vmscan: convert the writeback handling in shrink_page_list() to folios
[linux-2.6-block.git] / mm / swap_state.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
1da177e4 10#include <linux/mm.h>
5a0e3ad6 11#include <linux/gfp.h>
1da177e4
LT
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
46017e95 14#include <linux/swapops.h>
1da177e4
LT
15#include <linux/init.h>
16#include <linux/pagemap.h>
1da177e4 17#include <linux/backing-dev.h>
3fb5c298 18#include <linux/blkdev.h>
c484d410 19#include <linux/pagevec.h>
b20a3503 20#include <linux/migrate.h>
4b3ef9da 21#include <linux/vmalloc.h>
67afa38e 22#include <linux/swap_slots.h>
38d8b4e6 23#include <linux/huge_mm.h>
61ef1865 24#include <linux/shmem_fs.h>
243bce09 25#include "internal.h"
014bb1de 26#include "swap.h"
1da177e4
LT
27
28/*
29 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 30 * vmscan's shrink_page_list.
1da177e4 31 */
f5e54d6e 32static const struct address_space_operations swap_aops = {
1da177e4 33 .writepage = swap_writepage,
4c4a7634 34 .dirty_folio = noop_dirty_folio,
1c93923c 35#ifdef CONFIG_MIGRATION
e965f963 36 .migratepage = migrate_page,
1c93923c 37#endif
1da177e4
LT
38};
39
783cb68e
CD
40struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
f5c754d6 42static bool enable_vma_readahead __read_mostly = true;
ec560175 43
ec560175
HY
44#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
45#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
47#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48
49#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
50#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
52
53#define SWAP_RA_VAL(addr, win, hits) \
54 (((addr) & PAGE_MASK) | \
55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
56 ((hits) & SWAP_RA_HITS_MASK))
57
58/* Initial readahead hits is 4 to start up with a small window */
59#define GET_SWAP_RA_VAL(vma) \
60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
1da177e4 61
b96a3db2
QC
62#define INC_CACHE_INFO(x) data_race(swap_cache_info.x++)
63#define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr))
1da177e4
LT
64
65static struct {
66 unsigned long add_total;
67 unsigned long del_total;
68 unsigned long find_success;
69 unsigned long find_total;
1da177e4
LT
70} swap_cache_info;
71
579f8290
SL
72static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
73
1da177e4
LT
74void show_swap_cache_info(void)
75{
33806f06 76 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 77 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 78 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 79 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
80 printk("Free swap = %ldkB\n",
81 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
82 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
83}
84
aae466b0
JK
85void *get_shadow_from_swap_cache(swp_entry_t entry)
86{
87 struct address_space *address_space = swap_address_space(entry);
88 pgoff_t idx = swp_offset(entry);
89 struct page *page;
90
8c647dd1 91 page = xa_load(&address_space->i_pages, idx);
aae466b0
JK
92 if (xa_is_value(page))
93 return page;
aae466b0
JK
94 return NULL;
95}
96
1da177e4 97/*
8d93b41c 98 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
99 * but sets SwapCache flag and private instead of mapping and index.
100 */
3852f676
JK
101int add_to_swap_cache(struct page *page, swp_entry_t entry,
102 gfp_t gfp, void **shadowp)
1da177e4 103{
8d93b41c 104 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 105 pgoff_t idx = swp_offset(entry);
8d93b41c 106 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
6c357848 107 unsigned long i, nr = thp_nr_pages(page);
3852f676 108 void *old;
1da177e4 109
309381fe
SL
110 VM_BUG_ON_PAGE(!PageLocked(page), page);
111 VM_BUG_ON_PAGE(PageSwapCache(page), page);
112 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 113
38d8b4e6 114 page_ref_add(page, nr);
31a56396 115 SetPageSwapCache(page);
31a56396 116
8d93b41c
MW
117 do {
118 xas_lock_irq(&xas);
119 xas_create_range(&xas);
120 if (xas_error(&xas))
121 goto unlock;
122 for (i = 0; i < nr; i++) {
123 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
3852f676
JK
124 old = xas_load(&xas);
125 if (xa_is_value(old)) {
3852f676
JK
126 if (shadowp)
127 *shadowp = old;
128 }
8d93b41c 129 set_page_private(page + i, entry.val + i);
4101196b 130 xas_store(&xas, page);
8d93b41c
MW
131 xas_next(&xas);
132 }
38d8b4e6
HY
133 address_space->nrpages += nr;
134 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
b6038942 135 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
38d8b4e6 136 ADD_CACHE_INFO(add_total, nr);
8d93b41c
MW
137unlock:
138 xas_unlock_irq(&xas);
139 } while (xas_nomem(&xas, gfp));
31a56396 140
8d93b41c
MW
141 if (!xas_error(&xas))
142 return 0;
31a56396 143
8d93b41c
MW
144 ClearPageSwapCache(page);
145 page_ref_sub(page, nr);
146 return xas_error(&xas);
1da177e4
LT
147}
148
1da177e4
LT
149/*
150 * This must be called only on pages that have
151 * been verified to be in the swap cache.
