drm/ttm: add resource iterator v4
[linux-block.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
e41d12f5 21#include <linux/blk-cgroup.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
63d8620e 42#include <linux/completion.h>
1da177e4 43
1da177e4
LT
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
5d1ea48b 46#include <linux/swap_cgroup.h>
1da177e4 47
570a335b
HD
48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50static void free_swap_count_continuations(struct swap_info_struct *);
51
633423a0 52static DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
633423a0 74static PLIST_HEAD(swap_active_head);
18ab4d4c
DS
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
bfc6b1ca 88static struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
c10d38cc
DJ
101static struct swap_info_struct *swap_type_to_swap_info(int type)
102{
a4b45114 103 if (type >= MAX_SWAPFILES)
c10d38cc
DJ
104 return NULL;
105
a4b45114 106 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
c10d38cc
DJ
107}
108
8d69aaee 109static inline unsigned char swap_count(unsigned char ent)
355cfa73 110{
955c97f0 111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
112}
113
bcd49e86
HY
114/* Reclaim the swap entry anyway if possible */
115#define TTRS_ANYWAY 0x1
116/*
117 * Reclaim the swap entry if there are no more mappings of the
118 * corresponding page
119 */
120#define TTRS_UNMAPPED 0x2
121/* Reclaim the swap entry if swap is getting full*/
122#define TTRS_FULL 0x4
123
efa90a98 124/* returns 1 if swap entry is freed */
bcd49e86
HY
125static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 unsigned long offset, unsigned long flags)
c9e44410 127{
efa90a98 128 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
129 struct page *page;
130 int ret = 0;
131
bcd49e86 132 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
133 if (!page)
134 return 0;
135 /*
bcd49e86
HY
136 * When this function is called from scan_swap_map_slots() and it's
137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
139 * case and you should use try_to_free_swap() with explicit lock_page()
140 * in usual operations.
141 */
142 if (trylock_page(page)) {
bcd49e86
HY
143 if ((flags & TTRS_ANYWAY) ||
144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 ret = try_to_free_swap(page);
c9e44410
KH
147 unlock_page(page);
148 }
09cbfeaf 149 put_page(page);
c9e44410
KH
150 return ret;
151}
355cfa73 152
4efaceb1
AL
153static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154{
155 struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 return rb_entry(rb, struct swap_extent, rb_node);
157}
158
159static inline struct swap_extent *next_se(struct swap_extent *se)
160{
161 struct rb_node *rb = rb_next(&se->rb_node);
162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163}
164
6a6ba831
HD
165/*
166 * swapon tell device that all the old swap contents can be discarded,
167 * to allow the swap device to optimize its wear-levelling.
168 */
169static int discard_swap(struct swap_info_struct *si)
170{
171 struct swap_extent *se;
9625a5f2
HD
172 sector_t start_block;
173 sector_t nr_blocks;
6a6ba831
HD
174 int err = 0;
175
9625a5f2 176 /* Do not discard the swap header page! */
4efaceb1 177 se = first_se(si);
9625a5f2
HD
178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 if (nr_blocks) {
181 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 182 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
183 if (err)
184 return err;
185 cond_resched();
186 }
6a6ba831 187
4efaceb1 188 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
189 start_block = se->start_block << (PAGE_SHIFT - 9);
190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
191
192 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 193 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
194 if (err)
195 break;
196
197 cond_resched();
198 }
199 return err; /* That will often be -EOPNOTSUPP */
200}
201
4efaceb1
AL
202static struct swap_extent *
203offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204{
205 struct swap_extent *se;
206 struct rb_node *rb;
207
208 rb = sis->swap_extent_root.rb_node;
209 while (rb) {
210 se = rb_entry(rb, struct swap_extent, rb_node);
211 if (offset < se->start_page)
212 rb = rb->rb_left;
213 else if (offset >= se->start_page + se->nr_pages)
214 rb = rb->rb_right;
215 else
216 return se;
217 }
218 /* It *must* be present */
219 BUG();
220}
221
caf6912f
JA
222sector_t swap_page_sector(struct page *page)
223{
224 struct swap_info_struct *sis = page_swap_info(page);
225 struct swap_extent *se;
226 sector_t sector;
227 pgoff_t offset;
228
229 offset = __page_file_index(page);
230 se = offset_to_swap_extent(sis, offset);
231 sector = se->start_block + (offset - se->start_page);
232 return sector << (PAGE_SHIFT - 9);
233}
234
7992fde7
HD
235/*
236 * swap allocation tell device that a cluster of swap can now be discarded,
237 * to allow the swap device to optimize its wear-levelling.
238 */
239static void discard_swap_cluster(struct swap_info_struct *si,
240 pgoff_t start_page, pgoff_t nr_pages)
241{
4efaceb1 242 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
243
244 while (nr_pages) {
4efaceb1
AL
245 pgoff_t offset = start_page - se->start_page;
246 sector_t start_block = se->start_block + offset;
247 sector_t nr_blocks = se->nr_pages - offset;
248
249 if (nr_blocks > nr_pages)
250 nr_blocks = nr_pages;
251 start_page += nr_blocks;
252 nr_pages -= nr_blocks;
253
254 start_block <<= PAGE_SHIFT - 9;
255 nr_blocks <<= PAGE_SHIFT - 9;
256 if (blkdev_issue_discard(si->bdev, start_block,
257 nr_blocks, GFP_NOIO, 0))
258 break;
7992fde7 259
4efaceb1 260 se = next_se(se);
7992fde7
HD
261 }
262}
263
38d8b4e6
HY
264#ifdef CONFIG_THP_SWAP
265#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
266
267#define swap_entry_size(size) (size)
38d8b4e6 268#else
048c27fd 269#define SWAPFILE_CLUSTER 256
a448f2d0
HY
270
271/*
272 * Define swap_entry_size() as constant to let compiler to optimize
273 * out some code if !CONFIG_THP_SWAP
274 */
275#define swap_entry_size(size) 1
38d8b4e6 276#endif
048c27fd
HD
277#define LATENCY_LIMIT 256
278
2a8f9449
SL
279static inline void cluster_set_flag(struct swap_cluster_info *info,
280 unsigned int flag)
281{
282 info->flags = flag;
283}
284
285static inline unsigned int cluster_count(struct swap_cluster_info *info)
286{
287 return info->data;
288}
289
290static inline void cluster_set_count(struct swap_cluster_info *info,
291 unsigned int c)
292{
293 info->data = c;
294}
295
296static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 unsigned int c, unsigned int f)
298{
299 info->flags = f;
300 info->data = c;
301}
302
303static inline unsigned int cluster_next(struct swap_cluster_info *info)
304{
305 return info->data;
306}
307
308static inline void cluster_set_next(struct swap_cluster_info *info,
309 unsigned int n)
310{
311 info->data = n;
312}
313
314static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 unsigned int n, unsigned int f)
316{
317 info->flags = f;
318 info->data = n;
319}
320
321static inline bool cluster_is_free(struct swap_cluster_info *info)
322{
323 return info->flags & CLUSTER_FLAG_FREE;
324}
325
326static inline bool cluster_is_null(struct swap_cluster_info *info)
327{
328 return info->flags & CLUSTER_FLAG_NEXT_NULL;
329}
330
331static inline void cluster_set_null(struct swap_cluster_info *info)
332{
333 info->flags = CLUSTER_FLAG_NEXT_NULL;
334 info->data = 0;
335}
336
e0709829
HY
337static inline bool cluster_is_huge(struct swap_cluster_info *info)
338{
33ee011e
HY
339 if (IS_ENABLED(CONFIG_THP_SWAP))
340 return info->flags & CLUSTER_FLAG_HUGE;
341 return false;
e0709829
HY
342}
343
344static inline void cluster_clear_huge(struct swap_cluster_info *info)
345{
346 info->flags &= ~CLUSTER_FLAG_HUGE;
347}
348
235b6217
HY
349static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 unsigned long offset)
351{
352 struct swap_cluster_info *ci;
353
354 ci = si->cluster_info;
355 if (ci) {
356 ci += offset / SWAPFILE_CLUSTER;
357 spin_lock(&ci->lock);
358 }
359 return ci;
360}
361
362static inline void unlock_cluster(struct swap_cluster_info *ci)
363{
364 if (ci)
365 spin_unlock(&ci->lock);
366}
367
59d98bf3
HY
368/*
369 * Determine the locking method in use for this device. Return
370 * swap_cluster_info if SSD-style cluster-based locking is in place.
371 */
235b6217 372static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 373 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
374{
375 struct swap_cluster_info *ci;
376
59d98bf3 377 /* Try to use fine-grained SSD-style locking if available: */
235b6217 378 ci = lock_cluster(si, offset);
59d98bf3 379 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
380 if (!ci)
381 spin_lock(&si->lock);
382
383 return ci;
384}
385
386static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 struct swap_cluster_info *ci)
388{
389 if (ci)
390 unlock_cluster(ci);
391 else
392 spin_unlock(&si->lock);
393}
394
6b534915
HY
395static inline bool cluster_list_empty(struct swap_cluster_list *list)
396{
397 return cluster_is_null(&list->head);
398}
399
400static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401{
402 return cluster_next(&list->head);
403}
404
405static void cluster_list_init(struct swap_cluster_list *list)
406{
407 cluster_set_null(&list->head);
408 cluster_set_null(&list->tail);
409}
410
411static void cluster_list_add_tail(struct swap_cluster_list *list,
412 struct swap_cluster_info *ci,
413 unsigned int idx)
414{
415 if (cluster_list_empty(list)) {
416 cluster_set_next_flag(&list->head, idx, 0);
417 cluster_set_next_flag(&list->tail, idx, 0);
418 } else {
235b6217 419 struct swap_cluster_info *ci_tail;
6b534915
HY
420 unsigned int tail = cluster_next(&list->tail);
421
235b6217
HY
422 /*
423 * Nested cluster lock, but both cluster locks are
424 * only acquired when we held swap_info_struct->lock
425 */
426 ci_tail = ci + tail;
427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 cluster_set_next(ci_tail, idx);
0ef017d1 429 spin_unlock(&ci_tail->lock);
6b534915
HY
430 cluster_set_next_flag(&list->tail, idx, 0);
431 }
432}
433
434static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 struct swap_cluster_info *ci)
436{
437 unsigned int idx;
438
439 idx = cluster_next(&list->head);
440 if (cluster_next(&list->tail) == idx) {
441 cluster_set_null(&list->head);
442 cluster_set_null(&list->tail);
443 } else
444 cluster_set_next_flag(&list->head,
445 cluster_next(&ci[idx]), 0);
446
447 return idx;
448}
449
815c2c54
SL
450/* Add a cluster to discard list and schedule it to do discard */
451static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 unsigned int idx)
453{
454 /*
bb243f7d 455 * If scan_swap_map_slots() can't find a free cluster, it will check
815c2c54 456 * si->swap_map directly. To make sure the discarding cluster isn't
bb243f7d
ML
457 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458 * It will be cleared after discard
815c2c54
SL
459 */
460 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
6b534915 463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
464
465 schedule_work(&si->discard_work);
466}
467
38d8b4e6
HY
468static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469{
470 struct swap_cluster_info *ci = si->cluster_info;
471
472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 cluster_list_add_tail(&si->free_clusters, ci, idx);
474}
475
815c2c54
SL
476/*
477 * Doing discard actually. After a cluster discard is finished, the cluster
478 * will be added to free cluster list. caller should hold si->lock.
479*/
480static void swap_do_scheduled_discard(struct swap_info_struct *si)
481{
235b6217 482 struct swap_cluster_info *info, *ci;
815c2c54
SL
483 unsigned int idx;
484
485 info = si->cluster_info;
486
6b534915
HY
487 while (!cluster_list_empty(&si->discard_clusters)) {
488 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
489 spin_unlock(&si->lock);
490
491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 SWAPFILE_CLUSTER);
493
494 spin_lock(&si->lock);
235b6217 495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 496 __free_cluster(si, idx);
815c2c54
SL
497 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 0, SWAPFILE_CLUSTER);
235b6217 499 unlock_cluster(ci);
815c2c54
SL
500 }
501}
502
503static void swap_discard_work(struct work_struct *work)
504{
505 struct swap_info_struct *si;
506
507 si = container_of(work, struct swap_info_struct, discard_work);
508
509 spin_lock(&si->lock);
510 swap_do_scheduled_discard(si);
511 spin_unlock(&si->lock);
512}
513
63d8620e
ML
514static void swap_users_ref_free(struct percpu_ref *ref)
515{
516 struct swap_info_struct *si;
517
518 si = container_of(ref, struct swap_info_struct, users);
519 complete(&si->comp);
520}
521
38d8b4e6
HY
522static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523{
524 struct swap_cluster_info *ci = si->cluster_info;
525
526 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527 cluster_list_del_first(&si->free_clusters, ci);
528 cluster_set_count_flag(ci + idx, 0, 0);
529}
530
531static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532{
533 struct swap_cluster_info *ci = si->cluster_info + idx;
534
535 VM_BUG_ON(cluster_count(ci) != 0);
536 /*
537 * If the swap is discardable, prepare discard the cluster
538 * instead of free it immediately. The cluster will be freed
539 * after discard.
540 */
541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 swap_cluster_schedule_discard(si, idx);
544 return;
545 }
546
547 __free_cluster(si, idx);
548}
549
2a8f9449
SL
550/*
551 * The cluster corresponding to page_nr will be used. The cluster will be
552 * removed from free cluster list and its usage counter will be increased.
553 */
554static void inc_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
556{
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559 if (!cluster_info)
560 return;
38d8b4e6
HY
561 if (cluster_is_free(&cluster_info[idx]))
562 alloc_cluster(p, idx);
2a8f9449
SL
563
564 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565 cluster_set_count(&cluster_info[idx],
566 cluster_count(&cluster_info[idx]) + 1);
567}
568
569/*
570 * The cluster corresponding to page_nr decreases one usage. If the usage
571 * counter becomes 0, which means no page in the cluster is in using, we can
572 * optionally discard the cluster and add it to free cluster list.
573 */
574static void dec_cluster_info_page(struct swap_info_struct *p,
575 struct swap_cluster_info *cluster_info, unsigned long page_nr)
576{
577 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578
579 if (!cluster_info)
580 return;
581
582 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583 cluster_set_count(&cluster_info[idx],
584 cluster_count(&cluster_info[idx]) - 1);
585
38d8b4e6
HY
586 if (cluster_count(&cluster_info[idx]) == 0)
587 free_cluster(p, idx);
2a8f9449
SL
588}
589
590/*
bb243f7d 591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
2a8f9449
SL
592 * cluster list. Avoiding such abuse to avoid list corruption.
593 */
ebc2a1a6
SL
594static bool
595scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
596 unsigned long offset)
597{
ebc2a1a6
SL
598 struct percpu_cluster *percpu_cluster;
599 bool conflict;
600
2a8f9449 601 offset /= SWAPFILE_CLUSTER;
6b534915
HY
602 conflict = !cluster_list_empty(&si->free_clusters) &&
603 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 604 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
605
606 if (!conflict)
607 return false;
608
609 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610 cluster_set_null(&percpu_cluster->index);
611 return true;
612}
613
614/*
615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616 * might involve allocating a new cluster for current CPU too.
