mm/swap: convert add_to_swap_cache() to take a folio
[linux-block.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
c97ab271 9#include <linux/blkdev.h>
1da177e4 10#include <linux/mm.h>
6e84f315 11#include <linux/sched/mm.h>
29930025 12#include <linux/sched/task.h>
1da177e4
LT
13#include <linux/hugetlb.h>
14#include <linux/mman.h>
15#include <linux/slab.h>
16#include <linux/kernel_stat.h>
17#include <linux/swap.h>
18#include <linux/vmalloc.h>
19#include <linux/pagemap.h>
20#include <linux/namei.h>
072441e2 21#include <linux/shmem_fs.h>
e41d12f5 22#include <linux/blk-cgroup.h>
20137a49 23#include <linux/random.h>
1da177e4
LT
24#include <linux/writeback.h>
25#include <linux/proc_fs.h>
26#include <linux/seq_file.h>
27#include <linux/init.h>
5ad64688 28#include <linux/ksm.h>
1da177e4
LT
29#include <linux/rmap.h>
30#include <linux/security.h>
31#include <linux/backing-dev.h>
fc0abb14 32#include <linux/mutex.h>
c59ede7b 33#include <linux/capability.h>
1da177e4 34#include <linux/syscalls.h>
8a9f3ccd 35#include <linux/memcontrol.h>
66d7dd51 36#include <linux/poll.h>
72788c38 37#include <linux/oom.h>
38b5faf4
DM
38#include <linux/frontswap.h>
39#include <linux/swapfile.h>
f981c595 40#include <linux/export.h>
67afa38e 41#include <linux/swap_slots.h>
155b5f88 42#include <linux/sort.h>
63d8620e 43#include <linux/completion.h>
1da177e4 44
1da177e4
LT
45#include <asm/tlbflush.h>
46#include <linux/swapops.h>
5d1ea48b 47#include <linux/swap_cgroup.h>
014bb1de 48#include "swap.h"
1da177e4 49
570a335b
HD
50static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51 unsigned char);
52static void free_swap_count_continuations(struct swap_info_struct *);
53
633423a0 54static DEFINE_SPINLOCK(swap_lock);
7c363b8c 55static unsigned int nr_swapfiles;
ec8acf20 56atomic_long_t nr_swap_pages;
fb0fec50
CW
57/*
58 * Some modules use swappable objects and may try to swap them out under
59 * memory pressure (via the shrinker). Before doing so, they may wish to
60 * check to see if any swap space is available.
61 */
62EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 63/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 64long total_swap_pages;
a2468cc9 65static int least_priority = -1;
be45a490 66unsigned long swapfile_maximum_size;
5154e607
PX
67#ifdef CONFIG_MIGRATION
68bool swap_migration_ad_supported;
69#endif /* CONFIG_MIGRATION */
1da177e4 70
1da177e4
LT
71static const char Bad_file[] = "Bad swap file entry ";
72static const char Unused_file[] = "Unused swap file entry ";
73static const char Bad_offset[] = "Bad swap offset entry ";
74static const char Unused_offset[] = "Unused swap offset entry ";
75
adfab836
DS
76/*
77 * all active swap_info_structs
78 * protected with swap_lock, and ordered by priority.
79 */
633423a0 80static PLIST_HEAD(swap_active_head);
18ab4d4c
DS
81
82/*
83 * all available (active, not full) swap_info_structs
84 * protected with swap_avail_lock, ordered by priority.
e2e3fdc7 85 * This is used by folio_alloc_swap() instead of swap_active_head
18ab4d4c 86 * because swap_active_head includes all swap_info_structs,
e2e3fdc7 87 * but folio_alloc_swap() doesn't need to look at full ones.
18ab4d4c
DS
88 * This uses its own lock instead of swap_lock because when a
89 * swap_info_struct changes between not-full/full, it needs to
90 * add/remove itself to/from this list, but the swap_info_struct->lock
91 * is held and the locking order requires swap_lock to be taken
92 * before any swap_info_struct->lock.
93 */
bfc6b1ca 94static struct plist_head *swap_avail_heads;
18ab4d4c 95static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 96
38b5faf4 97struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 98
fc0abb14 99static DEFINE_MUTEX(swapon_mutex);
1da177e4 100
66d7dd51
KS
101static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
102/* Activity counter to indicate that a swapon or swapoff has occurred */
103static atomic_t proc_poll_event = ATOMIC_INIT(0);
104
81a0298b
HY
105atomic_t nr_rotate_swap = ATOMIC_INIT(0);
106
c10d38cc
DJ
107static struct swap_info_struct *swap_type_to_swap_info(int type)
108{
a4b45114 109 if (type >= MAX_SWAPFILES)
c10d38cc
DJ
110 return NULL;
111
a4b45114 112 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
c10d38cc
DJ
113}
114
8d69aaee 115static inline unsigned char swap_count(unsigned char ent)
355cfa73 116{
955c97f0 117 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
118}
119
bcd49e86
HY
120/* Reclaim the swap entry anyway if possible */
121#define TTRS_ANYWAY 0x1
122/*
123 * Reclaim the swap entry if there are no more mappings of the
124 * corresponding page
125 */
126#define TTRS_UNMAPPED 0x2
127/* Reclaim the swap entry if swap is getting full*/
128#define TTRS_FULL 0x4
129
efa90a98 130/* returns 1 if swap entry is freed */
bcd49e86
HY
131static int __try_to_reclaim_swap(struct swap_info_struct *si,
132 unsigned long offset, unsigned long flags)
c9e44410 133{
efa90a98 134 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
135 struct page *page;
136 int ret = 0;
137
bcd49e86 138 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
139 if (!page)
140 return 0;
141 /*
bcd49e86
HY
142 * When this function is called from scan_swap_map_slots() and it's
143 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
144 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
145 * case and you should use try_to_free_swap() with explicit lock_page()
146 * in usual operations.
147 */
148 if (trylock_page(page)) {
bcd49e86
HY
149 if ((flags & TTRS_ANYWAY) ||
150 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
151 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
152 ret = try_to_free_swap(page);
c9e44410
KH
153 unlock_page(page);
154 }
09cbfeaf 155 put_page(page);
c9e44410
KH
156 return ret;
157}
355cfa73 158
4efaceb1
AL
159static inline struct swap_extent *first_se(struct swap_info_struct *sis)
160{
161 struct rb_node *rb = rb_first(&sis->swap_extent_root);
162 return rb_entry(rb, struct swap_extent, rb_node);
163}
164
165static inline struct swap_extent *next_se(struct swap_extent *se)
166{
167 struct rb_node *rb = rb_next(&se->rb_node);
168 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
169}
170
6a6ba831
HD
171/*
172 * swapon tell device that all the old swap contents can be discarded,
173 * to allow the swap device to optimize its wear-levelling.
174 */
175static int discard_swap(struct swap_info_struct *si)
176{
177 struct swap_extent *se;
9625a5f2
HD
178 sector_t start_block;
179 sector_t nr_blocks;
6a6ba831
HD
180 int err = 0;
181
9625a5f2 182 /* Do not discard the swap header page! */
4efaceb1 183 se = first_se(si);
9625a5f2
HD
184 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
185 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
186 if (nr_blocks) {
187 err = blkdev_issue_discard(si->bdev, start_block,
44abff2c 188 nr_blocks, GFP_KERNEL);
9625a5f2
HD
189 if (err)
190 return err;
191 cond_resched();
192 }
6a6ba831 193
4efaceb1 194 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
195 start_block = se->start_block << (PAGE_SHIFT - 9);
196 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
197
198 err = blkdev_issue_discard(si->bdev, start_block,
44abff2c 199 nr_blocks, GFP_KERNEL);
6a6ba831
HD
200 if (err)
201 break;
202
203 cond_resched();
204 }
205 return err; /* That will often be -EOPNOTSUPP */
206}
207
4efaceb1
AL
208static struct swap_extent *
209offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
210{
211 struct swap_extent *se;
212 struct rb_node *rb;
213
214 rb = sis->swap_extent_root.rb_node;
215 while (rb) {
216 se = rb_entry(rb, struct swap_extent, rb_node);
217 if (offset < se->start_page)
218 rb = rb->rb_left;
219 else if (offset >= se->start_page + se->nr_pages)
220 rb = rb->rb_right;
221 else
222 return se;
223 }
224 /* It *must* be present */
225 BUG();
226}
227
caf6912f
JA
228sector_t swap_page_sector(struct page *page)
229{
230 struct swap_info_struct *sis = page_swap_info(page);
231 struct swap_extent *se;
232 sector_t sector;
233 pgoff_t offset;
234
235 offset = __page_file_index(page);
236 se = offset_to_swap_extent(sis, offset);
237 sector = se->start_block + (offset - se->start_page);
238 return sector << (PAGE_SHIFT - 9);
239}
240
7992fde7
HD
241/*
242 * swap allocation tell device that a cluster of swap can now be discarded,
243 * to allow the swap device to optimize its wear-levelling.
244 */
245static void discard_swap_cluster(struct swap_info_struct *si,
246 pgoff_t start_page, pgoff_t nr_pages)
247{
4efaceb1 248 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
249
250 while (nr_pages) {
4efaceb1
AL
251 pgoff_t offset = start_page - se->start_page;
252 sector_t start_block = se->start_block + offset;
253 sector_t nr_blocks = se->nr_pages - offset;
254
255 if (nr_blocks > nr_pages)
256 nr_blocks = nr_pages;
257 start_page += nr_blocks;
258 nr_pages -= nr_blocks;
259
260 start_block <<= PAGE_SHIFT - 9;
261 nr_blocks <<= PAGE_SHIFT - 9;
262 if (blkdev_issue_discard(si->bdev, start_block,
44abff2c 263 nr_blocks, GFP_NOIO))
4efaceb1 264 break;
7992fde7 265
4efaceb1 266 se = next_se(se);
7992fde7
HD
267 }
268}
269
38d8b4e6
HY
270#ifdef CONFIG_THP_SWAP
271#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
272
273#define swap_entry_size(size) (size)
38d8b4e6 274#else
048c27fd 275#define SWAPFILE_CLUSTER 256
a448f2d0
HY
276
277/*
278 * Define swap_entry_size() as constant to let compiler to optimize
279 * out some code if !CONFIG_THP_SWAP
280 */
281#define swap_entry_size(size) 1
38d8b4e6 282#endif
048c27fd
HD
283#define LATENCY_LIMIT 256
284
2a8f9449
SL
285static inline void cluster_set_flag(struct swap_cluster_info *info,
286 unsigned int flag)
287{
288 info->flags = flag;
289}
290
291static inline unsigned int cluster_count(struct swap_cluster_info *info)
292{
293 return info->data;
294}
295
296static inline void cluster_set_count(struct swap_cluster_info *info,
297 unsigned int c)
298{
299 info->data = c;
300}
301
302static inline void cluster_set_count_flag(struct swap_cluster_info *info,
303 unsigned int c, unsigned int f)
304{
305 info->flags = f;
306 info->data = c;
307}
308
309static inline unsigned int cluster_next(struct swap_cluster_info *info)
310{
311 return info->data;
312}
313
314static inline void cluster_set_next(struct swap_cluster_info *info,
315 unsigned int n)
316{
317 info->data = n;
318}
319
320static inline void cluster_set_next_flag(struct swap_cluster_info *info,
321 unsigned int n, unsigned int f)
322{
323 info->flags = f;
324 info->data = n;
325}
326
327static inline bool cluster_is_free(struct swap_cluster_info *info)
328{
329 return info->flags & CLUSTER_FLAG_FREE;
330}
331
332static inline bool cluster_is_null(struct swap_cluster_info *info)
333{
334 return info->flags & CLUSTER_FLAG_NEXT_NULL;
335}
336
337static inline void cluster_set_null(struct swap_cluster_info *info)
338{
339 info->flags = CLUSTER_FLAG_NEXT_NULL;
340 info->data = 0;
341}
342
e0709829
HY
343static inline bool cluster_is_huge(struct swap_cluster_info *info)
344{
33ee011e
HY
345 if (IS_ENABLED(CONFIG_THP_SWAP))
346 return info->flags & CLUSTER_FLAG_HUGE;
347 return false;
e0709829
HY
348}
349
350static inline void cluster_clear_huge(struct swap_cluster_info *info)
351{
352 info->flags &= ~CLUSTER_FLAG_HUGE;
353}
354
235b6217
HY
355static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
356 unsigned long offset)
357{
358 struct swap_cluster_info *ci;
359
360 ci = si->cluster_info;
361 if (ci) {
362 ci += offset / SWAPFILE_CLUSTER;
363 spin_lock(&ci->lock);
364 }
365 return ci;
366}
367
368static inline void unlock_cluster(struct swap_cluster_info *ci)
369{
370 if (ci)
371 spin_unlock(&ci->lock);
372}
373
59d98bf3
HY
374/*
375 * Determine the locking method in use for this device. Return
376 * swap_cluster_info if SSD-style cluster-based locking is in place.
377 */
235b6217 378static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 379 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
380{
381 struct swap_cluster_info *ci;
382
59d98bf3 383 /* Try to use fine-grained SSD-style locking if available: */
235b6217 384 ci = lock_cluster(si, offset);
59d98bf3 385 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
386 if (!ci)
387 spin_lock(&si->lock);
388
389 return ci;
390}
391
392static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
393 struct swap_cluster_info *ci)
394{
395 if (ci)
396 unlock_cluster(ci);
397 else
398 spin_unlock(&si->lock);
399}
400
6b534915
HY
401static inline bool cluster_list_empty(struct swap_cluster_list *list)
402{
403 return cluster_is_null(&list->head);
404}
405
406static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
407{
408 return cluster_next(&list->head);
409}
410
411static void cluster_list_init(struct swap_cluster_list *list)
412{
413 cluster_set_null(&list->head);
414 cluster_set_null(&list->tail);
415}
416
417static void cluster_list_add_tail(struct swap_cluster_list *list,
418 struct swap_cluster_info *ci,
419 unsigned int idx)
420{
421 if (cluster_list_empty(list)) {
422 cluster_set_next_flag(&list->head, idx, 0);
423 cluster_set_next_flag(&list->tail, idx, 0);
424 } else {
235b6217 425 struct swap_cluster_info *ci_tail;
6b534915
HY
426 unsigned int tail = cluster_next(&list->tail);
427
235b6217
HY
428 /*
429 * Nested cluster lock, but both cluster locks are
430 * only acquired when we held swap_info_struct->lock
431 */
432 ci_tail = ci + tail;
433 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
434 cluster_set_next(ci_tail, idx);
0ef017d1 435 spin_unlock(&ci_tail->lock);
6b534915
HY
436 cluster_set_next_flag(&list->tail, idx, 0);
437 }
438}
439
440static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
441 struct swap_cluster_info *ci)
442{
443 unsigned int idx;
444
445 idx = cluster_next(&list->head);
446 if (cluster_next(&list->tail) == idx) {
447 cluster_set_null(&list->head);
448 cluster_set_null(&list->tail);
449 } else
450 cluster_set_next_flag(&list->head,
451 cluster_next(&ci[idx]), 0);
452
453 return idx;
454}
455
815c2c54
SL
456/* Add a cluster to discard list and schedule it to do discard */
457static void swap_cluster_schedule_discard(struct swap_info_struct *si,
458 unsigned int idx)
459{
460 /*
bb243f7d 461 * If scan_swap_map_slots() can't find a free cluster, it will check
815c2c54 462 * si->swap_map directly. To make sure the discarding cluster isn't
bb243f7d
ML
463 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
464 * It will be cleared after discard
815c2c54
SL
465 */
466 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
467 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
468
6b534915 469 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
470
471 schedule_work(&si->discard_work);
472}
473
38d8b4e6
HY
474static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
475{
476 struct swap_cluster_info *ci = si->cluster_info;
477
478 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
479 cluster_list_add_tail(&si->free_clusters, ci, idx);
480}
481
815c2c54
SL
482/*
483 * Doing discard actually. After a cluster discard is finished, the cluster
484 * will be added to free cluster list. caller should hold si->lock.