152 */
3852f676
JK
153void __delete_from_swap_cache(struct page *page,
154 swp_entry_t entry, void *shadow)
1da177e4 155{
4e17ec25 156 struct address_space *address_space = swap_address_space(entry);
6c357848 157 int i, nr = thp_nr_pages(page);
4e17ec25
MW
158 pgoff_t idx = swp_offset(entry);
159 XA_STATE(xas, &address_space->i_pages, idx);
33806f06 160
309381fe
SL
161 VM_BUG_ON_PAGE(!PageLocked(page), page);
162 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
163 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 164
38d8b4e6 165 for (i = 0; i < nr; i++) {
3852f676 166 void *entry = xas_store(&xas, shadow);
4101196b 167 VM_BUG_ON_PAGE(entry != page, entry);
38d8b4e6 168 set_page_private(page + i, 0);
4e17ec25 169 xas_next(&xas);
38d8b4e6 170 }
1da177e4 171 ClearPageSwapCache(page);
38d8b4e6
HY
172 address_space->nrpages -= nr;
173 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
b6038942 174 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
38d8b4e6 175 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
176}
177
178/**
179 * add_to_swap - allocate swap space for a page
180 * @page: page we want to move to swap
181 *
182 * Allocate swap space for the page and add the page to the
183 * swap cache. Caller needs to hold the page lock.
184 */
0f074658 185int add_to_swap(struct page *page)
1da177e4
LT
186{
187 swp_entry_t entry;
1da177e4
LT
188 int err;
189
309381fe
SL
190 VM_BUG_ON_PAGE(!PageLocked(page), page);
191 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 192
38d8b4e6 193 entry = get_swap_page(page);
2ca4532a 194 if (!entry.val)
0f074658
MK
195 return 0;
196
2ca4532a 197 /*
8d93b41c 198 * XArray node allocations from PF_MEMALLOC contexts could
2ca4532a
DN
199 * completely exhaust the page allocator. __GFP_NOMEMALLOC
200 * stops emergency reserves from being allocated.
201 *
202 * TODO: this could cause a theoretical memory reclaim
203 * deadlock in the swap out path.
204 */
205 /*
854e9ed0 206 * Add it to the swap cache.
2ca4532a
DN
207 */
208 err = add_to_swap_cache(page, entry,
3852f676 209 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
38d8b4e6 210 if (err)
bd53b714 211 /*
2ca4532a
DN
212 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
213 * clear SWAP_HAS_CACHE flag.
1da177e4 214 */
0f074658 215 goto fail;
9625456c
SL
216 /*
217 * Normally the page will be dirtied in unmap because its pte should be
0e9aa675 218 * dirty. A special case is MADV_FREE page. The page's pte could have
9625456c
SL
219 * dirty bit cleared but the page's SwapBacked bit is still set because
220 * clearing the dirty bit and SwapBacked bit has no lock protected. For
221 * such page, unmap will not set dirty bit for it, so page reclaim will
222 * not write the page out. This can cause data corruption when the page
223 * is swap in later. Always setting the dirty bit for the page solves
224 * the problem.
225 */
226 set_page_dirty(page);
38d8b4e6
HY
227
228 return 1;
229
38d8b4e6 230fail:
0f074658 231 put_swap_page(page, entry);
38d8b4e6 232 return 0;
1da177e4
LT
233}
234
235/*
236 * This must be called only on pages that have
237 * been verified to be in the swap cache and locked.