617 */
36005bae 618static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
619 unsigned long *offset, unsigned long *scan_base)
620{
621 struct percpu_cluster *cluster;
235b6217 622 struct swap_cluster_info *ci;
235b6217 623 unsigned long tmp, max;
ebc2a1a6
SL
624
625new_cluster:
626 cluster = this_cpu_ptr(si->percpu_cluster);
627 if (cluster_is_null(&cluster->index)) {
6b534915
HY
628 if (!cluster_list_empty(&si->free_clusters)) {
629 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
630 cluster->next = cluster_next(&cluster->index) *
631 SWAPFILE_CLUSTER;
6b534915 632 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
633 /*
634 * we don't have free cluster but have some clusters in
49070588
HY
635 * discarding, do discard now and reclaim them, then
636 * reread cluster_next_cpu since we dropped si->lock
ebc2a1a6
SL
637 */
638 swap_do_scheduled_discard(si);
49070588
HY
639 *scan_base = this_cpu_read(*si->cluster_next_cpu);
640 *offset = *scan_base;
ebc2a1a6
SL
641 goto new_cluster;
642 } else
36005bae 643 return false;
ebc2a1a6
SL
644 }
645
ebc2a1a6
SL
646 /*
647 * Other CPUs can use our cluster if they can't find a free cluster,
648 * check if there is still free entry in the cluster
649 */
650 tmp = cluster->next;
235b6217
HY
651 max = min_t(unsigned long, si->max,
652 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
7b9e2de1
WY
653 if (tmp < max) {
654 ci = lock_cluster(si, tmp);
655 while (tmp < max) {
656 if (!si->swap_map[tmp])
657 break;
658 tmp++;
659 }
660 unlock_cluster(ci);
ebc2a1a6 661 }
0fd0e19e 662 if (tmp >= max) {
ebc2a1a6
SL
663 cluster_set_null(&cluster->index);
664 goto new_cluster;
665 }
666 cluster->next = tmp + 1;
667 *offset = tmp;
668 *scan_base = tmp;
fdff1deb 669 return true;
2a8f9449
SL
670}
671
a2468cc9
AL
672static void __del_from_avail_list(struct swap_info_struct *p)
673{
674 int nid;
675
676 for_each_node(nid)
677 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678}
679
680static void del_from_avail_list(struct swap_info_struct *p)
681{
682 spin_lock(&swap_avail_lock);
683 __del_from_avail_list(p);
684 spin_unlock(&swap_avail_lock);
685}
686
38d8b4e6
HY
687static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688 unsigned int nr_entries)
689{
690 unsigned int end = offset + nr_entries - 1;
691
692 if (offset == si->lowest_bit)
693 si->lowest_bit += nr_entries;
694 if (end == si->highest_bit)
a449bf58 695 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
38d8b4e6
HY
696 si->inuse_pages += nr_entries;
697 if (si->inuse_pages == si->pages) {
698 si->lowest_bit = si->max;
699 si->highest_bit = 0;
a2468cc9 700 del_from_avail_list(si);
38d8b4e6
HY
701 }
702}
703
a2468cc9
AL
704static void add_to_avail_list(struct swap_info_struct *p)
705{
706 int nid;
707
708 spin_lock(&swap_avail_lock);
709 for_each_node(nid) {
710 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712 }
713 spin_unlock(&swap_avail_lock);
714}
715
38d8b4e6
HY
716static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717 unsigned int nr_entries)
718{
3852f676 719 unsigned long begin = offset;
38d8b4e6
HY
720 unsigned long end = offset + nr_entries - 1;
721 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722
723 if (offset < si->lowest_bit)
724 si->lowest_bit = offset;
725 if (end > si->highest_bit) {
726 bool was_full = !si->highest_bit;
727
a449bf58 728 WRITE_ONCE(si->highest_bit, end);
a2468cc9
AL
729 if (was_full && (si->flags & SWP_WRITEOK))
730 add_to_avail_list(si);
38d8b4e6
HY
731 }
732 atomic_long_add(nr_entries, &nr_swap_pages);
733 si->inuse_pages -= nr_entries;
734 if (si->flags & SWP_BLKDEV)
735 swap_slot_free_notify =
736 si->bdev->bd_disk->fops->swap_slot_free_notify;
737 else
738 swap_slot_free_notify = NULL;
739 while (offset <= end) {
8a84802e 740 arch_swap_invalidate_page(si->type, offset);
38d8b4e6
HY
741 frontswap_invalidate_page(si->type, offset);
742 if (swap_slot_free_notify)
743 swap_slot_free_notify(si->bdev, offset);
744 offset++;
745 }
3852f676 746 clear_shadow_from_swap_cache(si->type, begin, end);
38d8b4e6
HY
747}
748
49070588
HY
749static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750{
751 unsigned long prev;
752
753 if (!(si->flags & SWP_SOLIDSTATE)) {
754 si->cluster_next = next;
755 return;
756 }
757
758 prev = this_cpu_read(*si->cluster_next_cpu);
759 /*
760 * Cross the swap address space size aligned trunk, choose
761 * another trunk randomly to avoid lock contention on swap
762 * address space if possible.
763 */
764 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766 /* No free swap slots available */
767 if (si->highest_bit <= si->lowest_bit)
768 return;
769 next = si->lowest_bit +
770 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772 next = max_t(unsigned int, next, si->lowest_bit);
773 }
774 this_cpu_write(*si->cluster_next_cpu, next);
775}
776
36005bae
TC
777static int scan_swap_map_slots(struct swap_info_struct *si,
778 unsigned char usage, int nr,
779 swp_entry_t slots[])
1da177e4 780{
235b6217 781 struct swap_cluster_info *ci;
ebebbbe9 782 unsigned long offset;
c60aa176 783 unsigned long scan_base;
7992fde7 784 unsigned long last_in_cluster = 0;
048c27fd 785 int latency_ration = LATENCY_LIMIT;
36005bae 786 int n_ret = 0;
ed43af10 787 bool scanned_many = false;
36005bae 788
886bb7e9 789 /*
7dfad418
HD
790 * We try to cluster swap pages by allocating them sequentially
791 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
792 * way, however, we resort to first-free allocation, starting
793 * a new cluster. This prevents us from scattering swap pages
794 * all over the entire swap partition, so that we reduce
795 * overall disk seek times between swap pages. -- sct
796 * But we do now try to find an empty cluster. -Andrea
c60aa176 797 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
798 */
799
52b7efdb 800 si->flags += SWP_SCANNING;
49070588
HY
801 /*
802 * Use percpu scan base for SSD to reduce lock contention on
803 * cluster and swap cache. For HDD, sequential access is more
804 * important.
805 */
806 if (si->flags & SWP_SOLIDSTATE)
807 scan_base = this_cpu_read(*si->cluster_next_cpu);
808 else
809 scan_base = si->cluster_next;
810 offset = scan_base;
ebebbbe9 811
ebc2a1a6
SL
812 /* SSD algorithm */
813 if (si->cluster_info) {
bd2d18da 814 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 815 goto scan;
f4eaf51a 816 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
817 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818 si->cluster_nr = SWAPFILE_CLUSTER - 1;
819 goto checks;
820 }
2a8f9449 821
ec8acf20 822 spin_unlock(&si->lock);
7dfad418 823
c60aa176
HD
824 /*
825 * If seek is expensive, start searching for new cluster from
826 * start of partition, to minimize the span of allocated swap.
50088c44
CY
827 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 829 */
50088c44 830 scan_base = offset = si->lowest_bit;
7dfad418
HD
831 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832
833 /* Locate the first empty (unaligned) cluster */
834 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 835 if (si->swap_map[offset])
7dfad418
HD
836 last_in_cluster = offset + SWAPFILE_CLUSTER;
837 else if (offset == last_in_cluster) {
ec8acf20 838 spin_lock(&si->lock);
ebebbbe9
HD
839 offset -= SWAPFILE_CLUSTER - 1;
840 si->cluster_next = offset;
841 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
842 goto checks;
843 }
844 if (unlikely(--latency_ration < 0)) {
845 cond_resched();
846 latency_ration = LATENCY_LIMIT;
847 }
848 }
849
850 offset = scan_base;
ec8acf20 851 spin_lock(&si->lock);
ebebbbe9 852 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 853 }
7dfad418 854
ebebbbe9 855checks:
ebc2a1a6 856 if (si->cluster_info) {
36005bae
TC
857 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858 /* take a break if we already got some slots */
859 if (n_ret)
860 goto done;
861 if (!scan_swap_map_try_ssd_cluster(si, &offset,
862 &scan_base))
863 goto scan;
864 }
ebc2a1a6 865 }
ebebbbe9 866 if (!(si->flags & SWP_WRITEOK))
52b7efdb 867 goto no_page;
7dfad418
HD
868 if (!si->highest_bit)
869 goto no_page;
ebebbbe9 870 if (offset > si->highest_bit)
c60aa176 871 scan_base = offset = si->lowest_bit;
c9e44410 872
235b6217 873 ci = lock_cluster(si, offset);
b73d7fce
HD
874 /* reuse swap entry of cache-only swap if not busy. */
875 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 876 int swap_was_freed;
235b6217 877 unlock_cluster(ci);
ec8acf20 878 spin_unlock(&si->lock);
bcd49e86 879 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 880 spin_lock(&si->lock);
c9e44410
KH
881 /* entry was freed successfully, try to use this again */
882 if (swap_was_freed)
883 goto checks;
884 goto scan; /* check next one */
885 }
886
235b6217
HY
887 if (si->swap_map[offset]) {
888 unlock_cluster(ci);
36005bae
TC
889 if (!n_ret)
890 goto scan;
891 else
892 goto done;
235b6217 893 }
a449bf58 894 WRITE_ONCE(si->swap_map[offset], usage);
2872bb2d
HY
895 inc_cluster_info_page(si, si->cluster_info, offset);
896 unlock_cluster(ci);
ebebbbe9 897
38d8b4e6 898 swap_range_alloc(si, offset, 1);
36005bae
TC
899 slots[n_ret++] = swp_entry(si->type, offset);
900
901 /* got enough slots or reach max slots? */
902 if ((n_ret == nr) || (offset >= si->highest_bit))
903 goto done;
904
905 /* search for next available slot */
906
907 /* time to take a break? */
908 if (unlikely(--latency_ration < 0)) {
909 if (n_ret)
910 goto done;
911 spin_unlock(&si->lock);
912 cond_resched();
913 spin_lock(&si->lock);
914 latency_ration = LATENCY_LIMIT;
915 }
916
917 /* try to get more slots in cluster */
918 if (si->cluster_info) {
919 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920 goto checks;
f4eaf51a
WY
921 } else if (si->cluster_nr && !si->swap_map[++offset]) {
922 /* non-ssd case, still more slots in cluster? */
36005bae
TC
923 --si->cluster_nr;
924 goto checks;
925 }
7992fde7 926
ed43af10
HY
927 /*
928 * Even if there's no free clusters available (fragmented),
929 * try to scan a little more quickly with lock held unless we
930 * have scanned too many slots already.
931 */
932 if (!scanned_many) {
933 unsigned long scan_limit;
934
935 if (offset < scan_base)
936 scan_limit = scan_base;
937 else
938 scan_limit = si->highest_bit;
939 for (; offset <= scan_limit && --latency_ration > 0;
940 offset++) {
941 if (!si->swap_map[offset])
942 goto checks;
943 }
944 }
945
36005bae 946done:
49070588 947 set_cluster_next(si, offset + 1);
36005bae
TC
948 si->flags -= SWP_SCANNING;
949 return n_ret;
7dfad418 950
ebebbbe9 951scan:
ec8acf20 952 spin_unlock(&si->lock);
a449bf58
QC
953 while (++offset <= READ_ONCE(si->highest_bit)) {
954 if (data_race(!si->swap_map[offset])) {
ec8acf20 955 spin_lock(&si->lock);
52b7efdb
HD
956 goto checks;
957 }
a449bf58
QC
958 if (vm_swap_full() &&
959 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
ec8acf20 960 spin_lock(&si->lock);
c9e44410
KH
961 goto checks;
962 }
048c27fd
HD
963 if (unlikely(--latency_ration < 0)) {
964 cond_resched();
965 latency_ration = LATENCY_LIMIT;
ed43af10 966 scanned_many = true;
048c27fd 967 }
7dfad418 968 }
c60aa176 969 offset = si->lowest_bit;
a5998061 970 while (offset < scan_base) {
a449bf58 971 if (data_race(!si->swap_map[offset])) {
ec8acf20 972 spin_lock(&si->lock);
c60aa176
HD
973 goto checks;
974 }
a449bf58
QC
975 if (vm_swap_full() &&
976 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
ec8acf20 977 spin_lock(&si->lock);
c9e44410
KH
978 goto checks;
979 }
c60aa176
HD
980 if (unlikely(--latency_ration < 0)) {
981 cond_resched();
982 latency_ration = LATENCY_LIMIT;
ed43af10 983 scanned_many = true;
c60aa176 984 }
a5998061 985 offset++;
c60aa176 986 }
ec8acf20 987 spin_lock(&si->lock);
7dfad418
HD
988
989no_page:
52b7efdb 990 si->flags -= SWP_SCANNING;
36005bae 991 return n_ret;
1da177e4
LT
992}
993
38d8b4e6
HY
994static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995{
996 unsigned long idx;
997 struct swap_cluster_info *ci;
661c7566 998 unsigned long offset;
38d8b4e6 999
fe5266d5
HY
1000 /*
1001 * Should not even be attempting cluster allocations when huge
1002 * page swap is disabled. Warn and fail the allocation.
1003 */
1004 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005 VM_WARN_ON_ONCE(1);
1006 return 0;
1007 }
1008
38d8b4e6
HY
1009 if (cluster_list_empty(&si->free_clusters))
1010 return 0;
1011
1012 idx = cluster_list_first(&si->free_clusters);
1013 offset = idx * SWAPFILE_CLUSTER;
1014 ci = lock_cluster(si, offset);
1015 alloc_cluster(si, idx);
e0709829 1016 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6 1017
661c7566 1018 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
38d8b4e6
HY
1019 unlock_cluster(ci);
1020 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021 *slot = swp_entry(si->type, offset);
1022
1023 return 1;
1024}
1025
1026static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027{
1028 unsigned long offset = idx * SWAPFILE_CLUSTER;
1029 struct swap_cluster_info *ci;
1030
1031 ci = lock_cluster(si, offset);
979aafa5 1032 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
1033 cluster_set_count_flag(ci, 0, 0);
1034 free_cluster(si, idx);
1035 unlock_cluster(ci);
1036 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037}
38d8b4e6 1038
5d5e8f19 1039int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 1040{
5d5e8f19 1041 unsigned long size = swap_entry_size(entry_size);
adfab836 1042 struct swap_info_struct *si, *next;
36005bae
TC
1043 long avail_pgs;
1044 int n_ret = 0;
a2468cc9 1045 int node;
1da177e4 1046
38d8b4e6 1047 /* Only single cluster request supported */
5d5e8f19 1048 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1049
b50da6e9
ZH
1050 spin_lock(&swap_avail_lock);
1051
5d5e8f19 1052 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
b50da6e9
ZH
1053 if (avail_pgs <= 0) {
1054 spin_unlock(&swap_avail_lock);
fb4f88dc 1055 goto noswap;
b50da6e9 1056 }
36005bae 1057
08d3090f 1058 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 1059
5d5e8f19 1060 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1061
18ab4d4c 1062start_over:
a2468cc9
AL
1063 node = numa_node_id();
1064 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1065 /* requeue si to after same-priority siblings */
a2468cc9 1066 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1067 spin_unlock(&swap_avail_lock);
ec8acf20 1068 spin_lock(&si->lock);
adfab836 1069 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1070 spin_lock(&swap_avail_lock);
a2468cc9 1071 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1072 spin_unlock(&si->lock);
1073 goto nextsi;
1074 }
1075 WARN(!si->highest_bit,
1076 "swap_info %d in list but !highest_bit\n",
1077 si->type);
1078 WARN(!(si->flags & SWP_WRITEOK),
1079 "swap_info %d in list but !SWP_WRITEOK\n",
1080 si->type);
a2468cc9 1081 __del_from_avail_list(si);
ec8acf20 1082 spin_unlock(&si->lock);
18ab4d4c 1083 goto nextsi;
ec8acf20 1084 }
5d5e8f19 1085 if (size == SWAPFILE_CLUSTER) {
41663430 1086 if (si->flags & SWP_BLKDEV)
f0eea189
HY
1087 n_ret = swap_alloc_cluster(si, swp_entries);
1088 } else
38d8b4e6
HY
1089 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090 n_goal, swp_entries);
ec8acf20 1091 spin_unlock(&si->lock);
5d5e8f19 1092 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1093 goto check_out;
18ab4d4c 1094 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1095 si->type);
1096
18ab4d4c
DS
1097 spin_lock(&swap_avail_lock);
1098nextsi:
adfab836
DS
1099 /*
1100 * if we got here, it's likely that si was almost full before,
bb243f7d
ML
1101 * and since scan_swap_map_slots() can drop the si->lock,
1102 * multiple callers probably all tried to get a page from the
1103 * same si and it filled up before we could get one; or, the si
1104 * filled up between us dropping swap_avail_lock and taking
1105 * si->lock. Since we dropped the swap_avail_lock, the
1106 * swap_avail_head list may have been modified; so if next is
1107 * still in the swap_avail_head list then try it, otherwise
1108 * start over if we have not gotten any slots.
