mm/swapfile: fix lost swap bits in unuse_pte()
[linux-2.6-block.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
e41d12f5 21#include <linux/blk-cgroup.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
63d8620e 42#include <linux/completion.h>
1da177e4 43
1da177e4
LT
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
5d1ea48b 46#include <linux/swap_cgroup.h>
014bb1de 47#include "swap.h"
1da177e4 48
570a335b
HD
49static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
50 unsigned char);
51static void free_swap_count_continuations(struct swap_info_struct *);
52
633423a0 53static DEFINE_SPINLOCK(swap_lock);
7c363b8c 54static unsigned int nr_swapfiles;
ec8acf20 55atomic_long_t nr_swap_pages;
fb0fec50
CW
56/*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 63long total_swap_pages;
a2468cc9 64static int least_priority = -1;
1da177e4 65
1da177e4
LT
66static const char Bad_file[] = "Bad swap file entry ";
67static const char Unused_file[] = "Unused swap file entry ";
68static const char Bad_offset[] = "Bad swap offset entry ";
69static const char Unused_offset[] = "Unused swap offset entry ";
70
adfab836
DS
71/*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
633423a0 75static PLIST_HEAD(swap_active_head);
18ab4d4c
DS
76
77/*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
e2e3fdc7 80 * This is used by folio_alloc_swap() instead of swap_active_head
18ab4d4c 81 * because swap_active_head includes all swap_info_structs,
e2e3fdc7 82 * but folio_alloc_swap() doesn't need to look at full ones.
18ab4d4c
DS
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
bfc6b1ca 89static struct plist_head *swap_avail_heads;
18ab4d4c 90static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 91
38b5faf4 92struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 93
fc0abb14 94static DEFINE_MUTEX(swapon_mutex);
1da177e4 95
66d7dd51
KS
96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97/* Activity counter to indicate that a swapon or swapoff has occurred */
98static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
81a0298b
HY
100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
c10d38cc
DJ
102static struct swap_info_struct *swap_type_to_swap_info(int type)
103{
a4b45114 104 if (type >= MAX_SWAPFILES)
c10d38cc
DJ
105 return NULL;
106
a4b45114 107 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
c10d38cc
DJ
108}
109
8d69aaee 110static inline unsigned char swap_count(unsigned char ent)
355cfa73 111{
955c97f0 112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
113}
114
bcd49e86
HY
115/* Reclaim the swap entry anyway if possible */
116#define TTRS_ANYWAY 0x1
117/*
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
120 */
121#define TTRS_UNMAPPED 0x2
122/* Reclaim the swap entry if swap is getting full*/
123#define TTRS_FULL 0x4
124
efa90a98 125/* returns 1 if swap entry is freed */
bcd49e86
HY
126static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
c9e44410 128{
efa90a98 129 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
130 struct page *page;
131 int ret = 0;
132
bcd49e86 133 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
134 if (!page)
135 return 0;
136 /*
bcd49e86
HY
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
142 */
143 if (trylock_page(page)) {
bcd49e86
HY
144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
c9e44410
KH
148 unlock_page(page);
149 }
09cbfeaf 150 put_page(page);
c9e44410
KH
151 return ret;
152}
355cfa73 153
4efaceb1
AL
154static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155{
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
158}
159
160static inline struct swap_extent *next_se(struct swap_extent *se)
161{
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164}
165
6a6ba831
HD
166/*
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170static int discard_swap(struct swap_info_struct *si)
171{
172 struct swap_extent *se;
9625a5f2
HD
173 sector_t start_block;
174 sector_t nr_blocks;
6a6ba831
HD
175 int err = 0;
176
9625a5f2 177 /* Do not discard the swap header page! */
4efaceb1 178 se = first_se(si);
9625a5f2
HD
179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 183 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
184 if (err)
185 return err;
186 cond_resched();
187 }
6a6ba831 188
4efaceb1 189 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
192
193 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 194 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
195 if (err)
196 break;
197
198 cond_resched();
199 }
200 return err; /* That will often be -EOPNOTSUPP */
201}
202
4efaceb1
AL
203static struct swap_extent *
204offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205{
206 struct swap_extent *se;
207 struct rb_node *rb;
208
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
218 }
219 /* It *must* be present */
220 BUG();
221}
222
caf6912f
JA
223sector_t swap_page_sector(struct page *page)
224{
225 struct swap_info_struct *sis = page_swap_info(page);
226 struct swap_extent *se;
227 sector_t sector;
228 pgoff_t offset;
229
230 offset = __page_file_index(page);
231 se = offset_to_swap_extent(sis, offset);
232 sector = se->start_block + (offset - se->start_page);
233 return sector << (PAGE_SHIFT - 9);
234}
235
7992fde7
HD
236/*
237 * swap allocation tell device that a cluster of swap can now be discarded,
238 * to allow the swap device to optimize its wear-levelling.
239 */
240static void discard_swap_cluster(struct swap_info_struct *si,
241 pgoff_t start_page, pgoff_t nr_pages)
242{
4efaceb1 243 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
244
245 while (nr_pages) {
4efaceb1
AL
246 pgoff_t offset = start_page - se->start_page;
247 sector_t start_block = se->start_block + offset;
248 sector_t nr_blocks = se->nr_pages - offset;
249
250 if (nr_blocks > nr_pages)
251 nr_blocks = nr_pages;
252 start_page += nr_blocks;
253 nr_pages -= nr_blocks;
254
255 start_block <<= PAGE_SHIFT - 9;
256 nr_blocks <<= PAGE_SHIFT - 9;
257 if (blkdev_issue_discard(si->bdev, start_block,
258 nr_blocks, GFP_NOIO, 0))
259 break;
7992fde7 260
4efaceb1 261 se = next_se(se);
7992fde7
HD
262 }
263}
264
38d8b4e6
HY
265#ifdef CONFIG_THP_SWAP
266#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
267
268#define swap_entry_size(size) (size)
38d8b4e6 269#else
048c27fd 270#define SWAPFILE_CLUSTER 256
a448f2d0
HY
271
272/*
273 * Define swap_entry_size() as constant to let compiler to optimize
274 * out some code if !CONFIG_THP_SWAP
275 */
276#define swap_entry_size(size) 1
38d8b4e6 277#endif
048c27fd
HD
278#define LATENCY_LIMIT 256
279
2a8f9449
SL
280static inline void cluster_set_flag(struct swap_cluster_info *info,
281 unsigned int flag)
282{
283 info->flags = flag;
284}
285
286static inline unsigned int cluster_count(struct swap_cluster_info *info)
287{
288 return info->data;
289}
290
291static inline void cluster_set_count(struct swap_cluster_info *info,
292 unsigned int c)
293{
294 info->data = c;
295}
296
297static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298 unsigned int c, unsigned int f)
299{
300 info->flags = f;
301 info->data = c;
302}
303
304static inline unsigned int cluster_next(struct swap_cluster_info *info)
305{
306 return info->data;
307}
308
309static inline void cluster_set_next(struct swap_cluster_info *info,
310 unsigned int n)
311{
312 info->data = n;
313}
314
315static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316 unsigned int n, unsigned int f)
317{
318 info->flags = f;
319 info->data = n;
320}
321
322static inline bool cluster_is_free(struct swap_cluster_info *info)
323{
324 return info->flags & CLUSTER_FLAG_FREE;
325}
326
327static inline bool cluster_is_null(struct swap_cluster_info *info)
328{
329 return info->flags & CLUSTER_FLAG_NEXT_NULL;
330}
331
332static inline void cluster_set_null(struct swap_cluster_info *info)
333{
334 info->flags = CLUSTER_FLAG_NEXT_NULL;
335 info->data = 0;
336}
337
e0709829
HY
338static inline bool cluster_is_huge(struct swap_cluster_info *info)
339{
33ee011e
HY
340 if (IS_ENABLED(CONFIG_THP_SWAP))
341 return info->flags & CLUSTER_FLAG_HUGE;
342 return false;
e0709829
HY
343}
344
345static inline void cluster_clear_huge(struct swap_cluster_info *info)
346{
347 info->flags &= ~CLUSTER_FLAG_HUGE;
348}
349
235b6217
HY
350static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351 unsigned long offset)
352{
353 struct swap_cluster_info *ci;
354
355 ci = si->cluster_info;
356 if (ci) {
357 ci += offset / SWAPFILE_CLUSTER;
358 spin_lock(&ci->lock);
359 }
360 return ci;
361}
362
363static inline void unlock_cluster(struct swap_cluster_info *ci)
364{
365 if (ci)
366 spin_unlock(&ci->lock);
367}
368
59d98bf3
HY
369/*
370 * Determine the locking method in use for this device. Return
371 * swap_cluster_info if SSD-style cluster-based locking is in place.
372 */
235b6217 373static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 374 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
375{
376 struct swap_cluster_info *ci;
377
59d98bf3 378 /* Try to use fine-grained SSD-style locking if available: */
235b6217 379 ci = lock_cluster(si, offset);
59d98bf3 380 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
381 if (!ci)
382 spin_lock(&si->lock);
383
384 return ci;
385}
386
387static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388 struct swap_cluster_info *ci)
389{
390 if (ci)
391 unlock_cluster(ci);
392 else
393 spin_unlock(&si->lock);
394}
395
6b534915
HY
396static inline bool cluster_list_empty(struct swap_cluster_list *list)
397{
398 return cluster_is_null(&list->head);
399}
400
401static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402{
403 return cluster_next(&list->head);
404}
405
406static void cluster_list_init(struct swap_cluster_list *list)
407{
408 cluster_set_null(&list->head);
409 cluster_set_null(&list->tail);
410}
411
412static void cluster_list_add_tail(struct swap_cluster_list *list,
413 struct swap_cluster_info *ci,
414 unsigned int idx)
415{
416 if (cluster_list_empty(list)) {
417 cluster_set_next_flag(&list->head, idx, 0);
418 cluster_set_next_flag(&list->tail, idx, 0);
419 } else {
235b6217 420 struct swap_cluster_info *ci_tail;
6b534915
HY
421 unsigned int tail = cluster_next(&list->tail);
422
235b6217
HY
423 /*
424 * Nested cluster lock, but both cluster locks are
425 * only acquired when we held swap_info_struct->lock
426 */
427 ci_tail = ci + tail;
428 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429 cluster_set_next(ci_tail, idx);
0ef017d1 430 spin_unlock(&ci_tail->lock);
6b534915
HY
431 cluster_set_next_flag(&list->tail, idx, 0);
432 }
433}
434
435static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436 struct swap_cluster_info *ci)
437{
438 unsigned int idx;
439
440 idx = cluster_next(&list->head);
441 if (cluster_next(&list->tail) == idx) {
442 cluster_set_null(&list->head);
443 cluster_set_null(&list->tail);
444 } else
445 cluster_set_next_flag(&list->head,
446 cluster_next(&ci[idx]), 0);
447
448 return idx;
449}
450
815c2c54
SL
451/* Add a cluster to discard list and schedule it to do discard */
452static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453 unsigned int idx)
454{
455 /*
bb243f7d 456 * If scan_swap_map_slots() can't find a free cluster, it will check
815c2c54 457 * si->swap_map directly. To make sure the discarding cluster isn't
bb243f7d
ML
458 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
459 * It will be cleared after discard
815c2c54
SL
460 */
461 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463
6b534915 464 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
465
466 schedule_work(&si->discard_work);
467}
468
38d8b4e6
HY
469static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470{
471 struct swap_cluster_info *ci = si->cluster_info;
472
473 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474 cluster_list_add_tail(&si->free_clusters, ci, idx);
475}
476
815c2c54
SL
477/*
478 * Doing discard actually. After a cluster discard is finished, the cluster
479 * will be added to free cluster list. caller should hold si->lock.
480*/
481static void swap_do_scheduled_discard(struct swap_info_struct *si)
482{
235b6217 483 struct swap_cluster_info *info, *ci;
815c2c54
SL
484 unsigned int idx;
485
486 info = si->cluster_info;
487
6b534915
HY
488 while (!cluster_list_empty(&si->discard_clusters)) {
489 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
490 spin_unlock(&si->lock);
491
492 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493 SWAPFILE_CLUSTER);
494
495 spin_lock(&si->lock);
235b6217 496 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 497 __free_cluster(si, idx);
815c2c54
SL
498 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499 0, SWAPFILE_CLUSTER);
235b6217 500 unlock_cluster(ci);
815c2c54
SL
501 }
502}
503
504static void swap_discard_work(struct work_struct *work)
505{
506 struct swap_info_struct *si;
507
508 si = container_of(work, struct swap_info_struct, discard_work);
509
510 spin_lock(&si->lock);
511 swap_do_scheduled_discard(si);
512 spin_unlock(&si->lock);
513}
514
63d8620e
ML
515static void swap_users_ref_free(struct percpu_ref *ref)
516{
517 struct swap_info_struct *si;
518
519 si = container_of(ref, struct swap_info_struct, users);
520 complete(&si->comp);
521}
522
38d8b4e6
HY
523static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
524{
525 struct swap_cluster_info *ci = si->cluster_info;
526
527 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
528 cluster_list_del_first(&si->free_clusters, ci);
529 cluster_set_count_flag(ci + idx, 0, 0);
530}
531
532static void free_cluster(struct swap_info_struct *si, unsigned long idx)
533{
534 struct swap_cluster_info *ci = si->cluster_info + idx;
535
536 VM_BUG_ON(cluster_count(ci) != 0);
537 /*
538 * If the swap is discardable, prepare discard the cluster
539 * instead of free it immediately. The cluster will be freed
540 * after discard.
541 */
542 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
543 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
544 swap_cluster_schedule_discard(si, idx);
545 return;
546 }
547
548 __free_cluster(si, idx);
549}
550
2a8f9449
SL
551/*
552 * The cluster corresponding to page_nr will be used. The cluster will be
553 * removed from free cluster list and its usage counter will be increased.
554 */
555static void inc_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557{
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
38d8b4e6
HY
562 if (cluster_is_free(&cluster_info[idx]))
563 alloc_cluster(p, idx);
2a8f9449
SL
564
565 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
566 cluster_set_count(&cluster_info[idx],
567 cluster_count(&cluster_info[idx]) + 1);
568}
569
570/*
571 * The cluster corresponding to page_nr decreases one usage. If the usage
572 * counter becomes 0, which means no page in the cluster is in using, we can
573 * optionally discard the cluster and add it to free cluster list.
574 */
575static void dec_cluster_info_page(struct swap_info_struct *p,
576 struct swap_cluster_info *cluster_info, unsigned long page_nr)
577{
578 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
579
580 if (!cluster_info)
581 return;
582
583 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
584 cluster_set_count(&cluster_info[idx],
585 cluster_count(&cluster_info[idx]) - 1);
586
38d8b4e6
HY
587 if (cluster_count(&cluster_info[idx]) == 0)
588 free_cluster(p, idx);
2a8f9449
SL
589}
590
591/*
bb243f7d 592 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
2a8f9449
SL
593 * cluster list. Avoiding such abuse to avoid list corruption.
594 */
ebc2a1a6
SL
595static bool
596scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
597 unsigned long offset)
598{
ebc2a1a6
SL
599 struct percpu_cluster *percpu_cluster;
600 bool conflict;
601
2a8f9449 602 offset /= SWAPFILE_CLUSTER;
6b534915
HY
603 conflict = !cluster_list_empty(&si->free_clusters) &&
604 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 605 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
606
607 if (!conflict)
608 return false;
609
610 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
611 cluster_set_null(&percpu_cluster->index);
612 return true;
613}
614
615/*
616 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
617 * might involve allocating a new cluster for current CPU too.