485*/
486static void swap_do_scheduled_discard(struct swap_info_struct *si)
487{
235b6217 488 struct swap_cluster_info *info, *ci;
815c2c54
SL
489 unsigned int idx;
490
491 info = si->cluster_info;
492
6b534915
HY
493 while (!cluster_list_empty(&si->discard_clusters)) {
494 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
495 spin_unlock(&si->lock);
496
497 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
498 SWAPFILE_CLUSTER);
499
500 spin_lock(&si->lock);
235b6217 501 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 502 __free_cluster(si, idx);
815c2c54
SL
503 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
504 0, SWAPFILE_CLUSTER);
235b6217 505 unlock_cluster(ci);
815c2c54
SL
506 }
507}
508
509static void swap_discard_work(struct work_struct *work)
510{
511 struct swap_info_struct *si;
512
513 si = container_of(work, struct swap_info_struct, discard_work);
514
515 spin_lock(&si->lock);
516 swap_do_scheduled_discard(si);
517 spin_unlock(&si->lock);
518}
519
63d8620e
ML
520static void swap_users_ref_free(struct percpu_ref *ref)
521{
522 struct swap_info_struct *si;
523
524 si = container_of(ref, struct swap_info_struct, users);
525 complete(&si->comp);
526}
527
38d8b4e6
HY
528static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
529{
530 struct swap_cluster_info *ci = si->cluster_info;
531
532 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
533 cluster_list_del_first(&si->free_clusters, ci);
534 cluster_set_count_flag(ci + idx, 0, 0);
535}
536
537static void free_cluster(struct swap_info_struct *si, unsigned long idx)
538{
539 struct swap_cluster_info *ci = si->cluster_info + idx;
540
541 VM_BUG_ON(cluster_count(ci) != 0);
542 /*
543 * If the swap is discardable, prepare discard the cluster
544 * instead of free it immediately. The cluster will be freed
545 * after discard.
546 */
547 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
548 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
549 swap_cluster_schedule_discard(si, idx);
550 return;
551 }
552
553 __free_cluster(si, idx);
554}
555
2a8f9449
SL
556/*
557 * The cluster corresponding to page_nr will be used. The cluster will be
558 * removed from free cluster list and its usage counter will be increased.
559 */
560static void inc_cluster_info_page(struct swap_info_struct *p,
561 struct swap_cluster_info *cluster_info, unsigned long page_nr)
562{
563 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
564
565 if (!cluster_info)
566 return;
38d8b4e6
HY
567 if (cluster_is_free(&cluster_info[idx]))
568 alloc_cluster(p, idx);
2a8f9449
SL
569
570 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
571 cluster_set_count(&cluster_info[idx],
572 cluster_count(&cluster_info[idx]) + 1);
573}
574
575/*
576 * The cluster corresponding to page_nr decreases one usage. If the usage
577 * counter becomes 0, which means no page in the cluster is in using, we can
578 * optionally discard the cluster and add it to free cluster list.
579 */
580static void dec_cluster_info_page(struct swap_info_struct *p,
581 struct swap_cluster_info *cluster_info, unsigned long page_nr)
582{
583 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
584
585 if (!cluster_info)
586 return;
587
588 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
589 cluster_set_count(&cluster_info[idx],
590 cluster_count(&cluster_info[idx]) - 1);
591
38d8b4e6
HY
592 if (cluster_count(&cluster_info[idx]) == 0)
593 free_cluster(p, idx);
2a8f9449
SL
594}
595
596/*
bb243f7d 597 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
2a8f9449
SL
598 * cluster list. Avoiding such abuse to avoid list corruption.
599 */
ebc2a1a6
SL
600static bool
601scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
602 unsigned long offset)
603{
ebc2a1a6
SL
604 struct percpu_cluster *percpu_cluster;
605 bool conflict;
606
2a8f9449 607 offset /= SWAPFILE_CLUSTER;
6b534915
HY
608 conflict = !cluster_list_empty(&si->free_clusters) &&
609 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 610 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
611
612 if (!conflict)
613 return false;
614
615 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
616 cluster_set_null(&percpu_cluster->index);
617 return true;
618}
619
620/*
621 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
622 * might involve allocating a new cluster for current CPU too.
623 */
36005bae 624static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
625 unsigned long *offset, unsigned long *scan_base)
626{
627 struct percpu_cluster *cluster;
235b6217 628 struct swap_cluster_info *ci;
235b6217 629 unsigned long tmp, max;
ebc2a1a6
SL
630
631new_cluster:
632 cluster = this_cpu_ptr(si->percpu_cluster);
633 if (cluster_is_null(&cluster->index)) {
6b534915
HY
634 if (!cluster_list_empty(&si->free_clusters)) {
635 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
636 cluster->next = cluster_next(&cluster->index) *
637 SWAPFILE_CLUSTER;
6b534915 638 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
639 /*
640 * we don't have free cluster but have some clusters in
49070588
HY
641 * discarding, do discard now and reclaim them, then
642 * reread cluster_next_cpu since we dropped si->lock
ebc2a1a6
SL
643 */
644 swap_do_scheduled_discard(si);
49070588
HY
645 *scan_base = this_cpu_read(*si->cluster_next_cpu);
646 *offset = *scan_base;
ebc2a1a6
SL
647 goto new_cluster;
648 } else
36005bae 649 return false;
ebc2a1a6
SL
650 }
651
ebc2a1a6
SL
652 /*
653 * Other CPUs can use our cluster if they can't find a free cluster,
654 * check if there is still free entry in the cluster
655 */
656 tmp = cluster->next;
235b6217
HY
657 max = min_t(unsigned long, si->max,
658 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
7b9e2de1
WY
659 if (tmp < max) {
660 ci = lock_cluster(si, tmp);
661 while (tmp < max) {
662 if (!si->swap_map[tmp])
663 break;
664 tmp++;
665 }
666 unlock_cluster(ci);
ebc2a1a6 667 }
0fd0e19e 668 if (tmp >= max) {
ebc2a1a6
SL
669 cluster_set_null(&cluster->index);
670 goto new_cluster;
671 }
672 cluster->next = tmp + 1;
673 *offset = tmp;
674 *scan_base = tmp;
fdff1deb 675 return true;
2a8f9449
SL
676}
677
a2468cc9
AL
678static void __del_from_avail_list(struct swap_info_struct *p)
679{
680 int nid;
681
682 for_each_node(nid)
683 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
684}
685
686static void del_from_avail_list(struct swap_info_struct *p)
687{
688 spin_lock(&swap_avail_lock);
689 __del_from_avail_list(p);
690 spin_unlock(&swap_avail_lock);
691}
692
38d8b4e6
HY
693static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
694 unsigned int nr_entries)
695{
696 unsigned int end = offset + nr_entries - 1;
697
698 if (offset == si->lowest_bit)
699 si->lowest_bit += nr_entries;
700 if (end == si->highest_bit)
a449bf58 701 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
c8945306 702 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
38d8b4e6
HY
703 if (si->inuse_pages == si->pages) {
704 si->lowest_bit = si->max;
705 si->highest_bit = 0;
a2468cc9 706 del_from_avail_list(si);
38d8b4e6
HY
707 }
708}
709
a2468cc9
AL
710static void add_to_avail_list(struct swap_info_struct *p)
711{
712 int nid;
713
714 spin_lock(&swap_avail_lock);
715 for_each_node(nid) {
716 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
717 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
718 }
719 spin_unlock(&swap_avail_lock);
720}
721
38d8b4e6
HY
722static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
723 unsigned int nr_entries)
724{
3852f676 725 unsigned long begin = offset;
38d8b4e6
HY
726 unsigned long end = offset + nr_entries - 1;
727 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
728
729 if (offset < si->lowest_bit)
730 si->lowest_bit = offset;
731 if (end > si->highest_bit) {
732 bool was_full = !si->highest_bit;
733
a449bf58 734 WRITE_ONCE(si->highest_bit, end);
a2468cc9
AL
735 if (was_full && (si->flags & SWP_WRITEOK))
736 add_to_avail_list(si);
38d8b4e6
HY
737 }
738 atomic_long_add(nr_entries, &nr_swap_pages);
c8945306 739 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
38d8b4e6
HY
740 if (si->flags & SWP_BLKDEV)
741 swap_slot_free_notify =
742 si->bdev->bd_disk->fops->swap_slot_free_notify;
743 else
744 swap_slot_free_notify = NULL;
745 while (offset <= end) {
8a84802e 746 arch_swap_invalidate_page(si->type, offset);
38d8b4e6
HY
747 frontswap_invalidate_page(si->type, offset);
748 if (swap_slot_free_notify)
749 swap_slot_free_notify(si->bdev, offset);
750 offset++;
751 }
3852f676 752 clear_shadow_from_swap_cache(si->type, begin, end);
38d8b4e6
HY
753}
754
49070588
HY
755static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
756{
757 unsigned long prev;
758
759 if (!(si->flags & SWP_SOLIDSTATE)) {
760 si->cluster_next = next;
761 return;
762 }
763
764 prev = this_cpu_read(*si->cluster_next_cpu);
765 /*
766 * Cross the swap address space size aligned trunk, choose
767 * another trunk randomly to avoid lock contention on swap
768 * address space if possible.
769 */
770 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
771 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
772 /* No free swap slots available */
773 if (si->highest_bit <= si->lowest_bit)
774 return;
775 next = si->lowest_bit +
776 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
777 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
778 next = max_t(unsigned int, next, si->lowest_bit);
779 }
780 this_cpu_write(*si->cluster_next_cpu, next);
781}
782
4b9ae842
ML
783static bool swap_offset_available_and_locked(struct swap_info_struct *si,
784 unsigned long offset)
785{
786 if (data_race(!si->swap_map[offset])) {
787 spin_lock(&si->lock);
788 return true;
789 }
790
791 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
792 spin_lock(&si->lock);
793 return true;
794 }
795
796 return false;
797}
798
36005bae
TC
799static int scan_swap_map_slots(struct swap_info_struct *si,
800 unsigned char usage, int nr,
801 swp_entry_t slots[])
1da177e4 802{
235b6217 803 struct swap_cluster_info *ci;
ebebbbe9 804 unsigned long offset;
c60aa176 805 unsigned long scan_base;
7992fde7 806 unsigned long last_in_cluster = 0;
048c27fd 807 int latency_ration = LATENCY_LIMIT;
36005bae 808 int n_ret = 0;
ed43af10 809 bool scanned_many = false;
36005bae 810
886bb7e9 811 /*
7dfad418
HD
812 * We try to cluster swap pages by allocating them sequentially
813 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
814 * way, however, we resort to first-free allocation, starting
815 * a new cluster. This prevents us from scattering swap pages
816 * all over the entire swap partition, so that we reduce
817 * overall disk seek times between swap pages. -- sct
818 * But we do now try to find an empty cluster. -Andrea
c60aa176 819 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
820 */
821
52b7efdb 822 si->flags += SWP_SCANNING;
49070588
HY
823 /*
824 * Use percpu scan base for SSD to reduce lock contention on
825 * cluster and swap cache. For HDD, sequential access is more
826 * important.
827 */
828 if (si->flags & SWP_SOLIDSTATE)
829 scan_base = this_cpu_read(*si->cluster_next_cpu);
830 else
831 scan_base = si->cluster_next;
832 offset = scan_base;
ebebbbe9 833
ebc2a1a6
SL
834 /* SSD algorithm */
835 if (si->cluster_info) {
bd2d18da 836 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 837 goto scan;
f4eaf51a 838 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
839 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
840 si->cluster_nr = SWAPFILE_CLUSTER - 1;
841 goto checks;
842 }
2a8f9449 843
ec8acf20 844 spin_unlock(&si->lock);
7dfad418 845
c60aa176
HD
846 /*
847 * If seek is expensive, start searching for new cluster from
848 * start of partition, to minimize the span of allocated swap.
50088c44
CY
849 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
850 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 851 */
50088c44 852 scan_base = offset = si->lowest_bit;
7dfad418
HD
853 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
854
855 /* Locate the first empty (unaligned) cluster */
856 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 857 if (si->swap_map[offset])
7dfad418
HD
858 last_in_cluster = offset + SWAPFILE_CLUSTER;
859 else if (offset == last_in_cluster) {
ec8acf20 860 spin_lock(&si->lock);
ebebbbe9
HD
861 offset -= SWAPFILE_CLUSTER - 1;
862 si->cluster_next = offset;
863 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
864 goto checks;
865 }
866 if (unlikely(--latency_ration < 0)) {
867 cond_resched();
868 latency_ration = LATENCY_LIMIT;
869 }
870 }
871
872 offset = scan_base;
ec8acf20 873 spin_lock(&si->lock);
ebebbbe9 874 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 875 }
7dfad418 876
ebebbbe9 877checks:
ebc2a1a6 878 if (si->cluster_info) {
36005bae
TC
879 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
880 /* take a break if we already got some slots */
881 if (n_ret)
882 goto done;
883 if (!scan_swap_map_try_ssd_cluster(si, &offset,
884 &scan_base))
885 goto scan;
886 }
ebc2a1a6 887 }
ebebbbe9 888 if (!(si->flags & SWP_WRITEOK))
52b7efdb 889 goto no_page;
7dfad418
HD
890 if (!si->highest_bit)
891 goto no_page;
ebebbbe9 892 if (offset > si->highest_bit)
c60aa176 893 scan_base = offset = si->lowest_bit;
c9e44410 894
235b6217 895 ci = lock_cluster(si, offset);
b73d7fce
HD
896 /* reuse swap entry of cache-only swap if not busy. */
897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 898 int swap_was_freed;
235b6217 899 unlock_cluster(ci);
ec8acf20 900 spin_unlock(&si->lock);
bcd49e86 901 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 902 spin_lock(&si->lock);
c9e44410
KH
903 /* entry was freed successfully, try to use this again */
904 if (swap_was_freed)
905 goto checks;
906 goto scan; /* check next one */
907 }
908
235b6217
HY
909 if (si->swap_map[offset]) {
910 unlock_cluster(ci);
36005bae
TC
911 if (!n_ret)
912 goto scan;
913 else
914 goto done;
235b6217 915 }
a449bf58 916 WRITE_ONCE(si->swap_map[offset], usage);
2872bb2d
HY
917 inc_cluster_info_page(si, si->cluster_info, offset);
918 unlock_cluster(ci);
ebebbbe9 919
38d8b4e6 920 swap_range_alloc(si, offset, 1);
36005bae
TC
921 slots[n_ret++] = swp_entry(si->type, offset);
922
923 /* got enough slots or reach max slots? */
924 if ((n_ret == nr) || (offset >= si->highest_bit))
925 goto done;
926
927 /* search for next available slot */
928
929 /* time to take a break? */
930 if (unlikely(--latency_ration < 0)) {
931 if (n_ret)
932 goto done;
933 spin_unlock(&si->lock);
934 cond_resched();
935 spin_lock(&si->lock);
936 latency_ration = LATENCY_LIMIT;
937 }
938
939 /* try to get more slots in cluster */
940 if (si->cluster_info) {
941 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
942 goto checks;
f4eaf51a
WY
943 } else if (si->cluster_nr && !si->swap_map[++offset]) {
944 /* non-ssd case, still more slots in cluster? */
36005bae
TC
945 --si->cluster_nr;
946 goto checks;
947 }
7992fde7 948
ed43af10
HY
949 /*
950 * Even if there's no free clusters available (fragmented),
951 * try to scan a little more quickly with lock held unless we
952 * have scanned too many slots already.
953 */
954 if (!scanned_many) {
955 unsigned long scan_limit;
956
957 if (offset < scan_base)
958 scan_limit = scan_base;
959 else
960 scan_limit = si->highest_bit;
961 for (; offset <= scan_limit && --latency_ration > 0;
962 offset++) {
963 if (!si->swap_map[offset])
964 goto checks;
965 }
966 }
967
36005bae 968done:
49070588 969 set_cluster_next(si, offset + 1);
36005bae
TC
970 si->flags -= SWP_SCANNING;
971 return n_ret;
7dfad418 972
ebebbbe9 973scan:
ec8acf20 974 spin_unlock(&si->lock);
a449bf58 975 while (++offset <= READ_ONCE(si->highest_bit)) {
4b9ae842 976 if (swap_offset_available_and_locked(si, offset))
c9e44410 977 goto checks;
048c27fd
HD
978 if (unlikely(--latency_ration < 0)) {
979 cond_resched();
980 latency_ration = LATENCY_LIMIT;
ed43af10 981 scanned_many = true;
048c27fd 982 }
7dfad418 983 }
c60aa176 984 offset = si->lowest_bit;
a5998061 985 while (offset < scan_base) {
4b9ae842 986 if (swap_offset_available_and_locked(si, offset))
c60aa176 987 goto checks;
c60aa176
HD
988 if (unlikely(--latency_ration < 0)) {
989 cond_resched();
990 latency_ration = LATENCY_LIMIT;
ed43af10 991 scanned_many = true;
c60aa176 992 }
a5998061 993 offset++;
c60aa176 994 }
ec8acf20 995 spin_lock(&si->lock);
7dfad418
HD
996
997no_page:
52b7efdb 998 si->flags -= SWP_SCANNING;
36005bae 999 return n_ret;
1da177e4
LT
1000}
1001
38d8b4e6
HY
1002static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1003{
1004 unsigned long idx;
1005 struct swap_cluster_info *ci;
661c7566 1006 unsigned long offset;
38d8b4e6 1007
fe5266d5
HY
1008 /*
1009 * Should not even be attempting cluster allocations when huge
1010 * page swap is disabled. Warn and fail the allocation.
