mm/swapfile.c: remove the unnecessary goto for SSD case
[linux-block.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
1da177e4
LT
42
43#include <asm/pgtable.h>
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
5d1ea48b 46#include <linux/swap_cgroup.h>
1da177e4 47
570a335b
HD
48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 51static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 52
38b5faf4 53DEFINE_SPINLOCK(swap_lock);
7c363b8c 54static unsigned int nr_swapfiles;
ec8acf20 55atomic_long_t nr_swap_pages;
fb0fec50
CW
56/*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 63long total_swap_pages;
a2468cc9 64static int least_priority = -1;
1da177e4 65
1da177e4
LT
66static const char Bad_file[] = "Bad swap file entry ";
67static const char Unused_file[] = "Unused swap file entry ";
68static const char Bad_offset[] = "Bad swap offset entry ";
69static const char Unused_offset[] = "Unused swap offset entry ";
70
adfab836
DS
71/*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
18ab4d4c
DS
75PLIST_HEAD(swap_active_head);
76
77/*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
bfc6b1ca 89static struct plist_head *swap_avail_heads;
18ab4d4c 90static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 91
38b5faf4 92struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 93
fc0abb14 94static DEFINE_MUTEX(swapon_mutex);
1da177e4 95
66d7dd51
KS
96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97/* Activity counter to indicate that a swapon or swapoff has occurred */
98static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
81a0298b
HY
100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
c10d38cc
DJ
102static struct swap_info_struct *swap_type_to_swap_info(int type)
103{
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109}
110
8d69aaee 111static inline unsigned char swap_count(unsigned char ent)
355cfa73 112{
955c97f0 113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
114}
115
bcd49e86
HY
116/* Reclaim the swap entry anyway if possible */
117#define TTRS_ANYWAY 0x1
118/*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122#define TTRS_UNMAPPED 0x2
123/* Reclaim the swap entry if swap is getting full*/
124#define TTRS_FULL 0x4
125
efa90a98 126/* returns 1 if swap entry is freed */
bcd49e86
HY
127static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
c9e44410 129{
efa90a98 130 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
131 struct page *page;
132 int ret = 0;
133
bcd49e86 134 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
135 if (!page)
136 return 0;
137 /*
bcd49e86
HY
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
bcd49e86
HY
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
c9e44410
KH
149 unlock_page(page);
150 }
09cbfeaf 151 put_page(page);
c9e44410
KH
152 return ret;
153}
355cfa73 154
4efaceb1
AL
155static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156{
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159}
160
161static inline struct swap_extent *next_se(struct swap_extent *se)
162{
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165}
166
6a6ba831
HD
167/*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static int discard_swap(struct swap_info_struct *si)
172{
173 struct swap_extent *se;
9625a5f2
HD
174 sector_t start_block;
175 sector_t nr_blocks;
6a6ba831
HD
176 int err = 0;
177
9625a5f2 178 /* Do not discard the swap header page! */
4efaceb1 179 se = first_se(si);
9625a5f2
HD
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 184 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
185 if (err)
186 return err;
187 cond_resched();
188 }
6a6ba831 189
4efaceb1 190 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
193
194 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 195 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202}
203
4efaceb1
AL
204static struct swap_extent *
205offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206{
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222}
223
7992fde7
HD
224/*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230{
4efaceb1 231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
232
233 while (nr_pages) {
4efaceb1
AL
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
7992fde7 248
4efaceb1 249 se = next_se(se);
7992fde7
HD
250 }
251}
252
38d8b4e6
HY
253#ifdef CONFIG_THP_SWAP
254#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
255
256#define swap_entry_size(size) (size)
38d8b4e6 257#else
048c27fd 258#define SWAPFILE_CLUSTER 256
a448f2d0
HY
259
260/*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264#define swap_entry_size(size) 1
38d8b4e6 265#endif
048c27fd
HD
266#define LATENCY_LIMIT 256
267
2a8f9449
SL
268static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270{
271 info->flags = flag;
272}
273
274static inline unsigned int cluster_count(struct swap_cluster_info *info)
275{
276 return info->data;
277}
278
279static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281{
282 info->data = c;
283}
284
285static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287{
288 info->flags = f;
289 info->data = c;
290}
291
292static inline unsigned int cluster_next(struct swap_cluster_info *info)
293{
294 return info->data;
295}
296
297static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299{
300 info->data = n;
301}
302
303static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305{
306 info->flags = f;
307 info->data = n;
308}
309
310static inline bool cluster_is_free(struct swap_cluster_info *info)
311{
312 return info->flags & CLUSTER_FLAG_FREE;
313}
314
315static inline bool cluster_is_null(struct swap_cluster_info *info)
316{
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318}
319
320static inline void cluster_set_null(struct swap_cluster_info *info)
321{
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324}
325
e0709829
HY
326static inline bool cluster_is_huge(struct swap_cluster_info *info)
327{
33ee011e
HY
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
e0709829
HY
331}
332
333static inline void cluster_clear_huge(struct swap_cluster_info *info)
334{
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336}
337
235b6217
HY
338static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340{
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349}
350
351static inline void unlock_cluster(struct swap_cluster_info *ci)
352{
353 if (ci)
354 spin_unlock(&ci->lock);
355}
356
59d98bf3
HY
357/*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
235b6217 361static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 362 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
363{
364 struct swap_cluster_info *ci;
365
59d98bf3 366 /* Try to use fine-grained SSD-style locking if available: */
235b6217 367 ci = lock_cluster(si, offset);
59d98bf3 368 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373}
374
375static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377{
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382}
383
6b534915
HY
384static inline bool cluster_list_empty(struct swap_cluster_list *list)
385{
386 return cluster_is_null(&list->head);
387}
388
389static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390{
391 return cluster_next(&list->head);
392}
393
394static void cluster_list_init(struct swap_cluster_list *list)
395{
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398}
399
400static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403{
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
235b6217 408 struct swap_cluster_info *ci_tail;
6b534915
HY
409 unsigned int tail = cluster_next(&list->tail);
410
235b6217
HY
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
0ef017d1 418 spin_unlock(&ci_tail->lock);
6b534915
HY
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421}
422
423static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425{
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437}
438
815c2c54
SL
439/* Add a cluster to discard list and schedule it to do discard */
440static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442{
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
6b534915 452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
453
454 schedule_work(&si->discard_work);
455}
456
38d8b4e6
HY
457static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458{
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463}
464
815c2c54
SL
465/*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468*/
469static void swap_do_scheduled_discard(struct swap_info_struct *si)
470{
235b6217 471 struct swap_cluster_info *info, *ci;
815c2c54
SL
472 unsigned int idx;
473
474 info = si->cluster_info;
475
6b534915
HY
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
235b6217 484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 485 __free_cluster(si, idx);
815c2c54
SL
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
235b6217 488 unlock_cluster(ci);
815c2c54
SL
489 }
490}
491
492static void swap_discard_work(struct work_struct *work)
493{
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501}
502
38d8b4e6
HY
503static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504{
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510}
511
512static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513{
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529}
530
2a8f9449
SL
531/*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537{
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
38d8b4e6
HY
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
2a8f9449
SL
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548}
549
550/*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557{
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
38d8b4e6
HY
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
2a8f9449
SL
569}
570
571/*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
ebc2a1a6
SL
575static bool
576scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
577 unsigned long offset)
578{
ebc2a1a6
SL
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
2a8f9449 582 offset /= SWAPFILE_CLUSTER;
6b534915
HY
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 585 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593}
594
595/*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
36005bae 599static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
600 unsigned long *offset, unsigned long *scan_base)
601{
602 struct percpu_cluster *cluster;
235b6217 603 struct swap_cluster_info *ci;
ebc2a1a6 604 bool found_free;
235b6217 605 unsigned long tmp, max;
ebc2a1a6
SL
606
607new_cluster:
608 cluster = this_cpu_ptr(si->percpu_cluster);
609 if (cluster_is_null(&cluster->index)) {
6b534915
HY
610 if (!cluster_list_empty(&si->free_clusters)) {
611 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
612 cluster->next = cluster_next(&cluster->index) *
613 SWAPFILE_CLUSTER;
6b534915 614 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
615 /*
616 * we don't have free cluster but have some clusters in
617 * discarding, do discard now and reclaim them
618 */
619 swap_do_scheduled_discard(si);
620 *scan_base = *offset = si->cluster_next;
621 goto new_cluster;
622 } else
36005bae 623 return false;
ebc2a1a6
SL
624 }
625
626 found_free = false;
627
628 /*
629 * Other CPUs can use our cluster if they can't find a free cluster,
630 * check if there is still free entry in the cluster
631 */
632 tmp = cluster->next;
235b6217
HY
633 max = min_t(unsigned long, si->max,
634 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
635 if (tmp >= max) {
636 cluster_set_null(&cluster->index);
637 goto new_cluster;
638 }
639 ci = lock_cluster(si, tmp);
640 while (tmp < max) {
ebc2a1a6
SL
641 if (!si->swap_map[tmp]) {
642 found_free = true;
643 break;
644 }
645 tmp++;
646 }
235b6217 647 unlock_cluster(ci);
ebc2a1a6
SL
648 if (!found_free) {
649 cluster_set_null(&cluster->index);
650 goto new_cluster;
651 }
652 cluster->next = tmp + 1;
653 *offset = tmp;
654 *scan_base = tmp;
36005bae 655 return found_free;
2a8f9449
SL
656}
657
a2468cc9
AL
658static void __del_from_avail_list(struct swap_info_struct *p)
659{
660 int nid;
661
662 for_each_node(nid)
663 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
664}
665
666static void del_from_avail_list(struct swap_info_struct *p)
667{
668 spin_lock(&swap_avail_lock);
669 __del_from_avail_list(p);
670 spin_unlock(&swap_avail_lock);
671}
672
38d8b4e6
HY
673static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
674 unsigned int nr_entries)
675{
676 unsigned int end = offset + nr_entries - 1;
677
678 if (offset == si->lowest_bit)
679 si->lowest_bit += nr_entries;
680 if (end == si->highest_bit)
681 si->highest_bit -= nr_entries;
682 si->inuse_pages += nr_entries;
683 if (si->inuse_pages == si->pages) {
684 si->lowest_bit = si->max;
685 si->highest_bit = 0;
a2468cc9 686 del_from_avail_list(si);
38d8b4e6
HY
687 }
688}
689
a2468cc9
AL
690static void add_to_avail_list(struct swap_info_struct *p)
691{
692 int nid;
693
694 spin_lock(&swap_avail_lock);
695 for_each_node(nid) {
696 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
697 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
698 }
699 spin_unlock(&swap_avail_lock);
700}
701
38d8b4e6
HY
702static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
703 unsigned int nr_entries)
704{
705 unsigned long end = offset + nr_entries - 1;
706 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
707
708 if (offset < si->lowest_bit)
709 si->lowest_bit = offset;
710 if (end > si->highest_bit) {
711 bool was_full = !si->highest_bit;
712
713 si->highest_bit = end;
a2468cc9
AL
714 if (was_full && (si->flags & SWP_WRITEOK))
715 add_to_avail_list(si);
38d8b4e6
HY
716 }
717 atomic_long_add(nr_entries, &nr_swap_pages);
718 si->inuse_pages -= nr_entries;
719 if (si->flags & SWP_BLKDEV)
720 swap_slot_free_notify =
721 si->bdev->bd_disk->fops->swap_slot_free_notify;
722 else
723 swap_slot_free_notify = NULL;
724 while (offset <= end) {
725 frontswap_invalidate_page(si->type, offset);
726 if (swap_slot_free_notify)
727 swap_slot_free_notify(si->bdev, offset);
728 offset++;
729 }
730}
731
36005bae
TC
732static int scan_swap_map_slots(struct swap_info_struct *si,
733 unsigned char usage, int nr,
734 swp_entry_t slots[])
1da177e4 735{
235b6217 736 struct swap_cluster_info *ci;
ebebbbe9 737 unsigned long offset;
c60aa176 738 unsigned long scan_base;
7992fde7 739 unsigned long last_in_cluster = 0;
048c27fd 740 int latency_ration = LATENCY_LIMIT;
36005bae
TC
741 int n_ret = 0;
742
743 if (nr > SWAP_BATCH)
744 nr = SWAP_BATCH;
7dfad418 745
886bb7e9 746 /*
7dfad418
HD
747 * We try to cluster swap pages by allocating them sequentially
748 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
749 * way, however, we resort to first-free allocation, starting
750 * a new cluster. This prevents us from scattering swap pages
751 * all over the entire swap partition, so that we reduce
752 * overall disk seek times between swap pages. -- sct
753 * But we do now try to find an empty cluster. -Andrea
c60aa176 754 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
755 */
756
52b7efdb 757 si->flags += SWP_SCANNING;
c60aa176 758 scan_base = offset = si->cluster_next;
ebebbbe9 759
ebc2a1a6
SL
760 /* SSD algorithm */
761 if (si->cluster_info) {
bd2d18da 762 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 763 goto scan;
f4eaf51a 764 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
765 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
766 si->cluster_nr = SWAPFILE_CLUSTER - 1;
767 goto checks;
768 }
2a8f9449 769
ec8acf20 770 spin_unlock(&si->lock);
7dfad418 771
c60aa176
HD
772 /*
773 * If seek is expensive, start searching for new cluster from
774 * start of partition, to minimize the span of allocated swap.
