kasan: use error_report_end tracepoint
[linux-block.git] / mm / swap_state.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
1da177e4 10#include <linux/mm.h>
5a0e3ad6 11#include <linux/gfp.h>
1da177e4
LT
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
46017e95 14#include <linux/swapops.h>
1da177e4
LT
15#include <linux/init.h>
16#include <linux/pagemap.h>
1da177e4 17#include <linux/backing-dev.h>
3fb5c298 18#include <linux/blkdev.h>
c484d410 19#include <linux/pagevec.h>
b20a3503 20#include <linux/migrate.h>
4b3ef9da 21#include <linux/vmalloc.h>
67afa38e 22#include <linux/swap_slots.h>
38d8b4e6 23#include <linux/huge_mm.h>
61ef1865 24#include <linux/shmem_fs.h>
243bce09 25#include "internal.h"
1da177e4
LT
26
27/*
28 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 29 * vmscan's shrink_page_list.
1da177e4 30 */
f5e54d6e 31static const struct address_space_operations swap_aops = {
1da177e4 32 .writepage = swap_writepage,
62c230bc 33 .set_page_dirty = swap_set_page_dirty,
1c93923c 34#ifdef CONFIG_MIGRATION
e965f963 35 .migratepage = migrate_page,
1c93923c 36#endif
1da177e4
LT
37};
38
783cb68e
CD
39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
f5c754d6 41static bool enable_vma_readahead __read_mostly = true;
ec560175 42
ec560175
HY
43#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52#define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57/* Initial readahead hits is 4 to start up with a small window */
58#define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
1da177e4 60
b96a3db2
QC
61#define INC_CACHE_INFO(x) data_race(swap_cache_info.x++)
62#define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr))
1da177e4
LT
63
64static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
1da177e4
LT
69} swap_cache_info;
70
579f8290
SL
71static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
72
1da177e4
LT
73void show_swap_cache_info(void)
74{
33806f06 75 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 76 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 77 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 78 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
79 printk("Free swap = %ldkB\n",
80 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
81 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
82}
83
aae466b0
JK
84void *get_shadow_from_swap_cache(swp_entry_t entry)
85{
86 struct address_space *address_space = swap_address_space(entry);
87 pgoff_t idx = swp_offset(entry);
88 struct page *page;
89
8c647dd1 90 page = xa_load(&address_space->i_pages, idx);
aae466b0
JK
91 if (xa_is_value(page))
92 return page;
aae466b0
JK
93 return NULL;
94}
95
1da177e4 96/*
8d93b41c 97 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
98 * but sets SwapCache flag and private instead of mapping and index.
99 */
3852f676
JK
100int add_to_swap_cache(struct page *page, swp_entry_t entry,
101 gfp_t gfp, void **shadowp)
1da177e4 102{
8d93b41c 103 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 104 pgoff_t idx = swp_offset(entry);
8d93b41c 105 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
6c357848 106 unsigned long i, nr = thp_nr_pages(page);
3852f676 107 void *old;
1da177e4 108
309381fe
SL
109 VM_BUG_ON_PAGE(!PageLocked(page), page);
110 VM_BUG_ON_PAGE(PageSwapCache(page), page);
111 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 112
38d8b4e6 113 page_ref_add(page, nr);
31a56396 114 SetPageSwapCache(page);
31a56396 115
8d93b41c 116 do {
3852f676
JK
117 unsigned long nr_shadows = 0;
118
8d93b41c
MW
119 xas_lock_irq(&xas);
120 xas_create_range(&xas);
121 if (xas_error(&xas))
122 goto unlock;
123 for (i = 0; i < nr; i++) {
124 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
3852f676
JK
125 old = xas_load(&xas);
126 if (xa_is_value(old)) {
127 nr_shadows++;
128 if (shadowp)
129 *shadowp = old;
130 }
8d93b41c 131 set_page_private(page + i, entry.val + i);
4101196b 132 xas_store(&xas, page);
8d93b41c
MW
133 xas_next(&xas);
134 }
3852f676 135 address_space->nrexceptional -= nr_shadows;
38d8b4e6
HY
136 address_space->nrpages += nr;
137 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
b6038942 138 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
38d8b4e6 139 ADD_CACHE_INFO(add_total, nr);
8d93b41c
MW
140unlock:
141 xas_unlock_irq(&xas);
142 } while (xas_nomem(&xas, gfp));
31a56396 143
8d93b41c
MW
144 if (!xas_error(&xas))
145 return 0;
31a56396 146
8d93b41c
MW
147 ClearPageSwapCache(page);
148 page_ref_sub(page, nr);
149 return xas_error(&xas);
1da177e4
LT
150}
151
1da177e4
LT
152/*
153 * This must be called only on pages that have
154 * been verified to be in the swap cache.