adfab836 1109 */
a2468cc9 1110 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1111 goto start_over;
1da177e4 1112 }
fb4f88dc 1113
18ab4d4c
DS
1114 spin_unlock(&swap_avail_lock);
1115
36005bae
TC
1116check_out:
1117 if (n_ret < n_goal)
5d5e8f19 1118 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1119 &nr_swap_pages);
fb4f88dc 1120noswap:
36005bae
TC
1121 return n_ret;
1122}
1123
e8c26ab6 1124static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1125{
73c34b6a 1126 struct swap_info_struct *p;
eb085574 1127 unsigned long offset;
1da177e4
LT
1128
1129 if (!entry.val)
1130 goto out;
eb085574 1131 p = swp_swap_info(entry);
c10d38cc 1132 if (!p)
1da177e4 1133 goto bad_nofile;
a449bf58 1134 if (data_race(!(p->flags & SWP_USED)))
1da177e4
LT
1135 goto bad_device;
1136 offset = swp_offset(entry);
1137 if (offset >= p->max)
1138 goto bad_offset;
1da177e4
LT
1139 return p;
1140
1da177e4 1141bad_offset:
cf532faa 1142 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1da177e4
LT
1143 goto out;
1144bad_device:
cf532faa 1145 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1da177e4
LT
1146 goto out;
1147bad_nofile:
cf532faa 1148 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1da177e4
LT
1149out:
1150 return NULL;
886bb7e9 1151}
1da177e4 1152
e8c26ab6
TC
1153static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154{
1155 struct swap_info_struct *p;
1156
1157 p = __swap_info_get(entry);
1158 if (!p)
1159 goto out;
a449bf58 1160 if (data_race(!p->swap_map[swp_offset(entry)]))
e8c26ab6
TC
1161 goto bad_free;
1162 return p;
1163
1164bad_free:
cf532faa 1165 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
e8c26ab6
TC
1166out:
1167 return NULL;
1168}
1169
235b6217
HY
1170static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1171{
1172 struct swap_info_struct *p;
1173
1174 p = _swap_info_get(entry);
1175 if (p)
1176 spin_lock(&p->lock);
1177 return p;
1178}
1179
7c00bafe
TC
1180static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181 struct swap_info_struct *q)
1182{
1183 struct swap_info_struct *p;
1184
1185 p = _swap_info_get(entry);
1186
1187 if (p != q) {
1188 if (q != NULL)
1189 spin_unlock(&q->lock);
1190 if (p != NULL)
1191 spin_lock(&p->lock);
1192 }
1193 return p;
1194}
1195
b32d5f32
HY
1196static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197 unsigned long offset,
1198 unsigned char usage)
1da177e4 1199{
8d69aaee
HD
1200 unsigned char count;
1201 unsigned char has_cache;
235b6217 1202
253d553b 1203 count = p->swap_map[offset];
235b6217 1204
253d553b
HD
1205 has_cache = count & SWAP_HAS_CACHE;
1206 count &= ~SWAP_HAS_CACHE;
355cfa73 1207
253d553b 1208 if (usage == SWAP_HAS_CACHE) {
355cfa73 1209 VM_BUG_ON(!has_cache);
253d553b 1210 has_cache = 0;
aaa46865
HD
1211 } else if (count == SWAP_MAP_SHMEM) {
1212 /*
1213 * Or we could insist on shmem.c using a special
1214 * swap_shmem_free() and free_shmem_swap_and_cache()...
1215 */
1216 count = 0;
570a335b
HD
1217 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218 if (count == COUNT_CONTINUED) {
1219 if (swap_count_continued(p, offset, count))
1220 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1221 else
1222 count = SWAP_MAP_MAX;
1223 } else
1224 count--;
1225 }
253d553b 1226
253d553b 1227 usage = count | has_cache;
a449bf58
QC
1228 if (usage)
1229 WRITE_ONCE(p->swap_map[offset], usage);
1230 else
1231 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
7c00bafe 1232
b32d5f32
HY
1233 return usage;
1234}
1235
eb085574
HY
1236/*
1237 * Check whether swap entry is valid in the swap device. If so,
1238 * return pointer to swap_info_struct, and keep the swap entry valid
1239 * via preventing the swap device from being swapoff, until
1240 * put_swap_device() is called. Otherwise return NULL.
1241 *
eb085574 1242 * Notice that swapoff or swapoff+swapon can still happen before the
63d8620e
ML
1243 * percpu_ref_tryget_live() in get_swap_device() or after the
1244 * percpu_ref_put() in put_swap_device() if there isn't any other way
1245 * to prevent swapoff, such as page lock, page table lock, etc. The
1246 * caller must be prepared for that. For example, the following
1247 * situation is possible.
eb085574
HY
1248 *
1249 * CPU1 CPU2
1250 * do_swap_page()
1251 * ... swapoff+swapon
1252 * __read_swap_cache_async()
1253 * swapcache_prepare()
1254 * __swap_duplicate()
1255 * // check swap_map
1256 * // verify PTE not changed
1257 *
1258 * In __swap_duplicate(), the swap_map need to be checked before
1259 * changing partly because the specified swap entry may be for another
1260 * swap device which has been swapoff. And in do_swap_page(), after
1261 * the page is read from the swap device, the PTE is verified not
1262 * changed with the page table locked to check whether the swap device
1263 * has been swapoff or swapoff+swapon.
1264 */
1265struct swap_info_struct *get_swap_device(swp_entry_t entry)
1266{
1267 struct swap_info_struct *si;
1268 unsigned long offset;
1269
1270 if (!entry.val)
1271 goto out;
1272 si = swp_swap_info(entry);
1273 if (!si)
1274 goto bad_nofile;
63d8620e
ML
1275 if (!percpu_ref_tryget_live(&si->users))
1276 goto out;
1277 /*
1278 * Guarantee the si->users are checked before accessing other
1279 * fields of swap_info_struct.
1280 *
1281 * Paired with the spin_unlock() after setup_swap_info() in
1282 * enable_swap_info().
1283 */
1284 smp_rmb();
eb085574
HY
1285 offset = swp_offset(entry);
1286 if (offset >= si->max)
63d8620e 1287 goto put_out;
eb085574
HY
1288
1289 return si;
1290bad_nofile:
1291 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1292out:
1293 return NULL;
63d8620e
ML
1294put_out:
1295 percpu_ref_put(&si->users);
eb085574
HY
1296 return NULL;
1297}
1298
b32d5f32 1299static unsigned char __swap_entry_free(struct swap_info_struct *p,
33e16272 1300 swp_entry_t entry)
b32d5f32
HY
1301{
1302 struct swap_cluster_info *ci;
1303 unsigned long offset = swp_offset(entry);
33e16272 1304 unsigned char usage;
b32d5f32
HY
1305
1306 ci = lock_cluster_or_swap_info(p, offset);
33e16272 1307 usage = __swap_entry_free_locked(p, offset, 1);
7c00bafe 1308 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1309 if (!usage)
1310 free_swap_slot(entry);
7c00bafe
TC
1311
1312 return usage;
1313}
355cfa73 1314
7c00bafe
TC
1315static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1316{
1317 struct swap_cluster_info *ci;
1318 unsigned long offset = swp_offset(entry);
1319 unsigned char count;
1320
1321 ci = lock_cluster(p, offset);
1322 count = p->swap_map[offset];
1323 VM_BUG_ON(count != SWAP_HAS_CACHE);
1324 p->swap_map[offset] = 0;
1325 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1326 unlock_cluster(ci);
1327
38d8b4e6
HY
1328 mem_cgroup_uncharge_swap(entry, 1);
1329 swap_range_free(p, offset, 1);
1da177e4
LT
1330}
1331
1332/*
2de1a7e4 1333 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1334 * is still around or has not been recycled.
1335 */
1336void swap_free(swp_entry_t entry)
1337{
73c34b6a 1338 struct swap_info_struct *p;
1da177e4 1339
235b6217 1340 p = _swap_info_get(entry);
10e364da 1341 if (p)
33e16272 1342 __swap_entry_free(p, entry);
1da177e4
LT
1343}
1344
cb4b86ba
KH
1345/*
1346 * Called after dropping swapcache to decrease refcnt to swap entries.
1347 */
a448f2d0 1348void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1349{
1350 unsigned long offset = swp_offset(entry);
1351 unsigned long idx = offset / SWAPFILE_CLUSTER;
1352 struct swap_cluster_info *ci;
1353 struct swap_info_struct *si;
1354 unsigned char *map;
a3aea839
HY
1355 unsigned int i, free_entries = 0;
1356 unsigned char val;
6c357848 1357 int size = swap_entry_size(thp_nr_pages(page));
fe5266d5 1358
a3aea839 1359 si = _swap_info_get(entry);
38d8b4e6
HY
1360 if (!si)
1361 return;
1362
c2343d27 1363 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1364 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1365 VM_BUG_ON(!cluster_is_huge(ci));
1366 map = si->swap_map + offset;
1367 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1368 val = map[i];
1369 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370 if (val == SWAP_HAS_CACHE)
1371 free_entries++;
1372 }
a448f2d0 1373 cluster_clear_huge(ci);
a448f2d0 1374 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1375 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1376 spin_lock(&si->lock);
a448f2d0
HY
1377 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378 swap_free_cluster(si, idx);
1379 spin_unlock(&si->lock);
1380 return;
1381 }
1382 }
c2343d27
HY
1383 for (i = 0; i < size; i++, entry.val++) {
1384 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385 unlock_cluster_or_swap_info(si, ci);
1386 free_swap_slot(entry);
1387 if (i == size - 1)
1388 return;
1389 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1390 }
1391 }
c2343d27 1392 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1393}
59807685 1394
fe5266d5 1395#ifdef CONFIG_THP_SWAP
59807685
HY
1396int split_swap_cluster(swp_entry_t entry)
1397{
1398 struct swap_info_struct *si;
1399 struct swap_cluster_info *ci;
1400 unsigned long offset = swp_offset(entry);
1401
1402 si = _swap_info_get(entry);
1403 if (!si)
1404 return -EBUSY;
1405 ci = lock_cluster(si, offset);
1406 cluster_clear_huge(ci);
1407 unlock_cluster(ci);
1408 return 0;
1409}
fe5266d5 1410#endif
38d8b4e6 1411
155b5f88
HY
1412static int swp_entry_cmp(const void *ent1, const void *ent2)
1413{
1414 const swp_entry_t *e1 = ent1, *e2 = ent2;
1415
1416 return (int)swp_type(*e1) - (int)swp_type(*e2);
1417}
1418
7c00bafe
TC
1419void swapcache_free_entries(swp_entry_t *entries, int n)
1420{
1421 struct swap_info_struct *p, *prev;
1422 int i;
1423
1424 if (n <= 0)
1425 return;
1426
1427 prev = NULL;
1428 p = NULL;
155b5f88
HY
1429
1430 /*
1431 * Sort swap entries by swap device, so each lock is only taken once.
1432 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433 * so low that it isn't necessary to optimize further.
1434 */
1435 if (nr_swapfiles > 1)
1436 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1437 for (i = 0; i < n; ++i) {
1438 p = swap_info_get_cont(entries[i], prev);
1439 if (p)
1440 swap_entry_free(p, entries[i]);
7c00bafe
TC
1441 prev = p;
1442 }
235b6217 1443 if (p)
7c00bafe 1444 spin_unlock(&p->lock);
cb4b86ba
KH
1445}
1446
1da177e4 1447/*
c475a8ab 1448 * How many references to page are currently swapped out?
570a335b
HD
1449 * This does not give an exact answer when swap count is continued,
1450 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1451 */
bde05d1c 1452int page_swapcount(struct page *page)
1da177e4 1453{
c475a8ab
HD
1454 int count = 0;
1455 struct swap_info_struct *p;
235b6217 1456 struct swap_cluster_info *ci;
1da177e4 1457 swp_entry_t entry;
235b6217 1458 unsigned long offset;
1da177e4 1459
4c21e2f2 1460 entry.val = page_private(page);
235b6217 1461 p = _swap_info_get(entry);
1da177e4 1462 if (p) {
235b6217
HY
1463 offset = swp_offset(entry);
1464 ci = lock_cluster_or_swap_info(p, offset);
1465 count = swap_count(p->swap_map[offset]);
1466 unlock_cluster_or_swap_info(p, ci);
1da177e4 1467 }
c475a8ab 1468 return count;
1da177e4
LT
1469}
1470
eb085574 1471int __swap_count(swp_entry_t entry)
aa8d22a1 1472{
eb085574 1473 struct swap_info_struct *si;
aa8d22a1 1474 pgoff_t offset = swp_offset(entry);
eb085574 1475 int count = 0;
aa8d22a1 1476
eb085574
HY
1477 si = get_swap_device(entry);
1478 if (si) {
1479 count = swap_count(si->swap_map[offset]);
1480 put_swap_device(si);
1481 }
1482 return count;
aa8d22a1
MK
1483}
1484
322b8afe
HY
1485static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1486{
1487 int count = 0;
1488 pgoff_t offset = swp_offset(entry);
1489 struct swap_cluster_info *ci;
1490
1491 ci = lock_cluster_or_swap_info(si, offset);
1492 count = swap_count(si->swap_map[offset]);
1493 unlock_cluster_or_swap_info(si, ci);
1494 return count;
1495}
1496
e8c26ab6
TC
1497/*
1498 * How many references to @entry are currently swapped out?
1499 * This does not give an exact answer when swap count is continued,
1500 * but does include the high COUNT_CONTINUED flag to allow for that.
1501 */
1502int __swp_swapcount(swp_entry_t entry)
1503{
1504 int count = 0;
e8c26ab6 1505 struct swap_info_struct *si;
e8c26ab6 1506
eb085574
HY
1507 si = get_swap_device(entry);
1508 if (si) {
322b8afe 1509 count = swap_swapcount(si, entry);
eb085574
HY
1510 put_swap_device(si);
1511 }
e8c26ab6
TC
1512 return count;
1513}
1514
8334b962
MK
1515/*
1516 * How many references to @entry are currently swapped out?
1517 * This considers COUNT_CONTINUED so it returns exact answer.
