int nr_entries)
614{
615 unsigned long end = offset + nr_entries - 1;
616 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
617
618 if (offset < si->lowest_bit)
619 si->lowest_bit = offset;
620 if (end > si->highest_bit) {
621 bool was_full = !si->highest_bit;
622
623 si->highest_bit = end;
624 if (was_full && (si->flags & SWP_WRITEOK)) {
625 spin_lock(&swap_avail_lock);
626 WARN_ON(!plist_node_empty(&si->avail_list));
627 if (plist_node_empty(&si->avail_list))
628 plist_add(&si->avail_list, &swap_avail_head);
629 spin_unlock(&swap_avail_lock);
630 }
631 }
632 atomic_long_add(nr_entries, &nr_swap_pages);
633 si->inuse_pages -= nr_entries;
634 if (si->flags & SWP_BLKDEV)
635 swap_slot_free_notify =
636 si->bdev->bd_disk->fops->swap_slot_free_notify;
637 else
638 swap_slot_free_notify = NULL;
639 while (offset <= end) {
640 frontswap_invalidate_page(si->type, offset);
641 if (swap_slot_free_notify)
642 swap_slot_free_notify(si->bdev, offset);
643 offset++;
644 }
645}
646
36005bae
TC
647static int scan_swap_map_slots(struct swap_info_struct *si,
648 unsigned char usage, int nr,
649 swp_entry_t slots[])
1da177e4 650{
235b6217 651 struct swap_cluster_info *ci;
ebebbbe9 652 unsigned long offset;
c60aa176 653 unsigned long scan_base;
7992fde7 654 unsigned long last_in_cluster = 0;
048c27fd 655 int latency_ration = LATENCY_LIMIT;
36005bae
TC
656 int n_ret = 0;
657
658 if (nr > SWAP_BATCH)
659 nr = SWAP_BATCH;
7dfad418 660
886bb7e9 661 /*
7dfad418
HD
662 * We try to cluster swap pages by allocating them sequentially
663 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
664 * way, however, we resort to first-free allocation, starting
665 * a new cluster. This prevents us from scattering swap pages
666 * all over the entire swap partition, so that we reduce
667 * overall disk seek times between swap pages. -- sct
668 * But we do now try to find an empty cluster. -Andrea
c60aa176 669 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
670 */
671
52b7efdb 672 si->flags += SWP_SCANNING;
c60aa176 673 scan_base = offset = si->cluster_next;
ebebbbe9 674
ebc2a1a6
SL
675 /* SSD algorithm */
676 if (si->cluster_info) {
36005bae
TC
677 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
678 goto checks;
679 else
680 goto scan;
ebc2a1a6
SL
681 }
682
ebebbbe9
HD
683 if (unlikely(!si->cluster_nr--)) {
684 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
685 si->cluster_nr = SWAPFILE_CLUSTER - 1;
686 goto checks;
687 }
2a8f9449 688
ec8acf20 689 spin_unlock(&si->lock);
7dfad418 690
c60aa176
HD
691 /*
692 * If seek is expensive, start searching for new cluster from
693 * start of partition, to minimize the span of allocated swap.
50088c44
CY
694 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
695 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 696 */
50088c44 697 scan_base = offset = si->lowest_bit;
7dfad418
HD
698 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
699
700 /* Locate the first empty (unaligned) cluster */
701 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 702 if (si->swap_map[offset])
7dfad418
HD
703 last_in_cluster = offset + SWAPFILE_CLUSTER;
704 else if (offset == last_in_cluster) {
ec8acf20 705 spin_lock(&si->lock);
ebebbbe9
HD
706 offset -= SWAPFILE_CLUSTER - 1;
707 si->cluster_next = offset;
708 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
709 goto checks;
710 }
711 if (unlikely(--latency_ration < 0)) {
712 cond_resched();
713 latency_ration = LATENCY_LIMIT;
714 }
715 }
716
717 offset = scan_base;
ec8acf20 718 spin_lock(&si->lock);
ebebbbe9 719 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 720 }
7dfad418 721
ebebbbe9 722checks:
ebc2a1a6 723 if (si->cluster_info) {
36005bae
TC
724 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
725 /* take a break if we already got some slots */
726 if (n_ret)
727 goto done;
728 if (!scan_swap_map_try_ssd_cluster(si, &offset,
729 &scan_base))
730 goto scan;
731 }
ebc2a1a6 732 }
ebebbbe9 733 if (!(si->flags & SWP_WRITEOK))
52b7efdb 734 goto no_page;
7dfad418
HD
735 if (!si->highest_bit)
736 goto no_page;
ebebbbe9 737 if (offset > si->highest_bit)
c60aa176 738 scan_base = offset = si->lowest_bit;
c9e44410 739
235b6217 740 ci = lock_cluster(si, offset);
b73d7fce
HD
741 /* reuse swap entry of cache-only swap if not busy. */
742 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 743 int swap_was_freed;
235b6217 744 unlock_cluster(ci);
ec8acf20 745 spin_unlock(&si->lock);
c9e44410 746 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 747 spin_lock(&si->lock);
c9e44410
KH
748 /* entry was freed successfully, try to use this again */
749 if (swap_was_freed)
750 goto checks;
751 goto scan; /* check next one */
752 }
753
235b6217
HY
754 if (si->swap_map[offset]) {
755 unlock_cluster(ci);
36005bae
TC
756 if (!n_ret)
757 goto scan;
758 else
759 goto done;
235b6217 760 }
2872bb2d
HY
761 si->swap_map[offset] = usage;
762 inc_cluster_info_page(si, si->cluster_info, offset);
763 unlock_cluster(ci);
ebebbbe9 764
38d8b4e6 765 swap_range_alloc(si, offset, 1);
ebebbbe9 766 si->cluster_next = offset + 1;
36005bae
TC
767 slots[n_ret++] = swp_entry(si->type, offset);
768
769 /* got enough slots or reach max slots? */
770 if ((n_ret == nr) || (offset >= si->highest_bit))
771 goto done;
772
773 /* search for next available slot */
774
775 /* time to take a break? */
776 if (unlikely(--latency_ration < 0)) {
777 if (n_ret)
778 goto done;
779 spin_unlock(&si->lock);
780 cond_resched();
781 spin_lock(&si->lock);
782 latency_ration = LATENCY_LIMIT;
783 }
784
785 /* try to get more slots in cluster */
786 if (si->cluster_info) {
787 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
788 goto checks;
789 else
790 goto done;
791 }
792 /* non-ssd case */
793 ++offset;
794
795 /* non-ssd case, still more slots in cluster? */
796 if (si->cluster_nr && !si->swap_map[offset]) {
797 --si->cluster_nr;
798 goto checks;
799 }
7992fde7 800
36005bae
TC
801done:
802 si->flags -= SWP_SCANNING;
803 return n_ret;
7dfad418 804
ebebbbe9 805scan:
ec8acf20 806 spin_unlock(&si->lock);
7dfad418 807 while (++offset <= si->highest_bit) {
52b7efdb 808 if (!si->swap_map[offset]) {
ec8acf20 809 spin_lock(&si->lock);
52b7efdb
HD
810 goto checks;
811 }
c9e44410 812 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 813 spin_lock(&si->lock);
c9e44410
KH
814 goto checks;
815 }
048c27fd
HD
816 if (unlikely(--latency_ration < 0)) {
817 cond_resched();
818 latency_ration = LATENCY_LIMIT;
819 }
7dfad418 820 }
c60aa176 821 offset = si->lowest_bit;
a5998061 822 while (offset < scan_base) {
c60aa176 823 if (!si->swap_map[offset]) {
ec8acf20 824 spin_lock(&si->lock);
c60aa176
HD
825 goto checks;
826 }
c9e44410 827 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 828 spin_lock(&si->lock);
c9e44410
KH
829 goto checks;
830 }
c60aa176
HD
831 if (unlikely(--latency_ration < 0)) {
832 cond_resched();
833 latency_ration = LATENCY_LIMIT;
834 }
a5998061 835 offset++;
c60aa176 836 }
ec8acf20 837 spin_lock(&si->lock);
7dfad418
HD
838
839no_page:
52b7efdb 840 si->flags -= SWP_SCANNING;
36005bae 841 return n_ret;
1da177e4
LT
842}
843
38d8b4e6
HY
844#ifdef CONFIG_THP_SWAP
845static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
846{
847 unsigned long idx;
848 struct swap_cluster_info *ci;
849 unsigned long offset, i;
850 unsigned char *map;
851
852 if (cluster_list_empty(&si->free_clusters))
853 return 0;
854
855 idx = cluster_list_first(&si->free_clusters);
856 offset = idx * SWAPFILE_CLUSTER;
857 ci = lock_cluster(si, offset);
858 alloc_cluster(si, idx);
e0709829 859 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
860
861 map = si->swap_map + offset;
862 for (i = 0; i < SWAPFILE_CLUSTER; i++)
863 map[i] = SWAP_HAS_CACHE;
864 unlock_cluster(ci);
865 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
866 *slot = swp_entry(si->type, offset);
867
868 return 1;
869}
870
871static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
872{
873 unsigned long offset = idx * SWAPFILE_CLUSTER;
874 struct swap_cluster_info *ci;
875
876 ci = lock_cluster(si, offset);
877 cluster_set_count_flag(ci, 0, 0);
878 free_cluster(si, idx);
879 unlock_cluster(ci);
880 swap_range_free(si, offset, SWAPFILE_CLUSTER);
881}
882#else
883static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
884{
885 VM_WARN_ON_ONCE(1);
886 return 0;
887}
888#endif /* CONFIG_THP_SWAP */
889
36005bae
TC
890static unsigned long scan_swap_map(struct swap_info_struct *si,
891 unsigned char usage)
892{
893 swp_entry_t entry;
894 int n_ret;
895
896 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
897
898 if (n_ret)
899 return swp_offset(entry);
900 else
901 return 0;
902
903}
904
38d8b4e6 905int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
1da177e4 906{
38d8b4e6 907 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
adfab836 908 struct swap_info_struct *si, *next;
36005bae
TC
909 long avail_pgs;
910 int n_ret = 0;
1da177e4 911
38d8b4e6
HY
912 /* Only single cluster request supported */
913 WARN_ON_ONCE(n_goal > 1 && cluster);
914
915 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
36005bae 916 if (avail_pgs <= 0)
fb4f88dc 917 goto noswap;
36005bae
TC
918
919 if (n_goal > SWAP_BATCH)
920 n_goal = SWAP_BATCH;
921
922 if (n_goal > avail_pgs)
923 n_goal = avail_pgs;
924
38d8b4e6 925 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
fb4f88dc 926
18ab4d4c
DS
927 spin_lock(&swap_avail_lock);
928
929start_over:
930 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
931 /* requeue si to after same-priority siblings */
932 plist_requeue(&si->avail_list, &swap_avail_head);
933 spin_unlock(&swap_avail_lock);
ec8acf20 934 spin_lock(&si->lock);
adfab836 935 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
936 spin_lock(&swap_avail_lock);
937 if (plist_node_empty(&si->avail_list)) {
938 spin_unlock(&si->lock);
939 goto nextsi;
940 }
941 WARN(!si->highest_bit,
942 "swap_info %d in list but !highest_bit\n",
943 si->type);
944 WARN(!(si->flags & SWP_WRITEOK),
945 "swap_info %d in list but !SWP_WRITEOK\n",
946 si->type);
947 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 948 spin_unlock(&si->lock);
18ab4d4c 949 goto nextsi;
ec8acf20 950 }
f0eea189
HY
951 if (cluster) {
952 if (!(si->flags & SWP_FILE))
953 n_ret = swap_alloc_cluster(si, swp_entries);
954 } else
38d8b4e6
HY
955 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
956 n_goal, swp_entries);
ec8acf20 957 spin_unlock(&si->lock);
38d8b4e6 958 if (n_ret || cluster)
36005bae 959 goto check_out;
18ab4d4c 960 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
961 si->type);
962
18ab4d4c
DS
963 spin_lock(&swap_avail_lock);
964nextsi:
adfab836
DS
965 /*
966 * if we got here, it's likely that si was almost full before,
967 * and since scan_swap_map() can drop the si->lock, multiple
968 * callers probably all tried to get a page from the same si
18ab4d4c
DS
969 * and it filled up before we could get one; or, the si filled
970 * up between us dropping swap_avail_lock and taking si->lock.