618 */
36005bae 619static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
620 unsigned long *offset, unsigned long *scan_base)
621{
622 struct percpu_cluster *cluster;
235b6217 623 struct swap_cluster_info *ci;
235b6217 624 unsigned long tmp, max;
ebc2a1a6
SL
625
626new_cluster:
627 cluster = this_cpu_ptr(si->percpu_cluster);
628 if (cluster_is_null(&cluster->index)) {
6b534915
HY
629 if (!cluster_list_empty(&si->free_clusters)) {
630 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
631 cluster->next = cluster_next(&cluster->index) *
632 SWAPFILE_CLUSTER;
6b534915 633 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
634 /*
635 * we don't have free cluster but have some clusters in
49070588
HY
636 * discarding, do discard now and reclaim them, then
637 * reread cluster_next_cpu since we dropped si->lock
ebc2a1a6
SL
638 */
639 swap_do_scheduled_discard(si);
49070588
HY
640 *scan_base = this_cpu_read(*si->cluster_next_cpu);
641 *offset = *scan_base;
ebc2a1a6
SL
642 goto new_cluster;
643 } else
36005bae 644 return false;
ebc2a1a6
SL
645 }
646
ebc2a1a6
SL
647 /*
648 * Other CPUs can use our cluster if they can't find a free cluster,
649 * check if there is still free entry in the cluster
650 */
651 tmp = cluster->next;
235b6217
HY
652 max = min_t(unsigned long, si->max,
653 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
7b9e2de1
WY
654 if (tmp < max) {
655 ci = lock_cluster(si, tmp);
656 while (tmp < max) {
657 if (!si->swap_map[tmp])
658 break;
659 tmp++;
660 }
661 unlock_cluster(ci);
ebc2a1a6 662 }
0fd0e19e 663 if (tmp >= max) {
ebc2a1a6
SL
664 cluster_set_null(&cluster->index);
665 goto new_cluster;
666 }
667 cluster->next = tmp + 1;
668 *offset = tmp;
669 *scan_base = tmp;
fdff1deb 670 return true;
2a8f9449
SL
671}
672
a2468cc9
AL
673static void __del_from_avail_list(struct swap_info_struct *p)
674{
675 int nid;
676
677 for_each_node(nid)
678 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
679}
680
681static void del_from_avail_list(struct swap_info_struct *p)
682{
683 spin_lock(&swap_avail_lock);
684 __del_from_avail_list(p);
685 spin_unlock(&swap_avail_lock);
686}
687
38d8b4e6
HY
688static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
689 unsigned int nr_entries)
690{
691 unsigned int end = offset + nr_entries - 1;
692
693 if (offset == si->lowest_bit)
694 si->lowest_bit += nr_entries;
695 if (end == si->highest_bit)
a449bf58 696 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
38d8b4e6
HY
697 si->inuse_pages += nr_entries;
698 if (si->inuse_pages == si->pages) {
699 si->lowest_bit = si->max;
700 si->highest_bit = 0;
a2468cc9 701 del_from_avail_list(si);
38d8b4e6
HY
702 }
703}
704
a2468cc9
AL
705static void add_to_avail_list(struct swap_info_struct *p)
706{
707 int nid;
708
709 spin_lock(&swap_avail_lock);
710 for_each_node(nid) {
711 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
712 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713 }
714 spin_unlock(&swap_avail_lock);
715}
716
38d8b4e6
HY
717static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
718 unsigned int nr_entries)
719{
3852f676 720 unsigned long begin = offset;
38d8b4e6
HY
721 unsigned long end = offset + nr_entries - 1;
722 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723
724 if (offset < si->lowest_bit)
725 si->lowest_bit = offset;
726 if (end > si->highest_bit) {
727 bool was_full = !si->highest_bit;
728
a449bf58 729 WRITE_ONCE(si->highest_bit, end);
a2468cc9
AL
730 if (was_full && (si->flags & SWP_WRITEOK))
731 add_to_avail_list(si);
38d8b4e6
HY
732 }
733 atomic_long_add(nr_entries, &nr_swap_pages);
734 si->inuse_pages -= nr_entries;
735 if (si->flags & SWP_BLKDEV)
736 swap_slot_free_notify =
737 si->bdev->bd_disk->fops->swap_slot_free_notify;
738 else
739 swap_slot_free_notify = NULL;
740 while (offset <= end) {
8a84802e 741 arch_swap_invalidate_page(si->type, offset);
38d8b4e6
HY
742 frontswap_invalidate_page(si->type, offset);
743 if (swap_slot_free_notify)
744 swap_slot_free_notify(si->bdev, offset);
745 offset++;
746 }
3852f676 747 clear_shadow_from_swap_cache(si->type, begin, end);
38d8b4e6
HY
748}
749
49070588
HY
750static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
751{
752 unsigned long prev;
753
754 if (!(si->flags & SWP_SOLIDSTATE)) {
755 si->cluster_next = next;
756 return;
757 }
758
759 prev = this_cpu_read(*si->cluster_next_cpu);
760 /*
761 * Cross the swap address space size aligned trunk, choose
762 * another trunk randomly to avoid lock contention on swap
763 * address space if possible.
764 */
765 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
766 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
767 /* No free swap slots available */
768 if (si->highest_bit <= si->lowest_bit)
769 return;
770 next = si->lowest_bit +
771 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
772 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
773 next = max_t(unsigned int, next, si->lowest_bit);
774 }
775 this_cpu_write(*si->cluster_next_cpu, next);
776}
777
4b9ae842
ML
778static bool swap_offset_available_and_locked(struct swap_info_struct *si,
779 unsigned long offset)
780{
781 if (data_race(!si->swap_map[offset])) {
782 spin_lock(&si->lock);
783 return true;
784 }
785
786 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
787 spin_lock(&si->lock);
788 return true;
789 }
790
791 return false;
792}
793
36005bae
TC
794static int scan_swap_map_slots(struct swap_info_struct *si,
795 unsigned char usage, int nr,
796 swp_entry_t slots[])
1da177e4 797{
235b6217 798 struct swap_cluster_info *ci;
ebebbbe9 799 unsigned long offset;
c60aa176 800 unsigned long scan_base;
7992fde7 801 unsigned long last_in_cluster = 0;
048c27fd 802 int latency_ration = LATENCY_LIMIT;
36005bae 803 int n_ret = 0;
ed43af10 804 bool scanned_many = false;
36005bae 805
886bb7e9 806 /*
7dfad418
HD
807 * We try to cluster swap pages by allocating them sequentially
808 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
809 * way, however, we resort to first-free allocation, starting
810 * a new cluster. This prevents us from scattering swap pages
811 * all over the entire swap partition, so that we reduce
812 * overall disk seek times between swap pages. -- sct
813 * But we do now try to find an empty cluster. -Andrea
c60aa176 814 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
815 */
816
52b7efdb 817 si->flags += SWP_SCANNING;
49070588
HY
818 /*
819 * Use percpu scan base for SSD to reduce lock contention on
820 * cluster and swap cache. For HDD, sequential access is more
821 * important.
822 */
823 if (si->flags & SWP_SOLIDSTATE)
824 scan_base = this_cpu_read(*si->cluster_next_cpu);
825 else
826 scan_base = si->cluster_next;
827 offset = scan_base;
ebebbbe9 828
ebc2a1a6
SL
829 /* SSD algorithm */
830 if (si->cluster_info) {
bd2d18da 831 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 832 goto scan;
f4eaf51a 833 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
834 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
835 si->cluster_nr = SWAPFILE_CLUSTER - 1;
836 goto checks;
837 }
2a8f9449 838
ec8acf20 839 spin_unlock(&si->lock);
7dfad418 840
c60aa176
HD
841 /*
842 * If seek is expensive, start searching for new cluster from
843 * start of partition, to minimize the span of allocated swap.
50088c44
CY
844 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
845 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 846 */
50088c44 847 scan_base = offset = si->lowest_bit;
7dfad418
HD
848 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
849
850 /* Locate the first empty (unaligned) cluster */
851 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 852 if (si->swap_map[offset])
7dfad418
HD
853 last_in_cluster = offset + SWAPFILE_CLUSTER;
854 else if (offset == last_in_cluster) {
ec8acf20 855 spin_lock(&si->lock);
ebebbbe9
HD
856 offset -= SWAPFILE_CLUSTER - 1;
857 si->cluster_next = offset;
858 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
859 goto checks;
860 }
861 if (unlikely(--latency_ration < 0)) {
862 cond_resched();
863 latency_ration = LATENCY_LIMIT;
864 }
865 }
866
867 offset = scan_base;
ec8acf20 868 spin_lock(&si->lock);
ebebbbe9 869 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 870 }
7dfad418 871
ebebbbe9 872checks:
ebc2a1a6 873 if (si->cluster_info) {
36005bae
TC
874 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
875 /* take a break if we already got some slots */
876 if (n_ret)
877 goto done;
878 if (!scan_swap_map_try_ssd_cluster(si, &offset,
879 &scan_base))
880 goto scan;
881 }
ebc2a1a6 882 }
ebebbbe9 883 if (!(si->flags & SWP_WRITEOK))
52b7efdb 884 goto no_page;
7dfad418
HD
885 if (!si->highest_bit)
886 goto no_page;
ebebbbe9 887 if (offset > si->highest_bit)
c60aa176 888 scan_base = offset = si->lowest_bit;
c9e44410 889
235b6217 890 ci = lock_cluster(si, offset);
b73d7fce
HD
891 /* reuse swap entry of cache-only swap if not busy. */
892 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 893 int swap_was_freed;
235b6217 894 unlock_cluster(ci);
ec8acf20 895 spin_unlock(&si->lock);
bcd49e86 896 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 897 spin_lock(&si->lock);
c9e44410
KH
898 /* entry was freed successfully, try to use this again */
899 if (swap_was_freed)
900 goto checks;
901 goto scan; /* check next one */
902 }
903
235b6217
HY
904 if (si->swap_map[offset]) {
905 unlock_cluster(ci);
36005bae
TC
906 if (!n_ret)
907 goto scan;
908 else
909 goto done;
235b6217 910 }
a449bf58 911 WRITE_ONCE(si->swap_map[offset], usage);
2872bb2d
HY
912 inc_cluster_info_page(si, si->cluster_info, offset);
913 unlock_cluster(ci);
ebebbbe9 914
38d8b4e6 915 swap_range_alloc(si, offset, 1);
36005bae
TC
916 slots[n_ret++] = swp_entry(si->type, offset);
917
918 /* got enough slots or reach max slots? */
919 if ((n_ret == nr) || (offset >= si->highest_bit))
920 goto done;
921
922 /* search for next available slot */
923
924 /* time to take a break? */
925 if (unlikely(--latency_ration < 0)) {
926 if (n_ret)
927 goto done;
928 spin_unlock(&si->lock);
929 cond_resched();
930 spin_lock(&si->lock);
931 latency_ration = LATENCY_LIMIT;
932 }
933
934 /* try to get more slots in cluster */
935 if (si->cluster_info) {
936 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
937 goto checks;
f4eaf51a
WY
938 } else if (si->cluster_nr && !si->swap_map[++offset]) {
939 /* non-ssd case, still more slots in cluster? */
36005bae
TC
940 --si->cluster_nr;
941 goto checks;
942 }
7992fde7 943
ed43af10
HY
944 /*
945 * Even if there's no free clusters available (fragmented),
946 * try to scan a little more quickly with lock held unless we
947 * have scanned too many slots already.
948 */
949 if (!scanned_many) {
950 unsigned long scan_limit;
951
952 if (offset < scan_base)
953 scan_limit = scan_base;
954 else
955 scan_limit = si->highest_bit;
956 for (; offset <= scan_limit && --latency_ration > 0;
957 offset++) {
958 if (!si->swap_map[offset])
959 goto checks;
960 }
961 }
962
36005bae 963done:
49070588 964 set_cluster_next(si, offset + 1);
36005bae
TC
965 si->flags -= SWP_SCANNING;
966 return n_ret;
7dfad418 967
ebebbbe9 968scan:
ec8acf20 969 spin_unlock(&si->lock);
a449bf58 970 while (++offset <= READ_ONCE(si->highest_bit)) {
4b9ae842 971 if (swap_offset_available_and_locked(si, offset))
c9e44410 972 goto checks;
048c27fd
HD
973 if (unlikely(--latency_ration < 0)) {
974 cond_resched();
975 latency_ration = LATENCY_LIMIT;
ed43af10 976 scanned_many = true;
048c27fd 977 }
7dfad418 978 }
c60aa176 979 offset = si->lowest_bit;
a5998061 980 while (offset < scan_base) {
4b9ae842 981 if (swap_offset_available_and_locked(si, offset))
c9e44410 982 goto checks;
c60aa176
HD
983 if (unlikely(--latency_ration < 0)) {
984 cond_resched();
985 latency_ration = LATENCY_LIMIT;
ed43af10 986 scanned_many = true;
c60aa176 987 }
a5998061 988 offset++;
c60aa176 989 }
ec8acf20 990 spin_lock(&si->lock);
7dfad418
HD
991
992no_page:
52b7efdb 993 si->flags -= SWP_SCANNING;
36005bae 994 return n_ret;
1da177e4
LT
995}
996
38d8b4e6
HY
997static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
998{
999 unsigned long idx;
1000 struct swap_cluster_info *ci;
661c7566 1001 unsigned long offset;
38d8b4e6 1002
fe5266d5
HY
1003 /*
1004 * Should not even be attempting cluster allocations when huge
1005 * page swap is disabled. Warn and fail the allocation.
1006 */
1007 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1008 VM_WARN_ON_ONCE(1);
1009 return 0;
1010 }
1011
38d8b4e6
HY
1012 if (cluster_list_empty(&si->free_clusters))
1013 return 0;
1014
1015 idx = cluster_list_first(&si->free_clusters);
1016 offset = idx * SWAPFILE_CLUSTER;
1017 ci = lock_cluster(si, offset);
1018 alloc_cluster(si, idx);
e0709829 1019 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6 1020
661c7566 1021 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
38d8b4e6
HY
1022 unlock_cluster(ci);
1023 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1024 *slot = swp_entry(si->type, offset);
1025
1026 return 1;
1027}
1028
1029static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1030{
1031 unsigned long offset = idx * SWAPFILE_CLUSTER;
1032 struct swap_cluster_info *ci;
1033
1034 ci = lock_cluster(si, offset);
979aafa5 1035 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
1036 cluster_set_count_flag(ci, 0, 0);
1037 free_cluster(si, idx);
1038 unlock_cluster(ci);
1039 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1040}
38d8b4e6 1041
5d5e8f19 1042int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 1043{
5d5e8f19 1044 unsigned long size = swap_entry_size(entry_size);
adfab836 1045 struct swap_info_struct *si, *next;
36005bae
TC
1046 long avail_pgs;
1047 int n_ret = 0;
a2468cc9 1048 int node;
1da177e4 1049
38d8b4e6 1050 /* Only single cluster request supported */
5d5e8f19 1051 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1052
b50da6e9
ZH
1053 spin_lock(&swap_avail_lock);
1054
5d5e8f19 1055 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
b50da6e9
ZH
1056 if (avail_pgs <= 0) {
1057 spin_unlock(&swap_avail_lock);
fb4f88dc 1058 goto noswap;
b50da6e9 1059 }
36005bae 1060
08d3090f 1061 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 1062
5d5e8f19 1063 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1064
18ab4d4c 1065start_over:
a2468cc9
AL
1066 node = numa_node_id();
1067 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1068 /* requeue si to after same-priority siblings */
a2468cc9 1069 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1070 spin_unlock(&swap_avail_lock);
ec8acf20 1071 spin_lock(&si->lock);
adfab836 1072 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1073 spin_lock(&swap_avail_lock);
a2468cc9 1074 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1075 spin_unlock(&si->lock);
1076 goto nextsi;
1077 }
1078 WARN(!si->highest_bit,
1079 "swap_info %d in list but !highest_bit\n",
1080 si->type);
1081 WARN(!(si->flags & SWP_WRITEOK),
1082 "swap_info %d in list but !SWP_WRITEOK\n",
1083 si->type);
a2468cc9 1084 __del_from_avail_list(si);
ec8acf20 1085 spin_unlock(&si->lock);
18ab4d4c 1086 goto nextsi;
ec8acf20 1087 }
5d5e8f19 1088 if (size == SWAPFILE_CLUSTER) {
41663430 1089 if (si->flags & SWP_BLKDEV)
f0eea189
HY
1090 n_ret = swap_alloc_cluster(si, swp_entries);
1091 } else
38d8b4e6
HY
1092 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1093 n_goal, swp_entries);
ec8acf20 1094 spin_unlock(&si->lock);
5d5e8f19 1095 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1096 goto check_out;
18ab4d4c 1097 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1098 si->type);
1099
18ab4d4c
DS
1100 spin_lock(&swap_avail_lock);
1101nextsi:
adfab836
DS
1102 /*
1103 * if we got here, it's likely that si was almost full before,
bb243f7d
ML
1104 * and since scan_swap_map_slots() can drop the si->lock,
1105 * multiple callers probably all tried to get a page from the
1106 * same si and it filled up before we could get one; or, the si
1107 * filled up between us dropping swap_avail_lock and taking
1108 * si->lock. Since we dropped the swap_avail_lock, the
1109 * swap_avail_head list may have been modified; so if next is
1110 * still in the swap_avail_head list then try it, otherwise
1111 * start over if we have not gotten any slots.
