memcg: swap cgroup for remembering usage
[linux-2.6-block.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
1da177e4
LT
32
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <linux/swapops.h>
27a7faa0 36#include <linux/page_cgroup.h>
1da177e4 37
7c363b8c
AB
38static DEFINE_SPINLOCK(swap_lock);
39static unsigned int nr_swapfiles;
b962716b 40long nr_swap_pages;
1da177e4
LT
41long total_swap_pages;
42static int swap_overflow;
78ecba08 43static int least_priority;
1da177e4 44
1da177e4
LT
45static const char Bad_file[] = "Bad swap file entry ";
46static const char Unused_file[] = "Unused swap file entry ";
47static const char Bad_offset[] = "Bad swap offset entry ";
48static const char Unused_offset[] = "Unused swap offset entry ";
49
7c363b8c 50static struct swap_list_t swap_list = {-1, -1};
1da177e4 51
f577eb30 52static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 53
fc0abb14 54static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
55
56/*
57 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 58 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 59 * cannot be turned into a mutex.
1da177e4
LT
60 */
61static DECLARE_RWSEM(swap_unplug_sem);
62
1da177e4
LT
63void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
64{
65 swp_entry_t entry;
66
67 down_read(&swap_unplug_sem);
4c21e2f2 68 entry.val = page_private(page);
1da177e4
LT
69 if (PageSwapCache(page)) {
70 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
71 struct backing_dev_info *bdi;
72
73 /*
74 * If the page is removed from swapcache from under us (with a
75 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
76 * count to avoid reading garbage from page_private(page) above.
77 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
78 * condition and it's harmless. However if it triggers without
79 * swapoff it signals a problem.
80 */
81 WARN_ON(page_count(page) <= 1);
82
83 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 84 blk_run_backing_dev(bdi, page);
1da177e4
LT
85 }
86 up_read(&swap_unplug_sem);
87}
88
6a6ba831
HD
89/*
90 * swapon tell device that all the old swap contents can be discarded,
91 * to allow the swap device to optimize its wear-levelling.
92 */
93static int discard_swap(struct swap_info_struct *si)
94{
95 struct swap_extent *se;
96 int err = 0;
97
98 list_for_each_entry(se, &si->extent_list, list) {
99 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
858a2990 100 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
101
102 if (se->start_page == 0) {
103 /* Do not discard the swap header page! */
104 start_block += 1 << (PAGE_SHIFT - 9);
105 nr_blocks -= 1 << (PAGE_SHIFT - 9);
106 if (!nr_blocks)
107 continue;
108 }
109
110 err = blkdev_issue_discard(si->bdev, start_block,
111 nr_blocks, GFP_KERNEL);
112 if (err)
113 break;
114
115 cond_resched();
116 }
117 return err; /* That will often be -EOPNOTSUPP */
118}
119
7992fde7
HD
120/*
121 * swap allocation tell device that a cluster of swap can now be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124static void discard_swap_cluster(struct swap_info_struct *si,
125 pgoff_t start_page, pgoff_t nr_pages)
126{
127 struct swap_extent *se = si->curr_swap_extent;
128 int found_extent = 0;
129
130 while (nr_pages) {
131 struct list_head *lh;
132
133 if (se->start_page <= start_page &&
134 start_page < se->start_page + se->nr_pages) {
135 pgoff_t offset = start_page - se->start_page;
136 sector_t start_block = se->start_block + offset;
858a2990 137 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
138
139 if (nr_blocks > nr_pages)
140 nr_blocks = nr_pages;
141 start_page += nr_blocks;
142 nr_pages -= nr_blocks;
143
144 if (!found_extent++)
145 si->curr_swap_extent = se;
146
147 start_block <<= PAGE_SHIFT - 9;
148 nr_blocks <<= PAGE_SHIFT - 9;
149 if (blkdev_issue_discard(si->bdev, start_block,
150 nr_blocks, GFP_NOIO))
151 break;
152 }
153
154 lh = se->list.next;
155 if (lh == &si->extent_list)
156 lh = lh->next;
157 se = list_entry(lh, struct swap_extent, list);
158 }
159}
160
161static int wait_for_discard(void *word)
162{
163 schedule();
164 return 0;
165}
166
048c27fd
HD
167#define SWAPFILE_CLUSTER 256
168#define LATENCY_LIMIT 256
169
6eb396dc 170static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 171{
ebebbbe9 172 unsigned long offset;
c60aa176 173 unsigned long scan_base;
7992fde7 174 unsigned long last_in_cluster = 0;
048c27fd 175 int latency_ration = LATENCY_LIMIT;
7992fde7 176 int found_free_cluster = 0;
7dfad418 177
886bb7e9 178 /*
7dfad418
HD
179 * We try to cluster swap pages by allocating them sequentially
180 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
181 * way, however, we resort to first-free allocation, starting
182 * a new cluster. This prevents us from scattering swap pages
183 * all over the entire swap partition, so that we reduce
184 * overall disk seek times between swap pages. -- sct
185 * But we do now try to find an empty cluster. -Andrea
c60aa176 186 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
187 */
188
52b7efdb 189 si->flags += SWP_SCANNING;
c60aa176 190 scan_base = offset = si->cluster_next;
ebebbbe9
HD
191
192 if (unlikely(!si->cluster_nr--)) {
193 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
194 si->cluster_nr = SWAPFILE_CLUSTER - 1;
195 goto checks;
196 }
7992fde7
HD
197 if (si->flags & SWP_DISCARDABLE) {
198 /*
199 * Start range check on racing allocations, in case
200 * they overlap the cluster we eventually decide on
201 * (we scan without swap_lock to allow preemption).
202 * It's hardly conceivable that cluster_nr could be
203 * wrapped during our scan, but don't depend on it.
204 */
205 if (si->lowest_alloc)
206 goto checks;
207 si->lowest_alloc = si->max;
208 si->highest_alloc = 0;
209 }
5d337b91 210 spin_unlock(&swap_lock);
7dfad418 211
c60aa176
HD
212 /*
213 * If seek is expensive, start searching for new cluster from
214 * start of partition, to minimize the span of allocated swap.
215 * But if seek is cheap, search from our current position, so
216 * that swap is allocated from all over the partition: if the
217 * Flash Translation Layer only remaps within limited zones,
218 * we don't want to wear out the first zone too quickly.
219 */
220 if (!(si->flags & SWP_SOLIDSTATE))
221 scan_base = offset = si->lowest_bit;
7dfad418
HD
222 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
223
224 /* Locate the first empty (unaligned) cluster */
225 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 226 if (si->swap_map[offset])
7dfad418
HD
227 last_in_cluster = offset + SWAPFILE_CLUSTER;
228 else if (offset == last_in_cluster) {
5d337b91 229 spin_lock(&swap_lock);
ebebbbe9
HD
230 offset -= SWAPFILE_CLUSTER - 1;
231 si->cluster_next = offset;
232 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 233 found_free_cluster = 1;
ebebbbe9 234 goto checks;
1da177e4 235 }
048c27fd
HD
236 if (unlikely(--latency_ration < 0)) {
237 cond_resched();
238 latency_ration = LATENCY_LIMIT;
239 }
7dfad418 240 }
ebebbbe9
HD
241
242 offset = si->lowest_bit;
c60aa176
HD
243 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
244
245 /* Locate the first empty (unaligned) cluster */
246 for (; last_in_cluster < scan_base; offset++) {
247 if (si->swap_map[offset])
248 last_in_cluster = offset + SWAPFILE_CLUSTER;
249 else if (offset == last_in_cluster) {
250 spin_lock(&swap_lock);
251 offset -= SWAPFILE_CLUSTER - 1;
252 si->cluster_next = offset;
253 si->cluster_nr = SWAPFILE_CLUSTER - 1;
254 found_free_cluster = 1;
255 goto checks;
256 }
257 if (unlikely(--latency_ration < 0)) {
258 cond_resched();
259 latency_ration = LATENCY_LIMIT;
260 }
261 }
262
263 offset = scan_base;
5d337b91 264 spin_lock(&swap_lock);
ebebbbe9 265 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 266 si->lowest_alloc = 0;
1da177e4 267 }
7dfad418 268
ebebbbe9
HD
269checks:
270 if (!(si->flags & SWP_WRITEOK))
52b7efdb 271 goto no_page;
7dfad418
HD
272 if (!si->highest_bit)
273 goto no_page;
ebebbbe9 274 if (offset > si->highest_bit)
c60aa176 275 scan_base = offset = si->lowest_bit;
ebebbbe9
HD
276 if (si->swap_map[offset])
277 goto scan;
278
279 if (offset == si->lowest_bit)
280 si->lowest_bit++;
281 if (offset == si->highest_bit)
282 si->highest_bit--;
283 si->inuse_pages++;
284 if (si->inuse_pages == si->pages) {
285 si->lowest_bit = si->max;
286 si->highest_bit = 0;
1da177e4 287 }
ebebbbe9
HD
288 si->swap_map[offset] = 1;
289 si->cluster_next = offset + 1;
290 si->flags -= SWP_SCANNING;
7992fde7
HD
291
292 if (si->lowest_alloc) {
293 /*
294 * Only set when SWP_DISCARDABLE, and there's a scan
295 * for a free cluster in progress or just completed.
