mm/swap: cache maximum swapfile size when init swap
[linux-block.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
c97ab271 9#include <linux/blkdev.h>
1da177e4 10#include <linux/mm.h>
6e84f315 11#include <linux/sched/mm.h>
29930025 12#include <linux/sched/task.h>
1da177e4
LT
13#include <linux/hugetlb.h>
14#include <linux/mman.h>
15#include <linux/slab.h>
16#include <linux/kernel_stat.h>
17#include <linux/swap.h>
18#include <linux/vmalloc.h>
19#include <linux/pagemap.h>
20#include <linux/namei.h>
072441e2 21#include <linux/shmem_fs.h>
e41d12f5 22#include <linux/blk-cgroup.h>
20137a49 23#include <linux/random.h>
1da177e4
LT
24#include <linux/writeback.h>
25#include <linux/proc_fs.h>
26#include <linux/seq_file.h>
27#include <linux/init.h>
5ad64688 28#include <linux/ksm.h>
1da177e4
LT
29#include <linux/rmap.h>
30#include <linux/security.h>
31#include <linux/backing-dev.h>
fc0abb14 32#include <linux/mutex.h>
c59ede7b 33#include <linux/capability.h>
1da177e4 34#include <linux/syscalls.h>
8a9f3ccd 35#include <linux/memcontrol.h>
66d7dd51 36#include <linux/poll.h>
72788c38 37#include <linux/oom.h>
38b5faf4
DM
38#include <linux/frontswap.h>
39#include <linux/swapfile.h>
f981c595 40#include <linux/export.h>
67afa38e 41#include <linux/swap_slots.h>
155b5f88 42#include <linux/sort.h>
63d8620e 43#include <linux/completion.h>
1da177e4 44
1da177e4
LT
45#include <asm/tlbflush.h>
46#include <linux/swapops.h>
5d1ea48b 47#include <linux/swap_cgroup.h>
014bb1de 48#include "swap.h"
1da177e4 49
570a335b
HD
50static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51 unsigned char);
52static void free_swap_count_continuations(struct swap_info_struct *);
53
633423a0 54static DEFINE_SPINLOCK(swap_lock);
7c363b8c 55static unsigned int nr_swapfiles;
ec8acf20 56atomic_long_t nr_swap_pages;
fb0fec50
CW
57/*
58 * Some modules use swappable objects and may try to swap them out under
59 * memory pressure (via the shrinker). Before doing so, they may wish to
60 * check to see if any swap space is available.
61 */
62EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 63/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 64long total_swap_pages;
a2468cc9 65static int least_priority = -1;
be45a490 66unsigned long swapfile_maximum_size;
1da177e4 67
1da177e4
LT
68static const char Bad_file[] = "Bad swap file entry ";
69static const char Unused_file[] = "Unused swap file entry ";
70static const char Bad_offset[] = "Bad swap offset entry ";
71static const char Unused_offset[] = "Unused swap offset entry ";
72
adfab836
DS
73/*
74 * all active swap_info_structs
75 * protected with swap_lock, and ordered by priority.
76 */
633423a0 77static PLIST_HEAD(swap_active_head);
18ab4d4c
DS
78
79/*
80 * all available (active, not full) swap_info_structs
81 * protected with swap_avail_lock, ordered by priority.
e2e3fdc7 82 * This is used by folio_alloc_swap() instead of swap_active_head
18ab4d4c 83 * because swap_active_head includes all swap_info_structs,
e2e3fdc7 84 * but folio_alloc_swap() doesn't need to look at full ones.
18ab4d4c
DS
85 * This uses its own lock instead of swap_lock because when a
86 * swap_info_struct changes between not-full/full, it needs to
87 * add/remove itself to/from this list, but the swap_info_struct->lock
88 * is held and the locking order requires swap_lock to be taken
89 * before any swap_info_struct->lock.
90 */
bfc6b1ca 91static struct plist_head *swap_avail_heads;
18ab4d4c 92static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 93
38b5faf4 94struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 95
fc0abb14 96static DEFINE_MUTEX(swapon_mutex);
1da177e4 97
66d7dd51
KS
98static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
99/* Activity counter to indicate that a swapon or swapoff has occurred */
100static atomic_t proc_poll_event = ATOMIC_INIT(0);
101
81a0298b
HY
102atomic_t nr_rotate_swap = ATOMIC_INIT(0);
103
c10d38cc
DJ
104static struct swap_info_struct *swap_type_to_swap_info(int type)
105{
a4b45114 106 if (type >= MAX_SWAPFILES)
c10d38cc
DJ
107 return NULL;
108
a4b45114 109 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
c10d38cc
DJ
110}
111
8d69aaee 112static inline unsigned char swap_count(unsigned char ent)
355cfa73 113{
955c97f0 114 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
115}
116
bcd49e86
HY
117/* Reclaim the swap entry anyway if possible */
118#define TTRS_ANYWAY 0x1
119/*
120 * Reclaim the swap entry if there are no more mappings of the
121 * corresponding page
122 */
123#define TTRS_UNMAPPED 0x2
124/* Reclaim the swap entry if swap is getting full*/
125#define TTRS_FULL 0x4
126
efa90a98 127/* returns 1 if swap entry is freed */
bcd49e86
HY
128static int __try_to_reclaim_swap(struct swap_info_struct *si,
129 unsigned long offset, unsigned long flags)
c9e44410 130{
efa90a98 131 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
132 struct page *page;
133 int ret = 0;
134
bcd49e86 135 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
136 if (!page)
137 return 0;
138 /*
bcd49e86
HY
139 * When this function is called from scan_swap_map_slots() and it's
140 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
141 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
142 * case and you should use try_to_free_swap() with explicit lock_page()
143 * in usual operations.
144 */
145 if (trylock_page(page)) {
bcd49e86
HY
146 if ((flags & TTRS_ANYWAY) ||
147 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
148 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
149 ret = try_to_free_swap(page);
c9e44410
KH
150 unlock_page(page);
151 }
09cbfeaf 152 put_page(page);
c9e44410
KH
153 return ret;
154}
355cfa73 155
4efaceb1
AL
156static inline struct swap_extent *first_se(struct swap_info_struct *sis)
157{
158 struct rb_node *rb = rb_first(&sis->swap_extent_root);
159 return rb_entry(rb, struct swap_extent, rb_node);
160}
161
162static inline struct swap_extent *next_se(struct swap_extent *se)
163{
164 struct rb_node *rb = rb_next(&se->rb_node);
165 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
166}
167
6a6ba831
HD
168/*
169 * swapon tell device that all the old swap contents can be discarded,
170 * to allow the swap device to optimize its wear-levelling.
171 */
172static int discard_swap(struct swap_info_struct *si)
173{
174 struct swap_extent *se;
9625a5f2
HD
175 sector_t start_block;
176 sector_t nr_blocks;
6a6ba831
HD
177 int err = 0;
178
9625a5f2 179 /* Do not discard the swap header page! */
4efaceb1 180 se = first_se(si);
9625a5f2
HD
181 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
182 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
183 if (nr_blocks) {
184 err = blkdev_issue_discard(si->bdev, start_block,
44abff2c 185 nr_blocks, GFP_KERNEL);
9625a5f2
HD
186 if (err)
187 return err;
188 cond_resched();
189 }
6a6ba831 190
4efaceb1 191 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
192 start_block = se->start_block << (PAGE_SHIFT - 9);
193 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
194
195 err = blkdev_issue_discard(si->bdev, start_block,
44abff2c 196 nr_blocks, GFP_KERNEL);
6a6ba831
HD
197 if (err)
198 break;
199
200 cond_resched();
201 }
202 return err; /* That will often be -EOPNOTSUPP */
203}
204
4efaceb1
AL
205static struct swap_extent *
206offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
207{
208 struct swap_extent *se;
209 struct rb_node *rb;
210
211 rb = sis->swap_extent_root.rb_node;
212 while (rb) {
213 se = rb_entry(rb, struct swap_extent, rb_node);
214 if (offset < se->start_page)
215 rb = rb->rb_left;
216 else if (offset >= se->start_page + se->nr_pages)
217 rb = rb->rb_right;
218 else
219 return se;
220 }
221 /* It *must* be present */
222 BUG();
223}
224
caf6912f
JA
225sector_t swap_page_sector(struct page *page)
226{
227 struct swap_info_struct *sis = page_swap_info(page);
228 struct swap_extent *se;
229 sector_t sector;
230 pgoff_t offset;
231
232 offset = __page_file_index(page);
233 se = offset_to_swap_extent(sis, offset);
234 sector = se->start_block + (offset - se->start_page);
235 return sector << (PAGE_SHIFT - 9);
236}
237
7992fde7
HD
238/*
239 * swap allocation tell device that a cluster of swap can now be discarded,
240 * to allow the swap device to optimize its wear-levelling.
241 */
242static void discard_swap_cluster(struct swap_info_struct *si,
243 pgoff_t start_page, pgoff_t nr_pages)
244{
4efaceb1 245 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
246
247 while (nr_pages) {
4efaceb1
AL
248 pgoff_t offset = start_page - se->start_page;
249 sector_t start_block = se->start_block + offset;
250 sector_t nr_blocks = se->nr_pages - offset;
251
252 if (nr_blocks > nr_pages)
253 nr_blocks = nr_pages;
254 start_page += nr_blocks;
255 nr_pages -= nr_blocks;
256
257 start_block <<= PAGE_SHIFT - 9;
258 nr_blocks <<= PAGE_SHIFT - 9;
259 if (blkdev_issue_discard(si->bdev, start_block,
44abff2c 260 nr_blocks, GFP_NOIO))
4efaceb1 261 break;
7992fde7 262
4efaceb1 263 se = next_se(se);
7992fde7
HD
264 }
265}
266
38d8b4e6
HY
267#ifdef CONFIG_THP_SWAP
268#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
269
270#define swap_entry_size(size) (size)
38d8b4e6 271#else
048c27fd 272#define SWAPFILE_CLUSTER 256
a448f2d0
HY
273
274/*
275 * Define swap_entry_size() as constant to let compiler to optimize
276 * out some code if !CONFIG_THP_SWAP
277 */
278#define swap_entry_size(size) 1
38d8b4e6 279#endif
048c27fd
HD
280#define LATENCY_LIMIT 256
281
2a8f9449
SL
282static inline void cluster_set_flag(struct swap_cluster_info *info,
283 unsigned int flag)
284{
285 info->flags = flag;
286}
287
288static inline unsigned int cluster_count(struct swap_cluster_info *info)
289{
290 return info->data;
291}
292
293static inline void cluster_set_count(struct swap_cluster_info *info,
294 unsigned int c)
295{
296 info->data = c;
297}
298
299static inline void cluster_set_count_flag(struct swap_cluster_info *info,
300 unsigned int c, unsigned int f)
301{
302 info->flags = f;
303 info->data = c;
304}
305
306static inline unsigned int cluster_next(struct swap_cluster_info *info)
307{
308 return info->data;
309}
310
311static inline void cluster_set_next(struct swap_cluster_info *info,
312 unsigned int n)
313{
314 info->data = n;
315}
316
317static inline void cluster_set_next_flag(struct swap_cluster_info *info,
318 unsigned int n, unsigned int f)
319{
320 info->flags = f;
321 info->data = n;
322}
323
324static inline bool cluster_is_free(struct swap_cluster_info *info)
325{
326 return info->flags & CLUSTER_FLAG_FREE;
327}
328
329static inline bool cluster_is_null(struct swap_cluster_info *info)
330{
331 return info->flags & CLUSTER_FLAG_NEXT_NULL;
332}
333
334static inline void cluster_set_null(struct swap_cluster_info *info)
335{
336 info->flags = CLUSTER_FLAG_NEXT_NULL;
337 info->data = 0;
338}
339
e0709829
HY
340static inline bool cluster_is_huge(struct swap_cluster_info *info)
341{
33ee011e
HY
342 if (IS_ENABLED(CONFIG_THP_SWAP))
343 return info->flags & CLUSTER_FLAG_HUGE;
344 return false;
e0709829
HY
345}
346
347static inline void cluster_clear_huge(struct swap_cluster_info *info)
348{
349 info->flags &= ~CLUSTER_FLAG_HUGE;
350}
351
235b6217
HY
352static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
353 unsigned long offset)
354{
355 struct swap_cluster_info *ci;
356
357 ci = si->cluster_info;
358 if (ci) {
359 ci += offset / SWAPFILE_CLUSTER;
360 spin_lock(&ci->lock);
361 }
362 return ci;
363}
364
365static inline void unlock_cluster(struct swap_cluster_info *ci)
366{
367 if (ci)
368 spin_unlock(&ci->lock);
369}
370
59d98bf3
HY
371/*
372 * Determine the locking method in use for this device. Return
373 * swap_cluster_info if SSD-style cluster-based locking is in place.
374 */
235b6217 375static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 376 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
377{
378 struct swap_cluster_info *ci;
379
59d98bf3 380 /* Try to use fine-grained SSD-style locking if available: */
235b6217 381 ci = lock_cluster(si, offset);
59d98bf3 382 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
383 if (!ci)
384 spin_lock(&si->lock);
385
386 return ci;
387}
388
389static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
390 struct swap_cluster_info *ci)
391{
392 if (ci)
393 unlock_cluster(ci);
394 else
395 spin_unlock(&si->lock);
396}
397
6b534915
HY
398static inline bool cluster_list_empty(struct swap_cluster_list *list)
399{
400 return cluster_is_null(&list->head);
401}
402
403static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
404{
405 return cluster_next(&list->head);
406}
407
408static void cluster_list_init(struct swap_cluster_list *list)
409{
410 cluster_set_null(&list->head);
411 cluster_set_null(&list->tail);
412}
413
414static void cluster_list_add_tail(struct swap_cluster_list *list,
415 struct swap_cluster_info *ci,
416 unsigned int idx)
417{
418 if (cluster_list_empty(list)) {
419 cluster_set_next_flag(&list->head, idx, 0);
420 cluster_set_next_flag(&list->tail, idx, 0);
421 } else {
235b6217 422 struct swap_cluster_info *ci_tail;
6b534915
HY
423 unsigned int tail = cluster_next(&list->tail);
424
235b6217
HY
425 /*
426 * Nested cluster lock, but both cluster locks are
427 * only acquired when we held swap_info_struct->lock
428 */
429 ci_tail = ci + tail;
430 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
431 cluster_set_next(ci_tail, idx);
0ef017d1 432 spin_unlock(&ci_tail->lock);
6b534915
HY
433 cluster_set_next_flag(&list->tail, idx, 0);
434 }
435}
436
437static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
438 struct swap_cluster_info *ci)
439{
440 unsigned int idx;
441
442 idx = cluster_next(&list->head);
443 if (cluster_next(&list->tail) == idx) {
444 cluster_set_null(&list->head);
445 cluster_set_null(&list->tail);
446 } else
447 cluster_set_next_flag(&list->head,
448 cluster_next(&ci[idx]), 0);
449
450 return idx;
451}
452
815c2c54
SL
453/* Add a cluster to discard list and schedule it to do discard */
454static void swap_cluster_schedule_discard(struct swap_info_struct *si,
455 unsigned int idx)
456{
457 /*
bb243f7d 458 * If scan_swap_map_slots() can't find a free cluster, it will check
815c2c54 459 * si->swap_map directly. To make sure the discarding cluster isn't
bb243f7d
ML
460 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
461 * It will be cleared after discard
815c2c54
SL
462 */
463 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
464 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
465
6b534915 466 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
467
468 schedule_work(&si->discard_work);
469}
470
38d8b4e6
HY
471static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
472{
473 struct swap_cluster_info *ci = si->cluster_info;
474
475 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
476 cluster_list_add_tail(&si->free_clusters, ci, idx);
477}
478
815c2c54
SL
479/*
480 * Doing discard actually. After a cluster discard is finished, the cluster
481 * will be added to free cluster list. caller should hold si->lock.