1518 */
1519int swp_swapcount(swp_entry_t entry)
1520{
1521 int count, tmp_count, n;
1522 struct swap_info_struct *p;
235b6217 1523 struct swap_cluster_info *ci;
8334b962
MK
1524 struct page *page;
1525 pgoff_t offset;
1526 unsigned char *map;
1527
235b6217 1528 p = _swap_info_get(entry);
8334b962
MK
1529 if (!p)
1530 return 0;
1531
235b6217
HY
1532 offset = swp_offset(entry);
1533
1534 ci = lock_cluster_or_swap_info(p, offset);
1535
1536 count = swap_count(p->swap_map[offset]);
8334b962
MK
1537 if (!(count & COUNT_CONTINUED))
1538 goto out;
1539
1540 count &= ~COUNT_CONTINUED;
1541 n = SWAP_MAP_MAX + 1;
1542
8334b962
MK
1543 page = vmalloc_to_page(p->swap_map + offset);
1544 offset &= ~PAGE_MASK;
1545 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1546
1547 do {
a8ae4991 1548 page = list_next_entry(page, lru);
8334b962
MK
1549 map = kmap_atomic(page);
1550 tmp_count = map[offset];
1551 kunmap_atomic(map);
1552
1553 count += (tmp_count & ~COUNT_CONTINUED) * n;
1554 n *= (SWAP_CONT_MAX + 1);
1555 } while (tmp_count & COUNT_CONTINUED);
1556out:
235b6217 1557 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1558 return count;
1559}
1560
e0709829
HY
1561static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1562 swp_entry_t entry)
1563{
1564 struct swap_cluster_info *ci;
1565 unsigned char *map = si->swap_map;
1566 unsigned long roffset = swp_offset(entry);
1567 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1568 int i;
1569 bool ret = false;
1570
1571 ci = lock_cluster_or_swap_info(si, offset);
1572 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1573 if (swap_count(map[roffset]))
e0709829
HY
1574 ret = true;
1575 goto unlock_out;
1576 }
1577 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1578 if (swap_count(map[offset + i])) {
e0709829
HY
1579 ret = true;
1580 break;
1581 }
1582 }
1583unlock_out:
1584 unlock_cluster_or_swap_info(si, ci);
1585 return ret;
1586}
1587
1588static bool page_swapped(struct page *page)
1589{
1590 swp_entry_t entry;
1591 struct swap_info_struct *si;
1592
fe5266d5 1593 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1594 return page_swapcount(page) != 0;
1595
1596 page = compound_head(page);
1597 entry.val = page_private(page);
1598 si = _swap_info_get(entry);
1599 if (si)
1600 return swap_page_trans_huge_swapped(si, entry);
1601 return false;
1602}
ba3c4ce6 1603
66c7f7a6 1604static int page_trans_huge_map_swapcount(struct page *page,
ba3c4ce6
HY
1605 int *total_swapcount)
1606{
66c7f7a6 1607 int i, map_swapcount, _total_swapcount;
ba3c4ce6
HY
1608 unsigned long offset = 0;
1609 struct swap_info_struct *si;
1610 struct swap_cluster_info *ci = NULL;
1611 unsigned char *map = NULL;
66c7f7a6 1612 int swapcount = 0;
ba3c4ce6
HY
1613
1614 /* hugetlbfs shouldn't call it */
1615 VM_BUG_ON_PAGE(PageHuge(page), page);
1616
fe5266d5 1617 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
ba3c4ce6
HY
1618 if (PageSwapCache(page))
1619 swapcount = page_swapcount(page);
1620 if (total_swapcount)
1621 *total_swapcount = swapcount;
d08d2b62 1622 return swapcount + page_trans_huge_mapcount(page);
ba3c4ce6
HY
1623 }
1624
1625 page = compound_head(page);
1626
66c7f7a6 1627 _total_swapcount = map_swapcount = 0;
ba3c4ce6
HY
1628 if (PageSwapCache(page)) {
1629 swp_entry_t entry;
1630
1631 entry.val = page_private(page);
1632 si = _swap_info_get(entry);
1633 if (si) {
1634 map = si->swap_map;
1635 offset = swp_offset(entry);
1636 }
1637 }
1638 if (map)
1639 ci = lock_cluster(si, offset);
1640 for (i = 0; i < HPAGE_PMD_NR; i++) {
66c7f7a6 1641 int mapcount = atomic_read(&page[i]._mapcount) + 1;
ba3c4ce6
HY
1642 if (map) {
1643 swapcount = swap_count(map[offset + i]);
1644 _total_swapcount += swapcount;
1645 }
1646 map_swapcount = max(map_swapcount, mapcount + swapcount);
1647 }
1648 unlock_cluster(ci);
66c7f7a6
MWO
1649
1650 if (PageDoubleMap(page))
ba3c4ce6 1651 map_swapcount -= 1;
66c7f7a6 1652
ba3c4ce6
HY
1653 if (total_swapcount)
1654 *total_swapcount = _total_swapcount;
1655
66c7f7a6 1656 return map_swapcount + compound_mapcount(page);
ba3c4ce6 1657}
e0709829 1658
1da177e4 1659/*
7b1fe597
HD
1660 * We can write to an anon page without COW if there are no other references
1661 * to it. And as a side-effect, free up its swap: because the old content
1662 * on disk will never be read, and seeking back there to write new content
1663 * later would only waste time away from clustering.
1da177e4 1664 */
020e8765 1665bool reuse_swap_page(struct page *page)
1da177e4 1666{
66c7f7a6 1667 int count, total_swapcount;
c475a8ab 1668
309381fe 1669 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1670 if (unlikely(PageKsm(page)))
6d0a07ed 1671 return false;
66c7f7a6 1672 count = page_trans_huge_map_swapcount(page, &total_swapcount);
ba3c4ce6
HY
1673 if (count == 1 && PageSwapCache(page) &&
1674 (likely(!PageTransCompound(page)) ||
1675 /* The remaining swap count will be freed soon */
1676 total_swapcount == page_swapcount(page))) {
f0571429 1677 if (!PageWriteback(page)) {
ba3c4ce6 1678 page = compound_head(page);
7b1fe597
HD
1679 delete_from_swap_cache(page);
1680 SetPageDirty(page);
f0571429
MK
1681 } else {
1682 swp_entry_t entry;
1683 struct swap_info_struct *p;
1684
1685 entry.val = page_private(page);
1686 p = swap_info_get(entry);
1687 if (p->flags & SWP_STABLE_WRITES) {
1688 spin_unlock(&p->lock);
1689 return false;
1690 }
1691 spin_unlock(&p->lock);
7b1fe597
HD
1692 }
1693 }
ba3c4ce6 1694
5ad64688 1695 return count <= 1;
1da177e4
LT
1696}
1697
1698/*
a2c43eed
HD
1699 * If swap is getting full, or if there are no more mappings of this page,
1700 * then try_to_free_swap is called to free its swap space.
1da177e4 1701 */
a2c43eed 1702int try_to_free_swap(struct page *page)
1da177e4 1703{
309381fe 1704 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1705
1706 if (!PageSwapCache(page))
1707 return 0;
1708 if (PageWriteback(page))
1709 return 0;
e0709829 1710 if (page_swapped(page))
1da177e4
LT
1711 return 0;
1712
b73d7fce
HD
1713 /*
1714 * Once hibernation has begun to create its image of memory,
1715 * there's a danger that one of the calls to try_to_free_swap()
1716 * - most probably a call from __try_to_reclaim_swap() while
1717 * hibernation is allocating its own swap pages for the image,
1718 * but conceivably even a call from memory reclaim - will free
1719 * the swap from a page which has already been recorded in the
1720 * image as a clean swapcache page, and then reuse its swap for
1721 * another page of the image. On waking from hibernation, the
1722 * original page might be freed under memory pressure, then
1723 * later read back in from swap, now with the wrong data.
1724 *
2de1a7e4 1725 * Hibernation suspends storage while it is writing the image
f90ac398 1726 * to disk so check that here.
b73d7fce 1727 */
f90ac398 1728 if (pm_suspended_storage())
b73d7fce
HD
1729 return 0;
1730
e0709829 1731 page = compound_head(page);
a2c43eed
HD
1732 delete_from_swap_cache(page);
1733 SetPageDirty(page);
1734 return 1;
68a22394
RR
1735}
1736
1da177e4
LT
1737/*
1738 * Free the swap entry like above, but also try to
1739 * free the page cache entry if it is the last user.
1740 */
2509ef26 1741int free_swap_and_cache(swp_entry_t entry)
1da177e4 1742{
2509ef26 1743 struct swap_info_struct *p;
7c00bafe 1744 unsigned char count;
1da177e4 1745
a7420aa5 1746 if (non_swap_entry(entry))
2509ef26 1747 return 1;
0697212a 1748
7c00bafe 1749 p = _swap_info_get(entry);
1da177e4 1750 if (p) {
33e16272 1751 count = __swap_entry_free(p, entry);
e0709829 1752 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1753 !swap_page_trans_huge_swapped(p, entry))
1754 __try_to_reclaim_swap(p, swp_offset(entry),
1755 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1756 }
2509ef26 1757 return p != NULL;
1da177e4
LT
1758}
1759
b0cb1a19 1760#ifdef CONFIG_HIBERNATION
bb243f7d
ML
1761
1762swp_entry_t get_swap_page_of_type(int type)
1763{
1764 struct swap_info_struct *si = swap_type_to_swap_info(type);
1765 swp_entry_t entry = {0};
1766
1767 if (!si)
1768 goto fail;
1769
1770 /* This is called for allocating swap entry, not cache */
1771 spin_lock(&si->lock);
1772 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1773 atomic_long_dec(&nr_swap_pages);
1774 spin_unlock(&si->lock);
1775fail:
1776 return entry;
1777}
1778
f577eb30 1779/*
915bae9e 1780 * Find the swap type that corresponds to given device (if any).
f577eb30 1781 *
915bae9e
RW
1782 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1783 * from 0, in which the swap header is expected to be located.
1784 *
1785 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1786 */
21bd9005 1787int swap_type_of(dev_t device, sector_t offset)
f577eb30 1788{
efa90a98 1789 int type;
f577eb30 1790
21bd9005
CH
1791 if (!device)
1792 return -1;
915bae9e 1793
f577eb30 1794 spin_lock(&swap_lock);
efa90a98
HD
1795 for (type = 0; type < nr_swapfiles; type++) {
1796 struct swap_info_struct *sis = swap_info[type];
f577eb30 1797
915bae9e 1798 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1799 continue;
b6b5bce3 1800
21bd9005 1801 if (device == sis->bdev->bd_dev) {
4efaceb1 1802 struct swap_extent *se = first_se(sis);
915bae9e 1803
915bae9e
RW
1804 if (se->start_block == offset) {
1805 spin_unlock(&swap_lock);
efa90a98 1806 return type;
915bae9e 1807 }
f577eb30
RW
1808 }
1809 }
1810 spin_unlock(&swap_lock);
21bd9005
CH
1811 return -ENODEV;
1812}
915bae9e 1813
21bd9005
CH
1814int find_first_swap(dev_t *device)
1815{
1816 int type;
915bae9e 1817
21bd9005
CH
1818 spin_lock(&swap_lock);
1819 for (type = 0; type < nr_swapfiles; type++) {
1820 struct swap_info_struct *sis = swap_info[type];
1821
1822 if (!(sis->flags & SWP_WRITEOK))
1823 continue;
1824 *device = sis->bdev->bd_dev;
1825 spin_unlock(&swap_lock);
1826 return type;
1827 }
1828 spin_unlock(&swap_lock);
f577eb30
RW
1829 return -ENODEV;
1830}
1831
73c34b6a
HD
1832/*
1833 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1834 * corresponding to given index in swap_info (swap type).
1835 */
1836sector_t swapdev_block(int type, pgoff_t offset)
1837{
c10d38cc 1838 struct swap_info_struct *si = swap_type_to_swap_info(type);
f885056a 1839 struct swap_extent *se;
73c34b6a 1840
c10d38cc 1841 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1842 return 0;
f885056a
CH
1843 se = offset_to_swap_extent(si, offset);
1844 return se->start_block + (offset - se->start_page);
73c34b6a
HD
1845}
1846
f577eb30
RW
1847/*
1848 * Return either the total number of swap pages of given type, or the number
1849 * of free pages of that type (depending on @free)
1850 *
1851 * This is needed for software suspend
1852 */
1853unsigned int count_swap_pages(int type, int free)
1854{
1855 unsigned int n = 0;
1856
efa90a98
HD
1857 spin_lock(&swap_lock);
1858 if ((unsigned int)type < nr_swapfiles) {
1859 struct swap_info_struct *sis = swap_info[type];
1860
ec8acf20 1861 spin_lock(&sis->lock);
efa90a98
HD
1862 if (sis->flags & SWP_WRITEOK) {
1863 n = sis->pages;
f577eb30 1864 if (free)
efa90a98 1865 n -= sis->inuse_pages;
f577eb30 1866 }
ec8acf20 1867 spin_unlock(&sis->lock);
f577eb30 1868 }
efa90a98 1869 spin_unlock(&swap_lock);
f577eb30
RW
1870 return n;
1871}
73c34b6a 1872#endif /* CONFIG_HIBERNATION */
f577eb30 1873
9f8bdb3f 1874static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1875{
099dd687 1876 return pte_same(pte_swp_clear_flags(pte), swp_pte);
179ef71c
CG
1877}
1878
1da177e4 1879/*
72866f6f
HD
1880 * No need to decide whether this PTE shares the swap entry with others,
1881 * just let do_wp_page work it out if a write is requested later - to
1882 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1883 */
044d66c1 1884static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1885 unsigned long addr, swp_entry_t entry, struct page *page)
1886{
9e16b7fb 1887 struct page *swapcache;
044d66c1
HD
1888 spinlock_t *ptl;
1889 pte_t *pte;
1890 int ret = 1;
1891
9e16b7fb
HD
1892 swapcache = page;
1893 page = ksm_might_need_to_copy(page, vma, addr);
1894 if (unlikely(!page))
1895 return -ENOMEM;
1896
044d66c1 1897 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1898 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
044d66c1
HD
1899 ret = 0;
1900 goto out;
1901 }
8a9f3ccd 1902
b084d435 1903 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1904 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4 1905 get_page(page);
00501b53 1906 if (page == swapcache) {
be5d0a74 1907 page_add_anon_rmap(page, vma, addr, false);
00501b53 1908 } else { /* ksm created a completely new copy */
be5d0a74 1909 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 1910 lru_cache_add_inactive_or_unevictable(page, vma);
00501b53 1911 }
1eba86c0
PT
1912 set_pte_at(vma->vm_mm, addr, pte,
1913 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1da177e4 1914 swap_free(entry);
044d66c1
HD
1915out:
1916 pte_unmap_unlock(pte, ptl);
9e16b7fb
HD
1917 if (page != swapcache) {
1918 unlock_page(page);
1919 put_page(page);
1920 }
044d66c1 1921 return ret;
1da177e4
LT
1922}
1923
1924static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a 1925 unsigned long addr, unsigned long end,
10a9c496 1926 unsigned int type)
1da177e4 1927{
b56a2d8a
VRP
1928 struct page *page;
1929 swp_entry_t entry;
705e87c0 1930 pte_t *pte;
b56a2d8a
VRP
1931 struct swap_info_struct *si;
1932 unsigned long offset;
8a9f3ccd 1933 int ret = 0;
b56a2d8a 1934 volatile unsigned char *swap_map;
1da177e4 1935
b56a2d8a 1936 si = swap_info[type];
044d66c1 1937 pte = pte_offset_map(pmd, addr);
1da177e4 1938 do {
b56a2d8a
VRP
1939 if (!is_swap_pte(*pte))
1940 continue;
1941
1942 entry = pte_to_swp_entry(*pte);
1943 if (swp_type(entry) != type)
1944 continue;
1945
1946 offset = swp_offset(entry);
b56a2d8a
VRP
1947 pte_unmap(pte);
1948 swap_map = &si->swap_map[offset];
ebc5951e
AR
1949 page = lookup_swap_cache(entry, vma, addr);
1950 if (!page) {
8c63ca5b
WD
1951 struct vm_fault vmf = {
1952 .vma = vma,
1953 .address = addr,
1954 .pmd = pmd,
1955 };
1956
ebc5951e
AR
1957 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1958 &vmf);
1959 }
b56a2d8a
VRP
1960 if (!page) {
1961 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1962 goto try_next;
1963 return -ENOMEM;
1964 }
1965
1966 lock_page(page);
1967 wait_on_page_writeback(page);
1968 ret = unuse_pte(vma, pmd, addr, entry, page);
1969 if (ret < 0) {
1970 unlock_page(page);
1971 put_page(page);
1972 goto out;
1973 }
1974
1975 try_to_free_swap(page);
1976 unlock_page(page);
1977 put_page(page);
b56a2d8a
VRP
1978try_next:
1979 pte = pte_offset_map(pmd, addr);
1da177e4 1980 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 1981 pte_unmap(pte - 1);
b56a2d8a
VRP
1982
1983 ret = 0;
044d66c1 1984out:
8a9f3ccd 1985 return ret;
1da177e4
LT
1986}
1987
1988static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1989 unsigned long addr, unsigned long end,
10a9c496 1990 unsigned int type)
1da177e4
LT
1991{
1992 pmd_t *pmd;
1993 unsigned long next;
8a9f3ccd 1994 int ret;
1da177e4
LT
1995
1996 pmd = pmd_offset(pud, addr);
1997 do {
dc644a07 1998 cond_resched();
1da177e4 1999 next = pmd_addr_end(addr, end);
1a5a9906 2000 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 2001 continue;
10a9c496 2002 ret = unuse_pte_range(vma, pmd, addr, next, type);
8a9f3ccd
BS
2003 if (ret)
2004 return ret;
1da177e4
LT
2005 } while (pmd++, addr = next, addr != end);
2006 return 0;
2007}
2008
c2febafc 2009static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 2010 unsigned long addr, unsigned long end,
10a9c496 2011 unsigned int type)
1da177e4
LT
2012{
2013 pud_t *pud;
2014 unsigned long next;
8a9f3ccd 2015 int ret;
1da177e4 2016
c2febafc 2017 pud = pud_offset(p4d, addr);
1da177e4
LT
2018 do {
2019 next = pud_addr_end(addr, end);
2020 if (pud_none_or_clear_bad(pud))
2021 continue;
10a9c496 2022 ret = unuse_pmd_range(vma, pud, addr, next, type);
8a9f3ccd
BS
2023 if (ret)
2024 return ret;
1da177e4
LT
2025 } while (pud++, addr = next, addr != end);
2026 return 0;
2027}
2028
c2febafc
KS
2029static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2030 unsigned long addr, unsigned long end,
10a9c496 2031 unsigned int type)
c2febafc
KS
2032{
2033 p4d_t *p4d;
2034 unsigned long next;
2035 int ret;
2036
2037 p4d = p4d_offset(pgd, addr);
2038 do {
2039 next = p4d_addr_end(addr, end);
2040 if (p4d_none_or_clear_bad(p4d))
2041 continue;
10a9c496 2042 ret = unuse_pud_range(vma, p4d, addr, next, type);
c2febafc
KS
2043 if (ret)
2044 return ret;
2045 } while (p4d++, addr = next, addr != end);
2046 return 0;
2047}
2048
10a9c496 2049static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1da177e4
LT
2050{
2051 pgd_t *pgd;
2052 unsigned long addr, end, next;
8a9f3ccd 2053 int ret;
1da177e4 2054
b56a2d8a
VRP
2055 addr = vma->vm_start;
2056 end = vma->vm_end;
1da177e4
LT
2057
2058 pgd = pgd_offset(vma->vm_mm, addr);
2059 do {
2060 next = pgd_addr_end(addr, end);
2061 if (pgd_none_or_clear_bad(pgd))
2062 continue;
10a9c496 2063 ret = unuse_p4d_range(vma, pgd, addr, next, type);
8a9f3ccd
BS
2064 if (ret)
2065 return ret;
1da177e4
LT
2066 } while (pgd++, addr = next, addr != end);
2067 return 0;
2068}
2069
10a9c496 2070static int unuse_mm(struct mm_struct *mm, unsigned int type)
1da177e4
LT
2071{
2072 struct vm_area_struct *vma;
8a9f3ccd 2073 int ret = 0;
1da177e4 2074
d8ed45c5 2075 mmap_read_lock(mm);
1da177e4 2076 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a 2077 if (vma->anon_vma) {
10a9c496 2078 ret = unuse_vma(vma, type);
b56a2d8a
VRP
2079 if (ret)
2080 break;
2081 }
dc644a07 2082 cond_resched();
1da177e4 2083 }
d8ed45c5 2084 mmap_read_unlock(mm);
b56a2d8a 2085 return ret;
1da177e4
LT
2086}
2087
2088/*
38b5faf4 2089 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2090 * from current position to next entry still in use. Return 0
2091 * if there are no inuse entries after prev till end of the map.