296 */
297 if (found_free_cluster) {
298 /*
299 * To optimize wear-levelling, discard the
300 * old data of the cluster, taking care not to
301 * discard any of its pages that have already
302 * been allocated by racing tasks (offset has
303 * already stepped over any at the beginning).
304 */
305 if (offset < si->highest_alloc &&
306 si->lowest_alloc <= last_in_cluster)
307 last_in_cluster = si->lowest_alloc - 1;
308 si->flags |= SWP_DISCARDING;
309 spin_unlock(&swap_lock);
310
311 if (offset < last_in_cluster)
312 discard_swap_cluster(si, offset,
313 last_in_cluster - offset + 1);
314
315 spin_lock(&swap_lock);
316 si->lowest_alloc = 0;
317 si->flags &= ~SWP_DISCARDING;
318
319 smp_mb(); /* wake_up_bit advises this */
320 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
321
322 } else if (si->flags & SWP_DISCARDING) {
323 /*
324 * Delay using pages allocated by racing tasks
325 * until the whole discard has been issued. We
326 * could defer that delay until swap_writepage,
327 * but it's easier to keep this self-contained.
328 */
329 spin_unlock(&swap_lock);
330 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
331 wait_for_discard, TASK_UNINTERRUPTIBLE);
332 spin_lock(&swap_lock);
333 } else {
334 /*
335 * Note pages allocated by racing tasks while
336 * scan for a free cluster is in progress, so
337 * that its final discard can exclude them.
338 */
339 if (offset < si->lowest_alloc)
340 si->lowest_alloc = offset;
341 if (offset > si->highest_alloc)
342 si->highest_alloc = offset;
343 }
344 }
ebebbbe9 345 return offset;
7dfad418 346
ebebbbe9 347scan:
5d337b91 348 spin_unlock(&swap_lock);
7dfad418 349 while (++offset <= si->highest_bit) {
52b7efdb 350 if (!si->swap_map[offset]) {
5d337b91 351 spin_lock(&swap_lock);
52b7efdb
HD
352 goto checks;
353 }
048c27fd
HD
354 if (unlikely(--latency_ration < 0)) {
355 cond_resched();
356 latency_ration = LATENCY_LIMIT;
357 }
7dfad418 358 }
c60aa176
HD
359 offset = si->lowest_bit;
360 while (++offset < scan_base) {
361 if (!si->swap_map[offset]) {
362 spin_lock(&swap_lock);
363 goto checks;
364 }
365 if (unlikely(--latency_ration < 0)) {
366 cond_resched();
367 latency_ration = LATENCY_LIMIT;
368 }
369 }
5d337b91 370 spin_lock(&swap_lock);
7dfad418
HD
371
372no_page:
52b7efdb 373 si->flags -= SWP_SCANNING;
1da177e4
LT
374 return 0;
375}
376
377swp_entry_t get_swap_page(void)
378{
fb4f88dc
HD
379 struct swap_info_struct *si;
380 pgoff_t offset;
381 int type, next;
382 int wrapped = 0;
1da177e4 383
5d337b91 384 spin_lock(&swap_lock);
1da177e4 385 if (nr_swap_pages <= 0)
fb4f88dc
HD
386 goto noswap;
387 nr_swap_pages--;
388
389 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
390 si = swap_info + type;
391 next = si->next;
392 if (next < 0 ||
393 (!wrapped && si->prio != swap_info[next].prio)) {
394 next = swap_list.head;
395 wrapped++;
1da177e4 396 }
fb4f88dc
HD
397
398 if (!si->highest_bit)
399 continue;
400 if (!(si->flags & SWP_WRITEOK))
401 continue;
402
403 swap_list.next = next;
fb4f88dc 404 offset = scan_swap_map(si);
5d337b91
HD
405 if (offset) {
406 spin_unlock(&swap_lock);
fb4f88dc 407 return swp_entry(type, offset);
5d337b91 408 }
fb4f88dc 409 next = swap_list.next;
1da177e4 410 }
fb4f88dc
HD
411
412 nr_swap_pages++;
413noswap:
5d337b91 414 spin_unlock(&swap_lock);
fb4f88dc 415 return (swp_entry_t) {0};
1da177e4
LT
416}
417
3a291a20
RW
418swp_entry_t get_swap_page_of_type(int type)
419{
420 struct swap_info_struct *si;
421 pgoff_t offset;
422
423 spin_lock(&swap_lock);
424 si = swap_info + type;
425 if (si->flags & SWP_WRITEOK) {
426 nr_swap_pages--;
427 offset = scan_swap_map(si);
428 if (offset) {
429 spin_unlock(&swap_lock);
430 return swp_entry(type, offset);
431 }
432 nr_swap_pages++;
433 }
434 spin_unlock(&swap_lock);
435 return (swp_entry_t) {0};
436}
437
1da177e4
LT
438static struct swap_info_struct * swap_info_get(swp_entry_t entry)
439{
440 struct swap_info_struct * p;
441 unsigned long offset, type;
442
443 if (!entry.val)
444 goto out;
445 type = swp_type(entry);
446 if (type >= nr_swapfiles)
447 goto bad_nofile;
448 p = & swap_info[type];
449 if (!(p->flags & SWP_USED))
450 goto bad_device;
451 offset = swp_offset(entry);
452 if (offset >= p->max)
453 goto bad_offset;
454 if (!p->swap_map[offset])
455 goto bad_free;
5d337b91 456 spin_lock(&swap_lock);
1da177e4
LT
457 return p;
458
459bad_free:
460 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
461 goto out;
462bad_offset:
463 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
464 goto out;
465bad_device:
466 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
467 goto out;
468bad_nofile:
469 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
470out:
471 return NULL;
886bb7e9 472}
1da177e4 473
1da177e4
LT
474static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
475{
476 int count = p->swap_map[offset];
477
478 if (count < SWAP_MAP_MAX) {
479 count--;
480 p->swap_map[offset] = count;
481 if (!count) {
482 if (offset < p->lowest_bit)
483 p->lowest_bit = offset;
484 if (offset > p->highest_bit)
485 p->highest_bit = offset;
89d09a2c
HD
486 if (p->prio > swap_info[swap_list.next].prio)
487 swap_list.next = p - swap_info;
1da177e4
LT
488 nr_swap_pages++;
489 p->inuse_pages--;
490 }
491 }
492 return count;
493}
494
495/*
496 * Caller has made sure that the swapdevice corresponding to entry
497 * is still around or has not been recycled.
498 */
499void swap_free(swp_entry_t entry)
500{
501 struct swap_info_struct * p;
502
503 p = swap_info_get(entry);
504 if (p) {
505 swap_entry_free(p, swp_offset(entry));
5d337b91 506 spin_unlock(&swap_lock);
1da177e4
LT
507 }
508}
509
510/*
c475a8ab 511 * How many references to page are currently swapped out?
1da177e4 512 */
c475a8ab 513static inline int page_swapcount(struct page *page)
1da177e4 514{
c475a8ab
HD
515 int count = 0;
516 struct swap_info_struct *p;
1da177e4
LT
517 swp_entry_t entry;
518
4c21e2f2 519 entry.val = page_private(page);
1da177e4
LT
520 p = swap_info_get(entry);
521 if (p) {
c475a8ab
HD
522 /* Subtract the 1 for the swap cache itself */
523 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 524 spin_unlock(&swap_lock);
1da177e4 525 }
c475a8ab 526 return count;
1da177e4
LT
527}
528
529/*
7b1fe597
HD
530 * We can write to an anon page without COW if there are no other references
531 * to it. And as a side-effect, free up its swap: because the old content
532 * on disk will never be read, and seeking back there to write new content
533 * later would only waste time away from clustering.