238 * It will never put the page into the free list,
239 * the caller has a reference on the page.
240 */
241void delete_from_swap_cache(struct page *page)
242{
4e17ec25
MW
243 swp_entry_t entry = { .val = page_private(page) };
244 struct address_space *address_space = swap_address_space(entry);
1da177e4 245
b93b0163 246 xa_lock_irq(&address_space->i_pages);
3852f676 247 __delete_from_swap_cache(page, entry, NULL);
b93b0163 248 xa_unlock_irq(&address_space->i_pages);
1da177e4 249
75f6d6d2 250 put_swap_page(page, entry);
6c357848 251 page_ref_sub(page, thp_nr_pages(page));
1da177e4
LT
252}
253
3852f676
JK
254void clear_shadow_from_swap_cache(int type, unsigned long begin,
255 unsigned long end)
256{
257 unsigned long curr = begin;
258 void *old;
259
260 for (;;) {
3852f676
JK
261 swp_entry_t entry = swp_entry(type, curr);
262 struct address_space *address_space = swap_address_space(entry);
263 XA_STATE(xas, &address_space->i_pages, curr);
264
265 xa_lock_irq(&address_space->i_pages);
266 xas_for_each(&xas, old, end) {
267 if (!xa_is_value(old))
268 continue;
269 xas_store(&xas, NULL);
3852f676 270 }
3852f676
JK
271 xa_unlock_irq(&address_space->i_pages);
272
273 /* search the next swapcache until we meet end */
274 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
275 curr++;
276 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
277 if (curr > end)
278 break;
279 }
280}
281
1da177e4
LT
282/*
283 * If we are the only user, then try to free up the swap cache.
284 *
285 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
286 * here because we are going to recheck again inside
287 * try_to_free_swap() _with_ the lock.
1da177e4
LT
288 * - Marcelo
289 */
f4c4a3f4 290void free_swap_cache(struct page *page)
1da177e4 291{
a2c43eed
HD
292 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
293 try_to_free_swap(page);
1da177e4
LT
294 unlock_page(page);
295 }
296}
297
298/*
299 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 300 * this page if it is the last user of the page.
1da177e4
LT
301 */
302void free_page_and_swap_cache(struct page *page)
303{
304 free_swap_cache(page);
6fcb52a5 305 if (!is_huge_zero_page(page))
770a5370 306 put_page(page);
1da177e4
LT
307}
308
309/*
310 * Passed an array of pages, drop them all from swapcache and then release
311 * them. They are removed from the LRU and freed if this is their last use.
312 */
313void free_pages_and_swap_cache(struct page **pages, int nr)
314{
1da177e4 315 struct page **pagep = pages;
aabfb572 316 int i;
1da177e4
LT
317
318 lru_add_drain();
aabfb572
MH
319 for (i = 0; i < nr; i++)
320 free_swap_cache(pagep[i]);
c6f92f9f 321 release_pages(pagep, nr);
1da177e4
LT
322}
323
e9e9b7ec
MK
324static inline bool swap_use_vma_readahead(void)
325{
326 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
327}
328
1da177e4
LT
329/*
330 * Lookup a swap entry in the swap cache. A found page will be returned
331 * unlocked and with its refcount incremented - we rely on the kernel
332 * lock getting page table operations atomic even if we drop the page
333 * lock before returning.
334 */
ec560175
HY
335struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
336 unsigned long addr)
1da177e4
LT
337{
338 struct page *page;
eb085574 339 struct swap_info_struct *si;
1da177e4 340
eb085574
HY
341 si = get_swap_device(entry);
342 if (!si)
343 return NULL;
f6ab1f7f 344 page = find_get_page(swap_address_space(entry), swp_offset(entry));
eb085574 345 put_swap_device(si);
1da177e4 346
ec560175
HY
347 INC_CACHE_INFO(find_total);
348 if (page) {
eaf649eb
MK
349 bool vma_ra = swap_use_vma_readahead();
350 bool readahead;
351
1da177e4 352 INC_CACHE_INFO(find_success);
eaf649eb
MK
353 /*
354 * At the moment, we don't support PG_readahead for anon THP
355 * so let's bail out rather than confusing the readahead stat.