1da177e4 2092 */
6eb396dc 2093static unsigned int find_next_to_unuse(struct swap_info_struct *si,
10a9c496 2094 unsigned int prev)
1da177e4 2095{
b56a2d8a 2096 unsigned int i;
8d69aaee 2097 unsigned char count;
1da177e4
LT
2098
2099 /*
5d337b91 2100 * No need for swap_lock here: we're just looking
1da177e4
LT
2101 * for whether an entry is in use, not modifying it; false
2102 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2103 * allocations from this area (while holding swap_lock).
1da177e4 2104 */
b56a2d8a 2105 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2106 count = READ_ONCE(si->swap_map[i]);
355cfa73 2107 if (count && swap_count(count) != SWAP_MAP_BAD)
10a9c496 2108 break;
dc644a07
HD
2109 if ((i % LATENCY_LIMIT) == 0)
2110 cond_resched();
1da177e4 2111 }
b56a2d8a
VRP
2112
2113 if (i == si->max)
2114 i = 0;
2115
1da177e4
LT
2116 return i;
2117}
2118
10a9c496 2119static int try_to_unuse(unsigned int type)
1da177e4 2120{
b56a2d8a
VRP
2121 struct mm_struct *prev_mm;
2122 struct mm_struct *mm;
2123 struct list_head *p;
2124 int retval = 0;
efa90a98 2125 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2126 struct page *page;
2127 swp_entry_t entry;
b56a2d8a 2128 unsigned int i;
1da177e4 2129
21820948 2130 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2131 return 0;
1da177e4 2132
b56a2d8a 2133retry:
10a9c496 2134 retval = shmem_unuse(type);
b56a2d8a 2135 if (retval)
10a9c496 2136 return retval;
b56a2d8a
VRP
2137
2138 prev_mm = &init_mm;
2139 mmget(prev_mm);
2140
2141 spin_lock(&mmlist_lock);
2142 p = &init_mm.mmlist;
21820948 2143 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2144 !signal_pending(current) &&
2145 (p = p->next) != &init_mm.mmlist) {
1da177e4 2146
b56a2d8a
VRP
2147 mm = list_entry(p, struct mm_struct, mmlist);
2148 if (!mmget_not_zero(mm))
2149 continue;
2150 spin_unlock(&mmlist_lock);
2151 mmput(prev_mm);
2152 prev_mm = mm;
10a9c496 2153 retval = unuse_mm(mm, type);
b56a2d8a
VRP
2154 if (retval) {
2155 mmput(prev_mm);
10a9c496 2156 return retval;
1da177e4
LT
2157 }
2158
2159 /*
b56a2d8a
VRP
2160 * Make sure that we aren't completely killing
2161 * interactive performance.
1da177e4 2162 */
b56a2d8a
VRP
2163 cond_resched();
2164 spin_lock(&mmlist_lock);
2165 }
2166 spin_unlock(&mmlist_lock);
1da177e4 2167
b56a2d8a 2168 mmput(prev_mm);
1da177e4 2169
b56a2d8a 2170 i = 0;
21820948 2171 while (READ_ONCE(si->inuse_pages) &&
64165b1a 2172 !signal_pending(current) &&
10a9c496 2173 (i = find_next_to_unuse(si, i)) != 0) {
1da177e4 2174
b56a2d8a
VRP
2175 entry = swp_entry(type, i);
2176 page = find_get_page(swap_address_space(entry), i);
2177 if (!page)
2178 continue;
68bdc8d6
HD
2179
2180 /*
2181 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2182 * swap cache just before we acquired the page lock. The page
2183 * might even be back in swap cache on another swap area. But
2184 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2185 */
b56a2d8a
VRP
2186 lock_page(page);
2187 wait_on_page_writeback(page);
2188 try_to_free_swap(page);
1da177e4 2189 unlock_page(page);
09cbfeaf 2190 put_page(page);
1da177e4
LT
2191 }
2192
b56a2d8a
VRP
2193 /*
2194 * Lets check again to see if there are still swap entries in the map.
2195 * If yes, we would need to do retry the unuse logic again.
2196 * Under global memory pressure, swap entries can be reinserted back
2197 * into process space after the mmlist loop above passes over them.
dd862deb 2198 *
af53d3e9
HD
2199 * Limit the number of retries? No: when mmget_not_zero() above fails,
2200 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2201 * at its own independent pace; and even shmem_writepage() could have
2202 * been preempted after get_swap_page(), temporarily hiding that swap.
2203 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2204 */
21820948 2205 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2206 if (!signal_pending(current))
2207 goto retry;
10a9c496 2208 return -EINTR;
64165b1a 2209 }
10a9c496
CH
2210
2211 return 0;
1da177e4
LT
2212}
2213
2214/*
5d337b91
HD
2215 * After a successful try_to_unuse, if no swap is now in use, we know
2216 * we can empty the mmlist. swap_lock must be held on entry and exit.
2217 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2218 * added to the mmlist just after page_duplicate - before would be racy.
2219 */
2220static void drain_mmlist(void)
2221{
2222 struct list_head *p, *next;
efa90a98 2223 unsigned int type;
1da177e4 2224
efa90a98
HD
2225 for (type = 0; type < nr_swapfiles; type++)
2226 if (swap_info[type]->inuse_pages)
1da177e4
LT
2227 return;
2228 spin_lock(&mmlist_lock);
2229 list_for_each_safe(p, next, &init_mm.mmlist)
2230 list_del_init(p);
2231 spin_unlock(&mmlist_lock);
2232}
2233
1da177e4
LT
2234/*
2235 * Free all of a swapdev's extent information
2236 */
2237static void destroy_swap_extents(struct swap_info_struct *sis)
2238{
4efaceb1
AL
2239 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2240 struct rb_node *rb = sis->swap_extent_root.rb_node;
2241 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2242
4efaceb1 2243 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2244 kfree(se);
2245 }
62c230bc 2246
bc4ae27d 2247 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2248 struct file *swap_file = sis->swap_file;
2249 struct address_space *mapping = swap_file->f_mapping;
2250
bc4ae27d
OS
2251 sis->flags &= ~SWP_ACTIVATED;
2252 if (mapping->a_ops->swap_deactivate)
2253 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2254 }
1da177e4
LT
2255}
2256
2257/*
2258 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2259 * extent tree.
1da177e4 2260 *
11d31886 2261 * This function rather assumes that it is called in ascending page order.
1da177e4 2262 */
a509bc1a 2263int
1da177e4
LT
2264add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2265 unsigned long nr_pages, sector_t start_block)
2266{
4efaceb1 2267 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2268 struct swap_extent *se;
2269 struct swap_extent *new_se;
4efaceb1
AL
2270
2271 /*
2272 * place the new node at the right most since the
2273 * function is called in ascending page order.
2274 */
2275 while (*link) {
2276 parent = *link;
2277 link = &parent->rb_right;
2278 }
2279
2280 if (parent) {
2281 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2282 BUG_ON(se->start_page + se->nr_pages != start_page);
2283 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2284 /* Merge it */
2285 se->nr_pages += nr_pages;
2286 return 0;
2287 }
1da177e4
LT
2288 }
2289
4efaceb1 2290 /* No merge, insert a new extent. */
1da177e4
LT
2291 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2292 if (new_se == NULL)
2293 return -ENOMEM;
2294 new_se->start_page = start_page;
2295 new_se->nr_pages = nr_pages;
2296 new_se->start_block = start_block;
2297
4efaceb1
AL
2298 rb_link_node(&new_se->rb_node, parent, link);
2299 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2300 return 1;
1da177e4 2301}
aa8aa8a3 2302EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2303
2304/*
2305 * A `swap extent' is a simple thing which maps a contiguous range of pages
2306 * onto a contiguous range of disk blocks. An ordered list of swap extents
2307 * is built at swapon time and is then used at swap_writepage/swap_readpage
2308 * time for locating where on disk a page belongs.
2309 *
2310 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2311 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2312 * swap files identically.
2313 *
2314 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2315 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2316 * swapfiles are handled *identically* after swapon time.
2317 *
2318 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2319 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2320 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2321 * requirements, they are simply tossed out - we will never use those blocks
2322 * for swapping.
2323 *
1638045c
DW
2324 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2325 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2326 *
2327 * The amount of disk space which a single swap extent represents varies.
2328 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2329 * extents in the list. To avoid much list walking, we cache the previous
2330 * search location in `curr_swap_extent', and start new searches from there.
2331 * This is extremely effective. The average number of iterations in
2332 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2333 */
53092a74 2334static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2335{
62c230bc
MG
2336 struct file *swap_file = sis->swap_file;
2337 struct address_space *mapping = swap_file->f_mapping;
2338 struct inode *inode = mapping->host;
1da177e4
LT
2339 int ret;
2340
1da177e4
LT
2341 if (S_ISBLK(inode->i_mode)) {
2342 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2343 *span = sis->pages;
a509bc1a 2344 return ret;
1da177e4
LT
2345 }
2346
62c230bc 2347 if (mapping->a_ops->swap_activate) {
a509bc1a 2348 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2349 if (ret >= 0)
2350 sis->flags |= SWP_ACTIVATED;
62c230bc 2351 if (!ret) {
32646315 2352 sis->flags |= SWP_FS_OPS;
62c230bc
MG
2353 ret = add_swap_extent(sis, 0, sis->max, 0);
2354 *span = sis->pages;
2355 }
a509bc1a 2356 return ret;
62c230bc
MG
2357 }
2358
a509bc1a 2359 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2360}
2361
a2468cc9
AL
2362static int swap_node(struct swap_info_struct *p)
2363{
2364 struct block_device *bdev;
2365
2366 if (p->bdev)
2367 bdev = p->bdev;
2368 else
2369 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2370
2371 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2372}
2373
eb085574
HY
2374static void setup_swap_info(struct swap_info_struct *p, int prio,
2375 unsigned char *swap_map,
2376 struct swap_cluster_info *cluster_info)
40531542 2377{
a2468cc9
AL
2378 int i;
2379
40531542
CEB
2380 if (prio >= 0)
2381 p->prio = prio;
2382 else
2383 p->prio = --least_priority;
18ab4d4c
DS
2384 /*
2385 * the plist prio is negated because plist ordering is
2386 * low-to-high, while swap ordering is high-to-low
2387 */
2388 p->list.prio = -p->prio;
a2468cc9
AL
2389 for_each_node(i) {
2390 if (p->prio >= 0)
2391 p->avail_lists[i].prio = -p->prio;
2392 else {
2393 if (swap_node(p) == i)
2394 p->avail_lists[i].prio = 1;
2395 else
2396 p->avail_lists[i].prio = -p->prio;
2397 }
2398 }
40531542 2399 p->swap_map = swap_map;
2a8f9449 2400 p->cluster_info = cluster_info;
eb085574
HY
2401}
2402
2403static void _enable_swap_info(struct swap_info_struct *p)
2404{
63d8620e 2405 p->flags |= SWP_WRITEOK;
ec8acf20 2406 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2407 total_swap_pages += p->pages;
2408
adfab836 2409 assert_spin_locked(&swap_lock);
adfab836 2410 /*
18ab4d4c
DS
2411 * both lists are plists, and thus priority ordered.
2412 * swap_active_head needs to be priority ordered for swapoff(),
2413 * which on removal of any swap_info_struct with an auto-assigned
2414 * (i.e. negative) priority increments the auto-assigned priority
2415 * of any lower-priority swap_info_structs.