482*/
483static void swap_do_scheduled_discard(struct swap_info_struct *si)
484{
235b6217 485 struct swap_cluster_info *info, *ci;
815c2c54
SL
486 unsigned int idx;
487
488 info = si->cluster_info;
489
6b534915
HY
490 while (!cluster_list_empty(&si->discard_clusters)) {
491 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
492 spin_unlock(&si->lock);
493
494 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
495 SWAPFILE_CLUSTER);
496
497 spin_lock(&si->lock);
235b6217 498 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 499 __free_cluster(si, idx);
815c2c54
SL
500 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
501 0, SWAPFILE_CLUSTER);
235b6217 502 unlock_cluster(ci);
815c2c54
SL
503 }
504}
505
506static void swap_discard_work(struct work_struct *work)
507{
508 struct swap_info_struct *si;
509
510 si = container_of(work, struct swap_info_struct, discard_work);
511
512 spin_lock(&si->lock);
513 swap_do_scheduled_discard(si);
514 spin_unlock(&si->lock);
515}
516
63d8620e
ML
517static void swap_users_ref_free(struct percpu_ref *ref)
518{
519 struct swap_info_struct *si;
520
521 si = container_of(ref, struct swap_info_struct, users);
522 complete(&si->comp);
523}
524
38d8b4e6
HY
525static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
526{
527 struct swap_cluster_info *ci = si->cluster_info;
528
529 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
530 cluster_list_del_first(&si->free_clusters, ci);
531 cluster_set_count_flag(ci + idx, 0, 0);
532}
533
534static void free_cluster(struct swap_info_struct *si, unsigned long idx)
535{
536 struct swap_cluster_info *ci = si->cluster_info + idx;
537
538 VM_BUG_ON(cluster_count(ci) != 0);
539 /*
540 * If the swap is discardable, prepare discard the cluster
541 * instead of free it immediately. The cluster will be freed
542 * after discard.
543 */
544 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
545 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
546 swap_cluster_schedule_discard(si, idx);
547 return;
548 }
549
550 __free_cluster(si, idx);
551}
552
2a8f9449
SL
553/*
554 * The cluster corresponding to page_nr will be used. The cluster will be
555 * removed from free cluster list and its usage counter will be increased.
556 */
557static void inc_cluster_info_page(struct swap_info_struct *p,
558 struct swap_cluster_info *cluster_info, unsigned long page_nr)
559{
560 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
561
562 if (!cluster_info)
563 return;
38d8b4e6
HY
564 if (cluster_is_free(&cluster_info[idx]))
565 alloc_cluster(p, idx);
2a8f9449
SL
566
567 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
568 cluster_set_count(&cluster_info[idx],
569 cluster_count(&cluster_info[idx]) + 1);
570}
571
572/*
573 * The cluster corresponding to page_nr decreases one usage. If the usage
574 * counter becomes 0, which means no page in the cluster is in using, we can
575 * optionally discard the cluster and add it to free cluster list.
576 */
577static void dec_cluster_info_page(struct swap_info_struct *p,
578 struct swap_cluster_info *cluster_info, unsigned long page_nr)
579{
580 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
581
582 if (!cluster_info)
583 return;
584
585 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
586 cluster_set_count(&cluster_info[idx],
587 cluster_count(&cluster_info[idx]) - 1);
588
38d8b4e6
HY
589 if (cluster_count(&cluster_info[idx]) == 0)
590 free_cluster(p, idx);
2a8f9449
SL
591}
592
593/*
bb243f7d 594 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
2a8f9449
SL
595 * cluster list. Avoiding such abuse to avoid list corruption.
596 */
ebc2a1a6
SL
597static bool
598scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
599 unsigned long offset)
600{
ebc2a1a6
SL
601 struct percpu_cluster *percpu_cluster;
602 bool conflict;
603
2a8f9449 604 offset /= SWAPFILE_CLUSTER;
6b534915
HY
605 conflict = !cluster_list_empty(&si->free_clusters) &&
606 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 607 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
608
609 if (!conflict)
610 return false;
611
612 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
613 cluster_set_null(&percpu_cluster->index);
614 return true;
615}
616
617/*
618 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
619 * might involve allocating a new cluster for current CPU too.
620 */
36005bae 621static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
622 unsigned long *offset, unsigned long *scan_base)
623{
624 struct percpu_cluster *cluster;
235b6217 625 struct swap_cluster_info *ci;
235b6217 626 unsigned long tmp, max;
ebc2a1a6
SL
627
628new_cluster:
629 cluster = this_cpu_ptr(si->percpu_cluster);
630 if (cluster_is_null(&cluster->index)) {
6b534915
HY
631 if (!cluster_list_empty(&si->free_clusters)) {
632 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
633 cluster->next = cluster_next(&cluster->index) *
634 SWAPFILE_CLUSTER;
6b534915 635 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
636 /*
637 * we don't have free cluster but have some clusters in
49070588
HY
638 * discarding, do discard now and reclaim them, then
639 * reread cluster_next_cpu since we dropped si->lock
ebc2a1a6
SL
640 */
641 swap_do_scheduled_discard(si);
49070588
HY
642 *scan_base = this_cpu_read(*si->cluster_next_cpu);
643 *offset = *scan_base;
ebc2a1a6
SL
644 goto new_cluster;
645 } else
36005bae 646 return false;
ebc2a1a6
SL
647 }
648
ebc2a1a6
SL
649 /*
650 * Other CPUs can use our cluster if they can't find a free cluster,
651 * check if there is still free entry in the cluster
652 */
653 tmp = cluster->next;
235b6217
HY
654 max = min_t(unsigned long, si->max,
655 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
7b9e2de1
WY
656 if (tmp < max) {
657 ci = lock_cluster(si, tmp);
658 while (tmp < max) {
659 if (!si->swap_map[tmp])
660 break;
661 tmp++;
662 }
663 unlock_cluster(ci);
ebc2a1a6 664 }
0fd0e19e 665 if (tmp >= max) {
ebc2a1a6
SL
666 cluster_set_null(&cluster->index);
667 goto new_cluster;
668 }
669 cluster->next = tmp + 1;
670 *offset = tmp;
671 *scan_base = tmp;
fdff1deb 672 return true;
2a8f9449
SL
673}
674
a2468cc9
AL
675static void __del_from_avail_list(struct swap_info_struct *p)
676{
677 int nid;
678
679 for_each_node(nid)
680 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
681}
682
683static void del_from_avail_list(struct swap_info_struct *p)
684{
685 spin_lock(&swap_avail_lock);
686 __del_from_avail_list(p);
687 spin_unlock(&swap_avail_lock);
688}
689
38d8b4e6
HY
690static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
691 unsigned int nr_entries)
692{
693 unsigned int end = offset + nr_entries - 1;
694
695 if (offset == si->lowest_bit)
696 si->lowest_bit += nr_entries;
697 if (end == si->highest_bit)
a449bf58 698 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
c8945306 699 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
38d8b4e6
HY
700 if (si->inuse_pages == si->pages) {
701 si->lowest_bit = si->max;
702 si->highest_bit = 0;
a2468cc9 703 del_from_avail_list(si);
38d8b4e6
HY
704 }
705}
706
a2468cc9
AL
707static void add_to_avail_list(struct swap_info_struct *p)
708{
709 int nid;
710
711 spin_lock(&swap_avail_lock);
712 for_each_node(nid) {
713 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
714 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
715 }
716 spin_unlock(&swap_avail_lock);
717}
718
38d8b4e6
HY
719static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
720 unsigned int nr_entries)
721{
3852f676 722 unsigned long begin = offset;
38d8b4e6
HY
723 unsigned long end = offset + nr_entries - 1;
724 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
725
726 if (offset < si->lowest_bit)
727 si->lowest_bit = offset;
728 if (end > si->highest_bit) {
729 bool was_full = !si->highest_bit;
730
a449bf58 731 WRITE_ONCE(si->highest_bit, end);
a2468cc9
AL
732 if (was_full && (si->flags & SWP_WRITEOK))
733 add_to_avail_list(si);
38d8b4e6
HY
734 }
735 atomic_long_add(nr_entries, &nr_swap_pages);
c8945306 736 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
38d8b4e6
HY
737 if (si->flags & SWP_BLKDEV)
738 swap_slot_free_notify =
739 si->bdev->bd_disk->fops->swap_slot_free_notify;
740 else
741 swap_slot_free_notify = NULL;
742 while (offset <= end) {
8a84802e 743 arch_swap_invalidate_page(si->type, offset);
38d8b4e6
HY
744 frontswap_invalidate_page(si->type, offset);
745 if (swap_slot_free_notify)
746 swap_slot_free_notify(si->bdev, offset);
747 offset++;
748 }
3852f676 749 clear_shadow_from_swap_cache(si->type, begin, end);
38d8b4e6
HY
750}
751
49070588
HY
752static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
753{
754 unsigned long prev;
755
756 if (!(si->flags & SWP_SOLIDSTATE)) {
757 si->cluster_next = next;
758 return;
759 }
760
761 prev = this_cpu_read(*si->cluster_next_cpu);
762 /*
763 * Cross the swap address space size aligned trunk, choose
764 * another trunk randomly to avoid lock contention on swap
765 * address space if possible.
766 */
767 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
768 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
769 /* No free swap slots available */
770 if (si->highest_bit <= si->lowest_bit)
771 return;
772 next = si->lowest_bit +
773 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
774 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
775 next = max_t(unsigned int, next, si->lowest_bit);
776 }
777 this_cpu_write(*si->cluster_next_cpu, next);
778}
779
4b9ae842
ML
780static bool swap_offset_available_and_locked(struct swap_info_struct *si,
781 unsigned long offset)
782{
783 if (data_race(!si->swap_map[offset])) {
784 spin_lock(&si->lock);
785 return true;
786 }
787
788 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
789 spin_lock(&si->lock);
790 return true;
791 }
792
793 return false;
794}
795
36005bae
TC
796static int scan_swap_map_slots(struct swap_info_struct *si,
797 unsigned char usage, int nr,
798 swp_entry_t slots[])
1da177e4 799{
235b6217 800 struct swap_cluster_info *ci;
ebebbbe9 801 unsigned long offset;
c60aa176 802 unsigned long scan_base;
7992fde7 803 unsigned long last_in_cluster = 0;
048c27fd 804 int latency_ration = LATENCY_LIMIT;
36005bae 805 int n_ret = 0;
ed43af10 806 bool scanned_many = false;
36005bae 807
886bb7e9 808 /*
7dfad418
HD
809 * We try to cluster swap pages by allocating them sequentially
810 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
811 * way, however, we resort to first-free allocation, starting
812 * a new cluster. This prevents us from scattering swap pages
813 * all over the entire swap partition, so that we reduce
814 * overall disk seek times between swap pages. -- sct
815 * But we do now try to find an empty cluster. -Andrea
c60aa176 816 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
817 */
818
52b7efdb 819 si->flags += SWP_SCANNING;
49070588
HY
820 /*
821 * Use percpu scan base for SSD to reduce lock contention on
822 * cluster and swap cache. For HDD, sequential access is more
823 * important.
824 */
825 if (si->flags & SWP_SOLIDSTATE)
826 scan_base = this_cpu_read(*si->cluster_next_cpu);
827 else
828 scan_base = si->cluster_next;
829 offset = scan_base;
ebebbbe9 830
ebc2a1a6
SL
831 /* SSD algorithm */
832 if (si->cluster_info) {
bd2d18da 833 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 834 goto scan;
f4eaf51a 835 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
836 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
837 si->cluster_nr = SWAPFILE_CLUSTER - 1;
838 goto checks;
839 }
2a8f9449 840
ec8acf20 841 spin_unlock(&si->lock);
7dfad418 842
c60aa176
HD
843 /*
844 * If seek is expensive, start searching for new cluster from
845 * start of partition, to minimize the span of allocated swap.
50088c44
CY
846 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
847 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 848 */
50088c44 849 scan_base = offset = si->lowest_bit;
7dfad418
HD
850 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
851
852 /* Locate the first empty (unaligned) cluster */
853 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 854 if (si->swap_map[offset])
7dfad418
HD
855 last_in_cluster = offset + SWAPFILE_CLUSTER;
856 else if (offset == last_in_cluster) {
ec8acf20 857 spin_lock(&si->lock);
ebebbbe9
HD
858 offset -= SWAPFILE_CLUSTER - 1;
859 si->cluster_next = offset;
860 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
861 goto checks;
862 }
863 if (unlikely(--latency_ration < 0)) {
864 cond_resched();
865 latency_ration = LATENCY_LIMIT;
866 }
867 }
868
869 offset = scan_base;
ec8acf20 870 spin_lock(&si->lock);
ebebbbe9 871 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 872 }
7dfad418 873
ebebbbe9 874checks:
ebc2a1a6 875 if (si->cluster_info) {
36005bae
TC
876 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
877 /* take a break if we already got some slots */
878 if (n_ret)
879 goto done;
880 if (!scan_swap_map_try_ssd_cluster(si, &offset,
881 &scan_base))
882 goto scan;
883 }
ebc2a1a6 884 }
ebebbbe9 885 if (!(si->flags & SWP_WRITEOK))
52b7efdb 886 goto no_page;
7dfad418
HD
887 if (!si->highest_bit)
888 goto no_page;
ebebbbe9 889 if (offset > si->highest_bit)
c60aa176 890 scan_base = offset = si->lowest_bit;
c9e44410 891
235b6217 892 ci = lock_cluster(si, offset);
b73d7fce
HD
893 /* reuse swap entry of cache-only swap if not busy. */
894 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 895 int swap_was_freed;
235b6217 896 unlock_cluster(ci);
ec8acf20 897 spin_unlock(&si->lock);
bcd49e86 898 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 899 spin_lock(&si->lock);
c9e44410
KH
900 /* entry was freed successfully, try to use this again */
901 if (swap_was_freed)
902 goto checks;
903 goto scan; /* check next one */
904 }
905
235b6217
HY
906 if (si->swap_map[offset]) {
907 unlock_cluster(ci);
36005bae
TC
908 if (!n_ret)
909 goto scan;
910 else
911 goto done;
235b6217 912 }
a449bf58 913 WRITE_ONCE(si->swap_map[offset], usage);
2872bb2d
HY
914 inc_cluster_info_page(si, si->cluster_info, offset);
915 unlock_cluster(ci);
ebebbbe9 916
38d8b4e6 917 swap_range_alloc(si, offset, 1);
36005bae
TC
918 slots[n_ret++] = swp_entry(si->type, offset);
919
920 /* got enough slots or reach max slots? */
921 if ((n_ret == nr) || (offset >= si->highest_bit))
922 goto done;
923
924 /* search for next available slot */
925
926 /* time to take a break? */
927 if (unlikely(--latency_ration < 0)) {
928 if (n_ret)
929 goto done;
930 spin_unlock(&si->lock);
931 cond_resched();
932 spin_lock(&si->lock);
933 latency_ration = LATENCY_LIMIT;
934 }
935
936 /* try to get more slots in cluster */
937 if (si->cluster_info) {
938 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
939 goto checks;
f4eaf51a
WY
940 } else if (si->cluster_nr && !si->swap_map[++offset]) {
941 /* non-ssd case, still more slots in cluster? */
36005bae
TC
942 --si->cluster_nr;
943 goto checks;
944 }
7992fde7 945
ed43af10
HY
946 /*
947 * Even if there's no free clusters available (fragmented),
948 * try to scan a little more quickly with lock held unless we
949 * have scanned too many slots already.
950 */
951 if (!scanned_many) {
952 unsigned long scan_limit;
953
954 if (offset < scan_base)
955 scan_limit = scan_base;
956 else
957 scan_limit = si->highest_bit;
958 for (; offset <= scan_limit && --latency_ration > 0;
959 offset++) {
960 if (!si->swap_map[offset])
961 goto checks;
962 }
963 }
964
36005bae 965done:
49070588 966 set_cluster_next(si, offset + 1);
36005bae
TC
967 si->flags -= SWP_SCANNING;
968 return n_ret;
7dfad418 969
ebebbbe9 970scan:
ec8acf20 971 spin_unlock(&si->lock);
a449bf58 972 while (++offset <= READ_ONCE(si->highest_bit)) {
4b9ae842 973 if (swap_offset_available_and_locked(si, offset))
c9e44410 974 goto checks;
048c27fd
HD
975 if (unlikely(--latency_ration < 0)) {
976 cond_resched();
977 latency_ration = LATENCY_LIMIT;
ed43af10 978 scanned_many = true;
048c27fd 979 }
7dfad418 980 }
c60aa176 981 offset = si->lowest_bit;
a5998061 982 while (offset < scan_base) {
4b9ae842 983 if (swap_offset_available_and_locked(si, offset))
c60aa176 984 goto checks;
c60aa176
HD
985 if (unlikely(--latency_ration < 0)) {
986 cond_resched();
987 latency_ration = LATENCY_LIMIT;
ed43af10 988 scanned_many = true;
c60aa176 989 }
a5998061 990 offset++;
c60aa176 991 }
ec8acf20 992 spin_lock(&si->lock);
7dfad418
HD
993
994no_page:
52b7efdb 995 si->flags -= SWP_SCANNING;
36005bae 996 return n_ret;
1da177e4
LT
997}
998
38d8b4e6
HY
999static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1000{
1001 unsigned long idx;
1002 struct swap_cluster_info *ci;
661c7566 1003 unsigned long offset;
38d8b4e6 1004
fe5266d5
HY
1005 /*
1006 * Should not even be attempting cluster allocations when huge
1007 * page swap is disabled. Warn and fail the allocation.