356 */
ec560175
HY
357 if (unlikely(PageTransCompound(page)))
358 return page;
eaf649eb 359
ec560175 360 readahead = TestClearPageReadahead(page);
eaf649eb
MK
361 if (vma && vma_ra) {
362 unsigned long ra_val;
363 int win, hits;
364
365 ra_val = GET_SWAP_RA_VAL(vma);
366 win = SWAP_RA_WIN(ra_val);
367 hits = SWAP_RA_HITS(ra_val);
ec560175
HY
368 if (readahead)
369 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
370 atomic_long_set(&vma->swap_readahead_info,
371 SWAP_RA_VAL(addr, win, hits));
372 }
eaf649eb 373
ec560175 374 if (readahead) {
cbc65df2 375 count_vm_event(SWAP_RA_HIT);
eaf649eb 376 if (!vma || !vma_ra)
ec560175 377 atomic_inc(&swapin_readahead_hits);
cbc65df2 378 }
579f8290 379 }
eaf649eb 380
1da177e4
LT
381 return page;
382}
383
61ef1865
MWO
384/**
385 * find_get_incore_page - Find and get a page from the page or swap caches.
386 * @mapping: The address_space to search.
387 * @index: The page cache index.
388 *
389 * This differs from find_get_page() in that it will also look for the
390 * page in the swap cache.
391 *
392 * Return: The found page or %NULL.
393 */
394struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
395{
396 swp_entry_t swp;
397 struct swap_info_struct *si;
44835d20
MWO
398 struct page *page = pagecache_get_page(mapping, index,
399 FGP_ENTRY | FGP_HEAD, 0);
61ef1865 400
a6de4b48 401 if (!page)
61ef1865 402 return page;
a6de4b48
MWO
403 if (!xa_is_value(page))
404 return find_subpage(page, index);
61ef1865
MWO
405 if (!shmem_mapping(mapping))
406 return NULL;
407
408 swp = radix_to_swp_entry(page);
409 /* Prevent swapoff from happening to us */
410 si = get_swap_device(swp);
411 if (!si)
412 return NULL;
413 page = find_get_page(swap_address_space(swp), swp_offset(swp));
414 put_swap_device(si);
415 return page;
416}
417
5b999aad
DS
418struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
419 struct vm_area_struct *vma, unsigned long addr,
420 bool *new_page_allocated)
1da177e4 421{
eb085574 422 struct swap_info_struct *si;
4c6355b2 423 struct page *page;
aae466b0 424 void *shadow = NULL;
4c6355b2 425
5b999aad 426 *new_page_allocated = false;
1da177e4 427
4c6355b2
JW
428 for (;;) {
429 int err;
1da177e4
LT
430 /*
431 * First check the swap cache. Since this is normally
432 * called after lookup_swap_cache() failed, re-calling
433 * that would confuse statistics.
434 */
eb085574
HY
435 si = get_swap_device(entry);
436 if (!si)
4c6355b2
JW
437 return NULL;
438 page = find_get_page(swap_address_space(entry),
439 swp_offset(entry));
eb085574 440 put_swap_device(si);
4c6355b2
JW
441 if (page)
442 return page;
1da177e4 443
ba81f838
HY
444 /*
445 * Just skip read ahead for unused swap slot.
446 * During swap_off when swap_slot_cache is disabled,
447 * we have to handle the race between putting
448 * swap entry in swap cache and marking swap slot
449 * as SWAP_HAS_CACHE. That's done in later part of code or
450 * else swap_off will be aborted if we return NULL.
451 */
452 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
4c6355b2 453 return NULL;
e8c26ab6 454
1da177e4 455 /*
4c6355b2
JW
456 * Get a new page to read into from swap. Allocate it now,
457 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
458 * cause any racers to loop around until we add it to cache.
1da177e4 459 */
4c6355b2
JW
460 page = alloc_page_vma(gfp_mask, vma, addr);
461 if (!page)
462 return NULL;
1da177e4 463
f000944d
HD
464 /*
465 * Swap entry may have been freed since our caller observed it.