1da177e4 534 */
7b1fe597 535int reuse_swap_page(struct page *page)
1da177e4 536{
c475a8ab
HD
537 int count;
538
51726b12 539 VM_BUG_ON(!PageLocked(page));
c475a8ab 540 count = page_mapcount(page);
7b1fe597 541 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 542 count += page_swapcount(page);
7b1fe597
HD
543 if (count == 1 && !PageWriteback(page)) {
544 delete_from_swap_cache(page);
545 SetPageDirty(page);
546 }
547 }
c475a8ab 548 return count == 1;
1da177e4
LT
549}
550
551/*
a2c43eed
HD
552 * If swap is getting full, or if there are no more mappings of this page,
553 * then try_to_free_swap is called to free its swap space.
1da177e4 554 */
a2c43eed 555int try_to_free_swap(struct page *page)
1da177e4 556{
51726b12 557 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
558
559 if (!PageSwapCache(page))
560 return 0;
561 if (PageWriteback(page))
562 return 0;
a2c43eed 563 if (page_swapcount(page))
1da177e4
LT
564 return 0;
565
a2c43eed
HD
566 delete_from_swap_cache(page);
567 SetPageDirty(page);
568 return 1;
68a22394
RR
569}
570
1da177e4
LT
571/*
572 * Free the swap entry like above, but also try to
573 * free the page cache entry if it is the last user.
574 */
2509ef26 575int free_swap_and_cache(swp_entry_t entry)
1da177e4 576{
2509ef26 577 struct swap_info_struct *p;
1da177e4
LT
578 struct page *page = NULL;
579
0697212a 580 if (is_migration_entry(entry))
2509ef26 581 return 1;
0697212a 582
1da177e4
LT
583 p = swap_info_get(entry);
584 if (p) {
93fac704
NP
585 if (swap_entry_free(p, swp_offset(entry)) == 1) {
586 page = find_get_page(&swapper_space, entry.val);
8413ac9d 587 if (page && !trylock_page(page)) {
93fac704
NP
588 page_cache_release(page);
589 page = NULL;
590 }
591 }
5d337b91 592 spin_unlock(&swap_lock);
1da177e4
LT
593 }
594 if (page) {
a2c43eed
HD
595 /*
596 * Not mapped elsewhere, or swap space full? Free it!
597 * Also recheck PageSwapCache now page is locked (above).
598 */
93fac704 599 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 600 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
601 delete_from_swap_cache(page);
602 SetPageDirty(page);
603 }
604 unlock_page(page);
605 page_cache_release(page);
606 }
2509ef26 607 return p != NULL;
1da177e4
LT
608}
609
b0cb1a19 610#ifdef CONFIG_HIBERNATION
f577eb30 611/*
915bae9e 612 * Find the swap type that corresponds to given device (if any).
f577eb30 613 *
915bae9e
RW
614 * @offset - number of the PAGE_SIZE-sized block of the device, starting
615 * from 0, in which the swap header is expected to be located.
616 *
617 * This is needed for the suspend to disk (aka swsusp).
f577eb30 618 */
7bf23687 619int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 620{
915bae9e 621 struct block_device *bdev = NULL;
f577eb30
RW
622 int i;
623
915bae9e
RW
624 if (device)
625 bdev = bdget(device);
626
f577eb30
RW
627 spin_lock(&swap_lock);
628 for (i = 0; i < nr_swapfiles; i++) {
915bae9e 629 struct swap_info_struct *sis = swap_info + i;
f577eb30 630
915bae9e 631 if (!(sis->flags & SWP_WRITEOK))
f577eb30 632 continue;
b6b5bce3 633
915bae9e 634 if (!bdev) {
7bf23687
RW
635 if (bdev_p)
636 *bdev_p = sis->bdev;
637
6e1819d6
RW
638 spin_unlock(&swap_lock);
639 return i;
640 }
915bae9e
RW
641 if (bdev == sis->bdev) {
642 struct swap_extent *se;
643
644 se = list_entry(sis->extent_list.next,
645 struct swap_extent, list);
646 if (se->start_block == offset) {
7bf23687
RW
647 if (bdev_p)
648 *bdev_p = sis->bdev;
649
915bae9e
RW
650 spin_unlock(&swap_lock);
651 bdput(bdev);
652 return i;
653 }
f577eb30
RW
654 }
655 }
656 spin_unlock(&swap_lock);
915bae9e
RW
657 if (bdev)
658 bdput(bdev);
659
f577eb30
RW
660 return -ENODEV;
661}
662
663/*
664 * Return either the total number of swap pages of given type, or the number
665 * of free pages of that type (depending on @free)
666 *
667 * This is needed for software suspend
668 */
669unsigned int count_swap_pages(int type, int free)
670{
671 unsigned int n = 0;
672
673 if (type < nr_swapfiles) {
674 spin_lock(&swap_lock);
675 if (swap_info[type].flags & SWP_WRITEOK) {
676 n = swap_info[type].pages;
677 if (free)
678 n -= swap_info[type].inuse_pages;
679 }
680 spin_unlock(&swap_lock);
681 }
682 return n;
683}
684#endif
685
1da177e4 686/*
72866f6f
HD
687 * No need to decide whether this PTE shares the swap entry with others,
688 * just let do_wp_page work it out if a write is requested later - to
689 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 690 */
044d66c1 691static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
692 unsigned long addr, swp_entry_t entry, struct page *page)
693{
7a81b88c 694 struct mem_cgroup *ptr = NULL;
044d66c1
HD
695 spinlock_t *ptl;
696 pte_t *pte;
697 int ret = 1;
698
bced0520 699 if (mem_cgroup_try_charge(vma->vm_mm, GFP_HIGHUSER_MOVABLE, &ptr))
044d66c1
HD
700 ret = -ENOMEM;
701
702 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
703 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
704 if (ret > 0)
7a81b88c 705 mem_cgroup_cancel_charge_swapin(ptr);
044d66c1
HD
706 ret = 0;
707 goto out;
708 }
8a9f3ccd 709
4294621f 710 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
711 get_page(page);
712 set_pte_at(vma->vm_mm, addr, pte,
713 pte_mkold(mk_pte(page, vma->vm_page_prot)));
714 page_add_anon_rmap(page, vma, addr);
7a81b88c 715 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4
LT
716 swap_free(entry);
717 /*
718 * Move the page to the active list so it is not
719 * immediately swapped out again after swapon.
720 */
721 activate_page(page);
044d66c1
HD
722out:
723 pte_unmap_unlock(pte, ptl);
724 return ret;
1da177e4
LT
725}
726
727static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
728 unsigned long addr, unsigned long end,
729 swp_entry_t entry, struct page *page)
730{
1da177e4 731 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 732 pte_t *pte;
8a9f3ccd 733 int ret = 0;
1da177e4 734
044d66c1
HD
735 /*
736 * We don't actually need pte lock while scanning for swp_pte: since
737 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
738 * page table while we're scanning; though it could get zapped, and on
739 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
740 * of unmatched parts which look like swp_pte, so unuse_pte must
741 * recheck under pte lock. Scanning without pte lock lets it be
742 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
743 */
744 pte = pte_offset_map(pmd, addr);
1da177e4
LT
745 do {
746 /*
747 * swapoff spends a _lot_ of time in this loop!
748 * Test inline before going to call unuse_pte.