1011 */
1012 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1013 VM_WARN_ON_ONCE(1);
1014 return 0;
1015 }
1016
38d8b4e6
HY
1017 if (cluster_list_empty(&si->free_clusters))
1018 return 0;
1019
1020 idx = cluster_list_first(&si->free_clusters);
1021 offset = idx * SWAPFILE_CLUSTER;
1022 ci = lock_cluster(si, offset);
1023 alloc_cluster(si, idx);
e0709829 1024 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6 1025
661c7566 1026 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
38d8b4e6
HY
1027 unlock_cluster(ci);
1028 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1029 *slot = swp_entry(si->type, offset);
1030
1031 return 1;
1032}
1033
1034static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1035{
1036 unsigned long offset = idx * SWAPFILE_CLUSTER;
1037 struct swap_cluster_info *ci;
1038
1039 ci = lock_cluster(si, offset);
979aafa5 1040 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
1041 cluster_set_count_flag(ci, 0, 0);
1042 free_cluster(si, idx);
1043 unlock_cluster(ci);
1044 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1045}
38d8b4e6 1046
5d5e8f19 1047int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 1048{
5d5e8f19 1049 unsigned long size = swap_entry_size(entry_size);
adfab836 1050 struct swap_info_struct *si, *next;
36005bae
TC
1051 long avail_pgs;
1052 int n_ret = 0;
a2468cc9 1053 int node;
1da177e4 1054
38d8b4e6 1055 /* Only single cluster request supported */
5d5e8f19 1056 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1057
b50da6e9
ZH
1058 spin_lock(&swap_avail_lock);
1059
5d5e8f19 1060 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
b50da6e9
ZH
1061 if (avail_pgs <= 0) {
1062 spin_unlock(&swap_avail_lock);
fb4f88dc 1063 goto noswap;
b50da6e9 1064 }
36005bae 1065
08d3090f 1066 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 1067
5d5e8f19 1068 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1069
18ab4d4c 1070start_over:
a2468cc9
AL
1071 node = numa_node_id();
1072 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1073 /* requeue si to after same-priority siblings */
a2468cc9 1074 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1075 spin_unlock(&swap_avail_lock);
ec8acf20 1076 spin_lock(&si->lock);
adfab836 1077 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1078 spin_lock(&swap_avail_lock);
a2468cc9 1079 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1080 spin_unlock(&si->lock);
1081 goto nextsi;
1082 }
1083 WARN(!si->highest_bit,
1084 "swap_info %d in list but !highest_bit\n",
1085 si->type);
1086 WARN(!(si->flags & SWP_WRITEOK),
1087 "swap_info %d in list but !SWP_WRITEOK\n",
1088 si->type);
a2468cc9 1089 __del_from_avail_list(si);
ec8acf20 1090 spin_unlock(&si->lock);
18ab4d4c 1091 goto nextsi;
ec8acf20 1092 }
5d5e8f19 1093 if (size == SWAPFILE_CLUSTER) {
41663430 1094 if (si->flags & SWP_BLKDEV)
f0eea189
HY
1095 n_ret = swap_alloc_cluster(si, swp_entries);
1096 } else
38d8b4e6
HY
1097 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098 n_goal, swp_entries);
ec8acf20 1099 spin_unlock(&si->lock);
5d5e8f19 1100 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1101 goto check_out;
18ab4d4c 1102 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1103 si->type);
1104
18ab4d4c
DS
1105 spin_lock(&swap_avail_lock);
1106nextsi:
adfab836
DS
1107 /*
1108 * if we got here, it's likely that si was almost full before,
bb243f7d
ML
1109 * and since scan_swap_map_slots() can drop the si->lock,
1110 * multiple callers probably all tried to get a page from the
1111 * same si and it filled up before we could get one; or, the si
1112 * filled up between us dropping swap_avail_lock and taking
1113 * si->lock. Since we dropped the swap_avail_lock, the
1114 * swap_avail_head list may have been modified; so if next is
1115 * still in the swap_avail_head list then try it, otherwise
1116 * start over if we have not gotten any slots.
adfab836 1117 */
a2468cc9 1118 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1119 goto start_over;
1da177e4 1120 }
fb4f88dc 1121
18ab4d4c
DS
1122 spin_unlock(&swap_avail_lock);
1123
36005bae
TC
1124check_out:
1125 if (n_ret < n_goal)
5d5e8f19 1126 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1127 &nr_swap_pages);
fb4f88dc 1128noswap:
36005bae
TC
1129 return n_ret;
1130}
1131
afba72b1 1132static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1da177e4 1133{
73c34b6a 1134 struct swap_info_struct *p;
eb085574 1135 unsigned long offset;
1da177e4
LT
1136
1137 if (!entry.val)
1138 goto out;
eb085574 1139 p = swp_swap_info(entry);
c10d38cc 1140 if (!p)
1da177e4 1141 goto bad_nofile;
a449bf58 1142 if (data_race(!(p->flags & SWP_USED)))
1da177e4
LT
1143 goto bad_device;
1144 offset = swp_offset(entry);
1145 if (offset >= p->max)
1146 goto bad_offset;
afba72b1
ML
1147 if (data_race(!p->swap_map[swp_offset(entry)]))
1148 goto bad_free;
1da177e4
LT
1149 return p;
1150
afba72b1
ML
1151bad_free:
1152 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153 goto out;
1da177e4 1154bad_offset:
cf532faa 1155 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1da177e4
LT
1156 goto out;
1157bad_device:
cf532faa 1158 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1da177e4
LT
1159 goto out;
1160bad_nofile:
cf532faa 1161 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1da177e4
LT
1162out:
1163 return NULL;
886bb7e9 1164}
1da177e4 1165
7c00bafe
TC
1166static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167 struct swap_info_struct *q)
1168{
1169 struct swap_info_struct *p;
1170
1171 p = _swap_info_get(entry);
1172
1173 if (p != q) {
1174 if (q != NULL)
1175 spin_unlock(&q->lock);
1176 if (p != NULL)
1177 spin_lock(&p->lock);
1178 }
1179 return p;
1180}
1181
b32d5f32
HY
1182static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183 unsigned long offset,
1184 unsigned char usage)
1da177e4 1185{
8d69aaee
HD
1186 unsigned char count;
1187 unsigned char has_cache;
235b6217 1188
253d553b 1189 count = p->swap_map[offset];
235b6217 1190
253d553b
HD
1191 has_cache = count & SWAP_HAS_CACHE;
1192 count &= ~SWAP_HAS_CACHE;
355cfa73 1193
253d553b 1194 if (usage == SWAP_HAS_CACHE) {
355cfa73 1195 VM_BUG_ON(!has_cache);
253d553b 1196 has_cache = 0;
aaa46865
HD
1197 } else if (count == SWAP_MAP_SHMEM) {
1198 /*
1199 * Or we could insist on shmem.c using a special
1200 * swap_shmem_free() and free_shmem_swap_and_cache()...
1201 */
1202 count = 0;
570a335b
HD
1203 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204 if (count == COUNT_CONTINUED) {
1205 if (swap_count_continued(p, offset, count))
1206 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207 else
1208 count = SWAP_MAP_MAX;
1209 } else
1210 count--;
1211 }
253d553b 1212
253d553b 1213 usage = count | has_cache;
a449bf58
QC
1214 if (usage)
1215 WRITE_ONCE(p->swap_map[offset], usage);
1216 else
1217 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
7c00bafe 1218
b32d5f32
HY
1219 return usage;
1220}
1221
eb085574
HY
1222/*
1223 * Check whether swap entry is valid in the swap device. If so,
1224 * return pointer to swap_info_struct, and keep the swap entry valid
1225 * via preventing the swap device from being swapoff, until
1226 * put_swap_device() is called. Otherwise return NULL.
1227 *
eb085574 1228 * Notice that swapoff or swapoff+swapon can still happen before the
63d8620e
ML
1229 * percpu_ref_tryget_live() in get_swap_device() or after the
1230 * percpu_ref_put() in put_swap_device() if there isn't any other way
1231 * to prevent swapoff, such as page lock, page table lock, etc. The
1232 * caller must be prepared for that. For example, the following
1233 * situation is possible.
eb085574
HY
1234 *
1235 * CPU1 CPU2
1236 * do_swap_page()
1237 * ... swapoff+swapon
1238 * __read_swap_cache_async()
1239 * swapcache_prepare()
1240 * __swap_duplicate()
1241 * // check swap_map
1242 * // verify PTE not changed
1243 *
1244 * In __swap_duplicate(), the swap_map need to be checked before
1245 * changing partly because the specified swap entry may be for another
1246 * swap device which has been swapoff. And in do_swap_page(), after
1247 * the page is read from the swap device, the PTE is verified not
1248 * changed with the page table locked to check whether the swap device
1249 * has been swapoff or swapoff+swapon.
1250 */
1251struct swap_info_struct *get_swap_device(swp_entry_t entry)
1252{
1253 struct swap_info_struct *si;
1254 unsigned long offset;
1255
1256 if (!entry.val)
1257 goto out;
1258 si = swp_swap_info(entry);
1259 if (!si)
1260 goto bad_nofile;
63d8620e
ML
1261 if (!percpu_ref_tryget_live(&si->users))
1262 goto out;
1263 /*
1264 * Guarantee the si->users are checked before accessing other
1265 * fields of swap_info_struct.
1266 *
1267 * Paired with the spin_unlock() after setup_swap_info() in
1268 * enable_swap_info().
1269 */
1270 smp_rmb();
eb085574
HY
1271 offset = swp_offset(entry);
1272 if (offset >= si->max)
63d8620e 1273 goto put_out;
eb085574
HY
1274
1275 return si;
1276bad_nofile:
1277 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1278out:
1279 return NULL;
63d8620e 1280put_out:
23b230ba 1281 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
63d8620e 1282 percpu_ref_put(&si->users);
eb085574
HY
1283 return NULL;
1284}
1285
b32d5f32 1286static unsigned char __swap_entry_free(struct swap_info_struct *p,
33e16272 1287 swp_entry_t entry)
b32d5f32
HY
1288{
1289 struct swap_cluster_info *ci;
1290 unsigned long offset = swp_offset(entry);
33e16272 1291 unsigned char usage;
b32d5f32
HY
1292
1293 ci = lock_cluster_or_swap_info(p, offset);
33e16272 1294 usage = __swap_entry_free_locked(p, offset, 1);
7c00bafe 1295 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1296 if (!usage)
1297 free_swap_slot(entry);
7c00bafe
TC
1298
1299 return usage;
1300}
355cfa73 1301
7c00bafe
TC
1302static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1303{
1304 struct swap_cluster_info *ci;
1305 unsigned long offset = swp_offset(entry);
1306 unsigned char count;
1307
1308 ci = lock_cluster(p, offset);
1309 count = p->swap_map[offset];
1310 VM_BUG_ON(count != SWAP_HAS_CACHE);
1311 p->swap_map[offset] = 0;
1312 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1313 unlock_cluster(ci);
1314
38d8b4e6
HY
1315 mem_cgroup_uncharge_swap(entry, 1);
1316 swap_range_free(p, offset, 1);
1da177e4
LT
1317}
1318
1319/*
2de1a7e4 1320 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1321 * is still around or has not been recycled.
1322 */
1323void swap_free(swp_entry_t entry)
1324{
73c34b6a 1325 struct swap_info_struct *p;
1da177e4 1326
235b6217 1327 p = _swap_info_get(entry);
10e364da 1328 if (p)
33e16272 1329 __swap_entry_free(p, entry);
1da177e4
LT
1330}
1331
cb4b86ba
KH
1332/*
1333 * Called after dropping swapcache to decrease refcnt to swap entries.
1334 */
a448f2d0 1335void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1336{
1337 unsigned long offset = swp_offset(entry);
1338 unsigned long idx = offset / SWAPFILE_CLUSTER;
1339 struct swap_cluster_info *ci;
1340 struct swap_info_struct *si;
1341 unsigned char *map;
a3aea839
HY
1342 unsigned int i, free_entries = 0;
1343 unsigned char val;
6c357848 1344 int size = swap_entry_size(thp_nr_pages(page));
fe5266d5 1345
a3aea839 1346 si = _swap_info_get(entry);
38d8b4e6
HY
1347 if (!si)
1348 return;
1349
c2343d27 1350 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1351 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1352 VM_BUG_ON(!cluster_is_huge(ci));
1353 map = si->swap_map + offset;
1354 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1355 val = map[i];
1356 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1357 if (val == SWAP_HAS_CACHE)
1358 free_entries++;
1359 }
a448f2d0 1360 cluster_clear_huge(ci);
a448f2d0 1361 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1362 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1363 spin_lock(&si->lock);
a448f2d0
HY
1364 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1365 swap_free_cluster(si, idx);
1366 spin_unlock(&si->lock);
1367 return;
1368 }
1369 }
c2343d27
HY
1370 for (i = 0; i < size; i++, entry.val++) {
1371 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1372 unlock_cluster_or_swap_info(si, ci);
1373 free_swap_slot(entry);
1374 if (i == size - 1)
1375 return;
1376 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1377 }
1378 }
c2343d27 1379 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1380}
59807685 1381
fe5266d5 1382#ifdef CONFIG_THP_SWAP
59807685
HY
1383int split_swap_cluster(swp_entry_t entry)
1384{
1385 struct swap_info_struct *si;
1386 struct swap_cluster_info *ci;
1387 unsigned long offset = swp_offset(entry);
1388
1389 si = _swap_info_get(entry);
1390 if (!si)
1391 return -EBUSY;
1392 ci = lock_cluster(si, offset);
1393 cluster_clear_huge(ci);
1394 unlock_cluster(ci);
1395 return 0;
1396}
fe5266d5 1397#endif
38d8b4e6 1398
155b5f88
HY
1399static int swp_entry_cmp(const void *ent1, const void *ent2)
1400{
1401 const swp_entry_t *e1 = ent1, *e2 = ent2;
1402
1403 return (int)swp_type(*e1) - (int)swp_type(*e2);
1404}
1405
7c00bafe
TC
1406void swapcache_free_entries(swp_entry_t *entries, int n)
1407{
1408 struct swap_info_struct *p, *prev;
1409 int i;
1410
1411 if (n <= 0)
1412 return;
1413
1414 prev = NULL;
1415 p = NULL;
155b5f88
HY
1416
1417 /*
1418 * Sort swap entries by swap device, so each lock is only taken once.
1419 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1420 * so low that it isn't necessary to optimize further.
1421 */
1422 if (nr_swapfiles > 1)
1423 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1424 for (i = 0; i < n; ++i) {
1425 p = swap_info_get_cont(entries[i], prev);
1426 if (p)
1427 swap_entry_free(p, entries[i]);
7c00bafe
TC
1428 prev = p;
1429 }
235b6217 1430 if (p)
7c00bafe 1431 spin_unlock(&p->lock);
cb4b86ba
KH
1432}
1433
eb085574 1434int __swap_count(swp_entry_t entry)
aa8d22a1 1435{
eb085574 1436 struct swap_info_struct *si;
aa8d22a1 1437 pgoff_t offset = swp_offset(entry);
eb085574 1438 int count = 0;
aa8d22a1 1439
eb085574
HY
1440 si = get_swap_device(entry);
1441 if (si) {
1442 count = swap_count(si->swap_map[offset]);
1443 put_swap_device(si);
1444 }
1445 return count;
aa8d22a1
MK
1446}
1447
14d01ee9
MWO
1448/*
1449 * How many references to @entry are currently swapped out?