466 */
355cfa73 467 err = swapcache_prepare(entry);
4c6355b2 468 if (!err)
f000944d
HD
469 break;
470
4c6355b2
JW
471 put_page(page);
472 if (err != -EEXIST)
473 return NULL;
474
2ca4532a 475 /*
4c6355b2
JW
476 * We might race against __delete_from_swap_cache(), and
477 * stumble across a swap_map entry whose SWAP_HAS_CACHE
478 * has not yet been cleared. Or race against another
479 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
480 * in swap_map, but not yet added its page to swap cache.
2ca4532a 481 */
029c4628 482 schedule_timeout_uninterruptible(1);
4c6355b2
JW
483 }
484
485 /*
486 * The swap entry is ours to swap in. Prepare the new page.
487 */
488
489 __SetPageLocked(page);
490 __SetPageSwapBacked(page);
491
0add0c77 492 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
4c6355b2 493 goto fail_unlock;
4c6355b2 494
0add0c77
SB
495 /* May fail (-ENOMEM) if XArray node allocation failed. */
496 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
4c6355b2 497 goto fail_unlock;
0add0c77
SB
498
499 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 500
aae466b0 501 if (shadow)
0995d7e5 502 workingset_refault(page_folio(page), shadow);
314b57fb 503
4c6355b2 504 /* Caller will initiate read into locked page */
6058eaec 505 lru_cache_add(page);
4c6355b2
JW
506 *new_page_allocated = true;
507 return page;
1da177e4 508
4c6355b2 509fail_unlock:
0add0c77 510 put_swap_page(page, entry);
4c6355b2
JW
511 unlock_page(page);
512 put_page(page);
513 return NULL;
1da177e4 514}
46017e95 515
5b999aad
DS
516/*
517 * Locate a page of swap in physical memory, reserving swap cache space
518 * and reading the disk if it is not already cached.
519 * A failure return means that either the page allocation failed or that
520 * the swap entry is no longer in use.
521 */
522struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
5169b844
N
523 struct vm_area_struct *vma,
524 unsigned long addr, bool do_poll,
525 struct swap_iocb **plug)
5b999aad
DS
526{
527 bool page_was_allocated;
528 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
529 vma, addr, &page_was_allocated);
530
531 if (page_was_allocated)
5169b844 532 swap_readpage(retpage, do_poll, plug);
5b999aad
DS
533
534 return retpage;
535}
536
ec560175
HY
537static unsigned int __swapin_nr_pages(unsigned long prev_offset,
538 unsigned long offset,
539 int hits,
540 int max_pages,
541 int prev_win)
579f8290 542{
ec560175 543 unsigned int pages, last_ra;
579f8290
SL
544
545 /*
546 * This heuristic has been found to work well on both sequential and
547 * random loads, swapping to hard disk or to SSD: please don't ask
548 * what the "+ 2" means, it just happens to work well, that's all.
549 */
ec560175 550 pages = hits + 2;
579f8290
SL
551 if (pages == 2) {
552 /*
553 * We can have no readahead hits to judge by: but must not get
554 * stuck here forever, so check for an adjacent offset instead
555 * (and don't even bother to check whether swap type is same).
556 */
557 if (offset != prev_offset + 1 && offset != prev_offset - 1)
558 pages = 1;
579f8290
SL
559 } else {
560 unsigned int roundup = 4;
561 while (roundup < pages)
562 roundup <<= 1;
563 pages = roundup;
564 }
565
566 if (pages > max_pages)
567 pages = max_pages;
568
569 /* Don't shrink readahead too fast */
ec560175 570 last_ra = prev_win / 2;
579f8290
SL
571 if (pages < last_ra)
572 pages = last_ra;
ec560175
HY
573
574 return pages;
575}
576
577static unsigned long swapin_nr_pages(unsigned long offset)
578{
579 static unsigned long prev_offset;
580 unsigned int hits, pages, max_pages;
581 static atomic_t last_readahead_pages;
582
583 max_pages = 1 << READ_ONCE(page_cluster);
584 if (max_pages <= 1)
585 return 1;
586
587 hits = atomic_xchg(&swapin_readahead_hits, 0);
d6c1f098
QC
588 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
589 max_pages,
ec560175
HY
590 atomic_read(&last_readahead_pages));
591 if (!hits)
d6c1f098 592 WRITE_ONCE(prev_offset, offset);
579f8290
SL
593 atomic_set(&last_readahead_pages, pages);
594
595 return pages;
596}
597
46017e95 598/**
e9e9b7ec 599 * swap_cluster_readahead - swap in pages in hope we need them soon
46017e95 600 * @entry: swap entry of this memory
7682486b 601 * @gfp_mask: memory allocation flags
e9e9b7ec 602 * @vmf: fault information
46017e95
HD
603 *
604 * Returns the struct page for entry and addr, after queueing swapin.