adfab836 1112 */
a2468cc9 1113 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1114 goto start_over;
1da177e4 1115 }
fb4f88dc 1116
18ab4d4c
DS
1117 spin_unlock(&swap_avail_lock);
1118
36005bae
TC
1119check_out:
1120 if (n_ret < n_goal)
5d5e8f19 1121 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1122 &nr_swap_pages);
fb4f88dc 1123noswap:
36005bae
TC
1124 return n_ret;
1125}
1126
afba72b1 1127static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1da177e4 1128{
73c34b6a 1129 struct swap_info_struct *p;
eb085574 1130 unsigned long offset;
1da177e4
LT
1131
1132 if (!entry.val)
1133 goto out;
eb085574 1134 p = swp_swap_info(entry);
c10d38cc 1135 if (!p)
1da177e4 1136 goto bad_nofile;
a449bf58 1137 if (data_race(!(p->flags & SWP_USED)))
1da177e4
LT
1138 goto bad_device;
1139 offset = swp_offset(entry);
1140 if (offset >= p->max)
1141 goto bad_offset;
afba72b1
ML
1142 if (data_race(!p->swap_map[swp_offset(entry)]))
1143 goto bad_free;
1da177e4
LT
1144 return p;
1145
afba72b1
ML
1146bad_free:
1147 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1148 goto out;
1da177e4 1149bad_offset:
cf532faa 1150 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1da177e4
LT
1151 goto out;
1152bad_device:
cf532faa 1153 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1da177e4
LT
1154 goto out;
1155bad_nofile:
cf532faa 1156 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1da177e4
LT
1157out:
1158 return NULL;
e8c26ab6
TC
1159}
1160
7c00bafe
TC
1161static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1162 struct swap_info_struct *q)
1163{
1164 struct swap_info_struct *p;
1165
1166 p = _swap_info_get(entry);
1167
1168 if (p != q) {
1169 if (q != NULL)
1170 spin_unlock(&q->lock);
1171 if (p != NULL)
1172 spin_lock(&p->lock);
1173 }
1174 return p;
1175}
1176
b32d5f32
HY
1177static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1178 unsigned long offset,
1179 unsigned char usage)
1da177e4 1180{
8d69aaee
HD
1181 unsigned char count;
1182 unsigned char has_cache;
235b6217 1183
253d553b 1184 count = p->swap_map[offset];
235b6217 1185
253d553b
HD
1186 has_cache = count & SWAP_HAS_CACHE;
1187 count &= ~SWAP_HAS_CACHE;
355cfa73 1188
253d553b 1189 if (usage == SWAP_HAS_CACHE) {
355cfa73 1190 VM_BUG_ON(!has_cache);
253d553b 1191 has_cache = 0;
aaa46865
HD
1192 } else if (count == SWAP_MAP_SHMEM) {
1193 /*
1194 * Or we could insist on shmem.c using a special
1195 * swap_shmem_free() and free_shmem_swap_and_cache()...
1196 */
1197 count = 0;
570a335b
HD
1198 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1199 if (count == COUNT_CONTINUED) {
1200 if (swap_count_continued(p, offset, count))
1201 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1202 else
1203 count = SWAP_MAP_MAX;
1204 } else
1205 count--;
1206 }
253d553b 1207
253d553b 1208 usage = count | has_cache;
a449bf58
QC
1209 if (usage)
1210 WRITE_ONCE(p->swap_map[offset], usage);
1211 else
1212 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
7c00bafe 1213
b32d5f32
HY
1214 return usage;
1215}
1216
eb085574
HY
1217/*
1218 * Check whether swap entry is valid in the swap device. If so,
1219 * return pointer to swap_info_struct, and keep the swap entry valid
1220 * via preventing the swap device from being swapoff, until
1221 * put_swap_device() is called. Otherwise return NULL.
1222 *
eb085574 1223 * Notice that swapoff or swapoff+swapon can still happen before the
63d8620e
ML
1224 * percpu_ref_tryget_live() in get_swap_device() or after the
1225 * percpu_ref_put() in put_swap_device() if there isn't any other way
1226 * to prevent swapoff, such as page lock, page table lock, etc. The
1227 * caller must be prepared for that. For example, the following
1228 * situation is possible.
eb085574
HY
1229 *
1230 * CPU1 CPU2
1231 * do_swap_page()
1232 * ... swapoff+swapon
1233 * __read_swap_cache_async()
1234 * swapcache_prepare()
1235 * __swap_duplicate()
1236 * // check swap_map
1237 * // verify PTE not changed
1238 *
1239 * In __swap_duplicate(), the swap_map need to be checked before
1240 * changing partly because the specified swap entry may be for another
1241 * swap device which has been swapoff. And in do_swap_page(), after
1242 * the page is read from the swap device, the PTE is verified not
1243 * changed with the page table locked to check whether the swap device
1244 * has been swapoff or swapoff+swapon.
1245 */
1246struct swap_info_struct *get_swap_device(swp_entry_t entry)
1247{
1248 struct swap_info_struct *si;
1249 unsigned long offset;
1250
1251 if (!entry.val)
1252 goto out;
1253 si = swp_swap_info(entry);
1254 if (!si)
1255 goto bad_nofile;
63d8620e
ML
1256 if (!percpu_ref_tryget_live(&si->users))
1257 goto out;
1258 /*
1259 * Guarantee the si->users are checked before accessing other
1260 * fields of swap_info_struct.
1261 *
1262 * Paired with the spin_unlock() after setup_swap_info() in
1263 * enable_swap_info().
1264 */
1265 smp_rmb();
eb085574
HY
1266 offset = swp_offset(entry);
1267 if (offset >= si->max)
63d8620e 1268 goto put_out;
eb085574
HY
1269
1270 return si;
1271bad_nofile:
1272 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1273out:
1274 return NULL;
63d8620e 1275put_out:
23b230ba 1276 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
63d8620e 1277 percpu_ref_put(&si->users);
eb085574
HY
1278 return NULL;
1279}
1280
b32d5f32 1281static unsigned char __swap_entry_free(struct swap_info_struct *p,
33e16272 1282 swp_entry_t entry)
b32d5f32
HY
1283{
1284 struct swap_cluster_info *ci;
1285 unsigned long offset = swp_offset(entry);
33e16272 1286 unsigned char usage;
b32d5f32
HY
1287
1288 ci = lock_cluster_or_swap_info(p, offset);
33e16272 1289 usage = __swap_entry_free_locked(p, offset, 1);
7c00bafe 1290 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1291 if (!usage)
1292 free_swap_slot(entry);
7c00bafe
TC
1293
1294 return usage;
1295}
355cfa73 1296
7c00bafe
TC
1297static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1298{
1299 struct swap_cluster_info *ci;
1300 unsigned long offset = swp_offset(entry);
1301 unsigned char count;
1302
1303 ci = lock_cluster(p, offset);
1304 count = p->swap_map[offset];
1305 VM_BUG_ON(count != SWAP_HAS_CACHE);
1306 p->swap_map[offset] = 0;
1307 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1308 unlock_cluster(ci);
1309
38d8b4e6
HY
1310 mem_cgroup_uncharge_swap(entry, 1);
1311 swap_range_free(p, offset, 1);
1da177e4
LT
1312}
1313
1314/*
2de1a7e4 1315 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1316 * is still around or has not been recycled.
1317 */
1318void swap_free(swp_entry_t entry)
1319{
73c34b6a 1320 struct swap_info_struct *p;
1da177e4 1321
235b6217 1322 p = _swap_info_get(entry);
10e364da 1323 if (p)
33e16272 1324 __swap_entry_free(p, entry);
1da177e4
LT
1325}
1326
cb4b86ba
KH
1327/*
1328 * Called after dropping swapcache to decrease refcnt to swap entries.
1329 */
a448f2d0 1330void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1331{
1332 unsigned long offset = swp_offset(entry);
1333 unsigned long idx = offset / SWAPFILE_CLUSTER;
1334 struct swap_cluster_info *ci;
1335 struct swap_info_struct *si;
1336 unsigned char *map;
a3aea839
HY
1337 unsigned int i, free_entries = 0;
1338 unsigned char val;
6c357848 1339 int size = swap_entry_size(thp_nr_pages(page));
fe5266d5 1340
a3aea839 1341 si = _swap_info_get(entry);
38d8b4e6
HY
1342 if (!si)
1343 return;
1344
c2343d27 1345 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1346 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1347 VM_BUG_ON(!cluster_is_huge(ci));
1348 map = si->swap_map + offset;
1349 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1350 val = map[i];
1351 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1352 if (val == SWAP_HAS_CACHE)
1353 free_entries++;
1354 }
a448f2d0 1355 cluster_clear_huge(ci);
a448f2d0 1356 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1357 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1358 spin_lock(&si->lock);
a448f2d0
HY
1359 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1360 swap_free_cluster(si, idx);
1361 spin_unlock(&si->lock);
1362 return;
1363 }
1364 }
c2343d27
HY
1365 for (i = 0; i < size; i++, entry.val++) {
1366 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1367 unlock_cluster_or_swap_info(si, ci);
1368 free_swap_slot(entry);
1369 if (i == size - 1)
1370 return;
1371 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1372 }
1373 }
c2343d27 1374 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1375}
59807685 1376
fe5266d5 1377#ifdef CONFIG_THP_SWAP
59807685
HY
1378int split_swap_cluster(swp_entry_t entry)
1379{
1380 struct swap_info_struct *si;
1381 struct swap_cluster_info *ci;
1382 unsigned long offset = swp_offset(entry);
1383
1384 si = _swap_info_get(entry);
1385 if (!si)
1386 return -EBUSY;
1387 ci = lock_cluster(si, offset);
1388 cluster_clear_huge(ci);
1389 unlock_cluster(ci);
1390 return 0;
1391}
fe5266d5 1392#endif
38d8b4e6 1393
155b5f88
HY
1394static int swp_entry_cmp(const void *ent1, const void *ent2)
1395{
1396 const swp_entry_t *e1 = ent1, *e2 = ent2;
1397
1398 return (int)swp_type(*e1) - (int)swp_type(*e2);
1399}
1400
7c00bafe
TC
1401void swapcache_free_entries(swp_entry_t *entries, int n)
1402{
1403 struct swap_info_struct *p, *prev;
1404 int i;
1405
1406 if (n <= 0)
1407 return;
1408
1409 prev = NULL;
1410 p = NULL;
155b5f88
HY
1411
1412 /*
1413 * Sort swap entries by swap device, so each lock is only taken once.
1414 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1415 * so low that it isn't necessary to optimize further.
1416 */
1417 if (nr_swapfiles > 1)
1418 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1419 for (i = 0; i < n; ++i) {
1420 p = swap_info_get_cont(entries[i], prev);
1421 if (p)
1422 swap_entry_free(p, entries[i]);
7c00bafe
TC
1423 prev = p;
1424 }
235b6217 1425 if (p)
7c00bafe 1426 spin_unlock(&p->lock);
cb4b86ba
KH
1427}
1428
1da177e4 1429/*
c475a8ab 1430 * How many references to page are currently swapped out?
570a335b
HD
1431 * This does not give an exact answer when swap count is continued,
1432 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1433 */
3db3264d 1434static int page_swapcount(struct page *page)
1da177e4 1435{
c475a8ab
HD
1436 int count = 0;
1437 struct swap_info_struct *p;
235b6217 1438 struct swap_cluster_info *ci;
1da177e4 1439 swp_entry_t entry;
235b6217 1440 unsigned long offset;
1da177e4 1441
4c21e2f2 1442 entry.val = page_private(page);
235b6217 1443 p = _swap_info_get(entry);
1da177e4 1444 if (p) {
235b6217
HY
1445 offset = swp_offset(entry);
1446 ci = lock_cluster_or_swap_info(p, offset);
1447 count = swap_count(p->swap_map[offset]);
1448 unlock_cluster_or_swap_info(p, ci);
1da177e4 1449 }
c475a8ab 1450 return count;
1da177e4
LT
1451}
1452
eb085574 1453int __swap_count(swp_entry_t entry)
aa8d22a1 1454{
eb085574 1455 struct swap_info_struct *si;
aa8d22a1 1456 pgoff_t offset = swp_offset(entry);
eb085574 1457 int count = 0;
aa8d22a1 1458
eb085574
HY
1459 si = get_swap_device(entry);
1460 if (si) {
1461 count = swap_count(si->swap_map[offset]);
1462 put_swap_device(si);
1463 }
1464 return count;
aa8d22a1
MK
1465}
1466
322b8afe
HY
1467static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1468{
1469 int count = 0;
1470 pgoff_t offset = swp_offset(entry);
1471 struct swap_cluster_info *ci;
1472
1473 ci = lock_cluster_or_swap_info(si, offset);
1474 count = swap_count(si->swap_map[offset]);
1475 unlock_cluster_or_swap_info(si, ci);
1476 return count;
1477}
1478
e8c26ab6
TC
1479/*
1480 * How many references to @entry are currently swapped out?
1481 * This does not give an exact answer when swap count is continued,
1482 * but does include the high COUNT_CONTINUED flag to allow for that.
1483 */
1484int __swp_swapcount(swp_entry_t entry)
1485{
1486 int count = 0;
e8c26ab6 1487 struct swap_info_struct *si;
e8c26ab6 1488
eb085574
HY
1489 si = get_swap_device(entry);
1490 if (si) {
322b8afe 1491 count = swap_swapcount(si, entry);
eb085574
HY
1492 put_swap_device(si);
1493 }
e8c26ab6
TC
1494 return count;
1495}
1496
8334b962
MK
1497/*
1498 * How many references to @entry are currently swapped out?
1499 * This considers COUNT_CONTINUED so it returns exact answer.