1008 */
1009 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1010 VM_WARN_ON_ONCE(1);
1011 return 0;
1012 }
1013
38d8b4e6
HY
1014 if (cluster_list_empty(&si->free_clusters))
1015 return 0;
1016
1017 idx = cluster_list_first(&si->free_clusters);
1018 offset = idx * SWAPFILE_CLUSTER;
1019 ci = lock_cluster(si, offset);
1020 alloc_cluster(si, idx);
e0709829 1021 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6 1022
661c7566 1023 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
38d8b4e6
HY
1024 unlock_cluster(ci);
1025 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1026 *slot = swp_entry(si->type, offset);
1027
1028 return 1;
1029}
1030
1031static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1032{
1033 unsigned long offset = idx * SWAPFILE_CLUSTER;
1034 struct swap_cluster_info *ci;
1035
1036 ci = lock_cluster(si, offset);
979aafa5 1037 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
1038 cluster_set_count_flag(ci, 0, 0);
1039 free_cluster(si, idx);
1040 unlock_cluster(ci);
1041 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1042}
38d8b4e6 1043
5d5e8f19 1044int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 1045{
5d5e8f19 1046 unsigned long size = swap_entry_size(entry_size);
adfab836 1047 struct swap_info_struct *si, *next;
36005bae
TC
1048 long avail_pgs;
1049 int n_ret = 0;
a2468cc9 1050 int node;
1da177e4 1051
38d8b4e6 1052 /* Only single cluster request supported */
5d5e8f19 1053 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1054
b50da6e9
ZH
1055 spin_lock(&swap_avail_lock);
1056
5d5e8f19 1057 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
b50da6e9
ZH
1058 if (avail_pgs <= 0) {
1059 spin_unlock(&swap_avail_lock);
fb4f88dc 1060 goto noswap;
b50da6e9 1061 }
36005bae 1062
08d3090f 1063 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 1064
5d5e8f19 1065 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1066
18ab4d4c 1067start_over:
a2468cc9
AL
1068 node = numa_node_id();
1069 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1070 /* requeue si to after same-priority siblings */
a2468cc9 1071 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1072 spin_unlock(&swap_avail_lock);
ec8acf20 1073 spin_lock(&si->lock);
adfab836 1074 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1075 spin_lock(&swap_avail_lock);
a2468cc9 1076 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1077 spin_unlock(&si->lock);
1078 goto nextsi;
1079 }
1080 WARN(!si->highest_bit,
1081 "swap_info %d in list but !highest_bit\n",
1082 si->type);
1083 WARN(!(si->flags & SWP_WRITEOK),
1084 "swap_info %d in list but !SWP_WRITEOK\n",
1085 si->type);
a2468cc9 1086 __del_from_avail_list(si);
ec8acf20 1087 spin_unlock(&si->lock);
18ab4d4c 1088 goto nextsi;
ec8acf20 1089 }
5d5e8f19 1090 if (size == SWAPFILE_CLUSTER) {
41663430 1091 if (si->flags & SWP_BLKDEV)
f0eea189
HY
1092 n_ret = swap_alloc_cluster(si, swp_entries);
1093 } else
38d8b4e6
HY
1094 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1095 n_goal, swp_entries);
ec8acf20 1096 spin_unlock(&si->lock);
5d5e8f19 1097 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1098 goto check_out;
18ab4d4c 1099 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1100 si->type);
1101
18ab4d4c
DS
1102 spin_lock(&swap_avail_lock);
1103nextsi:
adfab836
DS
1104 /*
1105 * if we got here, it's likely that si was almost full before,
bb243f7d
ML
1106 * and since scan_swap_map_slots() can drop the si->lock,
1107 * multiple callers probably all tried to get a page from the
1108 * same si and it filled up before we could get one; or, the si
1109 * filled up between us dropping swap_avail_lock and taking
1110 * si->lock. Since we dropped the swap_avail_lock, the
1111 * swap_avail_head list may have been modified; so if next is
1112 * still in the swap_avail_head list then try it, otherwise
1113 * start over if we have not gotten any slots.
adfab836 1114 */
a2468cc9 1115 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1116 goto start_over;
1da177e4 1117 }
fb4f88dc 1118
18ab4d4c
DS
1119 spin_unlock(&swap_avail_lock);
1120
36005bae
TC
1121check_out:
1122 if (n_ret < n_goal)
5d5e8f19 1123 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1124 &nr_swap_pages);
fb4f88dc 1125noswap:
36005bae
TC
1126 return n_ret;
1127}
1128
afba72b1 1129static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1da177e4 1130{
73c34b6a 1131 struct swap_info_struct *p;
eb085574 1132 unsigned long offset;
1da177e4
LT
1133
1134 if (!entry.val)
1135 goto out;
eb085574 1136 p = swp_swap_info(entry);
c10d38cc 1137 if (!p)
1da177e4 1138 goto bad_nofile;
a449bf58 1139 if (data_race(!(p->flags & SWP_USED)))
1da177e4
LT
1140 goto bad_device;
1141 offset = swp_offset(entry);
1142 if (offset >= p->max)
1143 goto bad_offset;
afba72b1
ML
1144 if (data_race(!p->swap_map[swp_offset(entry)]))
1145 goto bad_free;
1da177e4
LT
1146 return p;
1147
afba72b1
ML
1148bad_free:
1149 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1150 goto out;
1da177e4 1151bad_offset:
cf532faa 1152 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1da177e4
LT
1153 goto out;
1154bad_device:
cf532faa 1155 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1da177e4
LT
1156 goto out;
1157bad_nofile:
cf532faa 1158 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1da177e4
LT
1159out:
1160 return NULL;
886bb7e9 1161}
1da177e4 1162
7c00bafe
TC
1163static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1164 struct swap_info_struct *q)
1165{
1166 struct swap_info_struct *p;
1167
1168 p = _swap_info_get(entry);
1169
1170 if (p != q) {
1171 if (q != NULL)
1172 spin_unlock(&q->lock);
1173 if (p != NULL)
1174 spin_lock(&p->lock);
1175 }
1176 return p;
1177}
1178
b32d5f32
HY
1179static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1180 unsigned long offset,
1181 unsigned char usage)
1da177e4 1182{
8d69aaee
HD
1183 unsigned char count;
1184 unsigned char has_cache;
235b6217 1185
253d553b 1186 count = p->swap_map[offset];
235b6217 1187
253d553b
HD
1188 has_cache = count & SWAP_HAS_CACHE;
1189 count &= ~SWAP_HAS_CACHE;
355cfa73 1190
253d553b 1191 if (usage == SWAP_HAS_CACHE) {
355cfa73 1192 VM_BUG_ON(!has_cache);
253d553b 1193 has_cache = 0;
aaa46865
HD
1194 } else if (count == SWAP_MAP_SHMEM) {
1195 /*
1196 * Or we could insist on shmem.c using a special
1197 * swap_shmem_free() and free_shmem_swap_and_cache()...
1198 */
1199 count = 0;
570a335b
HD
1200 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1201 if (count == COUNT_CONTINUED) {
1202 if (swap_count_continued(p, offset, count))
1203 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1204 else
1205 count = SWAP_MAP_MAX;
1206 } else
1207 count--;
1208 }
253d553b 1209
253d553b 1210 usage = count | has_cache;
a449bf58
QC
1211 if (usage)
1212 WRITE_ONCE(p->swap_map[offset], usage);
1213 else
1214 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
7c00bafe 1215
b32d5f32
HY
1216 return usage;
1217}
1218
eb085574
HY
1219/*
1220 * Check whether swap entry is valid in the swap device. If so,
1221 * return pointer to swap_info_struct, and keep the swap entry valid
1222 * via preventing the swap device from being swapoff, until
1223 * put_swap_device() is called. Otherwise return NULL.
1224 *
eb085574 1225 * Notice that swapoff or swapoff+swapon can still happen before the
63d8620e
ML
1226 * percpu_ref_tryget_live() in get_swap_device() or after the
1227 * percpu_ref_put() in put_swap_device() if there isn't any other way
1228 * to prevent swapoff, such as page lock, page table lock, etc. The
1229 * caller must be prepared for that. For example, the following
1230 * situation is possible.
eb085574
HY
1231 *
1232 * CPU1 CPU2
1233 * do_swap_page()
1234 * ... swapoff+swapon
1235 * __read_swap_cache_async()
1236 * swapcache_prepare()
1237 * __swap_duplicate()
1238 * // check swap_map
1239 * // verify PTE not changed
1240 *
1241 * In __swap_duplicate(), the swap_map need to be checked before
1242 * changing partly because the specified swap entry may be for another
1243 * swap device which has been swapoff. And in do_swap_page(), after
1244 * the page is read from the swap device, the PTE is verified not
1245 * changed with the page table locked to check whether the swap device
1246 * has been swapoff or swapoff+swapon.
1247 */
1248struct swap_info_struct *get_swap_device(swp_entry_t entry)
1249{
1250 struct swap_info_struct *si;
1251 unsigned long offset;
1252
1253 if (!entry.val)
1254 goto out;
1255 si = swp_swap_info(entry);
1256 if (!si)
1257 goto bad_nofile;
63d8620e
ML
1258 if (!percpu_ref_tryget_live(&si->users))
1259 goto out;
1260 /*
1261 * Guarantee the si->users are checked before accessing other
1262 * fields of swap_info_struct.
1263 *
1264 * Paired with the spin_unlock() after setup_swap_info() in
1265 * enable_swap_info().
1266 */
1267 smp_rmb();
eb085574
HY
1268 offset = swp_offset(entry);
1269 if (offset >= si->max)
63d8620e 1270 goto put_out;
eb085574
HY
1271
1272 return si;
1273bad_nofile:
1274 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1275out:
1276 return NULL;
63d8620e 1277put_out:
23b230ba 1278 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
63d8620e 1279 percpu_ref_put(&si->users);
eb085574
HY
1280 return NULL;
1281}
1282
b32d5f32 1283static unsigned char __swap_entry_free(struct swap_info_struct *p,
33e16272 1284 swp_entry_t entry)
b32d5f32
HY
1285{
1286 struct swap_cluster_info *ci;
1287 unsigned long offset = swp_offset(entry);
33e16272 1288 unsigned char usage;
b32d5f32
HY
1289
1290 ci = lock_cluster_or_swap_info(p, offset);
33e16272 1291 usage = __swap_entry_free_locked(p, offset, 1);
7c00bafe 1292 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1293 if (!usage)
1294 free_swap_slot(entry);
7c00bafe
TC
1295
1296 return usage;
1297}
355cfa73 1298
7c00bafe
TC
1299static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1300{
1301 struct swap_cluster_info *ci;
1302 unsigned long offset = swp_offset(entry);
1303 unsigned char count;
1304
1305 ci = lock_cluster(p, offset);
1306 count = p->swap_map[offset];
1307 VM_BUG_ON(count != SWAP_HAS_CACHE);
1308 p->swap_map[offset] = 0;
1309 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1310 unlock_cluster(ci);
1311
38d8b4e6
HY
1312 mem_cgroup_uncharge_swap(entry, 1);
1313 swap_range_free(p, offset, 1);
1da177e4
LT
1314}
1315
1316/*
2de1a7e4 1317 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1318 * is still around or has not been recycled.
1319 */
1320void swap_free(swp_entry_t entry)
1321{
73c34b6a 1322 struct swap_info_struct *p;
1da177e4 1323
235b6217 1324 p = _swap_info_get(entry);
10e364da 1325 if (p)
33e16272 1326 __swap_entry_free(p, entry);
1da177e4
LT
1327}
1328
cb4b86ba
KH
1329/*
1330 * Called after dropping swapcache to decrease refcnt to swap entries.
1331 */
a448f2d0 1332void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1333{
1334 unsigned long offset = swp_offset(entry);
1335 unsigned long idx = offset / SWAPFILE_CLUSTER;
1336 struct swap_cluster_info *ci;
1337 struct swap_info_struct *si;
1338 unsigned char *map;
a3aea839
HY
1339 unsigned int i, free_entries = 0;
1340 unsigned char val;
6c357848 1341 int size = swap_entry_size(thp_nr_pages(page));
fe5266d5 1342
a3aea839 1343 si = _swap_info_get(entry);
38d8b4e6
HY
1344 if (!si)
1345 return;
1346
c2343d27 1347 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1348 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1349 VM_BUG_ON(!cluster_is_huge(ci));
1350 map = si->swap_map + offset;
1351 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1352 val = map[i];
1353 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1354 if (val == SWAP_HAS_CACHE)
1355 free_entries++;
1356 }
a448f2d0 1357 cluster_clear_huge(ci);
a448f2d0 1358 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1359 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1360 spin_lock(&si->lock);
a448f2d0
HY
1361 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1362 swap_free_cluster(si, idx);
1363 spin_unlock(&si->lock);
1364 return;
1365 }
1366 }
c2343d27
HY
1367 for (i = 0; i < size; i++, entry.val++) {
1368 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1369 unlock_cluster_or_swap_info(si, ci);
1370 free_swap_slot(entry);
1371 if (i == size - 1)
1372 return;
1373 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1374 }
1375 }
c2343d27 1376 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1377}
59807685 1378
fe5266d5 1379#ifdef CONFIG_THP_SWAP
59807685
HY
1380int split_swap_cluster(swp_entry_t entry)
1381{
1382 struct swap_info_struct *si;
1383 struct swap_cluster_info *ci;
1384 unsigned long offset = swp_offset(entry);
1385
1386 si = _swap_info_get(entry);
1387 if (!si)
1388 return -EBUSY;
1389 ci = lock_cluster(si, offset);
1390 cluster_clear_huge(ci);
1391 unlock_cluster(ci);
1392 return 0;
1393}
fe5266d5 1394#endif
38d8b4e6 1395
155b5f88
HY
1396static int swp_entry_cmp(const void *ent1, const void *ent2)
1397{
1398 const swp_entry_t *e1 = ent1, *e2 = ent2;
1399
1400 return (int)swp_type(*e1) - (int)swp_type(*e2);
1401}
1402
7c00bafe
TC
1403void swapcache_free_entries(swp_entry_t *entries, int n)
1404{
1405 struct swap_info_struct *p, *prev;
1406 int i;
1407
1408 if (n <= 0)
1409 return;
1410
1411 prev = NULL;
1412 p = NULL;
155b5f88
HY
1413
1414 /*
1415 * Sort swap entries by swap device, so each lock is only taken once.
1416 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1417 * so low that it isn't necessary to optimize further.
1418 */
1419 if (nr_swapfiles > 1)
1420 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1421 for (i = 0; i < n; ++i) {
1422 p = swap_info_get_cont(entries[i], prev);
1423 if (p)
1424 swap_entry_free(p, entries[i]);
7c00bafe
TC
1425 prev = p;
1426 }
235b6217 1427 if (p)
7c00bafe 1428 spin_unlock(&p->lock);
cb4b86ba
KH
1429}
1430
1da177e4 1431/*
c475a8ab 1432 * How many references to page are currently swapped out?