605 *
606 * Primitive swap readahead code. We simply read an aligned block of
607 * (1 << page_cluster) entries in the swap area. This method is chosen
608 * because it doesn't cost us any seek time. We also make sure to queue
609 * the 'original' request together with the readahead ones...
610 *
611 * This has been extended to use the NUMA policies from the mm triggering
612 * the readahead.
613 *
c1e8d7c6 614 * Caller must hold read mmap_lock if vmf->vma is not NULL.
46017e95 615 */
e9e9b7ec
MK
616struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
617 struct vm_fault *vmf)
46017e95 618{
46017e95 619 struct page *page;
579f8290
SL
620 unsigned long entry_offset = swp_offset(entry);
621 unsigned long offset = entry_offset;
67f96aa2 622 unsigned long start_offset, end_offset;
579f8290 623 unsigned long mask;
e9a6effa 624 struct swap_info_struct *si = swp_swap_info(entry);
3fb5c298 625 struct blk_plug plug;
5169b844 626 struct swap_iocb *splug = NULL;
c4fa6309 627 bool do_poll = true, page_allocated;
e9e9b7ec
MK
628 struct vm_area_struct *vma = vmf->vma;
629 unsigned long addr = vmf->address;
46017e95 630
579f8290
SL
631 mask = swapin_nr_pages(offset) - 1;
632 if (!mask)
633 goto skip;
634
23955622 635 do_poll = false;
67f96aa2
RR
636 /* Read a page_cluster sized and aligned cluster around offset. */
637 start_offset = offset & ~mask;
638 end_offset = offset | mask;
639 if (!start_offset) /* First page is swap header. */
640 start_offset++;
e9a6effa
HY
641 if (end_offset >= si->max)
642 end_offset = si->max - 1;
67f96aa2 643
3fb5c298 644 blk_start_plug(&plug);
67f96aa2 645 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95 646 /* Ok, do the async read-ahead now */
c4fa6309
HY
647 page = __read_swap_cache_async(
648 swp_entry(swp_type(entry), offset),
649 gfp_mask, vma, addr, &page_allocated);
46017e95 650 if (!page)
67f96aa2 651 continue;
c4fa6309 652 if (page_allocated) {
5169b844 653 swap_readpage(page, false, &splug);
eaf649eb 654 if (offset != entry_offset) {
c4fa6309
HY
655 SetPageReadahead(page);
656 count_vm_event(SWAP_RA);
657 }
cbc65df2 658 }
09cbfeaf 659 put_page(page);
46017e95 660 }
3fb5c298 661 blk_finish_plug(&plug);
5169b844 662 swap_read_unplug(splug);
3fb5c298 663
46017e95 664 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 665skip:
5169b844
N
666 /* The page was likely read above, so no need for plugging here */
667 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
46017e95 668}
4b3ef9da
HY
669
670int init_swap_address_space(unsigned int type, unsigned long nr_pages)
671{
672 struct address_space *spaces, *space;
673 unsigned int i, nr;
674
675 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
778e1cdd 676 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
4b3ef9da
HY
677 if (!spaces)
678 return -ENOMEM;
679 for (i = 0; i < nr; i++) {
680 space = spaces + i;
a2833486 681 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
4b3ef9da
HY
682 atomic_set(&space->i_mmap_writable, 0);
683 space->a_ops = &swap_aops;
684 /* swap cache doesn't use writeback related tags */
685 mapping_set_no_writeback_tags(space);
4b3ef9da
HY
686 }
687 nr_swapper_spaces[type] = nr;
054f1d1f 688 swapper_spaces[type] = spaces;
4b3ef9da
HY
689
690 return 0;