1500 */
1501int swp_swapcount(swp_entry_t entry)
1502{
1503 int count, tmp_count, n;
1504 struct swap_info_struct *p;
235b6217 1505 struct swap_cluster_info *ci;
8334b962
MK
1506 struct page *page;
1507 pgoff_t offset;
1508 unsigned char *map;
1509
235b6217 1510 p = _swap_info_get(entry);
8334b962
MK
1511 if (!p)
1512 return 0;
1513
235b6217
HY
1514 offset = swp_offset(entry);
1515
1516 ci = lock_cluster_or_swap_info(p, offset);
1517
1518 count = swap_count(p->swap_map[offset]);
8334b962
MK
1519 if (!(count & COUNT_CONTINUED))
1520 goto out;
1521
1522 count &= ~COUNT_CONTINUED;
1523 n = SWAP_MAP_MAX + 1;
1524
8334b962
MK
1525 page = vmalloc_to_page(p->swap_map + offset);
1526 offset &= ~PAGE_MASK;
1527 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1528
1529 do {
a8ae4991 1530 page = list_next_entry(page, lru);
8334b962
MK
1531 map = kmap_atomic(page);
1532 tmp_count = map[offset];
1533 kunmap_atomic(map);
1534
1535 count += (tmp_count & ~COUNT_CONTINUED) * n;
1536 n *= (SWAP_CONT_MAX + 1);
1537 } while (tmp_count & COUNT_CONTINUED);
1538out:
235b6217 1539 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1540 return count;
1541}
1542
e0709829
HY
1543static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1544 swp_entry_t entry)
1545{
1546 struct swap_cluster_info *ci;
1547 unsigned char *map = si->swap_map;
1548 unsigned long roffset = swp_offset(entry);
1549 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1550 int i;
1551 bool ret = false;
1552
1553 ci = lock_cluster_or_swap_info(si, offset);
1554 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1555 if (swap_count(map[roffset]))
e0709829
HY
1556 ret = true;
1557 goto unlock_out;
1558 }
1559 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1560 if (swap_count(map[offset + i])) {
e0709829
HY
1561 ret = true;
1562 break;
1563 }
1564 }
1565unlock_out:
1566 unlock_cluster_or_swap_info(si, ci);
1567 return ret;
1568}
1569
1570static bool page_swapped(struct page *page)
1571{
1572 swp_entry_t entry;
1573 struct swap_info_struct *si;
1574
fe5266d5 1575 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1576 return page_swapcount(page) != 0;
1577
1578 page = compound_head(page);
1579 entry.val = page_private(page);
1580 si = _swap_info_get(entry);
1581 if (si)
1582 return swap_page_trans_huge_swapped(si, entry);
1583 return false;
1584}
ba3c4ce6 1585
1da177e4 1586/*
a2c43eed
HD
1587 * If swap is getting full, or if there are no more mappings of this page,
1588 * then try_to_free_swap is called to free its swap space.
1da177e4 1589 */
a2c43eed 1590int try_to_free_swap(struct page *page)
1da177e4 1591{
309381fe 1592 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1593
1594 if (!PageSwapCache(page))
1595 return 0;
1596 if (PageWriteback(page))
1597 return 0;
e0709829 1598 if (page_swapped(page))
1da177e4
LT
1599 return 0;
1600
b73d7fce
HD
1601 /*
1602 * Once hibernation has begun to create its image of memory,
1603 * there's a danger that one of the calls to try_to_free_swap()
1604 * - most probably a call from __try_to_reclaim_swap() while
1605 * hibernation is allocating its own swap pages for the image,
1606 * but conceivably even a call from memory reclaim - will free
1607 * the swap from a page which has already been recorded in the
1608 * image as a clean swapcache page, and then reuse its swap for
1609 * another page of the image. On waking from hibernation, the
1610 * original page might be freed under memory pressure, then
1611 * later read back in from swap, now with the wrong data.
1612 *
2de1a7e4 1613 * Hibernation suspends storage while it is writing the image
f90ac398 1614 * to disk so check that here.
b73d7fce 1615 */
f90ac398 1616 if (pm_suspended_storage())
b73d7fce
HD
1617 return 0;
1618
e0709829 1619 page = compound_head(page);
a2c43eed
HD
1620 delete_from_swap_cache(page);
1621 SetPageDirty(page);
1622 return 1;
68a22394
RR
1623}
1624
1da177e4
LT
1625/*
1626 * Free the swap entry like above, but also try to
1627 * free the page cache entry if it is the last user.
1628 */
2509ef26 1629int free_swap_and_cache(swp_entry_t entry)
1da177e4 1630{
2509ef26 1631 struct swap_info_struct *p;
7c00bafe 1632 unsigned char count;
1da177e4 1633
a7420aa5 1634 if (non_swap_entry(entry))
2509ef26 1635 return 1;
0697212a 1636
7c00bafe 1637 p = _swap_info_get(entry);
1da177e4 1638 if (p) {
33e16272 1639 count = __swap_entry_free(p, entry);
e0709829 1640 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1641 !swap_page_trans_huge_swapped(p, entry))
1642 __try_to_reclaim_swap(p, swp_offset(entry),
1643 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1644 }
2509ef26 1645 return p != NULL;
1da177e4
LT
1646}
1647
b0cb1a19 1648#ifdef CONFIG_HIBERNATION
bb243f7d
ML
1649
1650swp_entry_t get_swap_page_of_type(int type)
1651{
1652 struct swap_info_struct *si = swap_type_to_swap_info(type);
1653 swp_entry_t entry = {0};
1654
1655 if (!si)
1656 goto fail;
1657
1658 /* This is called for allocating swap entry, not cache */
1659 spin_lock(&si->lock);
1660 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1661 atomic_long_dec(&nr_swap_pages);
1662 spin_unlock(&si->lock);
1663fail:
1664 return entry;
1665}
1666
f577eb30 1667/*
915bae9e 1668 * Find the swap type that corresponds to given device (if any).
f577eb30 1669 *
915bae9e
RW
1670 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1671 * from 0, in which the swap header is expected to be located.
1672 *
1673 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1674 */
21bd9005 1675int swap_type_of(dev_t device, sector_t offset)
f577eb30 1676{
efa90a98 1677 int type;
f577eb30 1678
21bd9005
CH
1679 if (!device)
1680 return -1;
915bae9e 1681
f577eb30 1682 spin_lock(&swap_lock);
efa90a98
HD
1683 for (type = 0; type < nr_swapfiles; type++) {
1684 struct swap_info_struct *sis = swap_info[type];
f577eb30 1685
915bae9e 1686 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1687 continue;
b6b5bce3 1688
21bd9005 1689 if (device == sis->bdev->bd_dev) {
4efaceb1 1690 struct swap_extent *se = first_se(sis);
915bae9e 1691
915bae9e
RW
1692 if (se->start_block == offset) {
1693 spin_unlock(&swap_lock);
efa90a98 1694 return type;
915bae9e 1695 }
f577eb30
RW
1696 }
1697 }
1698 spin_unlock(&swap_lock);
21bd9005
CH
1699 return -ENODEV;
1700}
915bae9e 1701
21bd9005
CH
1702int find_first_swap(dev_t *device)
1703{
1704 int type;
915bae9e 1705
21bd9005
CH
1706 spin_lock(&swap_lock);
1707 for (type = 0; type < nr_swapfiles; type++) {
1708 struct swap_info_struct *sis = swap_info[type];
1709
1710 if (!(sis->flags & SWP_WRITEOK))
1711 continue;
1712 *device = sis->bdev->bd_dev;
1713 spin_unlock(&swap_lock);
1714 return type;
1715 }
1716 spin_unlock(&swap_lock);
f577eb30
RW
1717 return -ENODEV;
1718}
1719
73c34b6a
HD
1720/*
1721 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1722 * corresponding to given index in swap_info (swap type).
1723 */
1724sector_t swapdev_block(int type, pgoff_t offset)
1725{
c10d38cc 1726 struct swap_info_struct *si = swap_type_to_swap_info(type);
f885056a 1727 struct swap_extent *se;
73c34b6a 1728
c10d38cc 1729 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1730 return 0;
f885056a
CH
1731 se = offset_to_swap_extent(si, offset);
1732 return se->start_block + (offset - se->start_page);
73c34b6a
HD
1733}
1734
f577eb30
RW
1735/*
1736 * Return either the total number of swap pages of given type, or the number
1737 * of free pages of that type (depending on @free)
1738 *
1739 * This is needed for software suspend
1740 */
1741unsigned int count_swap_pages(int type, int free)
1742{
1743 unsigned int n = 0;
1744
efa90a98
HD
1745 spin_lock(&swap_lock);
1746 if ((unsigned int)type < nr_swapfiles) {
1747 struct swap_info_struct *sis = swap_info[type];
1748
ec8acf20 1749 spin_lock(&sis->lock);
efa90a98
HD
1750 if (sis->flags & SWP_WRITEOK) {
1751 n = sis->pages;
f577eb30 1752 if (free)
efa90a98 1753 n -= sis->inuse_pages;
f577eb30 1754 }
ec8acf20 1755 spin_unlock(&sis->lock);
f577eb30 1756 }
efa90a98 1757 spin_unlock(&swap_lock);
f577eb30
RW
1758 return n;
1759}
73c34b6a 1760#endif /* CONFIG_HIBERNATION */
f577eb30 1761
9f8bdb3f 1762static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1763{
099dd687 1764 return pte_same(pte_swp_clear_flags(pte), swp_pte);
179ef71c
CG
1765}
1766
1da177e4 1767/*
72866f6f
HD
1768 * No need to decide whether this PTE shares the swap entry with others,
1769 * just let do_wp_page work it out if a write is requested later - to
1770 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1771 */
044d66c1 1772static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1773 unsigned long addr, swp_entry_t entry, struct page *page)
1774{
9e16b7fb 1775 struct page *swapcache;
044d66c1 1776 spinlock_t *ptl;
14a762dd 1777 pte_t *pte, new_pte;
044d66c1
HD
1778 int ret = 1;
1779
9e16b7fb
HD
1780 swapcache = page;
1781 page = ksm_might_need_to_copy(page, vma, addr);
1782 if (unlikely(!page))
1783 return -ENOMEM;
1784
044d66c1 1785 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1786 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
044d66c1
HD
1787 ret = 0;
1788 goto out;
1789 }
8a9f3ccd 1790
9f186f9e
ML
1791 if (unlikely(!PageUptodate(page))) {
1792 pte_t pteval;
1793
1794 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1795 pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1796 set_pte_at(vma->vm_mm, addr, pte, pteval);
1797 swap_free(entry);
1798 ret = 0;
1799 goto out;
1800 }
1801
78fbe906
DH
1802 /* See do_swap_page() */
1803 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1804 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1805
b084d435 1806 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1807 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4 1808 get_page(page);
00501b53 1809 if (page == swapcache) {
1493a191
DH
1810 rmap_t rmap_flags = RMAP_NONE;
1811
1812 /*
1813 * See do_swap_page(): PageWriteback() would be problematic.
1814 * However, we do a wait_on_page_writeback() just before this
1815 * call and have the page locked.
1816 */
1817 VM_BUG_ON_PAGE(PageWriteback(page), page);
1818 if (pte_swp_exclusive(*pte))
1819 rmap_flags |= RMAP_EXCLUSIVE;
1820
1821 page_add_anon_rmap(page, vma, addr, rmap_flags);
00501b53 1822 } else { /* ksm created a completely new copy */
40f2bbf7 1823 page_add_new_anon_rmap(page, vma, addr);
b518154e 1824 lru_cache_add_inactive_or_unevictable(page, vma);
00501b53 1825 }
14a762dd
ML
1826 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1827 if (pte_swp_soft_dirty(*pte))
1828 new_pte = pte_mksoft_dirty(new_pte);
1829 if (pte_swp_uffd_wp(*pte))
1830 new_pte = pte_mkuffd_wp(new_pte);
1831 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1da177e4 1832 swap_free(entry);
044d66c1
HD
1833out:
1834 pte_unmap_unlock(pte, ptl);
9e16b7fb
HD
1835 if (page != swapcache) {
1836 unlock_page(page);
1837 put_page(page);
1838 }
044d66c1 1839 return ret;
1da177e4
LT
1840}
1841
1842static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a 1843 unsigned long addr, unsigned long end,
10a9c496 1844 unsigned int type)
1da177e4 1845{
b56a2d8a
VRP
1846 struct page *page;
1847 swp_entry_t entry;
705e87c0 1848 pte_t *pte;
b56a2d8a
VRP
1849 struct swap_info_struct *si;
1850 unsigned long offset;
8a9f3ccd 1851 int ret = 0;
b56a2d8a 1852 volatile unsigned char *swap_map;
1da177e4 1853
b56a2d8a 1854 si = swap_info[type];
044d66c1 1855 pte = pte_offset_map(pmd, addr);
1da177e4 1856 do {
b56a2d8a
VRP
1857 if (!is_swap_pte(*pte))
1858 continue;
1859
1860 entry = pte_to_swp_entry(*pte);
1861 if (swp_type(entry) != type)
1862 continue;
1863
1864 offset = swp_offset(entry);
b56a2d8a
VRP
1865 pte_unmap(pte);
1866 swap_map = &si->swap_map[offset];
ebc5951e
AR
1867 page = lookup_swap_cache(entry, vma, addr);
1868 if (!page) {
8c63ca5b
WD
1869 struct vm_fault vmf = {
1870 .vma = vma,
1871 .address = addr,
824ddc60 1872 .real_address = addr,
8c63ca5b
WD
1873 .pmd = pmd,
1874 };
1875
ebc5951e
AR
1876 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1877 &vmf);
1878 }
b56a2d8a
VRP
1879 if (!page) {
1880 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1881 goto try_next;
1882 return -ENOMEM;
1883 }
1884
1885 lock_page(page);
1886 wait_on_page_writeback(page);
1887 ret = unuse_pte(vma, pmd, addr, entry, page);
1888 if (ret < 0) {
1889 unlock_page(page);
1890 put_page(page);
1891 goto out;
1892 }
1893
1894 try_to_free_swap(page);
1895 unlock_page(page);
1896 put_page(page);
b56a2d8a
VRP
1897try_next:
1898 pte = pte_offset_map(pmd, addr);
1da177e4 1899 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 1900 pte_unmap(pte - 1);
b56a2d8a
VRP
1901
1902 ret = 0;
044d66c1 1903out:
8a9f3ccd 1904 return ret;
1da177e4
LT
1905}
1906
1907static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1908 unsigned long addr, unsigned long end,
10a9c496 1909 unsigned int type)
1da177e4
LT
1910{
1911 pmd_t *pmd;
1912 unsigned long next;
8a9f3ccd 1913 int ret;
1da177e4
LT
1914
1915 pmd = pmd_offset(pud, addr);
1916 do {
dc644a07 1917 cond_resched();
1da177e4 1918 next = pmd_addr_end(addr, end);
1a5a9906 1919 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1920 continue;
10a9c496 1921 ret = unuse_pte_range(vma, pmd, addr, next, type);
8a9f3ccd
BS
1922 if (ret)
1923 return ret;
1da177e4
LT
1924 } while (pmd++, addr = next, addr != end);
1925 return 0;
1926}
1927
c2febafc 1928static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1929 unsigned long addr, unsigned long end,
10a9c496 1930 unsigned int type)
1da177e4
LT
1931{
1932 pud_t *pud;
1933 unsigned long next;
8a9f3ccd 1934 int ret;
1da177e4 1935
c2febafc 1936 pud = pud_offset(p4d, addr);
1da177e4
LT
1937 do {
1938 next = pud_addr_end(addr, end);
1939 if (pud_none_or_clear_bad(pud))
1940 continue;
10a9c496 1941 ret = unuse_pmd_range(vma, pud, addr, next, type);
8a9f3ccd
BS
1942 if (ret)
1943 return ret;
1da177e4
LT
1944 } while (pud++, addr = next, addr != end);
1945 return 0;
1946}
1947
c2febafc
KS
1948static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949 unsigned long addr, unsigned long end,
10a9c496 1950 unsigned int type)
c2febafc
KS
1951{
1952 p4d_t *p4d;
1953 unsigned long next;
1954 int ret;
1955
1956 p4d = p4d_offset(pgd, addr);
1957 do {
1958 next = p4d_addr_end(addr, end);
1959 if (p4d_none_or_clear_bad(p4d))
1960 continue;
10a9c496 1961 ret = unuse_pud_range(vma, p4d, addr, next, type);
c2febafc
KS
1962 if (ret)
1963 return ret;
1964 } while (p4d++, addr = next, addr != end);
1965 return 0;
1966}
1967
10a9c496 1968static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1da177e4
LT
1969{
1970 pgd_t *pgd;
1971 unsigned long addr, end, next;
8a9f3ccd 1972 int ret;
1da177e4 1973
b56a2d8a
VRP
1974 addr = vma->vm_start;
1975 end = vma->vm_end;
1da177e4
LT
1976
1977 pgd = pgd_offset(vma->vm_mm, addr);
1978 do {
1979 next = pgd_addr_end(addr, end);
1980 if (pgd_none_or_clear_bad(pgd))
1981 continue;
10a9c496 1982 ret = unuse_p4d_range(vma, pgd, addr, next, type);
8a9f3ccd
BS
1983 if (ret)
1984 return ret;
1da177e4
LT
1985 } while (pgd++, addr = next, addr != end);
1986 return 0;
1987}
1988
10a9c496 1989static int unuse_mm(struct mm_struct *mm, unsigned int type)
1da177e4
LT
1990{
1991 struct vm_area_struct *vma;
8a9f3ccd 1992 int ret = 0;
1da177e4 1993
d8ed45c5 1994 mmap_read_lock(mm);
1da177e4 1995 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a 1996 if (vma->anon_vma) {
10a9c496 1997 ret = unuse_vma(vma, type);
b56a2d8a
VRP
1998 if (ret)
1999 break;
2000 }
dc644a07 2001 cond_resched();
1da177e4 2002 }
d8ed45c5 2003 mmap_read_unlock(mm);
b56a2d8a 2004 return ret;
1da177e4
LT
2005}
2006
2007/*
3c3115ad
ML
2008 * Scan swap_map from current position to next entry still in use.