749 */
750 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
751 pte_unmap(pte);
752 ret = unuse_pte(vma, pmd, addr, entry, page);
753 if (ret)
754 goto out;
755 pte = pte_offset_map(pmd, addr);
1da177e4
LT
756 }
757 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
758 pte_unmap(pte - 1);
759out:
8a9f3ccd 760 return ret;
1da177e4
LT
761}
762
763static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
764 unsigned long addr, unsigned long end,
765 swp_entry_t entry, struct page *page)
766{
767 pmd_t *pmd;
768 unsigned long next;
8a9f3ccd 769 int ret;
1da177e4
LT
770
771 pmd = pmd_offset(pud, addr);
772 do {
773 next = pmd_addr_end(addr, end);
774 if (pmd_none_or_clear_bad(pmd))
775 continue;
8a9f3ccd
BS
776 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
777 if (ret)
778 return ret;
1da177e4
LT
779 } while (pmd++, addr = next, addr != end);
780 return 0;
781}
782
783static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
784 unsigned long addr, unsigned long end,
785 swp_entry_t entry, struct page *page)
786{
787 pud_t *pud;
788 unsigned long next;
8a9f3ccd 789 int ret;
1da177e4
LT
790
791 pud = pud_offset(pgd, addr);
792 do {
793 next = pud_addr_end(addr, end);
794 if (pud_none_or_clear_bad(pud))
795 continue;
8a9f3ccd
BS
796 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
797 if (ret)
798 return ret;
1da177e4
LT
799 } while (pud++, addr = next, addr != end);
800 return 0;
801}
802
803static int unuse_vma(struct vm_area_struct *vma,
804 swp_entry_t entry, struct page *page)
805{
806 pgd_t *pgd;
807 unsigned long addr, end, next;
8a9f3ccd 808 int ret;
1da177e4
LT
809
810 if (page->mapping) {
811 addr = page_address_in_vma(page, vma);
812 if (addr == -EFAULT)
813 return 0;
814 else
815 end = addr + PAGE_SIZE;
816 } else {
817 addr = vma->vm_start;
818 end = vma->vm_end;
819 }
820
821 pgd = pgd_offset(vma->vm_mm, addr);
822 do {
823 next = pgd_addr_end(addr, end);
824 if (pgd_none_or_clear_bad(pgd))
825 continue;
8a9f3ccd
BS
826 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
827 if (ret)
828 return ret;
1da177e4
LT
829 } while (pgd++, addr = next, addr != end);
830 return 0;
831}
832
833static int unuse_mm(struct mm_struct *mm,
834 swp_entry_t entry, struct page *page)
835{
836 struct vm_area_struct *vma;
8a9f3ccd 837 int ret = 0;
1da177e4
LT
838
839 if (!down_read_trylock(&mm->mmap_sem)) {
840 /*
7d03431c
FLVC
841 * Activate page so shrink_inactive_list is unlikely to unmap
842 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 843 */
c475a8ab 844 activate_page(page);
1da177e4
LT
845 unlock_page(page);
846 down_read(&mm->mmap_sem);
847 lock_page(page);
848 }
1da177e4 849 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 850 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
851 break;
852 }
1da177e4 853 up_read(&mm->mmap_sem);
8a9f3ccd 854 return (ret < 0)? ret: 0;
1da177e4
LT
855}
856
857/*
858 * Scan swap_map from current position to next entry still in use.
859 * Recycle to start on reaching the end, returning 0 when empty.
860 */
6eb396dc
HD
861static unsigned int find_next_to_unuse(struct swap_info_struct *si,
862 unsigned int prev)
1da177e4 863{
6eb396dc
HD
864 unsigned int max = si->max;
865 unsigned int i = prev;
1da177e4
LT
866 int count;
867
868 /*
5d337b91 869 * No need for swap_lock here: we're just looking
1da177e4
LT
870 * for whether an entry is in use, not modifying it; false
871 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 872 * allocations from this area (while holding swap_lock).
1da177e4
LT
873 */
874 for (;;) {
875 if (++i >= max) {
876 if (!prev) {
877 i = 0;
878 break;
879 }
880 /*
881 * No entries in use at top of swap_map,
882 * loop back to start and recheck there.
883 */
884 max = prev + 1;
885 prev = 0;
886 i = 1;
887 }
888 count = si->swap_map[i];
889 if (count && count != SWAP_MAP_BAD)
890 break;
891 }
892 return i;
893}
894
895/*
896 * We completely avoid races by reading each swap page in advance,
897 * and then search for the process using it. All the necessary
898 * page table adjustments can then be made atomically.
899 */
900static int try_to_unuse(unsigned int type)
901{
902 struct swap_info_struct * si = &swap_info[type];
903 struct mm_struct *start_mm;
904 unsigned short *swap_map;
905 unsigned short swcount;
906 struct page *page;
907 swp_entry_t entry;
6eb396dc 908 unsigned int i = 0;
1da177e4
LT
909 int retval = 0;
910 int reset_overflow = 0;
911 int shmem;
912
913 /*
914 * When searching mms for an entry, a good strategy is to
915 * start at the first mm we freed the previous entry from
916 * (though actually we don't notice whether we or coincidence
917 * freed the entry). Initialize this start_mm with a hold.
918 *
919 * A simpler strategy would be to start at the last mm we
920 * freed the previous entry from; but that would take less
921 * advantage of mmlist ordering, which clusters forked mms
922 * together, child after parent. If we race with dup_mmap(), we
923 * prefer to resolve parent before child, lest we miss entries
924 * duplicated after we scanned child: using last mm would invert
925 * that. Though it's only a serious concern when an overflowed
926 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
927 */
928 start_mm = &init_mm;
929 atomic_inc(&init_mm.mm_users);
930
931 /*
932 * Keep on scanning until all entries have gone. Usually,
933 * one pass through swap_map is enough, but not necessarily:
934 * there are races when an instance of an entry might be missed.
935 */
936 while ((i = find_next_to_unuse(si, i)) != 0) {
937 if (signal_pending(current)) {
938 retval = -EINTR;
939 break;
940 }
941
886bb7e9 942 /*
1da177e4
LT
943 * Get a page for the entry, using the existing swap
944 * cache page if there is one. Otherwise, get a clean
886bb7e9 945 * page and read the swap into it.
1da177e4
LT
946 */
947 swap_map = &si->swap_map[i];
948 entry = swp_entry(type, i);
02098fea
HD
949 page = read_swap_cache_async(entry,
950 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
951 if (!page) {
952 /*
953 * Either swap_duplicate() failed because entry
954 * has been freed independently, and will not be
955 * reused since sys_swapoff() already disabled
956 * allocation from here, or alloc_page() failed.
957 */
958 if (!*swap_map)
959 continue;
960 retval = -ENOMEM;
961 break;
962 }
963
964 /*
965 * Don't hold on to start_mm if it looks like exiting.
966 */
967 if (atomic_read(&start_mm->mm_users) == 1) {
968 mmput(start_mm);
969 start_mm = &init_mm;
970 atomic_inc(&init_mm.mm_users);
971 }
972
973 /*
974 * Wait for and lock page. When do_swap_page races with
975 * try_to_unuse, do_swap_page can handle the fault much
976 * faster than try_to_unuse can locate the entry. This
977 * apparently redundant "wait_on_page_locked" lets try_to_unuse
978 * defer to do_swap_page in such a case - in some tests,
979 * do_swap_page and try_to_unuse repeatedly compete.
980 */
981 wait_on_page_locked(page);
982 wait_on_page_writeback(page);
983 lock_page(page);
984 wait_on_page_writeback(page);
985
986 /*
987 * Remove all references to entry.
988 * Whenever we reach init_mm, there's no address space
989 * to search, but use it as a reminder to search shmem.
990 */
991 shmem = 0;
992 swcount = *swap_map;
993 if (swcount > 1) {
994 if (start_mm == &init_mm)
995 shmem = shmem_unuse(entry, page);
996 else
997 retval = unuse_mm(start_mm, entry, page);
998 }
999 if (*swap_map > 1) {
1000 int set_start_mm = (*swap_map >= swcount);
1001 struct list_head *p = &start_mm->mmlist;
1002 struct mm_struct *new_start_mm = start_mm;
1003 struct mm_struct *prev_mm = start_mm;
1004 struct mm_struct *mm;
1005
1006 atomic_inc(&new_start_mm->mm_users);
1007 atomic_inc(&prev_mm->mm_users);
1008 spin_lock(&mmlist_lock);
2e0e26c7 1009 while (*swap_map > 1 && !retval && !shmem &&
1da177e4
LT
1010 (p = p->next) != &start_mm->mmlist) {
1011 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1012 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1013 continue;
1da177e4
LT
1014 spin_unlock(&mmlist_lock);
1015 mmput(prev_mm);
1016 prev_mm = mm;
1017
1018 cond_resched();
1019
1020 swcount = *swap_map;
1021 if (swcount <= 1)
1022 ;
1023 else if (mm == &init_mm) {
1024 set_start_mm = 1;
1025 shmem = shmem_unuse(entry, page);
1026 } else
1027 retval = unuse_mm(mm, entry, page);
1028 if (set_start_mm && *swap_map < swcount) {
1029 mmput(new_start_mm);
1030 atomic_inc(&mm->mm_users);
1031 new_start_mm = mm;
1032 set_start_mm = 0;
1033 }
1034 spin_lock(&mmlist_lock);
1035 }
1036 spin_unlock(&mmlist_lock);
1037 mmput(prev_mm);
1038 mmput(start_mm);
1039 start_mm = new_start_mm;
1040 }
2e0e26c7
HD
1041 if (shmem) {
1042 /* page has already been unlocked and released */
1043 if (shmem > 0)
1044 continue;
1045 retval = shmem;
1046 break;
1047 }
1da177e4
LT
1048 if (retval) {
1049 unlock_page(page);
1050 page_cache_release(page);
1051 break;
1052 }
1053
1054 /*
1055 * How could swap count reach 0x7fff when the maximum
1056 * pid is 0x7fff, and there's no way to repeat a swap
1057 * page within an mm (except in shmem, where it's the
1058 * shared object which takes the reference count)?