50088c44
CY
775 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
776 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 777 */
50088c44 778 scan_base = offset = si->lowest_bit;
7dfad418
HD
779 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
780
781 /* Locate the first empty (unaligned) cluster */
782 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 783 if (si->swap_map[offset])
7dfad418
HD
784 last_in_cluster = offset + SWAPFILE_CLUSTER;
785 else if (offset == last_in_cluster) {
ec8acf20 786 spin_lock(&si->lock);
ebebbbe9
HD
787 offset -= SWAPFILE_CLUSTER - 1;
788 si->cluster_next = offset;
789 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
790 goto checks;
791 }
792 if (unlikely(--latency_ration < 0)) {
793 cond_resched();
794 latency_ration = LATENCY_LIMIT;
795 }
796 }
797
798 offset = scan_base;
ec8acf20 799 spin_lock(&si->lock);
ebebbbe9 800 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 801 }
7dfad418 802
ebebbbe9 803checks:
ebc2a1a6 804 if (si->cluster_info) {
36005bae
TC
805 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
806 /* take a break if we already got some slots */
807 if (n_ret)
808 goto done;
809 if (!scan_swap_map_try_ssd_cluster(si, &offset,
810 &scan_base))
811 goto scan;
812 }
ebc2a1a6 813 }
ebebbbe9 814 if (!(si->flags & SWP_WRITEOK))
52b7efdb 815 goto no_page;
7dfad418
HD
816 if (!si->highest_bit)
817 goto no_page;
ebebbbe9 818 if (offset > si->highest_bit)
c60aa176 819 scan_base = offset = si->lowest_bit;
c9e44410 820
235b6217 821 ci = lock_cluster(si, offset);
b73d7fce
HD
822 /* reuse swap entry of cache-only swap if not busy. */
823 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 824 int swap_was_freed;
235b6217 825 unlock_cluster(ci);
ec8acf20 826 spin_unlock(&si->lock);
bcd49e86 827 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 828 spin_lock(&si->lock);
c9e44410
KH
829 /* entry was freed successfully, try to use this again */
830 if (swap_was_freed)
831 goto checks;
832 goto scan; /* check next one */
833 }
834
235b6217
HY
835 if (si->swap_map[offset]) {
836 unlock_cluster(ci);
36005bae
TC
837 if (!n_ret)
838 goto scan;
839 else
840 goto done;
235b6217 841 }
2872bb2d
HY
842 si->swap_map[offset] = usage;
843 inc_cluster_info_page(si, si->cluster_info, offset);
844 unlock_cluster(ci);
ebebbbe9 845
38d8b4e6 846 swap_range_alloc(si, offset, 1);
ebebbbe9 847 si->cluster_next = offset + 1;
36005bae
TC
848 slots[n_ret++] = swp_entry(si->type, offset);
849
850 /* got enough slots or reach max slots? */
851 if ((n_ret == nr) || (offset >= si->highest_bit))
852 goto done;
853
854 /* search for next available slot */
855
856 /* time to take a break? */
857 if (unlikely(--latency_ration < 0)) {
858 if (n_ret)
859 goto done;
860 spin_unlock(&si->lock);
861 cond_resched();
862 spin_lock(&si->lock);
863 latency_ration = LATENCY_LIMIT;
864 }
865
866 /* try to get more slots in cluster */
867 if (si->cluster_info) {
868 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
869 goto checks;
f4eaf51a
WY
870 } else if (si->cluster_nr && !si->swap_map[++offset]) {
871 /* non-ssd case, still more slots in cluster? */
36005bae
TC
872 --si->cluster_nr;
873 goto checks;
874 }
7992fde7 875
36005bae
TC
876done:
877 si->flags -= SWP_SCANNING;
878 return n_ret;
7dfad418 879
ebebbbe9 880scan:
ec8acf20 881 spin_unlock(&si->lock);
7dfad418 882 while (++offset <= si->highest_bit) {
52b7efdb 883 if (!si->swap_map[offset]) {
ec8acf20 884 spin_lock(&si->lock);
52b7efdb
HD
885 goto checks;
886 }
c9e44410 887 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 888 spin_lock(&si->lock);
c9e44410
KH
889 goto checks;
890 }
048c27fd
HD
891 if (unlikely(--latency_ration < 0)) {
892 cond_resched();
893 latency_ration = LATENCY_LIMIT;
894 }
7dfad418 895 }
c60aa176 896 offset = si->lowest_bit;
a5998061 897 while (offset < scan_base) {
c60aa176 898 if (!si->swap_map[offset]) {
ec8acf20 899 spin_lock(&si->lock);
c60aa176
HD
900 goto checks;
901 }
c9e44410 902 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 903 spin_lock(&si->lock);
c9e44410
KH
904 goto checks;
905 }
c60aa176
HD
906 if (unlikely(--latency_ration < 0)) {
907 cond_resched();
908 latency_ration = LATENCY_LIMIT;
909 }
a5998061 910 offset++;
c60aa176 911 }
ec8acf20 912 spin_lock(&si->lock);
7dfad418
HD
913
914no_page:
52b7efdb 915 si->flags -= SWP_SCANNING;
36005bae 916 return n_ret;
1da177e4
LT
917}
918
38d8b4e6
HY
919static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
920{
921 unsigned long idx;
922 struct swap_cluster_info *ci;
923 unsigned long offset, i;
924 unsigned char *map;
925
fe5266d5
HY
926 /*
927 * Should not even be attempting cluster allocations when huge
928 * page swap is disabled. Warn and fail the allocation.
929 */
930 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
931 VM_WARN_ON_ONCE(1);
932 return 0;
933 }
934
38d8b4e6
HY
935 if (cluster_list_empty(&si->free_clusters))
936 return 0;
937
938 idx = cluster_list_first(&si->free_clusters);
939 offset = idx * SWAPFILE_CLUSTER;
940 ci = lock_cluster(si, offset);
941 alloc_cluster(si, idx);
e0709829 942 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
943
944 map = si->swap_map + offset;
945 for (i = 0; i < SWAPFILE_CLUSTER; i++)
946 map[i] = SWAP_HAS_CACHE;
947 unlock_cluster(ci);
948 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
949 *slot = swp_entry(si->type, offset);
950
951 return 1;
952}
953
954static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
955{
956 unsigned long offset = idx * SWAPFILE_CLUSTER;
957 struct swap_cluster_info *ci;
958
959 ci = lock_cluster(si, offset);
979aafa5 960 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
961 cluster_set_count_flag(ci, 0, 0);
962 free_cluster(si, idx);
963 unlock_cluster(ci);
964 swap_range_free(si, offset, SWAPFILE_CLUSTER);
965}
38d8b4e6 966
36005bae
TC
967static unsigned long scan_swap_map(struct swap_info_struct *si,
968 unsigned char usage)
969{
970 swp_entry_t entry;
971 int n_ret;
972
973 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
974
975 if (n_ret)
976 return swp_offset(entry);
977 else
978 return 0;
979
980}
981
5d5e8f19 982int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 983{
5d5e8f19 984 unsigned long size = swap_entry_size(entry_size);
adfab836 985 struct swap_info_struct *si, *next;
36005bae
TC
986 long avail_pgs;
987 int n_ret = 0;
a2468cc9 988 int node;
1da177e4 989
38d8b4e6 990 /* Only single cluster request supported */
5d5e8f19 991 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 992
5d5e8f19 993 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 994 if (avail_pgs <= 0)
fb4f88dc 995 goto noswap;
36005bae
TC
996
997 if (n_goal > SWAP_BATCH)
998 n_goal = SWAP_BATCH;
999
1000 if (n_goal > avail_pgs)
1001 n_goal = avail_pgs;
1002
5d5e8f19 1003 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1004
18ab4d4c
DS
1005 spin_lock(&swap_avail_lock);
1006
1007start_over:
a2468cc9
AL
1008 node = numa_node_id();
1009 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1010 /* requeue si to after same-priority siblings */
a2468cc9 1011 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1012 spin_unlock(&swap_avail_lock);
ec8acf20 1013 spin_lock(&si->lock);
adfab836 1014 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1015 spin_lock(&swap_avail_lock);
a2468cc9 1016 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1017 spin_unlock(&si->lock);
1018 goto nextsi;
1019 }
1020 WARN(!si->highest_bit,
1021 "swap_info %d in list but !highest_bit\n",
1022 si->type);
1023 WARN(!(si->flags & SWP_WRITEOK),
1024 "swap_info %d in list but !SWP_WRITEOK\n",
1025 si->type);
a2468cc9 1026 __del_from_avail_list(si);
ec8acf20 1027 spin_unlock(&si->lock);
18ab4d4c 1028 goto nextsi;
ec8acf20 1029 }
5d5e8f19 1030 if (size == SWAPFILE_CLUSTER) {
bc4ae27d 1031 if (!(si->flags & SWP_FS))
f0eea189
HY
1032 n_ret = swap_alloc_cluster(si, swp_entries);
1033 } else
38d8b4e6
HY
1034 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1035 n_goal, swp_entries);
ec8acf20 1036 spin_unlock(&si->lock);
5d5e8f19 1037 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1038 goto check_out;
18ab4d4c 1039 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1040 si->type);
1041
18ab4d4c
DS
1042 spin_lock(&swap_avail_lock);
1043nextsi:
adfab836
DS
1044 /*
1045 * if we got here, it's likely that si was almost full before,
1046 * and since scan_swap_map() can drop the si->lock, multiple
1047 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1048 * and it filled up before we could get one; or, the si filled
1049 * up between us dropping swap_avail_lock and taking si->lock.
1050 * Since we dropped the swap_avail_lock, the swap_avail_head
1051 * list may have been modified; so if next is still in the
36005bae
TC
1052 * swap_avail_head list then try it, otherwise start over
1053 * if we have not gotten any slots.
adfab836 1054 */
a2468cc9 1055 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1056 goto start_over;
1da177e4 1057 }
fb4f88dc 1058
18ab4d4c
DS
1059 spin_unlock(&swap_avail_lock);
1060
36005bae
TC
1061check_out:
1062 if (n_ret < n_goal)
5d5e8f19 1063 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1064 &nr_swap_pages);
fb4f88dc 1065noswap:
36005bae
TC
1066 return n_ret;
1067}
1068
2de1a7e4 1069/* The only caller of this function is now suspend routine */
910321ea
HD
1070swp_entry_t get_swap_page_of_type(int type)
1071{
c10d38cc 1072 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1073 pgoff_t offset;
1074
c10d38cc
DJ
1075 if (!si)
1076 goto fail;
1077
ec8acf20 1078 spin_lock(&si->lock);
c10d38cc 1079 if (si->flags & SWP_WRITEOK) {
ec8acf20 1080 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1081 /* This is called for allocating swap entry, not cache */
1082 offset = scan_swap_map(si, 1);
1083 if (offset) {
ec8acf20 1084 spin_unlock(&si->lock);
910321ea
HD
1085 return swp_entry(type, offset);
1086 }
ec8acf20 1087 atomic_long_inc(&nr_swap_pages);
910321ea 1088 }
ec8acf20 1089 spin_unlock(&si->lock);
c10d38cc 1090fail:
910321ea
HD
1091 return (swp_entry_t) {0};
1092}
1093
e8c26ab6 1094static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1095{
73c34b6a 1096 struct swap_info_struct *p;
eb085574 1097 unsigned long offset;
1da177e4
LT
1098
1099 if (!entry.val)
1100 goto out;
eb085574 1101 p = swp_swap_info(entry);
c10d38cc 1102 if (!p)
1da177e4 1103 goto bad_nofile;
1da177e4
LT
1104 if (!(p->flags & SWP_USED))
1105 goto bad_device;
1106 offset = swp_offset(entry);
1107 if (offset >= p->max)
1108 goto bad_offset;
1da177e4
LT
1109 return p;
1110
1da177e4 1111bad_offset:
6a991fc7 1112 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1113 goto out;
1114bad_device:
6a991fc7 1115 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1116 goto out;
1117bad_nofile:
6a991fc7 1118 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1119out:
1120 return NULL;
886bb7e9 1121}
1da177e4 1122
e8c26ab6
TC
1123static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1124{
1125 struct swap_info_struct *p;
1126
1127 p = __swap_info_get(entry);
1128 if (!p)
1129 goto out;
1130 if (!p->swap_map[swp_offset(entry)])
1131 goto bad_free;
1132 return p;
1133
1134bad_free:
1135 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1136 goto out;
1137out:
1138 return NULL;
1139}
1140
235b6217
HY
1141static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1142{
1143 struct swap_info_struct *p;
1144
1145 p = _swap_info_get(entry);
1146 if (p)
1147 spin_lock(&p->lock);
1148 return p;
1149}
1150
7c00bafe
TC
1151static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1152 struct swap_info_struct *q)
1153{
1154 struct swap_info_struct *p;
1155
1156 p = _swap_info_get(entry);
1157
1158 if (p != q) {
1159 if (q != NULL)
1160 spin_unlock(&q->lock);
1161 if (p != NULL)
1162 spin_lock(&p->lock);
1163 }
1164 return p;
1165}
1166
b32d5f32
HY
1167static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1168 unsigned long offset,
1169 unsigned char usage)
1da177e4 1170{
8d69aaee
HD
1171 unsigned char count;
1172 unsigned char has_cache;
235b6217 1173
253d553b 1174 count = p->swap_map[offset];
235b6217 1175
253d553b
HD
1176 has_cache = count & SWAP_HAS_CACHE;
1177 count &= ~SWAP_HAS_CACHE;
355cfa73 1178
253d553b 1179 if (usage == SWAP_HAS_CACHE) {
355cfa73 1180 VM_BUG_ON(!has_cache);
253d553b 1181 has_cache = 0;
aaa46865
HD
1182 } else if (count == SWAP_MAP_SHMEM) {
1183 /*
1184 * Or we could insist on shmem.c using a special
1185 * swap_shmem_free() and free_shmem_swap_and_cache()...
1186 */
1187 count = 0;
570a335b
HD
1188 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1189 if (count == COUNT_CONTINUED) {
1190 if (swap_count_continued(p, offset, count))
1191 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1192 else
1193 count = SWAP_MAP_MAX;
1194 } else
1195 count--;
1196 }
253d553b 1197
253d553b 1198 usage = count | has_cache;
7c00bafe
TC
1199 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1200
b32d5f32
HY
1201 return usage;
1202}
1203
eb085574
HY
1204/*
1205 * Check whether swap entry is valid in the swap device. If so,
1206 * return pointer to swap_info_struct, and keep the swap entry valid
1207 * via preventing the swap device from being swapoff, until
1208 * put_swap_device() is called. Otherwise return NULL.
1209 *
1210 * The entirety of the RCU read critical section must come before the
1211 * return from or after the call to synchronize_rcu() in
1212 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1213 * true, the si->map, si->cluster_info, etc. must be valid in the
1214 * critical section.
1215 *
1216 * Notice that swapoff or swapoff+swapon can still happen before the
1217 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1218 * in put_swap_device() if there isn't any other way to prevent
1219 * swapoff, such as page lock, page table lock, etc. The caller must
1220 * be prepared for that. For example, the following situation is
1221 * possible.
1222 *
1223 * CPU1 CPU2
1224 * do_swap_page()
1225 * ... swapoff+swapon
1226 * __read_swap_cache_async()
1227 * swapcache_prepare()
1228 * __swap_duplicate()
1229 * // check swap_map
1230 * // verify PTE not changed
1231 *
1232 * In __swap_duplicate(), the swap_map need to be checked before
1233 * changing partly because the specified swap entry may be for another
1234 * swap device which has been swapoff. And in do_swap_page(), after
1235 * the page is read from the swap device, the PTE is verified not
1236 * changed with the page table locked to check whether the swap device
1237 * has been swapoff or swapoff+swapon.