2416 * swap_avail_head needs to be priority ordered for get_swap_page(),
2417 * which allocates swap pages from the highest available priority
2418 * swap_info_struct.
adfab836 2419 */
18ab4d4c 2420 plist_add(&p->list, &swap_active_head);
a2468cc9 2421 add_to_avail_list(p);
cf0cac0a
CEB
2422}
2423
2424static void enable_swap_info(struct swap_info_struct *p, int prio,
2425 unsigned char *swap_map,
2a8f9449 2426 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2427 unsigned long *frontswap_map)
2428{
1cf53c89
CH
2429 if (IS_ENABLED(CONFIG_FRONTSWAP))
2430 frontswap_init(p->type, frontswap_map);
cf0cac0a 2431 spin_lock(&swap_lock);
ec8acf20 2432 spin_lock(&p->lock);
eb085574
HY
2433 setup_swap_info(p, prio, swap_map, cluster_info);
2434 spin_unlock(&p->lock);
2435 spin_unlock(&swap_lock);
2436 /*
63d8620e 2437 * Finished initializing swap device, now it's safe to reference it.
eb085574 2438 */
63d8620e 2439 percpu_ref_resurrect(&p->users);
eb085574
HY
2440 spin_lock(&swap_lock);
2441 spin_lock(&p->lock);
2442 _enable_swap_info(p);
ec8acf20 2443 spin_unlock(&p->lock);
cf0cac0a
CEB
2444 spin_unlock(&swap_lock);
2445}
2446
2447static void reinsert_swap_info(struct swap_info_struct *p)
2448{
2449 spin_lock(&swap_lock);
ec8acf20 2450 spin_lock(&p->lock);
eb085574
HY
2451 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2452 _enable_swap_info(p);
ec8acf20 2453 spin_unlock(&p->lock);
40531542
CEB
2454 spin_unlock(&swap_lock);
2455}
2456
67afa38e
TC
2457bool has_usable_swap(void)
2458{
2459 bool ret = true;
2460
2461 spin_lock(&swap_lock);
2462 if (plist_head_empty(&swap_active_head))
2463 ret = false;
2464 spin_unlock(&swap_lock);
2465 return ret;
2466}
2467
c4ea37c2 2468SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2469{
73c34b6a 2470 struct swap_info_struct *p = NULL;
8d69aaee 2471 unsigned char *swap_map;
2a8f9449 2472 struct swap_cluster_info *cluster_info;
4f89849d 2473 unsigned long *frontswap_map;
1da177e4
LT
2474 struct file *swap_file, *victim;
2475 struct address_space *mapping;
2476 struct inode *inode;
91a27b2a 2477 struct filename *pathname;
adfab836 2478 int err, found = 0;
5b808a23 2479 unsigned int old_block_size;
886bb7e9 2480
1da177e4
LT
2481 if (!capable(CAP_SYS_ADMIN))
2482 return -EPERM;
2483
191c5424
AV
2484 BUG_ON(!current->mm);
2485
1da177e4 2486 pathname = getname(specialfile);
1da177e4 2487 if (IS_ERR(pathname))
f58b59c1 2488 return PTR_ERR(pathname);
1da177e4 2489
669abf4e 2490 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2491 err = PTR_ERR(victim);
2492 if (IS_ERR(victim))
2493 goto out;
2494
2495 mapping = victim->f_mapping;
5d337b91 2496 spin_lock(&swap_lock);
18ab4d4c 2497 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2498 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2499 if (p->swap_file->f_mapping == mapping) {
2500 found = 1;
1da177e4 2501 break;
adfab836 2502 }
1da177e4 2503 }
1da177e4 2504 }
adfab836 2505 if (!found) {
1da177e4 2506 err = -EINVAL;
5d337b91 2507 spin_unlock(&swap_lock);
1da177e4
LT
2508 goto out_dput;
2509 }
191c5424 2510 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2511 vm_unacct_memory(p->pages);
2512 else {
2513 err = -ENOMEM;
5d337b91 2514 spin_unlock(&swap_lock);
1da177e4
LT
2515 goto out_dput;
2516 }
a2468cc9 2517 del_from_avail_list(p);
ec8acf20 2518 spin_lock(&p->lock);
78ecba08 2519 if (p->prio < 0) {
adfab836 2520 struct swap_info_struct *si = p;
a2468cc9 2521 int nid;
adfab836 2522
18ab4d4c 2523 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2524 si->prio++;
18ab4d4c 2525 si->list.prio--;
a2468cc9
AL
2526 for_each_node(nid) {
2527 if (si->avail_lists[nid].prio != 1)
2528 si->avail_lists[nid].prio--;
2529 }
adfab836 2530 }
78ecba08
HD
2531 least_priority++;
2532 }
18ab4d4c 2533 plist_del(&p->list, &swap_active_head);
ec8acf20 2534 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2535 total_swap_pages -= p->pages;
2536 p->flags &= ~SWP_WRITEOK;
ec8acf20 2537 spin_unlock(&p->lock);
5d337b91 2538 spin_unlock(&swap_lock);
fb4f88dc 2539
039939a6
TC
2540 disable_swap_slots_cache_lock();
2541
e1e12d2f 2542 set_current_oom_origin();
10a9c496 2543 err = try_to_unuse(p->type);
e1e12d2f 2544 clear_current_oom_origin();
1da177e4 2545
1da177e4
LT
2546 if (err) {
2547 /* re-insert swap space back into swap_list */
cf0cac0a 2548 reinsert_swap_info(p);
039939a6 2549 reenable_swap_slots_cache_unlock();
1da177e4
LT
2550 goto out_dput;
2551 }
52b7efdb 2552
039939a6
TC
2553 reenable_swap_slots_cache_unlock();
2554
eb085574 2555 /*
63d8620e
ML
2556 * Wait for swap operations protected by get/put_swap_device()
2557 * to complete.
2558 *
2559 * We need synchronize_rcu() here to protect the accessing to
2560 * the swap cache data structure.
eb085574 2561 */
63d8620e 2562 percpu_ref_kill(&p->users);
eb085574 2563 synchronize_rcu();
63d8620e 2564 wait_for_completion(&p->comp);
eb085574 2565
815c2c54
SL
2566 flush_work(&p->discard_work);
2567
5d337b91 2568 destroy_swap_extents(p);
570a335b
HD
2569 if (p->flags & SWP_CONTINUED)
2570 free_swap_count_continuations(p);
2571
81a0298b
HY
2572 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2573 atomic_dec(&nr_rotate_swap);
2574
fc0abb14 2575 mutex_lock(&swapon_mutex);
5d337b91 2576 spin_lock(&swap_lock);
ec8acf20 2577 spin_lock(&p->lock);
5d337b91
HD
2578 drain_mmlist();
2579
bb243f7d 2580 /* wait for anyone still in scan_swap_map_slots */
52b7efdb
HD
2581 p->highest_bit = 0; /* cuts scans short */
2582 while (p->flags >= SWP_SCANNING) {
ec8acf20 2583 spin_unlock(&p->lock);
5d337b91 2584 spin_unlock(&swap_lock);
13e4b57f 2585 schedule_timeout_uninterruptible(1);
5d337b91 2586 spin_lock(&swap_lock);
ec8acf20 2587 spin_lock(&p->lock);
52b7efdb 2588 }
52b7efdb 2589
1da177e4 2590 swap_file = p->swap_file;
5b808a23 2591 old_block_size = p->old_block_size;
1da177e4
LT
2592 p->swap_file = NULL;
2593 p->max = 0;
2594 swap_map = p->swap_map;
2595 p->swap_map = NULL;
2a8f9449
SL
2596 cluster_info = p->cluster_info;
2597 p->cluster_info = NULL;
4f89849d 2598 frontswap_map = frontswap_map_get(p);
ec8acf20 2599 spin_unlock(&p->lock);
5d337b91 2600 spin_unlock(&swap_lock);
8a84802e 2601 arch_swap_invalidate_area(p->type);
adfab836 2602 frontswap_invalidate_area(p->type);
58e97ba6 2603 frontswap_map_set(p, NULL);
fc0abb14 2604 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2605 free_percpu(p->percpu_cluster);
2606 p->percpu_cluster = NULL;
49070588
HY
2607 free_percpu(p->cluster_next_cpu);
2608 p->cluster_next_cpu = NULL;
1da177e4 2609 vfree(swap_map);
54f180d3
HY
2610 kvfree(cluster_info);
2611 kvfree(frontswap_map);
2de1a7e4 2612 /* Destroy swap account information */
adfab836 2613 swap_cgroup_swapoff(p->type);
4b3ef9da 2614 exit_swap_address_space(p->type);
27a7faa0 2615
1da177e4
LT
2616 inode = mapping->host;
2617 if (S_ISBLK(inode->i_mode)) {
2618 struct block_device *bdev = I_BDEV(inode);
1638045c 2619
5b808a23 2620 set_blocksize(bdev, old_block_size);
e525fd89 2621 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2622 }
1638045c
DW
2623
2624 inode_lock(inode);
2625 inode->i_flags &= ~S_SWAPFILE;
2626 inode_unlock(inode);
1da177e4 2627 filp_close(swap_file, NULL);
f893ab41
WY
2628
2629 /*
2630 * Clear the SWP_USED flag after all resources are freed so that swapon
2631 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2632 * not hold p->lock after we cleared its SWP_WRITEOK.
2633 */
2634 spin_lock(&swap_lock);
2635 p->flags = 0;
2636 spin_unlock(&swap_lock);
2637
1da177e4 2638 err = 0;
66d7dd51
KS
2639 atomic_inc(&proc_poll_event);
2640 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2641
2642out_dput:
2643 filp_close(victim, NULL);
2644out:
f58b59c1 2645 putname(pathname);
1da177e4
LT
2646 return err;
2647}
2648
2649#ifdef CONFIG_PROC_FS
9dd95748 2650static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2651{
f1514638 2652 struct seq_file *seq = file->private_data;
66d7dd51
KS
2653
2654 poll_wait(file, &proc_poll_wait, wait);
2655
f1514638
KS
2656 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2657 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2658 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2659 }
2660
a9a08845 2661 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2662}
2663
1da177e4
LT
2664/* iterator */
2665static void *swap_start(struct seq_file *swap, loff_t *pos)
2666{
efa90a98
HD
2667 struct swap_info_struct *si;
2668 int type;
1da177e4
LT
2669 loff_t l = *pos;
2670
fc0abb14 2671 mutex_lock(&swapon_mutex);
1da177e4 2672
881e4aab
SS
2673 if (!l)
2674 return SEQ_START_TOKEN;
2675
c10d38cc 2676 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2677 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2678 continue;
881e4aab 2679 if (!--l)
efa90a98 2680 return si;
1da177e4
LT
2681 }
2682
2683 return NULL;
2684}
2685
2686static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2687{
efa90a98
HD
2688 struct swap_info_struct *si = v;
2689 int type;
1da177e4 2690
881e4aab 2691 if (v == SEQ_START_TOKEN)
efa90a98
HD
2692 type = 0;
2693 else
2694 type = si->type + 1;
881e4aab 2695
10c8d69f 2696 ++(*pos);
c10d38cc 2697 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2698 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2699 continue;
efa90a98 2700 return si;
1da177e4
LT
2701 }
2702
2703 return NULL;
2704}
2705
2706static void swap_stop(struct seq_file *swap, void *v)
2707{
fc0abb14 2708 mutex_unlock(&swapon_mutex);
1da177e4
LT
2709}
2710
2711static int swap_show(struct seq_file *swap, void *v)
2712{
efa90a98 2713 struct swap_info_struct *si = v;
1da177e4
LT
2714 struct file *file;
2715 int len;
642929a2 2716 unsigned long bytes, inuse;
1da177e4 2717
efa90a98 2718 if (si == SEQ_START_TOKEN) {
68d68ff6 2719 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
881e4aab
SS
2720 return 0;
2721 }
1da177e4 2722
6f793940
RD
2723 bytes = si->pages << (PAGE_SHIFT - 10);
2724 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2725
efa90a98 2726 file = si->swap_file;
2726d566 2727 len = seq_file_path(swap, file, " \t\n\\");
642929a2 2728 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
886bb7e9 2729 len < 40 ? 40 - len : 1, " ",
496ad9aa 2730 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2731 "partition" : "file\t",
6f793940
RD
2732 bytes, bytes < 10000000 ? "\t" : "",
2733 inuse, inuse < 10000000 ? "\t" : "",
efa90a98 2734 si->prio);
1da177e4
LT
2735 return 0;
2736}
2737
15ad7cdc 2738static const struct seq_operations swaps_op = {
1da177e4
LT
2739 .start = swap_start,
2740 .next = swap_next,
2741 .stop = swap_stop,
2742 .show = swap_show
2743};
2744
2745static int swaps_open(struct inode *inode, struct file *file)
2746{
f1514638 2747 struct seq_file *seq;
66d7dd51
KS
2748 int ret;
2749
66d7dd51 2750 ret = seq_open(file, &swaps_op);
f1514638 2751 if (ret)
66d7dd51 2752 return ret;
66d7dd51 2753
f1514638
KS
2754 seq = file->private_data;
2755 seq->poll_event = atomic_read(&proc_poll_event);
2756 return 0;
1da177e4
LT
2757}
2758
97a32539 2759static const struct proc_ops swaps_proc_ops = {
d919b33d 2760 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2761 .proc_open = swaps_open,
2762 .proc_read = seq_read,
2763 .proc_lseek = seq_lseek,
2764 .proc_release = seq_release,
2765 .proc_poll = swaps_poll,
1da177e4
LT
2766};
2767
2768static int __init procswaps_init(void)
2769{
97a32539 2770 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2771 return 0;
2772}
2773__initcall(procswaps_init);
2774#endif /* CONFIG_PROC_FS */
2775
1796316a
JB
2776#ifdef MAX_SWAPFILES_CHECK
2777static int __init max_swapfiles_check(void)
2778{
2779 MAX_SWAPFILES_CHECK();
2780 return 0;
2781}
2782late_initcall(max_swapfiles_check);
2783#endif
2784
53cbb243 2785static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2786{
73c34b6a 2787 struct swap_info_struct *p;
b11a76b3 2788 struct swap_info_struct *defer = NULL;
1da177e4 2789 unsigned int type;
a2468cc9 2790 int i;
efa90a98 2791
96008744 2792 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2793 if (!p)
53cbb243 2794 return ERR_PTR(-ENOMEM);
efa90a98 2795
63d8620e
ML
2796 if (percpu_ref_init(&p->users, swap_users_ref_free,
2797 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2798 kvfree(p);
2799 return ERR_PTR(-ENOMEM);
2800 }
2801
5d337b91 2802 spin_lock(&swap_lock);
efa90a98
HD
2803 for (type = 0; type < nr_swapfiles; type++) {
2804 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2805 break;
efa90a98 2806 }
0697212a 2807 if (type >= MAX_SWAPFILES) {
5d337b91 2808 spin_unlock(&swap_lock);
63d8620e 2809 percpu_ref_exit(&p->users);
873d7bcf 2810 kvfree(p);
730c0581 2811 return ERR_PTR(-EPERM);
1da177e4 2812 }
efa90a98
HD
2813 if (type >= nr_swapfiles) {
2814 p->type = type;
efa90a98 2815 /*
a4b45114
HY
2816 * Publish the swap_info_struct after initializing it.
2817 * Note that kvzalloc() above zeroes all its fields.
efa90a98 2818 */
a4b45114
HY
2819 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2820 nr_swapfiles++;
efa90a98 2821 } else {
b11a76b3 2822 defer = p;
efa90a98
HD
2823 p = swap_info[type];
2824 /*
2825 * Do not memset this entry: a racing procfs swap_next()
2826 * would be relying on p->type to remain valid.
2827 */
2828 }
4efaceb1 2829 p->swap_extent_root = RB_ROOT;
18ab4d4c 2830 plist_node_init(&p->list, 0);
a2468cc9
AL
2831 for_each_node(i)
2832 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2833 p->flags = SWP_USED;
5d337b91 2834 spin_unlock(&swap_lock);
63d8620e
ML
2835 if (defer) {
2836 percpu_ref_exit(&defer->users);
2837 kvfree(defer);
2838 }
ec8acf20 2839 spin_lock_init(&p->lock);
2628bd6f 2840 spin_lock_init(&p->cont_lock);
63d8620e 2841 init_completion(&p->comp);
efa90a98 2842
53cbb243 2843 return p;
53cbb243
CEB
2844}
2845
4d0e1e10
CEB
2846static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2847{
2848 int error;
2849
2850 if (S_ISBLK(inode->i_mode)) {
ef16e1d9 2851 p->bdev = blkdev_get_by_dev(inode->i_rdev,
6f179af8 2852 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
ef16e1d9
CH
2853 if (IS_ERR(p->bdev)) {
2854 error = PTR_ERR(p->bdev);
4d0e1e10 2855 p->bdev = NULL;
6f179af8 2856 return error;
4d0e1e10
CEB
2857 }
2858 p->old_block_size = block_size(p->bdev);
2859 error = set_blocksize(p->bdev, PAGE_SIZE);
2860 if (error < 0)
87ade72a 2861 return error;
12d2966d
NA
2862 /*
2863 * Zoned block devices contain zones that have a sequential
2864 * write only restriction. Hence zoned block devices are not
2865 * suitable for swapping. Disallow them here.