2009 * Return 0 if there are no inuse entries after prev till end of
2010 * the map.
1da177e4 2011 */
6eb396dc 2012static unsigned int find_next_to_unuse(struct swap_info_struct *si,
10a9c496 2013 unsigned int prev)
1da177e4 2014{
b56a2d8a 2015 unsigned int i;
8d69aaee 2016 unsigned char count;
1da177e4
LT
2017
2018 /*
5d337b91 2019 * No need for swap_lock here: we're just looking
1da177e4
LT
2020 * for whether an entry is in use, not modifying it; false
2021 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2022 * allocations from this area (while holding swap_lock).
1da177e4 2023 */
b56a2d8a 2024 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2025 count = READ_ONCE(si->swap_map[i]);
355cfa73 2026 if (count && swap_count(count) != SWAP_MAP_BAD)
10a9c496 2027 break;
dc644a07
HD
2028 if ((i % LATENCY_LIMIT) == 0)
2029 cond_resched();
1da177e4 2030 }
b56a2d8a
VRP
2031
2032 if (i == si->max)
2033 i = 0;
2034
1da177e4
LT
2035 return i;
2036}
2037
10a9c496 2038static int try_to_unuse(unsigned int type)
1da177e4 2039{
b56a2d8a
VRP
2040 struct mm_struct *prev_mm;
2041 struct mm_struct *mm;
2042 struct list_head *p;
2043 int retval = 0;
efa90a98 2044 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2045 struct page *page;
2046 swp_entry_t entry;
b56a2d8a 2047 unsigned int i;
1da177e4 2048
21820948 2049 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2050 return 0;
1da177e4 2051
b56a2d8a 2052retry:
10a9c496 2053 retval = shmem_unuse(type);
b56a2d8a 2054 if (retval)
10a9c496 2055 return retval;
b56a2d8a
VRP
2056
2057 prev_mm = &init_mm;
2058 mmget(prev_mm);
2059
2060 spin_lock(&mmlist_lock);
2061 p = &init_mm.mmlist;
21820948 2062 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2063 !signal_pending(current) &&
2064 (p = p->next) != &init_mm.mmlist) {
1da177e4 2065
b56a2d8a
VRP
2066 mm = list_entry(p, struct mm_struct, mmlist);
2067 if (!mmget_not_zero(mm))
2068 continue;
2069 spin_unlock(&mmlist_lock);
2070 mmput(prev_mm);
2071 prev_mm = mm;
10a9c496 2072 retval = unuse_mm(mm, type);
b56a2d8a
VRP
2073 if (retval) {
2074 mmput(prev_mm);
10a9c496 2075 return retval;
1da177e4
LT
2076 }
2077
2078 /*
b56a2d8a
VRP
2079 * Make sure that we aren't completely killing
2080 * interactive performance.
1da177e4 2081 */
b56a2d8a
VRP
2082 cond_resched();
2083 spin_lock(&mmlist_lock);
2084 }
2085 spin_unlock(&mmlist_lock);
1da177e4 2086
b56a2d8a 2087 mmput(prev_mm);
1da177e4 2088
b56a2d8a 2089 i = 0;
21820948 2090 while (READ_ONCE(si->inuse_pages) &&
64165b1a 2091 !signal_pending(current) &&
10a9c496 2092 (i = find_next_to_unuse(si, i)) != 0) {
1da177e4 2093
b56a2d8a
VRP
2094 entry = swp_entry(type, i);
2095 page = find_get_page(swap_address_space(entry), i);
2096 if (!page)
2097 continue;
68bdc8d6
HD
2098
2099 /*
2100 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2101 * swap cache just before we acquired the page lock. The page
2102 * might even be back in swap cache on another swap area. But
2103 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2104 */
b56a2d8a
VRP
2105 lock_page(page);
2106 wait_on_page_writeback(page);
2107 try_to_free_swap(page);
1da177e4 2108 unlock_page(page);
09cbfeaf 2109 put_page(page);
1da177e4
LT
2110 }
2111
b56a2d8a
VRP
2112 /*
2113 * Lets check again to see if there are still swap entries in the map.
2114 * If yes, we would need to do retry the unuse logic again.
2115 * Under global memory pressure, swap entries can be reinserted back
2116 * into process space after the mmlist loop above passes over them.
dd862deb 2117 *
e2e3fdc7
MWO
2118 * Limit the number of retries? No: when mmget_not_zero()
2119 * above fails, that mm is likely to be freeing swap from
2120 * exit_mmap(), which proceeds at its own independent pace;
2121 * and even shmem_writepage() could have been preempted after
2122 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2123 * and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2124 */
21820948 2125 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2126 if (!signal_pending(current))
2127 goto retry;
10a9c496 2128 return -EINTR;
64165b1a 2129 }
10a9c496
CH
2130
2131 return 0;
1da177e4
LT
2132}
2133
2134/*
5d337b91
HD
2135 * After a successful try_to_unuse, if no swap is now in use, we know
2136 * we can empty the mmlist. swap_lock must be held on entry and exit.
2137 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2138 * added to the mmlist just after page_duplicate - before would be racy.
2139 */
2140static void drain_mmlist(void)
2141{
2142 struct list_head *p, *next;
efa90a98 2143 unsigned int type;
1da177e4 2144
efa90a98
HD
2145 for (type = 0; type < nr_swapfiles; type++)
2146 if (swap_info[type]->inuse_pages)
1da177e4
LT
2147 return;
2148 spin_lock(&mmlist_lock);
2149 list_for_each_safe(p, next, &init_mm.mmlist)
2150 list_del_init(p);
2151 spin_unlock(&mmlist_lock);
2152}
2153
1da177e4
LT
2154/*
2155 * Free all of a swapdev's extent information
2156 */
2157static void destroy_swap_extents(struct swap_info_struct *sis)
2158{
4efaceb1
AL
2159 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2160 struct rb_node *rb = sis->swap_extent_root.rb_node;
2161 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2162
4efaceb1 2163 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2164 kfree(se);
2165 }
62c230bc 2166
bc4ae27d 2167 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2168 struct file *swap_file = sis->swap_file;
2169 struct address_space *mapping = swap_file->f_mapping;
2170
bc4ae27d
OS
2171 sis->flags &= ~SWP_ACTIVATED;
2172 if (mapping->a_ops->swap_deactivate)
2173 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2174 }
1da177e4
LT
2175}
2176
2177/*
2178 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2179 * extent tree.
1da177e4 2180 *
11d31886 2181 * This function rather assumes that it is called in ascending page order.
1da177e4 2182 */
a509bc1a 2183int
1da177e4
LT
2184add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2185 unsigned long nr_pages, sector_t start_block)
2186{
4efaceb1 2187 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2188 struct swap_extent *se;
2189 struct swap_extent *new_se;
4efaceb1
AL
2190
2191 /*
2192 * place the new node at the right most since the
2193 * function is called in ascending page order.
2194 */
2195 while (*link) {
2196 parent = *link;
2197 link = &parent->rb_right;
2198 }
2199
2200 if (parent) {
2201 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2202 BUG_ON(se->start_page + se->nr_pages != start_page);
2203 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2204 /* Merge it */
2205 se->nr_pages += nr_pages;
2206 return 0;
2207 }
1da177e4
LT
2208 }
2209
4efaceb1 2210 /* No merge, insert a new extent. */
1da177e4
LT
2211 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2212 if (new_se == NULL)
2213 return -ENOMEM;
2214 new_se->start_page = start_page;
2215 new_se->nr_pages = nr_pages;
2216 new_se->start_block = start_block;
2217
4efaceb1
AL
2218 rb_link_node(&new_se->rb_node, parent, link);
2219 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2220 return 1;
1da177e4 2221}
aa8aa8a3 2222EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2223
2224/*
2225 * A `swap extent' is a simple thing which maps a contiguous range of pages
ff351f4b
ML
2226 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2227 * built at swapon time and is then used at swap_writepage/swap_readpage
1da177e4
LT
2228 * time for locating where on disk a page belongs.
2229 *
2230 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2231 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2232 * swap files identically.
2233 *
2234 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
ff351f4b 2235 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1da177e4
LT
2236 * swapfiles are handled *identically* after swapon time.
2237 *
2238 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
ff351f4b
ML
2239 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2240 * blocks are found which do not fall within the PAGE_SIZE alignment
1da177e4
LT
2241 * requirements, they are simply tossed out - we will never use those blocks
2242 * for swapping.
2243 *
1638045c
DW
2244 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2245 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2246 *
2247 * The amount of disk space which a single swap extent represents varies.
2248 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
ff351f4b 2249 * extents in the rbtree. - akpm.
1da177e4 2250 */
53092a74 2251static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2252{
62c230bc
MG
2253 struct file *swap_file = sis->swap_file;
2254 struct address_space *mapping = swap_file->f_mapping;
2255 struct inode *inode = mapping->host;
1da177e4
LT
2256 int ret;
2257
1da177e4
LT
2258 if (S_ISBLK(inode->i_mode)) {
2259 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2260 *span = sis->pages;
a509bc1a 2261 return ret;
1da177e4
LT
2262 }
2263
62c230bc 2264 if (mapping->a_ops->swap_activate) {
a509bc1a 2265 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
4b60c0ff
N
2266 if (ret < 0)
2267 return ret;
2268 sis->flags |= SWP_ACTIVATED;
e1209d3a
N
2269 if ((sis->flags & SWP_FS_OPS) &&
2270 sio_pool_init() != 0) {
2271 destroy_swap_extents(sis);
2272 return -ENOMEM;
2273 }
a509bc1a 2274 return ret;
62c230bc
MG
2275 }
2276
a509bc1a 2277 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2278}
2279
a2468cc9
AL
2280static int swap_node(struct swap_info_struct *p)
2281{
2282 struct block_device *bdev;
2283
2284 if (p->bdev)
2285 bdev = p->bdev;
2286 else
2287 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2288
2289 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2290}
2291
eb085574
HY
2292static void setup_swap_info(struct swap_info_struct *p, int prio,
2293 unsigned char *swap_map,
2294 struct swap_cluster_info *cluster_info)
40531542 2295{
a2468cc9
AL
2296 int i;
2297
40531542
CEB
2298 if (prio >= 0)
2299 p->prio = prio;
2300 else
2301 p->prio = --least_priority;
18ab4d4c
DS
2302 /*
2303 * the plist prio is negated because plist ordering is
2304 * low-to-high, while swap ordering is high-to-low
2305 */
2306 p->list.prio = -p->prio;
a2468cc9
AL
2307 for_each_node(i) {
2308 if (p->prio >= 0)
2309 p->avail_lists[i].prio = -p->prio;
2310 else {
2311 if (swap_node(p) == i)
2312 p->avail_lists[i].prio = 1;
2313 else
2314 p->avail_lists[i].prio = -p->prio;
2315 }
2316 }
40531542 2317 p->swap_map = swap_map;
2a8f9449 2318 p->cluster_info = cluster_info;
eb085574
HY
2319}
2320
2321static void _enable_swap_info(struct swap_info_struct *p)
2322{
63d8620e 2323 p->flags |= SWP_WRITEOK;
ec8acf20 2324 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2325 total_swap_pages += p->pages;
2326
adfab836 2327 assert_spin_locked(&swap_lock);
adfab836 2328 /*
18ab4d4c
DS
2329 * both lists are plists, and thus priority ordered.
2330 * swap_active_head needs to be priority ordered for swapoff(),
2331 * which on removal of any swap_info_struct with an auto-assigned
2332 * (i.e. negative) priority increments the auto-assigned priority
2333 * of any lower-priority swap_info_structs.
e2e3fdc7 2334 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
18ab4d4c
DS
2335 * which allocates swap pages from the highest available priority
2336 * swap_info_struct.
adfab836 2337 */
18ab4d4c 2338 plist_add(&p->list, &swap_active_head);
a2468cc9 2339 add_to_avail_list(p);
cf0cac0a
CEB
2340}
2341
2342static void enable_swap_info(struct swap_info_struct *p, int prio,
2343 unsigned char *swap_map,
2a8f9449 2344 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2345 unsigned long *frontswap_map)
2346{
1cf53c89
CH
2347 if (IS_ENABLED(CONFIG_FRONTSWAP))
2348 frontswap_init(p->type, frontswap_map);
cf0cac0a 2349 spin_lock(&swap_lock);
ec8acf20 2350 spin_lock(&p->lock);
eb085574
HY
2351 setup_swap_info(p, prio, swap_map, cluster_info);
2352 spin_unlock(&p->lock);
2353 spin_unlock(&swap_lock);
2354 /*
63d8620e 2355 * Finished initializing swap device, now it's safe to reference it.