1450 * This does not give an exact answer when swap count is continued,
1451 * but does include the high COUNT_CONTINUED flag to allow for that.
1452 */
322b8afe
HY
1453static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1454{
322b8afe
HY
1455 pgoff_t offset = swp_offset(entry);
1456 struct swap_cluster_info *ci;
14d01ee9 1457 int count;
322b8afe
HY
1458
1459 ci = lock_cluster_or_swap_info(si, offset);
1460 count = swap_count(si->swap_map[offset]);
1461 unlock_cluster_or_swap_info(si, ci);
1462 return count;
1463}
1464
e8c26ab6
TC
1465/*
1466 * How many references to @entry are currently swapped out?
1467 * This does not give an exact answer when swap count is continued,
1468 * but does include the high COUNT_CONTINUED flag to allow for that.
1469 */
1470int __swp_swapcount(swp_entry_t entry)
1471{
1472 int count = 0;
e8c26ab6 1473 struct swap_info_struct *si;
e8c26ab6 1474
eb085574
HY
1475 si = get_swap_device(entry);
1476 if (si) {
322b8afe 1477 count = swap_swapcount(si, entry);
eb085574
HY
1478 put_swap_device(si);
1479 }
e8c26ab6
TC
1480 return count;
1481}
1482
8334b962
MK
1483/*
1484 * How many references to @entry are currently swapped out?
1485 * This considers COUNT_CONTINUED so it returns exact answer.
1486 */
1487int swp_swapcount(swp_entry_t entry)
1488{
1489 int count, tmp_count, n;
1490 struct swap_info_struct *p;
235b6217 1491 struct swap_cluster_info *ci;
8334b962
MK
1492 struct page *page;
1493 pgoff_t offset;
1494 unsigned char *map;
1495
235b6217 1496 p = _swap_info_get(entry);
8334b962
MK
1497 if (!p)
1498 return 0;
1499
235b6217
HY
1500 offset = swp_offset(entry);
1501
1502 ci = lock_cluster_or_swap_info(p, offset);
1503
1504 count = swap_count(p->swap_map[offset]);
8334b962
MK
1505 if (!(count & COUNT_CONTINUED))
1506 goto out;
1507
1508 count &= ~COUNT_CONTINUED;
1509 n = SWAP_MAP_MAX + 1;
1510
8334b962
MK
1511 page = vmalloc_to_page(p->swap_map + offset);
1512 offset &= ~PAGE_MASK;
1513 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1514
1515 do {
a8ae4991 1516 page = list_next_entry(page, lru);
8334b962
MK
1517 map = kmap_atomic(page);
1518 tmp_count = map[offset];
1519 kunmap_atomic(map);
1520
1521 count += (tmp_count & ~COUNT_CONTINUED) * n;
1522 n *= (SWAP_CONT_MAX + 1);
1523 } while (tmp_count & COUNT_CONTINUED);
1524out:
235b6217 1525 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1526 return count;
1527}
1528
e0709829
HY
1529static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1530 swp_entry_t entry)
1531{
1532 struct swap_cluster_info *ci;
1533 unsigned char *map = si->swap_map;
1534 unsigned long roffset = swp_offset(entry);
1535 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1536 int i;
1537 bool ret = false;
1538
1539 ci = lock_cluster_or_swap_info(si, offset);
1540 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1541 if (swap_count(map[roffset]))
e0709829
HY
1542 ret = true;
1543 goto unlock_out;
1544 }
1545 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1546 if (swap_count(map[offset + i])) {
e0709829
HY
1547 ret = true;
1548 break;
1549 }
1550 }
1551unlock_out:
1552 unlock_cluster_or_swap_info(si, ci);
1553 return ret;
1554}
1555
2397f780 1556static bool folio_swapped(struct folio *folio)
e0709829 1557{
14d01ee9
MWO
1558 swp_entry_t entry = folio_swap_entry(folio);
1559 struct swap_info_struct *si = _swap_info_get(entry);
1560
1561 if (!si)
1562 return false;
e0709829 1563
2397f780 1564 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
14d01ee9 1565 return swap_swapcount(si, entry) != 0;
e0709829 1566
14d01ee9 1567 return swap_page_trans_huge_swapped(si, entry);
e0709829 1568}
ba3c4ce6 1569
bdb0ed54
MWO
1570/**
1571 * folio_free_swap() - Free the swap space used for this folio.
1572 * @folio: The folio to remove.
1573 *
1574 * If swap is getting full, or if there are no more mappings of this folio,
1575 * then call folio_free_swap to free its swap space.
1576 *
1577 * Return: true if we were able to release the swap space.
1da177e4 1578 */
bdb0ed54 1579bool folio_free_swap(struct folio *folio)
1da177e4 1580{
2397f780 1581 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1da177e4 1582
2397f780 1583 if (!folio_test_swapcache(folio))
bdb0ed54 1584 return false;
2397f780 1585 if (folio_test_writeback(folio))
bdb0ed54 1586 return false;
2397f780 1587 if (folio_swapped(folio))
bdb0ed54 1588 return false;
1da177e4 1589
b73d7fce
HD
1590 /*
1591 * Once hibernation has begun to create its image of memory,
bdb0ed54 1592 * there's a danger that one of the calls to folio_free_swap()
b73d7fce
HD
1593 * - most probably a call from __try_to_reclaim_swap() while
1594 * hibernation is allocating its own swap pages for the image,
1595 * but conceivably even a call from memory reclaim - will free
bdb0ed54
MWO
1596 * the swap from a folio which has already been recorded in the
1597 * image as a clean swapcache folio, and then reuse its swap for
b73d7fce 1598 * another page of the image. On waking from hibernation, the
bdb0ed54 1599 * original folio might be freed under memory pressure, then
b73d7fce
HD
1600 * later read back in from swap, now with the wrong data.
1601 *
2de1a7e4 1602 * Hibernation suspends storage while it is writing the image
f90ac398 1603 * to disk so check that here.
b73d7fce 1604 */
f90ac398 1605 if (pm_suspended_storage())
bdb0ed54 1606 return false;
b73d7fce 1607
75fa68a5 1608 delete_from_swap_cache(folio);
2397f780 1609 folio_set_dirty(folio);
bdb0ed54 1610 return true;
68a22394
RR
1611}
1612
1da177e4
LT
1613/*
1614 * Free the swap entry like above, but also try to
1615 * free the page cache entry if it is the last user.
1616 */
2509ef26 1617int free_swap_and_cache(swp_entry_t entry)
1da177e4 1618{
2509ef26 1619 struct swap_info_struct *p;
7c00bafe 1620 unsigned char count;
1da177e4 1621
a7420aa5 1622 if (non_swap_entry(entry))
2509ef26 1623 return 1;
0697212a 1624
7c00bafe 1625 p = _swap_info_get(entry);
1da177e4 1626 if (p) {
33e16272 1627 count = __swap_entry_free(p, entry);
e0709829 1628 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1629 !swap_page_trans_huge_swapped(p, entry))
1630 __try_to_reclaim_swap(p, swp_offset(entry),
1631 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1632 }
2509ef26 1633 return p != NULL;
1da177e4
LT
1634}
1635
b0cb1a19 1636#ifdef CONFIG_HIBERNATION
bb243f7d
ML
1637
1638swp_entry_t get_swap_page_of_type(int type)
1639{
1640 struct swap_info_struct *si = swap_type_to_swap_info(type);
1641 swp_entry_t entry = {0};
1642
1643 if (!si)
1644 goto fail;
1645
1646 /* This is called for allocating swap entry, not cache */
1647 spin_lock(&si->lock);
1648 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1649 atomic_long_dec(&nr_swap_pages);
1650 spin_unlock(&si->lock);
1651fail:
1652 return entry;
1653}
1654
f577eb30 1655/*
915bae9e 1656 * Find the swap type that corresponds to given device (if any).
f577eb30 1657 *
915bae9e
RW
1658 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1659 * from 0, in which the swap header is expected to be located.
1660 *
1661 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1662 */
21bd9005 1663int swap_type_of(dev_t device, sector_t offset)
f577eb30 1664{
efa90a98 1665 int type;
f577eb30 1666
21bd9005
CH
1667 if (!device)
1668 return -1;
915bae9e 1669
f577eb30 1670 spin_lock(&swap_lock);
efa90a98
HD
1671 for (type = 0; type < nr_swapfiles; type++) {
1672 struct swap_info_struct *sis = swap_info[type];
f577eb30 1673
915bae9e 1674 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1675 continue;
b6b5bce3 1676
21bd9005 1677 if (device == sis->bdev->bd_dev) {
4efaceb1 1678 struct swap_extent *se = first_se(sis);
915bae9e 1679
915bae9e
RW
1680 if (se->start_block == offset) {
1681 spin_unlock(&swap_lock);
efa90a98 1682 return type;
915bae9e 1683 }
f577eb30
RW
1684 }
1685 }
1686 spin_unlock(&swap_lock);
21bd9005
CH
1687 return -ENODEV;
1688}
915bae9e 1689
21bd9005
CH
1690int find_first_swap(dev_t *device)
1691{
1692 int type;
915bae9e 1693
21bd9005
CH
1694 spin_lock(&swap_lock);
1695 for (type = 0; type < nr_swapfiles; type++) {
1696 struct swap_info_struct *sis = swap_info[type];
1697
1698 if (!(sis->flags & SWP_WRITEOK))
1699 continue;
1700 *device = sis->bdev->bd_dev;
1701 spin_unlock(&swap_lock);
1702 return type;
1703 }
1704 spin_unlock(&swap_lock);
f577eb30
RW
1705 return -ENODEV;
1706}
1707
73c34b6a
HD
1708/*
1709 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1710 * corresponding to given index in swap_info (swap type).
1711 */
1712sector_t swapdev_block(int type, pgoff_t offset)
1713{
c10d38cc 1714 struct swap_info_struct *si = swap_type_to_swap_info(type);
f885056a 1715 struct swap_extent *se;
73c34b6a 1716
c10d38cc 1717 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1718 return 0;
f885056a
CH
1719 se = offset_to_swap_extent(si, offset);
1720 return se->start_block + (offset - se->start_page);
73c34b6a
HD
1721}
1722
f577eb30
RW
1723/*
1724 * Return either the total number of swap pages of given type, or the number
1725 * of free pages of that type (depending on @free)
1726 *
1727 * This is needed for software suspend
1728 */
1729unsigned int count_swap_pages(int type, int free)
1730{
1731 unsigned int n = 0;
1732
efa90a98
HD
1733 spin_lock(&swap_lock);
1734 if ((unsigned int)type < nr_swapfiles) {
1735 struct swap_info_struct *sis = swap_info[type];
1736
ec8acf20 1737 spin_lock(&sis->lock);
efa90a98
HD
1738 if (sis->flags & SWP_WRITEOK) {
1739 n = sis->pages;
f577eb30 1740 if (free)
efa90a98 1741 n -= sis->inuse_pages;
f577eb30 1742 }
ec8acf20 1743 spin_unlock(&sis->lock);
f577eb30 1744 }
efa90a98 1745 spin_unlock(&swap_lock);
f577eb30
RW
1746 return n;
1747}
73c34b6a 1748#endif /* CONFIG_HIBERNATION */
f577eb30 1749
9f8bdb3f 1750static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1751{
099dd687 1752 return pte_same(pte_swp_clear_flags(pte), swp_pte);
179ef71c
CG
1753}
1754
1da177e4 1755/*
72866f6f
HD
1756 * No need to decide whether this PTE shares the swap entry with others,
1757 * just let do_wp_page work it out if a write is requested later - to
1758 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1759 */
044d66c1 1760static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1761 unsigned long addr, swp_entry_t entry, struct page *page)
1762{
9e16b7fb 1763 struct page *swapcache;
044d66c1 1764 spinlock_t *ptl;
14a762dd 1765 pte_t *pte, new_pte;
044d66c1
HD
1766 int ret = 1;
1767
9e16b7fb
HD
1768 swapcache = page;
1769 page = ksm_might_need_to_copy(page, vma, addr);
1770 if (unlikely(!page))
1771 return -ENOMEM;
1772
044d66c1 1773 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1774 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
044d66c1
HD
1775 ret = 0;
1776 goto out;
1777 }
8a9f3ccd 1778
9f186f9e
ML
1779 if (unlikely(!PageUptodate(page))) {
1780 pte_t pteval;
1781
1782 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1783 pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1784 set_pte_at(vma->vm_mm, addr, pte, pteval);
1785 swap_free(entry);
1786 ret = 0;
1787 goto out;
1788 }
1789
78fbe906
DH
1790 /* See do_swap_page() */
1791 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1792 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1793
b084d435 1794 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1795 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4 1796 get_page(page);
00501b53 1797 if (page == swapcache) {
1493a191
DH
1798 rmap_t rmap_flags = RMAP_NONE;
1799
1800 /*
1801 * See do_swap_page(): PageWriteback() would be problematic.
1802 * However, we do a wait_on_page_writeback() just before this
1803 * call and have the page locked.