1238 */
1239struct swap_info_struct *get_swap_device(swp_entry_t entry)
1240{
1241 struct swap_info_struct *si;
1242 unsigned long offset;
1243
1244 if (!entry.val)
1245 goto out;
1246 si = swp_swap_info(entry);
1247 if (!si)
1248 goto bad_nofile;
1249
1250 rcu_read_lock();
1251 if (!(si->flags & SWP_VALID))
1252 goto unlock_out;
1253 offset = swp_offset(entry);
1254 if (offset >= si->max)
1255 goto unlock_out;
1256
1257 return si;
1258bad_nofile:
1259 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1260out:
1261 return NULL;
1262unlock_out:
1263 rcu_read_unlock();
1264 return NULL;
1265}
1266
b32d5f32
HY
1267static unsigned char __swap_entry_free(struct swap_info_struct *p,
1268 swp_entry_t entry, unsigned char usage)
1269{
1270 struct swap_cluster_info *ci;
1271 unsigned long offset = swp_offset(entry);
1272
1273 ci = lock_cluster_or_swap_info(p, offset);
1274 usage = __swap_entry_free_locked(p, offset, usage);
7c00bafe 1275 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1276 if (!usage)
1277 free_swap_slot(entry);
7c00bafe
TC
1278
1279 return usage;
1280}
355cfa73 1281
7c00bafe
TC
1282static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1283{
1284 struct swap_cluster_info *ci;
1285 unsigned long offset = swp_offset(entry);
1286 unsigned char count;
1287
1288 ci = lock_cluster(p, offset);
1289 count = p->swap_map[offset];
1290 VM_BUG_ON(count != SWAP_HAS_CACHE);
1291 p->swap_map[offset] = 0;
1292 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1293 unlock_cluster(ci);
1294
38d8b4e6
HY
1295 mem_cgroup_uncharge_swap(entry, 1);
1296 swap_range_free(p, offset, 1);
1da177e4
LT
1297}
1298
1299/*
2de1a7e4 1300 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1301 * is still around or has not been recycled.
1302 */
1303void swap_free(swp_entry_t entry)
1304{
73c34b6a 1305 struct swap_info_struct *p;
1da177e4 1306
235b6217 1307 p = _swap_info_get(entry);
10e364da
HY
1308 if (p)
1309 __swap_entry_free(p, entry, 1);
1da177e4
LT
1310}
1311
cb4b86ba
KH
1312/*
1313 * Called after dropping swapcache to decrease refcnt to swap entries.
1314 */
a448f2d0 1315void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1316{
1317 unsigned long offset = swp_offset(entry);
1318 unsigned long idx = offset / SWAPFILE_CLUSTER;
1319 struct swap_cluster_info *ci;
1320 struct swap_info_struct *si;
1321 unsigned char *map;
a3aea839
HY
1322 unsigned int i, free_entries = 0;
1323 unsigned char val;
a448f2d0 1324 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1325
a3aea839 1326 si = _swap_info_get(entry);
38d8b4e6
HY
1327 if (!si)
1328 return;
1329
c2343d27 1330 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1331 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1332 VM_BUG_ON(!cluster_is_huge(ci));
1333 map = si->swap_map + offset;
1334 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1335 val = map[i];
1336 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1337 if (val == SWAP_HAS_CACHE)
1338 free_entries++;
1339 }
a448f2d0 1340 cluster_clear_huge(ci);
a448f2d0 1341 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1342 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1343 spin_lock(&si->lock);
a448f2d0
HY
1344 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1345 swap_free_cluster(si, idx);
1346 spin_unlock(&si->lock);
1347 return;
1348 }
1349 }
c2343d27
HY
1350 for (i = 0; i < size; i++, entry.val++) {
1351 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1352 unlock_cluster_or_swap_info(si, ci);
1353 free_swap_slot(entry);
1354 if (i == size - 1)
1355 return;
1356 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1357 }
1358 }
c2343d27 1359 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1360}
59807685 1361
fe5266d5 1362#ifdef CONFIG_THP_SWAP
59807685
HY
1363int split_swap_cluster(swp_entry_t entry)
1364{
1365 struct swap_info_struct *si;
1366 struct swap_cluster_info *ci;
1367 unsigned long offset = swp_offset(entry);
1368
1369 si = _swap_info_get(entry);
1370 if (!si)
1371 return -EBUSY;
1372 ci = lock_cluster(si, offset);
1373 cluster_clear_huge(ci);
1374 unlock_cluster(ci);
1375 return 0;
1376}
fe5266d5 1377#endif
38d8b4e6 1378
155b5f88
HY
1379static int swp_entry_cmp(const void *ent1, const void *ent2)
1380{
1381 const swp_entry_t *e1 = ent1, *e2 = ent2;
1382
1383 return (int)swp_type(*e1) - (int)swp_type(*e2);
1384}
1385
7c00bafe
TC
1386void swapcache_free_entries(swp_entry_t *entries, int n)
1387{
1388 struct swap_info_struct *p, *prev;
1389 int i;
1390
1391 if (n <= 0)
1392 return;
1393
1394 prev = NULL;
1395 p = NULL;
155b5f88
HY
1396
1397 /*
1398 * Sort swap entries by swap device, so each lock is only taken once.
1399 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1400 * so low that it isn't necessary to optimize further.
1401 */
1402 if (nr_swapfiles > 1)
1403 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1404 for (i = 0; i < n; ++i) {
1405 p = swap_info_get_cont(entries[i], prev);
1406 if (p)
1407 swap_entry_free(p, entries[i]);
7c00bafe
TC
1408 prev = p;
1409 }
235b6217 1410 if (p)
7c00bafe 1411 spin_unlock(&p->lock);
cb4b86ba
KH
1412}
1413
1da177e4 1414/*
c475a8ab 1415 * How many references to page are currently swapped out?
570a335b
HD
1416 * This does not give an exact answer when swap count is continued,
1417 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1418 */
bde05d1c 1419int page_swapcount(struct page *page)
1da177e4 1420{
c475a8ab
HD
1421 int count = 0;
1422 struct swap_info_struct *p;
235b6217 1423 struct swap_cluster_info *ci;
1da177e4 1424 swp_entry_t entry;
235b6217 1425 unsigned long offset;
1da177e4 1426
4c21e2f2 1427 entry.val = page_private(page);
235b6217 1428 p = _swap_info_get(entry);
1da177e4 1429 if (p) {
235b6217
HY
1430 offset = swp_offset(entry);
1431 ci = lock_cluster_or_swap_info(p, offset);
1432 count = swap_count(p->swap_map[offset]);
1433 unlock_cluster_or_swap_info(p, ci);
1da177e4 1434 }
c475a8ab 1435 return count;
1da177e4
LT
1436}
1437
eb085574 1438int __swap_count(swp_entry_t entry)
aa8d22a1 1439{
eb085574 1440 struct swap_info_struct *si;
aa8d22a1 1441 pgoff_t offset = swp_offset(entry);
eb085574 1442 int count = 0;
aa8d22a1 1443
eb085574
HY
1444 si = get_swap_device(entry);
1445 if (si) {
1446 count = swap_count(si->swap_map[offset]);
1447 put_swap_device(si);
1448 }
1449 return count;
aa8d22a1
MK
1450}
1451
322b8afe
HY
1452static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1453{
1454 int count = 0;
1455 pgoff_t offset = swp_offset(entry);
1456 struct swap_cluster_info *ci;
1457
1458 ci = lock_cluster_or_swap_info(si, offset);
1459 count = swap_count(si->swap_map[offset]);
1460 unlock_cluster_or_swap_info(si, ci);
1461 return count;
1462}
1463
e8c26ab6
TC
1464/*
1465 * How many references to @entry are currently swapped out?
1466 * This does not give an exact answer when swap count is continued,
1467 * but does include the high COUNT_CONTINUED flag to allow for that.
1468 */
1469int __swp_swapcount(swp_entry_t entry)
1470{
1471 int count = 0;
e8c26ab6 1472 struct swap_info_struct *si;
e8c26ab6 1473
eb085574
HY
1474 si = get_swap_device(entry);
1475 if (si) {
322b8afe 1476 count = swap_swapcount(si, entry);
eb085574
HY
1477 put_swap_device(si);
1478 }
e8c26ab6
TC
1479 return count;
1480}
1481
8334b962
MK
1482/*
1483 * How many references to @entry are currently swapped out?
1484 * This considers COUNT_CONTINUED so it returns exact answer.
1485 */
1486int swp_swapcount(swp_entry_t entry)
1487{
1488 int count, tmp_count, n;
1489 struct swap_info_struct *p;
235b6217 1490 struct swap_cluster_info *ci;
8334b962
MK
1491 struct page *page;
1492 pgoff_t offset;
1493 unsigned char *map;
1494
235b6217 1495 p = _swap_info_get(entry);
8334b962
MK
1496 if (!p)
1497 return 0;
1498
235b6217
HY
1499 offset = swp_offset(entry);
1500
1501 ci = lock_cluster_or_swap_info(p, offset);
1502
1503 count = swap_count(p->swap_map[offset]);
8334b962
MK
1504 if (!(count & COUNT_CONTINUED))
1505 goto out;
1506
1507 count &= ~COUNT_CONTINUED;
1508 n = SWAP_MAP_MAX + 1;
1509
8334b962
MK
1510 page = vmalloc_to_page(p->swap_map + offset);
1511 offset &= ~PAGE_MASK;
1512 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1513
1514 do {
a8ae4991 1515 page = list_next_entry(page, lru);
8334b962
MK
1516 map = kmap_atomic(page);
1517 tmp_count = map[offset];
1518 kunmap_atomic(map);
1519
1520 count += (tmp_count & ~COUNT_CONTINUED) * n;
1521 n *= (SWAP_CONT_MAX + 1);
1522 } while (tmp_count & COUNT_CONTINUED);
1523out:
235b6217 1524 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1525 return count;
1526}
1527
e0709829
HY
1528static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1529 swp_entry_t entry)
1530{
1531 struct swap_cluster_info *ci;
1532 unsigned char *map = si->swap_map;
1533 unsigned long roffset = swp_offset(entry);
1534 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1535 int i;
1536 bool ret = false;
1537
1538 ci = lock_cluster_or_swap_info(si, offset);
1539 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1540 if (swap_count(map[roffset]))
e0709829
HY
1541 ret = true;
1542 goto unlock_out;
1543 }
1544 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1545 if (swap_count(map[offset + i])) {
e0709829
HY
1546 ret = true;
1547 break;
1548 }
1549 }
1550unlock_out:
1551 unlock_cluster_or_swap_info(si, ci);
1552 return ret;
1553}
1554
1555static bool page_swapped(struct page *page)
1556{
1557 swp_entry_t entry;
1558 struct swap_info_struct *si;
1559
fe5266d5 1560 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1561 return page_swapcount(page) != 0;
1562
1563 page = compound_head(page);
1564 entry.val = page_private(page);
1565 si = _swap_info_get(entry);
1566 if (si)
1567 return swap_page_trans_huge_swapped(si, entry);
1568 return false;
1569}
ba3c4ce6
HY
1570
1571static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1572 int *total_swapcount)
1573{
1574 int i, map_swapcount, _total_mapcount, _total_swapcount;
1575 unsigned long offset = 0;
1576 struct swap_info_struct *si;
1577 struct swap_cluster_info *ci = NULL;
1578 unsigned char *map = NULL;
1579 int mapcount, swapcount = 0;
1580
1581 /* hugetlbfs shouldn't call it */
1582 VM_BUG_ON_PAGE(PageHuge(page), page);
1583
fe5266d5
HY
1584 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1585 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1586 if (PageSwapCache(page))
1587 swapcount = page_swapcount(page);
1588 if (total_swapcount)
1589 *total_swapcount = swapcount;
1590 return mapcount + swapcount;
1591 }
1592
1593 page = compound_head(page);
1594
1595 _total_mapcount = _total_swapcount = map_swapcount = 0;
1596 if (PageSwapCache(page)) {
1597 swp_entry_t entry;
1598
1599 entry.val = page_private(page);
1600 si = _swap_info_get(entry);
1601 if (si) {
1602 map = si->swap_map;
1603 offset = swp_offset(entry);
1604 }
1605 }
1606 if (map)
1607 ci = lock_cluster(si, offset);
1608 for (i = 0; i < HPAGE_PMD_NR; i++) {
1609 mapcount = atomic_read(&page[i]._mapcount) + 1;
1610 _total_mapcount += mapcount;
1611 if (map) {
1612 swapcount = swap_count(map[offset + i]);
1613 _total_swapcount += swapcount;
1614 }
1615 map_swapcount = max(map_swapcount, mapcount + swapcount);
1616 }
1617 unlock_cluster(ci);
1618 if (PageDoubleMap(page)) {
1619 map_swapcount -= 1;
1620 _total_mapcount -= HPAGE_PMD_NR;
1621 }
1622 mapcount = compound_mapcount(page);
1623 map_swapcount += mapcount;
1624 _total_mapcount += mapcount;
1625 if (total_mapcount)
1626 *total_mapcount = _total_mapcount;
1627 if (total_swapcount)
1628 *total_swapcount = _total_swapcount;
1629
1630 return map_swapcount;
1631}
e0709829 1632
1da177e4 1633/*
7b1fe597
HD
1634 * We can write to an anon page without COW if there are no other references
1635 * to it. And as a side-effect, free up its swap: because the old content
1636 * on disk will never be read, and seeking back there to write new content
1637 * later would only waste time away from clustering.
6d0a07ed 1638 *
ba3c4ce6 1639 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1640 * reuse_swap_page() returns false, but it may be always overwritten
1641 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1642 */
ba3c4ce6 1643bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1644{
ba3c4ce6 1645 int count, total_mapcount, total_swapcount;
c475a8ab 1646
309381fe 1647 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1648 if (unlikely(PageKsm(page)))
6d0a07ed 1649 return false;
ba3c4ce6
HY
1650 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1651 &total_swapcount);
1652 if (total_map_swapcount)
1653 *total_map_swapcount = total_mapcount + total_swapcount;
1654 if (count == 1 && PageSwapCache(page) &&
1655 (likely(!PageTransCompound(page)) ||
1656 /* The remaining swap count will be freed soon */
1657 total_swapcount == page_swapcount(page))) {
f0571429 1658 if (!PageWriteback(page)) {
ba3c4ce6 1659 page = compound_head(page);
7b1fe597
HD
1660 delete_from_swap_cache(page);
1661 SetPageDirty(page);
f0571429
MK
1662 } else {
1663 swp_entry_t entry;
1664 struct swap_info_struct *p;
1665
1666 entry.val = page_private(page);
1667 p = swap_info_get(entry);
1668 if (p->flags & SWP_STABLE_WRITES) {
1669 spin_unlock(&p->lock);
1670 return false;
1671 }
1672 spin_unlock(&p->lock);
7b1fe597
HD
1673 }
1674 }
ba3c4ce6 1675
5ad64688 1676 return count <= 1;
1da177e4
LT
1677}
1678
1679/*
a2c43eed
HD
1680 * If swap is getting full, or if there are no more mappings of this page,
1681 * then try_to_free_swap is called to free its swap space.