570a335b
HD
1433 * This does not give an exact answer when swap count is continued,
1434 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1435 */
3db3264d 1436static int page_swapcount(struct page *page)
1da177e4 1437{
c475a8ab
HD
1438 int count = 0;
1439 struct swap_info_struct *p;
235b6217 1440 struct swap_cluster_info *ci;
1da177e4 1441 swp_entry_t entry;
235b6217 1442 unsigned long offset;
1da177e4 1443
4c21e2f2 1444 entry.val = page_private(page);
235b6217 1445 p = _swap_info_get(entry);
1da177e4 1446 if (p) {
235b6217
HY
1447 offset = swp_offset(entry);
1448 ci = lock_cluster_or_swap_info(p, offset);
1449 count = swap_count(p->swap_map[offset]);
1450 unlock_cluster_or_swap_info(p, ci);
1da177e4 1451 }
c475a8ab 1452 return count;
1da177e4
LT
1453}
1454
eb085574 1455int __swap_count(swp_entry_t entry)
aa8d22a1 1456{
eb085574 1457 struct swap_info_struct *si;
aa8d22a1 1458 pgoff_t offset = swp_offset(entry);
eb085574 1459 int count = 0;
aa8d22a1 1460
eb085574
HY
1461 si = get_swap_device(entry);
1462 if (si) {
1463 count = swap_count(si->swap_map[offset]);
1464 put_swap_device(si);
1465 }
1466 return count;
aa8d22a1
MK
1467}
1468
322b8afe
HY
1469static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1470{
1471 int count = 0;
1472 pgoff_t offset = swp_offset(entry);
1473 struct swap_cluster_info *ci;
1474
1475 ci = lock_cluster_or_swap_info(si, offset);
1476 count = swap_count(si->swap_map[offset]);
1477 unlock_cluster_or_swap_info(si, ci);
1478 return count;
1479}
1480
e8c26ab6
TC
1481/*
1482 * How many references to @entry are currently swapped out?
1483 * This does not give an exact answer when swap count is continued,
1484 * but does include the high COUNT_CONTINUED flag to allow for that.
1485 */
1486int __swp_swapcount(swp_entry_t entry)
1487{
1488 int count = 0;
e8c26ab6 1489 struct swap_info_struct *si;
e8c26ab6 1490
eb085574
HY
1491 si = get_swap_device(entry);
1492 if (si) {
322b8afe 1493 count = swap_swapcount(si, entry);
eb085574
HY
1494 put_swap_device(si);
1495 }
e8c26ab6
TC
1496 return count;
1497}
1498
8334b962
MK
1499/*
1500 * How many references to @entry are currently swapped out?
1501 * This considers COUNT_CONTINUED so it returns exact answer.
1502 */
1503int swp_swapcount(swp_entry_t entry)
1504{
1505 int count, tmp_count, n;
1506 struct swap_info_struct *p;
235b6217 1507 struct swap_cluster_info *ci;
8334b962
MK
1508 struct page *page;
1509 pgoff_t offset;
1510 unsigned char *map;
1511
235b6217 1512 p = _swap_info_get(entry);
8334b962
MK
1513 if (!p)
1514 return 0;
1515
235b6217
HY
1516 offset = swp_offset(entry);
1517
1518 ci = lock_cluster_or_swap_info(p, offset);
1519
1520 count = swap_count(p->swap_map[offset]);
8334b962
MK
1521 if (!(count & COUNT_CONTINUED))
1522 goto out;
1523
1524 count &= ~COUNT_CONTINUED;
1525 n = SWAP_MAP_MAX + 1;
1526
8334b962
MK
1527 page = vmalloc_to_page(p->swap_map + offset);
1528 offset &= ~PAGE_MASK;
1529 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1530
1531 do {
a8ae4991 1532 page = list_next_entry(page, lru);
8334b962
MK
1533 map = kmap_atomic(page);
1534 tmp_count = map[offset];
1535 kunmap_atomic(map);
1536
1537 count += (tmp_count & ~COUNT_CONTINUED) * n;
1538 n *= (SWAP_CONT_MAX + 1);
1539 } while (tmp_count & COUNT_CONTINUED);
1540out:
235b6217 1541 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1542 return count;
1543}
1544
e0709829
HY
1545static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1546 swp_entry_t entry)
1547{
1548 struct swap_cluster_info *ci;
1549 unsigned char *map = si->swap_map;
1550 unsigned long roffset = swp_offset(entry);
1551 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1552 int i;
1553 bool ret = false;
1554
1555 ci = lock_cluster_or_swap_info(si, offset);
1556 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1557 if (swap_count(map[roffset]))
e0709829
HY
1558 ret = true;
1559 goto unlock_out;
1560 }
1561 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1562 if (swap_count(map[offset + i])) {
e0709829
HY
1563 ret = true;
1564 break;
1565 }
1566 }
1567unlock_out:
1568 unlock_cluster_or_swap_info(si, ci);
1569 return ret;
1570}
1571
2397f780 1572static bool folio_swapped(struct folio *folio)
e0709829
HY
1573{
1574 swp_entry_t entry;
1575 struct swap_info_struct *si;
1576
2397f780
MWO
1577 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1578 return page_swapcount(&folio->page) != 0;
e0709829 1579
2397f780 1580 entry = folio_swap_entry(folio);
e0709829
HY
1581 si = _swap_info_get(entry);
1582 if (si)
1583 return swap_page_trans_huge_swapped(si, entry);
1584 return false;
1585}
ba3c4ce6 1586
1da177e4 1587/*
a2c43eed
HD
1588 * If swap is getting full, or if there are no more mappings of this page,
1589 * then try_to_free_swap is called to free its swap space.
1da177e4 1590 */
a2c43eed 1591int try_to_free_swap(struct page *page)
1da177e4 1592{
2397f780
MWO
1593 struct folio *folio = page_folio(page);
1594 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1da177e4 1595
2397f780 1596 if (!folio_test_swapcache(folio))
1da177e4 1597 return 0;
2397f780 1598 if (folio_test_writeback(folio))
1da177e4 1599 return 0;
2397f780 1600 if (folio_swapped(folio))
1da177e4
LT
1601 return 0;
1602
b73d7fce
HD
1603 /*
1604 * Once hibernation has begun to create its image of memory,
1605 * there's a danger that one of the calls to try_to_free_swap()
1606 * - most probably a call from __try_to_reclaim_swap() while
1607 * hibernation is allocating its own swap pages for the image,
1608 * but conceivably even a call from memory reclaim - will free
1609 * the swap from a page which has already been recorded in the
1610 * image as a clean swapcache page, and then reuse its swap for
1611 * another page of the image. On waking from hibernation, the
1612 * original page might be freed under memory pressure, then
1613 * later read back in from swap, now with the wrong data.
1614 *
2de1a7e4 1615 * Hibernation suspends storage while it is writing the image
f90ac398 1616 * to disk so check that here.
b73d7fce 1617 */
f90ac398 1618 if (pm_suspended_storage())
b73d7fce
HD
1619 return 0;
1620
75fa68a5 1621 delete_from_swap_cache(folio);
2397f780 1622 folio_set_dirty(folio);
a2c43eed 1623 return 1;
68a22394
RR
1624}
1625
1da177e4
LT
1626/*
1627 * Free the swap entry like above, but also try to
1628 * free the page cache entry if it is the last user.
1629 */
2509ef26 1630int free_swap_and_cache(swp_entry_t entry)
1da177e4 1631{
2509ef26 1632 struct swap_info_struct *p;
7c00bafe 1633 unsigned char count;
1da177e4 1634
a7420aa5 1635 if (non_swap_entry(entry))
2509ef26 1636 return 1;
0697212a 1637
7c00bafe 1638 p = _swap_info_get(entry);
1da177e4 1639 if (p) {
33e16272 1640 count = __swap_entry_free(p, entry);
e0709829 1641 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1642 !swap_page_trans_huge_swapped(p, entry))
1643 __try_to_reclaim_swap(p, swp_offset(entry),
1644 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1645 }
2509ef26 1646 return p != NULL;
1da177e4
LT
1647}
1648
b0cb1a19 1649#ifdef CONFIG_HIBERNATION
bb243f7d
ML
1650
1651swp_entry_t get_swap_page_of_type(int type)
1652{
1653 struct swap_info_struct *si = swap_type_to_swap_info(type);
1654 swp_entry_t entry = {0};
1655
1656 if (!si)
1657 goto fail;
1658
1659 /* This is called for allocating swap entry, not cache */
1660 spin_lock(&si->lock);
1661 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1662 atomic_long_dec(&nr_swap_pages);
1663 spin_unlock(&si->lock);
1664fail:
1665 return entry;
1666}
1667
f577eb30 1668/*
915bae9e 1669 * Find the swap type that corresponds to given device (if any).
f577eb30 1670 *
915bae9e
RW
1671 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1672 * from 0, in which the swap header is expected to be located.
1673 *
1674 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1675 */
21bd9005 1676int swap_type_of(dev_t device, sector_t offset)
f577eb30 1677{
efa90a98 1678 int type;
f577eb30 1679
21bd9005
CH
1680 if (!device)
1681 return -1;
915bae9e 1682
f577eb30 1683 spin_lock(&swap_lock);
efa90a98
HD
1684 for (type = 0; type < nr_swapfiles; type++) {
1685 struct swap_info_struct *sis = swap_info[type];
f577eb30 1686
915bae9e 1687 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1688 continue;
b6b5bce3 1689
21bd9005 1690 if (device == sis->bdev->bd_dev) {
4efaceb1 1691 struct swap_extent *se = first_se(sis);
915bae9e 1692
915bae9e
RW
1693 if (se->start_block == offset) {
1694 spin_unlock(&swap_lock);
efa90a98 1695 return type;
915bae9e 1696 }
f577eb30
RW
1697 }
1698 }
1699 spin_unlock(&swap_lock);
21bd9005
CH
1700 return -ENODEV;
1701}
915bae9e 1702
21bd9005
CH
1703int find_first_swap(dev_t *device)
1704{
1705 int type;
915bae9e 1706
21bd9005
CH
1707 spin_lock(&swap_lock);
1708 for (type = 0; type < nr_swapfiles; type++) {
1709 struct swap_info_struct *sis = swap_info[type];
1710
1711 if (!(sis->flags & SWP_WRITEOK))
1712 continue;
1713 *device = sis->bdev->bd_dev;
1714 spin_unlock(&swap_lock);
1715 return type;
1716 }
1717 spin_unlock(&swap_lock);
f577eb30
RW
1718 return -ENODEV;
1719}
1720
73c34b6a
HD
1721/*
1722 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1723 * corresponding to given index in swap_info (swap type).
1724 */
1725sector_t swapdev_block(int type, pgoff_t offset)
1726{
c10d38cc 1727 struct swap_info_struct *si = swap_type_to_swap_info(type);
f885056a 1728 struct swap_extent *se;
73c34b6a 1729
c10d38cc 1730 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1731 return 0;
f885056a
CH
1732 se = offset_to_swap_extent(si, offset);
1733 return se->start_block + (offset - se->start_page);
73c34b6a
HD
1734}
1735
f577eb30
RW
1736/*
1737 * Return either the total number of swap pages of given type, or the number
1738 * of free pages of that type (depending on @free)
1739 *
1740 * This is needed for software suspend
1741 */
1742unsigned int count_swap_pages(int type, int free)
1743{
1744 unsigned int n = 0;
1745
efa90a98
HD
1746 spin_lock(&swap_lock);
1747 if ((unsigned int)type < nr_swapfiles) {
1748 struct swap_info_struct *sis = swap_info[type];
1749
ec8acf20 1750 spin_lock(&sis->lock);
efa90a98
HD
1751 if (sis->flags & SWP_WRITEOK) {
1752 n = sis->pages;
f577eb30 1753 if (free)
efa90a98 1754 n -= sis->inuse_pages;
f577eb30 1755 }
ec8acf20 1756 spin_unlock(&sis->lock);
f577eb30 1757 }
efa90a98 1758 spin_unlock(&swap_lock);
f577eb30
RW
1759 return n;
1760}
73c34b6a 1761#endif /* CONFIG_HIBERNATION */
f577eb30 1762
9f8bdb3f 1763static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1764{
099dd687 1765 return pte_same(pte_swp_clear_flags(pte), swp_pte);
179ef71c
CG
1766}
1767
1da177e4 1768/*
72866f6f
HD
1769 * No need to decide whether this PTE shares the swap entry with others,
1770 * just let do_wp_page work it out if a write is requested later - to
1771 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1772 */
044d66c1 1773static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1774 unsigned long addr, swp_entry_t entry, struct page *page)
1775{
9e16b7fb 1776 struct page *swapcache;
044d66c1 1777 spinlock_t *ptl;
14a762dd 1778 pte_t *pte, new_pte;
044d66c1
HD
1779 int ret = 1;
1780
9e16b7fb
HD
1781 swapcache = page;
1782 page = ksm_might_need_to_copy(page, vma, addr);
1783 if (unlikely(!page))
1784 return -ENOMEM;
1785
044d66c1 1786 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1787 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
044d66c1
HD
1788 ret = 0;
1789 goto out;
1790 }
8a9f3ccd 1791
9f186f9e
ML
1792 if (unlikely(!PageUptodate(page))) {
1793 pte_t pteval;
1794
1795 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1796 pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1797 set_pte_at(vma->vm_mm, addr, pte, pteval);
1798 swap_free(entry);
1799 ret = 0;
1800 goto out;
1801 }
1802
78fbe906
DH
1803 /* See do_swap_page() */
1804 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1805 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1806
b084d435 1807 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1808 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4 1809 get_page(page);
00501b53 1810 if (page == swapcache) {
1493a191
DH
1811 rmap_t rmap_flags = RMAP_NONE;
1812
1813 /*
1814 * See do_swap_page(): PageWriteback() would be problematic.
1815 * However, we do a wait_on_page_writeback() just before this
1816 * call and have the page locked.