1059 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
1060 *
1061 * If that's wrong, then we should worry more about
1062 * exit_mmap() and do_munmap() cases described above:
1063 * we might be resetting SWAP_MAP_MAX too early here.
1064 * We know "Undead"s can happen, they're okay, so don't
1065 * report them; but do report if we reset SWAP_MAP_MAX.
1066 */
1067 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 1068 spin_lock(&swap_lock);
1da177e4 1069 *swap_map = 1;
5d337b91 1070 spin_unlock(&swap_lock);
1da177e4
LT
1071 reset_overflow = 1;
1072 }
1073
1074 /*
1075 * If a reference remains (rare), we would like to leave
1076 * the page in the swap cache; but try_to_unmap could
1077 * then re-duplicate the entry once we drop page lock,
1078 * so we might loop indefinitely; also, that page could
1079 * not be swapped out to other storage meanwhile. So:
1080 * delete from cache even if there's another reference,
1081 * after ensuring that the data has been saved to disk -
1082 * since if the reference remains (rarer), it will be
1083 * read from disk into another page. Splitting into two
1084 * pages would be incorrect if swap supported "shared
1085 * private" pages, but they are handled by tmpfs files.
1da177e4
LT
1086 */
1087 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
1088 struct writeback_control wbc = {
1089 .sync_mode = WB_SYNC_NONE,
1090 };
1091
1092 swap_writepage(page, &wbc);
1093 lock_page(page);
1094 wait_on_page_writeback(page);
1095 }
68bdc8d6
HD
1096
1097 /*
1098 * It is conceivable that a racing task removed this page from
1099 * swap cache just before we acquired the page lock at the top,
1100 * or while we dropped it in unuse_mm(). The page might even
1101 * be back in swap cache on another swap area: that we must not
1102 * delete, since it may not have been written out to swap yet.
1103 */
1104 if (PageSwapCache(page) &&
1105 likely(page_private(page) == entry.val))
2e0e26c7 1106 delete_from_swap_cache(page);
1da177e4
LT
1107
1108 /*
1109 * So we could skip searching mms once swap count went
1110 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1111 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1112 */
1113 SetPageDirty(page);
1114 unlock_page(page);
1115 page_cache_release(page);
1116
1117 /*
1118 * Make sure that we aren't completely killing
1119 * interactive performance.
1120 */
1121 cond_resched();
1122 }
1123
1124 mmput(start_mm);
1125 if (reset_overflow) {
1126 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1127 swap_overflow = 0;
1128 }
1129 return retval;
1130}
1131
1132/*
5d337b91
HD
1133 * After a successful try_to_unuse, if no swap is now in use, we know
1134 * we can empty the mmlist. swap_lock must be held on entry and exit.
1135 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1136 * added to the mmlist just after page_duplicate - before would be racy.
1137 */
1138static void drain_mmlist(void)
1139{
1140 struct list_head *p, *next;
1141 unsigned int i;
1142
1143 for (i = 0; i < nr_swapfiles; i++)
1144 if (swap_info[i].inuse_pages)
1145 return;
1146 spin_lock(&mmlist_lock);
1147 list_for_each_safe(p, next, &init_mm.mmlist)
1148 list_del_init(p);
1149 spin_unlock(&mmlist_lock);
1150}
1151
1152/*
1153 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1154 * corresponds to page offset `offset'.
1155 */
1156sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1157{
1158 struct swap_extent *se = sis->curr_swap_extent;
1159 struct swap_extent *start_se = se;
1160
1161 for ( ; ; ) {
1162 struct list_head *lh;
1163
1164 if (se->start_page <= offset &&
1165 offset < (se->start_page + se->nr_pages)) {
1166 return se->start_block + (offset - se->start_page);
1167 }
11d31886 1168 lh = se->list.next;
1da177e4 1169 if (lh == &sis->extent_list)
11d31886 1170 lh = lh->next;
1da177e4
LT
1171 se = list_entry(lh, struct swap_extent, list);
1172 sis->curr_swap_extent = se;
1173 BUG_ON(se == start_se); /* It *must* be present */
1174 }
1175}
1176
b0cb1a19 1177#ifdef CONFIG_HIBERNATION
3aef83e0
RW
1178/*
1179 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1180 * corresponding to given index in swap_info (swap type).
1181 */
1182sector_t swapdev_block(int swap_type, pgoff_t offset)
1183{
1184 struct swap_info_struct *sis;
1185
1186 if (swap_type >= nr_swapfiles)
1187 return 0;
1188
1189 sis = swap_info + swap_type;
1190 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1191}
b0cb1a19 1192#endif /* CONFIG_HIBERNATION */
3aef83e0 1193
1da177e4
LT
1194/*
1195 * Free all of a swapdev's extent information
1196 */
1197static void destroy_swap_extents(struct swap_info_struct *sis)
1198{
1199 while (!list_empty(&sis->extent_list)) {
1200 struct swap_extent *se;
1201
1202 se = list_entry(sis->extent_list.next,
1203 struct swap_extent, list);
1204 list_del(&se->list);
1205 kfree(se);
1206 }
1da177e4
LT
1207}
1208
1209/*
1210 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1211 * extent list. The extent list is kept sorted in page order.
1da177e4 1212 *
11d31886 1213 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1214 */
1215static int
1216add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1217 unsigned long nr_pages, sector_t start_block)
1218{
1219 struct swap_extent *se;
1220 struct swap_extent *new_se;
1221 struct list_head *lh;
1222
11d31886
HD
1223 lh = sis->extent_list.prev; /* The highest page extent */
1224 if (lh != &sis->extent_list) {
1da177e4 1225 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1226 BUG_ON(se->start_page + se->nr_pages != start_page);
1227 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1228 /* Merge it */
1229 se->nr_pages += nr_pages;
1230 return 0;
1231 }
1da177e4
LT
1232 }
1233
1234 /*
1235 * No merge. Insert a new extent, preserving ordering.
1236 */
1237 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1238 if (new_se == NULL)
1239 return -ENOMEM;
1240 new_se->start_page = start_page;
1241 new_se->nr_pages = nr_pages;
1242 new_se->start_block = start_block;
1243
11d31886 1244 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 1245 return 1;
1da177e4
LT
1246}
1247
1248/*
1249 * A `swap extent' is a simple thing which maps a contiguous range of pages
1250 * onto a contiguous range of disk blocks. An ordered list of swap extents
1251 * is built at swapon time and is then used at swap_writepage/swap_readpage
1252 * time for locating where on disk a page belongs.
1253 *
1254 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1255 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1256 * swap files identically.
1257 *
1258 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1259 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1260 * swapfiles are handled *identically* after swapon time.
1261 *
1262 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1263 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1264 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1265 * requirements, they are simply tossed out - we will never use those blocks
1266 * for swapping.
1267 *
b0d9bcd4 1268 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1269 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1270 * which will scribble on the fs.
1271 *
1272 * The amount of disk space which a single swap extent represents varies.
1273 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1274 * extents in the list. To avoid much list walking, we cache the previous
1275 * search location in `curr_swap_extent', and start new searches from there.
1276 * This is extremely effective. The average number of iterations in
1277 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1278 */
53092a74 1279static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1280{
1281 struct inode *inode;
1282 unsigned blocks_per_page;
1283 unsigned long page_no;
1284 unsigned blkbits;
1285 sector_t probe_block;
1286 sector_t last_block;
53092a74
HD
1287 sector_t lowest_block = -1;
1288 sector_t highest_block = 0;
1289 int nr_extents = 0;
1da177e4
LT
1290 int ret;
1291
1292 inode = sis->swap_file->f_mapping->host;
1293 if (S_ISBLK(inode->i_mode)) {
1294 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1295 *span = sis->pages;
1da177e4
LT
1296 goto done;
1297 }
1298
1299 blkbits = inode->i_blkbits;
1300 blocks_per_page = PAGE_SIZE >> blkbits;
1301
1302 /*
1303 * Map all the blocks into the extent list. This code doesn't try
1304 * to be very smart.