1da177e4 1682 */
a2c43eed 1683int try_to_free_swap(struct page *page)
1da177e4 1684{
309381fe 1685 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1686
1687 if (!PageSwapCache(page))
1688 return 0;
1689 if (PageWriteback(page))
1690 return 0;
e0709829 1691 if (page_swapped(page))
1da177e4
LT
1692 return 0;
1693
b73d7fce
HD
1694 /*
1695 * Once hibernation has begun to create its image of memory,
1696 * there's a danger that one of the calls to try_to_free_swap()
1697 * - most probably a call from __try_to_reclaim_swap() while
1698 * hibernation is allocating its own swap pages for the image,
1699 * but conceivably even a call from memory reclaim - will free
1700 * the swap from a page which has already been recorded in the
1701 * image as a clean swapcache page, and then reuse its swap for
1702 * another page of the image. On waking from hibernation, the
1703 * original page might be freed under memory pressure, then
1704 * later read back in from swap, now with the wrong data.
1705 *
2de1a7e4 1706 * Hibernation suspends storage while it is writing the image
f90ac398 1707 * to disk so check that here.
b73d7fce 1708 */
f90ac398 1709 if (pm_suspended_storage())
b73d7fce
HD
1710 return 0;
1711
e0709829 1712 page = compound_head(page);
a2c43eed
HD
1713 delete_from_swap_cache(page);
1714 SetPageDirty(page);
1715 return 1;
68a22394
RR
1716}
1717
1da177e4
LT
1718/*
1719 * Free the swap entry like above, but also try to
1720 * free the page cache entry if it is the last user.
1721 */
2509ef26 1722int free_swap_and_cache(swp_entry_t entry)
1da177e4 1723{
2509ef26 1724 struct swap_info_struct *p;
7c00bafe 1725 unsigned char count;
1da177e4 1726
a7420aa5 1727 if (non_swap_entry(entry))
2509ef26 1728 return 1;
0697212a 1729
7c00bafe 1730 p = _swap_info_get(entry);
1da177e4 1731 if (p) {
7c00bafe 1732 count = __swap_entry_free(p, entry, 1);
e0709829 1733 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1734 !swap_page_trans_huge_swapped(p, entry))
1735 __try_to_reclaim_swap(p, swp_offset(entry),
1736 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1737 }
2509ef26 1738 return p != NULL;
1da177e4
LT
1739}
1740
b0cb1a19 1741#ifdef CONFIG_HIBERNATION
f577eb30 1742/*
915bae9e 1743 * Find the swap type that corresponds to given device (if any).
f577eb30 1744 *
915bae9e
RW
1745 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1746 * from 0, in which the swap header is expected to be located.
1747 *
1748 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1749 */
7bf23687 1750int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1751{
915bae9e 1752 struct block_device *bdev = NULL;
efa90a98 1753 int type;
f577eb30 1754
915bae9e
RW
1755 if (device)
1756 bdev = bdget(device);
1757
f577eb30 1758 spin_lock(&swap_lock);
efa90a98
HD
1759 for (type = 0; type < nr_swapfiles; type++) {
1760 struct swap_info_struct *sis = swap_info[type];
f577eb30 1761
915bae9e 1762 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1763 continue;
b6b5bce3 1764
915bae9e 1765 if (!bdev) {
7bf23687 1766 if (bdev_p)
dddac6a7 1767 *bdev_p = bdgrab(sis->bdev);
7bf23687 1768
6e1819d6 1769 spin_unlock(&swap_lock);
efa90a98 1770 return type;
6e1819d6 1771 }
915bae9e 1772 if (bdev == sis->bdev) {
4efaceb1 1773 struct swap_extent *se = first_se(sis);
915bae9e 1774
915bae9e 1775 if (se->start_block == offset) {
7bf23687 1776 if (bdev_p)
dddac6a7 1777 *bdev_p = bdgrab(sis->bdev);
7bf23687 1778
915bae9e
RW
1779 spin_unlock(&swap_lock);
1780 bdput(bdev);
efa90a98 1781 return type;
915bae9e 1782 }
f577eb30
RW
1783 }
1784 }
1785 spin_unlock(&swap_lock);
915bae9e
RW
1786 if (bdev)
1787 bdput(bdev);
1788
f577eb30
RW
1789 return -ENODEV;
1790}
1791
73c34b6a
HD
1792/*
1793 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1794 * corresponding to given index in swap_info (swap type).
1795 */
1796sector_t swapdev_block(int type, pgoff_t offset)
1797{
1798 struct block_device *bdev;
c10d38cc 1799 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1800
c10d38cc 1801 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1802 return 0;
d4906e1a 1803 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1804}
1805
f577eb30
RW
1806/*
1807 * Return either the total number of swap pages of given type, or the number
1808 * of free pages of that type (depending on @free)
1809 *
1810 * This is needed for software suspend
1811 */
1812unsigned int count_swap_pages(int type, int free)
1813{
1814 unsigned int n = 0;
1815
efa90a98
HD
1816 spin_lock(&swap_lock);
1817 if ((unsigned int)type < nr_swapfiles) {
1818 struct swap_info_struct *sis = swap_info[type];
1819
ec8acf20 1820 spin_lock(&sis->lock);
efa90a98
HD
1821 if (sis->flags & SWP_WRITEOK) {
1822 n = sis->pages;
f577eb30 1823 if (free)
efa90a98 1824 n -= sis->inuse_pages;
f577eb30 1825 }
ec8acf20 1826 spin_unlock(&sis->lock);
f577eb30 1827 }
efa90a98 1828 spin_unlock(&swap_lock);
f577eb30
RW
1829 return n;
1830}
73c34b6a 1831#endif /* CONFIG_HIBERNATION */
f577eb30 1832
9f8bdb3f 1833static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1834{
9f8bdb3f 1835 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1836}
1837
1da177e4 1838/*
72866f6f
HD
1839 * No need to decide whether this PTE shares the swap entry with others,
1840 * just let do_wp_page work it out if a write is requested later - to
1841 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1842 */
044d66c1 1843static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1844 unsigned long addr, swp_entry_t entry, struct page *page)
1845{
9e16b7fb 1846 struct page *swapcache;
72835c86 1847 struct mem_cgroup *memcg;
044d66c1
HD
1848 spinlock_t *ptl;
1849 pte_t *pte;
1850 int ret = 1;
1851
9e16b7fb
HD
1852 swapcache = page;
1853 page = ksm_might_need_to_copy(page, vma, addr);
1854 if (unlikely(!page))
1855 return -ENOMEM;
1856
f627c2f5
KS
1857 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1858 &memcg, false)) {
044d66c1 1859 ret = -ENOMEM;
85d9fc89
KH
1860 goto out_nolock;
1861 }
044d66c1
HD
1862
1863 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1864 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1865 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1866 ret = 0;
1867 goto out;
1868 }
8a9f3ccd 1869
b084d435 1870 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1871 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1872 get_page(page);
1873 set_pte_at(vma->vm_mm, addr, pte,
1874 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1875 if (page == swapcache) {
d281ee61 1876 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1877 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1878 } else { /* ksm created a completely new copy */
d281ee61 1879 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1880 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1881 lru_cache_add_active_or_unevictable(page, vma);
1882 }
1da177e4
LT
1883 swap_free(entry);
1884 /*
1885 * Move the page to the active list so it is not
1886 * immediately swapped out again after swapon.
1887 */
1888 activate_page(page);
044d66c1
HD
1889out:
1890 pte_unmap_unlock(pte, ptl);
85d9fc89 1891out_nolock:
9e16b7fb
HD
1892 if (page != swapcache) {
1893 unlock_page(page);
1894 put_page(page);
1895 }
044d66c1 1896 return ret;
1da177e4
LT
1897}
1898
1899static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1900 unsigned long addr, unsigned long end,
1901 unsigned int type, bool frontswap,
1902 unsigned long *fs_pages_to_unuse)
1da177e4 1903{
b56a2d8a
VRP
1904 struct page *page;
1905 swp_entry_t entry;
705e87c0 1906 pte_t *pte;
b56a2d8a
VRP
1907 struct swap_info_struct *si;
1908 unsigned long offset;
8a9f3ccd 1909 int ret = 0;
b56a2d8a 1910 volatile unsigned char *swap_map;
1da177e4 1911
b56a2d8a 1912 si = swap_info[type];
044d66c1 1913 pte = pte_offset_map(pmd, addr);
1da177e4 1914 do {
b56a2d8a
VRP
1915 struct vm_fault vmf;
1916
1917 if (!is_swap_pte(*pte))
1918 continue;
1919
1920 entry = pte_to_swp_entry(*pte);
1921 if (swp_type(entry) != type)
1922 continue;
1923
1924 offset = swp_offset(entry);
1925 if (frontswap && !frontswap_test(si, offset))
1926 continue;
1927
1928 pte_unmap(pte);
1929 swap_map = &si->swap_map[offset];
ebc5951e
AR
1930 page = lookup_swap_cache(entry, vma, addr);
1931 if (!page) {
1932 vmf.vma = vma;
1933 vmf.address = addr;
1934 vmf.pmd = pmd;
1935 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1936 &vmf);
1937 }
b56a2d8a
VRP
1938 if (!page) {
1939 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1940 goto try_next;
1941 return -ENOMEM;
1942 }
1943
1944 lock_page(page);
1945 wait_on_page_writeback(page);
1946 ret = unuse_pte(vma, pmd, addr, entry, page);
1947 if (ret < 0) {
1948 unlock_page(page);
1949 put_page(page);
1950 goto out;
1951 }
1952
1953 try_to_free_swap(page);
1954 unlock_page(page);
1955 put_page(page);
1956
1957 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1958 ret = FRONTSWAP_PAGES_UNUSED;
1959 goto out;
1da177e4 1960 }
b56a2d8a
VRP
1961try_next:
1962 pte = pte_offset_map(pmd, addr);
1da177e4 1963 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 1964 pte_unmap(pte - 1);
b56a2d8a
VRP
1965
1966 ret = 0;
044d66c1 1967out:
8a9f3ccd 1968 return ret;
1da177e4
LT
1969}
1970
1971static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1972 unsigned long addr, unsigned long end,
b56a2d8a
VRP
1973 unsigned int type, bool frontswap,
1974 unsigned long *fs_pages_to_unuse)
1da177e4
LT
1975{
1976 pmd_t *pmd;
1977 unsigned long next;
8a9f3ccd 1978 int ret;
1da177e4
LT
1979
1980 pmd = pmd_offset(pud, addr);
1981 do {
dc644a07 1982 cond_resched();
1da177e4 1983 next = pmd_addr_end(addr, end);
1a5a9906 1984 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1985 continue;
b56a2d8a
VRP
1986 ret = unuse_pte_range(vma, pmd, addr, next, type,
1987 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
1988 if (ret)
1989 return ret;
1da177e4
LT
1990 } while (pmd++, addr = next, addr != end);
1991 return 0;
1992}
1993
c2febafc 1994static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1995 unsigned long addr, unsigned long end,
b56a2d8a
VRP
1996 unsigned int type, bool frontswap,
1997 unsigned long *fs_pages_to_unuse)
1da177e4
LT
1998{
1999 pud_t *pud;
2000 unsigned long next;
8a9f3ccd 2001 int ret;
1da177e4 2002
c2febafc 2003 pud = pud_offset(p4d, addr);
1da177e4
LT
2004 do {
2005 next = pud_addr_end(addr, end);
2006 if (pud_none_or_clear_bad(pud))
2007 continue;
b56a2d8a
VRP
2008 ret = unuse_pmd_range(vma, pud, addr, next, type,
2009 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2010 if (ret)
2011 return ret;
1da177e4
LT
2012 } while (pud++, addr = next, addr != end);
2013 return 0;
2014}
2015
c2febafc
KS
2016static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2017 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2018 unsigned int type, bool frontswap,
2019 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2020{
2021 p4d_t *p4d;
2022 unsigned long next;
2023 int ret;
2024
2025 p4d = p4d_offset(pgd, addr);
2026 do {
2027 next = p4d_addr_end(addr, end);
2028 if (p4d_none_or_clear_bad(p4d))
2029 continue;
b56a2d8a
VRP
2030 ret = unuse_pud_range(vma, p4d, addr, next, type,
2031 frontswap, fs_pages_to_unuse);
c2febafc
KS
2032 if (ret)
2033 return ret;
2034 } while (p4d++, addr = next, addr != end);
2035 return 0;
2036}
2037
b56a2d8a
VRP
2038static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2039 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2040{
2041 pgd_t *pgd;
2042 unsigned long addr, end, next;
8a9f3ccd 2043 int ret;
1da177e4 2044
b56a2d8a
VRP
2045 addr = vma->vm_start;
2046 end = vma->vm_end;
1da177e4
LT
2047
2048 pgd = pgd_offset(vma->vm_mm, addr);
2049 do {
2050 next = pgd_addr_end(addr, end);
2051 if (pgd_none_or_clear_bad(pgd))
2052 continue;
b56a2d8a
VRP
2053 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2054 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2055 if (ret)
2056 return ret;
1da177e4
LT
2057 } while (pgd++, addr = next, addr != end);
2058 return 0;
2059}
2060
b56a2d8a
VRP
2061static int unuse_mm(struct mm_struct *mm, unsigned int type,
2062 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2063{
2064 struct vm_area_struct *vma;
8a9f3ccd 2065 int ret = 0;
1da177e4 2066
b56a2d8a 2067 down_read(&mm->mmap_sem);
1da177e4 2068 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2069 if (vma->anon_vma) {
2070 ret = unuse_vma(vma, type, frontswap,
2071 fs_pages_to_unuse);
2072 if (ret)
2073 break;
2074 }
dc644a07 2075 cond_resched();
1da177e4 2076 }
1da177e4 2077 up_read(&mm->mmap_sem);
b56a2d8a 2078 return ret;
1da177e4
LT
2079}
2080
2081/*
38b5faf4 2082 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2083 * from current position to next entry still in use. Return 0
2084 * if there are no inuse entries after prev till end of the map.
1da177e4 2085 */
6eb396dc 2086static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2087 unsigned int prev, bool frontswap)
1da177e4 2088{
b56a2d8a 2089 unsigned int i;
8d69aaee 2090 unsigned char count;
1da177e4
LT
2091
2092 /*
5d337b91 2093 * No need for swap_lock here: we're just looking
1da177e4
LT
2094 * for whether an entry is in use, not modifying it; false
2095 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2096 * allocations from this area (while holding swap_lock).