1817 */
1818 VM_BUG_ON_PAGE(PageWriteback(page), page);
1819 if (pte_swp_exclusive(*pte))
1820 rmap_flags |= RMAP_EXCLUSIVE;
1821
1822 page_add_anon_rmap(page, vma, addr, rmap_flags);
00501b53 1823 } else { /* ksm created a completely new copy */
40f2bbf7 1824 page_add_new_anon_rmap(page, vma, addr);
b518154e 1825 lru_cache_add_inactive_or_unevictable(page, vma);
00501b53 1826 }
14a762dd
ML
1827 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1828 if (pte_swp_soft_dirty(*pte))
1829 new_pte = pte_mksoft_dirty(new_pte);
1830 if (pte_swp_uffd_wp(*pte))
1831 new_pte = pte_mkuffd_wp(new_pte);
1832 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1da177e4 1833 swap_free(entry);
044d66c1
HD
1834out:
1835 pte_unmap_unlock(pte, ptl);
9e16b7fb
HD
1836 if (page != swapcache) {
1837 unlock_page(page);
1838 put_page(page);
1839 }
044d66c1 1840 return ret;
1da177e4
LT
1841}
1842
1843static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a 1844 unsigned long addr, unsigned long end,
10a9c496 1845 unsigned int type)
1da177e4 1846{
b56a2d8a
VRP
1847 struct page *page;
1848 swp_entry_t entry;
705e87c0 1849 pte_t *pte;
b56a2d8a
VRP
1850 struct swap_info_struct *si;
1851 unsigned long offset;
8a9f3ccd 1852 int ret = 0;
b56a2d8a 1853 volatile unsigned char *swap_map;
1da177e4 1854
b56a2d8a 1855 si = swap_info[type];
044d66c1 1856 pte = pte_offset_map(pmd, addr);
1da177e4 1857 do {
b56a2d8a
VRP
1858 if (!is_swap_pte(*pte))
1859 continue;
1860
1861 entry = pte_to_swp_entry(*pte);
1862 if (swp_type(entry) != type)
1863 continue;
1864
1865 offset = swp_offset(entry);
b56a2d8a
VRP
1866 pte_unmap(pte);
1867 swap_map = &si->swap_map[offset];
ebc5951e
AR
1868 page = lookup_swap_cache(entry, vma, addr);
1869 if (!page) {
8c63ca5b
WD
1870 struct vm_fault vmf = {
1871 .vma = vma,
1872 .address = addr,
824ddc60 1873 .real_address = addr,
8c63ca5b
WD
1874 .pmd = pmd,
1875 };
1876
ebc5951e
AR
1877 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1878 &vmf);
1879 }
b56a2d8a
VRP
1880 if (!page) {
1881 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1882 goto try_next;
1883 return -ENOMEM;
1884 }
1885
1886 lock_page(page);
1887 wait_on_page_writeback(page);
1888 ret = unuse_pte(vma, pmd, addr, entry, page);
1889 if (ret < 0) {
1890 unlock_page(page);
1891 put_page(page);
1892 goto out;
1893 }
1894
1895 try_to_free_swap(page);
1896 unlock_page(page);
1897 put_page(page);
b56a2d8a
VRP
1898try_next:
1899 pte = pte_offset_map(pmd, addr);
1da177e4 1900 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 1901 pte_unmap(pte - 1);
b56a2d8a
VRP
1902
1903 ret = 0;
044d66c1 1904out:
8a9f3ccd 1905 return ret;
1da177e4
LT
1906}
1907
1908static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1909 unsigned long addr, unsigned long end,
10a9c496 1910 unsigned int type)
1da177e4
LT
1911{
1912 pmd_t *pmd;
1913 unsigned long next;
8a9f3ccd 1914 int ret;
1da177e4
LT
1915
1916 pmd = pmd_offset(pud, addr);
1917 do {
dc644a07 1918 cond_resched();
1da177e4 1919 next = pmd_addr_end(addr, end);
1a5a9906 1920 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1921 continue;
10a9c496 1922 ret = unuse_pte_range(vma, pmd, addr, next, type);
8a9f3ccd
BS
1923 if (ret)
1924 return ret;
1da177e4
LT
1925 } while (pmd++, addr = next, addr != end);
1926 return 0;
1927}
1928
c2febafc 1929static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1930 unsigned long addr, unsigned long end,
10a9c496 1931 unsigned int type)
1da177e4
LT
1932{
1933 pud_t *pud;
1934 unsigned long next;
8a9f3ccd 1935 int ret;
1da177e4 1936
c2febafc 1937 pud = pud_offset(p4d, addr);
1da177e4
LT
1938 do {
1939 next = pud_addr_end(addr, end);
1940 if (pud_none_or_clear_bad(pud))
1941 continue;
10a9c496 1942 ret = unuse_pmd_range(vma, pud, addr, next, type);
8a9f3ccd
BS
1943 if (ret)
1944 return ret;
1da177e4
LT
1945 } while (pud++, addr = next, addr != end);
1946 return 0;
1947}
1948
c2febafc
KS
1949static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1950 unsigned long addr, unsigned long end,
10a9c496 1951 unsigned int type)
c2febafc
KS
1952{
1953 p4d_t *p4d;
1954 unsigned long next;
1955 int ret;
1956
1957 p4d = p4d_offset(pgd, addr);
1958 do {
1959 next = p4d_addr_end(addr, end);
1960 if (p4d_none_or_clear_bad(p4d))
1961 continue;
10a9c496 1962 ret = unuse_pud_range(vma, p4d, addr, next, type);
c2febafc
KS
1963 if (ret)
1964 return ret;
1965 } while (p4d++, addr = next, addr != end);
1966 return 0;
1967}
1968
10a9c496 1969static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1da177e4
LT
1970{
1971 pgd_t *pgd;
1972 unsigned long addr, end, next;
8a9f3ccd 1973 int ret;
1da177e4 1974
b56a2d8a
VRP
1975 addr = vma->vm_start;
1976 end = vma->vm_end;
1da177e4
LT
1977
1978 pgd = pgd_offset(vma->vm_mm, addr);
1979 do {
1980 next = pgd_addr_end(addr, end);
1981 if (pgd_none_or_clear_bad(pgd))
1982 continue;
10a9c496 1983 ret = unuse_p4d_range(vma, pgd, addr, next, type);
8a9f3ccd
BS
1984 if (ret)
1985 return ret;
1da177e4
LT
1986 } while (pgd++, addr = next, addr != end);
1987 return 0;
1988}
1989
10a9c496 1990static int unuse_mm(struct mm_struct *mm, unsigned int type)
1da177e4
LT
1991{
1992 struct vm_area_struct *vma;
8a9f3ccd 1993 int ret = 0;
1da177e4 1994
d8ed45c5 1995 mmap_read_lock(mm);
1da177e4 1996 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a 1997 if (vma->anon_vma) {
10a9c496 1998 ret = unuse_vma(vma, type);
b56a2d8a
VRP
1999 if (ret)
2000 break;
2001 }
dc644a07 2002 cond_resched();
1da177e4 2003 }
d8ed45c5 2004 mmap_read_unlock(mm);
b56a2d8a 2005 return ret;
1da177e4
LT
2006}
2007
2008/*
3c3115ad
ML
2009 * Scan swap_map from current position to next entry still in use.
2010 * Return 0 if there are no inuse entries after prev till end of
2011 * the map.
1da177e4 2012 */
6eb396dc 2013static unsigned int find_next_to_unuse(struct swap_info_struct *si,
10a9c496 2014 unsigned int prev)
1da177e4 2015{
b56a2d8a 2016 unsigned int i;
8d69aaee 2017 unsigned char count;
1da177e4
LT
2018
2019 /*
5d337b91 2020 * No need for swap_lock here: we're just looking
1da177e4
LT
2021 * for whether an entry is in use, not modifying it; false
2022 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2023 * allocations from this area (while holding swap_lock).
1da177e4 2024 */
b56a2d8a 2025 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2026 count = READ_ONCE(si->swap_map[i]);
355cfa73 2027 if (count && swap_count(count) != SWAP_MAP_BAD)
10a9c496 2028 break;
dc644a07
HD
2029 if ((i % LATENCY_LIMIT) == 0)
2030 cond_resched();
1da177e4 2031 }
b56a2d8a
VRP
2032
2033 if (i == si->max)
2034 i = 0;
2035
1da177e4
LT
2036 return i;
2037}
2038
10a9c496 2039static int try_to_unuse(unsigned int type)
1da177e4 2040{
b56a2d8a
VRP
2041 struct mm_struct *prev_mm;
2042 struct mm_struct *mm;
2043 struct list_head *p;
2044 int retval = 0;
efa90a98 2045 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2046 struct page *page;
2047 swp_entry_t entry;
b56a2d8a 2048 unsigned int i;
1da177e4 2049
21820948 2050 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2051 return 0;
1da177e4 2052
b56a2d8a 2053retry:
10a9c496 2054 retval = shmem_unuse(type);
b56a2d8a 2055 if (retval)
10a9c496 2056 return retval;
b56a2d8a
VRP
2057
2058 prev_mm = &init_mm;
2059 mmget(prev_mm);
2060
2061 spin_lock(&mmlist_lock);
2062 p = &init_mm.mmlist;
21820948 2063 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2064 !signal_pending(current) &&
2065 (p = p->next) != &init_mm.mmlist) {
1da177e4 2066
b56a2d8a
VRP
2067 mm = list_entry(p, struct mm_struct, mmlist);
2068 if (!mmget_not_zero(mm))
2069 continue;
2070 spin_unlock(&mmlist_lock);
2071 mmput(prev_mm);
2072 prev_mm = mm;
10a9c496 2073 retval = unuse_mm(mm, type);
b56a2d8a
VRP
2074 if (retval) {
2075 mmput(prev_mm);
10a9c496 2076 return retval;
1da177e4
LT
2077 }
2078
2079 /*
b56a2d8a
VRP
2080 * Make sure that we aren't completely killing
2081 * interactive performance.
1da177e4 2082 */
b56a2d8a
VRP
2083 cond_resched();
2084 spin_lock(&mmlist_lock);
2085 }
2086 spin_unlock(&mmlist_lock);
1da177e4 2087
b56a2d8a 2088 mmput(prev_mm);
1da177e4 2089
b56a2d8a 2090 i = 0;
21820948 2091 while (READ_ONCE(si->inuse_pages) &&
64165b1a 2092 !signal_pending(current) &&
10a9c496 2093 (i = find_next_to_unuse(si, i)) != 0) {
1da177e4 2094
b56a2d8a
VRP
2095 entry = swp_entry(type, i);
2096 page = find_get_page(swap_address_space(entry), i);
2097 if (!page)
2098 continue;
68bdc8d6
HD
2099
2100 /*
2101 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2102 * swap cache just before we acquired the page lock. The page
2103 * might even be back in swap cache on another swap area. But
2104 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2105 */
b56a2d8a
VRP
2106 lock_page(page);
2107 wait_on_page_writeback(page);
2108 try_to_free_swap(page);
1da177e4 2109 unlock_page(page);
09cbfeaf 2110 put_page(page);
1da177e4
LT
2111 }
2112
b56a2d8a
VRP
2113 /*
2114 * Lets check again to see if there are still swap entries in the map.
2115 * If yes, we would need to do retry the unuse logic again.
2116 * Under global memory pressure, swap entries can be reinserted back
2117 * into process space after the mmlist loop above passes over them.
dd862deb 2118 *
e2e3fdc7
MWO
2119 * Limit the number of retries? No: when mmget_not_zero()
2120 * above fails, that mm is likely to be freeing swap from
2121 * exit_mmap(), which proceeds at its own independent pace;
2122 * and even shmem_writepage() could have been preempted after
2123 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2124 * and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2125 */
21820948 2126 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2127 if (!signal_pending(current))
2128 goto retry;
10a9c496 2129 return -EINTR;
64165b1a 2130 }
10a9c496
CH
2131
2132 return 0;
1da177e4
LT
2133}
2134
2135/*
5d337b91
HD
2136 * After a successful try_to_unuse, if no swap is now in use, we know
2137 * we can empty the mmlist. swap_lock must be held on entry and exit.
2138 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2139 * added to the mmlist just after page_duplicate - before would be racy.
2140 */
2141static void drain_mmlist(void)
2142{
2143 struct list_head *p, *next;
efa90a98 2144 unsigned int type;
1da177e4 2145
efa90a98
HD
2146 for (type = 0; type < nr_swapfiles; type++)
2147 if (swap_info[type]->inuse_pages)
1da177e4
LT
2148 return;
2149 spin_lock(&mmlist_lock);
2150 list_for_each_safe(p, next, &init_mm.mmlist)
2151 list_del_init(p);
2152 spin_unlock(&mmlist_lock);
2153}
2154
1da177e4
LT
2155/*
2156 * Free all of a swapdev's extent information
2157 */
2158static void destroy_swap_extents(struct swap_info_struct *sis)
2159{
4efaceb1
AL
2160 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2161 struct rb_node *rb = sis->swap_extent_root.rb_node;
2162 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2163
4efaceb1 2164 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2165 kfree(se);
2166 }
62c230bc 2167
bc4ae27d 2168 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2169 struct file *swap_file = sis->swap_file;
2170 struct address_space *mapping = swap_file->f_mapping;
2171
bc4ae27d
OS
2172 sis->flags &= ~SWP_ACTIVATED;
2173 if (mapping->a_ops->swap_deactivate)
2174 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2175 }
1da177e4
LT
2176}
2177
2178/*
2179 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2180 * extent tree.
1da177e4 2181 *
11d31886 2182 * This function rather assumes that it is called in ascending page order.
1da177e4 2183 */
a509bc1a 2184int
1da177e4
LT
2185add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2186 unsigned long nr_pages, sector_t start_block)
2187{
4efaceb1 2188 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2189 struct swap_extent *se;
2190 struct swap_extent *new_se;
4efaceb1
AL
2191
2192 /*
2193 * place the new node at the right most since the
2194 * function is called in ascending page order.
2195 */
2196 while (*link) {
2197 parent = *link;
2198 link = &parent->rb_right;
2199 }
2200
2201 if (parent) {
2202 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2203 BUG_ON(se->start_page + se->nr_pages != start_page);
2204 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2205 /* Merge it */
2206 se->nr_pages += nr_pages;
2207 return 0;
2208 }
1da177e4
LT
2209 }
2210
4efaceb1 2211 /* No merge, insert a new extent. */
1da177e4
LT
2212 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2213 if (new_se == NULL)
2214 return -ENOMEM;
2215 new_se->start_page = start_page;
2216 new_se->nr_pages = nr_pages;
2217 new_se->start_block = start_block;
2218
4efaceb1
AL
2219 rb_link_node(&new_se->rb_node, parent, link);
2220 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2221 return 1;
1da177e4 2222}
aa8aa8a3 2223EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2224
2225/*
2226 * A `swap extent' is a simple thing which maps a contiguous range of pages
ff351f4b
ML
2227 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2228 * built at swapon time and is then used at swap_writepage/swap_readpage
1da177e4
LT
2229 * time for locating where on disk a page belongs.
2230 *
2231 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2232 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2233 * swap files identically.
2234 *
2235 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
ff351f4b 2236 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1da177e4
LT
2237 * swapfiles are handled *identically* after swapon time.
2238 *
2239 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
ff351f4b
ML
2240 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2241 * blocks are found which do not fall within the PAGE_SIZE alignment
1da177e4
LT
2242 * requirements, they are simply tossed out - we will never use those blocks
2243 * for swapping.
2244 *
1638045c
DW
2245 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2246 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2247 *
2248 * The amount of disk space which a single swap extent represents varies.
2249 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
ff351f4b 2250 * extents in the rbtree. - akpm.
1da177e4 2251 */
53092a74 2252static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2253{
62c230bc
MG
2254 struct file *swap_file = sis->swap_file;
2255 struct address_space *mapping = swap_file->f_mapping;
2256 struct inode *inode = mapping->host;
1da177e4
LT
2257 int ret;
2258
1da177e4
LT
2259 if (S_ISBLK(inode->i_mode)) {
2260 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2261 *span = sis->pages;
a509bc1a 2262 return ret;
1da177e4
LT
2263 }
2264
62c230bc 2265 if (mapping->a_ops->swap_activate) {
a509bc1a 2266 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
4b60c0ff
N
2267 if (ret < 0)
2268 return ret;
2269 sis->flags |= SWP_ACTIVATED;
e1209d3a
N
2270 if ((sis->flags & SWP_FS_OPS) &&
2271 sio_pool_init() != 0) {
2272 destroy_swap_extents(sis);
2273 return -ENOMEM;
62c230bc 2274 }
a509bc1a 2275 return ret;
62c230bc
MG
2276 }
2277
a509bc1a 2278 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2279}
2280
a2468cc9
AL
2281static int swap_node(struct swap_info_struct *p)
2282{
2283 struct block_device *bdev;
2284
2285 if (p->bdev)
2286 bdev = p->bdev;
2287 else
2288 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2289
2290 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2291}
2292
eb085574
HY
2293static void setup_swap_info(struct swap_info_struct *p, int prio,
2294 unsigned char *swap_map,
2295 struct swap_cluster_info *cluster_info)
40531542 2296{
a2468cc9
AL
2297 int i;
2298
40531542
CEB
2299 if (prio >= 0)
2300 p->prio = prio;
2301 else
2302 p->prio = --least_priority;
18ab4d4c
DS
2303 /*
2304 * the plist prio is negated because plist ordering is
2305 * low-to-high, while swap ordering is high-to-low
2306 */
2307 p->list.prio = -p->prio;
a2468cc9
AL
2308 for_each_node(i) {
2309 if (p->prio >= 0)
2310 p->avail_lists[i].prio = -p->prio;
2311 else {
2312 if (swap_node(p) == i)
2313 p->avail_lists[i].prio = 1;
2314 else
2315 p->avail_lists[i].prio = -p->prio;
2316 }
2317 }
40531542 2318 p->swap_map = swap_map;
2a8f9449 2319 p->cluster_info = cluster_info;
eb085574
HY
2320}
2321
2322static void _enable_swap_info(struct swap_info_struct *p)
2323{
63d8620e 2324 p->flags |= SWP_WRITEOK;
ec8acf20 2325 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2326 total_swap_pages += p->pages;
2327
adfab836 2328 assert_spin_locked(&swap_lock);
adfab836 2329 /*
18ab4d4c
DS
2330 * both lists are plists, and thus priority ordered.