1305 */
1306 probe_block = 0;
1307 page_no = 0;
1308 last_block = i_size_read(inode) >> blkbits;
1309 while ((probe_block + blocks_per_page) <= last_block &&
1310 page_no < sis->max) {
1311 unsigned block_in_page;
1312 sector_t first_block;
1313
1314 first_block = bmap(inode, probe_block);
1315 if (first_block == 0)
1316 goto bad_bmap;
1317
1318 /*
1319 * It must be PAGE_SIZE aligned on-disk
1320 */
1321 if (first_block & (blocks_per_page - 1)) {
1322 probe_block++;
1323 goto reprobe;
1324 }
1325
1326 for (block_in_page = 1; block_in_page < blocks_per_page;
1327 block_in_page++) {
1328 sector_t block;
1329
1330 block = bmap(inode, probe_block + block_in_page);
1331 if (block == 0)
1332 goto bad_bmap;
1333 if (block != first_block + block_in_page) {
1334 /* Discontiguity */
1335 probe_block++;
1336 goto reprobe;
1337 }
1338 }
1339
53092a74
HD
1340 first_block >>= (PAGE_SHIFT - blkbits);
1341 if (page_no) { /* exclude the header page */
1342 if (first_block < lowest_block)
1343 lowest_block = first_block;
1344 if (first_block > highest_block)
1345 highest_block = first_block;
1346 }
1347
1da177e4
LT
1348 /*
1349 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1350 */
53092a74
HD
1351 ret = add_swap_extent(sis, page_no, 1, first_block);
1352 if (ret < 0)
1da177e4 1353 goto out;
53092a74 1354 nr_extents += ret;
1da177e4
LT
1355 page_no++;
1356 probe_block += blocks_per_page;
1357reprobe:
1358 continue;
1359 }
53092a74
HD
1360 ret = nr_extents;
1361 *span = 1 + highest_block - lowest_block;
1da177e4 1362 if (page_no == 0)
e2244ec2 1363 page_no = 1; /* force Empty message */
1da177e4 1364 sis->max = page_no;
e2244ec2 1365 sis->pages = page_no - 1;
1da177e4
LT
1366 sis->highest_bit = page_no - 1;
1367done:
1368 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1369 struct swap_extent, list);
1370 goto out;
1371bad_bmap:
1372 printk(KERN_ERR "swapon: swapfile has holes\n");
1373 ret = -EINVAL;
1374out:
1375 return ret;
1376}
1377
1da177e4
LT
1378asmlinkage long sys_swapoff(const char __user * specialfile)
1379{
1380 struct swap_info_struct * p = NULL;
1381 unsigned short *swap_map;
1382 struct file *swap_file, *victim;
1383 struct address_space *mapping;
1384 struct inode *inode;
1385 char * pathname;
1386 int i, type, prev;
1387 int err;
886bb7e9 1388
1da177e4
LT
1389 if (!capable(CAP_SYS_ADMIN))
1390 return -EPERM;
1391
1392 pathname = getname(specialfile);
1393 err = PTR_ERR(pathname);
1394 if (IS_ERR(pathname))
1395 goto out;
1396
1397 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1398 putname(pathname);
1399 err = PTR_ERR(victim);
1400 if (IS_ERR(victim))
1401 goto out;
1402
1403 mapping = victim->f_mapping;
1404 prev = -1;
5d337b91 1405 spin_lock(&swap_lock);
1da177e4
LT
1406 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1407 p = swap_info + type;
22c6f8fd 1408 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1409 if (p->swap_file->f_mapping == mapping)
1410 break;
1411 }
1412 prev = type;
1413 }
1414 if (type < 0) {
1415 err = -EINVAL;
5d337b91 1416 spin_unlock(&swap_lock);
1da177e4
LT
1417 goto out_dput;
1418 }
1419 if (!security_vm_enough_memory(p->pages))
1420 vm_unacct_memory(p->pages);
1421 else {
1422 err = -ENOMEM;
5d337b91 1423 spin_unlock(&swap_lock);
1da177e4
LT
1424 goto out_dput;
1425 }
1426 if (prev < 0) {
1427 swap_list.head = p->next;
1428 } else {
1429 swap_info[prev].next = p->next;
1430 }
1431 if (type == swap_list.next) {
1432 /* just pick something that's safe... */
1433 swap_list.next = swap_list.head;
1434 }
78ecba08
HD
1435 if (p->prio < 0) {
1436 for (i = p->next; i >= 0; i = swap_info[i].next)
1437 swap_info[i].prio = p->prio--;
1438 least_priority++;
1439 }
1da177e4
LT
1440 nr_swap_pages -= p->pages;
1441 total_swap_pages -= p->pages;
1442 p->flags &= ~SWP_WRITEOK;
5d337b91 1443 spin_unlock(&swap_lock);
fb4f88dc 1444
1da177e4
LT
1445 current->flags |= PF_SWAPOFF;
1446 err = try_to_unuse(type);
1447 current->flags &= ~PF_SWAPOFF;
1448
1da177e4
LT
1449 if (err) {
1450 /* re-insert swap space back into swap_list */
5d337b91 1451 spin_lock(&swap_lock);
78ecba08
HD
1452 if (p->prio < 0)
1453 p->prio = --least_priority;
1454 prev = -1;
1455 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1da177e4
LT
1456 if (p->prio >= swap_info[i].prio)
1457 break;
78ecba08
HD
1458 prev = i;
1459 }
1da177e4
LT
1460 p->next = i;
1461 if (prev < 0)
1462 swap_list.head = swap_list.next = p - swap_info;
1463 else
1464 swap_info[prev].next = p - swap_info;
1465 nr_swap_pages += p->pages;
1466 total_swap_pages += p->pages;
1467 p->flags |= SWP_WRITEOK;
5d337b91 1468 spin_unlock(&swap_lock);
1da177e4
LT
1469 goto out_dput;
1470 }
52b7efdb
HD
1471
1472 /* wait for any unplug function to finish */
1473 down_write(&swap_unplug_sem);
1474 up_write(&swap_unplug_sem);
1475
5d337b91 1476 destroy_swap_extents(p);
fc0abb14 1477 mutex_lock(&swapon_mutex);
5d337b91
HD
1478 spin_lock(&swap_lock);
1479 drain_mmlist();
1480
52b7efdb 1481 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1482 p->highest_bit = 0; /* cuts scans short */
1483 while (p->flags >= SWP_SCANNING) {
5d337b91 1484 spin_unlock(&swap_lock);
13e4b57f 1485 schedule_timeout_uninterruptible(1);
5d337b91 1486 spin_lock(&swap_lock);
52b7efdb 1487 }
52b7efdb 1488
1da177e4
LT
1489 swap_file = p->swap_file;
1490 p->swap_file = NULL;
1491 p->max = 0;
1492 swap_map = p->swap_map;
1493 p->swap_map = NULL;
1494 p->flags = 0;
5d337b91 1495 spin_unlock(&swap_lock);
fc0abb14 1496 mutex_unlock(&swapon_mutex);
1da177e4 1497 vfree(swap_map);
27a7faa0
KH
1498 /* Destroy swap account informatin */
1499 swap_cgroup_swapoff(type);
1500
1da177e4
LT
1501 inode = mapping->host;
1502 if (S_ISBLK(inode->i_mode)) {
1503 struct block_device *bdev = I_BDEV(inode);
1504 set_blocksize(bdev, p->old_block_size);
1505 bd_release(bdev);
1506 } else {
1b1dcc1b 1507 mutex_lock(&inode->i_mutex);
1da177e4 1508 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1509 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1510 }
1511 filp_close(swap_file, NULL);
1512 err = 0;
1513
1514out_dput:
1515 filp_close(victim, NULL);
1516out:
1517 return err;
1518}
1519
1520#ifdef CONFIG_PROC_FS
1521/* iterator */
1522static void *swap_start(struct seq_file *swap, loff_t *pos)
1523{
1524 struct swap_info_struct *ptr = swap_info;
1525 int i;
1526 loff_t l = *pos;
1527
fc0abb14 1528 mutex_lock(&swapon_mutex);
1da177e4 1529
881e4aab
SS
1530 if (!l)
1531 return SEQ_START_TOKEN;
1532
1da177e4
LT
1533 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1534 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1535 continue;
881e4aab 1536 if (!--l)
1da177e4
LT
1537 return ptr;
1538 }
1539
1540 return NULL;
1541}
1542
1543static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1544{
881e4aab 1545 struct swap_info_struct *ptr;
1da177e4
LT
1546 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1547