971 * Since we dropped the swap_avail_lock, the swap_avail_head
972 * list may have been modified; so if next is still in the
36005bae
TC
973 * swap_avail_head list then try it, otherwise start over
974 * if we have not gotten any slots.
adfab836 975 */
18ab4d4c
DS
976 if (plist_node_empty(&next->avail_list))
977 goto start_over;
1da177e4 978 }
fb4f88dc 979
18ab4d4c
DS
980 spin_unlock(&swap_avail_lock);
981
36005bae
TC
982check_out:
983 if (n_ret < n_goal)
38d8b4e6
HY
984 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
985 &nr_swap_pages);
fb4f88dc 986noswap:
36005bae
TC
987 return n_ret;
988}
989
2de1a7e4 990/* The only caller of this function is now suspend routine */
910321ea
HD
991swp_entry_t get_swap_page_of_type(int type)
992{
993 struct swap_info_struct *si;
994 pgoff_t offset;
995
910321ea 996 si = swap_info[type];
ec8acf20 997 spin_lock(&si->lock);
910321ea 998 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 999 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1000 /* This is called for allocating swap entry, not cache */
1001 offset = scan_swap_map(si, 1);
1002 if (offset) {
ec8acf20 1003 spin_unlock(&si->lock);
910321ea
HD
1004 return swp_entry(type, offset);
1005 }
ec8acf20 1006 atomic_long_inc(&nr_swap_pages);
910321ea 1007 }
ec8acf20 1008 spin_unlock(&si->lock);
910321ea
HD
1009 return (swp_entry_t) {0};
1010}
1011
e8c26ab6 1012static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1013{
73c34b6a 1014 struct swap_info_struct *p;
1da177e4
LT
1015 unsigned long offset, type;
1016
1017 if (!entry.val)
1018 goto out;
1019 type = swp_type(entry);
1020 if (type >= nr_swapfiles)
1021 goto bad_nofile;
efa90a98 1022 p = swap_info[type];
1da177e4
LT
1023 if (!(p->flags & SWP_USED))
1024 goto bad_device;
1025 offset = swp_offset(entry);
1026 if (offset >= p->max)
1027 goto bad_offset;
1da177e4
LT
1028 return p;
1029
1da177e4 1030bad_offset:
6a991fc7 1031 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1032 goto out;
1033bad_device:
6a991fc7 1034 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1035 goto out;
1036bad_nofile:
6a991fc7 1037 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1038out:
1039 return NULL;
886bb7e9 1040}
1da177e4 1041
e8c26ab6
TC
1042static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1043{
1044 struct swap_info_struct *p;
1045
1046 p = __swap_info_get(entry);
1047 if (!p)
1048 goto out;
1049 if (!p->swap_map[swp_offset(entry)])
1050 goto bad_free;
1051 return p;
1052
1053bad_free:
1054 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1055 goto out;
1056out:
1057 return NULL;
1058}
1059
235b6217
HY
1060static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1061{
1062 struct swap_info_struct *p;
1063
1064 p = _swap_info_get(entry);
1065 if (p)
1066 spin_lock(&p->lock);
1067 return p;
1068}
1069
7c00bafe
TC
1070static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1071 struct swap_info_struct *q)
1072{
1073 struct swap_info_struct *p;
1074
1075 p = _swap_info_get(entry);
1076
1077 if (p != q) {
1078 if (q != NULL)
1079 spin_unlock(&q->lock);
1080 if (p != NULL)
1081 spin_lock(&p->lock);
1082 }
1083 return p;
1084}
1085
1086static unsigned char __swap_entry_free(struct swap_info_struct *p,
1087 swp_entry_t entry, unsigned char usage)
1da177e4 1088{
235b6217 1089 struct swap_cluster_info *ci;
253d553b 1090 unsigned long offset = swp_offset(entry);
8d69aaee
HD
1091 unsigned char count;
1092 unsigned char has_cache;
235b6217 1093
7c00bafe 1094 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 1095
253d553b 1096 count = p->swap_map[offset];
235b6217 1097
253d553b
HD
1098 has_cache = count & SWAP_HAS_CACHE;
1099 count &= ~SWAP_HAS_CACHE;
355cfa73 1100
253d553b 1101 if (usage == SWAP_HAS_CACHE) {
355cfa73 1102 VM_BUG_ON(!has_cache);
253d553b 1103 has_cache = 0;
aaa46865
HD
1104 } else if (count == SWAP_MAP_SHMEM) {
1105 /*
1106 * Or we could insist on shmem.c using a special
1107 * swap_shmem_free() and free_shmem_swap_and_cache()...
1108 */
1109 count = 0;
570a335b
HD
1110 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1111 if (count == COUNT_CONTINUED) {
1112 if (swap_count_continued(p, offset, count))
1113 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1114 else
1115 count = SWAP_MAP_MAX;
1116 } else
1117 count--;
1118 }
253d553b 1119
253d553b 1120 usage = count | has_cache;
7c00bafe
TC
1121 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1122
1123 unlock_cluster_or_swap_info(p, ci);
1124
1125 return usage;
1126}
355cfa73 1127
7c00bafe
TC
1128static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1129{
1130 struct swap_cluster_info *ci;
1131 unsigned long offset = swp_offset(entry);
1132 unsigned char count;
1133
1134 ci = lock_cluster(p, offset);
1135 count = p->swap_map[offset];
1136 VM_BUG_ON(count != SWAP_HAS_CACHE);
1137 p->swap_map[offset] = 0;
1138 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1139 unlock_cluster(ci);
1140
38d8b4e6
HY
1141 mem_cgroup_uncharge_swap(entry, 1);
1142 swap_range_free(p, offset, 1);
1da177e4
LT
1143}
1144
1145/*
2de1a7e4 1146 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1147 * is still around or has not been recycled.
1148 */
1149void swap_free(swp_entry_t entry)
1150{
73c34b6a 1151 struct swap_info_struct *p;
1da177e4 1152
235b6217 1153 p = _swap_info_get(entry);
7c00bafe
TC
1154 if (p) {
1155 if (!__swap_entry_free(p, entry, 1))
67afa38e 1156 free_swap_slot(entry);
7c00bafe 1157 }
1da177e4
LT
1158}
1159
cb4b86ba
KH
1160/*
1161 * Called after dropping swapcache to decrease refcnt to swap entries.
1162 */
75f6d6d2 1163static void swapcache_free(swp_entry_t entry)
cb4b86ba 1164{
355cfa73
KH
1165 struct swap_info_struct *p;
1166
235b6217 1167 p = _swap_info_get(entry);
7c00bafe
TC
1168 if (p) {
1169 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
67afa38e 1170 free_swap_slot(entry);
7c00bafe
TC
1171 }
1172}
1173
38d8b4e6 1174#ifdef CONFIG_THP_SWAP
75f6d6d2 1175static void swapcache_free_cluster(swp_entry_t entry)
38d8b4e6
HY
1176{
1177 unsigned long offset = swp_offset(entry);
1178 unsigned long idx = offset / SWAPFILE_CLUSTER;
1179 struct swap_cluster_info *ci;
1180 struct swap_info_struct *si;
1181 unsigned char *map;
a3aea839
HY
1182 unsigned int i, free_entries = 0;
1183 unsigned char val;
38d8b4e6 1184
a3aea839 1185 si = _swap_info_get(entry);
38d8b4e6
HY
1186 if (!si)
1187 return;
1188
1189 ci = lock_cluster(si, offset);
e0709829 1190 VM_BUG_ON(!cluster_is_huge(ci));
38d8b4e6
HY
1191 map = si->swap_map + offset;
1192 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
a3aea839
HY
1193 val = map[i];
1194 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1195 if (val == SWAP_HAS_CACHE)
1196 free_entries++;
1197 }
1198 if (!free_entries) {
1199 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1200 map[i] &= ~SWAP_HAS_CACHE;
38d8b4e6 1201 }
e0709829 1202 cluster_clear_huge(ci);
38d8b4e6 1203 unlock_cluster(ci);
a3aea839
HY
1204 if (free_entries == SWAPFILE_CLUSTER) {
1205 spin_lock(&si->lock);
1206 ci = lock_cluster(si, offset);
1207 memset(map, 0, SWAPFILE_CLUSTER);
1208 unlock_cluster(ci);
1209 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1210 swap_free_cluster(si, idx);
1211 spin_unlock(&si->lock);
1212 } else if (free_entries) {
1213 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1214 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1215 free_swap_slot(entry);
1216 }
1217 }
38d8b4e6 1218}
59807685
HY
1219
1220int split_swap_cluster(swp_entry_t entry)
1221{
1222 struct swap_info_struct *si;
1223 struct swap_cluster_info *ci;
1224 unsigned long offset = swp_offset(entry);
1225
1226 si = _swap_info_get(entry);
1227 if (!si)
1228 return -EBUSY;
1229 ci = lock_cluster(si, offset);
1230 cluster_clear_huge(ci);
1231 unlock_cluster(ci);
1232 return 0;
1233}
75f6d6d2
MK
1234#else
1235static inline void swapcache_free_cluster(swp_entry_t entry)
1236{
1237}
38d8b4e6
HY
1238#endif /* CONFIG_THP_SWAP */
1239
75f6d6d2
MK
1240void put_swap_page(struct page *page, swp_entry_t entry)
1241{
1242 if (!PageTransHuge(page))
1243 swapcache_free(entry);
1244 else
1245 swapcache_free_cluster(entry);
1246}
1247
155b5f88
HY
1248static int swp_entry_cmp(const void *ent1, const void *ent2)
1249{
1250 const swp_entry_t *e1 = ent1, *e2 = ent2;
1251
1252 return (int)swp_type(*e1) - (int)swp_type(*e2);
1253}
1254
7c00bafe
TC
1255void swapcache_free_entries(swp_entry_t *entries, int n)
1256{
1257 struct swap_info_struct *p, *prev;
1258 int i;
1259
1260 if (n <= 0)
1261 return;
1262
1263 prev = NULL;
1264 p = NULL;
155b5f88
HY
1265
1266 /*
1267 * Sort swap entries by swap device, so each lock is only taken once.
1268 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1269 * so low that it isn't necessary to optimize further.
1270 */
1271 if (nr_swapfiles > 1)
1272 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1273 for (i = 0; i < n; ++i) {
1274 p = swap_info_get_cont(entries[i], prev);
1275 if (p)
1276 swap_entry_free(p, entries[i]);
7c00bafe
TC
1277 prev = p;
1278 }
235b6217 1279 if (p)
7c00bafe 1280 spin_unlock(&p->lock);
cb4b86ba
KH
1281}
1282
1da177e4 1283/*
c475a8ab 1284 * How many references to page are currently swapped out?
570a335b
HD
1285 * This does not give an exact answer when swap count is continued,
1286 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1287 */
bde05d1c 1288int page_swapcount(struct page *page)
1da177e4 1289{
c475a8ab
HD
1290 int count = 0;
1291 struct swap_info_struct *p;
235b6217 1292 struct swap_cluster_info *ci;
1da177e4 1293 swp_entry_t entry;
235b6217 1294 unsigned long offset;
1da177e4 1295
4c21e2f2 1296 entry.val = page_private(page);
235b6217 1297 p = _swap_info_get(entry);
1da177e4 1298 if (p) {
235b6217
HY
1299 offset = swp_offset(entry);
1300 ci = lock_cluster_or_swap_info(p, offset);
1301 count = swap_count(p->swap_map[offset]);
1302 unlock_cluster_or_swap_info(p, ci);
1da177e4 1303 }
c475a8ab 1304 return count;
1da177e4
LT
1305}
1306
322b8afe
HY
1307static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1308{
1309 int count = 0;
1310 pgoff_t offset = swp_offset(entry);
1311 struct swap_cluster_info *ci;
1312
1313 ci = lock_cluster_or_swap_info(si, offset);
1314 count = swap_count(si->swap_map[offset]);
1315 unlock_cluster_or_swap_info(si, ci);
1316 return count;
1317}
1318
e8c26ab6
TC
1319/*
1320 * How many references to @entry are currently swapped out?
1321 * This does not give an exact answer when swap count is continued,
1322 * but does include the high COUNT_CONTINUED flag to allow for that.
1323 */
1324int __swp_swapcount(swp_entry_t entry)
1325{
1326 int count = 0;
e8c26ab6 1327 struct swap_info_struct *si;
e8c26ab6
TC
1328
1329 si = __swap_info_get(entry);
322b8afe
HY
1330 if (si)
1331 count = swap_swapcount(si, entry);
e8c26ab6
TC
1332 return count;
1333}
1334
8334b962
MK
1335/*
1336 * How many references to @entry are currently swapped out?
1337 * This considers COUNT_CONTINUED so it returns exact answer.