eb085574 2356 */
63d8620e 2357 percpu_ref_resurrect(&p->users);
eb085574
HY
2358 spin_lock(&swap_lock);
2359 spin_lock(&p->lock);
2360 _enable_swap_info(p);
ec8acf20 2361 spin_unlock(&p->lock);
cf0cac0a
CEB
2362 spin_unlock(&swap_lock);
2363}
2364
2365static void reinsert_swap_info(struct swap_info_struct *p)
2366{
2367 spin_lock(&swap_lock);
ec8acf20 2368 spin_lock(&p->lock);
eb085574
HY
2369 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2370 _enable_swap_info(p);
ec8acf20 2371 spin_unlock(&p->lock);
40531542
CEB
2372 spin_unlock(&swap_lock);
2373}
2374
67afa38e
TC
2375bool has_usable_swap(void)
2376{
2377 bool ret = true;
2378
2379 spin_lock(&swap_lock);
2380 if (plist_head_empty(&swap_active_head))
2381 ret = false;
2382 spin_unlock(&swap_lock);
2383 return ret;
2384}
2385
c4ea37c2 2386SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2387{
73c34b6a 2388 struct swap_info_struct *p = NULL;
8d69aaee 2389 unsigned char *swap_map;
2a8f9449 2390 struct swap_cluster_info *cluster_info;
4f89849d 2391 unsigned long *frontswap_map;
1da177e4
LT
2392 struct file *swap_file, *victim;
2393 struct address_space *mapping;
2394 struct inode *inode;
91a27b2a 2395 struct filename *pathname;
adfab836 2396 int err, found = 0;
5b808a23 2397 unsigned int old_block_size;
886bb7e9 2398
1da177e4
LT
2399 if (!capable(CAP_SYS_ADMIN))
2400 return -EPERM;
2401
191c5424
AV
2402 BUG_ON(!current->mm);
2403
1da177e4 2404 pathname = getname(specialfile);
1da177e4 2405 if (IS_ERR(pathname))
f58b59c1 2406 return PTR_ERR(pathname);
1da177e4 2407
669abf4e 2408 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2409 err = PTR_ERR(victim);
2410 if (IS_ERR(victim))
2411 goto out;
2412
2413 mapping = victim->f_mapping;
5d337b91 2414 spin_lock(&swap_lock);
18ab4d4c 2415 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2416 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2417 if (p->swap_file->f_mapping == mapping) {
2418 found = 1;
1da177e4 2419 break;
adfab836 2420 }
1da177e4 2421 }
1da177e4 2422 }
adfab836 2423 if (!found) {
1da177e4 2424 err = -EINVAL;
5d337b91 2425 spin_unlock(&swap_lock);
1da177e4
LT
2426 goto out_dput;
2427 }
191c5424 2428 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2429 vm_unacct_memory(p->pages);
2430 else {
2431 err = -ENOMEM;
5d337b91 2432 spin_unlock(&swap_lock);
1da177e4
LT
2433 goto out_dput;
2434 }
a2468cc9 2435 del_from_avail_list(p);
ec8acf20 2436 spin_lock(&p->lock);
78ecba08 2437 if (p->prio < 0) {
adfab836 2438 struct swap_info_struct *si = p;
a2468cc9 2439 int nid;
adfab836 2440
18ab4d4c 2441 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2442 si->prio++;
18ab4d4c 2443 si->list.prio--;
a2468cc9
AL
2444 for_each_node(nid) {
2445 if (si->avail_lists[nid].prio != 1)
2446 si->avail_lists[nid].prio--;
2447 }
adfab836 2448 }
78ecba08
HD
2449 least_priority++;
2450 }
18ab4d4c 2451 plist_del(&p->list, &swap_active_head);
ec8acf20 2452 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2453 total_swap_pages -= p->pages;
2454 p->flags &= ~SWP_WRITEOK;
ec8acf20 2455 spin_unlock(&p->lock);
5d337b91 2456 spin_unlock(&swap_lock);
fb4f88dc 2457
039939a6
TC
2458 disable_swap_slots_cache_lock();
2459
e1e12d2f 2460 set_current_oom_origin();
10a9c496 2461 err = try_to_unuse(p->type);
e1e12d2f 2462 clear_current_oom_origin();
1da177e4 2463
1da177e4
LT
2464 if (err) {
2465 /* re-insert swap space back into swap_list */
cf0cac0a 2466 reinsert_swap_info(p);
039939a6 2467 reenable_swap_slots_cache_unlock();
1da177e4
LT
2468 goto out_dput;
2469 }
52b7efdb 2470
039939a6
TC
2471 reenable_swap_slots_cache_unlock();
2472
eb085574 2473 /*
63d8620e
ML
2474 * Wait for swap operations protected by get/put_swap_device()
2475 * to complete.
2476 *
2477 * We need synchronize_rcu() here to protect the accessing to
2478 * the swap cache data structure.
eb085574 2479 */
63d8620e 2480 percpu_ref_kill(&p->users);
eb085574 2481 synchronize_rcu();
63d8620e 2482 wait_for_completion(&p->comp);
eb085574 2483
815c2c54
SL
2484 flush_work(&p->discard_work);
2485
5d337b91 2486 destroy_swap_extents(p);
570a335b
HD
2487 if (p->flags & SWP_CONTINUED)
2488 free_swap_count_continuations(p);
2489
81a0298b
HY
2490 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2491 atomic_dec(&nr_rotate_swap);
2492
fc0abb14 2493 mutex_lock(&swapon_mutex);
5d337b91 2494 spin_lock(&swap_lock);
ec8acf20 2495 spin_lock(&p->lock);
5d337b91
HD
2496 drain_mmlist();
2497
bb243f7d 2498 /* wait for anyone still in scan_swap_map_slots */
52b7efdb
HD
2499 p->highest_bit = 0; /* cuts scans short */
2500 while (p->flags >= SWP_SCANNING) {
ec8acf20 2501 spin_unlock(&p->lock);
5d337b91 2502 spin_unlock(&swap_lock);
13e4b57f 2503 schedule_timeout_uninterruptible(1);
5d337b91 2504 spin_lock(&swap_lock);
ec8acf20 2505 spin_lock(&p->lock);
52b7efdb 2506 }
52b7efdb 2507
1da177e4 2508 swap_file = p->swap_file;
5b808a23 2509 old_block_size = p->old_block_size;
1da177e4
LT
2510 p->swap_file = NULL;
2511 p->max = 0;
2512 swap_map = p->swap_map;
2513 p->swap_map = NULL;
2a8f9449
SL
2514 cluster_info = p->cluster_info;
2515 p->cluster_info = NULL;
4f89849d 2516 frontswap_map = frontswap_map_get(p);
ec8acf20 2517 spin_unlock(&p->lock);
5d337b91 2518 spin_unlock(&swap_lock);
8a84802e 2519 arch_swap_invalidate_area(p->type);
adfab836 2520 frontswap_invalidate_area(p->type);
58e97ba6 2521 frontswap_map_set(p, NULL);
fc0abb14 2522 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2523 free_percpu(p->percpu_cluster);
2524 p->percpu_cluster = NULL;
49070588
HY
2525 free_percpu(p->cluster_next_cpu);
2526 p->cluster_next_cpu = NULL;
1da177e4 2527 vfree(swap_map);
54f180d3
HY
2528 kvfree(cluster_info);
2529 kvfree(frontswap_map);
2de1a7e4 2530 /* Destroy swap account information */
adfab836 2531 swap_cgroup_swapoff(p->type);
4b3ef9da 2532 exit_swap_address_space(p->type);
27a7faa0 2533
1da177e4
LT
2534 inode = mapping->host;
2535 if (S_ISBLK(inode->i_mode)) {
2536 struct block_device *bdev = I_BDEV(inode);
1638045c 2537
5b808a23 2538 set_blocksize(bdev, old_block_size);
e525fd89 2539 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2540 }
1638045c
DW
2541
2542 inode_lock(inode);
2543 inode->i_flags &= ~S_SWAPFILE;
2544 inode_unlock(inode);
1da177e4 2545 filp_close(swap_file, NULL);
f893ab41
WY
2546
2547 /*
2548 * Clear the SWP_USED flag after all resources are freed so that swapon
2549 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2550 * not hold p->lock after we cleared its SWP_WRITEOK.
2551 */
2552 spin_lock(&swap_lock);
2553 p->flags = 0;
2554 spin_unlock(&swap_lock);
2555
1da177e4 2556 err = 0;
66d7dd51
KS
2557 atomic_inc(&proc_poll_event);
2558 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2559
2560out_dput:
2561 filp_close(victim, NULL);
2562out:
f58b59c1 2563 putname(pathname);
1da177e4
LT
2564 return err;
2565}
2566
2567#ifdef CONFIG_PROC_FS
9dd95748 2568static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2569{
f1514638 2570 struct seq_file *seq = file->private_data;
66d7dd51
KS
2571
2572 poll_wait(file, &proc_poll_wait, wait);
2573
f1514638
KS
2574 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2575 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2576 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2577 }
2578
a9a08845 2579 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2580}
2581
1da177e4
LT
2582/* iterator */
2583static void *swap_start(struct seq_file *swap, loff_t *pos)
2584{
efa90a98
HD
2585 struct swap_info_struct *si;
2586 int type;
1da177e4
LT
2587 loff_t l = *pos;
2588
fc0abb14 2589 mutex_lock(&swapon_mutex);
1da177e4 2590
881e4aab
SS
2591 if (!l)
2592 return SEQ_START_TOKEN;
2593
c10d38cc 2594 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2595 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2596 continue;
881e4aab 2597 if (!--l)
efa90a98 2598 return si;
1da177e4
LT
2599 }
2600
2601 return NULL;
2602}
2603
2604static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2605{
efa90a98
HD
2606 struct swap_info_struct *si = v;
2607 int type;
1da177e4 2608
881e4aab 2609 if (v == SEQ_START_TOKEN)
efa90a98
HD
2610 type = 0;
2611 else
2612 type = si->type + 1;
881e4aab 2613
10c8d69f 2614 ++(*pos);
c10d38cc 2615 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2616 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2617 continue;
efa90a98 2618 return si;
1da177e4
LT
2619 }
2620
2621 return NULL;
2622}
2623
2624static void swap_stop(struct seq_file *swap, void *v)
2625{
fc0abb14 2626 mutex_unlock(&swapon_mutex);
1da177e4
LT
2627}
2628
2629static int swap_show(struct seq_file *swap, void *v)
2630{
efa90a98 2631 struct swap_info_struct *si = v;
1da177e4
LT
2632 struct file *file;
2633 int len;
642929a2 2634 unsigned long bytes, inuse;
1da177e4 2635
efa90a98 2636 if (si == SEQ_START_TOKEN) {
68d68ff6 2637 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
881e4aab
SS
2638 return 0;
2639 }
1da177e4 2640
6f793940
RD
2641 bytes = si->pages << (PAGE_SHIFT - 10);
2642 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2643
efa90a98 2644 file = si->swap_file;
2726d566 2645 len = seq_file_path(swap, file, " \t\n\\");
642929a2 2646 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
886bb7e9 2647 len < 40 ? 40 - len : 1, " ",
496ad9aa 2648 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2649 "partition" : "file\t",
6f793940
RD
2650 bytes, bytes < 10000000 ? "\t" : "",
2651 inuse, inuse < 10000000 ? "\t" : "",
efa90a98 2652 si->prio);
1da177e4
LT
2653 return 0;
2654}
2655
15ad7cdc 2656static const struct seq_operations swaps_op = {
1da177e4
LT
2657 .start = swap_start,
2658 .next = swap_next,
2659 .stop = swap_stop,
2660 .show = swap_show
2661};
2662
2663static int swaps_open(struct inode *inode, struct file *file)
2664{
f1514638 2665 struct seq_file *seq;
66d7dd51
KS
2666 int ret;
2667
66d7dd51 2668 ret = seq_open(file, &swaps_op);
f1514638 2669 if (ret)
66d7dd51 2670 return ret;
66d7dd51 2671
f1514638
KS
2672 seq = file->private_data;
2673 seq->poll_event = atomic_read(&proc_poll_event);
2674 return 0;
1da177e4
LT
2675}
2676
97a32539 2677static const struct proc_ops swaps_proc_ops = {
d919b33d 2678 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2679 .proc_open = swaps_open,
2680 .proc_read = seq_read,
2681 .proc_lseek = seq_lseek,
2682 .proc_release = seq_release,
2683 .proc_poll = swaps_poll,
1da177e4
LT
2684};
2685
2686static int __init procswaps_init(void)
2687{
97a32539 2688 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2689 return 0;
2690}
2691__initcall(procswaps_init);
2692#endif /* CONFIG_PROC_FS */
2693
1796316a
JB
2694#ifdef MAX_SWAPFILES_CHECK
2695static int __init max_swapfiles_check(void)
2696{
2697 MAX_SWAPFILES_CHECK();
2698 return 0;
2699}
2700late_initcall(max_swapfiles_check);
2701#endif
2702
53cbb243 2703static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2704{
73c34b6a 2705 struct swap_info_struct *p;
b11a76b3 2706 struct swap_info_struct *defer = NULL;
1da177e4 2707 unsigned int type;
a2468cc9 2708 int i;
efa90a98 2709
96008744 2710 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2711 if (!p)
53cbb243 2712 return ERR_PTR(-ENOMEM);
efa90a98 2713
63d8620e
ML
2714 if (percpu_ref_init(&p->users, swap_users_ref_free,
2715 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2716 kvfree(p);
2717 return ERR_PTR(-ENOMEM);
2718 }
2719
5d337b91 2720 spin_lock(&swap_lock);
efa90a98
HD
2721 for (type = 0; type < nr_swapfiles; type++) {
2722 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2723 break;
efa90a98 2724 }
0697212a 2725 if (type >= MAX_SWAPFILES) {
5d337b91 2726 spin_unlock(&swap_lock);
63d8620e 2727 percpu_ref_exit(&p->users);
873d7bcf 2728 kvfree(p);
730c0581 2729 return ERR_PTR(-EPERM);
1da177e4 2730 }
efa90a98
HD
2731 if (type >= nr_swapfiles) {
2732 p->type = type;
efa90a98 2733 /*
a4b45114
HY
2734 * Publish the swap_info_struct after initializing it.
2735 * Note that kvzalloc() above zeroes all its fields.
efa90a98 2736 */
a4b45114
HY
2737 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2738 nr_swapfiles++;
efa90a98 2739 } else {
b11a76b3 2740 defer = p;
efa90a98
HD
2741 p = swap_info[type];
2742 /*
2743 * Do not memset this entry: a racing procfs swap_next()
2744 * would be relying on p->type to remain valid.
2745 */
2746 }
4efaceb1 2747 p->swap_extent_root = RB_ROOT;
18ab4d4c 2748 plist_node_init(&p->list, 0);
a2468cc9
AL
2749 for_each_node(i)
2750 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2751 p->flags = SWP_USED;
5d337b91 2752 spin_unlock(&swap_lock);
63d8620e
ML
2753 if (defer) {
2754 percpu_ref_exit(&defer->users);
2755 kvfree(defer);
2756 }
ec8acf20 2757 spin_lock_init(&p->lock);
2628bd6f 2758 spin_lock_init(&p->cont_lock);
63d8620e 2759 init_completion(&p->comp);
efa90a98 2760
53cbb243 2761 return p;
53cbb243
CEB
2762}
2763
4d0e1e10
CEB
2764static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2765{
2766 int error;
2767
2768 if (S_ISBLK(inode->i_mode)) {
ef16e1d9 2769 p->bdev = blkdev_get_by_dev(inode->i_rdev,
6f179af8 2770 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
ef16e1d9
CH
2771 if (IS_ERR(p->bdev)) {
2772 error = PTR_ERR(p->bdev);
4d0e1e10 2773 p->bdev = NULL;
6f179af8 2774 return error;
4d0e1e10
CEB
2775 }
2776 p->old_block_size = block_size(p->bdev);
2777 error = set_blocksize(p->bdev, PAGE_SIZE);
2778 if (error < 0)
87ade72a 2779 return error;
12d2966d
NA
2780 /*
2781 * Zoned block devices contain zones that have a sequential
2782 * write only restriction. Hence zoned block devices are not
2783 * suitable for swapping. Disallow them here.
2784 */
e556f6ba 2785 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
12d2966d 2786 return -EINVAL;
4d0e1e10
CEB
2787 p->flags |= SWP_BLKDEV;
2788 } else if (S_ISREG(inode->i_mode)) {
2789 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2790 }
2791
4d0e1e10 2792 return 0;
4d0e1e10
CEB
2793}
2794
377eeaa8
AK
2795
2796/*
2797 * Find out how many pages are allowed for a single swap device. There
2798 * are two limiting factors:
2799 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2800 * 2) the number of bits in the swap pte, as defined by the different
2801 * architectures.