691}
692
693void exit_swap_address_space(unsigned int type)
694{
eea4a501
HY
695 int i;
696 struct address_space *spaces = swapper_spaces[type];
697
698 for (i = 0; i < nr_swapper_spaces[type]; i++)
699 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
700 kvfree(spaces);
4b3ef9da 701 nr_swapper_spaces[type] = 0;
054f1d1f 702 swapper_spaces[type] = NULL;
4b3ef9da 703}
ec560175
HY
704
705static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
706 unsigned long faddr,
707 unsigned long lpfn,
708 unsigned long rpfn,
709 unsigned long *start,
710 unsigned long *end)
711{
712 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
713 PFN_DOWN(faddr & PMD_MASK));
714 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
715 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
716}
717
eaf649eb
MK
718static void swap_ra_info(struct vm_fault *vmf,
719 struct vma_swap_readahead *ra_info)
ec560175
HY
720{
721 struct vm_area_struct *vma = vmf->vma;
eaf649eb 722 unsigned long ra_val;
ec560175
HY
723 unsigned long faddr, pfn, fpfn;
724 unsigned long start, end;
eaf649eb 725 pte_t *pte, *orig_pte;
ec560175
HY
726 unsigned int max_win, hits, prev_win, win, left;
727#ifndef CONFIG_64BIT
728 pte_t *tpte;
729#endif
730
61b63972
HY
731 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
732 SWAP_RA_ORDER_CEILING);
733 if (max_win == 1) {
eaf649eb
MK
734 ra_info->win = 1;
735 return;
61b63972
HY
736 }
737
ec560175 738 faddr = vmf->address;
eaf649eb 739 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
ec560175 740
ec560175 741 fpfn = PFN_DOWN(faddr);
eaf649eb
MK
742 ra_val = GET_SWAP_RA_VAL(vma);
743 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
744 prev_win = SWAP_RA_WIN(ra_val);
745 hits = SWAP_RA_HITS(ra_val);
746 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
ec560175
HY
747 max_win, prev_win);
748 atomic_long_set(&vma->swap_readahead_info,
749 SWAP_RA_VAL(faddr, win, 0));
750
eaf649eb
MK
751 if (win == 1) {
752 pte_unmap(orig_pte);
753 return;
754 }
ec560175
HY
755
756 /* Copy the PTEs because the page table may be unmapped */
757 if (fpfn == pfn + 1)
758 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
759 else if (pfn == fpfn + 1)
760 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
761 &start, &end);
762 else {
763 left = (win - 1) / 2;
764 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
765 &start, &end);
766 }
eaf649eb
MK
767 ra_info->nr_pte = end - start;
768 ra_info->offset = fpfn - start;
769 pte -= ra_info->offset;
ec560175 770#ifdef CONFIG_64BIT
eaf649eb 771 ra_info->ptes = pte;
ec560175 772#else
eaf649eb 773 tpte = ra_info->ptes;
ec560175
HY
774 for (pfn = start; pfn != end; pfn++)
775 *tpte++ = *pte++;
776#endif
eaf649eb 777 pte_unmap(orig_pte);
ec560175
HY
778}
779
e9f59873
YS
780/**
781 * swap_vma_readahead - swap in pages in hope we need them soon
27ec4878 782 * @fentry: swap entry of this memory
e9f59873
YS
783 * @gfp_mask: memory allocation flags
784 * @vmf: fault information
785 *
786 * Returns the struct page for entry and addr, after queueing swapin.
787 *
cb152a1a 788 * Primitive swap readahead code. We simply read in a few pages whose
e9f59873
YS
789 * virtual addresses are around the fault address in the same vma.