1338 */
1339int swp_swapcount(swp_entry_t entry)
1340{
1341 int count, tmp_count, n;
1342 struct swap_info_struct *p;
235b6217 1343 struct swap_cluster_info *ci;
8334b962
MK
1344 struct page *page;
1345 pgoff_t offset;
1346 unsigned char *map;
1347
235b6217 1348 p = _swap_info_get(entry);
8334b962
MK
1349 if (!p)
1350 return 0;
1351
235b6217
HY
1352 offset = swp_offset(entry);
1353
1354 ci = lock_cluster_or_swap_info(p, offset);
1355
1356 count = swap_count(p->swap_map[offset]);
8334b962
MK
1357 if (!(count & COUNT_CONTINUED))
1358 goto out;
1359
1360 count &= ~COUNT_CONTINUED;
1361 n = SWAP_MAP_MAX + 1;
1362
8334b962
MK
1363 page = vmalloc_to_page(p->swap_map + offset);
1364 offset &= ~PAGE_MASK;
1365 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1366
1367 do {
a8ae4991 1368 page = list_next_entry(page, lru);
8334b962
MK
1369 map = kmap_atomic(page);
1370 tmp_count = map[offset];
1371 kunmap_atomic(map);
1372
1373 count += (tmp_count & ~COUNT_CONTINUED) * n;
1374 n *= (SWAP_CONT_MAX + 1);
1375 } while (tmp_count & COUNT_CONTINUED);
1376out:
235b6217 1377 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1378 return count;
1379}
1380
e0709829
HY
1381#ifdef CONFIG_THP_SWAP
1382static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1383 swp_entry_t entry)
1384{
1385 struct swap_cluster_info *ci;
1386 unsigned char *map = si->swap_map;
1387 unsigned long roffset = swp_offset(entry);
1388 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1389 int i;
1390 bool ret = false;
1391
1392 ci = lock_cluster_or_swap_info(si, offset);
1393 if (!ci || !cluster_is_huge(ci)) {
1394 if (map[roffset] != SWAP_HAS_CACHE)
1395 ret = true;
1396 goto unlock_out;
1397 }
1398 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1399 if (map[offset + i] != SWAP_HAS_CACHE) {
1400 ret = true;
1401 break;
1402 }
1403 }
1404unlock_out:
1405 unlock_cluster_or_swap_info(si, ci);
1406 return ret;
1407}
1408
1409static bool page_swapped(struct page *page)
1410{
1411 swp_entry_t entry;
1412 struct swap_info_struct *si;
1413
1414 if (likely(!PageTransCompound(page)))
1415 return page_swapcount(page) != 0;
1416
1417 page = compound_head(page);
1418 entry.val = page_private(page);
1419 si = _swap_info_get(entry);
1420 if (si)
1421 return swap_page_trans_huge_swapped(si, entry);
1422 return false;
1423}
ba3c4ce6
HY
1424
1425static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1426 int *total_swapcount)
1427{
1428 int i, map_swapcount, _total_mapcount, _total_swapcount;
1429 unsigned long offset = 0;
1430 struct swap_info_struct *si;
1431 struct swap_cluster_info *ci = NULL;
1432 unsigned char *map = NULL;
1433 int mapcount, swapcount = 0;
1434
1435 /* hugetlbfs shouldn't call it */
1436 VM_BUG_ON_PAGE(PageHuge(page), page);
1437
1438 if (likely(!PageTransCompound(page))) {
1439 mapcount = atomic_read(&page->_mapcount) + 1;
1440 if (total_mapcount)
1441 *total_mapcount = mapcount;
1442 if (PageSwapCache(page))
1443 swapcount = page_swapcount(page);
1444 if (total_swapcount)
1445 *total_swapcount = swapcount;
1446 return mapcount + swapcount;
1447 }
1448
1449 page = compound_head(page);
1450
1451 _total_mapcount = _total_swapcount = map_swapcount = 0;
1452 if (PageSwapCache(page)) {
1453 swp_entry_t entry;
1454
1455 entry.val = page_private(page);
1456 si = _swap_info_get(entry);
1457 if (si) {
1458 map = si->swap_map;
1459 offset = swp_offset(entry);
1460 }
1461 }
1462 if (map)
1463 ci = lock_cluster(si, offset);
1464 for (i = 0; i < HPAGE_PMD_NR; i++) {
1465 mapcount = atomic_read(&page[i]._mapcount) + 1;
1466 _total_mapcount += mapcount;
1467 if (map) {
1468 swapcount = swap_count(map[offset + i]);
1469 _total_swapcount += swapcount;
1470 }
1471 map_swapcount = max(map_swapcount, mapcount + swapcount);
1472 }
1473 unlock_cluster(ci);
1474 if (PageDoubleMap(page)) {
1475 map_swapcount -= 1;
1476 _total_mapcount -= HPAGE_PMD_NR;
1477 }
1478 mapcount = compound_mapcount(page);
1479 map_swapcount += mapcount;
1480 _total_mapcount += mapcount;
1481 if (total_mapcount)
1482 *total_mapcount = _total_mapcount;
1483 if (total_swapcount)
1484 *total_swapcount = _total_swapcount;
1485
1486 return map_swapcount;
1487}
e0709829
HY
1488#else
1489#define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1490#define page_swapped(page) (page_swapcount(page) != 0)
ba3c4ce6
HY
1491
1492static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1493 int *total_swapcount)
1494{
1495 int mapcount, swapcount = 0;
1496
1497 /* hugetlbfs shouldn't call it */
1498 VM_BUG_ON_PAGE(PageHuge(page), page);
1499
1500 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1501 if (PageSwapCache(page))
1502 swapcount = page_swapcount(page);
1503 if (total_swapcount)
1504 *total_swapcount = swapcount;
1505 return mapcount + swapcount;
1506}
e0709829
HY
1507#endif
1508
1da177e4 1509/*
7b1fe597
HD
1510 * We can write to an anon page without COW if there are no other references
1511 * to it. And as a side-effect, free up its swap: because the old content
1512 * on disk will never be read, and seeking back there to write new content
1513 * later would only waste time away from clustering.
6d0a07ed 1514 *
ba3c4ce6 1515 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1516 * reuse_swap_page() returns false, but it may be always overwritten
1517 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1518 */
ba3c4ce6 1519bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1520{
ba3c4ce6 1521 int count, total_mapcount, total_swapcount;
c475a8ab 1522
309381fe 1523 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1524 if (unlikely(PageKsm(page)))
6d0a07ed 1525 return false;
ba3c4ce6
HY
1526 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1527 &total_swapcount);
1528 if (total_map_swapcount)
1529 *total_map_swapcount = total_mapcount + total_swapcount;
1530 if (count == 1 && PageSwapCache(page) &&
1531 (likely(!PageTransCompound(page)) ||
1532 /* The remaining swap count will be freed soon */
1533 total_swapcount == page_swapcount(page))) {
f0571429 1534 if (!PageWriteback(page)) {
ba3c4ce6 1535 page = compound_head(page);
7b1fe597
HD
1536 delete_from_swap_cache(page);
1537 SetPageDirty(page);
f0571429
MK
1538 } else {
1539 swp_entry_t entry;
1540 struct swap_info_struct *p;
1541
1542 entry.val = page_private(page);
1543 p = swap_info_get(entry);
1544 if (p->flags & SWP_STABLE_WRITES) {
1545 spin_unlock(&p->lock);
1546 return false;
1547 }
1548 spin_unlock(&p->lock);
7b1fe597
HD
1549 }
1550 }
ba3c4ce6 1551
5ad64688 1552 return count <= 1;
1da177e4
LT
1553}
1554
1555/*
a2c43eed
HD
1556 * If swap is getting full, or if there are no more mappings of this page,
1557 * then try_to_free_swap is called to free its swap space.
1da177e4 1558 */
a2c43eed 1559int try_to_free_swap(struct page *page)
1da177e4 1560{
309381fe 1561 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1562
1563 if (!PageSwapCache(page))
1564 return 0;
1565 if (PageWriteback(page))
1566 return 0;
e0709829 1567 if (page_swapped(page))
1da177e4
LT
1568 return 0;
1569
b73d7fce
HD
1570 /*
1571 * Once hibernation has begun to create its image of memory,
1572 * there's a danger that one of the calls to try_to_free_swap()
1573 * - most probably a call from __try_to_reclaim_swap() while
1574 * hibernation is allocating its own swap pages for the image,
1575 * but conceivably even a call from memory reclaim - will free
1576 * the swap from a page which has already been recorded in the
1577 * image as a clean swapcache page, and then reuse its swap for
1578 * another page of the image. On waking from hibernation, the
1579 * original page might be freed under memory pressure, then
1580 * later read back in from swap, now with the wrong data.
1581 *
2de1a7e4 1582 * Hibernation suspends storage while it is writing the image
f90ac398 1583 * to disk so check that here.
b73d7fce 1584 */
f90ac398 1585 if (pm_suspended_storage())
b73d7fce
HD
1586 return 0;
1587
e0709829 1588 page = compound_head(page);
a2c43eed
HD
1589 delete_from_swap_cache(page);
1590 SetPageDirty(page);
1591 return 1;
68a22394
RR
1592}
1593
1da177e4
LT
1594/*
1595 * Free the swap entry like above, but also try to
1596 * free the page cache entry if it is the last user.
1597 */
2509ef26 1598int free_swap_and_cache(swp_entry_t entry)
1da177e4 1599{
2509ef26 1600 struct swap_info_struct *p;
1da177e4 1601 struct page *page = NULL;
7c00bafe 1602 unsigned char count;
1da177e4 1603
a7420aa5 1604 if (non_swap_entry(entry))
2509ef26 1605 return 1;
0697212a 1606
7c00bafe 1607 p = _swap_info_get(entry);
1da177e4 1608 if (p) {
7c00bafe 1609 count = __swap_entry_free(p, entry, 1);
e0709829
HY
1610 if (count == SWAP_HAS_CACHE &&
1611 !swap_page_trans_huge_swapped(p, entry)) {
33806f06 1612 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1613 swp_offset(entry));
8413ac9d 1614 if (page && !trylock_page(page)) {
09cbfeaf 1615 put_page(page);
93fac704
NP
1616 page = NULL;
1617 }
7c00bafe 1618 } else if (!count)
67afa38e 1619 free_swap_slot(entry);
1da177e4
LT
1620 }
1621 if (page) {
a2c43eed
HD
1622 /*
1623 * Not mapped elsewhere, or swap space full? Free it!
1624 * Also recheck PageSwapCache now page is locked (above).
1625 */
93fac704 1626 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe 1627 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
e0709829
HY
1628 !swap_page_trans_huge_swapped(p, entry)) {
1629 page = compound_head(page);
1da177e4
LT
1630 delete_from_swap_cache(page);
1631 SetPageDirty(page);
1632 }
1633 unlock_page(page);
09cbfeaf 1634 put_page(page);
1da177e4 1635 }
2509ef26 1636 return p != NULL;
1da177e4
LT
1637}
1638
b0cb1a19 1639#ifdef CONFIG_HIBERNATION
f577eb30 1640/*
915bae9e 1641 * Find the swap type that corresponds to given device (if any).
f577eb30 1642 *
915bae9e
RW
1643 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1644 * from 0, in which the swap header is expected to be located.
1645 *
1646 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1647 */
7bf23687 1648int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1649{
915bae9e 1650 struct block_device *bdev = NULL;
efa90a98 1651 int type;
f577eb30 1652
915bae9e
RW
1653 if (device)
1654 bdev = bdget(device);
1655
f577eb30 1656 spin_lock(&swap_lock);
efa90a98
HD
1657 for (type = 0; type < nr_swapfiles; type++) {
1658 struct swap_info_struct *sis = swap_info[type];
f577eb30 1659
915bae9e 1660 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1661 continue;
b6b5bce3 1662
915bae9e 1663 if (!bdev) {
7bf23687 1664 if (bdev_p)
dddac6a7 1665 *bdev_p = bdgrab(sis->bdev);
7bf23687 1666
6e1819d6 1667 spin_unlock(&swap_lock);
efa90a98 1668 return type;
6e1819d6 1669 }
915bae9e 1670 if (bdev == sis->bdev) {
9625a5f2 1671 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1672
915bae9e 1673 if (se->start_block == offset) {
7bf23687 1674 if (bdev_p)
dddac6a7 1675 *bdev_p = bdgrab(sis->bdev);
7bf23687 1676
915bae9e
RW
1677 spin_unlock(&swap_lock);
1678 bdput(bdev);
efa90a98 1679 return type;
915bae9e 1680 }
f577eb30
RW
1681 }
1682 }
1683 spin_unlock(&swap_lock);
915bae9e
RW
1684 if (bdev)
1685 bdput(bdev);
1686
f577eb30
RW
1687 return -ENODEV;
1688}
1689
73c34b6a
HD
1690/*
1691 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1692 * corresponding to given index in swap_info (swap type).
1693 */
1694sector_t swapdev_block(int type, pgoff_t offset)
1695{
1696 struct block_device *bdev;
1697
1698 if ((unsigned int)type >= nr_swapfiles)
1699 return 0;
1700 if (!(swap_info[type]->flags & SWP_WRITEOK))
1701 return 0;
d4906e1a 1702 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1703}
1704
f577eb30
RW
1705/*
1706 * Return either the total number of swap pages of given type, or the number
1707 * of free pages of that type (depending on @free)
1708 *
1709 * This is needed for software suspend
1710 */
1711unsigned int count_swap_pages(int type, int free)
1712{
1713 unsigned int n = 0;
1714
efa90a98
HD
1715 spin_lock(&swap_lock);
1716 if ((unsigned int)type < nr_swapfiles) {
1717 struct swap_info_struct *sis = swap_info[type];
1718
ec8acf20 1719 spin_lock(&sis->lock);
efa90a98
HD
1720 if (sis->flags & SWP_WRITEOK) {
1721 n = sis->pages;
f577eb30 1722 if (free)
efa90a98 1723 n -= sis->inuse_pages;
f577eb30 1724 }
ec8acf20 1725 spin_unlock(&sis->lock);
f577eb30 1726 }
efa90a98 1727 spin_unlock(&swap_lock);
f577eb30
RW
1728 return n;
1729}
73c34b6a 1730#endif /* CONFIG_HIBERNATION */
f577eb30 1731
9f8bdb3f 1732static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1733{
9f8bdb3f 1734 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1735}
1736
1da177e4 1737/*
72866f6f
HD
1738 * No need to decide whether this PTE shares the swap entry with others,
1739 * just let do_wp_page work it out if a write is requested later - to
1740 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1741 */
044d66c1 1742static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1743 unsigned long addr, swp_entry_t entry, struct page *page)
1744{
9e16b7fb 1745 struct page *swapcache;
72835c86 1746 struct mem_cgroup *memcg;
044d66c1
HD
1747 spinlock_t *ptl;
1748 pte_t *pte;
1749 int ret = 1;
1750
9e16b7fb
HD
1751 swapcache = page;
1752 page = ksm_might_need_to_copy(page, vma, addr);
1753 if (unlikely(!page))
1754 return -ENOMEM;
1755
f627c2f5
KS
1756 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1757 &memcg, false)) {
044d66c1 1758 ret = -ENOMEM;
85d9fc89
KH
1759 goto out_nolock;
1760 }
044d66c1
HD
1761
1762 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1763 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1764 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1765 ret = 0;
1766 goto out;
1767 }
8a9f3ccd 1768
b084d435 1769 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1770 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1771 get_page(page);
1772 set_pte_at(vma->vm_mm, addr, pte,
1773 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1774 if (page == swapcache) {
d281ee61 1775 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1776 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1777 } else { /* ksm created a completely new copy */
d281ee61 1778 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1779 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1780 lru_cache_add_active_or_unevictable(page, vma);
1781 }
1da177e4
LT
1782 swap_free(entry);
1783 /*
1784 * Move the page to the active list so it is not
1785 * immediately swapped out again after swapon.