2331 * swap_active_head needs to be priority ordered for swapoff(),
2332 * which on removal of any swap_info_struct with an auto-assigned
2333 * (i.e. negative) priority increments the auto-assigned priority
2334 * of any lower-priority swap_info_structs.
e2e3fdc7 2335 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
18ab4d4c
DS
2336 * which allocates swap pages from the highest available priority
2337 * swap_info_struct.
adfab836 2338 */
18ab4d4c 2339 plist_add(&p->list, &swap_active_head);
a2468cc9 2340 add_to_avail_list(p);
cf0cac0a
CEB
2341}
2342
2343static void enable_swap_info(struct swap_info_struct *p, int prio,
2344 unsigned char *swap_map,
2a8f9449 2345 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2346 unsigned long *frontswap_map)
2347{
1cf53c89
CH
2348 if (IS_ENABLED(CONFIG_FRONTSWAP))
2349 frontswap_init(p->type, frontswap_map);
cf0cac0a 2350 spin_lock(&swap_lock);
ec8acf20 2351 spin_lock(&p->lock);
eb085574
HY
2352 setup_swap_info(p, prio, swap_map, cluster_info);
2353 spin_unlock(&p->lock);
2354 spin_unlock(&swap_lock);
2355 /*
63d8620e 2356 * Finished initializing swap device, now it's safe to reference it.
eb085574 2357 */
63d8620e 2358 percpu_ref_resurrect(&p->users);
eb085574
HY
2359 spin_lock(&swap_lock);
2360 spin_lock(&p->lock);
2361 _enable_swap_info(p);
ec8acf20 2362 spin_unlock(&p->lock);
cf0cac0a
CEB
2363 spin_unlock(&swap_lock);
2364}
2365
2366static void reinsert_swap_info(struct swap_info_struct *p)
2367{
2368 spin_lock(&swap_lock);
ec8acf20 2369 spin_lock(&p->lock);
eb085574
HY
2370 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2371 _enable_swap_info(p);
ec8acf20 2372 spin_unlock(&p->lock);
40531542
CEB
2373 spin_unlock(&swap_lock);
2374}
2375
67afa38e
TC
2376bool has_usable_swap(void)
2377{
2378 bool ret = true;
2379
2380 spin_lock(&swap_lock);
2381 if (plist_head_empty(&swap_active_head))
2382 ret = false;
2383 spin_unlock(&swap_lock);
2384 return ret;
2385}
2386
c4ea37c2 2387SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2388{
73c34b6a 2389 struct swap_info_struct *p = NULL;
8d69aaee 2390 unsigned char *swap_map;
2a8f9449 2391 struct swap_cluster_info *cluster_info;
4f89849d 2392 unsigned long *frontswap_map;
1da177e4
LT
2393 struct file *swap_file, *victim;
2394 struct address_space *mapping;
2395 struct inode *inode;
91a27b2a 2396 struct filename *pathname;
adfab836 2397 int err, found = 0;
5b808a23 2398 unsigned int old_block_size;
886bb7e9 2399
1da177e4
LT
2400 if (!capable(CAP_SYS_ADMIN))
2401 return -EPERM;
2402
191c5424
AV
2403 BUG_ON(!current->mm);
2404
1da177e4 2405 pathname = getname(specialfile);
1da177e4 2406 if (IS_ERR(pathname))
f58b59c1 2407 return PTR_ERR(pathname);
1da177e4 2408
669abf4e 2409 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2410 err = PTR_ERR(victim);
2411 if (IS_ERR(victim))
2412 goto out;
2413
2414 mapping = victim->f_mapping;
5d337b91 2415 spin_lock(&swap_lock);
18ab4d4c 2416 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2417 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2418 if (p->swap_file->f_mapping == mapping) {
2419 found = 1;
1da177e4 2420 break;
adfab836 2421 }
1da177e4 2422 }
1da177e4 2423 }
adfab836 2424 if (!found) {
1da177e4 2425 err = -EINVAL;
5d337b91 2426 spin_unlock(&swap_lock);
1da177e4
LT
2427 goto out_dput;
2428 }
191c5424 2429 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2430 vm_unacct_memory(p->pages);
2431 else {
2432 err = -ENOMEM;
5d337b91 2433 spin_unlock(&swap_lock);
1da177e4
LT
2434 goto out_dput;
2435 }
a2468cc9 2436 del_from_avail_list(p);
ec8acf20 2437 spin_lock(&p->lock);
78ecba08 2438 if (p->prio < 0) {
adfab836 2439 struct swap_info_struct *si = p;
a2468cc9 2440 int nid;
adfab836 2441
18ab4d4c 2442 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2443 si->prio++;
18ab4d4c 2444 si->list.prio--;
a2468cc9
AL
2445 for_each_node(nid) {
2446 if (si->avail_lists[nid].prio != 1)
2447 si->avail_lists[nid].prio--;
2448 }
adfab836 2449 }
78ecba08
HD
2450 least_priority++;
2451 }
18ab4d4c 2452 plist_del(&p->list, &swap_active_head);
ec8acf20 2453 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2454 total_swap_pages -= p->pages;
2455 p->flags &= ~SWP_WRITEOK;
ec8acf20 2456 spin_unlock(&p->lock);
5d337b91 2457 spin_unlock(&swap_lock);
fb4f88dc 2458
039939a6
TC
2459 disable_swap_slots_cache_lock();
2460
e1e12d2f 2461 set_current_oom_origin();
10a9c496 2462 err = try_to_unuse(p->type);
e1e12d2f 2463 clear_current_oom_origin();
1da177e4 2464
1da177e4
LT
2465 if (err) {
2466 /* re-insert swap space back into swap_list */
cf0cac0a 2467 reinsert_swap_info(p);
039939a6 2468 reenable_swap_slots_cache_unlock();
1da177e4
LT
2469 goto out_dput;
2470 }
52b7efdb 2471
039939a6
TC
2472 reenable_swap_slots_cache_unlock();
2473
eb085574 2474 /*
63d8620e
ML
2475 * Wait for swap operations protected by get/put_swap_device()
2476 * to complete.
2477 *
2478 * We need synchronize_rcu() here to protect the accessing to
2479 * the swap cache data structure.
eb085574 2480 */
63d8620e 2481 percpu_ref_kill(&p->users);
eb085574 2482 synchronize_rcu();
63d8620e 2483 wait_for_completion(&p->comp);
eb085574 2484
815c2c54
SL
2485 flush_work(&p->discard_work);
2486
5d337b91 2487 destroy_swap_extents(p);
570a335b
HD
2488 if (p->flags & SWP_CONTINUED)
2489 free_swap_count_continuations(p);
2490
10f0d2a5 2491 if (!p->bdev || !bdev_nonrot(p->bdev))
81a0298b
HY
2492 atomic_dec(&nr_rotate_swap);
2493
fc0abb14 2494 mutex_lock(&swapon_mutex);
5d337b91 2495 spin_lock(&swap_lock);
ec8acf20 2496 spin_lock(&p->lock);
5d337b91
HD
2497 drain_mmlist();
2498
bb243f7d 2499 /* wait for anyone still in scan_swap_map_slots */
52b7efdb
HD
2500 p->highest_bit = 0; /* cuts scans short */
2501 while (p->flags >= SWP_SCANNING) {
ec8acf20 2502 spin_unlock(&p->lock);
5d337b91 2503 spin_unlock(&swap_lock);
13e4b57f 2504 schedule_timeout_uninterruptible(1);
5d337b91 2505 spin_lock(&swap_lock);
ec8acf20 2506 spin_lock(&p->lock);
52b7efdb 2507 }
52b7efdb 2508
1da177e4 2509 swap_file = p->swap_file;
5b808a23 2510 old_block_size = p->old_block_size;
1da177e4
LT
2511 p->swap_file = NULL;
2512 p->max = 0;
2513 swap_map = p->swap_map;
2514 p->swap_map = NULL;
2a8f9449
SL
2515 cluster_info = p->cluster_info;
2516 p->cluster_info = NULL;
4f89849d 2517 frontswap_map = frontswap_map_get(p);
ec8acf20 2518 spin_unlock(&p->lock);
5d337b91 2519 spin_unlock(&swap_lock);
8a84802e 2520 arch_swap_invalidate_area(p->type);
adfab836 2521 frontswap_invalidate_area(p->type);
58e97ba6 2522 frontswap_map_set(p, NULL);
fc0abb14 2523 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2524 free_percpu(p->percpu_cluster);
2525 p->percpu_cluster = NULL;
49070588
HY
2526 free_percpu(p->cluster_next_cpu);
2527 p->cluster_next_cpu = NULL;
1da177e4 2528 vfree(swap_map);
54f180d3
HY
2529 kvfree(cluster_info);
2530 kvfree(frontswap_map);
2de1a7e4 2531 /* Destroy swap account information */
adfab836 2532 swap_cgroup_swapoff(p->type);
4b3ef9da 2533 exit_swap_address_space(p->type);
27a7faa0 2534
1da177e4
LT
2535 inode = mapping->host;
2536 if (S_ISBLK(inode->i_mode)) {
2537 struct block_device *bdev = I_BDEV(inode);
1638045c 2538
5b808a23 2539 set_blocksize(bdev, old_block_size);
e525fd89 2540 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2541 }
1638045c
DW
2542
2543 inode_lock(inode);
2544 inode->i_flags &= ~S_SWAPFILE;
2545 inode_unlock(inode);
1da177e4 2546 filp_close(swap_file, NULL);
f893ab41
WY
2547
2548 /*
2549 * Clear the SWP_USED flag after all resources are freed so that swapon
2550 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2551 * not hold p->lock after we cleared its SWP_WRITEOK.
2552 */
2553 spin_lock(&swap_lock);
2554 p->flags = 0;
2555 spin_unlock(&swap_lock);
2556
1da177e4 2557 err = 0;
66d7dd51
KS
2558 atomic_inc(&proc_poll_event);
2559 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2560
2561out_dput:
2562 filp_close(victim, NULL);
2563out:
f58b59c1 2564 putname(pathname);
1da177e4
LT
2565 return err;
2566}
2567
2568#ifdef CONFIG_PROC_FS
9dd95748 2569static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2570{
f1514638 2571 struct seq_file *seq = file->private_data;
66d7dd51
KS
2572
2573 poll_wait(file, &proc_poll_wait, wait);
2574
f1514638
KS
2575 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2576 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2577 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2578 }
2579
a9a08845 2580 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2581}
2582
1da177e4
LT
2583/* iterator */
2584static void *swap_start(struct seq_file *swap, loff_t *pos)
2585{
efa90a98
HD
2586 struct swap_info_struct *si;
2587 int type;
1da177e4
LT
2588 loff_t l = *pos;
2589
fc0abb14 2590 mutex_lock(&swapon_mutex);
1da177e4 2591
881e4aab
SS
2592 if (!l)
2593 return SEQ_START_TOKEN;
2594
c10d38cc 2595 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2596 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2597 continue;
881e4aab 2598 if (!--l)
efa90a98 2599 return si;
1da177e4
LT
2600 }
2601
2602 return NULL;
2603}
2604
2605static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2606{
efa90a98
HD
2607 struct swap_info_struct *si = v;
2608 int type;
1da177e4 2609
881e4aab 2610 if (v == SEQ_START_TOKEN)
efa90a98
HD
2611 type = 0;
2612 else
2613 type = si->type + 1;
881e4aab 2614
10c8d69f 2615 ++(*pos);
c10d38cc 2616 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2617 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2618 continue;
efa90a98 2619 return si;
1da177e4
LT
2620 }
2621
2622 return NULL;
2623}
2624
2625static void swap_stop(struct seq_file *swap, void *v)
2626{
fc0abb14 2627 mutex_unlock(&swapon_mutex);
1da177e4
LT
2628}
2629
2630static int swap_show(struct seq_file *swap, void *v)
2631{
efa90a98 2632 struct swap_info_struct *si = v;
1da177e4
LT
2633 struct file *file;
2634 int len;
642929a2 2635 unsigned long bytes, inuse;
1da177e4 2636
efa90a98 2637 if (si == SEQ_START_TOKEN) {
68d68ff6 2638 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
881e4aab
SS
2639 return 0;
2640 }
1da177e4 2641
6f793940 2642 bytes = si->pages << (PAGE_SHIFT - 10);
c8945306 2643 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
6f793940 2644
efa90a98 2645 file = si->swap_file;
2726d566 2646 len = seq_file_path(swap, file, " \t\n\\");
642929a2 2647 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
886bb7e9 2648 len < 40 ? 40 - len : 1, " ",
496ad9aa 2649 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2650 "partition" : "file\t",
6f793940
RD
2651 bytes, bytes < 10000000 ? "\t" : "",
2652 inuse, inuse < 10000000 ? "\t" : "",
efa90a98 2653 si->prio);
1da177e4
LT
2654 return 0;
2655}
2656
15ad7cdc 2657static const struct seq_operations swaps_op = {
1da177e4
LT
2658 .start = swap_start,
2659 .next = swap_next,
2660 .stop = swap_stop,
2661 .show = swap_show
2662};
2663
2664static int swaps_open(struct inode *inode, struct file *file)
2665{
f1514638 2666 struct seq_file *seq;
66d7dd51
KS
2667 int ret;
2668
66d7dd51 2669 ret = seq_open(file, &swaps_op);
f1514638 2670 if (ret)
66d7dd51 2671 return ret;
66d7dd51 2672
f1514638
KS
2673 seq = file->private_data;
2674 seq->poll_event = atomic_read(&proc_poll_event);
2675 return 0;
1da177e4
LT
2676}
2677
97a32539 2678static const struct proc_ops swaps_proc_ops = {
d919b33d 2679 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2680 .proc_open = swaps_open,
2681 .proc_read = seq_read,
2682 .proc_lseek = seq_lseek,
2683 .proc_release = seq_release,
2684 .proc_poll = swaps_poll,
1da177e4
LT
2685};
2686
2687static int __init procswaps_init(void)
2688{
97a32539 2689 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2690 return 0;
2691}
2692__initcall(procswaps_init);
2693#endif /* CONFIG_PROC_FS */
2694
1796316a
JB
2695#ifdef MAX_SWAPFILES_CHECK
2696static int __init max_swapfiles_check(void)
2697{
2698 MAX_SWAPFILES_CHECK();
2699 return 0;
2700}
2701late_initcall(max_swapfiles_check);
2702#endif
2703
53cbb243 2704static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2705{
73c34b6a 2706 struct swap_info_struct *p;
b11a76b3 2707 struct swap_info_struct *defer = NULL;
1da177e4 2708 unsigned int type;
a2468cc9 2709 int i;
efa90a98 2710
96008744 2711 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2712 if (!p)
53cbb243 2713 return ERR_PTR(-ENOMEM);
efa90a98 2714
63d8620e
ML
2715 if (percpu_ref_init(&p->users, swap_users_ref_free,
2716 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2717 kvfree(p);
2718 return ERR_PTR(-ENOMEM);
2719 }
2720
5d337b91 2721 spin_lock(&swap_lock);
efa90a98
HD
2722 for (type = 0; type < nr_swapfiles; type++) {
2723 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2724 break;
efa90a98 2725 }
0697212a 2726 if (type >= MAX_SWAPFILES) {
5d337b91 2727 spin_unlock(&swap_lock);
63d8620e 2728 percpu_ref_exit(&p->users);
873d7bcf 2729 kvfree(p);
730c0581 2730 return ERR_PTR(-EPERM);
1da177e4 2731 }
efa90a98
HD
2732 if (type >= nr_swapfiles) {
2733 p->type = type;
efa90a98 2734 /*
a4b45114
HY
2735 * Publish the swap_info_struct after initializing it.
2736 * Note that kvzalloc() above zeroes all its fields.
efa90a98 2737 */
a4b45114
HY
2738 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2739 nr_swapfiles++;
efa90a98 2740 } else {
b11a76b3 2741 defer = p;
efa90a98
HD
2742 p = swap_info[type];
2743 /*
2744 * Do not memset this entry: a racing procfs swap_next()
2745 * would be relying on p->type to remain valid.
2746 */
2747 }
4efaceb1 2748 p->swap_extent_root = RB_ROOT;
18ab4d4c 2749 plist_node_init(&p->list, 0);
a2468cc9
AL
2750 for_each_node(i)
2751 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2752 p->flags = SWP_USED;
5d337b91 2753 spin_unlock(&swap_lock);
63d8620e
ML
2754 if (defer) {
2755 percpu_ref_exit(&defer->users);
2756 kvfree(defer);
2757 }
ec8acf20 2758 spin_lock_init(&p->lock);
2628bd6f 2759 spin_lock_init(&p->cont_lock);
63d8620e 2760 init_completion(&p->comp);
efa90a98 2761
53cbb243 2762 return p;
53cbb243
CEB
2763}
2764
4d0e1e10
CEB
2765static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2766{
2767 int error;
2768
2769 if (S_ISBLK(inode->i_mode)) {
ef16e1d9 2770 p->bdev = blkdev_get_by_dev(inode->i_rdev,
6f179af8 2771 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
ef16e1d9
CH
2772 if (IS_ERR(p->bdev)) {
2773 error = PTR_ERR(p->bdev);
4d0e1e10 2774 p->bdev = NULL;
6f179af8 2775 return error;
4d0e1e10
CEB
2776 }
2777 p->old_block_size = block_size(p->bdev);
2778 error = set_blocksize(p->bdev, PAGE_SIZE);
2779 if (error < 0)
87ade72a 2780 return error;
12d2966d
NA
2781 /*
2782 * Zoned block devices contain zones that have a sequential
2783 * write only restriction. Hence zoned block devices are not
2784 * suitable for swapping. Disallow them here.