2866 */
e556f6ba 2867 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
12d2966d 2868 return -EINVAL;
4d0e1e10
CEB
2869 p->flags |= SWP_BLKDEV;
2870 } else if (S_ISREG(inode->i_mode)) {
2871 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2872 }
2873
4d0e1e10 2874 return 0;
4d0e1e10
CEB
2875}
2876
377eeaa8
AK
2877
2878/*
2879 * Find out how many pages are allowed for a single swap device. There
2880 * are two limiting factors:
2881 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2882 * 2) the number of bits in the swap pte, as defined by the different
2883 * architectures.
2884 *
2885 * In order to find the largest possible bit mask, a swap entry with
2886 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2887 * decoded to a swp_entry_t again, and finally the swap offset is
2888 * extracted.
2889 *
2890 * This will mask all the bits from the initial ~0UL mask that can't
2891 * be encoded in either the swp_entry_t or the architecture definition
2892 * of a swap pte.
2893 */
2894unsigned long generic_max_swapfile_size(void)
2895{
2896 return swp_offset(pte_to_swp_entry(
2897 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2898}
2899
2900/* Can be overridden by an architecture for additional checks. */
2901__weak unsigned long max_swapfile_size(void)
2902{
2903 return generic_max_swapfile_size();
2904}
2905
ca8bd38b
CEB
2906static unsigned long read_swap_header(struct swap_info_struct *p,
2907 union swap_header *swap_header,
2908 struct inode *inode)
2909{
2910 int i;
2911 unsigned long maxpages;
2912 unsigned long swapfilepages;
d6bbbd29 2913 unsigned long last_page;
ca8bd38b
CEB
2914
2915 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2916 pr_err("Unable to find swap-space signature\n");
38719025 2917 return 0;
ca8bd38b
CEB
2918 }
2919
041711ce 2920 /* swap partition endianness hack... */
ca8bd38b
CEB
2921 if (swab32(swap_header->info.version) == 1) {
2922 swab32s(&swap_header->info.version);
2923 swab32s(&swap_header->info.last_page);
2924 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2925 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2926 return 0;
ca8bd38b
CEB
2927 for (i = 0; i < swap_header->info.nr_badpages; i++)
2928 swab32s(&swap_header->info.badpages[i]);
2929 }
2930 /* Check the swap header's sub-version */
2931 if (swap_header->info.version != 1) {
465c47fd
AM
2932 pr_warn("Unable to handle swap header version %d\n",
2933 swap_header->info.version);
38719025 2934 return 0;
ca8bd38b
CEB
2935 }
2936
2937 p->lowest_bit = 1;
2938 p->cluster_next = 1;
2939 p->cluster_nr = 0;
2940
377eeaa8 2941 maxpages = max_swapfile_size();
d6bbbd29 2942 last_page = swap_header->info.last_page;
a06ad633
TA
2943 if (!last_page) {
2944 pr_warn("Empty swap-file\n");
2945 return 0;
2946 }
d6bbbd29 2947 if (last_page > maxpages) {
465c47fd 2948 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2949 maxpages << (PAGE_SHIFT - 10),
2950 last_page << (PAGE_SHIFT - 10));
2951 }
2952 if (maxpages > last_page) {
2953 maxpages = last_page + 1;
ca8bd38b
CEB
2954 /* p->max is an unsigned int: don't overflow it */
2955 if ((unsigned int)maxpages == 0)
2956 maxpages = UINT_MAX;
2957 }
2958 p->highest_bit = maxpages - 1;
2959
2960 if (!maxpages)
38719025 2961 return 0;
ca8bd38b
CEB
2962 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2963 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2964 pr_warn("Swap area shorter than signature indicates\n");
38719025 2965 return 0;
ca8bd38b
CEB
2966 }
2967 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2968 return 0;
ca8bd38b 2969 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2970 return 0;
ca8bd38b
CEB
2971
2972 return maxpages;
ca8bd38b
CEB
2973}
2974
4b3ef9da 2975#define SWAP_CLUSTER_INFO_COLS \
235b6217 2976 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2977#define SWAP_CLUSTER_SPACE_COLS \
2978 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2979#define SWAP_CLUSTER_COLS \
2980 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2981
915d4d7b
CEB
2982static int setup_swap_map_and_extents(struct swap_info_struct *p,
2983 union swap_header *swap_header,
2984 unsigned char *swap_map,
2a8f9449 2985 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2986 unsigned long maxpages,
2987 sector_t *span)
2988{
235b6217 2989 unsigned int j, k;
915d4d7b
CEB
2990 unsigned int nr_good_pages;
2991 int nr_extents;
2a8f9449 2992 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2993 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2994 unsigned long i, idx;
915d4d7b
CEB
2995
2996 nr_good_pages = maxpages - 1; /* omit header page */
2997
6b534915
HY
2998 cluster_list_init(&p->free_clusters);
2999 cluster_list_init(&p->discard_clusters);
2a8f9449 3000
915d4d7b
CEB
3001 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3002 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3003 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3004 return -EINVAL;
915d4d7b
CEB
3005 if (page_nr < maxpages) {
3006 swap_map[page_nr] = SWAP_MAP_BAD;
3007 nr_good_pages--;
2a8f9449
SL
3008 /*
3009 * Haven't marked the cluster free yet, no list
3010 * operation involved
3011 */
3012 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3013 }
3014 }
3015
2a8f9449
SL
3016 /* Haven't marked the cluster free yet, no list operation involved */
3017 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3018 inc_cluster_info_page(p, cluster_info, i);
3019
915d4d7b
CEB
3020 if (nr_good_pages) {
3021 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3022 /*
3023 * Not mark the cluster free yet, no list
3024 * operation involved
3025 */
3026 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3027 p->max = maxpages;
3028 p->pages = nr_good_pages;
3029 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3030 if (nr_extents < 0)
3031 return nr_extents;
915d4d7b
CEB
3032 nr_good_pages = p->pages;
3033 }
3034 if (!nr_good_pages) {
465c47fd 3035 pr_warn("Empty swap-file\n");
bdb8e3f6 3036 return -EINVAL;
915d4d7b
CEB
3037 }
3038
2a8f9449
SL
3039 if (!cluster_info)
3040 return nr_extents;
3041
235b6217 3042
4b3ef9da
HY
3043 /*
3044 * Reduce false cache line sharing between cluster_info and
3045 * sharing same address space.
3046 */
235b6217
HY
3047 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3048 j = (k + col) % SWAP_CLUSTER_COLS;
3049 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3050 idx = i * SWAP_CLUSTER_COLS + j;
3051 if (idx >= nr_clusters)
3052 continue;
3053 if (cluster_count(&cluster_info[idx]))
3054 continue;
2a8f9449 3055 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3056 cluster_list_add_tail(&p->free_clusters, cluster_info,
3057 idx);
2a8f9449 3058 }
2a8f9449 3059 }
915d4d7b 3060 return nr_extents;
915d4d7b
CEB
3061}
3062
dcf6b7dd
RA
3063/*
3064 * Helper to sys_swapon determining if a given swap
3065 * backing device queue supports DISCARD operations.
3066 */
3067static bool swap_discardable(struct swap_info_struct *si)
3068{
3069 struct request_queue *q = bdev_get_queue(si->bdev);
3070
363dc512 3071 if (!blk_queue_discard(q))
dcf6b7dd
RA
3072 return false;
3073
3074 return true;
3075}
3076
53cbb243
CEB
3077SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3078{
3079 struct swap_info_struct *p;
91a27b2a 3080 struct filename *name;
53cbb243
CEB
3081 struct file *swap_file = NULL;
3082 struct address_space *mapping;
51cc3a66 3083 struct dentry *dentry;
40531542 3084 int prio;
53cbb243
CEB
3085 int error;
3086 union swap_header *swap_header;
915d4d7b 3087 int nr_extents;
53cbb243
CEB
3088 sector_t span;
3089 unsigned long maxpages;
53cbb243 3090 unsigned char *swap_map = NULL;
2a8f9449 3091 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3092 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3093 struct page *page = NULL;
3094 struct inode *inode = NULL;
7cbf3192 3095 bool inced_nr_rotate_swap = false;
53cbb243 3096
d15cab97
HD
3097 if (swap_flags & ~SWAP_FLAGS_VALID)
3098 return -EINVAL;
3099
53cbb243
CEB
3100 if (!capable(CAP_SYS_ADMIN))
3101 return -EPERM;
3102
a2468cc9
AL
3103 if (!swap_avail_heads)
3104 return -ENOMEM;
3105
53cbb243 3106 p = alloc_swap_info();
2542e513
CEB
3107 if (IS_ERR(p))
3108 return PTR_ERR(p);
53cbb243 3109
815c2c54
SL
3110 INIT_WORK(&p->discard_work, swap_discard_work);
3111
1da177e4 3112 name = getname(specialfile);
1da177e4 3113 if (IS_ERR(name)) {
7de7fb6b 3114 error = PTR_ERR(name);
1da177e4 3115 name = NULL;
bd69010b 3116 goto bad_swap;
1da177e4 3117 }
669abf4e 3118 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3119 if (IS_ERR(swap_file)) {
7de7fb6b 3120 error = PTR_ERR(swap_file);
1da177e4 3121 swap_file = NULL;
bd69010b 3122 goto bad_swap;
1da177e4
LT
3123 }
3124
3125 p->swap_file = swap_file;
3126 mapping = swap_file->f_mapping;
51cc3a66 3127 dentry = swap_file->f_path.dentry;
2130781e 3128 inode = mapping->host;
6f179af8 3129
4d0e1e10
CEB
3130 error = claim_swapfile(p, inode);
3131 if (unlikely(error))
1da177e4 3132 goto bad_swap;
1da177e4 3133
d795a90e 3134 inode_lock(inode);
51cc3a66
HD
3135 if (d_unlinked(dentry) || cant_mount(dentry)) {
3136 error = -ENOENT;
3137 goto bad_swap_unlock_inode;
3138 }
d795a90e
NA
3139 if (IS_SWAPFILE(inode)) {
3140 error = -EBUSY;
3141 goto bad_swap_unlock_inode;
3142 }
3143
1da177e4
LT
3144 /*
3145 * Read the swap header.
3146 */
3147 if (!mapping->a_ops->readpage) {
3148 error = -EINVAL;
d795a90e 3149 goto bad_swap_unlock_inode;
1da177e4 3150 }
090d2b18 3151 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3152 if (IS_ERR(page)) {
3153 error = PTR_ERR(page);
d795a90e 3154 goto bad_swap_unlock_inode;
1da177e4 3155 }
81e33971 3156 swap_header = kmap(page);
1da177e4 3157
ca8bd38b
CEB
3158 maxpages = read_swap_header(p, swap_header, inode);
3159 if (unlikely(!maxpages)) {
1da177e4 3160 error = -EINVAL;
d795a90e 3161 goto bad_swap_unlock_inode;
1da177e4 3162 }
886bb7e9 3163
81e33971 3164 /* OK, set up the swap map and apply the bad block list */
803d0c83 3165 swap_map = vzalloc(maxpages);
81e33971
HD
3166 if (!swap_map) {
3167 error = -ENOMEM;
d795a90e 3168 goto bad_swap_unlock_inode;
81e33971 3169 }
f0571429 3170
1cb039f3 3171 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
f0571429
MK
3172 p->flags |= SWP_STABLE_WRITES;
3173
a8b456d0 3174 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
539a6fea
MK
3175 p->flags |= SWP_SYNCHRONOUS_IO;
3176
2a8f9449 3177 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3178 int cpu;
235b6217 3179 unsigned long ci, nr_cluster;
6f179af8 3180
2a8f9449 3181 p->flags |= SWP_SOLIDSTATE;
49070588
HY
3182 p->cluster_next_cpu = alloc_percpu(unsigned int);
3183 if (!p->cluster_next_cpu) {
3184 error = -ENOMEM;
3185 goto bad_swap_unlock_inode;
3186 }
2a8f9449
SL
3187 /*
3188 * select a random position to start with to help wear leveling
3189 * SSD
3190 */
49070588
HY
3191 for_each_possible_cpu(cpu) {
3192 per_cpu(*p->cluster_next_cpu, cpu) =
3193 1 + prandom_u32_max(p->highest_bit);
3194 }
235b6217 3195 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3196
778e1cdd 3197 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3198 GFP_KERNEL);
2a8f9449
SL
3199 if (!cluster_info) {
3200 error = -ENOMEM;
d795a90e 3201 goto bad_swap_unlock_inode;
2a8f9449 3202 }
235b6217
HY
3203
3204 for (ci = 0; ci < nr_cluster; ci++)
3205 spin_lock_init(&((cluster_info + ci)->lock));
3206
ebc2a1a6
SL
3207 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3208 if (!p->percpu_cluster) {
3209 error = -ENOMEM;
d795a90e 3210 goto bad_swap_unlock_inode;
ebc2a1a6 3211 }
6f179af8 3212 for_each_possible_cpu(cpu) {
ebc2a1a6 3213 struct percpu_cluster *cluster;
6f179af8 3214 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3215 cluster_set_null(&cluster->index);
3216 }
7cbf3192 3217 } else {
81a0298b 3218 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3219 inced_nr_rotate_swap = true;
3220 }
1da177e4 3221
1421ef3c
CEB
3222 error = swap_cgroup_swapon(p->type, maxpages);
3223 if (error)
d795a90e 3224 goto bad_swap_unlock_inode;
1421ef3c 3225
915d4d7b 3226 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3227 cluster_info, maxpages, &span);
915d4d7b
CEB
3228 if (unlikely(nr_extents < 0)) {
3229 error = nr_extents;
d795a90e 3230 goto bad_swap_unlock_inode;
1da177e4 3231 }
38b5faf4 3232 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3233 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3234 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3235 sizeof(long),
54f180d3 3236 GFP_KERNEL);
1da177e4 3237
68d68ff6 3238 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2a8f9449
SL
3239 /*
3240 * When discard is enabled for swap with no particular
3241 * policy flagged, we set all swap discard flags here in
3242 * order to sustain backward compatibility with older
3243 * swapon(8) releases.
3244 */
3245 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3246 SWP_PAGE_DISCARD);
dcf6b7dd 3247
2a8f9449
SL
3248 /*
3249 * By flagging sys_swapon, a sysadmin can tell us to
3250 * either do single-time area discards only, or to just
3251 * perform discards for released swap page-clusters.
3252 * Now it's time to adjust the p->flags accordingly.
3253 */
3254 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3255 p->flags &= ~SWP_PAGE_DISCARD;
3256 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3257 p->flags &= ~SWP_AREA_DISCARD;
3258
3259 /* issue a swapon-time discard if it's still required */
3260 if (p->flags & SWP_AREA_DISCARD) {
3261 int err = discard_swap(p);
3262 if (unlikely(err))
3263 pr_err("swapon: discard_swap(%p): %d\n",
3264 p, err);
dcf6b7dd 3265 }
20137a49 3266 }
6a6ba831 3267
4b3ef9da
HY
3268 error = init_swap_address_space(p->type, maxpages);
3269 if (error)
d795a90e 3270 goto bad_swap_unlock_inode;
4b3ef9da 3271
dc617f29
DW
3272 /*
3273 * Flush any pending IO and dirty mappings before we start using this
3274 * swap device.