1786 */
1787 activate_page(page);
044d66c1
HD
1788out:
1789 pte_unmap_unlock(pte, ptl);
85d9fc89 1790out_nolock:
9e16b7fb
HD
1791 if (page != swapcache) {
1792 unlock_page(page);
1793 put_page(page);
1794 }
044d66c1 1795 return ret;
1da177e4
LT
1796}
1797
1798static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1799 unsigned long addr, unsigned long end,
1800 swp_entry_t entry, struct page *page)
1801{
1da177e4 1802 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1803 pte_t *pte;
8a9f3ccd 1804 int ret = 0;
1da177e4 1805
044d66c1
HD
1806 /*
1807 * We don't actually need pte lock while scanning for swp_pte: since
1808 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1809 * page table while we're scanning; though it could get zapped, and on
1810 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1811 * of unmatched parts which look like swp_pte, so unuse_pte must
1812 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1813 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1814 */
1815 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1816 do {
1817 /*
1818 * swapoff spends a _lot_ of time in this loop!
1819 * Test inline before going to call unuse_pte.
1820 */
9f8bdb3f 1821 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1822 pte_unmap(pte);
1823 ret = unuse_pte(vma, pmd, addr, entry, page);
1824 if (ret)
1825 goto out;
1826 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1827 }
1828 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1829 pte_unmap(pte - 1);
1830out:
8a9f3ccd 1831 return ret;
1da177e4
LT
1832}
1833
1834static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1835 unsigned long addr, unsigned long end,
1836 swp_entry_t entry, struct page *page)
1837{
1838 pmd_t *pmd;
1839 unsigned long next;
8a9f3ccd 1840 int ret;
1da177e4
LT
1841
1842 pmd = pmd_offset(pud, addr);
1843 do {
dc644a07 1844 cond_resched();
1da177e4 1845 next = pmd_addr_end(addr, end);
1a5a9906 1846 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1847 continue;
8a9f3ccd
BS
1848 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1849 if (ret)
1850 return ret;
1da177e4
LT
1851 } while (pmd++, addr = next, addr != end);
1852 return 0;
1853}
1854
c2febafc 1855static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1856 unsigned long addr, unsigned long end,
1857 swp_entry_t entry, struct page *page)
1858{
1859 pud_t *pud;
1860 unsigned long next;
8a9f3ccd 1861 int ret;
1da177e4 1862
c2febafc 1863 pud = pud_offset(p4d, addr);
1da177e4
LT
1864 do {
1865 next = pud_addr_end(addr, end);
1866 if (pud_none_or_clear_bad(pud))
1867 continue;
8a9f3ccd
BS
1868 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1869 if (ret)
1870 return ret;
1da177e4
LT
1871 } while (pud++, addr = next, addr != end);
1872 return 0;
1873}
1874
c2febafc
KS
1875static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1876 unsigned long addr, unsigned long end,
1877 swp_entry_t entry, struct page *page)
1878{
1879 p4d_t *p4d;
1880 unsigned long next;
1881 int ret;
1882
1883 p4d = p4d_offset(pgd, addr);
1884 do {
1885 next = p4d_addr_end(addr, end);
1886 if (p4d_none_or_clear_bad(p4d))
1887 continue;
1888 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1889 if (ret)
1890 return ret;
1891 } while (p4d++, addr = next, addr != end);
1892 return 0;
1893}
1894
1da177e4
LT
1895static int unuse_vma(struct vm_area_struct *vma,
1896 swp_entry_t entry, struct page *page)
1897{
1898 pgd_t *pgd;
1899 unsigned long addr, end, next;
8a9f3ccd 1900 int ret;
1da177e4 1901
3ca7b3c5 1902 if (page_anon_vma(page)) {
1da177e4
LT
1903 addr = page_address_in_vma(page, vma);
1904 if (addr == -EFAULT)
1905 return 0;
1906 else
1907 end = addr + PAGE_SIZE;
1908 } else {
1909 addr = vma->vm_start;
1910 end = vma->vm_end;
1911 }
1912
1913 pgd = pgd_offset(vma->vm_mm, addr);
1914 do {
1915 next = pgd_addr_end(addr, end);
1916 if (pgd_none_or_clear_bad(pgd))
1917 continue;
c2febafc 1918 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1919 if (ret)
1920 return ret;
1da177e4
LT
1921 } while (pgd++, addr = next, addr != end);
1922 return 0;
1923}
1924
1925static int unuse_mm(struct mm_struct *mm,
1926 swp_entry_t entry, struct page *page)
1927{
1928 struct vm_area_struct *vma;
8a9f3ccd 1929 int ret = 0;
1da177e4
LT
1930
1931 if (!down_read_trylock(&mm->mmap_sem)) {
1932 /*
7d03431c
FLVC
1933 * Activate page so shrink_inactive_list is unlikely to unmap
1934 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1935 */
c475a8ab 1936 activate_page(page);
1da177e4
LT
1937 unlock_page(page);
1938 down_read(&mm->mmap_sem);
1939 lock_page(page);
1940 }
1da177e4 1941 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1942 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1943 break;
dc644a07 1944 cond_resched();
1da177e4 1945 }
1da177e4 1946 up_read(&mm->mmap_sem);
8a9f3ccd 1947 return (ret < 0)? ret: 0;
1da177e4
LT
1948}
1949
1950/*
38b5faf4
DM
1951 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1952 * from current position to next entry still in use.
1da177e4
LT
1953 * Recycle to start on reaching the end, returning 0 when empty.
1954 */
6eb396dc 1955static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1956 unsigned int prev, bool frontswap)
1da177e4 1957{
6eb396dc
HD
1958 unsigned int max = si->max;
1959 unsigned int i = prev;
8d69aaee 1960 unsigned char count;
1da177e4
LT
1961
1962 /*
5d337b91 1963 * No need for swap_lock here: we're just looking
1da177e4
LT
1964 * for whether an entry is in use, not modifying it; false
1965 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1966 * allocations from this area (while holding swap_lock).
1da177e4
LT
1967 */
1968 for (;;) {
1969 if (++i >= max) {
1970 if (!prev) {
1971 i = 0;
1972 break;
1973 }
1974 /*
1975 * No entries in use at top of swap_map,
1976 * loop back to start and recheck there.
1977 */
1978 max = prev + 1;
1979 prev = 0;
1980 i = 1;
1981 }
4db0c3c2 1982 count = READ_ONCE(si->swap_map[i]);
355cfa73 1983 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1984 if (!frontswap || frontswap_test(si, i))
1985 break;
1986 if ((i % LATENCY_LIMIT) == 0)
1987 cond_resched();
1da177e4
LT
1988 }
1989 return i;
1990}
1991
1992/*
1993 * We completely avoid races by reading each swap page in advance,
1994 * and then search for the process using it. All the necessary
1995 * page table adjustments can then be made atomically.
38b5faf4
DM
1996 *
1997 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1998 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1999 */
38b5faf4
DM
2000int try_to_unuse(unsigned int type, bool frontswap,
2001 unsigned long pages_to_unuse)
1da177e4 2002{
efa90a98 2003 struct swap_info_struct *si = swap_info[type];
1da177e4 2004 struct mm_struct *start_mm;
edfe23da
SL
2005 volatile unsigned char *swap_map; /* swap_map is accessed without
2006 * locking. Mark it as volatile
2007 * to prevent compiler doing
2008 * something odd.
2009 */
8d69aaee 2010 unsigned char swcount;
1da177e4
LT
2011 struct page *page;
2012 swp_entry_t entry;
6eb396dc 2013 unsigned int i = 0;
1da177e4 2014 int retval = 0;
1da177e4
LT
2015
2016 /*
2017 * When searching mms for an entry, a good strategy is to
2018 * start at the first mm we freed the previous entry from
2019 * (though actually we don't notice whether we or coincidence
2020 * freed the entry). Initialize this start_mm with a hold.
2021 *
2022 * A simpler strategy would be to start at the last mm we
2023 * freed the previous entry from; but that would take less
2024 * advantage of mmlist ordering, which clusters forked mms
2025 * together, child after parent. If we race with dup_mmap(), we
2026 * prefer to resolve parent before child, lest we miss entries
2027 * duplicated after we scanned child: using last mm would invert
570a335b 2028 * that.
1da177e4
LT
2029 */
2030 start_mm = &init_mm;
3fce371b 2031 mmget(&init_mm);
1da177e4
LT
2032
2033 /*
2034 * Keep on scanning until all entries have gone. Usually,
2035 * one pass through swap_map is enough, but not necessarily:
2036 * there are races when an instance of an entry might be missed.
2037 */
38b5faf4 2038 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
2039 if (signal_pending(current)) {
2040 retval = -EINTR;
2041 break;
2042 }
2043
886bb7e9 2044 /*
1da177e4
LT
2045 * Get a page for the entry, using the existing swap
2046 * cache page if there is one. Otherwise, get a clean
886bb7e9 2047 * page and read the swap into it.
1da177e4
LT
2048 */
2049 swap_map = &si->swap_map[i];
2050 entry = swp_entry(type, i);
02098fea 2051 page = read_swap_cache_async(entry,
23955622 2052 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
2053 if (!page) {
2054 /*
2055 * Either swap_duplicate() failed because entry
2056 * has been freed independently, and will not be
2057 * reused since sys_swapoff() already disabled
2058 * allocation from here, or alloc_page() failed.
2059 */
edfe23da
SL
2060 swcount = *swap_map;
2061 /*
2062 * We don't hold lock here, so the swap entry could be
2063 * SWAP_MAP_BAD (when the cluster is discarding).
2064 * Instead of fail out, We can just skip the swap
2065 * entry because swapoff will wait for discarding
2066 * finish anyway.
2067 */
2068 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
2069 continue;
2070 retval = -ENOMEM;
2071 break;
2072 }
2073
2074 /*
2075 * Don't hold on to start_mm if it looks like exiting.
2076 */
2077 if (atomic_read(&start_mm->mm_users) == 1) {
2078 mmput(start_mm);
2079 start_mm = &init_mm;
3fce371b 2080 mmget(&init_mm);
1da177e4
LT
2081 }
2082
2083 /*
2084 * Wait for and lock page. When do_swap_page races with
2085 * try_to_unuse, do_swap_page can handle the fault much
2086 * faster than try_to_unuse can locate the entry. This
2087 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2088 * defer to do_swap_page in such a case - in some tests,
2089 * do_swap_page and try_to_unuse repeatedly compete.
2090 */
2091 wait_on_page_locked(page);
2092 wait_on_page_writeback(page);
2093 lock_page(page);
2094 wait_on_page_writeback(page);
2095
2096 /*
2097 * Remove all references to entry.