2785 */
9964e674 2786 if (bdev_is_zoned(p->bdev))
12d2966d 2787 return -EINVAL;
4d0e1e10
CEB
2788 p->flags |= SWP_BLKDEV;
2789 } else if (S_ISREG(inode->i_mode)) {
2790 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2791 }
2792
4d0e1e10 2793 return 0;
4d0e1e10
CEB
2794}
2795
377eeaa8
AK
2796
2797/*
2798 * Find out how many pages are allowed for a single swap device. There
2799 * are two limiting factors:
2800 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2801 * 2) the number of bits in the swap pte, as defined by the different
2802 * architectures.
2803 *
2804 * In order to find the largest possible bit mask, a swap entry with
2805 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2806 * decoded to a swp_entry_t again, and finally the swap offset is
2807 * extracted.
2808 *
2809 * This will mask all the bits from the initial ~0UL mask that can't
2810 * be encoded in either the swp_entry_t or the architecture definition
2811 * of a swap pte.
2812 */
2813unsigned long generic_max_swapfile_size(void)
2814{
2815 return swp_offset(pte_to_swp_entry(
2816 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2817}
2818
2819/* Can be overridden by an architecture for additional checks. */
be45a490 2820__weak unsigned long arch_max_swapfile_size(void)
377eeaa8
AK
2821{
2822 return generic_max_swapfile_size();
2823}
2824
ca8bd38b
CEB
2825static unsigned long read_swap_header(struct swap_info_struct *p,
2826 union swap_header *swap_header,
2827 struct inode *inode)
2828{
2829 int i;
2830 unsigned long maxpages;
2831 unsigned long swapfilepages;
d6bbbd29 2832 unsigned long last_page;
ca8bd38b
CEB
2833
2834 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2835 pr_err("Unable to find swap-space signature\n");
38719025 2836 return 0;
ca8bd38b
CEB
2837 }
2838
041711ce 2839 /* swap partition endianness hack... */
ca8bd38b
CEB
2840 if (swab32(swap_header->info.version) == 1) {
2841 swab32s(&swap_header->info.version);
2842 swab32s(&swap_header->info.last_page);
2843 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2844 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2845 return 0;
ca8bd38b
CEB
2846 for (i = 0; i < swap_header->info.nr_badpages; i++)
2847 swab32s(&swap_header->info.badpages[i]);
2848 }
2849 /* Check the swap header's sub-version */
2850 if (swap_header->info.version != 1) {
465c47fd
AM
2851 pr_warn("Unable to handle swap header version %d\n",
2852 swap_header->info.version);
38719025 2853 return 0;
ca8bd38b
CEB
2854 }
2855
2856 p->lowest_bit = 1;
2857 p->cluster_next = 1;
2858 p->cluster_nr = 0;
2859
be45a490 2860 maxpages = swapfile_maximum_size;
d6bbbd29 2861 last_page = swap_header->info.last_page;
a06ad633
TA
2862 if (!last_page) {
2863 pr_warn("Empty swap-file\n");
2864 return 0;
2865 }
d6bbbd29 2866 if (last_page > maxpages) {
465c47fd 2867 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2868 maxpages << (PAGE_SHIFT - 10),
2869 last_page << (PAGE_SHIFT - 10));
2870 }
2871 if (maxpages > last_page) {
2872 maxpages = last_page + 1;
ca8bd38b
CEB
2873 /* p->max is an unsigned int: don't overflow it */
2874 if ((unsigned int)maxpages == 0)
2875 maxpages = UINT_MAX;
2876 }
2877 p->highest_bit = maxpages - 1;
2878
2879 if (!maxpages)
38719025 2880 return 0;
ca8bd38b
CEB
2881 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2882 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2883 pr_warn("Swap area shorter than signature indicates\n");
38719025 2884 return 0;
ca8bd38b
CEB
2885 }
2886 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2887 return 0;
ca8bd38b 2888 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2889 return 0;
ca8bd38b
CEB
2890
2891 return maxpages;
ca8bd38b
CEB
2892}
2893
4b3ef9da 2894#define SWAP_CLUSTER_INFO_COLS \
235b6217 2895 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2896#define SWAP_CLUSTER_SPACE_COLS \
2897 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2898#define SWAP_CLUSTER_COLS \
2899 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2900
915d4d7b
CEB
2901static int setup_swap_map_and_extents(struct swap_info_struct *p,
2902 union swap_header *swap_header,
2903 unsigned char *swap_map,
2a8f9449 2904 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2905 unsigned long maxpages,
2906 sector_t *span)
2907{
235b6217 2908 unsigned int j, k;
915d4d7b
CEB
2909 unsigned int nr_good_pages;
2910 int nr_extents;
2a8f9449 2911 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2912 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2913 unsigned long i, idx;
915d4d7b
CEB
2914
2915 nr_good_pages = maxpages - 1; /* omit header page */
2916
6b534915
HY
2917 cluster_list_init(&p->free_clusters);
2918 cluster_list_init(&p->discard_clusters);
2a8f9449 2919
915d4d7b
CEB
2920 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2921 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2922 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2923 return -EINVAL;
915d4d7b
CEB
2924 if (page_nr < maxpages) {
2925 swap_map[page_nr] = SWAP_MAP_BAD;
2926 nr_good_pages--;
2a8f9449
SL
2927 /*
2928 * Haven't marked the cluster free yet, no list
2929 * operation involved
2930 */
2931 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2932 }
2933 }
2934
2a8f9449
SL
2935 /* Haven't marked the cluster free yet, no list operation involved */
2936 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2937 inc_cluster_info_page(p, cluster_info, i);
2938
915d4d7b
CEB
2939 if (nr_good_pages) {
2940 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2941 /*
2942 * Not mark the cluster free yet, no list
2943 * operation involved
2944 */
2945 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2946 p->max = maxpages;
2947 p->pages = nr_good_pages;
2948 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2949 if (nr_extents < 0)
2950 return nr_extents;
915d4d7b
CEB
2951 nr_good_pages = p->pages;
2952 }
2953 if (!nr_good_pages) {
465c47fd 2954 pr_warn("Empty swap-file\n");
bdb8e3f6 2955 return -EINVAL;
915d4d7b
CEB
2956 }
2957
2a8f9449
SL
2958 if (!cluster_info)
2959 return nr_extents;
2960
235b6217 2961
4b3ef9da
HY
2962 /*
2963 * Reduce false cache line sharing between cluster_info and
2964 * sharing same address space.
2965 */
235b6217
HY
2966 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2967 j = (k + col) % SWAP_CLUSTER_COLS;
2968 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2969 idx = i * SWAP_CLUSTER_COLS + j;
2970 if (idx >= nr_clusters)
2971 continue;
2972 if (cluster_count(&cluster_info[idx]))
2973 continue;
2a8f9449 2974 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
2975 cluster_list_add_tail(&p->free_clusters, cluster_info,
2976 idx);
2a8f9449 2977 }
2a8f9449 2978 }
915d4d7b 2979 return nr_extents;
915d4d7b
CEB
2980}
2981
53cbb243
CEB
2982SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2983{
2984 struct swap_info_struct *p;
91a27b2a 2985 struct filename *name;
53cbb243
CEB
2986 struct file *swap_file = NULL;
2987 struct address_space *mapping;
51cc3a66 2988 struct dentry *dentry;
40531542 2989 int prio;
53cbb243
CEB
2990 int error;
2991 union swap_header *swap_header;
915d4d7b 2992 int nr_extents;
53cbb243
CEB
2993 sector_t span;
2994 unsigned long maxpages;
53cbb243 2995 unsigned char *swap_map = NULL;
2a8f9449 2996 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2997 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2998 struct page *page = NULL;
2999 struct inode *inode = NULL;
7cbf3192 3000 bool inced_nr_rotate_swap = false;
53cbb243 3001
d15cab97
HD
3002 if (swap_flags & ~SWAP_FLAGS_VALID)
3003 return -EINVAL;
3004
53cbb243
CEB
3005 if (!capable(CAP_SYS_ADMIN))
3006 return -EPERM;
3007
a2468cc9
AL
3008 if (!swap_avail_heads)
3009 return -ENOMEM;
3010
53cbb243 3011 p = alloc_swap_info();
2542e513
CEB
3012 if (IS_ERR(p))
3013 return PTR_ERR(p);
53cbb243 3014
815c2c54
SL
3015 INIT_WORK(&p->discard_work, swap_discard_work);
3016
1da177e4 3017 name = getname(specialfile);
1da177e4 3018 if (IS_ERR(name)) {
7de7fb6b 3019 error = PTR_ERR(name);
1da177e4 3020 name = NULL;
bd69010b 3021 goto bad_swap;
1da177e4 3022 }
669abf4e 3023 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3024 if (IS_ERR(swap_file)) {
7de7fb6b 3025 error = PTR_ERR(swap_file);
1da177e4 3026 swap_file = NULL;
bd69010b 3027 goto bad_swap;
1da177e4
LT
3028 }
3029
3030 p->swap_file = swap_file;
3031 mapping = swap_file->f_mapping;
51cc3a66 3032 dentry = swap_file->f_path.dentry;
2130781e 3033 inode = mapping->host;
6f179af8 3034
4d0e1e10
CEB
3035 error = claim_swapfile(p, inode);
3036 if (unlikely(error))
1da177e4 3037 goto bad_swap;
1da177e4 3038
d795a90e 3039 inode_lock(inode);
51cc3a66
HD
3040 if (d_unlinked(dentry) || cant_mount(dentry)) {
3041 error = -ENOENT;
3042 goto bad_swap_unlock_inode;
3043 }
d795a90e
NA
3044 if (IS_SWAPFILE(inode)) {
3045 error = -EBUSY;
3046 goto bad_swap_unlock_inode;
3047 }
3048
1da177e4
LT
3049 /*
3050 * Read the swap header.
3051 */
7e0a1265 3052 if (!mapping->a_ops->read_folio) {
1da177e4 3053 error = -EINVAL;
d795a90e 3054 goto bad_swap_unlock_inode;
1da177e4 3055 }
090d2b18 3056 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3057 if (IS_ERR(page)) {
3058 error = PTR_ERR(page);
d795a90e 3059 goto bad_swap_unlock_inode;
1da177e4 3060 }
81e33971 3061 swap_header = kmap(page);
1da177e4 3062
ca8bd38b
CEB
3063 maxpages = read_swap_header(p, swap_header, inode);
3064 if (unlikely(!maxpages)) {
1da177e4 3065 error = -EINVAL;
d795a90e 3066 goto bad_swap_unlock_inode;
1da177e4 3067 }
886bb7e9 3068
81e33971 3069 /* OK, set up the swap map and apply the bad block list */
803d0c83 3070 swap_map = vzalloc(maxpages);
81e33971
HD
3071 if (!swap_map) {
3072 error = -ENOMEM;
d795a90e 3073 goto bad_swap_unlock_inode;
81e33971 3074 }
f0571429 3075
36d25489 3076 if (p->bdev && bdev_stable_writes(p->bdev))
f0571429
MK
3077 p->flags |= SWP_STABLE_WRITES;
3078
a8b456d0 3079 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
539a6fea
MK
3080 p->flags |= SWP_SYNCHRONOUS_IO;
3081
10f0d2a5 3082 if (p->bdev && bdev_nonrot(p->bdev)) {
6f179af8 3083 int cpu;
235b6217 3084 unsigned long ci, nr_cluster;
6f179af8 3085
2a8f9449 3086 p->flags |= SWP_SOLIDSTATE;
49070588
HY
3087 p->cluster_next_cpu = alloc_percpu(unsigned int);
3088 if (!p->cluster_next_cpu) {
3089 error = -ENOMEM;
3090 goto bad_swap_unlock_inode;
3091 }
2a8f9449
SL
3092 /*
3093 * select a random position to start with to help wear leveling
3094 * SSD
3095 */
49070588
HY
3096 for_each_possible_cpu(cpu) {
3097 per_cpu(*p->cluster_next_cpu, cpu) =
3098 1 + prandom_u32_max(p->highest_bit);
3099 }
235b6217 3100 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3101
778e1cdd 3102 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3103 GFP_KERNEL);
2a8f9449
SL
3104 if (!cluster_info) {
3105 error = -ENOMEM;
d795a90e 3106 goto bad_swap_unlock_inode;
2a8f9449 3107 }
235b6217
HY
3108
3109 for (ci = 0; ci < nr_cluster; ci++)
3110 spin_lock_init(&((cluster_info + ci)->lock));
3111
ebc2a1a6
SL
3112 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3113 if (!p->percpu_cluster) {
3114 error = -ENOMEM;
d795a90e 3115 goto bad_swap_unlock_inode;
ebc2a1a6 3116 }
6f179af8 3117 for_each_possible_cpu(cpu) {
ebc2a1a6 3118 struct percpu_cluster *cluster;
6f179af8 3119 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3120 cluster_set_null(&cluster->index);
3121 }
7cbf3192 3122 } else {
81a0298b 3123 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3124 inced_nr_rotate_swap = true;
3125 }
1da177e4 3126
1421ef3c
CEB
3127 error = swap_cgroup_swapon(p->type, maxpages);
3128 if (error)
d795a90e 3129 goto bad_swap_unlock_inode;
1421ef3c 3130
915d4d7b 3131 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3132 cluster_info, maxpages, &span);
915d4d7b
CEB
3133 if (unlikely(nr_extents < 0)) {
3134 error = nr_extents;
d795a90e 3135 goto bad_swap_unlock_inode;
1da177e4 3136 }
38b5faf4 3137 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3138 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3139 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3140 sizeof(long),
54f180d3 3141 GFP_KERNEL);
1da177e4 3142
70200574
CH
3143 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3144 p->bdev && bdev_max_discard_sectors(p->bdev)) {
2a8f9449
SL
3145 /*
3146 * When discard is enabled for swap with no particular
3147 * policy flagged, we set all swap discard flags here in
3148 * order to sustain backward compatibility with older
3149 * swapon(8) releases.
3150 */
3151 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3152 SWP_PAGE_DISCARD);
dcf6b7dd 3153
2a8f9449
SL
3154 /*
3155 * By flagging sys_swapon, a sysadmin can tell us to
3156 * either do single-time area discards only, or to just
3157 * perform discards for released swap page-clusters.
3158 * Now it's time to adjust the p->flags accordingly.
3159 */
3160 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3161 p->flags &= ~SWP_PAGE_DISCARD;
3162 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3163 p->flags &= ~SWP_AREA_DISCARD;
3164
3165 /* issue a swapon-time discard if it's still required */
3166 if (p->flags & SWP_AREA_DISCARD) {
3167 int err = discard_swap(p);
3168 if (unlikely(err))
3169 pr_err("swapon: discard_swap(%p): %d\n",
3170 p, err);
dcf6b7dd 3171 }
20137a49 3172 }
6a6ba831 3173
4b3ef9da
HY
3174 error = init_swap_address_space(p->type, maxpages);
3175 if (error)
d795a90e 3176 goto bad_swap_unlock_inode;
4b3ef9da 3177
dc617f29
DW
3178 /*
3179 * Flush any pending IO and dirty mappings before we start using this
3180 * swap device.