1da177e4 2097 */
b56a2d8a 2098 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2099 count = READ_ONCE(si->swap_map[i]);
355cfa73 2100 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2101 if (!frontswap || frontswap_test(si, i))
2102 break;
2103 if ((i % LATENCY_LIMIT) == 0)
2104 cond_resched();
1da177e4 2105 }
b56a2d8a
VRP
2106
2107 if (i == si->max)
2108 i = 0;
2109
1da177e4
LT
2110 return i;
2111}
2112
2113/*
b56a2d8a 2114 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2115 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2116 */
38b5faf4
DM
2117int try_to_unuse(unsigned int type, bool frontswap,
2118 unsigned long pages_to_unuse)
1da177e4 2119{
b56a2d8a
VRP
2120 struct mm_struct *prev_mm;
2121 struct mm_struct *mm;
2122 struct list_head *p;
2123 int retval = 0;
efa90a98 2124 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2125 struct page *page;
2126 swp_entry_t entry;
b56a2d8a 2127 unsigned int i;
1da177e4 2128
21820948 2129 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2130 return 0;
1da177e4 2131
b56a2d8a
VRP
2132 if (!frontswap)
2133 pages_to_unuse = 0;
2134
2135retry:
2136 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2137 if (retval)
2138 goto out;
2139
2140 prev_mm = &init_mm;
2141 mmget(prev_mm);
2142
2143 spin_lock(&mmlist_lock);
2144 p = &init_mm.mmlist;
21820948 2145 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2146 !signal_pending(current) &&
2147 (p = p->next) != &init_mm.mmlist) {
1da177e4 2148
b56a2d8a
VRP
2149 mm = list_entry(p, struct mm_struct, mmlist);
2150 if (!mmget_not_zero(mm))
2151 continue;
2152 spin_unlock(&mmlist_lock);
2153 mmput(prev_mm);
2154 prev_mm = mm;
2155 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2156
b56a2d8a
VRP
2157 if (retval) {
2158 mmput(prev_mm);
2159 goto out;
1da177e4
LT
2160 }
2161
2162 /*
b56a2d8a
VRP
2163 * Make sure that we aren't completely killing
2164 * interactive performance.
1da177e4 2165 */
b56a2d8a
VRP
2166 cond_resched();
2167 spin_lock(&mmlist_lock);
2168 }
2169 spin_unlock(&mmlist_lock);
1da177e4 2170
b56a2d8a 2171 mmput(prev_mm);
1da177e4 2172
b56a2d8a 2173 i = 0;
21820948 2174 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2175 !signal_pending(current) &&
2176 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2177
b56a2d8a
VRP
2178 entry = swp_entry(type, i);
2179 page = find_get_page(swap_address_space(entry), i);
2180 if (!page)
2181 continue;
68bdc8d6
HD
2182
2183 /*
2184 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2185 * swap cache just before we acquired the page lock. The page
2186 * might even be back in swap cache on another swap area. But
2187 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2188 */
b56a2d8a
VRP
2189 lock_page(page);
2190 wait_on_page_writeback(page);
2191 try_to_free_swap(page);
1da177e4 2192 unlock_page(page);
09cbfeaf 2193 put_page(page);
1da177e4
LT
2194
2195 /*
b56a2d8a
VRP
2196 * For frontswap, we just need to unuse pages_to_unuse, if
2197 * it was specified. Need not check frontswap again here as
2198 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2199 */
b56a2d8a
VRP
2200 if (pages_to_unuse && --pages_to_unuse == 0)
2201 goto out;
1da177e4
LT
2202 }
2203
b56a2d8a
VRP
2204 /*
2205 * Lets check again to see if there are still swap entries in the map.
2206 * If yes, we would need to do retry the unuse logic again.
2207 * Under global memory pressure, swap entries can be reinserted back
2208 * into process space after the mmlist loop above passes over them.
dd862deb 2209 *
af53d3e9
HD
2210 * Limit the number of retries? No: when mmget_not_zero() above fails,
2211 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2212 * at its own independent pace; and even shmem_writepage() could have
2213 * been preempted after get_swap_page(), temporarily hiding that swap.
2214 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2215 */
21820948 2216 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2217 if (!signal_pending(current))
2218 goto retry;
2219 retval = -EINTR;
2220 }
b56a2d8a
VRP
2221out:
2222 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2223}
2224
2225/*
5d337b91
HD
2226 * After a successful try_to_unuse, if no swap is now in use, we know
2227 * we can empty the mmlist. swap_lock must be held on entry and exit.
2228 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2229 * added to the mmlist just after page_duplicate - before would be racy.
2230 */
2231static void drain_mmlist(void)
2232{
2233 struct list_head *p, *next;
efa90a98 2234 unsigned int type;
1da177e4 2235
efa90a98
HD
2236 for (type = 0; type < nr_swapfiles; type++)
2237 if (swap_info[type]->inuse_pages)
1da177e4
LT
2238 return;
2239 spin_lock(&mmlist_lock);
2240 list_for_each_safe(p, next, &init_mm.mmlist)
2241 list_del_init(p);
2242 spin_unlock(&mmlist_lock);
2243}
2244
2245/*
2246 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2247 * corresponds to page offset for the specified swap entry.
2248 * Note that the type of this function is sector_t, but it returns page offset
2249 * into the bdev, not sector offset.
1da177e4 2250 */
d4906e1a 2251static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2252{
f29ad6a9 2253 struct swap_info_struct *sis;
f29ad6a9
HD
2254 struct swap_extent *se;
2255 pgoff_t offset;
2256
c10d38cc 2257 sis = swp_swap_info(entry);
f29ad6a9
HD
2258 *bdev = sis->bdev;
2259
2260 offset = swp_offset(entry);
4efaceb1
AL
2261 se = offset_to_swap_extent(sis, offset);
2262 return se->start_block + (offset - se->start_page);
1da177e4
LT
2263}
2264
d4906e1a
LS
2265/*
2266 * Returns the page offset into bdev for the specified page's swap entry.
2267 */
2268sector_t map_swap_page(struct page *page, struct block_device **bdev)
2269{
2270 swp_entry_t entry;
2271 entry.val = page_private(page);
2272 return map_swap_entry(entry, bdev);
2273}
2274
1da177e4
LT
2275/*
2276 * Free all of a swapdev's extent information
2277 */
2278static void destroy_swap_extents(struct swap_info_struct *sis)
2279{
4efaceb1
AL
2280 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2281 struct rb_node *rb = sis->swap_extent_root.rb_node;
2282 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2283
4efaceb1 2284 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2285 kfree(se);
2286 }
62c230bc 2287
bc4ae27d 2288 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2289 struct file *swap_file = sis->swap_file;
2290 struct address_space *mapping = swap_file->f_mapping;
2291
bc4ae27d
OS
2292 sis->flags &= ~SWP_ACTIVATED;
2293 if (mapping->a_ops->swap_deactivate)
2294 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2295 }
1da177e4
LT
2296}
2297
2298/*
2299 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2300 * extent tree.
1da177e4 2301 *
11d31886 2302 * This function rather assumes that it is called in ascending page order.
1da177e4 2303 */
a509bc1a 2304int
1da177e4
LT
2305add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2306 unsigned long nr_pages, sector_t start_block)
2307{
4efaceb1 2308 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2309 struct swap_extent *se;
2310 struct swap_extent *new_se;
4efaceb1
AL
2311
2312 /*
2313 * place the new node at the right most since the
2314 * function is called in ascending page order.
2315 */
2316 while (*link) {
2317 parent = *link;
2318 link = &parent->rb_right;
2319 }
2320
2321 if (parent) {
2322 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2323 BUG_ON(se->start_page + se->nr_pages != start_page);
2324 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2325 /* Merge it */
2326 se->nr_pages += nr_pages;
2327 return 0;
2328 }
1da177e4
LT
2329 }
2330
4efaceb1 2331 /* No merge, insert a new extent. */
1da177e4
LT
2332 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2333 if (new_se == NULL)
2334 return -ENOMEM;
2335 new_se->start_page = start_page;
2336 new_se->nr_pages = nr_pages;
2337 new_se->start_block = start_block;
2338
4efaceb1
AL
2339 rb_link_node(&new_se->rb_node, parent, link);
2340 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2341 return 1;
1da177e4 2342}
aa8aa8a3 2343EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2344
2345/*
2346 * A `swap extent' is a simple thing which maps a contiguous range of pages
2347 * onto a contiguous range of disk blocks. An ordered list of swap extents
2348 * is built at swapon time and is then used at swap_writepage/swap_readpage
2349 * time for locating where on disk a page belongs.
2350 *
2351 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2352 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2353 * swap files identically.
2354 *
2355 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2356 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2357 * swapfiles are handled *identically* after swapon time.
2358 *
2359 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2360 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2361 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2362 * requirements, they are simply tossed out - we will never use those blocks
2363 * for swapping.
2364 *
1638045c
DW
2365 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2366 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2367 *
2368 * The amount of disk space which a single swap extent represents varies.
2369 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2370 * extents in the list. To avoid much list walking, we cache the previous
2371 * search location in `curr_swap_extent', and start new searches from there.
2372 * This is extremely effective. The average number of iterations in
2373 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2374 */
53092a74 2375static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2376{
62c230bc
MG
2377 struct file *swap_file = sis->swap_file;
2378 struct address_space *mapping = swap_file->f_mapping;
2379 struct inode *inode = mapping->host;
1da177e4
LT
2380 int ret;
2381
1da177e4
LT
2382 if (S_ISBLK(inode->i_mode)) {
2383 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2384 *span = sis->pages;
a509bc1a 2385 return ret;
1da177e4
LT
2386 }
2387
62c230bc 2388 if (mapping->a_ops->swap_activate) {
a509bc1a 2389 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2390 if (ret >= 0)
2391 sis->flags |= SWP_ACTIVATED;
62c230bc 2392 if (!ret) {
bc4ae27d 2393 sis->flags |= SWP_FS;
62c230bc
MG
2394 ret = add_swap_extent(sis, 0, sis->max, 0);
2395 *span = sis->pages;
2396 }
a509bc1a 2397 return ret;
62c230bc
MG
2398 }
2399
a509bc1a 2400 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2401}
2402
a2468cc9
AL
2403static int swap_node(struct swap_info_struct *p)
2404{
2405 struct block_device *bdev;
2406
2407 if (p->bdev)
2408 bdev = p->bdev;
2409 else
2410 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2411
2412 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2413}
2414
eb085574
HY
2415static void setup_swap_info(struct swap_info_struct *p, int prio,
2416 unsigned char *swap_map,
2417 struct swap_cluster_info *cluster_info)
40531542 2418{
a2468cc9
AL
2419 int i;
2420
40531542
CEB
2421 if (prio >= 0)
2422 p->prio = prio;
2423 else
2424 p->prio = --least_priority;
18ab4d4c
DS
2425 /*
2426 * the plist prio is negated because plist ordering is
2427 * low-to-high, while swap ordering is high-to-low
2428 */
2429 p->list.prio = -p->prio;
a2468cc9
AL
2430 for_each_node(i) {
2431 if (p->prio >= 0)
2432 p->avail_lists[i].prio = -p->prio;
2433 else {
2434 if (swap_node(p) == i)
2435 p->avail_lists[i].prio = 1;
2436 else
2437 p->avail_lists[i].prio = -p->prio;
2438 }
2439 }
40531542 2440 p->swap_map = swap_map;
2a8f9449 2441 p->cluster_info = cluster_info;
eb085574
HY
2442}
2443
2444static void _enable_swap_info(struct swap_info_struct *p)
2445{
2446 p->flags |= SWP_WRITEOK | SWP_VALID;
ec8acf20 2447 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2448 total_swap_pages += p->pages;
2449
adfab836 2450 assert_spin_locked(&swap_lock);
adfab836 2451 /*
18ab4d4c
DS
2452 * both lists are plists, and thus priority ordered.
2453 * swap_active_head needs to be priority ordered for swapoff(),
2454 * which on removal of any swap_info_struct with an auto-assigned
2455 * (i.e. negative) priority increments the auto-assigned priority
2456 * of any lower-priority swap_info_structs.
2457 * swap_avail_head needs to be priority ordered for get_swap_page(),
2458 * which allocates swap pages from the highest available priority
2459 * swap_info_struct.