1da177e4 2098 */
1da177e4 2099 swcount = *swap_map;
aaa46865
HD
2100 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2101 retval = shmem_unuse(entry, page);
2102 /* page has already been unlocked and released */
2103 if (retval < 0)
2104 break;
2105 continue;
1da177e4 2106 }
aaa46865
HD
2107 if (swap_count(swcount) && start_mm != &init_mm)
2108 retval = unuse_mm(start_mm, entry, page);
2109
355cfa73 2110 if (swap_count(*swap_map)) {
1da177e4
LT
2111 int set_start_mm = (*swap_map >= swcount);
2112 struct list_head *p = &start_mm->mmlist;
2113 struct mm_struct *new_start_mm = start_mm;
2114 struct mm_struct *prev_mm = start_mm;
2115 struct mm_struct *mm;
2116
3fce371b
VN
2117 mmget(new_start_mm);
2118 mmget(prev_mm);
1da177e4 2119 spin_lock(&mmlist_lock);
aaa46865 2120 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2121 (p = p->next) != &start_mm->mmlist) {
2122 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2123 if (!mmget_not_zero(mm))
1da177e4 2124 continue;
1da177e4
LT
2125 spin_unlock(&mmlist_lock);
2126 mmput(prev_mm);
2127 prev_mm = mm;
2128
2129 cond_resched();
2130
2131 swcount = *swap_map;
355cfa73 2132 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2133 ;
aaa46865 2134 else if (mm == &init_mm)
1da177e4 2135 set_start_mm = 1;
aaa46865 2136 else
1da177e4 2137 retval = unuse_mm(mm, entry, page);
355cfa73 2138
32c5fc10 2139 if (set_start_mm && *swap_map < swcount) {
1da177e4 2140 mmput(new_start_mm);
3fce371b 2141 mmget(mm);
1da177e4
LT
2142 new_start_mm = mm;
2143 set_start_mm = 0;
2144 }
2145 spin_lock(&mmlist_lock);
2146 }
2147 spin_unlock(&mmlist_lock);
2148 mmput(prev_mm);
2149 mmput(start_mm);
2150 start_mm = new_start_mm;
2151 }
2152 if (retval) {
2153 unlock_page(page);
09cbfeaf 2154 put_page(page);
1da177e4
LT
2155 break;
2156 }
2157
1da177e4
LT
2158 /*
2159 * If a reference remains (rare), we would like to leave
2160 * the page in the swap cache; but try_to_unmap could
2161 * then re-duplicate the entry once we drop page lock,
2162 * so we might loop indefinitely; also, that page could
2163 * not be swapped out to other storage meanwhile. So:
2164 * delete from cache even if there's another reference,
2165 * after ensuring that the data has been saved to disk -
2166 * since if the reference remains (rarer), it will be
2167 * read from disk into another page. Splitting into two
2168 * pages would be incorrect if swap supported "shared
2169 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2170 *
2171 * Given how unuse_vma() targets one particular offset
2172 * in an anon_vma, once the anon_vma has been determined,
2173 * this splitting happens to be just what is needed to
2174 * handle where KSM pages have been swapped out: re-reading
2175 * is unnecessarily slow, but we can fix that later on.
1da177e4 2176 */
355cfa73
KH
2177 if (swap_count(*swap_map) &&
2178 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2179 struct writeback_control wbc = {
2180 .sync_mode = WB_SYNC_NONE,
2181 };
2182
e0709829 2183 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2184 lock_page(page);
2185 wait_on_page_writeback(page);
2186 }
68bdc8d6
HD
2187
2188 /*
2189 * It is conceivable that a racing task removed this page from
2190 * swap cache just before we acquired the page lock at the top,
2191 * or while we dropped it in unuse_mm(). The page might even
2192 * be back in swap cache on another swap area: that we must not
2193 * delete, since it may not have been written out to swap yet.
2194 */
2195 if (PageSwapCache(page) &&
e0709829
HY
2196 likely(page_private(page) == entry.val) &&
2197 !page_swapped(page))
2198 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2199
2200 /*
2201 * So we could skip searching mms once swap count went
2202 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2203 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2204 */
2205 SetPageDirty(page);
2206 unlock_page(page);
09cbfeaf 2207 put_page(page);
1da177e4
LT
2208
2209 /*
2210 * Make sure that we aren't completely killing
2211 * interactive performance.
2212 */
2213 cond_resched();
38b5faf4
DM
2214 if (frontswap && pages_to_unuse > 0) {
2215 if (!--pages_to_unuse)
2216 break;
2217 }
1da177e4
LT
2218 }
2219
2220 mmput(start_mm);
1da177e4
LT
2221 return retval;
2222}
2223
2224/*
5d337b91
HD
2225 * After a successful try_to_unuse, if no swap is now in use, we know
2226 * we can empty the mmlist. swap_lock must be held on entry and exit.
2227 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2228 * added to the mmlist just after page_duplicate - before would be racy.
2229 */
2230static void drain_mmlist(void)
2231{
2232 struct list_head *p, *next;
efa90a98 2233 unsigned int type;
1da177e4 2234
efa90a98
HD
2235 for (type = 0; type < nr_swapfiles; type++)
2236 if (swap_info[type]->inuse_pages)
1da177e4
LT
2237 return;
2238 spin_lock(&mmlist_lock);
2239 list_for_each_safe(p, next, &init_mm.mmlist)
2240 list_del_init(p);
2241 spin_unlock(&mmlist_lock);
2242}
2243
2244/*
2245 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2246 * corresponds to page offset for the specified swap entry.
2247 * Note that the type of this function is sector_t, but it returns page offset
2248 * into the bdev, not sector offset.
1da177e4 2249 */
d4906e1a 2250static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2251{
f29ad6a9
HD
2252 struct swap_info_struct *sis;
2253 struct swap_extent *start_se;
2254 struct swap_extent *se;
2255 pgoff_t offset;
2256
efa90a98 2257 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2258 *bdev = sis->bdev;
2259
2260 offset = swp_offset(entry);
2261 start_se = sis->curr_swap_extent;
2262 se = start_se;
1da177e4
LT
2263
2264 for ( ; ; ) {
1da177e4
LT
2265 if (se->start_page <= offset &&
2266 offset < (se->start_page + se->nr_pages)) {
2267 return se->start_block + (offset - se->start_page);
2268 }
a8ae4991 2269 se = list_next_entry(se, list);
1da177e4
LT
2270 sis->curr_swap_extent = se;
2271 BUG_ON(se == start_se); /* It *must* be present */
2272 }
2273}
2274
d4906e1a
LS
2275/*
2276 * Returns the page offset into bdev for the specified page's swap entry.
2277 */
2278sector_t map_swap_page(struct page *page, struct block_device **bdev)
2279{
2280 swp_entry_t entry;
2281 entry.val = page_private(page);
2282 return map_swap_entry(entry, bdev);
2283}
2284
1da177e4
LT
2285/*
2286 * Free all of a swapdev's extent information
2287 */
2288static void destroy_swap_extents(struct swap_info_struct *sis)
2289{
9625a5f2 2290 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2291 struct swap_extent *se;
2292
a8ae4991 2293 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2294 struct swap_extent, list);
2295 list_del(&se->list);
2296 kfree(se);
2297 }
62c230bc
MG
2298
2299 if (sis->flags & SWP_FILE) {
2300 struct file *swap_file = sis->swap_file;
2301 struct address_space *mapping = swap_file->f_mapping;
2302
2303 sis->flags &= ~SWP_FILE;
2304 mapping->a_ops->swap_deactivate(swap_file);
2305 }
1da177e4
LT
2306}
2307
2308/*
2309 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2310 * extent list. The extent list is kept sorted in page order.
1da177e4 2311 *
11d31886 2312 * This function rather assumes that it is called in ascending page order.
1da177e4 2313 */
a509bc1a 2314int
1da177e4
LT
2315add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2316 unsigned long nr_pages, sector_t start_block)
2317{
2318 struct swap_extent *se;
2319 struct swap_extent *new_se;
2320 struct list_head *lh;
2321
9625a5f2
HD
2322 if (start_page == 0) {
2323 se = &sis->first_swap_extent;
2324 sis->curr_swap_extent = se;
2325 se->start_page = 0;
2326 se->nr_pages = nr_pages;
2327 se->start_block = start_block;
2328 return 1;
2329 } else {
2330 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2331 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2332 BUG_ON(se->start_page + se->nr_pages != start_page);
2333 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2334 /* Merge it */
2335 se->nr_pages += nr_pages;
2336 return 0;
2337 }
1da177e4
LT
2338 }
2339
2340 /*
2341 * No merge. Insert a new extent, preserving ordering.
2342 */
2343 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2344 if (new_se == NULL)
2345 return -ENOMEM;
2346 new_se->start_page = start_page;
2347 new_se->nr_pages = nr_pages;
2348 new_se->start_block = start_block;
2349
9625a5f2 2350 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2351 return 1;
1da177e4
LT
2352}
2353
2354/*
2355 * A `swap extent' is a simple thing which maps a contiguous range of pages
2356 * onto a contiguous range of disk blocks. An ordered list of swap extents
2357 * is built at swapon time and is then used at swap_writepage/swap_readpage
2358 * time for locating where on disk a page belongs.
2359 *
2360 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2361 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2362 * swap files identically.
2363 *
2364 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2365 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2366 * swapfiles are handled *identically* after swapon time.
2367 *
2368 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2369 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2370 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2371 * requirements, they are simply tossed out - we will never use those blocks
2372 * for swapping.
2373 *
b0d9bcd4 2374 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2375 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2376 * which will scribble on the fs.
2377 *
2378 * The amount of disk space which a single swap extent represents varies.
2379 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2380 * extents in the list. To avoid much list walking, we cache the previous
2381 * search location in `curr_swap_extent', and start new searches from there.
2382 * This is extremely effective. The average number of iterations in
2383 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2384 */
53092a74 2385static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2386{
62c230bc
MG
2387 struct file *swap_file = sis->swap_file;
2388 struct address_space *mapping = swap_file->f_mapping;
2389 struct inode *inode = mapping->host;
1da177e4
LT
2390 int ret;
2391
1da177e4
LT
2392 if (S_ISBLK(inode->i_mode)) {
2393 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2394 *span = sis->pages;
a509bc1a 2395 return ret;
1da177e4
LT
2396 }
2397
62c230bc 2398 if (mapping->a_ops->swap_activate) {
a509bc1a 2399 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2400 if (!ret) {
2401 sis->flags |= SWP_FILE;
2402 ret = add_swap_extent(sis, 0, sis->max, 0);
2403 *span = sis->pages;
2404 }
a509bc1a 2405 return ret;
62c230bc
MG
2406 }
2407
a509bc1a 2408 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2409}
2410
cf0cac0a 2411static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2412 unsigned char *swap_map,
2413 struct swap_cluster_info *cluster_info)
40531542 2414{
40531542
CEB
2415 if (prio >= 0)
2416 p->prio = prio;
2417 else
2418 p->prio = --least_priority;
18ab4d4c
DS
2419 /*
2420 * the plist prio is negated because plist ordering is
2421 * low-to-high, while swap ordering is high-to-low
2422 */
2423 p->list.prio = -p->prio;
2424 p->avail_list.prio = -p->prio;
40531542 2425 p->swap_map = swap_map;
2a8f9449 2426 p->cluster_info = cluster_info;
40531542 2427 p->flags |= SWP_WRITEOK;
ec8acf20 2428 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2429 total_swap_pages += p->pages;
2430
adfab836 2431 assert_spin_locked(&swap_lock);
adfab836 2432 /*
18ab4d4c
DS
2433 * both lists are plists, and thus priority ordered.
2434 * swap_active_head needs to be priority ordered for swapoff(),
2435 * which on removal of any swap_info_struct with an auto-assigned
2436 * (i.e. negative) priority increments the auto-assigned priority
2437 * of any lower-priority swap_info_structs.
2438 * swap_avail_head needs to be priority ordered for get_swap_page(),
2439 * which allocates swap pages from the highest available priority
2440 * swap_info_struct.