790 *
c1e8d7c6 791 * Caller must hold read mmap_lock if vmf->vma is not NULL.
e9f59873
YS
792 *
793 */
f5c754d6
CIK
794static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
795 struct vm_fault *vmf)
ec560175
HY
796{
797 struct blk_plug plug;
5169b844 798 struct swap_iocb *splug = NULL;
ec560175
HY
799 struct vm_area_struct *vma = vmf->vma;
800 struct page *page;
801 pte_t *pte, pentry;
802 swp_entry_t entry;
803 unsigned int i;
804 bool page_allocated;
e97af699
ML
805 struct vma_swap_readahead ra_info = {
806 .win = 1,
807 };
ec560175 808
eaf649eb
MK
809 swap_ra_info(vmf, &ra_info);
810 if (ra_info.win == 1)
ec560175
HY
811 goto skip;
812
813 blk_start_plug(&plug);
eaf649eb 814 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
ec560175
HY
815 i++, pte++) {
816 pentry = *pte;
817 if (pte_none(pentry))
818 continue;
819 if (pte_present(pentry))
820 continue;
821 entry = pte_to_swp_entry(pentry);
822 if (unlikely(non_swap_entry(entry)))
823 continue;
824 page = __read_swap_cache_async(entry, gfp_mask, vma,
825 vmf->address, &page_allocated);
826 if (!page)
827 continue;
828 if (page_allocated) {
5169b844 829 swap_readpage(page, false, &splug);
eaf649eb 830 if (i != ra_info.offset) {
ec560175
HY
831 SetPageReadahead(page);
832 count_vm_event(SWAP_RA);
833 }
834 }
835 put_page(page);
836 }
837 blk_finish_plug(&plug);
5169b844 838 swap_read_unplug(splug);
ec560175
HY
839 lru_add_drain();
840skip:
5169b844 841 /* The page was likely read above, so no need for plugging here */
ec560175 842 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
5169b844 843 ra_info.win == 1, NULL);
ec560175 844}
d9bfcfdc 845
e9e9b7ec
MK
846/**
847 * swapin_readahead - swap in pages in hope we need them soon
848 * @entry: swap entry of this memory
849 * @gfp_mask: memory allocation flags
850 * @vmf: fault information
851 *
852 * Returns the struct page for entry and addr, after queueing swapin.
853 *
854 * It's a main entry function for swap readahead. By the configuration,
855 * it will read ahead blocks by cluster-based(ie, physical disk based)
856 * or vma-based(ie, virtual address based on faulty address) readahead.
857 */
858struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
859 struct vm_fault *vmf)
860{
861 return swap_use_vma_readahead() ?
862 swap_vma_readahead(entry, gfp_mask, vmf) :
863 swap_cluster_readahead(entry, gfp_mask, vmf);
864}
865
d9bfcfdc
HY
866#ifdef CONFIG_SYSFS
867static ssize_t vma_ra_enabled_show(struct kobject *kobj,
868 struct kobj_attribute *attr, char *buf)
869{
ae7a927d
JP
870 return sysfs_emit(buf, "%s\n",
871 enable_vma_readahead ? "true" : "false");
d9bfcfdc
HY
872}
873static ssize_t vma_ra_enabled_store(struct kobject *kobj,
874 struct kobj_attribute *attr,
875 const char *buf, size_t count)
876{
717aeab4
JG
877 ssize_t ret;
878
879 ret = kstrtobool(buf, &enable_vma_readahead);
880 if (ret)
881 return ret;
d9bfcfdc
HY
882
883 return count;
884}
885static struct kobj_attribute vma_ra_enabled_attr =
886 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
887 vma_ra_enabled_store);
888
d9bfcfdc
HY
889static struct attribute *swap_attrs[] = {
890 &vma_ra_enabled_attr.attr,
d9bfcfdc
HY
891 NULL,
892};
893
e48333b6 894static const struct attribute_group swap_attr_group = {
d9bfcfdc
HY
895 .attrs = swap_attrs,
896};
897
898static int __init swap_init_sysfs(void)
899{
900 int err;
901 struct kobject *swap_kobj;
902
903 swap_kobj = kobject_create_and_add("swap", mm_kobj);
904 if (!swap_kobj) {
905 pr_err("failed to create swap kobject\n");
906 return -ENOMEM;
907 }
908 err = sysfs_create_group(swap_kobj, &swap_attr_group);
909 if (err) {
910 pr_err("failed to register swap group\n");
911 goto delete_obj;
912 }
913 return 0;
914
915delete_obj:
916 kobject_put(swap_kobj);
917 return err;
918}
919subsys_initcall(swap_init_sysfs);
920#endif