3181 */
3182 inode->i_flags |= S_SWAPFILE;
3183 error = inode_drain_writes(inode);
3184 if (error) {
3185 inode->i_flags &= ~S_SWAPFILE;
822bca52 3186 goto free_swap_address_space;
dc617f29
DW
3187 }
3188
fc0abb14 3189 mutex_lock(&swapon_mutex);
40531542 3190 prio = -1;
78ecba08 3191 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3192 prio =
78ecba08 3193 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3194 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3195
756a025f 3196 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3197 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3198 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3199 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3200 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3201 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3202 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3203 (frontswap_map) ? "FS" : "");
c69dbfb8 3204
fc0abb14 3205 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3206 atomic_inc(&proc_poll_event);
3207 wake_up_interruptible(&proc_poll_wait);
3208
1da177e4
LT
3209 error = 0;
3210 goto out;
822bca52
ML
3211free_swap_address_space:
3212 exit_swap_address_space(p->type);
d795a90e
NA
3213bad_swap_unlock_inode:
3214 inode_unlock(inode);
1da177e4 3215bad_swap:
ebc2a1a6
SL
3216 free_percpu(p->percpu_cluster);
3217 p->percpu_cluster = NULL;
49070588
HY
3218 free_percpu(p->cluster_next_cpu);
3219 p->cluster_next_cpu = NULL;
bd69010b 3220 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3221 set_blocksize(p->bdev, p->old_block_size);
3222 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3223 }
d795a90e 3224 inode = NULL;
4cd3bb10 3225 destroy_swap_extents(p);
e8e6c2ec 3226 swap_cgroup_swapoff(p->type);
5d337b91 3227 spin_lock(&swap_lock);
1da177e4 3228 p->swap_file = NULL;
1da177e4 3229 p->flags = 0;
5d337b91 3230 spin_unlock(&swap_lock);
1da177e4 3231 vfree(swap_map);
8606a1a9 3232 kvfree(cluster_info);
b6b1fd2a 3233 kvfree(frontswap_map);
7cbf3192
OS
3234 if (inced_nr_rotate_swap)
3235 atomic_dec(&nr_rotate_swap);
d795a90e 3236 if (swap_file)
1da177e4
LT
3237 filp_close(swap_file, NULL);
3238out:
3239 if (page && !IS_ERR(page)) {
3240 kunmap(page);
09cbfeaf 3241 put_page(page);
1da177e4
LT
3242 }
3243 if (name)
3244 putname(name);
1638045c 3245 if (inode)
5955102c 3246 inode_unlock(inode);
039939a6
TC
3247 if (!error)
3248 enable_swap_slots_cache();
1da177e4
LT
3249 return error;
3250}
3251
3252void si_swapinfo(struct sysinfo *val)
3253{
efa90a98 3254 unsigned int type;
1da177e4
LT
3255 unsigned long nr_to_be_unused = 0;
3256
5d337b91 3257 spin_lock(&swap_lock);
efa90a98
HD
3258 for (type = 0; type < nr_swapfiles; type++) {
3259 struct swap_info_struct *si = swap_info[type];
3260
3261 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
c8945306 3262 nr_to_be_unused += READ_ONCE(si->inuse_pages);
1da177e4 3263 }
ec8acf20 3264 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3265 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3266 spin_unlock(&swap_lock);
1da177e4
LT
3267}
3268
3269/*
3270 * Verify that a swap entry is valid and increment its swap map count.
3271 *
355cfa73
KH
3272 * Returns error code in following case.
3273 * - success -> 0
3274 * - swp_entry is invalid -> EINVAL
3275 * - swp_entry is migration entry -> EINVAL
3276 * - swap-cache reference is requested but there is already one. -> EEXIST
3277 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3278 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3279 */
8d69aaee 3280static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3281{
73c34b6a 3282 struct swap_info_struct *p;
235b6217 3283 struct swap_cluster_info *ci;
c10d38cc 3284 unsigned long offset;
8d69aaee
HD
3285 unsigned char count;
3286 unsigned char has_cache;
9d9a0334 3287 int err;
1da177e4 3288
eb085574 3289 p = get_swap_device(entry);
c10d38cc 3290 if (!p)
9d9a0334 3291 return -EINVAL;
235b6217 3292
eb085574 3293 offset = swp_offset(entry);
235b6217 3294 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3295
253d553b 3296 count = p->swap_map[offset];
edfe23da
SL
3297
3298 /*
3299 * swapin_readahead() doesn't check if a swap entry is valid, so the
3300 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3301 */
3302 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3303 err = -ENOENT;
3304 goto unlock_out;
3305 }
3306
253d553b
HD
3307 has_cache = count & SWAP_HAS_CACHE;
3308 count &= ~SWAP_HAS_CACHE;
3309 err = 0;
355cfa73 3310
253d553b 3311 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3312
3313 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3314 if (!has_cache && count)
3315 has_cache = SWAP_HAS_CACHE;
3316 else if (has_cache) /* someone else added cache */
3317 err = -EEXIST;
3318 else /* no users remaining */
3319 err = -ENOENT;
355cfa73
KH
3320
3321 } else if (count || has_cache) {
253d553b 3322
570a335b
HD
3323 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3324 count += usage;
3325 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3326 err = -EINVAL;
570a335b
HD
3327 else if (swap_count_continued(p, offset, count))
3328 count = COUNT_CONTINUED;
3329 else
3330 err = -ENOMEM;
355cfa73 3331 } else
253d553b
HD
3332 err = -ENOENT; /* unused swap entry */
3333
a449bf58 3334 WRITE_ONCE(p->swap_map[offset], count | has_cache);
253d553b 3335
355cfa73 3336unlock_out:
235b6217 3337 unlock_cluster_or_swap_info(p, ci);
dab8dfff 3338 put_swap_device(p);
253d553b 3339 return err;
1da177e4 3340}
253d553b 3341
aaa46865
HD
3342/*
3343 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3344 * (in which case its reference count is never incremented).
3345 */
3346void swap_shmem_alloc(swp_entry_t entry)
3347{
3348 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3349}
3350
355cfa73 3351/*
08259d58
HD
3352 * Increase reference count of swap entry by 1.
3353 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3354 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3355 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3356 * might occur if a page table entry has got corrupted.
355cfa73 3357 */
570a335b 3358int swap_duplicate(swp_entry_t entry)
355cfa73 3359{
570a335b
HD
3360 int err = 0;
3361
3362 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3363 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3364 return err;
355cfa73 3365}
1da177e4 3366
cb4b86ba 3367/*
355cfa73
KH
3368 * @entry: swap entry for which we allocate swap cache.
3369 *
73c34b6a 3370 * Called when allocating swap cache for existing swap entry,
355cfa73 3371 * This can return error codes. Returns 0 at success.
3eeba135 3372 * -EEXIST means there is a swap cache.
355cfa73 3373 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3374 */
3375int swapcache_prepare(swp_entry_t entry)
3376{
253d553b 3377 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3378}
3379
0bcac06f
MK
3380struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3381{
c10d38cc 3382 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3383}
3384
f981c595
MG
3385struct swap_info_struct *page_swap_info(struct page *page)
3386{
0bcac06f
MK
3387 swp_entry_t entry = { .val = page_private(page) };
3388 return swp_swap_info(entry);
f981c595
MG
3389}
3390
3391/*
2f52578f 3392 * out-of-line methods to avoid include hell.
f981c595 3393 */
2f52578f 3394struct address_space *swapcache_mapping(struct folio *folio)
f981c595 3395{
2f52578f 3396 return page_swap_info(&folio->page)->swap_file->f_mapping;
f981c595 3397}
2f52578f 3398EXPORT_SYMBOL_GPL(swapcache_mapping);
f981c595
MG
3399
3400pgoff_t __page_file_index(struct page *page)
3401{
3402 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3403 return swp_offset(swap);
3404}
3405EXPORT_SYMBOL_GPL(__page_file_index);
3406
570a335b
HD
3407/*
3408 * add_swap_count_continuation - called when a swap count is duplicated
3409 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3410 * page of the original vmalloc'ed swap_map, to hold the continuation count
3411 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3412 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3413 *
3414 * These continuation pages are seldom referenced: the common paths all work
3415 * on the original swap_map, only referring to a continuation page when the
3416 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3417 *
3418 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3419 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3420 * can be called after dropping locks.
3421 */
3422int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3423{
3424 struct swap_info_struct *si;
235b6217 3425 struct swap_cluster_info *ci;
570a335b
HD
3426 struct page *head;
3427 struct page *page;
3428 struct page *list_page;
3429 pgoff_t offset;
3430 unsigned char count;
eb085574 3431 int ret = 0;
570a335b
HD
3432
3433 /*
3434 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3435 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3436 */
3437 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3438
eb085574 3439 si = get_swap_device(entry);
570a335b
HD
3440 if (!si) {
3441 /*
3442 * An acceptable race has occurred since the failing
eb085574 3443 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3444 */
3445 goto outer;
3446 }
eb085574 3447 spin_lock(&si->lock);
570a335b
HD
3448
3449 offset = swp_offset(entry);
235b6217
HY
3450
3451 ci = lock_cluster(si, offset);
3452
d8aa24e0 3453 count = swap_count(si->swap_map[offset]);
570a335b
HD
3454
3455 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3456 /*
3457 * The higher the swap count, the more likely it is that tasks
3458 * will race to add swap count continuation: we need to avoid
3459 * over-provisioning.
3460 */
3461 goto out;
3462 }
3463
3464 if (!page) {
eb085574
HY
3465 ret = -ENOMEM;
3466 goto out;
570a335b
HD
3467 }
3468
3469 /*
3470 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3471 * no architecture is using highmem pages for kernel page tables: so it
3472 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3473 */
3474 head = vmalloc_to_page(si->swap_map + offset);
3475 offset &= ~PAGE_MASK;
3476
2628bd6f 3477 spin_lock(&si->cont_lock);
570a335b
HD
3478 /*
3479 * Page allocation does not initialize the page's lru field,
3480 * but it does always reset its private field.
3481 */
3482 if (!page_private(head)) {
3483 BUG_ON(count & COUNT_CONTINUED);
3484 INIT_LIST_HEAD(&head->lru);
3485 set_page_private(head, SWP_CONTINUED);
3486 si->flags |= SWP_CONTINUED;
3487 }
3488
3489 list_for_each_entry(list_page, &head->lru, lru) {
3490 unsigned char *map;
3491
3492 /*
3493 * If the previous map said no continuation, but we've found
3494 * a continuation page, free our allocation and use this one.
3495 */
3496 if (!(count & COUNT_CONTINUED))
2628bd6f 3497 goto out_unlock_cont;
570a335b 3498
9b04c5fe 3499 map = kmap_atomic(list_page) + offset;
570a335b 3500 count = *map;
9b04c5fe 3501 kunmap_atomic(map);
570a335b
HD
3502
3503 /*
3504 * If this continuation count now has some space in it,
3505 * free our allocation and use this one.
3506 */
3507 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3508 goto out_unlock_cont;
570a335b
HD
3509 }
3510
3511 list_add_tail(&page->lru, &head->lru);
3512 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3513out_unlock_cont:
3514 spin_unlock(&si->cont_lock);
570a335b 3515out:
235b6217 3516 unlock_cluster(ci);
ec8acf20 3517 spin_unlock(&si->lock);
eb085574 3518 put_swap_device(si);
570a335b
HD
3519outer:
3520 if (page)
3521 __free_page(page);
eb085574 3522 return ret;
570a335b
HD
3523}
3524
3525/*
3526 * swap_count_continued - when the original swap_map count is incremented
3527 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3528 * into, carry if so, or else fail until a new continuation page is allocated;
3529 * when the original swap_map count is decremented from 0 with continuation,
3530 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3531 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3532 * lock.
570a335b
HD
3533 */
3534static bool swap_count_continued(struct swap_info_struct *si,
3535 pgoff_t offset, unsigned char count)
3536{
3537 struct page *head;
3538 struct page *page;
3539 unsigned char *map;
2628bd6f 3540 bool ret;
570a335b
HD
3541
3542 head = vmalloc_to_page(si->swap_map + offset);
3543 if (page_private(head) != SWP_CONTINUED) {
3544 BUG_ON(count & COUNT_CONTINUED);
3545 return false; /* need to add count continuation */
3546 }
3547
2628bd6f 3548 spin_lock(&si->cont_lock);
570a335b 3549 offset &= ~PAGE_MASK;
213516ac 3550 page = list_next_entry(head, lru);
9b04c5fe 3551 map = kmap_atomic(page) + offset;
570a335b
HD
3552
3553 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3554 goto init_map; /* jump over SWAP_CONT_MAX checks */
3555
3556 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3557 /*
3558 * Think of how you add 1 to 999
3559 */
3560 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3561 kunmap_atomic(map);
213516ac 3562 page = list_next_entry(page, lru);
570a335b 3563 BUG_ON(page == head);
9b04c5fe 3564 map = kmap_atomic(page) + offset;
570a335b
HD
3565 }
3566 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3567 kunmap_atomic(map);
213516ac 3568 page = list_next_entry(page, lru);
2628bd6f
HY
3569 if (page == head) {
3570 ret = false; /* add count continuation */
3571 goto out;
3572 }
9b04c5fe 3573 map = kmap_atomic(page) + offset;
570a335b
HD
3574init_map: *map = 0; /* we didn't zero the page */
3575 }
3576 *map += 1;
9b04c5fe 3577 kunmap_atomic(map);
213516ac 3578 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3579 map = kmap_atomic(page) + offset;
570a335b 3580 *map = COUNT_CONTINUED;
9b04c5fe 3581 kunmap_atomic(map);
570a335b 3582 }
2628bd6f 3583 ret = true; /* incremented */
570a335b
HD
3584
3585 } else { /* decrementing */
3586 /*
3587 * Think of how you subtract 1 from 1000
3588 */
3589 BUG_ON(count != COUNT_CONTINUED);
3590 while (*map == COUNT_CONTINUED) {
9b04c5fe 3591 kunmap_atomic(map);
213516ac 3592 page = list_next_entry(page, lru);
570a335b 3593 BUG_ON(page == head);
9b04c5fe 3594 map = kmap_atomic(page) + offset;
570a335b
HD
3595 }
3596 BUG_ON(*map == 0);
3597 *map -= 1;
3598 if (*map == 0)
3599 count = 0;
9b04c5fe 3600 kunmap_atomic(map);
213516ac 3601 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3602 map = kmap_atomic(page) + offset;
570a335b
HD
3603 *map = SWAP_CONT_MAX | count;
3604 count = COUNT_CONTINUED;
9b04c5fe 3605 kunmap_atomic(map);
570a335b 3606 }
2628bd6f 3607 ret = count == COUNT_CONTINUED;
570a335b 3608 }
2628bd6f
HY
3609out:
3610 spin_unlock(&si->cont_lock);
3611 return ret;
570a335b
HD
3612}
3613
3614/*
3615 * free_swap_count_continuations - swapoff free all the continuation pages
3616 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3617 */
3618static void free_swap_count_continuations(struct swap_info_struct *si)
3619{
3620 pgoff_t offset;
3621
3622 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3623 struct page *head;
3624 head = vmalloc_to_page(si->swap_map + offset);
3625 if (page_private(head)) {
0d576d20
GT
3626 struct page *page, *next;
3627
3628 list_for_each_entry_safe(page, next, &head->lru, lru) {
3629 list_del(&page->lru);
570a335b
HD
3630 __free_page(page);
3631 }
3632 }
3633 }
3634}
a2468cc9 3635
2cf85583 3636#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
01c4b28c 3637void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
2cf85583
TH
3638{
3639 struct swap_info_struct *si, *next;
6caa6a07
JW
3640 int nid = page_to_nid(page);
3641
3642 if (!(gfp_mask & __GFP_IO))
2cf85583
TH
3643 return;
3644
3645 if (!blk_cgroup_congested())
3646 return;
3647
3648 /*
3649 * We've already scheduled a throttle, avoid taking the global swap
3650 * lock.
3651 */
3652 if (current->throttle_queue)
3653 return;
3654
3655 spin_lock(&swap_avail_lock);
6caa6a07
JW
3656 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3657 avail_lists[nid]) {
2cf85583 3658 if (si->bdev) {
6caa6a07 3659 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
2cf85583
TH
3660 break;
3661 }
3662 }
3663 spin_unlock(&swap_avail_lock);
3664}
3665#endif
3666
a2468cc9
AL
3667static int __init swapfile_init(void)
3668{
3669 int nid;
3670
3671 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3672 GFP_KERNEL);
3673 if (!swap_avail_heads) {
3674 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3675 return -ENOMEM;
3676 }
3677
3678 for_each_node(nid)
3679 plist_head_init(&swap_avail_heads[nid]);
3680
be45a490
PX
3681 swapfile_maximum_size = arch_max_swapfile_size();
3682
a2468cc9
AL
3683 return 0;
3684}
3685subsys_initcall(swapfile_init);