adfab836 2441 */
18ab4d4c
DS
2442 plist_add(&p->list, &swap_active_head);
2443 spin_lock(&swap_avail_lock);
2444 plist_add(&p->avail_list, &swap_avail_head);
2445 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
2446}
2447
2448static void enable_swap_info(struct swap_info_struct *p, int prio,
2449 unsigned char *swap_map,
2a8f9449 2450 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2451 unsigned long *frontswap_map)
2452{
4f89849d 2453 frontswap_init(p->type, frontswap_map);
cf0cac0a 2454 spin_lock(&swap_lock);
ec8acf20 2455 spin_lock(&p->lock);
2a8f9449 2456 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2457 spin_unlock(&p->lock);
cf0cac0a
CEB
2458 spin_unlock(&swap_lock);
2459}
2460
2461static void reinsert_swap_info(struct swap_info_struct *p)
2462{
2463 spin_lock(&swap_lock);
ec8acf20 2464 spin_lock(&p->lock);
2a8f9449 2465 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2466 spin_unlock(&p->lock);
40531542
CEB
2467 spin_unlock(&swap_lock);
2468}
2469
67afa38e
TC
2470bool has_usable_swap(void)
2471{
2472 bool ret = true;
2473
2474 spin_lock(&swap_lock);
2475 if (plist_head_empty(&swap_active_head))
2476 ret = false;
2477 spin_unlock(&swap_lock);
2478 return ret;
2479}
2480
c4ea37c2 2481SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2482{
73c34b6a 2483 struct swap_info_struct *p = NULL;
8d69aaee 2484 unsigned char *swap_map;
2a8f9449 2485 struct swap_cluster_info *cluster_info;
4f89849d 2486 unsigned long *frontswap_map;
1da177e4
LT
2487 struct file *swap_file, *victim;
2488 struct address_space *mapping;
2489 struct inode *inode;
91a27b2a 2490 struct filename *pathname;
adfab836 2491 int err, found = 0;
5b808a23 2492 unsigned int old_block_size;
886bb7e9 2493
1da177e4
LT
2494 if (!capable(CAP_SYS_ADMIN))
2495 return -EPERM;
2496
191c5424
AV
2497 BUG_ON(!current->mm);
2498
1da177e4 2499 pathname = getname(specialfile);
1da177e4 2500 if (IS_ERR(pathname))
f58b59c1 2501 return PTR_ERR(pathname);
1da177e4 2502
669abf4e 2503 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2504 err = PTR_ERR(victim);
2505 if (IS_ERR(victim))
2506 goto out;
2507
2508 mapping = victim->f_mapping;
5d337b91 2509 spin_lock(&swap_lock);
18ab4d4c 2510 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2511 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2512 if (p->swap_file->f_mapping == mapping) {
2513 found = 1;
1da177e4 2514 break;
adfab836 2515 }
1da177e4 2516 }
1da177e4 2517 }
adfab836 2518 if (!found) {
1da177e4 2519 err = -EINVAL;
5d337b91 2520 spin_unlock(&swap_lock);
1da177e4
LT
2521 goto out_dput;
2522 }
191c5424 2523 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2524 vm_unacct_memory(p->pages);
2525 else {
2526 err = -ENOMEM;
5d337b91 2527 spin_unlock(&swap_lock);
1da177e4
LT
2528 goto out_dput;
2529 }
18ab4d4c
DS
2530 spin_lock(&swap_avail_lock);
2531 plist_del(&p->avail_list, &swap_avail_head);
2532 spin_unlock(&swap_avail_lock);
ec8acf20 2533 spin_lock(&p->lock);
78ecba08 2534 if (p->prio < 0) {
adfab836
DS
2535 struct swap_info_struct *si = p;
2536
18ab4d4c 2537 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2538 si->prio++;
18ab4d4c
DS
2539 si->list.prio--;
2540 si->avail_list.prio--;
adfab836 2541 }
78ecba08
HD
2542 least_priority++;
2543 }
18ab4d4c 2544 plist_del(&p->list, &swap_active_head);
ec8acf20 2545 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2546 total_swap_pages -= p->pages;
2547 p->flags &= ~SWP_WRITEOK;
ec8acf20 2548 spin_unlock(&p->lock);
5d337b91 2549 spin_unlock(&swap_lock);
fb4f88dc 2550
039939a6
TC
2551 disable_swap_slots_cache_lock();
2552
e1e12d2f 2553 set_current_oom_origin();
adfab836 2554 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2555 clear_current_oom_origin();
1da177e4 2556
1da177e4
LT
2557 if (err) {
2558 /* re-insert swap space back into swap_list */
cf0cac0a 2559 reinsert_swap_info(p);
039939a6 2560 reenable_swap_slots_cache_unlock();
1da177e4
LT
2561 goto out_dput;
2562 }
52b7efdb 2563
039939a6
TC
2564 reenable_swap_slots_cache_unlock();
2565
815c2c54
SL
2566 flush_work(&p->discard_work);
2567
5d337b91 2568 destroy_swap_extents(p);
570a335b
HD
2569 if (p->flags & SWP_CONTINUED)
2570 free_swap_count_continuations(p);
2571
fc0abb14 2572 mutex_lock(&swapon_mutex);
5d337b91 2573 spin_lock(&swap_lock);
ec8acf20 2574 spin_lock(&p->lock);
5d337b91
HD
2575 drain_mmlist();
2576
52b7efdb 2577 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2578 p->highest_bit = 0; /* cuts scans short */
2579 while (p->flags >= SWP_SCANNING) {
ec8acf20 2580 spin_unlock(&p->lock);
5d337b91 2581 spin_unlock(&swap_lock);
13e4b57f 2582 schedule_timeout_uninterruptible(1);
5d337b91 2583 spin_lock(&swap_lock);
ec8acf20 2584 spin_lock(&p->lock);
52b7efdb 2585 }
52b7efdb 2586
1da177e4 2587 swap_file = p->swap_file;
5b808a23 2588 old_block_size = p->old_block_size;
1da177e4
LT
2589 p->swap_file = NULL;
2590 p->max = 0;
2591 swap_map = p->swap_map;
2592 p->swap_map = NULL;
2a8f9449
SL
2593 cluster_info = p->cluster_info;
2594 p->cluster_info = NULL;
4f89849d 2595 frontswap_map = frontswap_map_get(p);
ec8acf20 2596 spin_unlock(&p->lock);
5d337b91 2597 spin_unlock(&swap_lock);
adfab836 2598 frontswap_invalidate_area(p->type);
58e97ba6 2599 frontswap_map_set(p, NULL);
fc0abb14 2600 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2601 free_percpu(p->percpu_cluster);
2602 p->percpu_cluster = NULL;
1da177e4 2603 vfree(swap_map);
54f180d3
HY
2604 kvfree(cluster_info);
2605 kvfree(frontswap_map);
2de1a7e4 2606 /* Destroy swap account information */
adfab836 2607 swap_cgroup_swapoff(p->type);
4b3ef9da 2608 exit_swap_address_space(p->type);
27a7faa0 2609
1da177e4
LT
2610 inode = mapping->host;
2611 if (S_ISBLK(inode->i_mode)) {
2612 struct block_device *bdev = I_BDEV(inode);
5b808a23 2613 set_blocksize(bdev, old_block_size);
e525fd89 2614 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2615 } else {
5955102c 2616 inode_lock(inode);
1da177e4 2617 inode->i_flags &= ~S_SWAPFILE;
5955102c 2618 inode_unlock(inode);
1da177e4
LT
2619 }
2620 filp_close(swap_file, NULL);
f893ab41
WY
2621
2622 /*
2623 * Clear the SWP_USED flag after all resources are freed so that swapon
2624 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2625 * not hold p->lock after we cleared its SWP_WRITEOK.
2626 */
2627 spin_lock(&swap_lock);
2628 p->flags = 0;
2629 spin_unlock(&swap_lock);
2630
1da177e4 2631 err = 0;
66d7dd51
KS
2632 atomic_inc(&proc_poll_event);
2633 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2634
2635out_dput:
2636 filp_close(victim, NULL);
2637out:
f58b59c1 2638 putname(pathname);
1da177e4
LT
2639 return err;
2640}
2641
2642#ifdef CONFIG_PROC_FS
66d7dd51
KS
2643static unsigned swaps_poll(struct file *file, poll_table *wait)
2644{
f1514638 2645 struct seq_file *seq = file->private_data;
66d7dd51
KS
2646
2647 poll_wait(file, &proc_poll_wait, wait);
2648
f1514638
KS
2649 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2650 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2651 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2652 }
2653
2654 return POLLIN | POLLRDNORM;
2655}
2656
1da177e4
LT
2657/* iterator */
2658static void *swap_start(struct seq_file *swap, loff_t *pos)
2659{
efa90a98
HD
2660 struct swap_info_struct *si;
2661 int type;
1da177e4
LT
2662 loff_t l = *pos;
2663
fc0abb14 2664 mutex_lock(&swapon_mutex);
1da177e4 2665
881e4aab
SS
2666 if (!l)
2667 return SEQ_START_TOKEN;
2668
efa90a98
HD
2669 for (type = 0; type < nr_swapfiles; type++) {
2670 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2671 si = swap_info[type];
2672 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2673 continue;
881e4aab 2674 if (!--l)
efa90a98 2675 return si;
1da177e4
LT
2676 }
2677
2678 return NULL;
2679}
2680
2681static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2682{
efa90a98
HD
2683 struct swap_info_struct *si = v;
2684 int type;
1da177e4 2685
881e4aab 2686 if (v == SEQ_START_TOKEN)
efa90a98
HD
2687 type = 0;
2688 else
2689 type = si->type + 1;
881e4aab 2690
efa90a98
HD
2691 for (; type < nr_swapfiles; type++) {
2692 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2693 si = swap_info[type];
2694 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2695 continue;
2696 ++*pos;
efa90a98 2697 return si;
1da177e4
LT
2698 }
2699
2700 return NULL;
2701}
2702
2703static void swap_stop(struct seq_file *swap, void *v)
2704{
fc0abb14 2705 mutex_unlock(&swapon_mutex);
1da177e4
LT
2706}
2707
2708static int swap_show(struct seq_file *swap, void *v)
2709{
efa90a98 2710 struct swap_info_struct *si = v;
1da177e4
LT
2711 struct file *file;
2712 int len;
2713
efa90a98 2714 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2715 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2716 return 0;
2717 }
1da177e4 2718
efa90a98 2719 file = si->swap_file;
2726d566 2720 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2721 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2722 len < 40 ? 40 - len : 1, " ",
496ad9aa 2723 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2724 "partition" : "file\t",
efa90a98
HD
2725 si->pages << (PAGE_SHIFT - 10),
2726 si->inuse_pages << (PAGE_SHIFT - 10),
2727 si->prio);
1da177e4
LT
2728 return 0;
2729}
2730
15ad7cdc 2731static const struct seq_operations swaps_op = {
1da177e4
LT
2732 .start = swap_start,
2733 .next = swap_next,
2734 .stop = swap_stop,
2735 .show = swap_show
2736};
2737
2738static int swaps_open(struct inode *inode, struct file *file)
2739{
f1514638 2740 struct seq_file *seq;
66d7dd51
KS
2741 int ret;
2742
66d7dd51 2743 ret = seq_open(file, &swaps_op);
f1514638 2744 if (ret)
66d7dd51 2745 return ret;
66d7dd51 2746
f1514638
KS
2747 seq = file->private_data;
2748 seq->poll_event = atomic_read(&proc_poll_event);
2749 return 0;
1da177e4
LT
2750}
2751
15ad7cdc 2752static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2753 .open = swaps_open,
2754 .read = seq_read,
2755 .llseek = seq_lseek,
2756 .release = seq_release,
66d7dd51 2757 .poll = swaps_poll,
1da177e4
LT
2758};
2759
2760static int __init procswaps_init(void)
2761{
3d71f86f 2762 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2763 return 0;
2764}
2765__initcall(procswaps_init);
2766#endif /* CONFIG_PROC_FS */
2767
1796316a
JB
2768#ifdef MAX_SWAPFILES_CHECK
2769static int __init max_swapfiles_check(void)
2770{
2771 MAX_SWAPFILES_CHECK();
2772 return 0;
2773}
2774late_initcall(max_swapfiles_check);
2775#endif
2776
53cbb243 2777static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2778{
73c34b6a 2779 struct swap_info_struct *p;
1da177e4 2780 unsigned int type;
efa90a98
HD
2781
2782 p = kzalloc(sizeof(*p), GFP_KERNEL);
2783 if (!p)
53cbb243 2784 return ERR_PTR(-ENOMEM);
efa90a98 2785
5d337b91 2786 spin_lock(&swap_lock);
efa90a98
HD
2787 for (type = 0; type < nr_swapfiles; type++) {
2788 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2789 break;
efa90a98 2790 }
0697212a 2791 if (type >= MAX_SWAPFILES) {
5d337b91 2792 spin_unlock(&swap_lock);
efa90a98 2793 kfree(p);
730c0581 2794 return ERR_PTR(-EPERM);
1da177e4 2795 }
efa90a98
HD
2796 if (type >= nr_swapfiles) {
2797 p->type = type;
2798 swap_info[type] = p;
2799 /*
2800 * Write swap_info[type] before nr_swapfiles, in case a
2801 * racing procfs swap_start() or swap_next() is reading them.
2802 * (We never shrink nr_swapfiles, we never free this entry.)
2803 */
2804 smp_wmb();
2805 nr_swapfiles++;
2806 } else {
2807 kfree(p);
2808 p = swap_info[type];
2809 /*
2810 * Do not memset this entry: a racing procfs swap_next()
2811 * would be relying on p->type to remain valid.