2802 *
2803 * In order to find the largest possible bit mask, a swap entry with
2804 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2805 * decoded to a swp_entry_t again, and finally the swap offset is
2806 * extracted.
2807 *
2808 * This will mask all the bits from the initial ~0UL mask that can't
2809 * be encoded in either the swp_entry_t or the architecture definition
2810 * of a swap pte.
2811 */
2812unsigned long generic_max_swapfile_size(void)
2813{
2814 return swp_offset(pte_to_swp_entry(
2815 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2816}
2817
2818/* Can be overridden by an architecture for additional checks. */
2819__weak unsigned long max_swapfile_size(void)
2820{
2821 return generic_max_swapfile_size();
2822}
2823
ca8bd38b
CEB
2824static unsigned long read_swap_header(struct swap_info_struct *p,
2825 union swap_header *swap_header,
2826 struct inode *inode)
2827{
2828 int i;
2829 unsigned long maxpages;
2830 unsigned long swapfilepages;
d6bbbd29 2831 unsigned long last_page;
ca8bd38b
CEB
2832
2833 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2834 pr_err("Unable to find swap-space signature\n");
38719025 2835 return 0;
ca8bd38b
CEB
2836 }
2837
041711ce 2838 /* swap partition endianness hack... */
ca8bd38b
CEB
2839 if (swab32(swap_header->info.version) == 1) {
2840 swab32s(&swap_header->info.version);
2841 swab32s(&swap_header->info.last_page);
2842 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2843 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2844 return 0;
ca8bd38b
CEB
2845 for (i = 0; i < swap_header->info.nr_badpages; i++)
2846 swab32s(&swap_header->info.badpages[i]);
2847 }
2848 /* Check the swap header's sub-version */
2849 if (swap_header->info.version != 1) {
465c47fd
AM
2850 pr_warn("Unable to handle swap header version %d\n",
2851 swap_header->info.version);
38719025 2852 return 0;
ca8bd38b
CEB
2853 }
2854
2855 p->lowest_bit = 1;
2856 p->cluster_next = 1;
2857 p->cluster_nr = 0;
2858
377eeaa8 2859 maxpages = max_swapfile_size();
d6bbbd29 2860 last_page = swap_header->info.last_page;
a06ad633
TA
2861 if (!last_page) {
2862 pr_warn("Empty swap-file\n");
2863 return 0;
2864 }
d6bbbd29 2865 if (last_page > maxpages) {
465c47fd 2866 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2867 maxpages << (PAGE_SHIFT - 10),
2868 last_page << (PAGE_SHIFT - 10));
2869 }
2870 if (maxpages > last_page) {
2871 maxpages = last_page + 1;
ca8bd38b
CEB
2872 /* p->max is an unsigned int: don't overflow it */
2873 if ((unsigned int)maxpages == 0)
2874 maxpages = UINT_MAX;
2875 }
2876 p->highest_bit = maxpages - 1;
2877
2878 if (!maxpages)
38719025 2879 return 0;
ca8bd38b
CEB
2880 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2881 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2882 pr_warn("Swap area shorter than signature indicates\n");
38719025 2883 return 0;
ca8bd38b
CEB
2884 }
2885 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2886 return 0;
ca8bd38b 2887 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2888 return 0;
ca8bd38b
CEB
2889
2890 return maxpages;
ca8bd38b
CEB
2891}
2892
4b3ef9da 2893#define SWAP_CLUSTER_INFO_COLS \
235b6217 2894 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2895#define SWAP_CLUSTER_SPACE_COLS \
2896 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2897#define SWAP_CLUSTER_COLS \
2898 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2899
915d4d7b
CEB
2900static int setup_swap_map_and_extents(struct swap_info_struct *p,
2901 union swap_header *swap_header,
2902 unsigned char *swap_map,
2a8f9449 2903 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2904 unsigned long maxpages,
2905 sector_t *span)
2906{
235b6217 2907 unsigned int j, k;
915d4d7b
CEB
2908 unsigned int nr_good_pages;
2909 int nr_extents;
2a8f9449 2910 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2911 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2912 unsigned long i, idx;
915d4d7b
CEB
2913
2914 nr_good_pages = maxpages - 1; /* omit header page */
2915
6b534915
HY
2916 cluster_list_init(&p->free_clusters);
2917 cluster_list_init(&p->discard_clusters);
2a8f9449 2918
915d4d7b
CEB
2919 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2920 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2921 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2922 return -EINVAL;
915d4d7b
CEB
2923 if (page_nr < maxpages) {
2924 swap_map[page_nr] = SWAP_MAP_BAD;
2925 nr_good_pages--;
2a8f9449
SL
2926 /*
2927 * Haven't marked the cluster free yet, no list
2928 * operation involved
2929 */
2930 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2931 }
2932 }
2933
2a8f9449
SL
2934 /* Haven't marked the cluster free yet, no list operation involved */
2935 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2936 inc_cluster_info_page(p, cluster_info, i);
2937
915d4d7b
CEB
2938 if (nr_good_pages) {
2939 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2940 /*
2941 * Not mark the cluster free yet, no list
2942 * operation involved
2943 */
2944 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2945 p->max = maxpages;
2946 p->pages = nr_good_pages;
2947 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2948 if (nr_extents < 0)
2949 return nr_extents;
915d4d7b
CEB
2950 nr_good_pages = p->pages;
2951 }
2952 if (!nr_good_pages) {
465c47fd 2953 pr_warn("Empty swap-file\n");
bdb8e3f6 2954 return -EINVAL;
915d4d7b
CEB
2955 }
2956
2a8f9449
SL
2957 if (!cluster_info)
2958 return nr_extents;
2959
235b6217 2960
4b3ef9da
HY
2961 /*
2962 * Reduce false cache line sharing between cluster_info and
2963 * sharing same address space.
2964 */
235b6217
HY
2965 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2966 j = (k + col) % SWAP_CLUSTER_COLS;
2967 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2968 idx = i * SWAP_CLUSTER_COLS + j;
2969 if (idx >= nr_clusters)
2970 continue;
2971 if (cluster_count(&cluster_info[idx]))
2972 continue;
2a8f9449 2973 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
2974 cluster_list_add_tail(&p->free_clusters, cluster_info,
2975 idx);
2a8f9449 2976 }
2a8f9449 2977 }
915d4d7b 2978 return nr_extents;
915d4d7b
CEB
2979}
2980
dcf6b7dd
RA
2981/*
2982 * Helper to sys_swapon determining if a given swap
2983 * backing device queue supports DISCARD operations.
2984 */
2985static bool swap_discardable(struct swap_info_struct *si)
2986{
2987 struct request_queue *q = bdev_get_queue(si->bdev);
2988
363dc512 2989 if (!blk_queue_discard(q))
dcf6b7dd
RA
2990 return false;
2991
2992 return true;
2993}
2994
53cbb243
CEB
2995SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2996{
2997 struct swap_info_struct *p;
91a27b2a 2998 struct filename *name;
53cbb243
CEB
2999 struct file *swap_file = NULL;
3000 struct address_space *mapping;
51cc3a66 3001 struct dentry *dentry;
40531542 3002 int prio;
53cbb243
CEB
3003 int error;
3004 union swap_header *swap_header;
915d4d7b 3005 int nr_extents;
53cbb243
CEB
3006 sector_t span;
3007 unsigned long maxpages;
53cbb243 3008 unsigned char *swap_map = NULL;
2a8f9449 3009 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3010 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3011 struct page *page = NULL;
3012 struct inode *inode = NULL;
7cbf3192 3013 bool inced_nr_rotate_swap = false;
53cbb243 3014
d15cab97
HD
3015 if (swap_flags & ~SWAP_FLAGS_VALID)
3016 return -EINVAL;
3017
53cbb243
CEB
3018 if (!capable(CAP_SYS_ADMIN))
3019 return -EPERM;
3020
a2468cc9
AL
3021 if (!swap_avail_heads)
3022 return -ENOMEM;
3023
53cbb243 3024 p = alloc_swap_info();
2542e513
CEB
3025 if (IS_ERR(p))
3026 return PTR_ERR(p);
53cbb243 3027
815c2c54
SL
3028 INIT_WORK(&p->discard_work, swap_discard_work);
3029
1da177e4 3030 name = getname(specialfile);
1da177e4 3031 if (IS_ERR(name)) {
7de7fb6b 3032 error = PTR_ERR(name);
1da177e4 3033 name = NULL;
bd69010b 3034 goto bad_swap;
1da177e4 3035 }
669abf4e 3036 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3037 if (IS_ERR(swap_file)) {
7de7fb6b 3038 error = PTR_ERR(swap_file);
1da177e4 3039 swap_file = NULL;
bd69010b 3040 goto bad_swap;
1da177e4
LT
3041 }
3042
3043 p->swap_file = swap_file;
3044 mapping = swap_file->f_mapping;
51cc3a66 3045 dentry = swap_file->f_path.dentry;
2130781e 3046 inode = mapping->host;
6f179af8 3047
4d0e1e10
CEB
3048 error = claim_swapfile(p, inode);
3049 if (unlikely(error))
1da177e4 3050 goto bad_swap;
1da177e4 3051
d795a90e 3052 inode_lock(inode);
51cc3a66
HD
3053 if (d_unlinked(dentry) || cant_mount(dentry)) {
3054 error = -ENOENT;
3055 goto bad_swap_unlock_inode;
3056 }
d795a90e
NA
3057 if (IS_SWAPFILE(inode)) {
3058 error = -EBUSY;
3059 goto bad_swap_unlock_inode;
3060 }
3061
1da177e4
LT
3062 /*
3063 * Read the swap header.
3064 */
3065 if (!mapping->a_ops->readpage) {
3066 error = -EINVAL;
d795a90e 3067 goto bad_swap_unlock_inode;
1da177e4 3068 }
090d2b18 3069 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3070 if (IS_ERR(page)) {
3071 error = PTR_ERR(page);
d795a90e 3072 goto bad_swap_unlock_inode;
1da177e4 3073 }
81e33971 3074 swap_header = kmap(page);
1da177e4 3075
ca8bd38b
CEB
3076 maxpages = read_swap_header(p, swap_header, inode);
3077 if (unlikely(!maxpages)) {
1da177e4 3078 error = -EINVAL;
d795a90e 3079 goto bad_swap_unlock_inode;
1da177e4 3080 }
886bb7e9 3081
81e33971 3082 /* OK, set up the swap map and apply the bad block list */
803d0c83 3083 swap_map = vzalloc(maxpages);
81e33971
HD
3084 if (!swap_map) {
3085 error = -ENOMEM;
d795a90e 3086 goto bad_swap_unlock_inode;
81e33971 3087 }
f0571429 3088
1cb039f3 3089 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
f0571429
MK
3090 p->flags |= SWP_STABLE_WRITES;
3091
a8b456d0 3092 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
539a6fea
MK
3093 p->flags |= SWP_SYNCHRONOUS_IO;
3094
2a8f9449 3095 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3096 int cpu;
235b6217 3097 unsigned long ci, nr_cluster;
6f179af8 3098
2a8f9449 3099 p->flags |= SWP_SOLIDSTATE;
49070588
HY
3100 p->cluster_next_cpu = alloc_percpu(unsigned int);
3101 if (!p->cluster_next_cpu) {
3102 error = -ENOMEM;
3103 goto bad_swap_unlock_inode;
3104 }
2a8f9449
SL
3105 /*
3106 * select a random position to start with to help wear leveling
3107 * SSD
3108 */
49070588
HY
3109 for_each_possible_cpu(cpu) {
3110 per_cpu(*p->cluster_next_cpu, cpu) =
3111 1 + prandom_u32_max(p->highest_bit);
3112 }
235b6217 3113 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3114
778e1cdd 3115 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3116 GFP_KERNEL);
2a8f9449
SL
3117 if (!cluster_info) {
3118 error = -ENOMEM;
d795a90e 3119 goto bad_swap_unlock_inode;
2a8f9449 3120 }
235b6217
HY
3121
3122 for (ci = 0; ci < nr_cluster; ci++)
3123 spin_lock_init(&((cluster_info + ci)->lock));
3124
ebc2a1a6
SL
3125 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3126 if (!p->percpu_cluster) {
3127 error = -ENOMEM;
d795a90e 3128 goto bad_swap_unlock_inode;
ebc2a1a6 3129 }
6f179af8 3130 for_each_possible_cpu(cpu) {
ebc2a1a6 3131 struct percpu_cluster *cluster;
6f179af8 3132 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3133 cluster_set_null(&cluster->index);
3134 }
7cbf3192 3135 } else {
81a0298b 3136 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3137 inced_nr_rotate_swap = true;
3138 }
1da177e4 3139
1421ef3c
CEB
3140 error = swap_cgroup_swapon(p->type, maxpages);
3141 if (error)
d795a90e 3142 goto bad_swap_unlock_inode;
1421ef3c 3143
915d4d7b 3144 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3145 cluster_info, maxpages, &span);
915d4d7b
CEB
3146 if (unlikely(nr_extents < 0)) {
3147 error = nr_extents;
d795a90e 3148 goto bad_swap_unlock_inode;
1da177e4 3149 }
38b5faf4 3150 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3151 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3152 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3153 sizeof(long),
54f180d3 3154 GFP_KERNEL);
1da177e4 3155
68d68ff6 3156 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2a8f9449
SL
3157 /*
3158 * When discard is enabled for swap with no particular
3159 * policy flagged, we set all swap discard flags here in
3160 * order to sustain backward compatibility with older
3161 * swapon(8) releases.
3162 */
3163 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3164 SWP_PAGE_DISCARD);
dcf6b7dd 3165
2a8f9449
SL
3166 /*
3167 * By flagging sys_swapon, a sysadmin can tell us to
3168 * either do single-time area discards only, or to just
3169 * perform discards for released swap page-clusters.
3170 * Now it's time to adjust the p->flags accordingly.
3171 */
3172 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3173 p->flags &= ~SWP_PAGE_DISCARD;
3174 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3175 p->flags &= ~SWP_AREA_DISCARD;
3176
3177 /* issue a swapon-time discard if it's still required */
3178 if (p->flags & SWP_AREA_DISCARD) {
3179 int err = discard_swap(p);
3180 if (unlikely(err))
3181 pr_err("swapon: discard_swap(%p): %d\n",
3182 p, err);
dcf6b7dd 3183 }
20137a49 3184 }
6a6ba831 3185
4b3ef9da
HY
3186 error = init_swap_address_space(p->type, maxpages);
3187 if (error)
d795a90e 3188 goto bad_swap_unlock_inode;
4b3ef9da 3189
dc617f29
DW
3190 /*
3191 * Flush any pending IO and dirty mappings before we start using this
3192 * swap device.