adfab836 2460 */
18ab4d4c 2461 plist_add(&p->list, &swap_active_head);
a2468cc9 2462 add_to_avail_list(p);
cf0cac0a
CEB
2463}
2464
2465static void enable_swap_info(struct swap_info_struct *p, int prio,
2466 unsigned char *swap_map,
2a8f9449 2467 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2468 unsigned long *frontswap_map)
2469{
4f89849d 2470 frontswap_init(p->type, frontswap_map);
cf0cac0a 2471 spin_lock(&swap_lock);
ec8acf20 2472 spin_lock(&p->lock);
eb085574
HY
2473 setup_swap_info(p, prio, swap_map, cluster_info);
2474 spin_unlock(&p->lock);
2475 spin_unlock(&swap_lock);
2476 /*
2477 * Guarantee swap_map, cluster_info, etc. fields are valid
2478 * between get/put_swap_device() if SWP_VALID bit is set
2479 */
2480 synchronize_rcu();
2481 spin_lock(&swap_lock);
2482 spin_lock(&p->lock);
2483 _enable_swap_info(p);
ec8acf20 2484 spin_unlock(&p->lock);
cf0cac0a
CEB
2485 spin_unlock(&swap_lock);
2486}
2487
2488static void reinsert_swap_info(struct swap_info_struct *p)
2489{
2490 spin_lock(&swap_lock);
ec8acf20 2491 spin_lock(&p->lock);
eb085574
HY
2492 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2493 _enable_swap_info(p);
ec8acf20 2494 spin_unlock(&p->lock);
40531542
CEB
2495 spin_unlock(&swap_lock);
2496}
2497
67afa38e
TC
2498bool has_usable_swap(void)
2499{
2500 bool ret = true;
2501
2502 spin_lock(&swap_lock);
2503 if (plist_head_empty(&swap_active_head))
2504 ret = false;
2505 spin_unlock(&swap_lock);
2506 return ret;
2507}
2508
c4ea37c2 2509SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2510{
73c34b6a 2511 struct swap_info_struct *p = NULL;
8d69aaee 2512 unsigned char *swap_map;
2a8f9449 2513 struct swap_cluster_info *cluster_info;
4f89849d 2514 unsigned long *frontswap_map;
1da177e4
LT
2515 struct file *swap_file, *victim;
2516 struct address_space *mapping;
2517 struct inode *inode;
91a27b2a 2518 struct filename *pathname;
adfab836 2519 int err, found = 0;
5b808a23 2520 unsigned int old_block_size;
886bb7e9 2521
1da177e4
LT
2522 if (!capable(CAP_SYS_ADMIN))
2523 return -EPERM;
2524
191c5424
AV
2525 BUG_ON(!current->mm);
2526
1da177e4 2527 pathname = getname(specialfile);
1da177e4 2528 if (IS_ERR(pathname))
f58b59c1 2529 return PTR_ERR(pathname);
1da177e4 2530
669abf4e 2531 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2532 err = PTR_ERR(victim);
2533 if (IS_ERR(victim))
2534 goto out;
2535
2536 mapping = victim->f_mapping;
5d337b91 2537 spin_lock(&swap_lock);
18ab4d4c 2538 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2539 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2540 if (p->swap_file->f_mapping == mapping) {
2541 found = 1;
1da177e4 2542 break;
adfab836 2543 }
1da177e4 2544 }
1da177e4 2545 }
adfab836 2546 if (!found) {
1da177e4 2547 err = -EINVAL;
5d337b91 2548 spin_unlock(&swap_lock);
1da177e4
LT
2549 goto out_dput;
2550 }
191c5424 2551 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2552 vm_unacct_memory(p->pages);
2553 else {
2554 err = -ENOMEM;
5d337b91 2555 spin_unlock(&swap_lock);
1da177e4
LT
2556 goto out_dput;
2557 }
a2468cc9 2558 del_from_avail_list(p);
ec8acf20 2559 spin_lock(&p->lock);
78ecba08 2560 if (p->prio < 0) {
adfab836 2561 struct swap_info_struct *si = p;
a2468cc9 2562 int nid;
adfab836 2563
18ab4d4c 2564 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2565 si->prio++;
18ab4d4c 2566 si->list.prio--;
a2468cc9
AL
2567 for_each_node(nid) {
2568 if (si->avail_lists[nid].prio != 1)
2569 si->avail_lists[nid].prio--;
2570 }
adfab836 2571 }
78ecba08
HD
2572 least_priority++;
2573 }
18ab4d4c 2574 plist_del(&p->list, &swap_active_head);
ec8acf20 2575 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2576 total_swap_pages -= p->pages;
2577 p->flags &= ~SWP_WRITEOK;
ec8acf20 2578 spin_unlock(&p->lock);
5d337b91 2579 spin_unlock(&swap_lock);
fb4f88dc 2580
039939a6
TC
2581 disable_swap_slots_cache_lock();
2582
e1e12d2f 2583 set_current_oom_origin();
adfab836 2584 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2585 clear_current_oom_origin();
1da177e4 2586
1da177e4
LT
2587 if (err) {
2588 /* re-insert swap space back into swap_list */
cf0cac0a 2589 reinsert_swap_info(p);
039939a6 2590 reenable_swap_slots_cache_unlock();
1da177e4
LT
2591 goto out_dput;
2592 }
52b7efdb 2593
039939a6
TC
2594 reenable_swap_slots_cache_unlock();
2595
eb085574
HY
2596 spin_lock(&swap_lock);
2597 spin_lock(&p->lock);
2598 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2599 spin_unlock(&p->lock);
2600 spin_unlock(&swap_lock);
2601 /*
2602 * wait for swap operations protected by get/put_swap_device()
2603 * to complete
2604 */
2605 synchronize_rcu();
2606
815c2c54
SL
2607 flush_work(&p->discard_work);
2608
5d337b91 2609 destroy_swap_extents(p);
570a335b
HD
2610 if (p->flags & SWP_CONTINUED)
2611 free_swap_count_continuations(p);
2612
81a0298b
HY
2613 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2614 atomic_dec(&nr_rotate_swap);
2615
fc0abb14 2616 mutex_lock(&swapon_mutex);
5d337b91 2617 spin_lock(&swap_lock);
ec8acf20 2618 spin_lock(&p->lock);
5d337b91
HD
2619 drain_mmlist();
2620
52b7efdb 2621 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2622 p->highest_bit = 0; /* cuts scans short */
2623 while (p->flags >= SWP_SCANNING) {
ec8acf20 2624 spin_unlock(&p->lock);
5d337b91 2625 spin_unlock(&swap_lock);
13e4b57f 2626 schedule_timeout_uninterruptible(1);
5d337b91 2627 spin_lock(&swap_lock);
ec8acf20 2628 spin_lock(&p->lock);
52b7efdb 2629 }
52b7efdb 2630
1da177e4 2631 swap_file = p->swap_file;
5b808a23 2632 old_block_size = p->old_block_size;
1da177e4
LT
2633 p->swap_file = NULL;
2634 p->max = 0;
2635 swap_map = p->swap_map;
2636 p->swap_map = NULL;
2a8f9449
SL
2637 cluster_info = p->cluster_info;
2638 p->cluster_info = NULL;
4f89849d 2639 frontswap_map = frontswap_map_get(p);
ec8acf20 2640 spin_unlock(&p->lock);
5d337b91 2641 spin_unlock(&swap_lock);
adfab836 2642 frontswap_invalidate_area(p->type);
58e97ba6 2643 frontswap_map_set(p, NULL);
fc0abb14 2644 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2645 free_percpu(p->percpu_cluster);
2646 p->percpu_cluster = NULL;
1da177e4 2647 vfree(swap_map);
54f180d3
HY
2648 kvfree(cluster_info);
2649 kvfree(frontswap_map);
2de1a7e4 2650 /* Destroy swap account information */
adfab836 2651 swap_cgroup_swapoff(p->type);
4b3ef9da 2652 exit_swap_address_space(p->type);
27a7faa0 2653
1da177e4
LT
2654 inode = mapping->host;
2655 if (S_ISBLK(inode->i_mode)) {
2656 struct block_device *bdev = I_BDEV(inode);
1638045c 2657
5b808a23 2658 set_blocksize(bdev, old_block_size);
e525fd89 2659 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2660 }
1638045c
DW
2661
2662 inode_lock(inode);
2663 inode->i_flags &= ~S_SWAPFILE;
2664 inode_unlock(inode);
1da177e4 2665 filp_close(swap_file, NULL);
f893ab41
WY
2666
2667 /*
2668 * Clear the SWP_USED flag after all resources are freed so that swapon
2669 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2670 * not hold p->lock after we cleared its SWP_WRITEOK.
2671 */
2672 spin_lock(&swap_lock);
2673 p->flags = 0;
2674 spin_unlock(&swap_lock);
2675
1da177e4 2676 err = 0;
66d7dd51
KS
2677 atomic_inc(&proc_poll_event);
2678 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2679
2680out_dput:
2681 filp_close(victim, NULL);
2682out:
f58b59c1 2683 putname(pathname);
1da177e4
LT
2684 return err;
2685}
2686
2687#ifdef CONFIG_PROC_FS
9dd95748 2688static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2689{
f1514638 2690 struct seq_file *seq = file->private_data;
66d7dd51
KS
2691
2692 poll_wait(file, &proc_poll_wait, wait);
2693
f1514638
KS
2694 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2695 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2696 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2697 }
2698
a9a08845 2699 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2700}
2701
1da177e4
LT
2702/* iterator */
2703static void *swap_start(struct seq_file *swap, loff_t *pos)
2704{
efa90a98
HD
2705 struct swap_info_struct *si;
2706 int type;
1da177e4
LT
2707 loff_t l = *pos;
2708
fc0abb14 2709 mutex_lock(&swapon_mutex);
1da177e4 2710
881e4aab
SS
2711 if (!l)
2712 return SEQ_START_TOKEN;
2713
c10d38cc 2714 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2715 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2716 continue;
881e4aab 2717 if (!--l)
efa90a98 2718 return si;
1da177e4
LT
2719 }
2720
2721 return NULL;
2722}
2723
2724static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2725{
efa90a98
HD
2726 struct swap_info_struct *si = v;
2727 int type;
1da177e4 2728
881e4aab 2729 if (v == SEQ_START_TOKEN)
efa90a98
HD
2730 type = 0;
2731 else
2732 type = si->type + 1;
881e4aab 2733
10c8d69f 2734 ++(*pos);
c10d38cc 2735 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2736 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2737 continue;
efa90a98 2738 return si;
1da177e4
LT
2739 }
2740
2741 return NULL;
2742}
2743
2744static void swap_stop(struct seq_file *swap, void *v)
2745{
fc0abb14 2746 mutex_unlock(&swapon_mutex);
1da177e4
LT
2747}
2748
2749static int swap_show(struct seq_file *swap, void *v)
2750{
efa90a98 2751 struct swap_info_struct *si = v;
1da177e4
LT
2752 struct file *file;
2753 int len;
2754
efa90a98 2755 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2756 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2757 return 0;
2758 }
1da177e4 2759
efa90a98 2760 file = si->swap_file;
2726d566 2761 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2762 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2763 len < 40 ? 40 - len : 1, " ",
496ad9aa 2764 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2765 "partition" : "file\t",
efa90a98
HD
2766 si->pages << (PAGE_SHIFT - 10),
2767 si->inuse_pages << (PAGE_SHIFT - 10),
2768 si->prio);
1da177e4
LT
2769 return 0;
2770}
2771
15ad7cdc 2772static const struct seq_operations swaps_op = {
1da177e4
LT
2773 .start = swap_start,
2774 .next = swap_next,
2775 .stop = swap_stop,
2776 .show = swap_show
2777};
2778
2779static int swaps_open(struct inode *inode, struct file *file)
2780{
f1514638 2781 struct seq_file *seq;
66d7dd51
KS
2782 int ret;
2783
66d7dd51 2784 ret = seq_open(file, &swaps_op);
f1514638 2785 if (ret)
66d7dd51 2786 return ret;
66d7dd51 2787
f1514638
KS
2788 seq = file->private_data;
2789 seq->poll_event = atomic_read(&proc_poll_event);
2790 return 0;
1da177e4
LT
2791}
2792
97a32539 2793static const struct proc_ops swaps_proc_ops = {
d919b33d 2794 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2795 .proc_open = swaps_open,
2796 .proc_read = seq_read,
2797 .proc_lseek = seq_lseek,
2798 .proc_release = seq_release,
2799 .proc_poll = swaps_poll,
1da177e4
LT
2800};
2801
2802static int __init procswaps_init(void)
2803{
97a32539 2804 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2805 return 0;
2806}
2807__initcall(procswaps_init);
2808#endif /* CONFIG_PROC_FS */
2809
1796316a
JB
2810#ifdef MAX_SWAPFILES_CHECK
2811static int __init max_swapfiles_check(void)
2812{
2813 MAX_SWAPFILES_CHECK();
2814 return 0;
2815}
2816late_initcall(max_swapfiles_check);
2817#endif
2818
53cbb243 2819static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2820{
73c34b6a 2821 struct swap_info_struct *p;
1da177e4 2822 unsigned int type;
a2468cc9 2823 int i;
efa90a98 2824
96008744 2825 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2826 if (!p)
53cbb243 2827 return ERR_PTR(-ENOMEM);
efa90a98 2828
5d337b91 2829 spin_lock(&swap_lock);
efa90a98
HD
2830 for (type = 0; type < nr_swapfiles; type++) {
2831 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2832 break;
efa90a98 2833 }
0697212a 2834 if (type >= MAX_SWAPFILES) {
5d337b91 2835 spin_unlock(&swap_lock);
873d7bcf 2836 kvfree(p);
730c0581 2837 return ERR_PTR(-EPERM);
1da177e4 2838 }
efa90a98
HD
2839 if (type >= nr_swapfiles) {
2840 p->type = type;
c10d38cc 2841 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2842 /*
2843 * Write swap_info[type] before nr_swapfiles, in case a
2844 * racing procfs swap_start() or swap_next() is reading them.
2845 * (We never shrink nr_swapfiles, we never free this entry.)
2846 */
2847 smp_wmb();
c10d38cc 2848 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2849 } else {
873d7bcf 2850 kvfree(p);
efa90a98
HD
2851 p = swap_info[type];
2852 /*
2853 * Do not memset this entry: a racing procfs swap_next()
2854 * would be relying on p->type to remain valid.
2855 */
2856 }
4efaceb1 2857 p->swap_extent_root = RB_ROOT;
18ab4d4c 2858 plist_node_init(&p->list, 0);
a2468cc9
AL
2859 for_each_node(i)
2860 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2861 p->flags = SWP_USED;
5d337b91 2862 spin_unlock(&swap_lock);
ec8acf20 2863 spin_lock_init(&p->lock);
2628bd6f 2864 spin_lock_init(&p->cont_lock);
efa90a98 2865
53cbb243 2866 return p;
53cbb243
CEB
2867}
2868
4d0e1e10
CEB
2869static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2870{
2871 int error;
2872
2873 if (S_ISBLK(inode->i_mode)) {
2874 p->bdev = bdgrab(I_BDEV(inode));
2875 error = blkdev_get(p->bdev,
6f179af8 2876 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2877 if (error < 0) {
2878 p->bdev = NULL;
6f179af8 2879 return error;
4d0e1e10
CEB
2880 }
2881 p->old_block_size = block_size(p->bdev);
2882 error = set_blocksize(p->bdev, PAGE_SIZE);
2883 if (error < 0)
87ade72a 2884 return error;
12d2966d
NA
2885 /*
2886 * Zoned block devices contain zones that have a sequential
2887 * write only restriction. Hence zoned block devices are not
2888 * suitable for swapping. Disallow them here.
2889 */
2890 if (blk_queue_is_zoned(p->bdev->bd_queue))
2891 return -EINVAL;
4d0e1e10
CEB
2892 p->flags |= SWP_BLKDEV;
2893 } else if (S_ISREG(inode->i_mode)) {
2894 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2895 }
2896
4d0e1e10 2897 return 0;
4d0e1e10
CEB
2898}
2899
377eeaa8
AK
2900
2901/*
2902 * Find out how many pages are allowed for a single swap device. There
2903 * are two limiting factors:
2904 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2905 * 2) the number of bits in the swap pte, as defined by the different
2906 * architectures.
2907 *
2908 * In order to find the largest possible bit mask, a swap entry with
2909 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2910 * decoded to a swp_entry_t again, and finally the swap offset is
2911 * extracted.
2912 *
2913 * This will mask all the bits from the initial ~0UL mask that can't
2914 * be encoded in either the swp_entry_t or the architecture definition
2915 * of a swap pte.