2812 */
2813 }
9625a5f2 2814 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2815 plist_node_init(&p->list, 0);
2816 plist_node_init(&p->avail_list, 0);
1da177e4 2817 p->flags = SWP_USED;
5d337b91 2818 spin_unlock(&swap_lock);
ec8acf20 2819 spin_lock_init(&p->lock);
efa90a98 2820
53cbb243 2821 return p;
53cbb243
CEB
2822}
2823
4d0e1e10
CEB
2824static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2825{
2826 int error;
2827
2828 if (S_ISBLK(inode->i_mode)) {
2829 p->bdev = bdgrab(I_BDEV(inode));
2830 error = blkdev_get(p->bdev,
6f179af8 2831 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2832 if (error < 0) {
2833 p->bdev = NULL;
6f179af8 2834 return error;
4d0e1e10
CEB
2835 }
2836 p->old_block_size = block_size(p->bdev);
2837 error = set_blocksize(p->bdev, PAGE_SIZE);
2838 if (error < 0)
87ade72a 2839 return error;
4d0e1e10
CEB
2840 p->flags |= SWP_BLKDEV;
2841 } else if (S_ISREG(inode->i_mode)) {
2842 p->bdev = inode->i_sb->s_bdev;
5955102c 2843 inode_lock(inode);
87ade72a
CEB
2844 if (IS_SWAPFILE(inode))
2845 return -EBUSY;
2846 } else
2847 return -EINVAL;
4d0e1e10
CEB
2848
2849 return 0;
4d0e1e10
CEB
2850}
2851
ca8bd38b
CEB
2852static unsigned long read_swap_header(struct swap_info_struct *p,
2853 union swap_header *swap_header,
2854 struct inode *inode)
2855{
2856 int i;
2857 unsigned long maxpages;
2858 unsigned long swapfilepages;
d6bbbd29 2859 unsigned long last_page;
ca8bd38b
CEB
2860
2861 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2862 pr_err("Unable to find swap-space signature\n");
38719025 2863 return 0;
ca8bd38b
CEB
2864 }
2865
2866 /* swap partition endianess hack... */
2867 if (swab32(swap_header->info.version) == 1) {
2868 swab32s(&swap_header->info.version);
2869 swab32s(&swap_header->info.last_page);
2870 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2871 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2872 return 0;
ca8bd38b
CEB
2873 for (i = 0; i < swap_header->info.nr_badpages; i++)
2874 swab32s(&swap_header->info.badpages[i]);
2875 }
2876 /* Check the swap header's sub-version */
2877 if (swap_header->info.version != 1) {
465c47fd
AM
2878 pr_warn("Unable to handle swap header version %d\n",
2879 swap_header->info.version);
38719025 2880 return 0;
ca8bd38b
CEB
2881 }
2882
2883 p->lowest_bit = 1;
2884 p->cluster_next = 1;
2885 p->cluster_nr = 0;
2886
2887 /*
2888 * Find out how many pages are allowed for a single swap
9b15b817 2889 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2890 * of bits for the swap offset in the swp_entry_t type, and
2891 * 2) the number of bits in the swap pte as defined by the
9b15b817 2892 * different architectures. In order to find the
a2c16d6c 2893 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2894 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2895 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2896 * offset is extracted. This will mask all the bits from
2897 * the initial ~0UL mask that can't be encoded in either
2898 * the swp_entry_t or the architecture definition of a
9b15b817 2899 * swap pte.
ca8bd38b
CEB
2900 */
2901 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2902 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2903 last_page = swap_header->info.last_page;
2904 if (last_page > maxpages) {
465c47fd 2905 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2906 maxpages << (PAGE_SHIFT - 10),
2907 last_page << (PAGE_SHIFT - 10));
2908 }
2909 if (maxpages > last_page) {
2910 maxpages = last_page + 1;
ca8bd38b
CEB
2911 /* p->max is an unsigned int: don't overflow it */
2912 if ((unsigned int)maxpages == 0)
2913 maxpages = UINT_MAX;
2914 }
2915 p->highest_bit = maxpages - 1;
2916
2917 if (!maxpages)
38719025 2918 return 0;
ca8bd38b
CEB
2919 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2920 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2921 pr_warn("Swap area shorter than signature indicates\n");
38719025 2922 return 0;
ca8bd38b
CEB
2923 }
2924 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2925 return 0;
ca8bd38b 2926 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2927 return 0;
ca8bd38b
CEB
2928
2929 return maxpages;
ca8bd38b
CEB
2930}
2931
4b3ef9da 2932#define SWAP_CLUSTER_INFO_COLS \
235b6217 2933 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2934#define SWAP_CLUSTER_SPACE_COLS \
2935 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2936#define SWAP_CLUSTER_COLS \
2937 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2938
915d4d7b
CEB
2939static int setup_swap_map_and_extents(struct swap_info_struct *p,
2940 union swap_header *swap_header,
2941 unsigned char *swap_map,
2a8f9449 2942 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2943 unsigned long maxpages,
2944 sector_t *span)
2945{
235b6217 2946 unsigned int j, k;
915d4d7b
CEB
2947 unsigned int nr_good_pages;
2948 int nr_extents;
2a8f9449 2949 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2950 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2951 unsigned long i, idx;
915d4d7b
CEB
2952
2953 nr_good_pages = maxpages - 1; /* omit header page */
2954
6b534915
HY
2955 cluster_list_init(&p->free_clusters);
2956 cluster_list_init(&p->discard_clusters);
2a8f9449 2957
915d4d7b
CEB
2958 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2959 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2960 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2961 return -EINVAL;
915d4d7b
CEB
2962 if (page_nr < maxpages) {
2963 swap_map[page_nr] = SWAP_MAP_BAD;
2964 nr_good_pages--;
2a8f9449
SL
2965 /*
2966 * Haven't marked the cluster free yet, no list
2967 * operation involved
2968 */
2969 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2970 }
2971 }
2972
2a8f9449
SL
2973 /* Haven't marked the cluster free yet, no list operation involved */
2974 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2975 inc_cluster_info_page(p, cluster_info, i);
2976
915d4d7b
CEB
2977 if (nr_good_pages) {
2978 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2979 /*
2980 * Not mark the cluster free yet, no list
2981 * operation involved
2982 */
2983 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2984 p->max = maxpages;
2985 p->pages = nr_good_pages;
2986 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2987 if (nr_extents < 0)
2988 return nr_extents;
915d4d7b
CEB
2989 nr_good_pages = p->pages;
2990 }
2991 if (!nr_good_pages) {
465c47fd 2992 pr_warn("Empty swap-file\n");
bdb8e3f6 2993 return -EINVAL;
915d4d7b
CEB
2994 }
2995
2a8f9449
SL
2996 if (!cluster_info)
2997 return nr_extents;
2998
235b6217 2999
4b3ef9da
HY
3000 /*
3001 * Reduce false cache line sharing between cluster_info and
3002 * sharing same address space.
3003 */
235b6217
HY
3004 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3005 j = (k + col) % SWAP_CLUSTER_COLS;
3006 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3007 idx = i * SWAP_CLUSTER_COLS + j;
3008 if (idx >= nr_clusters)
3009 continue;
3010 if (cluster_count(&cluster_info[idx]))
3011 continue;
2a8f9449 3012 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3013 cluster_list_add_tail(&p->free_clusters, cluster_info,
3014 idx);
2a8f9449 3015 }
2a8f9449 3016 }
915d4d7b 3017 return nr_extents;
915d4d7b
CEB
3018}
3019
dcf6b7dd
RA
3020/*
3021 * Helper to sys_swapon determining if a given swap
3022 * backing device queue supports DISCARD operations.
3023 */
3024static bool swap_discardable(struct swap_info_struct *si)
3025{
3026 struct request_queue *q = bdev_get_queue(si->bdev);
3027
3028 if (!q || !blk_queue_discard(q))
3029 return false;
3030
3031 return true;
3032}
3033
53cbb243
CEB
3034SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3035{
3036 struct swap_info_struct *p;
91a27b2a 3037 struct filename *name;
53cbb243
CEB
3038 struct file *swap_file = NULL;
3039 struct address_space *mapping;
40531542 3040 int prio;
53cbb243
CEB
3041 int error;
3042 union swap_header *swap_header;
915d4d7b 3043 int nr_extents;
53cbb243
CEB
3044 sector_t span;
3045 unsigned long maxpages;
53cbb243 3046 unsigned char *swap_map = NULL;
2a8f9449 3047 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3048 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3049 struct page *page = NULL;
3050 struct inode *inode = NULL;
53cbb243 3051
d15cab97
HD
3052 if (swap_flags & ~SWAP_FLAGS_VALID)
3053 return -EINVAL;
3054
53cbb243
CEB
3055 if (!capable(CAP_SYS_ADMIN))
3056 return -EPERM;
3057
3058 p = alloc_swap_info();
2542e513
CEB
3059 if (IS_ERR(p))
3060 return PTR_ERR(p);
53cbb243 3061
815c2c54
SL
3062 INIT_WORK(&p->discard_work, swap_discard_work);
3063
1da177e4 3064 name = getname(specialfile);
1da177e4 3065 if (IS_ERR(name)) {
7de7fb6b 3066 error = PTR_ERR(name);
1da177e4 3067 name = NULL;
bd69010b 3068 goto bad_swap;
1da177e4 3069 }
669abf4e 3070 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3071 if (IS_ERR(swap_file)) {
7de7fb6b 3072 error = PTR_ERR(swap_file);
1da177e4 3073 swap_file = NULL;
bd69010b 3074 goto bad_swap;
1da177e4
LT
3075 }
3076
3077 p->swap_file = swap_file;
3078 mapping = swap_file->f_mapping;
2130781e 3079 inode = mapping->host;
6f179af8 3080
5955102c 3081 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3082 error = claim_swapfile(p, inode);
3083 if (unlikely(error))
1da177e4 3084 goto bad_swap;
1da177e4 3085
1da177e4
LT
3086 /*
3087 * Read the swap header.
3088 */
3089 if (!mapping->a_ops->readpage) {
3090 error = -EINVAL;
3091 goto bad_swap;
3092 }
090d2b18 3093 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3094 if (IS_ERR(page)) {
3095 error = PTR_ERR(page);
3096 goto bad_swap;
3097 }
81e33971 3098 swap_header = kmap(page);
1da177e4 3099
ca8bd38b
CEB
3100 maxpages = read_swap_header(p, swap_header, inode);
3101 if (unlikely(!maxpages)) {
1da177e4
LT
3102 error = -EINVAL;
3103 goto bad_swap;
3104 }
886bb7e9 3105
81e33971 3106 /* OK, set up the swap map and apply the bad block list */
803d0c83 3107 swap_map = vzalloc(maxpages);
81e33971
HD
3108 if (!swap_map) {
3109 error = -ENOMEM;
3110 goto bad_swap;
3111 }
f0571429
MK
3112
3113 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3114 p->flags |= SWP_STABLE_WRITES;
3115
2a8f9449 3116 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3117 int cpu;
235b6217 3118 unsigned long ci, nr_cluster;
6f179af8 3119
2a8f9449
SL
3120 p->flags |= SWP_SOLIDSTATE;
3121 /*
3122 * select a random position to start with to help wear leveling
3123 * SSD
3124 */
3125 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3126 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3127
54f180d3
HY
3128 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3129 GFP_KERNEL);
2a8f9449
SL
3130 if (!cluster_info) {
3131 error = -ENOMEM;
3132 goto bad_swap;
3133 }
235b6217
HY
3134
3135 for (ci = 0; ci < nr_cluster; ci++)
3136 spin_lock_init(&((cluster_info + ci)->lock));
3137
ebc2a1a6
SL
3138 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3139 if (!p->percpu_cluster) {
3140 error = -ENOMEM;
3141 goto bad_swap;
3142 }
6f179af8 3143 for_each_possible_cpu(cpu) {
ebc2a1a6 3144 struct percpu_cluster *cluster;
6f179af8 3145 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3146 cluster_set_null(&cluster->index);
3147 }
2a8f9449 3148 }
1da177e4 3149
1421ef3c
CEB
3150 error = swap_cgroup_swapon(p->type, maxpages);
3151 if (error)
3152 goto bad_swap;
3153
915d4d7b 3154 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3155 cluster_info, maxpages, &span);
915d4d7b
CEB
3156 if (unlikely(nr_extents < 0)) {
3157 error = nr_extents;
1da177e4
LT
3158 goto bad_swap;
3159 }
38b5faf4 3160 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3161 if (IS_ENABLED(CONFIG_FRONTSWAP))
54f180d3
HY
3162 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3163 GFP_KERNEL);
1da177e4 3164
2a8f9449
SL
3165 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3166 /*
3167 * When discard is enabled for swap with no particular
3168 * policy flagged, we set all swap discard flags here in
3169 * order to sustain backward compatibility with older
3170 * swapon(8) releases.
3171 */
3172 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3173 SWP_PAGE_DISCARD);
dcf6b7dd 3174
2a8f9449
SL
3175 /*
3176 * By flagging sys_swapon, a sysadmin can tell us to
3177 * either do single-time area discards only, or to just
3178 * perform discards for released swap page-clusters.
3179 * Now it's time to adjust the p->flags accordingly.
3180 */
3181 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3182 p->flags &= ~SWP_PAGE_DISCARD;
3183 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3184 p->flags &= ~SWP_AREA_DISCARD;
3185
3186 /* issue a swapon-time discard if it's still required */
3187 if (p->flags & SWP_AREA_DISCARD) {
3188 int err = discard_swap(p);
3189 if (unlikely(err))
3190 pr_err("swapon: discard_swap(%p): %d\n",
3191 p, err);
dcf6b7dd 3192 }
20137a49 3193 }
6a6ba831 3194
4b3ef9da
HY
3195 error = init_swap_address_space(p->type, maxpages);
3196 if (error)
3197 goto bad_swap;
3198
fc0abb14 3199 mutex_lock(&swapon_mutex);
40531542 3200 prio = -1;
78ecba08 3201 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3202 prio =
78ecba08 3203 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3204 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3205
756a025f 3206 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3207 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3208 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3209 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3210 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3211 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3212 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3213 (frontswap_map) ? "FS" : "");
c69dbfb8 3214
fc0abb14 3215 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3216 atomic_inc(&proc_poll_event);
3217 wake_up_interruptible(&proc_poll_wait);
3218
9b01c350
CEB
3219 if (S_ISREG(inode->i_mode))
3220 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3221 error = 0;
3222 goto out;
3223bad_swap:
ebc2a1a6
SL
3224 free_percpu(p->percpu_cluster);
3225 p->percpu_cluster = NULL;
bd69010b 3226 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3227 set_blocksize(p->bdev, p->old_block_size);
3228 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3229 }
4cd3bb10 3230 destroy_swap_extents(p);
e8e6c2ec 3231 swap_cgroup_swapoff(p->type);
5d337b91 3232 spin_lock(&swap_lock);
1da177e4 3233 p->swap_file = NULL;
1da177e4 3234 p->flags = 0;
5d337b91 3235 spin_unlock(&swap_lock);
1da177e4 3236 vfree(swap_map);
2a8f9449 3237 vfree(cluster_info);
52c50567 3238 if (swap_file) {
2130781e 3239 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3240 inode_unlock(inode);
2130781e
CEB
3241 inode = NULL;
3242 }
1da177e4 3243 filp_close(swap_file, NULL);
52c50567 3244 }
1da177e4
LT
3245out:
3246 if (page && !IS_ERR(page)) {
3247 kunmap(page);
09cbfeaf 3248 put_page(page);
1da177e4
LT
3249 }
3250 if (name)
3251 putname(name);
9b01c350 3252 if (inode && S_ISREG(inode->i_mode))
5955102c 3253 inode_unlock(inode);
039939a6
TC
3254 if (!error)
3255 enable_swap_slots_cache();
1da177e4
LT
3256 return error;
3257}
3258
3259void si_swapinfo(struct sysinfo *val)
3260{
efa90a98 3261 unsigned int type;
1da177e4
LT
3262 unsigned long nr_to_be_unused = 0;
3263
5d337b91 3264 spin_lock(&swap_lock);
efa90a98
HD
3265 for (type = 0; type < nr_swapfiles; type++) {
3266 struct swap_info_struct *si = swap_info[type];
3267
3268 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3269 nr_to_be_unused += si->inuse_pages;
1da177e4 3270 }
ec8acf20 3271 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3272 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3273 spin_unlock(&swap_lock);
1da177e4
LT
3274}
3275
3276/*
3277 * Verify that a swap entry is valid and increment its swap map count.