3193 */
3194 inode->i_flags |= S_SWAPFILE;
3195 error = inode_drain_writes(inode);
3196 if (error) {
3197 inode->i_flags &= ~S_SWAPFILE;
822bca52 3198 goto free_swap_address_space;
dc617f29
DW
3199 }
3200
fc0abb14 3201 mutex_lock(&swapon_mutex);
40531542 3202 prio = -1;
78ecba08 3203 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3204 prio =
78ecba08 3205 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3206 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3207
756a025f 3208 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3209 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3210 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3211 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3212 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3213 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3214 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3215 (frontswap_map) ? "FS" : "");
c69dbfb8 3216
fc0abb14 3217 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3218 atomic_inc(&proc_poll_event);
3219 wake_up_interruptible(&proc_poll_wait);
3220
1da177e4
LT
3221 error = 0;
3222 goto out;
822bca52
ML
3223free_swap_address_space:
3224 exit_swap_address_space(p->type);
d795a90e
NA
3225bad_swap_unlock_inode:
3226 inode_unlock(inode);
1da177e4 3227bad_swap:
ebc2a1a6
SL
3228 free_percpu(p->percpu_cluster);
3229 p->percpu_cluster = NULL;
49070588
HY
3230 free_percpu(p->cluster_next_cpu);
3231 p->cluster_next_cpu = NULL;
bd69010b 3232 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3233 set_blocksize(p->bdev, p->old_block_size);
3234 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3235 }
d795a90e 3236 inode = NULL;
4cd3bb10 3237 destroy_swap_extents(p);
e8e6c2ec 3238 swap_cgroup_swapoff(p->type);
5d337b91 3239 spin_lock(&swap_lock);
1da177e4 3240 p->swap_file = NULL;
1da177e4 3241 p->flags = 0;
5d337b91 3242 spin_unlock(&swap_lock);
1da177e4 3243 vfree(swap_map);
8606a1a9 3244 kvfree(cluster_info);
b6b1fd2a 3245 kvfree(frontswap_map);
7cbf3192
OS
3246 if (inced_nr_rotate_swap)
3247 atomic_dec(&nr_rotate_swap);
d795a90e 3248 if (swap_file)
1da177e4
LT
3249 filp_close(swap_file, NULL);
3250out:
3251 if (page && !IS_ERR(page)) {
3252 kunmap(page);
09cbfeaf 3253 put_page(page);
1da177e4
LT
3254 }
3255 if (name)
3256 putname(name);
1638045c 3257 if (inode)
5955102c 3258 inode_unlock(inode);
039939a6
TC
3259 if (!error)
3260 enable_swap_slots_cache();
1da177e4
LT
3261 return error;
3262}
3263
3264void si_swapinfo(struct sysinfo *val)
3265{
efa90a98 3266 unsigned int type;
1da177e4
LT
3267 unsigned long nr_to_be_unused = 0;
3268
5d337b91 3269 spin_lock(&swap_lock);
efa90a98
HD
3270 for (type = 0; type < nr_swapfiles; type++) {
3271 struct swap_info_struct *si = swap_info[type];
3272
3273 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3274 nr_to_be_unused += si->inuse_pages;
1da177e4 3275 }
ec8acf20 3276 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3277 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3278 spin_unlock(&swap_lock);
1da177e4
LT
3279}
3280
3281/*
3282 * Verify that a swap entry is valid and increment its swap map count.
3283 *
355cfa73
KH
3284 * Returns error code in following case.
3285 * - success -> 0
3286 * - swp_entry is invalid -> EINVAL
3287 * - swp_entry is migration entry -> EINVAL
3288 * - swap-cache reference is requested but there is already one. -> EEXIST
3289 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3290 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3291 */
8d69aaee 3292static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3293{
73c34b6a 3294 struct swap_info_struct *p;
235b6217 3295 struct swap_cluster_info *ci;
c10d38cc 3296 unsigned long offset;
8d69aaee
HD
3297 unsigned char count;
3298 unsigned char has_cache;
9d9a0334 3299 int err;
1da177e4 3300
eb085574 3301 p = get_swap_device(entry);
c10d38cc 3302 if (!p)
9d9a0334 3303 return -EINVAL;
235b6217 3304
eb085574 3305 offset = swp_offset(entry);
235b6217 3306 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3307
253d553b 3308 count = p->swap_map[offset];
edfe23da
SL
3309
3310 /*
3311 * swapin_readahead() doesn't check if a swap entry is valid, so the
3312 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3313 */
3314 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3315 err = -ENOENT;
3316 goto unlock_out;
3317 }
3318
253d553b
HD
3319 has_cache = count & SWAP_HAS_CACHE;
3320 count &= ~SWAP_HAS_CACHE;
3321 err = 0;
355cfa73 3322
253d553b 3323 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3324
3325 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3326 if (!has_cache && count)
3327 has_cache = SWAP_HAS_CACHE;
3328 else if (has_cache) /* someone else added cache */
3329 err = -EEXIST;
3330 else /* no users remaining */
3331 err = -ENOENT;
355cfa73
KH
3332
3333 } else if (count || has_cache) {
253d553b 3334
570a335b
HD
3335 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3336 count += usage;
3337 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3338 err = -EINVAL;
570a335b
HD
3339 else if (swap_count_continued(p, offset, count))
3340 count = COUNT_CONTINUED;
3341 else
3342 err = -ENOMEM;
355cfa73 3343 } else
253d553b
HD
3344 err = -ENOENT; /* unused swap entry */
3345
a449bf58 3346 WRITE_ONCE(p->swap_map[offset], count | has_cache);
253d553b 3347
355cfa73 3348unlock_out:
235b6217 3349 unlock_cluster_or_swap_info(p, ci);
dab8dfff 3350 put_swap_device(p);
253d553b 3351 return err;
1da177e4 3352}
253d553b 3353
aaa46865
HD
3354/*
3355 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3356 * (in which case its reference count is never incremented).
3357 */
3358void swap_shmem_alloc(swp_entry_t entry)
3359{
3360 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3361}
3362
355cfa73 3363/*
08259d58
HD
3364 * Increase reference count of swap entry by 1.
3365 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3366 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3367 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3368 * might occur if a page table entry has got corrupted.
355cfa73 3369 */
570a335b 3370int swap_duplicate(swp_entry_t entry)
355cfa73 3371{
570a335b
HD
3372 int err = 0;
3373
3374 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3375 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3376 return err;
355cfa73 3377}
1da177e4 3378
cb4b86ba 3379/*
355cfa73
KH
3380 * @entry: swap entry for which we allocate swap cache.
3381 *
73c34b6a 3382 * Called when allocating swap cache for existing swap entry,
355cfa73 3383 * This can return error codes. Returns 0 at success.
3eeba135 3384 * -EEXIST means there is a swap cache.
355cfa73 3385 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3386 */
3387int swapcache_prepare(swp_entry_t entry)
3388{
253d553b 3389 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3390}
3391
0bcac06f
MK
3392struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3393{
c10d38cc 3394 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3395}
3396
f981c595
MG
3397struct swap_info_struct *page_swap_info(struct page *page)
3398{
0bcac06f
MK
3399 swp_entry_t entry = { .val = page_private(page) };
3400 return swp_swap_info(entry);
f981c595
MG
3401}
3402
3403/*
2f52578f 3404 * out-of-line methods to avoid include hell.
f981c595 3405 */
2f52578f 3406struct address_space *swapcache_mapping(struct folio *folio)
f981c595 3407{
2f52578f 3408 return page_swap_info(&folio->page)->swap_file->f_mapping;
f981c595 3409}
2f52578f 3410EXPORT_SYMBOL_GPL(swapcache_mapping);
f981c595
MG
3411
3412pgoff_t __page_file_index(struct page *page)
3413{
3414 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3415 return swp_offset(swap);
3416}
3417EXPORT_SYMBOL_GPL(__page_file_index);
3418
570a335b
HD
3419/*
3420 * add_swap_count_continuation - called when a swap count is duplicated
3421 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3422 * page of the original vmalloc'ed swap_map, to hold the continuation count
3423 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3424 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3425 *
3426 * These continuation pages are seldom referenced: the common paths all work
3427 * on the original swap_map, only referring to a continuation page when the
3428 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3429 *
3430 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3431 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3432 * can be called after dropping locks.
3433 */
3434int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3435{
3436 struct swap_info_struct *si;
235b6217 3437 struct swap_cluster_info *ci;
570a335b
HD
3438 struct page *head;
3439 struct page *page;
3440 struct page *list_page;
3441 pgoff_t offset;
3442 unsigned char count;
eb085574 3443 int ret = 0;
570a335b
HD
3444
3445 /*
3446 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3447 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3448 */
3449 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3450
eb085574 3451 si = get_swap_device(entry);
570a335b
HD
3452 if (!si) {
3453 /*
3454 * An acceptable race has occurred since the failing
eb085574 3455 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3456 */
3457 goto outer;
3458 }
eb085574 3459 spin_lock(&si->lock);
570a335b
HD
3460
3461 offset = swp_offset(entry);
235b6217
HY
3462
3463 ci = lock_cluster(si, offset);
3464
d8aa24e0 3465 count = swap_count(si->swap_map[offset]);
570a335b
HD
3466
3467 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3468 /*
3469 * The higher the swap count, the more likely it is that tasks
3470 * will race to add swap count continuation: we need to avoid
3471 * over-provisioning.
3472 */
3473 goto out;
3474 }
3475
3476 if (!page) {
eb085574
HY
3477 ret = -ENOMEM;
3478 goto out;
570a335b
HD
3479 }
3480
3481 /*
3482 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3483 * no architecture is using highmem pages for kernel page tables: so it
3484 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3485 */
3486 head = vmalloc_to_page(si->swap_map + offset);
3487 offset &= ~PAGE_MASK;
3488
2628bd6f 3489 spin_lock(&si->cont_lock);
570a335b
HD
3490 /*
3491 * Page allocation does not initialize the page's lru field,
3492 * but it does always reset its private field.
3493 */
3494 if (!page_private(head)) {
3495 BUG_ON(count & COUNT_CONTINUED);
3496 INIT_LIST_HEAD(&head->lru);
3497 set_page_private(head, SWP_CONTINUED);
3498 si->flags |= SWP_CONTINUED;
3499 }
3500
3501 list_for_each_entry(list_page, &head->lru, lru) {
3502 unsigned char *map;
3503
3504 /*
3505 * If the previous map said no continuation, but we've found
3506 * a continuation page, free our allocation and use this one.
3507 */
3508 if (!(count & COUNT_CONTINUED))
2628bd6f 3509 goto out_unlock_cont;
570a335b 3510
9b04c5fe 3511 map = kmap_atomic(list_page) + offset;
570a335b 3512 count = *map;
9b04c5fe 3513 kunmap_atomic(map);
570a335b
HD
3514
3515 /*
3516 * If this continuation count now has some space in it,
3517 * free our allocation and use this one.
3518 */
3519 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3520 goto out_unlock_cont;
570a335b
HD
3521 }
3522
3523 list_add_tail(&page->lru, &head->lru);
3524 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3525out_unlock_cont:
3526 spin_unlock(&si->cont_lock);
570a335b 3527out:
235b6217 3528 unlock_cluster(ci);
ec8acf20 3529 spin_unlock(&si->lock);
eb085574 3530 put_swap_device(si);
570a335b
HD
3531outer:
3532 if (page)
3533 __free_page(page);
eb085574 3534 return ret;
570a335b
HD
3535}
3536
3537/*
3538 * swap_count_continued - when the original swap_map count is incremented
3539 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3540 * into, carry if so, or else fail until a new continuation page is allocated;
3541 * when the original swap_map count is decremented from 0 with continuation,
3542 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3543 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3544 * lock.
570a335b
HD
3545 */
3546static bool swap_count_continued(struct swap_info_struct *si,
3547 pgoff_t offset, unsigned char count)
3548{
3549 struct page *head;
3550 struct page *page;
3551 unsigned char *map;
2628bd6f 3552 bool ret;
570a335b
HD
3553
3554 head = vmalloc_to_page(si->swap_map + offset);
3555 if (page_private(head) != SWP_CONTINUED) {
3556 BUG_ON(count & COUNT_CONTINUED);
3557 return false; /* need to add count continuation */
3558 }
3559
2628bd6f 3560 spin_lock(&si->cont_lock);
570a335b 3561 offset &= ~PAGE_MASK;
213516ac 3562 page = list_next_entry(head, lru);
9b04c5fe 3563 map = kmap_atomic(page) + offset;
570a335b
HD
3564
3565 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3566 goto init_map; /* jump over SWAP_CONT_MAX checks */
3567
3568 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3569 /*
3570 * Think of how you add 1 to 999
3571 */
3572 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3573 kunmap_atomic(map);
213516ac 3574 page = list_next_entry(page, lru);
570a335b 3575 BUG_ON(page == head);
9b04c5fe 3576 map = kmap_atomic(page) + offset;
570a335b
HD
3577 }
3578 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3579 kunmap_atomic(map);
213516ac 3580 page = list_next_entry(page, lru);
2628bd6f
HY
3581 if (page == head) {
3582 ret = false; /* add count continuation */
3583 goto out;
3584 }
9b04c5fe 3585 map = kmap_atomic(page) + offset;
570a335b
HD
3586init_map: *map = 0; /* we didn't zero the page */
3587 }
3588 *map += 1;
9b04c5fe 3589 kunmap_atomic(map);
213516ac 3590 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3591 map = kmap_atomic(page) + offset;
570a335b 3592 *map = COUNT_CONTINUED;
9b04c5fe 3593 kunmap_atomic(map);
570a335b 3594 }
2628bd6f 3595 ret = true; /* incremented */
570a335b
HD
3596
3597 } else { /* decrementing */
3598 /*
3599 * Think of how you subtract 1 from 1000
3600 */
3601 BUG_ON(count != COUNT_CONTINUED);
3602 while (*map == COUNT_CONTINUED) {
9b04c5fe 3603 kunmap_atomic(map);
213516ac 3604 page = list_next_entry(page, lru);
570a335b 3605 BUG_ON(page == head);
9b04c5fe 3606 map = kmap_atomic(page) + offset;
570a335b
HD
3607 }
3608 BUG_ON(*map == 0);
3609 *map -= 1;
3610 if (*map == 0)
3611 count = 0;
9b04c5fe 3612 kunmap_atomic(map);
213516ac 3613 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3614 map = kmap_atomic(page) + offset;
570a335b
HD
3615 *map = SWAP_CONT_MAX | count;
3616 count = COUNT_CONTINUED;
9b04c5fe 3617 kunmap_atomic(map);
570a335b 3618 }
2628bd6f 3619 ret = count == COUNT_CONTINUED;
570a335b 3620 }
2628bd6f
HY
3621out:
3622 spin_unlock(&si->cont_lock);
3623 return ret;
570a335b
HD
3624}
3625
3626/*
3627 * free_swap_count_continuations - swapoff free all the continuation pages
3628 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3629 */
3630static void free_swap_count_continuations(struct swap_info_struct *si)
3631{
3632 pgoff_t offset;
3633
3634 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3635 struct page *head;
3636 head = vmalloc_to_page(si->swap_map + offset);
3637 if (page_private(head)) {
0d576d20
GT
3638 struct page *page, *next;
3639
3640 list_for_each_entry_safe(page, next, &head->lru, lru) {
3641 list_del(&page->lru);
570a335b
HD
3642 __free_page(page);
3643 }
3644 }
3645 }
3646}
a2468cc9 3647
2cf85583 3648#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
01c4b28c 3649void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
2cf85583
TH
3650{
3651 struct swap_info_struct *si, *next;
6caa6a07
JW
3652 int nid = page_to_nid(page);
3653
3654 if (!(gfp_mask & __GFP_IO))
2cf85583
TH
3655 return;
3656
3657 if (!blk_cgroup_congested())
3658 return;
3659
3660 /*
3661 * We've already scheduled a throttle, avoid taking the global swap
3662 * lock.
3663 */
3664 if (current->throttle_queue)
3665 return;
3666
3667 spin_lock(&swap_avail_lock);
6caa6a07
JW
3668 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3669 avail_lists[nid]) {
2cf85583 3670 if (si->bdev) {
6caa6a07 3671 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
2cf85583
TH
3672 break;
3673 }
3674 }
3675 spin_unlock(&swap_avail_lock);
3676}
3677#endif
3678
a2468cc9
AL
3679static int __init swapfile_init(void)
3680{
3681 int nid;
3682
3683 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3684 GFP_KERNEL);
3685 if (!swap_avail_heads) {
3686 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3687 return -ENOMEM;
3688 }
3689
3690 for_each_node(nid)
3691 plist_head_init(&swap_avail_heads[nid]);
3692
3693 return 0;
3694}
3695subsys_initcall(swapfile_init);