3275 */
3276 inode->i_flags |= S_SWAPFILE;
3277 error = inode_drain_writes(inode);
3278 if (error) {
3279 inode->i_flags &= ~S_SWAPFILE;
822bca52 3280 goto free_swap_address_space;
dc617f29
DW
3281 }
3282
fc0abb14 3283 mutex_lock(&swapon_mutex);
40531542 3284 prio = -1;
78ecba08 3285 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3286 prio =
78ecba08 3287 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3288 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3289
756a025f 3290 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3291 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3292 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3293 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3294 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3295 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3296 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3297 (frontswap_map) ? "FS" : "");
c69dbfb8 3298
fc0abb14 3299 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3300 atomic_inc(&proc_poll_event);
3301 wake_up_interruptible(&proc_poll_wait);
3302
1da177e4
LT
3303 error = 0;
3304 goto out;
822bca52
ML
3305free_swap_address_space:
3306 exit_swap_address_space(p->type);
d795a90e
NA
3307bad_swap_unlock_inode:
3308 inode_unlock(inode);
1da177e4 3309bad_swap:
ebc2a1a6
SL
3310 free_percpu(p->percpu_cluster);
3311 p->percpu_cluster = NULL;
49070588
HY
3312 free_percpu(p->cluster_next_cpu);
3313 p->cluster_next_cpu = NULL;
bd69010b 3314 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3315 set_blocksize(p->bdev, p->old_block_size);
3316 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3317 }
d795a90e 3318 inode = NULL;
4cd3bb10 3319 destroy_swap_extents(p);
e8e6c2ec 3320 swap_cgroup_swapoff(p->type);
5d337b91 3321 spin_lock(&swap_lock);
1da177e4 3322 p->swap_file = NULL;
1da177e4 3323 p->flags = 0;
5d337b91 3324 spin_unlock(&swap_lock);
1da177e4 3325 vfree(swap_map);
8606a1a9 3326 kvfree(cluster_info);
b6b1fd2a 3327 kvfree(frontswap_map);
7cbf3192
OS
3328 if (inced_nr_rotate_swap)
3329 atomic_dec(&nr_rotate_swap);
d795a90e 3330 if (swap_file)
1da177e4
LT
3331 filp_close(swap_file, NULL);
3332out:
3333 if (page && !IS_ERR(page)) {
3334 kunmap(page);
09cbfeaf 3335 put_page(page);
1da177e4
LT
3336 }
3337 if (name)
3338 putname(name);
1638045c 3339 if (inode)
5955102c 3340 inode_unlock(inode);
039939a6
TC
3341 if (!error)
3342 enable_swap_slots_cache();
1da177e4
LT
3343 return error;
3344}
3345
3346void si_swapinfo(struct sysinfo *val)
3347{
efa90a98 3348 unsigned int type;
1da177e4
LT
3349 unsigned long nr_to_be_unused = 0;
3350
5d337b91 3351 spin_lock(&swap_lock);
efa90a98
HD
3352 for (type = 0; type < nr_swapfiles; type++) {
3353 struct swap_info_struct *si = swap_info[type];
3354
3355 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3356 nr_to_be_unused += si->inuse_pages;
1da177e4 3357 }
ec8acf20 3358 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3359 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3360 spin_unlock(&swap_lock);
1da177e4
LT
3361}
3362
3363/*
3364 * Verify that a swap entry is valid and increment its swap map count.
3365 *
355cfa73
KH
3366 * Returns error code in following case.
3367 * - success -> 0
3368 * - swp_entry is invalid -> EINVAL
3369 * - swp_entry is migration entry -> EINVAL
3370 * - swap-cache reference is requested but there is already one. -> EEXIST
3371 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3372 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3373 */
8d69aaee 3374static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3375{
73c34b6a 3376 struct swap_info_struct *p;
235b6217 3377 struct swap_cluster_info *ci;
c10d38cc 3378 unsigned long offset;
8d69aaee
HD
3379 unsigned char count;
3380 unsigned char has_cache;
9d9a0334 3381 int err;
1da177e4 3382
eb085574 3383 p = get_swap_device(entry);
c10d38cc 3384 if (!p)
9d9a0334 3385 return -EINVAL;
235b6217 3386
eb085574 3387 offset = swp_offset(entry);
235b6217 3388 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3389
253d553b 3390 count = p->swap_map[offset];
edfe23da
SL
3391
3392 /*
3393 * swapin_readahead() doesn't check if a swap entry is valid, so the
3394 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3395 */
3396 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3397 err = -ENOENT;
3398 goto unlock_out;
3399 }
3400
253d553b
HD
3401 has_cache = count & SWAP_HAS_CACHE;
3402 count &= ~SWAP_HAS_CACHE;
3403 err = 0;
355cfa73 3404
253d553b 3405 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3406
3407 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3408 if (!has_cache && count)
3409 has_cache = SWAP_HAS_CACHE;
3410 else if (has_cache) /* someone else added cache */
3411 err = -EEXIST;
3412 else /* no users remaining */
3413 err = -ENOENT;
355cfa73
KH
3414
3415 } else if (count || has_cache) {
253d553b 3416
570a335b
HD
3417 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3418 count += usage;
3419 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3420 err = -EINVAL;
570a335b
HD
3421 else if (swap_count_continued(p, offset, count))
3422 count = COUNT_CONTINUED;
3423 else
3424 err = -ENOMEM;
355cfa73 3425 } else
253d553b
HD
3426 err = -ENOENT; /* unused swap entry */
3427
a449bf58 3428 WRITE_ONCE(p->swap_map[offset], count | has_cache);
253d553b 3429
355cfa73 3430unlock_out:
235b6217 3431 unlock_cluster_or_swap_info(p, ci);
eb085574
HY
3432 if (p)
3433 put_swap_device(p);
253d553b 3434 return err;
1da177e4 3435}
253d553b 3436
aaa46865
HD
3437/*
3438 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3439 * (in which case its reference count is never incremented).
3440 */
3441void swap_shmem_alloc(swp_entry_t entry)
3442{
3443 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3444}
3445
355cfa73 3446/*
08259d58
HD
3447 * Increase reference count of swap entry by 1.
3448 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3449 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3450 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3451 * might occur if a page table entry has got corrupted.
355cfa73 3452 */
570a335b 3453int swap_duplicate(swp_entry_t entry)
355cfa73 3454{
570a335b
HD
3455 int err = 0;
3456
3457 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3458 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3459 return err;
355cfa73 3460}
1da177e4 3461
cb4b86ba 3462/*
355cfa73
KH
3463 * @entry: swap entry for which we allocate swap cache.
3464 *
73c34b6a 3465 * Called when allocating swap cache for existing swap entry,
355cfa73 3466 * This can return error codes. Returns 0 at success.
3eeba135 3467 * -EEXIST means there is a swap cache.
355cfa73 3468 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3469 */
3470int swapcache_prepare(swp_entry_t entry)
3471{
253d553b 3472 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3473}
3474
0bcac06f
MK
3475struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3476{
c10d38cc 3477 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3478}
3479
f981c595
MG
3480struct swap_info_struct *page_swap_info(struct page *page)
3481{
0bcac06f
MK
3482 swp_entry_t entry = { .val = page_private(page) };
3483 return swp_swap_info(entry);
f981c595
MG
3484}
3485
3486/*
2f52578f 3487 * out-of-line methods to avoid include hell.
f981c595 3488 */
2f52578f 3489struct address_space *swapcache_mapping(struct folio *folio)
f981c595 3490{
2f52578f 3491 return page_swap_info(&folio->page)->swap_file->f_mapping;
f981c595 3492}
2f52578f 3493EXPORT_SYMBOL_GPL(swapcache_mapping);
f981c595
MG
3494
3495pgoff_t __page_file_index(struct page *page)
3496{
3497 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3498 return swp_offset(swap);
3499}
3500EXPORT_SYMBOL_GPL(__page_file_index);
3501
570a335b
HD
3502/*
3503 * add_swap_count_continuation - called when a swap count is duplicated
3504 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3505 * page of the original vmalloc'ed swap_map, to hold the continuation count
3506 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3507 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3508 *
3509 * These continuation pages are seldom referenced: the common paths all work
3510 * on the original swap_map, only referring to a continuation page when the
3511 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3512 *
3513 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3514 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3515 * can be called after dropping locks.
3516 */
3517int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3518{
3519 struct swap_info_struct *si;
235b6217 3520 struct swap_cluster_info *ci;
570a335b
HD
3521 struct page *head;
3522 struct page *page;
3523 struct page *list_page;
3524 pgoff_t offset;
3525 unsigned char count;
eb085574 3526 int ret = 0;
570a335b
HD
3527
3528 /*
3529 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3530 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3531 */
3532 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3533
eb085574 3534 si = get_swap_device(entry);
570a335b
HD
3535 if (!si) {
3536 /*
3537 * An acceptable race has occurred since the failing
eb085574 3538 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3539 */
3540 goto outer;
3541 }
eb085574 3542 spin_lock(&si->lock);
570a335b
HD
3543
3544 offset = swp_offset(entry);
235b6217
HY
3545
3546 ci = lock_cluster(si, offset);
3547
d8aa24e0 3548 count = swap_count(si->swap_map[offset]);
570a335b
HD
3549
3550 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3551 /*
3552 * The higher the swap count, the more likely it is that tasks
3553 * will race to add swap count continuation: we need to avoid
3554 * over-provisioning.
3555 */
3556 goto out;
3557 }
3558
3559 if (!page) {
eb085574
HY
3560 ret = -ENOMEM;
3561 goto out;
570a335b
HD
3562 }
3563
3564 /*
3565 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3566 * no architecture is using highmem pages for kernel page tables: so it
3567 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3568 */
3569 head = vmalloc_to_page(si->swap_map + offset);
3570 offset &= ~PAGE_MASK;
3571
2628bd6f 3572 spin_lock(&si->cont_lock);
570a335b
HD
3573 /*
3574 * Page allocation does not initialize the page's lru field,
3575 * but it does always reset its private field.
3576 */
3577 if (!page_private(head)) {
3578 BUG_ON(count & COUNT_CONTINUED);
3579 INIT_LIST_HEAD(&head->lru);
3580 set_page_private(head, SWP_CONTINUED);
3581 si->flags |= SWP_CONTINUED;
3582 }
3583
3584 list_for_each_entry(list_page, &head->lru, lru) {
3585 unsigned char *map;
3586
3587 /*
3588 * If the previous map said no continuation, but we've found
3589 * a continuation page, free our allocation and use this one.
3590 */
3591 if (!(count & COUNT_CONTINUED))
2628bd6f 3592 goto out_unlock_cont;
570a335b 3593
9b04c5fe 3594 map = kmap_atomic(list_page) + offset;
570a335b 3595 count = *map;
9b04c5fe 3596 kunmap_atomic(map);
570a335b
HD
3597
3598 /*
3599 * If this continuation count now has some space in it,
3600 * free our allocation and use this one.
3601 */
3602 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3603 goto out_unlock_cont;
570a335b
HD
3604 }
3605
3606 list_add_tail(&page->lru, &head->lru);
3607 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3608out_unlock_cont:
3609 spin_unlock(&si->cont_lock);
570a335b 3610out:
235b6217 3611 unlock_cluster(ci);
ec8acf20 3612 spin_unlock(&si->lock);
eb085574 3613 put_swap_device(si);
570a335b
HD
3614outer:
3615 if (page)
3616 __free_page(page);
eb085574 3617 return ret;
570a335b
HD
3618}
3619
3620/*
3621 * swap_count_continued - when the original swap_map count is incremented
3622 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3623 * into, carry if so, or else fail until a new continuation page is allocated;
3624 * when the original swap_map count is decremented from 0 with continuation,
3625 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3626 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3627 * lock.
570a335b
HD
3628 */
3629static bool swap_count_continued(struct swap_info_struct *si,
3630 pgoff_t offset, unsigned char count)
3631{
3632 struct page *head;
3633 struct page *page;
3634 unsigned char *map;
2628bd6f 3635 bool ret;
570a335b
HD
3636
3637 head = vmalloc_to_page(si->swap_map + offset);
3638 if (page_private(head) != SWP_CONTINUED) {
3639 BUG_ON(count & COUNT_CONTINUED);
3640 return false; /* need to add count continuation */
3641 }
3642
2628bd6f 3643 spin_lock(&si->cont_lock);
570a335b 3644 offset &= ~PAGE_MASK;
213516ac 3645 page = list_next_entry(head, lru);
9b04c5fe 3646 map = kmap_atomic(page) + offset;
570a335b
HD
3647
3648 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3649 goto init_map; /* jump over SWAP_CONT_MAX checks */
3650
3651 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3652 /*
3653 * Think of how you add 1 to 999
3654 */
3655 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3656 kunmap_atomic(map);
213516ac 3657 page = list_next_entry(page, lru);
570a335b 3658 BUG_ON(page == head);
9b04c5fe 3659 map = kmap_atomic(page) + offset;
570a335b
HD
3660 }
3661 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3662 kunmap_atomic(map);
213516ac 3663 page = list_next_entry(page, lru);
2628bd6f
HY
3664 if (page == head) {
3665 ret = false; /* add count continuation */
3666 goto out;
3667 }
9b04c5fe 3668 map = kmap_atomic(page) + offset;
570a335b
HD
3669init_map: *map = 0; /* we didn't zero the page */
3670 }
3671 *map += 1;
9b04c5fe 3672 kunmap_atomic(map);
213516ac 3673 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3674 map = kmap_atomic(page) + offset;
570a335b 3675 *map = COUNT_CONTINUED;
9b04c5fe 3676 kunmap_atomic(map);
570a335b 3677 }
2628bd6f 3678 ret = true; /* incremented */
570a335b
HD
3679
3680 } else { /* decrementing */
3681 /*
3682 * Think of how you subtract 1 from 1000
3683 */
3684 BUG_ON(count != COUNT_CONTINUED);
3685 while (*map == COUNT_CONTINUED) {
9b04c5fe 3686 kunmap_atomic(map);
213516ac 3687 page = list_next_entry(page, lru);
570a335b 3688 BUG_ON(page == head);
9b04c5fe 3689 map = kmap_atomic(page) + offset;
570a335b
HD
3690 }
3691 BUG_ON(*map == 0);
3692 *map -= 1;
3693 if (*map == 0)
3694 count = 0;
9b04c5fe 3695 kunmap_atomic(map);
213516ac 3696 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3697 map = kmap_atomic(page) + offset;
570a335b
HD
3698 *map = SWAP_CONT_MAX | count;
3699 count = COUNT_CONTINUED;
9b04c5fe 3700 kunmap_atomic(map);
570a335b 3701 }
2628bd6f 3702 ret = count == COUNT_CONTINUED;
570a335b 3703 }
2628bd6f
HY
3704out:
3705 spin_unlock(&si->cont_lock);
3706 return ret;
570a335b
HD
3707}
3708
3709/*
3710 * free_swap_count_continuations - swapoff free all the continuation pages
3711 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3712 */
3713static void free_swap_count_continuations(struct swap_info_struct *si)
3714{
3715 pgoff_t offset;
3716
3717 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3718 struct page *head;
3719 head = vmalloc_to_page(si->swap_map + offset);
3720 if (page_private(head)) {
0d576d20
GT
3721 struct page *page, *next;
3722
3723 list_for_each_entry_safe(page, next, &head->lru, lru) {
3724 list_del(&page->lru);
570a335b
HD
3725 __free_page(page);
3726 }
3727 }
3728 }
3729}
a2468cc9 3730
2cf85583 3731#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
01c4b28c 3732void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
2cf85583
TH
3733{
3734 struct swap_info_struct *si, *next;
6caa6a07
JW
3735 int nid = page_to_nid(page);
3736
3737 if (!(gfp_mask & __GFP_IO))
2cf85583
TH
3738 return;
3739
3740 if (!blk_cgroup_congested())
3741 return;
3742
3743 /*
3744 * We've already scheduled a throttle, avoid taking the global swap
3745 * lock.
3746 */
3747 if (current->throttle_queue)
3748 return;
3749
3750 spin_lock(&swap_avail_lock);
6caa6a07
JW
3751 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3752 avail_lists[nid]) {
2cf85583 3753 if (si->bdev) {
6caa6a07 3754 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
2cf85583
TH
3755 break;
3756 }
3757 }
3758 spin_unlock(&swap_avail_lock);
3759}
3760#endif
3761
a2468cc9
AL
3762static int __init swapfile_init(void)
3763{
3764 int nid;
3765
3766 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3767 GFP_KERNEL);
3768 if (!swap_avail_heads) {
3769 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3770 return -ENOMEM;
3771 }
3772
3773 for_each_node(nid)
3774 plist_head_init(&swap_avail_heads[nid]);
3775
3776 return 0;
3777}
3778subsys_initcall(swapfile_init);