2916 */
2917unsigned long generic_max_swapfile_size(void)
2918{
2919 return swp_offset(pte_to_swp_entry(
2920 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2921}
2922
2923/* Can be overridden by an architecture for additional checks. */
2924__weak unsigned long max_swapfile_size(void)
2925{
2926 return generic_max_swapfile_size();
2927}
2928
ca8bd38b
CEB
2929static unsigned long read_swap_header(struct swap_info_struct *p,
2930 union swap_header *swap_header,
2931 struct inode *inode)
2932{
2933 int i;
2934 unsigned long maxpages;
2935 unsigned long swapfilepages;
d6bbbd29 2936 unsigned long last_page;
ca8bd38b
CEB
2937
2938 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2939 pr_err("Unable to find swap-space signature\n");
38719025 2940 return 0;
ca8bd38b
CEB
2941 }
2942
2943 /* swap partition endianess hack... */
2944 if (swab32(swap_header->info.version) == 1) {
2945 swab32s(&swap_header->info.version);
2946 swab32s(&swap_header->info.last_page);
2947 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2948 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2949 return 0;
ca8bd38b
CEB
2950 for (i = 0; i < swap_header->info.nr_badpages; i++)
2951 swab32s(&swap_header->info.badpages[i]);
2952 }
2953 /* Check the swap header's sub-version */
2954 if (swap_header->info.version != 1) {
465c47fd
AM
2955 pr_warn("Unable to handle swap header version %d\n",
2956 swap_header->info.version);
38719025 2957 return 0;
ca8bd38b
CEB
2958 }
2959
2960 p->lowest_bit = 1;
2961 p->cluster_next = 1;
2962 p->cluster_nr = 0;
2963
377eeaa8 2964 maxpages = max_swapfile_size();
d6bbbd29 2965 last_page = swap_header->info.last_page;
a06ad633
TA
2966 if (!last_page) {
2967 pr_warn("Empty swap-file\n");
2968 return 0;
2969 }
d6bbbd29 2970 if (last_page > maxpages) {
465c47fd 2971 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2972 maxpages << (PAGE_SHIFT - 10),
2973 last_page << (PAGE_SHIFT - 10));
2974 }
2975 if (maxpages > last_page) {
2976 maxpages = last_page + 1;
ca8bd38b
CEB
2977 /* p->max is an unsigned int: don't overflow it */
2978 if ((unsigned int)maxpages == 0)
2979 maxpages = UINT_MAX;
2980 }
2981 p->highest_bit = maxpages - 1;
2982
2983 if (!maxpages)
38719025 2984 return 0;
ca8bd38b
CEB
2985 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2986 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2987 pr_warn("Swap area shorter than signature indicates\n");
38719025 2988 return 0;
ca8bd38b
CEB
2989 }
2990 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2991 return 0;
ca8bd38b 2992 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2993 return 0;
ca8bd38b
CEB
2994
2995 return maxpages;
ca8bd38b
CEB
2996}
2997
4b3ef9da 2998#define SWAP_CLUSTER_INFO_COLS \
235b6217 2999 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3000#define SWAP_CLUSTER_SPACE_COLS \
3001 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3002#define SWAP_CLUSTER_COLS \
3003 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3004
915d4d7b
CEB
3005static int setup_swap_map_and_extents(struct swap_info_struct *p,
3006 union swap_header *swap_header,
3007 unsigned char *swap_map,
2a8f9449 3008 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3009 unsigned long maxpages,
3010 sector_t *span)
3011{
235b6217 3012 unsigned int j, k;
915d4d7b
CEB
3013 unsigned int nr_good_pages;
3014 int nr_extents;
2a8f9449 3015 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3016 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3017 unsigned long i, idx;
915d4d7b
CEB
3018
3019 nr_good_pages = maxpages - 1; /* omit header page */
3020
6b534915
HY
3021 cluster_list_init(&p->free_clusters);
3022 cluster_list_init(&p->discard_clusters);
2a8f9449 3023
915d4d7b
CEB
3024 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3025 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3026 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3027 return -EINVAL;
915d4d7b
CEB
3028 if (page_nr < maxpages) {
3029 swap_map[page_nr] = SWAP_MAP_BAD;
3030 nr_good_pages--;
2a8f9449
SL
3031 /*
3032 * Haven't marked the cluster free yet, no list
3033 * operation involved
3034 */
3035 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3036 }
3037 }
3038
2a8f9449
SL
3039 /* Haven't marked the cluster free yet, no list operation involved */
3040 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3041 inc_cluster_info_page(p, cluster_info, i);
3042
915d4d7b
CEB
3043 if (nr_good_pages) {
3044 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3045 /*
3046 * Not mark the cluster free yet, no list
3047 * operation involved
3048 */
3049 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3050 p->max = maxpages;
3051 p->pages = nr_good_pages;
3052 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3053 if (nr_extents < 0)
3054 return nr_extents;
915d4d7b
CEB
3055 nr_good_pages = p->pages;
3056 }
3057 if (!nr_good_pages) {
465c47fd 3058 pr_warn("Empty swap-file\n");
bdb8e3f6 3059 return -EINVAL;
915d4d7b
CEB
3060 }
3061
2a8f9449
SL
3062 if (!cluster_info)
3063 return nr_extents;
3064
235b6217 3065
4b3ef9da
HY
3066 /*
3067 * Reduce false cache line sharing between cluster_info and
3068 * sharing same address space.
3069 */
235b6217
HY
3070 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3071 j = (k + col) % SWAP_CLUSTER_COLS;
3072 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3073 idx = i * SWAP_CLUSTER_COLS + j;
3074 if (idx >= nr_clusters)
3075 continue;
3076 if (cluster_count(&cluster_info[idx]))
3077 continue;
2a8f9449 3078 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3079 cluster_list_add_tail(&p->free_clusters, cluster_info,
3080 idx);
2a8f9449 3081 }
2a8f9449 3082 }
915d4d7b 3083 return nr_extents;
915d4d7b
CEB
3084}
3085
dcf6b7dd
RA
3086/*
3087 * Helper to sys_swapon determining if a given swap
3088 * backing device queue supports DISCARD operations.
3089 */
3090static bool swap_discardable(struct swap_info_struct *si)
3091{
3092 struct request_queue *q = bdev_get_queue(si->bdev);
3093
3094 if (!q || !blk_queue_discard(q))
3095 return false;
3096
3097 return true;
3098}
3099
53cbb243
CEB
3100SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3101{
3102 struct swap_info_struct *p;
91a27b2a 3103 struct filename *name;
53cbb243
CEB
3104 struct file *swap_file = NULL;
3105 struct address_space *mapping;
40531542 3106 int prio;
53cbb243
CEB
3107 int error;
3108 union swap_header *swap_header;
915d4d7b 3109 int nr_extents;
53cbb243
CEB
3110 sector_t span;
3111 unsigned long maxpages;
53cbb243 3112 unsigned char *swap_map = NULL;
2a8f9449 3113 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3114 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3115 struct page *page = NULL;
3116 struct inode *inode = NULL;
7cbf3192 3117 bool inced_nr_rotate_swap = false;
53cbb243 3118
d15cab97
HD
3119 if (swap_flags & ~SWAP_FLAGS_VALID)
3120 return -EINVAL;
3121
53cbb243
CEB
3122 if (!capable(CAP_SYS_ADMIN))
3123 return -EPERM;
3124
a2468cc9
AL
3125 if (!swap_avail_heads)
3126 return -ENOMEM;
3127
53cbb243 3128 p = alloc_swap_info();
2542e513
CEB
3129 if (IS_ERR(p))
3130 return PTR_ERR(p);
53cbb243 3131
815c2c54
SL
3132 INIT_WORK(&p->discard_work, swap_discard_work);
3133
1da177e4 3134 name = getname(specialfile);
1da177e4 3135 if (IS_ERR(name)) {
7de7fb6b 3136 error = PTR_ERR(name);
1da177e4 3137 name = NULL;
bd69010b 3138 goto bad_swap;
1da177e4 3139 }
669abf4e 3140 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3141 if (IS_ERR(swap_file)) {
7de7fb6b 3142 error = PTR_ERR(swap_file);
1da177e4 3143 swap_file = NULL;
bd69010b 3144 goto bad_swap;
1da177e4
LT
3145 }
3146
3147 p->swap_file = swap_file;
3148 mapping = swap_file->f_mapping;
2130781e 3149 inode = mapping->host;
6f179af8 3150
4d0e1e10
CEB
3151 error = claim_swapfile(p, inode);
3152 if (unlikely(error))
1da177e4 3153 goto bad_swap;
1da177e4 3154
d795a90e
NA
3155 inode_lock(inode);
3156 if (IS_SWAPFILE(inode)) {
3157 error = -EBUSY;
3158 goto bad_swap_unlock_inode;
3159 }
3160
1da177e4
LT
3161 /*
3162 * Read the swap header.
3163 */
3164 if (!mapping->a_ops->readpage) {
3165 error = -EINVAL;
d795a90e 3166 goto bad_swap_unlock_inode;
1da177e4 3167 }
090d2b18 3168 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3169 if (IS_ERR(page)) {
3170 error = PTR_ERR(page);
d795a90e 3171 goto bad_swap_unlock_inode;
1da177e4 3172 }
81e33971 3173 swap_header = kmap(page);
1da177e4 3174
ca8bd38b
CEB
3175 maxpages = read_swap_header(p, swap_header, inode);
3176 if (unlikely(!maxpages)) {
1da177e4 3177 error = -EINVAL;
d795a90e 3178 goto bad_swap_unlock_inode;
1da177e4 3179 }
886bb7e9 3180
81e33971 3181 /* OK, set up the swap map and apply the bad block list */
803d0c83 3182 swap_map = vzalloc(maxpages);
81e33971
HD
3183 if (!swap_map) {
3184 error = -ENOMEM;
d795a90e 3185 goto bad_swap_unlock_inode;
81e33971 3186 }
f0571429
MK
3187
3188 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3189 p->flags |= SWP_STABLE_WRITES;
3190
539a6fea
MK
3191 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3192 p->flags |= SWP_SYNCHRONOUS_IO;
3193
2a8f9449 3194 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3195 int cpu;
235b6217 3196 unsigned long ci, nr_cluster;
6f179af8 3197
2a8f9449
SL
3198 p->flags |= SWP_SOLIDSTATE;
3199 /*
3200 * select a random position to start with to help wear leveling
3201 * SSD
3202 */
3203 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3204 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3205
778e1cdd 3206 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3207 GFP_KERNEL);
2a8f9449
SL
3208 if (!cluster_info) {
3209 error = -ENOMEM;
d795a90e 3210 goto bad_swap_unlock_inode;
2a8f9449 3211 }
235b6217
HY
3212
3213 for (ci = 0; ci < nr_cluster; ci++)
3214 spin_lock_init(&((cluster_info + ci)->lock));
3215
ebc2a1a6
SL
3216 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3217 if (!p->percpu_cluster) {
3218 error = -ENOMEM;
d795a90e 3219 goto bad_swap_unlock_inode;
ebc2a1a6 3220 }
6f179af8 3221 for_each_possible_cpu(cpu) {
ebc2a1a6 3222 struct percpu_cluster *cluster;
6f179af8 3223 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3224 cluster_set_null(&cluster->index);
3225 }
7cbf3192 3226 } else {
81a0298b 3227 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3228 inced_nr_rotate_swap = true;
3229 }
1da177e4 3230
1421ef3c
CEB
3231 error = swap_cgroup_swapon(p->type, maxpages);
3232 if (error)
d795a90e 3233 goto bad_swap_unlock_inode;
1421ef3c 3234
915d4d7b 3235 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3236 cluster_info, maxpages, &span);
915d4d7b
CEB
3237 if (unlikely(nr_extents < 0)) {
3238 error = nr_extents;
d795a90e 3239 goto bad_swap_unlock_inode;
1da177e4 3240 }
38b5faf4 3241 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3242 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3243 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3244 sizeof(long),
54f180d3 3245 GFP_KERNEL);
1da177e4 3246
2a8f9449
SL
3247 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3248 /*
3249 * When discard is enabled for swap with no particular
3250 * policy flagged, we set all swap discard flags here in
3251 * order to sustain backward compatibility with older
3252 * swapon(8) releases.
3253 */
3254 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3255 SWP_PAGE_DISCARD);
dcf6b7dd 3256
2a8f9449
SL
3257 /*
3258 * By flagging sys_swapon, a sysadmin can tell us to
3259 * either do single-time area discards only, or to just
3260 * perform discards for released swap page-clusters.
3261 * Now it's time to adjust the p->flags accordingly.
3262 */
3263 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3264 p->flags &= ~SWP_PAGE_DISCARD;
3265 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3266 p->flags &= ~SWP_AREA_DISCARD;
3267
3268 /* issue a swapon-time discard if it's still required */
3269 if (p->flags & SWP_AREA_DISCARD) {
3270 int err = discard_swap(p);
3271 if (unlikely(err))
3272 pr_err("swapon: discard_swap(%p): %d\n",
3273 p, err);
dcf6b7dd 3274 }
20137a49 3275 }
6a6ba831 3276
4b3ef9da
HY
3277 error = init_swap_address_space(p->type, maxpages);
3278 if (error)
d795a90e 3279 goto bad_swap_unlock_inode;
4b3ef9da 3280
dc617f29
DW
3281 /*
3282 * Flush any pending IO and dirty mappings before we start using this
3283 * swap device.
3284 */
3285 inode->i_flags |= S_SWAPFILE;
3286 error = inode_drain_writes(inode);
3287 if (error) {
3288 inode->i_flags &= ~S_SWAPFILE;
d795a90e 3289 goto bad_swap_unlock_inode;
dc617f29
DW
3290 }
3291
fc0abb14 3292 mutex_lock(&swapon_mutex);
40531542 3293 prio = -1;
78ecba08 3294 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3295 prio =
78ecba08 3296 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3297 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3298
756a025f 3299 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3300 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3301 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3302 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3303 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3304 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3305 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3306 (frontswap_map) ? "FS" : "");
c69dbfb8 3307
fc0abb14 3308 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3309 atomic_inc(&proc_poll_event);
3310 wake_up_interruptible(&proc_poll_wait);
3311
1da177e4
LT
3312 error = 0;
3313 goto out;
d795a90e
NA
3314bad_swap_unlock_inode:
3315 inode_unlock(inode);
1da177e4 3316bad_swap:
ebc2a1a6
SL
3317 free_percpu(p->percpu_cluster);
3318 p->percpu_cluster = NULL;
bd69010b 3319 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3320 set_blocksize(p->bdev, p->old_block_size);
3321 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3322 }
d795a90e 3323 inode = NULL;
4cd3bb10 3324 destroy_swap_extents(p);
e8e6c2ec 3325 swap_cgroup_swapoff(p->type);
5d337b91 3326 spin_lock(&swap_lock);
1da177e4 3327 p->swap_file = NULL;
1da177e4 3328 p->flags = 0;
5d337b91 3329 spin_unlock(&swap_lock);
1da177e4 3330 vfree(swap_map);
8606a1a9 3331 kvfree(cluster_info);
b6b1fd2a 3332 kvfree(frontswap_map);
7cbf3192
OS
3333 if (inced_nr_rotate_swap)
3334 atomic_dec(&nr_rotate_swap);
d795a90e 3335 if (swap_file)
1da177e4
LT
3336 filp_close(swap_file, NULL);
3337out:
3338 if (page && !IS_ERR(page)) {
3339 kunmap(page);
09cbfeaf 3340 put_page(page);
1da177e4
LT
3341 }
3342 if (name)
3343 putname(name);
1638045c 3344 if (inode)
5955102c 3345 inode_unlock(inode);
039939a6
TC
3346 if (!error)
3347 enable_swap_slots_cache();
1da177e4
LT
3348 return error;
3349}
3350
3351void si_swapinfo(struct sysinfo *val)
3352{
efa90a98 3353 unsigned int type;
1da177e4
LT
3354 unsigned long nr_to_be_unused = 0;
3355
5d337b91 3356 spin_lock(&swap_lock);
efa90a98
HD
3357 for (type = 0; type < nr_swapfiles; type++) {
3358 struct swap_info_struct *si = swap_info[type];
3359
3360 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3361 nr_to_be_unused += si->inuse_pages;
1da177e4 3362 }
ec8acf20 3363 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3364 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3365 spin_unlock(&swap_lock);
1da177e4
LT
3366}
3367
3368/*
3369 * Verify that a swap entry is valid and increment its swap map count.