1804 */
1805 VM_BUG_ON_PAGE(PageWriteback(page), page);
1806 if (pte_swp_exclusive(*pte))
1807 rmap_flags |= RMAP_EXCLUSIVE;
1808
1809 page_add_anon_rmap(page, vma, addr, rmap_flags);
00501b53 1810 } else { /* ksm created a completely new copy */
40f2bbf7 1811 page_add_new_anon_rmap(page, vma, addr);
b518154e 1812 lru_cache_add_inactive_or_unevictable(page, vma);
00501b53 1813 }
14a762dd
ML
1814 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1815 if (pte_swp_soft_dirty(*pte))
1816 new_pte = pte_mksoft_dirty(new_pte);
1817 if (pte_swp_uffd_wp(*pte))
1818 new_pte = pte_mkuffd_wp(new_pte);
1819 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1da177e4 1820 swap_free(entry);
044d66c1
HD
1821out:
1822 pte_unmap_unlock(pte, ptl);
9e16b7fb
HD
1823 if (page != swapcache) {
1824 unlock_page(page);
1825 put_page(page);
1826 }
044d66c1 1827 return ret;
1da177e4
LT
1828}
1829
1830static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a 1831 unsigned long addr, unsigned long end,
10a9c496 1832 unsigned int type)
1da177e4 1833{
b56a2d8a
VRP
1834 struct page *page;
1835 swp_entry_t entry;
705e87c0 1836 pte_t *pte;
b56a2d8a
VRP
1837 struct swap_info_struct *si;
1838 unsigned long offset;
8a9f3ccd 1839 int ret = 0;
b56a2d8a 1840 volatile unsigned char *swap_map;
1da177e4 1841
b56a2d8a 1842 si = swap_info[type];
044d66c1 1843 pte = pte_offset_map(pmd, addr);
1da177e4 1844 do {
b56a2d8a
VRP
1845 if (!is_swap_pte(*pte))
1846 continue;
1847
1848 entry = pte_to_swp_entry(*pte);
1849 if (swp_type(entry) != type)
1850 continue;
1851
1852 offset = swp_offset(entry);
b56a2d8a
VRP
1853 pte_unmap(pte);
1854 swap_map = &si->swap_map[offset];
ebc5951e
AR
1855 page = lookup_swap_cache(entry, vma, addr);
1856 if (!page) {
8c63ca5b
WD
1857 struct vm_fault vmf = {
1858 .vma = vma,
1859 .address = addr,
824ddc60 1860 .real_address = addr,
8c63ca5b
WD
1861 .pmd = pmd,
1862 };
1863
ebc5951e
AR
1864 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1865 &vmf);
1866 }
b56a2d8a
VRP
1867 if (!page) {
1868 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1869 goto try_next;
1870 return -ENOMEM;
1871 }
1872
1873 lock_page(page);
1874 wait_on_page_writeback(page);
1875 ret = unuse_pte(vma, pmd, addr, entry, page);
1876 if (ret < 0) {
1877 unlock_page(page);
1878 put_page(page);
1879 goto out;
1880 }
1881
1882 try_to_free_swap(page);
1883 unlock_page(page);
1884 put_page(page);
b56a2d8a
VRP
1885try_next:
1886 pte = pte_offset_map(pmd, addr);
1da177e4 1887 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 1888 pte_unmap(pte - 1);
b56a2d8a
VRP
1889
1890 ret = 0;
044d66c1 1891out:
8a9f3ccd 1892 return ret;
1da177e4
LT
1893}
1894
1895static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1896 unsigned long addr, unsigned long end,
10a9c496 1897 unsigned int type)
1da177e4
LT
1898{
1899 pmd_t *pmd;
1900 unsigned long next;
8a9f3ccd 1901 int ret;
1da177e4
LT
1902
1903 pmd = pmd_offset(pud, addr);
1904 do {
dc644a07 1905 cond_resched();
1da177e4 1906 next = pmd_addr_end(addr, end);
1a5a9906 1907 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1908 continue;
10a9c496 1909 ret = unuse_pte_range(vma, pmd, addr, next, type);
8a9f3ccd
BS
1910 if (ret)
1911 return ret;
1da177e4
LT
1912 } while (pmd++, addr = next, addr != end);
1913 return 0;
1914}
1915
c2febafc 1916static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1917 unsigned long addr, unsigned long end,
10a9c496 1918 unsigned int type)
1da177e4
LT
1919{
1920 pud_t *pud;
1921 unsigned long next;
8a9f3ccd 1922 int ret;
1da177e4 1923
c2febafc 1924 pud = pud_offset(p4d, addr);
1da177e4
LT
1925 do {
1926 next = pud_addr_end(addr, end);
1927 if (pud_none_or_clear_bad(pud))
1928 continue;
10a9c496 1929 ret = unuse_pmd_range(vma, pud, addr, next, type);
8a9f3ccd
BS
1930 if (ret)
1931 return ret;
1da177e4
LT
1932 } while (pud++, addr = next, addr != end);
1933 return 0;
1934}
1935
c2febafc
KS
1936static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1937 unsigned long addr, unsigned long end,
10a9c496 1938 unsigned int type)
c2febafc
KS
1939{
1940 p4d_t *p4d;
1941 unsigned long next;
1942 int ret;
1943
1944 p4d = p4d_offset(pgd, addr);
1945 do {
1946 next = p4d_addr_end(addr, end);
1947 if (p4d_none_or_clear_bad(p4d))
1948 continue;
10a9c496 1949 ret = unuse_pud_range(vma, p4d, addr, next, type);
c2febafc
KS
1950 if (ret)
1951 return ret;
1952 } while (p4d++, addr = next, addr != end);
1953 return 0;
1954}
1955
10a9c496 1956static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1da177e4
LT
1957{
1958 pgd_t *pgd;
1959 unsigned long addr, end, next;
8a9f3ccd 1960 int ret;
1da177e4 1961
b56a2d8a
VRP
1962 addr = vma->vm_start;
1963 end = vma->vm_end;
1da177e4
LT
1964
1965 pgd = pgd_offset(vma->vm_mm, addr);
1966 do {
1967 next = pgd_addr_end(addr, end);
1968 if (pgd_none_or_clear_bad(pgd))
1969 continue;
10a9c496 1970 ret = unuse_p4d_range(vma, pgd, addr, next, type);
8a9f3ccd
BS
1971 if (ret)
1972 return ret;
1da177e4
LT
1973 } while (pgd++, addr = next, addr != end);
1974 return 0;
1975}
1976
10a9c496 1977static int unuse_mm(struct mm_struct *mm, unsigned int type)
1da177e4
LT
1978{
1979 struct vm_area_struct *vma;
8a9f3ccd 1980 int ret = 0;
208c09db 1981 VMA_ITERATOR(vmi, mm, 0);
1da177e4 1982
d8ed45c5 1983 mmap_read_lock(mm);
208c09db 1984 for_each_vma(vmi, vma) {
b56a2d8a 1985 if (vma->anon_vma) {
10a9c496 1986 ret = unuse_vma(vma, type);
b56a2d8a
VRP
1987 if (ret)
1988 break;
1989 }
208c09db 1990
dc644a07 1991 cond_resched();
1da177e4 1992 }
d8ed45c5 1993 mmap_read_unlock(mm);
b56a2d8a 1994 return ret;
1da177e4
LT
1995}
1996
1997/*
3c3115ad
ML
1998 * Scan swap_map from current position to next entry still in use.
1999 * Return 0 if there are no inuse entries after prev till end of
2000 * the map.
1da177e4 2001 */
6eb396dc 2002static unsigned int find_next_to_unuse(struct swap_info_struct *si,
10a9c496 2003 unsigned int prev)
1da177e4 2004{
b56a2d8a 2005 unsigned int i;
8d69aaee 2006 unsigned char count;
1da177e4
LT
2007
2008 /*
5d337b91 2009 * No need for swap_lock here: we're just looking
1da177e4
LT
2010 * for whether an entry is in use, not modifying it; false
2011 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2012 * allocations from this area (while holding swap_lock).
1da177e4 2013 */
b56a2d8a 2014 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2015 count = READ_ONCE(si->swap_map[i]);
355cfa73 2016 if (count && swap_count(count) != SWAP_MAP_BAD)
10a9c496 2017 break;
dc644a07
HD
2018 if ((i % LATENCY_LIMIT) == 0)
2019 cond_resched();
1da177e4 2020 }
b56a2d8a
VRP
2021
2022 if (i == si->max)
2023 i = 0;
2024
1da177e4
LT
2025 return i;
2026}
2027
10a9c496 2028static int try_to_unuse(unsigned int type)
1da177e4 2029{
b56a2d8a
VRP
2030 struct mm_struct *prev_mm;
2031 struct mm_struct *mm;
2032 struct list_head *p;
2033 int retval = 0;
efa90a98 2034 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2035 struct page *page;
2036 swp_entry_t entry;
b56a2d8a 2037 unsigned int i;
1da177e4 2038
21820948 2039 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2040 return 0;
1da177e4 2041
b56a2d8a 2042retry:
10a9c496 2043 retval = shmem_unuse(type);
b56a2d8a 2044 if (retval)
10a9c496 2045 return retval;
b56a2d8a
VRP
2046
2047 prev_mm = &init_mm;
2048 mmget(prev_mm);
2049
2050 spin_lock(&mmlist_lock);
2051 p = &init_mm.mmlist;
21820948 2052 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2053 !signal_pending(current) &&
2054 (p = p->next) != &init_mm.mmlist) {
1da177e4 2055
b56a2d8a
VRP
2056 mm = list_entry(p, struct mm_struct, mmlist);
2057 if (!mmget_not_zero(mm))
2058 continue;
2059 spin_unlock(&mmlist_lock);
2060 mmput(prev_mm);
2061 prev_mm = mm;
10a9c496 2062 retval = unuse_mm(mm, type);
b56a2d8a
VRP
2063 if (retval) {
2064 mmput(prev_mm);
10a9c496 2065 return retval;
1da177e4
LT
2066 }
2067
2068 /*
b56a2d8a
VRP
2069 * Make sure that we aren't completely killing
2070 * interactive performance.
1da177e4 2071 */
b56a2d8a
VRP
2072 cond_resched();
2073 spin_lock(&mmlist_lock);
2074 }
2075 spin_unlock(&mmlist_lock);
1da177e4 2076
b56a2d8a 2077 mmput(prev_mm);
1da177e4 2078
b56a2d8a 2079 i = 0;
21820948 2080 while (READ_ONCE(si->inuse_pages) &&
64165b1a 2081 !signal_pending(current) &&
10a9c496 2082 (i = find_next_to_unuse(si, i)) != 0) {
1da177e4 2083
b56a2d8a
VRP
2084 entry = swp_entry(type, i);
2085 page = find_get_page(swap_address_space(entry), i);
2086 if (!page)
2087 continue;
68bdc8d6
HD
2088
2089 /*
2090 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2091 * swap cache just before we acquired the page lock. The page
2092 * might even be back in swap cache on another swap area. But
2093 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2094 */
b56a2d8a
VRP
2095 lock_page(page);
2096 wait_on_page_writeback(page);
2097 try_to_free_swap(page);
1da177e4 2098 unlock_page(page);
09cbfeaf 2099 put_page(page);
1da177e4
LT
2100 }
2101
b56a2d8a
VRP
2102 /*
2103 * Lets check again to see if there are still swap entries in the map.
2104 * If yes, we would need to do retry the unuse logic again.
2105 * Under global memory pressure, swap entries can be reinserted back
2106 * into process space after the mmlist loop above passes over them.
dd862deb 2107 *
e2e3fdc7
MWO
2108 * Limit the number of retries? No: when mmget_not_zero()
2109 * above fails, that mm is likely to be freeing swap from
2110 * exit_mmap(), which proceeds at its own independent pace;
2111 * and even shmem_writepage() could have been preempted after
2112 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2113 * and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2114 */
21820948 2115 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2116 if (!signal_pending(current))
2117 goto retry;
10a9c496 2118 return -EINTR;
64165b1a 2119 }
10a9c496
CH
2120
2121 return 0;
1da177e4
LT
2122}
2123
2124/*
5d337b91
HD
2125 * After a successful try_to_unuse, if no swap is now in use, we know
2126 * we can empty the mmlist. swap_lock must be held on entry and exit.
2127 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2128 * added to the mmlist just after page_duplicate - before would be racy.
2129 */
2130static void drain_mmlist(void)
2131{
2132 struct list_head *p, *next;
efa90a98 2133 unsigned int type;
1da177e4 2134
efa90a98
HD
2135 for (type = 0; type < nr_swapfiles; type++)
2136 if (swap_info[type]->inuse_pages)
1da177e4
LT
2137 return;
2138 spin_lock(&mmlist_lock);
2139 list_for_each_safe(p, next, &init_mm.mmlist)
2140 list_del_init(p);
2141 spin_unlock(&mmlist_lock);
2142}
2143
1da177e4
LT
2144/*
2145 * Free all of a swapdev's extent information
2146 */
2147static void destroy_swap_extents(struct swap_info_struct *sis)
2148{
4efaceb1
AL
2149 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2150 struct rb_node *rb = sis->swap_extent_root.rb_node;
2151 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2152
4efaceb1 2153 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2154 kfree(se);
2155 }
62c230bc 2156
bc4ae27d 2157 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2158 struct file *swap_file = sis->swap_file;
2159 struct address_space *mapping = swap_file->f_mapping;
2160
bc4ae27d
OS
2161 sis->flags &= ~SWP_ACTIVATED;
2162 if (mapping->a_ops->swap_deactivate)
2163 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2164 }
1da177e4
LT
2165}
2166
2167/*
2168 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2169 * extent tree.
1da177e4 2170 *
11d31886 2171 * This function rather assumes that it is called in ascending page order.
1da177e4 2172 */
a509bc1a 2173int
1da177e4
LT
2174add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2175 unsigned long nr_pages, sector_t start_block)
2176{
4efaceb1 2177 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2178 struct swap_extent *se;
2179 struct swap_extent *new_se;
4efaceb1
AL
2180
2181 /*
2182 * place the new node at the right most since the
2183 * function is called in ascending page order.
2184 */
2185 while (*link) {
2186 parent = *link;
2187 link = &parent->rb_right;
2188 }
2189
2190 if (parent) {
2191 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2192 BUG_ON(se->start_page + se->nr_pages != start_page);
2193 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2194 /* Merge it */
2195 se->nr_pages += nr_pages;
2196 return 0;
2197 }
1da177e4
LT
2198 }
2199
4efaceb1 2200 /* No merge, insert a new extent. */
1da177e4
LT
2201 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2202 if (new_se == NULL)
2203 return -ENOMEM;
2204 new_se->start_page = start_page;
2205 new_se->nr_pages = nr_pages;
2206 new_se->start_block = start_block;
2207
4efaceb1
AL
2208 rb_link_node(&new_se->rb_node, parent, link);
2209 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2210 return 1;
1da177e4 2211}
aa8aa8a3 2212EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2213
2214/*
2215 * A `swap extent' is a simple thing which maps a contiguous range of pages
ff351f4b
ML
2216 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2217 * built at swapon time and is then used at swap_writepage/swap_readpage
1da177e4
LT
2218 * time for locating where on disk a page belongs.
2219 *
2220 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2221 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2222 * swap files identically.
2223 *
2224 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
ff351f4b 2225 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1da177e4
LT
2226 * swapfiles are handled *identically* after swapon time.
2227 *
2228 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
ff351f4b
ML
2229 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2230 * blocks are found which do not fall within the PAGE_SIZE alignment
1da177e4
LT
2231 * requirements, they are simply tossed out - we will never use those blocks
2232 * for swapping.
2233 *
1638045c
DW
2234 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2235 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2236 *
2237 * The amount of disk space which a single swap extent represents varies.
2238 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
ff351f4b 2239 * extents in the rbtree. - akpm.
1da177e4 2240 */
53092a74 2241static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2242{
62c230bc
MG
2243 struct file *swap_file = sis->swap_file;
2244 struct address_space *mapping = swap_file->f_mapping;
2245 struct inode *inode = mapping->host;
1da177e4
LT
2246 int ret;
2247
1da177e4
LT
2248 if (S_ISBLK(inode->i_mode)) {
2249 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2250 *span = sis->pages;
a509bc1a 2251 return ret;
1da177e4
LT
2252 }
2253
62c230bc 2254 if (mapping->a_ops->swap_activate) {
a509bc1a 2255 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
4b60c0ff
N
2256 if (ret < 0)
2257 return ret;
2258 sis->flags |= SWP_ACTIVATED;
e1209d3a
N
2259 if ((sis->flags & SWP_FS_OPS) &&
2260 sio_pool_init() != 0) {
2261 destroy_swap_extents(sis);
2262 return -ENOMEM;
62c230bc 2263 }
a509bc1a 2264 return ret;
62c230bc
MG
2265 }
2266
a509bc1a 2267 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2268}
2269
a2468cc9
AL
2270static int swap_node(struct swap_info_struct *p)
2271{
2272 struct block_device *bdev;
2273
2274 if (p->bdev)
2275 bdev = p->bdev;
2276 else
2277 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2278
2279 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2280}
2281
eb085574
HY
2282static void setup_swap_info(struct swap_info_struct *p, int prio,
2283 unsigned char *swap_map,
2284 struct swap_cluster_info *cluster_info)
40531542 2285{
a2468cc9
AL
2286 int i;
2287
40531542
CEB
2288 if (prio >= 0)
2289 p->prio = prio;
2290 else
2291 p->prio = --least_priority;
18ab4d4c
DS
2292 /*
2293 * the plist prio is negated because plist ordering is
2294 * low-to-high, while swap ordering is high-to-low
2295 */
2296 p->list.prio = -p->prio;
a2468cc9
AL
2297 for_each_node(i) {
2298 if (p->prio >= 0)
2299 p->avail_lists[i].prio = -p->prio;
2300 else {
2301 if (swap_node(p) == i)
2302 p->avail_lists[i].prio = 1;
2303 else
2304 p->avail_lists[i].prio = -p->prio;
2305 }
2306 }
40531542 2307 p->swap_map = swap_map;
2a8f9449 2308 p->cluster_info = cluster_info;
eb085574
HY
2309}
2310
2311static void _enable_swap_info(struct swap_info_struct *p)
2312{
63d8620e 2313 p->flags |= SWP_WRITEOK;
ec8acf20 2314 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2315 total_swap_pages += p->pages;
2316
adfab836 2317 assert_spin_locked(&swap_lock);
adfab836 2318 /*
18ab4d4c
DS
2319 * both lists are plists, and thus priority ordered.