881e4aab
SS
1548 if (v == SEQ_START_TOKEN)
1549 ptr = swap_info;
1550 else {
1551 ptr = v;
1552 ptr++;
1553 }
1554
1555 for (; ptr < endptr; ptr++) {
1da177e4
LT
1556 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1557 continue;
1558 ++*pos;
1559 return ptr;
1560 }
1561
1562 return NULL;
1563}
1564
1565static void swap_stop(struct seq_file *swap, void *v)
1566{
fc0abb14 1567 mutex_unlock(&swapon_mutex);
1da177e4
LT
1568}
1569
1570static int swap_show(struct seq_file *swap, void *v)
1571{
1572 struct swap_info_struct *ptr = v;
1573 struct file *file;
1574 int len;
1575
881e4aab
SS
1576 if (ptr == SEQ_START_TOKEN) {
1577 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1578 return 0;
1579 }
1da177e4
LT
1580
1581 file = ptr->swap_file;
c32c2f63 1582 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1583 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1584 len < 40 ? 40 - len : 1, " ",
1585 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1586 "partition" : "file\t",
886bb7e9
HD
1587 ptr->pages << (PAGE_SHIFT - 10),
1588 ptr->inuse_pages << (PAGE_SHIFT - 10),
1589 ptr->prio);
1da177e4
LT
1590 return 0;
1591}
1592
15ad7cdc 1593static const struct seq_operations swaps_op = {
1da177e4
LT
1594 .start = swap_start,
1595 .next = swap_next,
1596 .stop = swap_stop,
1597 .show = swap_show
1598};
1599
1600static int swaps_open(struct inode *inode, struct file *file)
1601{
1602 return seq_open(file, &swaps_op);
1603}
1604
15ad7cdc 1605static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1606 .open = swaps_open,
1607 .read = seq_read,
1608 .llseek = seq_lseek,
1609 .release = seq_release,
1610};
1611
1612static int __init procswaps_init(void)
1613{
3d71f86f 1614 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1615 return 0;
1616}
1617__initcall(procswaps_init);
1618#endif /* CONFIG_PROC_FS */
1619
1796316a
JB
1620#ifdef MAX_SWAPFILES_CHECK
1621static int __init max_swapfiles_check(void)
1622{
1623 MAX_SWAPFILES_CHECK();
1624 return 0;
1625}
1626late_initcall(max_swapfiles_check);
1627#endif
1628
1da177e4
LT
1629/*
1630 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1631 *
1632 * The swapon system call
1633 */
1634asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1635{
1636 struct swap_info_struct * p;
1637 char *name = NULL;
1638 struct block_device *bdev = NULL;
1639 struct file *swap_file = NULL;
1640 struct address_space *mapping;
1641 unsigned int type;
1642 int i, prev;
1643 int error;
1da177e4 1644 union swap_header *swap_header = NULL;
6eb396dc
HD
1645 unsigned int nr_good_pages = 0;
1646 int nr_extents = 0;
53092a74 1647 sector_t span;
1da177e4 1648 unsigned long maxpages = 1;
73fd8748 1649 unsigned long swapfilepages;
78ecba08 1650 unsigned short *swap_map = NULL;
1da177e4
LT
1651 struct page *page = NULL;
1652 struct inode *inode = NULL;
1653 int did_down = 0;
1654
1655 if (!capable(CAP_SYS_ADMIN))
1656 return -EPERM;
5d337b91 1657 spin_lock(&swap_lock);
1da177e4
LT
1658 p = swap_info;
1659 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1660 if (!(p->flags & SWP_USED))
1661 break;
1662 error = -EPERM;
0697212a 1663 if (type >= MAX_SWAPFILES) {
5d337b91 1664 spin_unlock(&swap_lock);
1da177e4
LT
1665 goto out;
1666 }
1667 if (type >= nr_swapfiles)
1668 nr_swapfiles = type+1;
78ecba08 1669 memset(p, 0, sizeof(*p));
1da177e4
LT
1670 INIT_LIST_HEAD(&p->extent_list);
1671 p->flags = SWP_USED;
1da177e4 1672 p->next = -1;
5d337b91 1673 spin_unlock(&swap_lock);
1da177e4
LT
1674 name = getname(specialfile);
1675 error = PTR_ERR(name);
1676 if (IS_ERR(name)) {
1677 name = NULL;
1678 goto bad_swap_2;
1679 }
1680 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1681 error = PTR_ERR(swap_file);
1682 if (IS_ERR(swap_file)) {
1683 swap_file = NULL;
1684 goto bad_swap_2;
1685 }
1686
1687 p->swap_file = swap_file;
1688 mapping = swap_file->f_mapping;
1689 inode = mapping->host;
1690
1691 error = -EBUSY;
1692 for (i = 0; i < nr_swapfiles; i++) {
1693 struct swap_info_struct *q = &swap_info[i];
1694
1695 if (i == type || !q->swap_file)
1696 continue;
1697 if (mapping == q->swap_file->f_mapping)
1698 goto bad_swap;
1699 }
1700
1701 error = -EINVAL;
1702 if (S_ISBLK(inode->i_mode)) {
1703 bdev = I_BDEV(inode);
1704 error = bd_claim(bdev, sys_swapon);
1705 if (error < 0) {
1706 bdev = NULL;
f7b3a435 1707 error = -EINVAL;
1da177e4
LT
1708 goto bad_swap;
1709 }
1710 p->old_block_size = block_size(bdev);
1711 error = set_blocksize(bdev, PAGE_SIZE);
1712 if (error < 0)
1713 goto bad_swap;
1714 p->bdev = bdev;
1715 } else if (S_ISREG(inode->i_mode)) {
1716 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1717 mutex_lock(&inode->i_mutex);
1da177e4
LT
1718 did_down = 1;
1719 if (IS_SWAPFILE(inode)) {
1720 error = -EBUSY;
1721 goto bad_swap;
1722 }
1723 } else {
1724 goto bad_swap;
1725 }
1726
73fd8748 1727 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1da177e4
LT
1728
1729 /*
1730 * Read the swap header.
1731 */
1732 if (!mapping->a_ops->readpage) {
1733 error = -EINVAL;
1734 goto bad_swap;
1735 }
090d2b18 1736 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1737 if (IS_ERR(page)) {
1738 error = PTR_ERR(page);
1739 goto bad_swap;
1740 }
81e33971 1741 swap_header = kmap(page);
1da177e4 1742
81e33971 1743 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
e97a3111 1744 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1745 error = -EINVAL;
1746 goto bad_swap;
1747 }
886bb7e9 1748
81e33971
HD
1749 /* swap partition endianess hack... */
1750 if (swab32(swap_header->info.version) == 1) {
1751 swab32s(&swap_header->info.version);
1752 swab32s(&swap_header->info.last_page);
1753 swab32s(&swap_header->info.nr_badpages);
1754 for (i = 0; i < swap_header->info.nr_badpages; i++)
1755 swab32s(&swap_header->info.badpages[i]);
1756 }
1757 /* Check the swap header's sub-version */
1758 if (swap_header->info.version != 1) {
1759 printk(KERN_WARNING
1760 "Unable to handle swap header version %d\n",
1761 swap_header->info.version);
1da177e4
LT
1762 error = -EINVAL;
1763 goto bad_swap;
81e33971 1764 }
1da177e4 1765
81e33971
HD
1766 p->lowest_bit = 1;
1767 p->cluster_next = 1;
52b7efdb 1768
81e33971
HD
1769 /*
1770 * Find out how many pages are allowed for a single swap
1771 * device. There are two limiting factors: 1) the number of
1772 * bits for the swap offset in the swp_entry_t type and
1773 * 2) the number of bits in the a swap pte as defined by
1774 * the different architectures. In order to find the
1775 * largest possible bit mask a swap entry with swap type 0
1776 * and swap offset ~0UL is created, encoded to a swap pte,
1777 * decoded to a swp_entry_t again and finally the swap
1778 * offset is extracted. This will mask all the bits from
1779 * the initial ~0UL mask that can't be encoded in either
1780 * the swp_entry_t or the architecture definition of a
1781 * swap pte.