3278 *
355cfa73
KH
3279 * Returns error code in following case.
3280 * - success -> 0
3281 * - swp_entry is invalid -> EINVAL
3282 * - swp_entry is migration entry -> EINVAL
3283 * - swap-cache reference is requested but there is already one. -> EEXIST
3284 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3285 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3286 */
8d69aaee 3287static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3288{
73c34b6a 3289 struct swap_info_struct *p;
235b6217 3290 struct swap_cluster_info *ci;
1da177e4 3291 unsigned long offset, type;
8d69aaee
HD
3292 unsigned char count;
3293 unsigned char has_cache;
253d553b 3294 int err = -EINVAL;
1da177e4 3295
a7420aa5 3296 if (non_swap_entry(entry))
253d553b 3297 goto out;
0697212a 3298
1da177e4
LT
3299 type = swp_type(entry);
3300 if (type >= nr_swapfiles)
3301 goto bad_file;
efa90a98 3302 p = swap_info[type];
1da177e4 3303 offset = swp_offset(entry);
355cfa73 3304 if (unlikely(offset >= p->max))
235b6217
HY
3305 goto out;
3306
3307 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3308
253d553b 3309 count = p->swap_map[offset];
edfe23da
SL
3310
3311 /*
3312 * swapin_readahead() doesn't check if a swap entry is valid, so the
3313 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3314 */
3315 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3316 err = -ENOENT;
3317 goto unlock_out;
3318 }
3319
253d553b
HD
3320 has_cache = count & SWAP_HAS_CACHE;
3321 count &= ~SWAP_HAS_CACHE;
3322 err = 0;
355cfa73 3323
253d553b 3324 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3325
3326 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3327 if (!has_cache && count)
3328 has_cache = SWAP_HAS_CACHE;
3329 else if (has_cache) /* someone else added cache */
3330 err = -EEXIST;
3331 else /* no users remaining */
3332 err = -ENOENT;
355cfa73
KH
3333
3334 } else if (count || has_cache) {
253d553b 3335
570a335b
HD
3336 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3337 count += usage;
3338 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3339 err = -EINVAL;
570a335b
HD
3340 else if (swap_count_continued(p, offset, count))
3341 count = COUNT_CONTINUED;
3342 else
3343 err = -ENOMEM;
355cfa73 3344 } else
253d553b
HD
3345 err = -ENOENT; /* unused swap entry */
3346
3347 p->swap_map[offset] = count | has_cache;
3348
355cfa73 3349unlock_out:
235b6217 3350 unlock_cluster_or_swap_info(p, ci);
1da177e4 3351out:
253d553b 3352 return err;
1da177e4
LT
3353
3354bad_file:
465c47fd 3355 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3356 goto out;
3357}
253d553b 3358
aaa46865
HD
3359/*
3360 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3361 * (in which case its reference count is never incremented).
3362 */
3363void swap_shmem_alloc(swp_entry_t entry)
3364{
3365 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3366}
3367
355cfa73 3368/*
08259d58
HD
3369 * Increase reference count of swap entry by 1.
3370 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3371 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3372 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3373 * might occur if a page table entry has got corrupted.
355cfa73 3374 */
570a335b 3375int swap_duplicate(swp_entry_t entry)
355cfa73 3376{
570a335b
HD
3377 int err = 0;
3378
3379 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3380 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3381 return err;
355cfa73 3382}
1da177e4 3383
cb4b86ba 3384/*
355cfa73
KH
3385 * @entry: swap entry for which we allocate swap cache.
3386 *
73c34b6a 3387 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3388 * This can return error codes. Returns 0 at success.
3389 * -EBUSY means there is a swap cache.
3390 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3391 */
3392int swapcache_prepare(swp_entry_t entry)
3393{
253d553b 3394 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3395}
3396
f981c595
MG
3397struct swap_info_struct *page_swap_info(struct page *page)
3398{
3399 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3400 return swap_info[swp_type(swap)];
3401}
3402
3403/*
3404 * out-of-line __page_file_ methods to avoid include hell.
3405 */
3406struct address_space *__page_file_mapping(struct page *page)
3407{
309381fe 3408 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3409 return page_swap_info(page)->swap_file->f_mapping;
3410}
3411EXPORT_SYMBOL_GPL(__page_file_mapping);
3412
3413pgoff_t __page_file_index(struct page *page)
3414{
3415 swp_entry_t swap = { .val = page_private(page) };
309381fe 3416 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3417 return swp_offset(swap);
3418}
3419EXPORT_SYMBOL_GPL(__page_file_index);
3420
570a335b
HD
3421/*
3422 * add_swap_count_continuation - called when a swap count is duplicated
3423 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3424 * page of the original vmalloc'ed swap_map, to hold the continuation count
3425 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3426 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3427 *
3428 * These continuation pages are seldom referenced: the common paths all work
3429 * on the original swap_map, only referring to a continuation page when the
3430 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3431 *
3432 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3433 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3434 * can be called after dropping locks.
3435 */
3436int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3437{
3438 struct swap_info_struct *si;
235b6217 3439 struct swap_cluster_info *ci;
570a335b
HD
3440 struct page *head;
3441 struct page *page;
3442 struct page *list_page;
3443 pgoff_t offset;
3444 unsigned char count;
3445
3446 /*
3447 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3448 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3449 */
3450 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3451
3452 si = swap_info_get(entry);
3453 if (!si) {
3454 /*
3455 * An acceptable race has occurred since the failing
3456 * __swap_duplicate(): the swap entry has been freed,
3457 * perhaps even the whole swap_map cleared for swapoff.
3458 */
3459 goto outer;
3460 }
3461
3462 offset = swp_offset(entry);
235b6217
HY
3463
3464 ci = lock_cluster(si, offset);
3465
570a335b
HD
3466 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3467
3468 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3469 /*
3470 * The higher the swap count, the more likely it is that tasks
3471 * will race to add swap count continuation: we need to avoid
3472 * over-provisioning.
3473 */
3474 goto out;
3475 }
3476
3477 if (!page) {
235b6217 3478 unlock_cluster(ci);
ec8acf20 3479 spin_unlock(&si->lock);
570a335b
HD
3480 return -ENOMEM;
3481 }
3482
3483 /*
3484 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3485 * no architecture is using highmem pages for kernel page tables: so it
3486 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3487 */
3488 head = vmalloc_to_page(si->swap_map + offset);
3489 offset &= ~PAGE_MASK;
3490
3491 /*
3492 * Page allocation does not initialize the page's lru field,
3493 * but it does always reset its private field.
3494 */
3495 if (!page_private(head)) {
3496 BUG_ON(count & COUNT_CONTINUED);
3497 INIT_LIST_HEAD(&head->lru);
3498 set_page_private(head, SWP_CONTINUED);
3499 si->flags |= SWP_CONTINUED;
3500 }
3501
3502 list_for_each_entry(list_page, &head->lru, lru) {
3503 unsigned char *map;
3504
3505 /*
3506 * If the previous map said no continuation, but we've found
3507 * a continuation page, free our allocation and use this one.
3508 */
3509 if (!(count & COUNT_CONTINUED))
3510 goto out;
3511
9b04c5fe 3512 map = kmap_atomic(list_page) + offset;
570a335b 3513 count = *map;
9b04c5fe 3514 kunmap_atomic(map);
570a335b
HD
3515
3516 /*
3517 * If this continuation count now has some space in it,
3518 * free our allocation and use this one.
3519 */
3520 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3521 goto out;
3522 }
3523
3524 list_add_tail(&page->lru, &head->lru);
3525 page = NULL; /* now it's attached, don't free it */
3526out:
235b6217 3527 unlock_cluster(ci);
ec8acf20 3528 spin_unlock(&si->lock);
570a335b
HD
3529outer:
3530 if (page)
3531 __free_page(page);
3532 return 0;
3533}
3534
3535/*
3536 * swap_count_continued - when the original swap_map count is incremented
3537 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3538 * into, carry if so, or else fail until a new continuation page is allocated;
3539 * when the original swap_map count is decremented from 0 with continuation,
3540 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3541 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3542 * lock.
570a335b
HD
3543 */
3544static bool swap_count_continued(struct swap_info_struct *si,
3545 pgoff_t offset, unsigned char count)
3546{
3547 struct page *head;
3548 struct page *page;
3549 unsigned char *map;
3550
3551 head = vmalloc_to_page(si->swap_map + offset);
3552 if (page_private(head) != SWP_CONTINUED) {
3553 BUG_ON(count & COUNT_CONTINUED);
3554 return false; /* need to add count continuation */
3555 }
3556
3557 offset &= ~PAGE_MASK;
3558 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3559 map = kmap_atomic(page) + offset;
570a335b
HD
3560
3561 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3562 goto init_map; /* jump over SWAP_CONT_MAX checks */
3563
3564 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3565 /*
3566 * Think of how you add 1 to 999
3567 */
3568 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3569 kunmap_atomic(map);
570a335b
HD
3570 page = list_entry(page->lru.next, struct page, lru);
3571 BUG_ON(page == head);
9b04c5fe 3572 map = kmap_atomic(page) + offset;
570a335b
HD
3573 }
3574 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3575 kunmap_atomic(map);
570a335b
HD
3576 page = list_entry(page->lru.next, struct page, lru);
3577 if (page == head)
3578 return false; /* add count continuation */
9b04c5fe 3579 map = kmap_atomic(page) + offset;
570a335b
HD
3580init_map: *map = 0; /* we didn't zero the page */
3581 }
3582 *map += 1;
9b04c5fe 3583 kunmap_atomic(map);
570a335b
HD
3584 page = list_entry(page->lru.prev, struct page, lru);
3585 while (page != head) {
9b04c5fe 3586 map = kmap_atomic(page) + offset;
570a335b 3587 *map = COUNT_CONTINUED;
9b04c5fe 3588 kunmap_atomic(map);
570a335b
HD
3589 page = list_entry(page->lru.prev, struct page, lru);
3590 }
3591 return true; /* incremented */
3592
3593 } else { /* decrementing */
3594 /*
3595 * Think of how you subtract 1 from 1000
3596 */
3597 BUG_ON(count != COUNT_CONTINUED);
3598 while (*map == COUNT_CONTINUED) {
9b04c5fe 3599 kunmap_atomic(map);
570a335b
HD
3600 page = list_entry(page->lru.next, struct page, lru);
3601 BUG_ON(page == head);
9b04c5fe 3602 map = kmap_atomic(page) + offset;
570a335b
HD
3603 }
3604 BUG_ON(*map == 0);
3605 *map -= 1;
3606 if (*map == 0)
3607 count = 0;
9b04c5fe 3608 kunmap_atomic(map);
570a335b
HD
3609 page = list_entry(page->lru.prev, struct page, lru);
3610 while (page != head) {
9b04c5fe 3611 map = kmap_atomic(page) + offset;
570a335b
HD
3612 *map = SWAP_CONT_MAX | count;
3613 count = COUNT_CONTINUED;
9b04c5fe 3614 kunmap_atomic(map);
570a335b
HD
3615 page = list_entry(page->lru.prev, struct page, lru);
3616 }
3617 return count == COUNT_CONTINUED;
3618 }
3619}
3620
3621/*
3622 * free_swap_count_continuations - swapoff free all the continuation pages
3623 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3624 */
3625static void free_swap_count_continuations(struct swap_info_struct *si)
3626{
3627 pgoff_t offset;
3628
3629 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3630 struct page *head;
3631 head = vmalloc_to_page(si->swap_map + offset);
3632 if (page_private(head)) {
0d576d20
GT
3633 struct page *page, *next;
3634
3635 list_for_each_entry_safe(page, next, &head->lru, lru) {
3636 list_del(&page->lru);
570a335b
HD
3637 __free_page(page);
3638 }
3639 }
3640 }
3641}