2320 * swap_active_head needs to be priority ordered for swapoff(),
2321 * which on removal of any swap_info_struct with an auto-assigned
2322 * (i.e. negative) priority increments the auto-assigned priority
2323 * of any lower-priority swap_info_structs.
e2e3fdc7 2324 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
18ab4d4c
DS
2325 * which allocates swap pages from the highest available priority
2326 * swap_info_struct.
adfab836 2327 */
18ab4d4c 2328 plist_add(&p->list, &swap_active_head);
a2468cc9 2329 add_to_avail_list(p);
cf0cac0a
CEB
2330}
2331
2332static void enable_swap_info(struct swap_info_struct *p, int prio,
2333 unsigned char *swap_map,
2a8f9449 2334 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2335 unsigned long *frontswap_map)
2336{
1cf53c89
CH
2337 if (IS_ENABLED(CONFIG_FRONTSWAP))
2338 frontswap_init(p->type, frontswap_map);
cf0cac0a 2339 spin_lock(&swap_lock);
ec8acf20 2340 spin_lock(&p->lock);
eb085574
HY
2341 setup_swap_info(p, prio, swap_map, cluster_info);
2342 spin_unlock(&p->lock);
2343 spin_unlock(&swap_lock);
2344 /*
63d8620e 2345 * Finished initializing swap device, now it's safe to reference it.
eb085574 2346 */
63d8620e 2347 percpu_ref_resurrect(&p->users);
eb085574
HY
2348 spin_lock(&swap_lock);
2349 spin_lock(&p->lock);
2350 _enable_swap_info(p);
ec8acf20 2351 spin_unlock(&p->lock);
cf0cac0a
CEB
2352 spin_unlock(&swap_lock);
2353}
2354
2355static void reinsert_swap_info(struct swap_info_struct *p)
2356{
2357 spin_lock(&swap_lock);
ec8acf20 2358 spin_lock(&p->lock);
eb085574
HY
2359 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2360 _enable_swap_info(p);
ec8acf20 2361 spin_unlock(&p->lock);
40531542
CEB
2362 spin_unlock(&swap_lock);
2363}
2364
67afa38e
TC
2365bool has_usable_swap(void)
2366{
2367 bool ret = true;
2368
2369 spin_lock(&swap_lock);
2370 if (plist_head_empty(&swap_active_head))
2371 ret = false;
2372 spin_unlock(&swap_lock);
2373 return ret;
2374}
2375
c4ea37c2 2376SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2377{
73c34b6a 2378 struct swap_info_struct *p = NULL;
8d69aaee 2379 unsigned char *swap_map;
2a8f9449 2380 struct swap_cluster_info *cluster_info;
4f89849d 2381 unsigned long *frontswap_map;
1da177e4
LT
2382 struct file *swap_file, *victim;
2383 struct address_space *mapping;
2384 struct inode *inode;
91a27b2a 2385 struct filename *pathname;
adfab836 2386 int err, found = 0;
5b808a23 2387 unsigned int old_block_size;
886bb7e9 2388
1da177e4
LT
2389 if (!capable(CAP_SYS_ADMIN))
2390 return -EPERM;
2391
191c5424
AV
2392 BUG_ON(!current->mm);
2393
1da177e4 2394 pathname = getname(specialfile);
1da177e4 2395 if (IS_ERR(pathname))
f58b59c1 2396 return PTR_ERR(pathname);
1da177e4 2397
669abf4e 2398 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2399 err = PTR_ERR(victim);
2400 if (IS_ERR(victim))
2401 goto out;
2402
2403 mapping = victim->f_mapping;
5d337b91 2404 spin_lock(&swap_lock);
18ab4d4c 2405 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2406 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2407 if (p->swap_file->f_mapping == mapping) {
2408 found = 1;
1da177e4 2409 break;
adfab836 2410 }
1da177e4 2411 }
1da177e4 2412 }
adfab836 2413 if (!found) {
1da177e4 2414 err = -EINVAL;
5d337b91 2415 spin_unlock(&swap_lock);
1da177e4
LT
2416 goto out_dput;
2417 }
191c5424 2418 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2419 vm_unacct_memory(p->pages);
2420 else {
2421 err = -ENOMEM;
5d337b91 2422 spin_unlock(&swap_lock);
1da177e4
LT
2423 goto out_dput;
2424 }
a2468cc9 2425 del_from_avail_list(p);
ec8acf20 2426 spin_lock(&p->lock);
78ecba08 2427 if (p->prio < 0) {
adfab836 2428 struct swap_info_struct *si = p;
a2468cc9 2429 int nid;
adfab836 2430
18ab4d4c 2431 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2432 si->prio++;
18ab4d4c 2433 si->list.prio--;
a2468cc9
AL
2434 for_each_node(nid) {
2435 if (si->avail_lists[nid].prio != 1)
2436 si->avail_lists[nid].prio--;
2437 }
adfab836 2438 }
78ecba08
HD
2439 least_priority++;
2440 }
18ab4d4c 2441 plist_del(&p->list, &swap_active_head);
ec8acf20 2442 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2443 total_swap_pages -= p->pages;
2444 p->flags &= ~SWP_WRITEOK;
ec8acf20 2445 spin_unlock(&p->lock);
5d337b91 2446 spin_unlock(&swap_lock);
fb4f88dc 2447
039939a6
TC
2448 disable_swap_slots_cache_lock();
2449
e1e12d2f 2450 set_current_oom_origin();
10a9c496 2451 err = try_to_unuse(p->type);
e1e12d2f 2452 clear_current_oom_origin();
1da177e4 2453
1da177e4
LT
2454 if (err) {
2455 /* re-insert swap space back into swap_list */
cf0cac0a 2456 reinsert_swap_info(p);
039939a6 2457 reenable_swap_slots_cache_unlock();
1da177e4
LT
2458 goto out_dput;
2459 }
52b7efdb 2460
039939a6
TC
2461 reenable_swap_slots_cache_unlock();
2462
eb085574 2463 /*
63d8620e
ML
2464 * Wait for swap operations protected by get/put_swap_device()
2465 * to complete.
2466 *
2467 * We need synchronize_rcu() here to protect the accessing to
2468 * the swap cache data structure.
eb085574 2469 */
63d8620e 2470 percpu_ref_kill(&p->users);
eb085574 2471 synchronize_rcu();
63d8620e 2472 wait_for_completion(&p->comp);
eb085574 2473
815c2c54
SL
2474 flush_work(&p->discard_work);
2475
5d337b91 2476 destroy_swap_extents(p);
570a335b
HD
2477 if (p->flags & SWP_CONTINUED)
2478 free_swap_count_continuations(p);
2479
10f0d2a5 2480 if (!p->bdev || !bdev_nonrot(p->bdev))
81a0298b
HY
2481 atomic_dec(&nr_rotate_swap);
2482
fc0abb14 2483 mutex_lock(&swapon_mutex);
5d337b91 2484 spin_lock(&swap_lock);
ec8acf20 2485 spin_lock(&p->lock);
5d337b91
HD
2486 drain_mmlist();
2487
bb243f7d 2488 /* wait for anyone still in scan_swap_map_slots */
52b7efdb
HD
2489 p->highest_bit = 0; /* cuts scans short */
2490 while (p->flags >= SWP_SCANNING) {
ec8acf20 2491 spin_unlock(&p->lock);
5d337b91 2492 spin_unlock(&swap_lock);
13e4b57f 2493 schedule_timeout_uninterruptible(1);
5d337b91 2494 spin_lock(&swap_lock);
ec8acf20 2495 spin_lock(&p->lock);
52b7efdb 2496 }
52b7efdb 2497
1da177e4 2498 swap_file = p->swap_file;
5b808a23 2499 old_block_size = p->old_block_size;
1da177e4
LT
2500 p->swap_file = NULL;
2501 p->max = 0;
2502 swap_map = p->swap_map;
2503 p->swap_map = NULL;
2a8f9449
SL
2504 cluster_info = p->cluster_info;
2505 p->cluster_info = NULL;
4f89849d 2506 frontswap_map = frontswap_map_get(p);
ec8acf20 2507 spin_unlock(&p->lock);
5d337b91 2508 spin_unlock(&swap_lock);
8a84802e 2509 arch_swap_invalidate_area(p->type);
adfab836 2510 frontswap_invalidate_area(p->type);
58e97ba6 2511 frontswap_map_set(p, NULL);
fc0abb14 2512 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2513 free_percpu(p->percpu_cluster);
2514 p->percpu_cluster = NULL;
49070588
HY
2515 free_percpu(p->cluster_next_cpu);
2516 p->cluster_next_cpu = NULL;
1da177e4 2517 vfree(swap_map);
54f180d3
HY
2518 kvfree(cluster_info);
2519 kvfree(frontswap_map);
2de1a7e4 2520 /* Destroy swap account information */
adfab836 2521 swap_cgroup_swapoff(p->type);
4b3ef9da 2522 exit_swap_address_space(p->type);
27a7faa0 2523
1da177e4
LT
2524 inode = mapping->host;
2525 if (S_ISBLK(inode->i_mode)) {
2526 struct block_device *bdev = I_BDEV(inode);
1638045c 2527
5b808a23 2528 set_blocksize(bdev, old_block_size);
e525fd89 2529 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2530 }
1638045c
DW
2531
2532 inode_lock(inode);
2533 inode->i_flags &= ~S_SWAPFILE;
2534 inode_unlock(inode);
1da177e4 2535 filp_close(swap_file, NULL);
f893ab41
WY
2536
2537 /*
2538 * Clear the SWP_USED flag after all resources are freed so that swapon
2539 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2540 * not hold p->lock after we cleared its SWP_WRITEOK.
2541 */
2542 spin_lock(&swap_lock);
2543 p->flags = 0;
2544 spin_unlock(&swap_lock);
2545
1da177e4 2546 err = 0;
66d7dd51
KS
2547 atomic_inc(&proc_poll_event);
2548 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2549
2550out_dput:
2551 filp_close(victim, NULL);
2552out:
f58b59c1 2553 putname(pathname);
1da177e4
LT
2554 return err;
2555}
2556
2557#ifdef CONFIG_PROC_FS
9dd95748 2558static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2559{
f1514638 2560 struct seq_file *seq = file->private_data;
66d7dd51
KS
2561
2562 poll_wait(file, &proc_poll_wait, wait);
2563
f1514638
KS
2564 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2565 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2566 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2567 }
2568
a9a08845 2569 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2570}
2571
1da177e4
LT
2572/* iterator */
2573static void *swap_start(struct seq_file *swap, loff_t *pos)
2574{
efa90a98
HD
2575 struct swap_info_struct *si;
2576 int type;
1da177e4
LT
2577 loff_t l = *pos;
2578
fc0abb14 2579 mutex_lock(&swapon_mutex);
1da177e4 2580
881e4aab
SS
2581 if (!l)
2582 return SEQ_START_TOKEN;
2583
c10d38cc 2584 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2585 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2586 continue;
881e4aab 2587 if (!--l)
efa90a98 2588 return si;
1da177e4
LT
2589 }
2590
2591 return NULL;
2592}
2593
2594static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2595{
efa90a98
HD
2596 struct swap_info_struct *si = v;
2597 int type;
1da177e4 2598
881e4aab 2599 if (v == SEQ_START_TOKEN)
efa90a98
HD
2600 type = 0;
2601 else
2602 type = si->type + 1;
881e4aab 2603
10c8d69f 2604 ++(*pos);
c10d38cc 2605 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2606 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2607 continue;
efa90a98 2608 return si;
1da177e4
LT
2609 }
2610
2611 return NULL;
2612}
2613
2614static void swap_stop(struct seq_file *swap, void *v)
2615{
fc0abb14 2616 mutex_unlock(&swapon_mutex);
1da177e4
LT
2617}
2618
2619static int swap_show(struct seq_file *swap, void *v)
2620{
efa90a98 2621 struct swap_info_struct *si = v;
1da177e4
LT
2622 struct file *file;
2623 int len;
642929a2 2624 unsigned long bytes, inuse;
1da177e4 2625
efa90a98 2626 if (si == SEQ_START_TOKEN) {
68d68ff6 2627 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
881e4aab
SS
2628 return 0;
2629 }
1da177e4 2630
6f793940 2631 bytes = si->pages << (PAGE_SHIFT - 10);
c8945306 2632 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
6f793940 2633
efa90a98 2634 file = si->swap_file;
2726d566 2635 len = seq_file_path(swap, file, " \t\n\\");
642929a2 2636 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
886bb7e9 2637 len < 40 ? 40 - len : 1, " ",
496ad9aa 2638 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2639 "partition" : "file\t",
6f793940
RD
2640 bytes, bytes < 10000000 ? "\t" : "",
2641 inuse, inuse < 10000000 ? "\t" : "",
efa90a98 2642 si->prio);
1da177e4
LT
2643 return 0;
2644}
2645
15ad7cdc 2646static const struct seq_operations swaps_op = {
1da177e4
LT
2647 .start = swap_start,
2648 .next = swap_next,
2649 .stop = swap_stop,
2650 .show = swap_show
2651};
2652
2653static int swaps_open(struct inode *inode, struct file *file)
2654{
f1514638 2655 struct seq_file *seq;
66d7dd51
KS
2656 int ret;
2657
66d7dd51 2658 ret = seq_open(file, &swaps_op);
f1514638 2659 if (ret)
66d7dd51 2660 return ret;
66d7dd51 2661
f1514638
KS
2662 seq = file->private_data;
2663 seq->poll_event = atomic_read(&proc_poll_event);
2664 return 0;
1da177e4
LT
2665}
2666
97a32539 2667static const struct proc_ops swaps_proc_ops = {
d919b33d 2668 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2669 .proc_open = swaps_open,
2670 .proc_read = seq_read,
2671 .proc_lseek = seq_lseek,
2672 .proc_release = seq_release,
2673 .proc_poll = swaps_poll,
1da177e4
LT
2674};
2675
2676static int __init procswaps_init(void)
2677{
97a32539 2678 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2679 return 0;
2680}
2681__initcall(procswaps_init);
2682#endif /* CONFIG_PROC_FS */
2683
1796316a
JB
2684#ifdef MAX_SWAPFILES_CHECK
2685static int __init max_swapfiles_check(void)
2686{
2687 MAX_SWAPFILES_CHECK();
2688 return 0;
2689}
2690late_initcall(max_swapfiles_check);
2691#endif
2692
53cbb243 2693static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2694{
73c34b6a 2695 struct swap_info_struct *p;
b11a76b3 2696 struct swap_info_struct *defer = NULL;
1da177e4 2697 unsigned int type;
a2468cc9 2698 int i;
efa90a98 2699
96008744 2700 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2701 if (!p)
53cbb243 2702 return ERR_PTR(-ENOMEM);
efa90a98 2703
63d8620e
ML
2704 if (percpu_ref_init(&p->users, swap_users_ref_free,
2705 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2706 kvfree(p);
2707 return ERR_PTR(-ENOMEM);
2708 }
2709
5d337b91 2710 spin_lock(&swap_lock);
efa90a98
HD
2711 for (type = 0; type < nr_swapfiles; type++) {
2712 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2713 break;
efa90a98 2714 }
0697212a 2715 if (type >= MAX_SWAPFILES) {
5d337b91 2716 spin_unlock(&swap_lock);
63d8620e 2717 percpu_ref_exit(&p->users);
873d7bcf 2718 kvfree(p);
730c0581 2719 return ERR_PTR(-EPERM);
1da177e4 2720 }
efa90a98
HD
2721 if (type >= nr_swapfiles) {
2722 p->type = type;
efa90a98 2723 /*
a4b45114
HY
2724 * Publish the swap_info_struct after initializing it.
2725 * Note that kvzalloc() above zeroes all its fields.
efa90a98 2726 */
a4b45114
HY
2727 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2728 nr_swapfiles++;
efa90a98 2729 } else {
b11a76b3 2730 defer = p;
efa90a98
HD
2731 p = swap_info[type];
2732 /*
2733 * Do not memset this entry: a racing procfs swap_next()
2734 * would be relying on p->type to remain valid.
2735 */
2736 }
4efaceb1 2737 p->swap_extent_root = RB_ROOT;
18ab4d4c 2738 plist_node_init(&p->list, 0);
a2468cc9
AL
2739 for_each_node(i)
2740 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2741 p->flags = SWP_USED;
5d337b91 2742 spin_unlock(&swap_lock);
63d8620e
ML
2743 if (defer) {
2744 percpu_ref_exit(&defer->users);
2745 kvfree(defer);
2746 }
ec8acf20 2747 spin_lock_init(&p->lock);
2628bd6f 2748 spin_lock_init(&p->cont_lock);
63d8620e 2749 init_completion(&p->comp);
efa90a98 2750
53cbb243 2751 return p;
53cbb243
CEB
2752}
2753
4d0e1e10
CEB
2754static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2755{
2756 int error;
2757
2758 if (S_ISBLK(inode->i_mode)) {
ef16e1d9 2759 p->bdev = blkdev_get_by_dev(inode->i_rdev,
6f179af8 2760 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
ef16e1d9
CH
2761 if (IS_ERR(p->bdev)) {
2762 error = PTR_ERR(p->bdev);
4d0e1e10 2763 p->bdev = NULL;
6f179af8 2764 return error;
4d0e1e10
CEB
2765 }
2766 p->old_block_size = block_size(p->bdev);
2767 error = set_blocksize(p->bdev, PAGE_SIZE);
2768 if (error < 0)
87ade72a 2769 return error;
12d2966d
NA
2770 /*
2771 * Zoned block devices contain zones that have a sequential
2772 * write only restriction. Hence zoned block devices are not
2773 * suitable for swapping. Disallow them here.