3370 *
355cfa73
KH
3371 * Returns error code in following case.
3372 * - success -> 0
3373 * - swp_entry is invalid -> EINVAL
3374 * - swp_entry is migration entry -> EINVAL
3375 * - swap-cache reference is requested but there is already one. -> EEXIST
3376 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3377 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3378 */
8d69aaee 3379static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3380{
73c34b6a 3381 struct swap_info_struct *p;
235b6217 3382 struct swap_cluster_info *ci;
c10d38cc 3383 unsigned long offset;
8d69aaee
HD
3384 unsigned char count;
3385 unsigned char has_cache;
253d553b 3386 int err = -EINVAL;
1da177e4 3387
eb085574 3388 p = get_swap_device(entry);
c10d38cc 3389 if (!p)
235b6217
HY
3390 goto out;
3391
eb085574 3392 offset = swp_offset(entry);
235b6217 3393 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3394
253d553b 3395 count = p->swap_map[offset];
edfe23da
SL
3396
3397 /*
3398 * swapin_readahead() doesn't check if a swap entry is valid, so the
3399 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3400 */
3401 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3402 err = -ENOENT;
3403 goto unlock_out;
3404 }
3405
253d553b
HD
3406 has_cache = count & SWAP_HAS_CACHE;
3407 count &= ~SWAP_HAS_CACHE;
3408 err = 0;
355cfa73 3409
253d553b 3410 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3411
3412 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3413 if (!has_cache && count)
3414 has_cache = SWAP_HAS_CACHE;
3415 else if (has_cache) /* someone else added cache */
3416 err = -EEXIST;
3417 else /* no users remaining */
3418 err = -ENOENT;
355cfa73
KH
3419
3420 } else if (count || has_cache) {
253d553b 3421
570a335b
HD
3422 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3423 count += usage;
3424 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3425 err = -EINVAL;
570a335b
HD
3426 else if (swap_count_continued(p, offset, count))
3427 count = COUNT_CONTINUED;
3428 else
3429 err = -ENOMEM;
355cfa73 3430 } else
253d553b
HD
3431 err = -ENOENT; /* unused swap entry */
3432
3433 p->swap_map[offset] = count | has_cache;
3434
355cfa73 3435unlock_out:
235b6217 3436 unlock_cluster_or_swap_info(p, ci);
1da177e4 3437out:
eb085574
HY
3438 if (p)
3439 put_swap_device(p);
253d553b 3440 return err;
1da177e4 3441}
253d553b 3442
aaa46865
HD
3443/*
3444 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3445 * (in which case its reference count is never incremented).
3446 */
3447void swap_shmem_alloc(swp_entry_t entry)
3448{
3449 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3450}
3451
355cfa73 3452/*
08259d58
HD
3453 * Increase reference count of swap entry by 1.
3454 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3455 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3456 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3457 * might occur if a page table entry has got corrupted.
355cfa73 3458 */
570a335b 3459int swap_duplicate(swp_entry_t entry)
355cfa73 3460{
570a335b
HD
3461 int err = 0;
3462
3463 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3464 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3465 return err;
355cfa73 3466}
1da177e4 3467
cb4b86ba 3468/*
355cfa73
KH
3469 * @entry: swap entry for which we allocate swap cache.
3470 *
73c34b6a 3471 * Called when allocating swap cache for existing swap entry,
355cfa73 3472 * This can return error codes. Returns 0 at success.
3eeba135 3473 * -EEXIST means there is a swap cache.
355cfa73 3474 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3475 */
3476int swapcache_prepare(swp_entry_t entry)
3477{
253d553b 3478 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3479}
3480
0bcac06f
MK
3481struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3482{
c10d38cc 3483 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3484}
3485
f981c595
MG
3486struct swap_info_struct *page_swap_info(struct page *page)
3487{
0bcac06f
MK
3488 swp_entry_t entry = { .val = page_private(page) };
3489 return swp_swap_info(entry);
f981c595
MG
3490}
3491
3492/*
3493 * out-of-line __page_file_ methods to avoid include hell.
3494 */
3495struct address_space *__page_file_mapping(struct page *page)
3496{
f981c595
MG
3497 return page_swap_info(page)->swap_file->f_mapping;
3498}
3499EXPORT_SYMBOL_GPL(__page_file_mapping);
3500
3501pgoff_t __page_file_index(struct page *page)
3502{
3503 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3504 return swp_offset(swap);
3505}
3506EXPORT_SYMBOL_GPL(__page_file_index);
3507
570a335b
HD
3508/*
3509 * add_swap_count_continuation - called when a swap count is duplicated
3510 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3511 * page of the original vmalloc'ed swap_map, to hold the continuation count
3512 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3513 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3514 *
3515 * These continuation pages are seldom referenced: the common paths all work
3516 * on the original swap_map, only referring to a continuation page when the
3517 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3518 *
3519 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3520 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3521 * can be called after dropping locks.
3522 */
3523int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3524{
3525 struct swap_info_struct *si;
235b6217 3526 struct swap_cluster_info *ci;
570a335b
HD
3527 struct page *head;
3528 struct page *page;
3529 struct page *list_page;
3530 pgoff_t offset;
3531 unsigned char count;
eb085574 3532 int ret = 0;
570a335b
HD
3533
3534 /*
3535 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3536 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3537 */
3538 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3539
eb085574 3540 si = get_swap_device(entry);
570a335b
HD
3541 if (!si) {
3542 /*
3543 * An acceptable race has occurred since the failing
eb085574 3544 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3545 */
3546 goto outer;
3547 }
eb085574 3548 spin_lock(&si->lock);
570a335b
HD
3549
3550 offset = swp_offset(entry);
235b6217
HY
3551
3552 ci = lock_cluster(si, offset);
3553
570a335b
HD
3554 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3555
3556 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3557 /*
3558 * The higher the swap count, the more likely it is that tasks
3559 * will race to add swap count continuation: we need to avoid
3560 * over-provisioning.
3561 */
3562 goto out;
3563 }
3564
3565 if (!page) {
eb085574
HY
3566 ret = -ENOMEM;
3567 goto out;
570a335b
HD
3568 }
3569
3570 /*
3571 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3572 * no architecture is using highmem pages for kernel page tables: so it
3573 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3574 */
3575 head = vmalloc_to_page(si->swap_map + offset);
3576 offset &= ~PAGE_MASK;
3577
2628bd6f 3578 spin_lock(&si->cont_lock);
570a335b
HD
3579 /*
3580 * Page allocation does not initialize the page's lru field,
3581 * but it does always reset its private field.
3582 */
3583 if (!page_private(head)) {
3584 BUG_ON(count & COUNT_CONTINUED);
3585 INIT_LIST_HEAD(&head->lru);
3586 set_page_private(head, SWP_CONTINUED);
3587 si->flags |= SWP_CONTINUED;
3588 }
3589
3590 list_for_each_entry(list_page, &head->lru, lru) {
3591 unsigned char *map;
3592
3593 /*
3594 * If the previous map said no continuation, but we've found
3595 * a continuation page, free our allocation and use this one.
3596 */
3597 if (!(count & COUNT_CONTINUED))
2628bd6f 3598 goto out_unlock_cont;
570a335b 3599
9b04c5fe 3600 map = kmap_atomic(list_page) + offset;
570a335b 3601 count = *map;
9b04c5fe 3602 kunmap_atomic(map);
570a335b
HD
3603
3604 /*
3605 * If this continuation count now has some space in it,
3606 * free our allocation and use this one.
3607 */
3608 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3609 goto out_unlock_cont;
570a335b
HD
3610 }
3611
3612 list_add_tail(&page->lru, &head->lru);
3613 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3614out_unlock_cont:
3615 spin_unlock(&si->cont_lock);
570a335b 3616out:
235b6217 3617 unlock_cluster(ci);
ec8acf20 3618 spin_unlock(&si->lock);
eb085574 3619 put_swap_device(si);
570a335b
HD
3620outer:
3621 if (page)
3622 __free_page(page);
eb085574 3623 return ret;
570a335b
HD
3624}
3625
3626/*
3627 * swap_count_continued - when the original swap_map count is incremented
3628 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3629 * into, carry if so, or else fail until a new continuation page is allocated;
3630 * when the original swap_map count is decremented from 0 with continuation,
3631 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3632 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3633 * lock.
570a335b
HD
3634 */
3635static bool swap_count_continued(struct swap_info_struct *si,
3636 pgoff_t offset, unsigned char count)
3637{
3638 struct page *head;
3639 struct page *page;
3640 unsigned char *map;
2628bd6f 3641 bool ret;
570a335b
HD
3642
3643 head = vmalloc_to_page(si->swap_map + offset);
3644 if (page_private(head) != SWP_CONTINUED) {
3645 BUG_ON(count & COUNT_CONTINUED);
3646 return false; /* need to add count continuation */
3647 }
3648
2628bd6f 3649 spin_lock(&si->cont_lock);
570a335b 3650 offset &= ~PAGE_MASK;
213516ac 3651 page = list_next_entry(head, lru);
9b04c5fe 3652 map = kmap_atomic(page) + offset;
570a335b
HD
3653
3654 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3655 goto init_map; /* jump over SWAP_CONT_MAX checks */
3656
3657 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3658 /*
3659 * Think of how you add 1 to 999
3660 */
3661 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3662 kunmap_atomic(map);
213516ac 3663 page = list_next_entry(page, lru);
570a335b 3664 BUG_ON(page == head);
9b04c5fe 3665 map = kmap_atomic(page) + offset;
570a335b
HD
3666 }
3667 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3668 kunmap_atomic(map);
213516ac 3669 page = list_next_entry(page, lru);
2628bd6f
HY
3670 if (page == head) {
3671 ret = false; /* add count continuation */
3672 goto out;
3673 }
9b04c5fe 3674 map = kmap_atomic(page) + offset;
570a335b
HD
3675init_map: *map = 0; /* we didn't zero the page */
3676 }
3677 *map += 1;
9b04c5fe 3678 kunmap_atomic(map);
213516ac 3679 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3680 map = kmap_atomic(page) + offset;
570a335b 3681 *map = COUNT_CONTINUED;
9b04c5fe 3682 kunmap_atomic(map);
570a335b 3683 }
2628bd6f 3684 ret = true; /* incremented */
570a335b
HD
3685
3686 } else { /* decrementing */
3687 /*
3688 * Think of how you subtract 1 from 1000
3689 */
3690 BUG_ON(count != COUNT_CONTINUED);
3691 while (*map == COUNT_CONTINUED) {
9b04c5fe 3692 kunmap_atomic(map);
213516ac 3693 page = list_next_entry(page, lru);
570a335b 3694 BUG_ON(page == head);
9b04c5fe 3695 map = kmap_atomic(page) + offset;
570a335b
HD
3696 }
3697 BUG_ON(*map == 0);
3698 *map -= 1;
3699 if (*map == 0)
3700 count = 0;
9b04c5fe 3701 kunmap_atomic(map);
213516ac 3702 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3703 map = kmap_atomic(page) + offset;
570a335b
HD
3704 *map = SWAP_CONT_MAX | count;
3705 count = COUNT_CONTINUED;
9b04c5fe 3706 kunmap_atomic(map);
570a335b 3707 }
2628bd6f 3708 ret = count == COUNT_CONTINUED;
570a335b 3709 }
2628bd6f
HY
3710out:
3711 spin_unlock(&si->cont_lock);
3712 return ret;
570a335b
HD
3713}
3714
3715/*
3716 * free_swap_count_continuations - swapoff free all the continuation pages
3717 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3718 */
3719static void free_swap_count_continuations(struct swap_info_struct *si)
3720{
3721 pgoff_t offset;
3722
3723 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3724 struct page *head;
3725 head = vmalloc_to_page(si->swap_map + offset);
3726 if (page_private(head)) {
0d576d20
GT
3727 struct page *page, *next;
3728
3729 list_for_each_entry_safe(page, next, &head->lru, lru) {
3730 list_del(&page->lru);
570a335b
HD
3731 __free_page(page);
3732 }
3733 }
3734 }
3735}
a2468cc9 3736
2cf85583
TH
3737#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3738void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3739 gfp_t gfp_mask)
3740{
3741 struct swap_info_struct *si, *next;
3742 if (!(gfp_mask & __GFP_IO) || !memcg)
3743 return;
3744
3745 if (!blk_cgroup_congested())
3746 return;
3747
3748 /*
3749 * We've already scheduled a throttle, avoid taking the global swap
3750 * lock.
3751 */
3752 if (current->throttle_queue)
3753 return;
3754
3755 spin_lock(&swap_avail_lock);
3756 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3757 avail_lists[node]) {
3758 if (si->bdev) {
3759 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3760 true);
3761 break;
3762 }
3763 }
3764 spin_unlock(&swap_avail_lock);
3765}
3766#endif
3767
a2468cc9
AL
3768static int __init swapfile_init(void)
3769{
3770 int nid;
3771
3772 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3773 GFP_KERNEL);
3774 if (!swap_avail_heads) {
3775 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3776 return -ENOMEM;
3777 }
3778
3779 for_each_node(nid)
3780 plist_head_init(&swap_avail_heads[nid]);
3781
3782 return 0;
3783}
3784subsys_initcall(swapfile_init);