1782 */
1783 maxpages = swp_offset(pte_to_swp_entry(
1784 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1785 if (maxpages > swap_header->info.last_page)
1786 maxpages = swap_header->info.last_page;
1787 p->highest_bit = maxpages - 1;
1da177e4 1788
81e33971
HD
1789 error = -EINVAL;
1790 if (!maxpages)
1791 goto bad_swap;
1792 if (swapfilepages && maxpages > swapfilepages) {
1793 printk(KERN_WARNING
1794 "Swap area shorter than signature indicates\n");
1795 goto bad_swap;
1796 }
1797 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1798 goto bad_swap;
1799 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1800 goto bad_swap;
cd105df4 1801
81e33971
HD
1802 /* OK, set up the swap map and apply the bad block list */
1803 swap_map = vmalloc(maxpages * sizeof(short));
1804 if (!swap_map) {
1805 error = -ENOMEM;
1806 goto bad_swap;
1807 }
1da177e4 1808
81e33971
HD
1809 memset(swap_map, 0, maxpages * sizeof(short));
1810 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1811 int page_nr = swap_header->info.badpages[i];
1812 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1813 error = -EINVAL;
1da177e4 1814 goto bad_swap;
81e33971
HD
1815 }
1816 swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4 1817 }
27a7faa0
KH
1818
1819 error = swap_cgroup_swapon(type, maxpages);
1820 if (error)
1821 goto bad_swap;
1822
81e33971
HD
1823 nr_good_pages = swap_header->info.last_page -
1824 swap_header->info.nr_badpages -
1825 1 /* header page */;
e2244ec2 1826
e2244ec2 1827 if (nr_good_pages) {
78ecba08 1828 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
1829 p->max = maxpages;
1830 p->pages = nr_good_pages;
53092a74
HD
1831 nr_extents = setup_swap_extents(p, &span);
1832 if (nr_extents < 0) {
1833 error = nr_extents;
e2244ec2 1834 goto bad_swap;
53092a74 1835 }
e2244ec2
HD
1836 nr_good_pages = p->pages;
1837 }
1da177e4
LT
1838 if (!nr_good_pages) {
1839 printk(KERN_WARNING "Empty swap-file\n");
1840 error = -EINVAL;
1841 goto bad_swap;
1842 }
1da177e4 1843
20137a49
HD
1844 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1845 p->flags |= SWP_SOLIDSTATE;
20137a49
HD
1846 p->cluster_next = 1 + (random32() % p->highest_bit);
1847 }
6a6ba831
HD
1848 if (discard_swap(p) == 0)
1849 p->flags |= SWP_DISCARDABLE;
1850
fc0abb14 1851 mutex_lock(&swapon_mutex);
5d337b91 1852 spin_lock(&swap_lock);
78ecba08
HD
1853 if (swap_flags & SWAP_FLAG_PREFER)
1854 p->prio =
1855 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1856 else
1857 p->prio = --least_priority;
1858 p->swap_map = swap_map;
22c6f8fd 1859 p->flags |= SWP_WRITEOK;
1da177e4
LT
1860 nr_swap_pages += nr_good_pages;
1861 total_swap_pages += nr_good_pages;
53092a74 1862
6eb396dc 1863 printk(KERN_INFO "Adding %uk swap on %s. "
20137a49 1864 "Priority:%d extents:%d across:%lluk %s%s\n",
53092a74 1865 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
6a6ba831 1866 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
20137a49
HD
1867 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1868 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1da177e4
LT
1869
1870 /* insert swap space into swap_list: */
1871 prev = -1;
1872 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1873 if (p->prio >= swap_info[i].prio) {
1874 break;
1875 }
1876 prev = i;
1877 }
1878 p->next = i;
1879 if (prev < 0) {
1880 swap_list.head = swap_list.next = p - swap_info;
1881 } else {
1882 swap_info[prev].next = p - swap_info;
1883 }
5d337b91 1884 spin_unlock(&swap_lock);
fc0abb14 1885 mutex_unlock(&swapon_mutex);
1da177e4
LT
1886 error = 0;
1887 goto out;
1888bad_swap:
1889 if (bdev) {
1890 set_blocksize(bdev, p->old_block_size);
1891 bd_release(bdev);
1892 }
4cd3bb10 1893 destroy_swap_extents(p);
27a7faa0 1894 swap_cgroup_swapoff(type);
1da177e4 1895bad_swap_2:
5d337b91 1896 spin_lock(&swap_lock);
1da177e4 1897 p->swap_file = NULL;
1da177e4 1898 p->flags = 0;
5d337b91 1899 spin_unlock(&swap_lock);
1da177e4
LT
1900 vfree(swap_map);
1901 if (swap_file)
1902 filp_close(swap_file, NULL);
1903out:
1904 if (page && !IS_ERR(page)) {
1905 kunmap(page);
1906 page_cache_release(page);
1907 }
1908 if (name)
1909 putname(name);
1910 if (did_down) {
1911 if (!error)
1912 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1913 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1914 }
1915 return error;
1916}
1917
1918void si_swapinfo(struct sysinfo *val)
1919{
1920 unsigned int i;
1921 unsigned long nr_to_be_unused = 0;
1922
5d337b91 1923 spin_lock(&swap_lock);
1da177e4
LT
1924 for (i = 0; i < nr_swapfiles; i++) {
1925 if (!(swap_info[i].flags & SWP_USED) ||
1926 (swap_info[i].flags & SWP_WRITEOK))
1927 continue;
1928 nr_to_be_unused += swap_info[i].inuse_pages;
1929 }
1930 val->freeswap = nr_swap_pages + nr_to_be_unused;
1931 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1932 spin_unlock(&swap_lock);
1da177e4
LT
1933}
1934
1935/*
1936 * Verify that a swap entry is valid and increment its swap map count.
1937 *
1938 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1939 * "permanent", but will be reclaimed by the next swapoff.
1940 */
1941int swap_duplicate(swp_entry_t entry)
1942{
1943 struct swap_info_struct * p;
1944 unsigned long offset, type;
1945 int result = 0;
1946
0697212a
CL
1947 if (is_migration_entry(entry))
1948 return 1;
1949
1da177e4
LT
1950 type = swp_type(entry);
1951 if (type >= nr_swapfiles)
1952 goto bad_file;
1953 p = type + swap_info;
1954 offset = swp_offset(entry);
1955
5d337b91 1956 spin_lock(&swap_lock);
1da177e4
LT
1957 if (offset < p->max && p->swap_map[offset]) {
1958 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1959 p->swap_map[offset]++;
1960 result = 1;
1961 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1962 if (swap_overflow++ < 5)
1963 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1964 p->swap_map[offset] = SWAP_MAP_MAX;
1965 result = 1;
1966 }
1967 }
5d337b91 1968 spin_unlock(&swap_lock);
1da177e4
LT
1969out:
1970 return result;
1971
1972bad_file:
1973 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1974 goto out;
1975}
1976
1977struct swap_info_struct *
1978get_swap_info_struct(unsigned type)
1979{
1980 return &swap_info[type];
1981}
1982
1983/*
5d337b91 1984 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1985 * reference on the swaphandle, it doesn't matter if it becomes unused.
1986 */
1987int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1988{
8952898b 1989 struct swap_info_struct *si;
3f9e7949 1990 int our_page_cluster = page_cluster;
8952898b
HD
1991 pgoff_t target, toff;
1992 pgoff_t base, end;
1993 int nr_pages = 0;
1da177e4 1994
3f9e7949 1995 if (!our_page_cluster) /* no readahead */
1da177e4 1996 return 0;
8952898b
HD
1997
1998 si = &swap_info[swp_type(entry)];
1999 target = swp_offset(entry);
2000 base = (target >> our_page_cluster) << our_page_cluster;
2001 end = base + (1 << our_page_cluster);
2002 if (!base) /* first page is swap header */
2003 base++;
1da177e4 2004
5d337b91 2005 spin_lock(&swap_lock);
8952898b
HD
2006 if (end > si->max) /* don't go beyond end of map */
2007 end = si->max;
2008
2009 /* Count contiguous allocated slots above our target */
2010 for (toff = target; ++toff < end; nr_pages++) {
2011 /* Don't read in free or bad pages */
2012 if (!si->swap_map[toff])
2013 break;
2014 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 2015 break;
8952898b
HD
2016 }
2017 /* Count contiguous allocated slots below our target */
2018 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 2019 /* Don't read in free or bad pages */
8952898b 2020 if (!si->swap_map[toff])
1da177e4 2021 break;
8952898b 2022 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 2023 break;
8952898b 2024 }
5d337b91 2025 spin_unlock(&swap_lock);
8952898b
HD
2026
2027 /*
2028 * Indicate starting offset, and return number of pages to get:
2029 * if only 1, say 0, since there's then no readahead to be done.
2030 */
2031 *offset = ++toff;
2032 return nr_pages? ++nr_pages: 0;
1da177e4 2033}