2774 */
9964e674 2775 if (bdev_is_zoned(p->bdev))
12d2966d 2776 return -EINVAL;
4d0e1e10
CEB
2777 p->flags |= SWP_BLKDEV;
2778 } else if (S_ISREG(inode->i_mode)) {
2779 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2780 }
2781
4d0e1e10 2782 return 0;
4d0e1e10
CEB
2783}
2784
377eeaa8
AK
2785
2786/*
2787 * Find out how many pages are allowed for a single swap device. There
2788 * are two limiting factors:
2789 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2790 * 2) the number of bits in the swap pte, as defined by the different
2791 * architectures.
2792 *
2793 * In order to find the largest possible bit mask, a swap entry with
2794 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2795 * decoded to a swp_entry_t again, and finally the swap offset is
2796 * extracted.
2797 *
2798 * This will mask all the bits from the initial ~0UL mask that can't
2799 * be encoded in either the swp_entry_t or the architecture definition
2800 * of a swap pte.
2801 */
2802unsigned long generic_max_swapfile_size(void)
2803{
2804 return swp_offset(pte_to_swp_entry(
2805 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2806}
2807
2808/* Can be overridden by an architecture for additional checks. */
be45a490 2809__weak unsigned long arch_max_swapfile_size(void)
377eeaa8
AK
2810{
2811 return generic_max_swapfile_size();
2812}
2813
ca8bd38b
CEB
2814static unsigned long read_swap_header(struct swap_info_struct *p,
2815 union swap_header *swap_header,
2816 struct inode *inode)
2817{
2818 int i;
2819 unsigned long maxpages;
2820 unsigned long swapfilepages;
d6bbbd29 2821 unsigned long last_page;
ca8bd38b
CEB
2822
2823 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2824 pr_err("Unable to find swap-space signature\n");
38719025 2825 return 0;
ca8bd38b
CEB
2826 }
2827
041711ce 2828 /* swap partition endianness hack... */
ca8bd38b
CEB
2829 if (swab32(swap_header->info.version) == 1) {
2830 swab32s(&swap_header->info.version);
2831 swab32s(&swap_header->info.last_page);
2832 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2833 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2834 return 0;
ca8bd38b
CEB
2835 for (i = 0; i < swap_header->info.nr_badpages; i++)
2836 swab32s(&swap_header->info.badpages[i]);
2837 }
2838 /* Check the swap header's sub-version */
2839 if (swap_header->info.version != 1) {
465c47fd
AM
2840 pr_warn("Unable to handle swap header version %d\n",
2841 swap_header->info.version);
38719025 2842 return 0;
ca8bd38b
CEB
2843 }
2844
2845 p->lowest_bit = 1;
2846 p->cluster_next = 1;
2847 p->cluster_nr = 0;
2848
be45a490 2849 maxpages = swapfile_maximum_size;
d6bbbd29 2850 last_page = swap_header->info.last_page;
a06ad633
TA
2851 if (!last_page) {
2852 pr_warn("Empty swap-file\n");
2853 return 0;
2854 }
d6bbbd29 2855 if (last_page > maxpages) {
465c47fd 2856 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2857 maxpages << (PAGE_SHIFT - 10),
2858 last_page << (PAGE_SHIFT - 10));
2859 }
2860 if (maxpages > last_page) {
2861 maxpages = last_page + 1;
ca8bd38b
CEB
2862 /* p->max is an unsigned int: don't overflow it */
2863 if ((unsigned int)maxpages == 0)
2864 maxpages = UINT_MAX;
2865 }
2866 p->highest_bit = maxpages - 1;
2867
2868 if (!maxpages)
38719025 2869 return 0;
ca8bd38b
CEB
2870 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2871 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2872 pr_warn("Swap area shorter than signature indicates\n");
38719025 2873 return 0;
ca8bd38b
CEB
2874 }
2875 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2876 return 0;
ca8bd38b 2877 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2878 return 0;
ca8bd38b
CEB
2879
2880 return maxpages;
ca8bd38b
CEB
2881}
2882
4b3ef9da 2883#define SWAP_CLUSTER_INFO_COLS \
235b6217 2884 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2885#define SWAP_CLUSTER_SPACE_COLS \
2886 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2887#define SWAP_CLUSTER_COLS \
2888 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2889
915d4d7b
CEB
2890static int setup_swap_map_and_extents(struct swap_info_struct *p,
2891 union swap_header *swap_header,
2892 unsigned char *swap_map,
2a8f9449 2893 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2894 unsigned long maxpages,
2895 sector_t *span)
2896{
235b6217 2897 unsigned int j, k;
915d4d7b
CEB
2898 unsigned int nr_good_pages;
2899 int nr_extents;
2a8f9449 2900 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2901 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2902 unsigned long i, idx;
915d4d7b
CEB
2903
2904 nr_good_pages = maxpages - 1; /* omit header page */
2905
6b534915
HY
2906 cluster_list_init(&p->free_clusters);
2907 cluster_list_init(&p->discard_clusters);
2a8f9449 2908
915d4d7b
CEB
2909 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2910 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2911 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2912 return -EINVAL;
915d4d7b
CEB
2913 if (page_nr < maxpages) {
2914 swap_map[page_nr] = SWAP_MAP_BAD;
2915 nr_good_pages--;
2a8f9449
SL
2916 /*
2917 * Haven't marked the cluster free yet, no list
2918 * operation involved
2919 */
2920 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2921 }
2922 }
2923
2a8f9449
SL
2924 /* Haven't marked the cluster free yet, no list operation involved */
2925 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2926 inc_cluster_info_page(p, cluster_info, i);
2927
915d4d7b
CEB
2928 if (nr_good_pages) {
2929 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2930 /*
2931 * Not mark the cluster free yet, no list
2932 * operation involved
2933 */
2934 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2935 p->max = maxpages;
2936 p->pages = nr_good_pages;
2937 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2938 if (nr_extents < 0)
2939 return nr_extents;
915d4d7b
CEB
2940 nr_good_pages = p->pages;
2941 }
2942 if (!nr_good_pages) {
465c47fd 2943 pr_warn("Empty swap-file\n");
bdb8e3f6 2944 return -EINVAL;
915d4d7b
CEB
2945 }
2946
2a8f9449
SL
2947 if (!cluster_info)
2948 return nr_extents;
2949
235b6217 2950
4b3ef9da
HY
2951 /*
2952 * Reduce false cache line sharing between cluster_info and
2953 * sharing same address space.
2954 */
235b6217
HY
2955 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2956 j = (k + col) % SWAP_CLUSTER_COLS;
2957 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2958 idx = i * SWAP_CLUSTER_COLS + j;
2959 if (idx >= nr_clusters)
2960 continue;
2961 if (cluster_count(&cluster_info[idx]))
2962 continue;
2a8f9449 2963 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
2964 cluster_list_add_tail(&p->free_clusters, cluster_info,
2965 idx);
2a8f9449 2966 }
2a8f9449 2967 }
915d4d7b 2968 return nr_extents;
915d4d7b
CEB
2969}
2970
53cbb243
CEB
2971SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2972{
2973 struct swap_info_struct *p;
91a27b2a 2974 struct filename *name;
53cbb243
CEB
2975 struct file *swap_file = NULL;
2976 struct address_space *mapping;
51cc3a66 2977 struct dentry *dentry;
40531542 2978 int prio;
53cbb243
CEB
2979 int error;
2980 union swap_header *swap_header;
915d4d7b 2981 int nr_extents;
53cbb243
CEB
2982 sector_t span;
2983 unsigned long maxpages;
53cbb243 2984 unsigned char *swap_map = NULL;
2a8f9449 2985 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2986 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2987 struct page *page = NULL;
2988 struct inode *inode = NULL;
7cbf3192 2989 bool inced_nr_rotate_swap = false;
53cbb243 2990
d15cab97
HD
2991 if (swap_flags & ~SWAP_FLAGS_VALID)
2992 return -EINVAL;
2993
53cbb243
CEB
2994 if (!capable(CAP_SYS_ADMIN))
2995 return -EPERM;
2996
a2468cc9
AL
2997 if (!swap_avail_heads)
2998 return -ENOMEM;
2999
53cbb243 3000 p = alloc_swap_info();
2542e513
CEB
3001 if (IS_ERR(p))
3002 return PTR_ERR(p);
53cbb243 3003
815c2c54
SL
3004 INIT_WORK(&p->discard_work, swap_discard_work);
3005
1da177e4 3006 name = getname(specialfile);
1da177e4 3007 if (IS_ERR(name)) {
7de7fb6b 3008 error = PTR_ERR(name);
1da177e4 3009 name = NULL;
bd69010b 3010 goto bad_swap;
1da177e4 3011 }
669abf4e 3012 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3013 if (IS_ERR(swap_file)) {
7de7fb6b 3014 error = PTR_ERR(swap_file);
1da177e4 3015 swap_file = NULL;
bd69010b 3016 goto bad_swap;
1da177e4
LT
3017 }
3018
3019 p->swap_file = swap_file;
3020 mapping = swap_file->f_mapping;
51cc3a66 3021 dentry = swap_file->f_path.dentry;
2130781e 3022 inode = mapping->host;
6f179af8 3023
4d0e1e10
CEB
3024 error = claim_swapfile(p, inode);
3025 if (unlikely(error))
1da177e4 3026 goto bad_swap;
1da177e4 3027
d795a90e 3028 inode_lock(inode);
51cc3a66
HD
3029 if (d_unlinked(dentry) || cant_mount(dentry)) {
3030 error = -ENOENT;
3031 goto bad_swap_unlock_inode;
3032 }
d795a90e
NA
3033 if (IS_SWAPFILE(inode)) {
3034 error = -EBUSY;
3035 goto bad_swap_unlock_inode;
3036 }
3037
1da177e4
LT
3038 /*
3039 * Read the swap header.
3040 */
7e0a1265 3041 if (!mapping->a_ops->read_folio) {
1da177e4 3042 error = -EINVAL;
d795a90e 3043 goto bad_swap_unlock_inode;
1da177e4 3044 }
090d2b18 3045 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3046 if (IS_ERR(page)) {
3047 error = PTR_ERR(page);
d795a90e 3048 goto bad_swap_unlock_inode;
1da177e4 3049 }
81e33971 3050 swap_header = kmap(page);
1da177e4 3051
ca8bd38b
CEB
3052 maxpages = read_swap_header(p, swap_header, inode);
3053 if (unlikely(!maxpages)) {
1da177e4 3054 error = -EINVAL;
d795a90e 3055 goto bad_swap_unlock_inode;
1da177e4 3056 }
886bb7e9 3057
81e33971 3058 /* OK, set up the swap map and apply the bad block list */
803d0c83 3059 swap_map = vzalloc(maxpages);
81e33971
HD
3060 if (!swap_map) {
3061 error = -ENOMEM;
d795a90e 3062 goto bad_swap_unlock_inode;
81e33971 3063 }
f0571429 3064
36d25489 3065 if (p->bdev && bdev_stable_writes(p->bdev))
f0571429
MK
3066 p->flags |= SWP_STABLE_WRITES;
3067
a8b456d0 3068 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
539a6fea
MK
3069 p->flags |= SWP_SYNCHRONOUS_IO;
3070
10f0d2a5 3071 if (p->bdev && bdev_nonrot(p->bdev)) {
6f179af8 3072 int cpu;
235b6217 3073 unsigned long ci, nr_cluster;
6f179af8 3074
2a8f9449 3075 p->flags |= SWP_SOLIDSTATE;
49070588
HY
3076 p->cluster_next_cpu = alloc_percpu(unsigned int);
3077 if (!p->cluster_next_cpu) {
3078 error = -ENOMEM;
3079 goto bad_swap_unlock_inode;
3080 }
2a8f9449
SL
3081 /*
3082 * select a random position to start with to help wear leveling
3083 * SSD
3084 */
49070588
HY
3085 for_each_possible_cpu(cpu) {
3086 per_cpu(*p->cluster_next_cpu, cpu) =
3087 1 + prandom_u32_max(p->highest_bit);
3088 }
235b6217 3089 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3090
778e1cdd 3091 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3092 GFP_KERNEL);
2a8f9449
SL
3093 if (!cluster_info) {
3094 error = -ENOMEM;
d795a90e 3095 goto bad_swap_unlock_inode;
2a8f9449 3096 }
235b6217
HY
3097
3098 for (ci = 0; ci < nr_cluster; ci++)
3099 spin_lock_init(&((cluster_info + ci)->lock));
3100
ebc2a1a6
SL
3101 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3102 if (!p->percpu_cluster) {
3103 error = -ENOMEM;
d795a90e 3104 goto bad_swap_unlock_inode;
ebc2a1a6 3105 }
6f179af8 3106 for_each_possible_cpu(cpu) {
ebc2a1a6 3107 struct percpu_cluster *cluster;
6f179af8 3108 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3109 cluster_set_null(&cluster->index);
3110 }
7cbf3192 3111 } else {
81a0298b 3112 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3113 inced_nr_rotate_swap = true;
3114 }
1da177e4 3115
1421ef3c
CEB
3116 error = swap_cgroup_swapon(p->type, maxpages);
3117 if (error)
d795a90e 3118 goto bad_swap_unlock_inode;
1421ef3c 3119
915d4d7b 3120 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3121 cluster_info, maxpages, &span);
915d4d7b
CEB
3122 if (unlikely(nr_extents < 0)) {
3123 error = nr_extents;
d795a90e 3124 goto bad_swap_unlock_inode;
1da177e4 3125 }
38b5faf4 3126 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3127 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3128 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3129 sizeof(long),
54f180d3 3130 GFP_KERNEL);
1da177e4 3131
70200574
CH
3132 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3133 p->bdev && bdev_max_discard_sectors(p->bdev)) {
2a8f9449
SL
3134 /*
3135 * When discard is enabled for swap with no particular
3136 * policy flagged, we set all swap discard flags here in
3137 * order to sustain backward compatibility with older
3138 * swapon(8) releases.
3139 */
3140 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3141 SWP_PAGE_DISCARD);
dcf6b7dd 3142
2a8f9449
SL
3143 /*
3144 * By flagging sys_swapon, a sysadmin can tell us to
3145 * either do single-time area discards only, or to just
3146 * perform discards for released swap page-clusters.
3147 * Now it's time to adjust the p->flags accordingly.
3148 */
3149 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3150 p->flags &= ~SWP_PAGE_DISCARD;
3151 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3152 p->flags &= ~SWP_AREA_DISCARD;
3153
3154 /* issue a swapon-time discard if it's still required */
3155 if (p->flags & SWP_AREA_DISCARD) {
3156 int err = discard_swap(p);
3157 if (unlikely(err))
3158 pr_err("swapon: discard_swap(%p): %d\n",
3159 p, err);
dcf6b7dd 3160 }
20137a49 3161 }
6a6ba831 3162
4b3ef9da
HY
3163 error = init_swap_address_space(p->type, maxpages);
3164 if (error)
d795a90e 3165 goto bad_swap_unlock_inode;
4b3ef9da 3166
dc617f29
DW
3167 /*
3168 * Flush any pending IO and dirty mappings before we start using this
3169 * swap device.
3170 */
3171 inode->i_flags |= S_SWAPFILE;
3172 error = inode_drain_writes(inode);
3173 if (error) {
3174 inode->i_flags &= ~S_SWAPFILE;
822bca52 3175 goto free_swap_address_space;
dc617f29
DW
3176 }
3177
fc0abb14 3178 mutex_lock(&swapon_mutex);
40531542 3179 prio = -1;
78ecba08 3180 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3181 prio =
78ecba08 3182 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3183 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3184
756a025f 3185 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3186 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3187 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3188 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3189 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3190 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3191 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3192 (frontswap_map) ? "FS" : "");
c69dbfb8 3193
fc0abb14 3194 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3195 atomic_inc(&proc_poll_event);
3196 wake_up_interruptible(&proc_poll_wait);
3197
1da177e4
LT
3198 error = 0;
3199 goto out;
822bca52
ML
3200free_swap_address_space:
3201 exit_swap_address_space(p->type);
d795a90e
NA
3202bad_swap_unlock_inode:
3203 inode_unlock(inode);
1da177e4 3204bad_swap:
ebc2a1a6
SL
3205 free_percpu(p->percpu_cluster);
3206 p->percpu_cluster = NULL;
49070588
HY
3207 free_percpu(p->cluster_next_cpu);
3208 p->cluster_next_cpu = NULL;
bd69010b 3209 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3210 set_blocksize(p->bdev, p->old_block_size);
3211 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3212 }
d795a90e 3213 inode = NULL;
4cd3bb10 3214 destroy_swap_extents(p);
e8e6c2ec 3215 swap_cgroup_swapoff(p->type);
5d337b91 3216 spin_lock(&swap_lock);
1da177e4 3217 p->swap_file = NULL;
1da177e4 3218 p->flags = 0;
5d337b91 3219 spin_unlock(&swap_lock);
1da177e4 3220 vfree(swap_map);
8606a1a9 3221 kvfree(cluster_info);
b6b1fd2a 3222 kvfree(frontswap_map);
7cbf3192
OS
3223 if (inced_nr_rotate_swap)
3224 atomic_dec(&nr_rotate_swap);
d795a90e 3225 if (swap_file)
1da177e4
LT
3226 filp_close(swap_file, NULL);
3227out:
3228 if (page && !IS_ERR(page)) {
3229 kunmap(page);
09cbfeaf 3230 put_page(page);
1da177e4
LT
3231 }
3232 if (name)
3233 putname(name);
1638045c 3234 if (inode)
5955102c 3235 inode_unlock(inode);
039939a6
TC
3236 if (!error)
3237 enable_swap_slots_cache();
1da177e4
LT
3238 return error;
3239}
3240
3241void si_swapinfo(struct sysinfo *val)
3242{
efa90a98 3243 unsigned int type;
1da177e4
LT
3244 unsigned long nr_to_be_unused = 0;
3245
5d337b91 3246 spin_lock(&swap_lock);
efa90a98
HD
3247 for (type = 0; type < nr_swapfiles; type++) {
3248 struct swap_info_struct *si = swap_info[type];
3249
3250 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
c8945306 3251 nr_to_be_unused += READ_ONCE(si->inuse_pages);
1da177e4 3252 }
ec8acf20 3253 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3254 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3255 spin_unlock(&swap_lock);
1da177e4
LT
3256}
3257
3258/*
3259 * Verify that a swap entry is valid and increment its swap map count.
3260 *
355cfa73
KH
3261 * Returns error code in following case.
3262 * - success -> 0
3263 * - swp_entry is invalid -> EINVAL
3264 * - swp_entry is migration entry -> EINVAL
3265 * - swap-cache reference is requested but there is already one. -> EEXIST
3266 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3267 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3268 */
8d69aaee 3269static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3270{
73c34b6a 3271 struct swap_info_struct *p;
235b6217 3272 struct swap_cluster_info *ci;
c10d38cc 3273 unsigned long offset;
8d69aaee
HD
3274 unsigned char count;
3275 unsigned char has_cache;
9d9a0334 3276 int err;
1da177e4 3277
eb085574 3278 p = get_swap_device(entry);
c10d38cc 3279 if (!p)
9d9a0334 3280 return -EINVAL;
235b6217 3281
eb085574 3282 offset = swp_offset(entry);
235b6217 3283 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3284
253d553b 3285 count = p->swap_map[offset];
edfe23da
SL
3286
3287 /*
3288 * swapin_readahead() doesn't check if a swap entry is valid, so the
3289 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3290 */
3291 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3292 err = -ENOENT;
3293 goto unlock_out;
3294 }
3295
253d553b
HD
3296 has_cache = count & SWAP_HAS_CACHE;
3297 count &= ~SWAP_HAS_CACHE;
3298 err = 0;
355cfa73 3299
253d553b 3300 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3301
3302 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3303 if (!has_cache && count)
3304 has_cache = SWAP_HAS_CACHE;
3305 else if (has_cache) /* someone else added cache */
3306 err = -EEXIST;
3307 else /* no users remaining */
3308 err = -ENOENT;
355cfa73
KH
3309
3310 } else if (count || has_cache) {
253d553b 3311
570a335b
HD
3312 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3313 count += usage;
3314 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3315 err = -EINVAL;
570a335b
HD
3316 else if (swap_count_continued(p, offset, count))
3317 count = COUNT_CONTINUED;
3318 else
3319 err = -ENOMEM;
355cfa73 3320 } else
253d553b
HD
3321 err = -ENOENT; /* unused swap entry */
3322
a449bf58 3323 WRITE_ONCE(p->swap_map[offset], count | has_cache);
253d553b 3324
355cfa73 3325unlock_out:
235b6217 3326 unlock_cluster_or_swap_info(p, ci);
dab8dfff 3327 put_swap_device(p);
253d553b 3328 return err;
1da177e4 3329}
253d553b 3330
aaa46865
HD
3331/*
3332 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3333 * (in which case its reference count is never incremented).
3334 */
3335void swap_shmem_alloc(swp_entry_t entry)
3336{
3337 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3338}
3339
355cfa73 3340/*
08259d58
HD
3341 * Increase reference count of swap entry by 1.
3342 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3343 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3344 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3345 * might occur if a page table entry has got corrupted.
355cfa73 3346 */
570a335b 3347int swap_duplicate(swp_entry_t entry)
355cfa73 3348{
570a335b
HD
3349 int err = 0;
3350
3351 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3352 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3353 return err;
355cfa73 3354}
1da177e4 3355
cb4b86ba 3356/*
355cfa73
KH
3357 * @entry: swap entry for which we allocate swap cache.
3358 *
73c34b6a 3359 * Called when allocating swap cache for existing swap entry,
355cfa73 3360 * This can return error codes. Returns 0 at success.
3eeba135 3361 * -EEXIST means there is a swap cache.
355cfa73 3362 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3363 */
3364int swapcache_prepare(swp_entry_t entry)
3365{
253d553b 3366 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3367}
3368
0bcac06f
MK
3369struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3370{
c10d38cc 3371 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3372}
3373
f981c595
MG
3374struct swap_info_struct *page_swap_info(struct page *page)
3375{
0bcac06f
MK
3376 swp_entry_t entry = { .val = page_private(page) };
3377 return swp_swap_info(entry);
f981c595
MG
3378}
3379
3380/*
2f52578f 3381 * out-of-line methods to avoid include hell.
f981c595 3382 */
2f52578f 3383struct address_space *swapcache_mapping(struct folio *folio)
f981c595 3384{
2f52578f 3385 return page_swap_info(&folio->page)->swap_file->f_mapping;
f981c595 3386}
2f52578f 3387EXPORT_SYMBOL_GPL(swapcache_mapping);
f981c595
MG
3388
3389pgoff_t __page_file_index(struct page *page)
3390{
3391 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3392 return swp_offset(swap);
3393}
3394EXPORT_SYMBOL_GPL(__page_file_index);
3395
570a335b
HD
3396/*
3397 * add_swap_count_continuation - called when a swap count is duplicated
3398 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3399 * page of the original vmalloc'ed swap_map, to hold the continuation count
3400 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3401 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3402 *
3403 * These continuation pages are seldom referenced: the common paths all work
3404 * on the original swap_map, only referring to a continuation page when the
3405 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3406 *
3407 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3408 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3409 * can be called after dropping locks.
3410 */
3411int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3412{
3413 struct swap_info_struct *si;
235b6217 3414 struct swap_cluster_info *ci;
570a335b
HD
3415 struct page *head;
3416 struct page *page;
3417 struct page *list_page;
3418 pgoff_t offset;
3419 unsigned char count;
eb085574 3420 int ret = 0;
570a335b
HD
3421
3422 /*
3423 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3424 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3425 */
3426 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3427
eb085574 3428 si = get_swap_device(entry);
570a335b
HD
3429 if (!si) {
3430 /*
3431 * An acceptable race has occurred since the failing
eb085574 3432 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3433 */
3434 goto outer;
3435 }
eb085574 3436 spin_lock(&si->lock);
570a335b
HD
3437
3438 offset = swp_offset(entry);
235b6217
HY
3439
3440 ci = lock_cluster(si, offset);
3441
d8aa24e0 3442 count = swap_count(si->swap_map[offset]);
570a335b
HD
3443
3444 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3445 /*
3446 * The higher the swap count, the more likely it is that tasks
3447 * will race to add swap count continuation: we need to avoid
3448 * over-provisioning.
3449 */
3450 goto out;
3451 }
3452
3453 if (!page) {
eb085574
HY
3454 ret = -ENOMEM;
3455 goto out;
570a335b
HD
3456 }
3457
3458 /*
3459 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3460 * no architecture is using highmem pages for kernel page tables: so it
3461 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3462 */
3463 head = vmalloc_to_page(si->swap_map + offset);
3464 offset &= ~PAGE_MASK;
3465
2628bd6f 3466 spin_lock(&si->cont_lock);
570a335b
HD
3467 /*
3468 * Page allocation does not initialize the page's lru field,
3469 * but it does always reset its private field.
3470 */
3471 if (!page_private(head)) {
3472 BUG_ON(count & COUNT_CONTINUED);
3473 INIT_LIST_HEAD(&head->lru);
3474 set_page_private(head, SWP_CONTINUED);
3475 si->flags |= SWP_CONTINUED;
3476 }
3477
3478 list_for_each_entry(list_page, &head->lru, lru) {
3479 unsigned char *map;
3480
3481 /*
3482 * If the previous map said no continuation, but we've found
3483 * a continuation page, free our allocation and use this one.
3484 */
3485 if (!(count & COUNT_CONTINUED))
2628bd6f 3486 goto out_unlock_cont;
570a335b 3487
9b04c5fe 3488 map = kmap_atomic(list_page) + offset;
570a335b 3489 count = *map;
9b04c5fe 3490 kunmap_atomic(map);
570a335b
HD
3491
3492 /*
3493 * If this continuation count now has some space in it,
3494 * free our allocation and use this one.
3495 */
3496 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3497 goto out_unlock_cont;
570a335b
HD
3498 }
3499
3500 list_add_tail(&page->lru, &head->lru);
3501 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3502out_unlock_cont:
3503 spin_unlock(&si->cont_lock);
570a335b 3504out:
235b6217 3505 unlock_cluster(ci);
ec8acf20 3506 spin_unlock(&si->lock);
eb085574 3507 put_swap_device(si);
570a335b
HD
3508outer:
3509 if (page)
3510 __free_page(page);
eb085574 3511 return ret;
570a335b
HD
3512}
3513
3514/*
3515 * swap_count_continued - when the original swap_map count is incremented
3516 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3517 * into, carry if so, or else fail until a new continuation page is allocated;
3518 * when the original swap_map count is decremented from 0 with continuation,
3519 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3520 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3521 * lock.
570a335b
HD
3522 */
3523static bool swap_count_continued(struct swap_info_struct *si,
3524 pgoff_t offset, unsigned char count)
3525{
3526 struct page *head;
3527 struct page *page;
3528 unsigned char *map;
2628bd6f 3529 bool ret;
570a335b
HD
3530
3531 head = vmalloc_to_page(si->swap_map + offset);
3532 if (page_private(head) != SWP_CONTINUED) {
3533 BUG_ON(count & COUNT_CONTINUED);
3534 return false; /* need to add count continuation */
3535 }
3536
2628bd6f 3537 spin_lock(&si->cont_lock);
570a335b 3538 offset &= ~PAGE_MASK;
213516ac 3539 page = list_next_entry(head, lru);
9b04c5fe 3540 map = kmap_atomic(page) + offset;
570a335b
HD
3541
3542 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3543 goto init_map; /* jump over SWAP_CONT_MAX checks */
3544
3545 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3546 /*
3547 * Think of how you add 1 to 999
3548 */
3549 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3550 kunmap_atomic(map);
213516ac 3551 page = list_next_entry(page, lru);
570a335b 3552 BUG_ON(page == head);
9b04c5fe 3553 map = kmap_atomic(page) + offset;
570a335b
HD
3554 }
3555 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3556 kunmap_atomic(map);
213516ac 3557 page = list_next_entry(page, lru);
2628bd6f
HY
3558 if (page == head) {
3559 ret = false; /* add count continuation */
3560 goto out;
3561 }
9b04c5fe 3562 map = kmap_atomic(page) + offset;
570a335b
HD
3563init_map: *map = 0; /* we didn't zero the page */
3564 }
3565 *map += 1;
9b04c5fe 3566 kunmap_atomic(map);
213516ac 3567 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3568 map = kmap_atomic(page) + offset;
570a335b 3569 *map = COUNT_CONTINUED;
9b04c5fe 3570 kunmap_atomic(map);
570a335b 3571 }
2628bd6f 3572 ret = true; /* incremented */
570a335b
HD
3573
3574 } else { /* decrementing */
3575 /*
3576 * Think of how you subtract 1 from 1000
3577 */
3578 BUG_ON(count != COUNT_CONTINUED);
3579 while (*map == COUNT_CONTINUED) {
9b04c5fe 3580 kunmap_atomic(map);
213516ac 3581 page = list_next_entry(page, lru);
570a335b 3582 BUG_ON(page == head);
9b04c5fe 3583 map = kmap_atomic(page) + offset;
570a335b
HD
3584 }
3585 BUG_ON(*map == 0);
3586 *map -= 1;
3587 if (*map == 0)
3588 count = 0;
9b04c5fe 3589 kunmap_atomic(map);
213516ac 3590 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3591 map = kmap_atomic(page) + offset;
570a335b
HD
3592 *map = SWAP_CONT_MAX | count;
3593 count = COUNT_CONTINUED;
9b04c5fe 3594 kunmap_atomic(map);
570a335b 3595 }
2628bd6f 3596 ret = count == COUNT_CONTINUED;
570a335b 3597 }
2628bd6f
HY
3598out:
3599 spin_unlock(&si->cont_lock);
3600 return ret;
570a335b
HD
3601}
3602
3603/*
3604 * free_swap_count_continuations - swapoff free all the continuation pages
3605 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3606 */
3607static void free_swap_count_continuations(struct swap_info_struct *si)
3608{
3609 pgoff_t offset;
3610
3611 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3612 struct page *head;
3613 head = vmalloc_to_page(si->swap_map + offset);
3614 if (page_private(head)) {
0d576d20
GT
3615 struct page *page, *next;
3616
3617 list_for_each_entry_safe(page, next, &head->lru, lru) {
3618 list_del(&page->lru);
570a335b
HD
3619 __free_page(page);
3620 }
3621 }
3622 }
3623}
a2468cc9 3624
2cf85583 3625#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
01c4b28c 3626void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
2cf85583
TH
3627{
3628 struct swap_info_struct *si, *next;
6caa6a07
JW
3629 int nid = page_to_nid(page);
3630
3631 if (!(gfp_mask & __GFP_IO))
2cf85583
TH
3632 return;
3633
3634 if (!blk_cgroup_congested())
3635 return;
3636
3637 /*
3638 * We've already scheduled a throttle, avoid taking the global swap
3639 * lock.
3640 */
3641 if (current->throttle_queue)
3642 return;
3643
3644 spin_lock(&swap_avail_lock);
6caa6a07
JW
3645 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3646 avail_lists[nid]) {
2cf85583 3647 if (si->bdev) {
6caa6a07 3648 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
2cf85583
TH
3649 break;
3650 }
3651 }
3652 spin_unlock(&swap_avail_lock);
3653}
3654#endif
3655
a2468cc9
AL
3656static int __init swapfile_init(void)
3657{
3658 int nid;
3659
3660 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3661 GFP_KERNEL);
3662 if (!swap_avail_heads) {
3663 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3664 return -ENOMEM;
3665 }
3666
3667 for_each_node(nid)
3668 plist_head_init(&swap_avail_heads[nid]);
3669
be45a490
PX
3670 swapfile_maximum_size = arch_max_swapfile_size();
3671
5154e607
PX
3672#ifdef CONFIG_MIGRATION
3673 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3674 swap_migration_ad_supported = true;
3675#endif /* CONFIG_MIGRATION */
3676
a2468cc9
AL
3677 return 0;
3678}
3679subsys_initcall(swapfile_init);