155 */
3852f676
JK
156void __delete_from_swap_cache(struct page *page,
157 swp_entry_t entry, void *shadow)
1da177e4 158{
4e17ec25 159 struct address_space *address_space = swap_address_space(entry);
6c357848 160 int i, nr = thp_nr_pages(page);
4e17ec25
MW
161 pgoff_t idx = swp_offset(entry);
162 XA_STATE(xas, &address_space->i_pages, idx);
33806f06 163
309381fe
SL
164 VM_BUG_ON_PAGE(!PageLocked(page), page);
165 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
166 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 167
38d8b4e6 168 for (i = 0; i < nr; i++) {
3852f676 169 void *entry = xas_store(&xas, shadow);
4101196b 170 VM_BUG_ON_PAGE(entry != page, entry);
38d8b4e6 171 set_page_private(page + i, 0);
4e17ec25 172 xas_next(&xas);
38d8b4e6 173 }
1da177e4 174 ClearPageSwapCache(page);
3852f676
JK
175 if (shadow)
176 address_space->nrexceptional += nr;
38d8b4e6
HY
177 address_space->nrpages -= nr;
178 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
b6038942 179 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
38d8b4e6 180 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
181}
182
183/**
184 * add_to_swap - allocate swap space for a page
185 * @page: page we want to move to swap
186 *
187 * Allocate swap space for the page and add the page to the
188 * swap cache. Caller needs to hold the page lock.
189 */
0f074658 190int add_to_swap(struct page *page)
1da177e4
LT
191{
192 swp_entry_t entry;
1da177e4
LT
193 int err;
194
309381fe
SL
195 VM_BUG_ON_PAGE(!PageLocked(page), page);
196 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 197
38d8b4e6 198 entry = get_swap_page(page);
2ca4532a 199 if (!entry.val)
0f074658
MK
200 return 0;
201
2ca4532a 202 /*
8d93b41c 203 * XArray node allocations from PF_MEMALLOC contexts could
2ca4532a
DN
204 * completely exhaust the page allocator. __GFP_NOMEMALLOC
205 * stops emergency reserves from being allocated.
206 *
207 * TODO: this could cause a theoretical memory reclaim
208 * deadlock in the swap out path.
209 */
210 /*
854e9ed0 211 * Add it to the swap cache.
2ca4532a
DN
212 */
213 err = add_to_swap_cache(page, entry,
3852f676 214 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
38d8b4e6 215 if (err)
bd53b714 216 /*
2ca4532a
DN
217 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
218 * clear SWAP_HAS_CACHE flag.
1da177e4 219 */
0f074658 220 goto fail;
9625456c
SL
221 /*
222 * Normally the page will be dirtied in unmap because its pte should be
0e9aa675 223 * dirty. A special case is MADV_FREE page. The page's pte could have
9625456c
SL
224 * dirty bit cleared but the page's SwapBacked bit is still set because
225 * clearing the dirty bit and SwapBacked bit has no lock protected. For
226 * such page, unmap will not set dirty bit for it, so page reclaim will
227 * not write the page out. This can cause data corruption when the page
228 * is swap in later. Always setting the dirty bit for the page solves
229 * the problem.
230 */
231 set_page_dirty(page);
38d8b4e6
HY
232
233 return 1;
234
38d8b4e6 235fail:
0f074658 236 put_swap_page(page, entry);
38d8b4e6 237 return 0;
1da177e4
LT
238}
239
240/*
241 * This must be called only on pages that have
242 * been verified to be in the swap cache and locked.
243 * It will never put the page into the free list,
244 * the caller has a reference on the page.
245 */
246void delete_from_swap_cache(struct page *page)
247{
4e17ec25
MW
248 swp_entry_t entry = { .val = page_private(page) };
249 struct address_space *address_space = swap_address_space(entry);
1da177e4 250
b93b0163 251 xa_lock_irq(&address_space->i_pages);
3852f676 252 __delete_from_swap_cache(page, entry, NULL);
b93b0163 253 xa_unlock_irq(&address_space->i_pages);
1da177e4 254
75f6d6d2 255 put_swap_page(page, entry);
6c357848 256 page_ref_sub(page, thp_nr_pages(page));
1da177e4
LT
257}
258
3852f676
JK
259void clear_shadow_from_swap_cache(int type, unsigned long begin,
260 unsigned long end)
261{
262 unsigned long curr = begin;
263 void *old;
264
265 for (;;) {
266 unsigned long nr_shadows = 0;
267 swp_entry_t entry = swp_entry(type, curr);
268 struct address_space *address_space = swap_address_space(entry);
269 XA_STATE(xas, &address_space->i_pages, curr);
270
271 xa_lock_irq(&address_space->i_pages);
272 xas_for_each(&xas, old, end) {
273 if (!xa_is_value(old))
274 continue;
275 xas_store(&xas, NULL);
276 nr_shadows++;
277 }
278 address_space->nrexceptional -= nr_shadows;
279 xa_unlock_irq(&address_space->i_pages);
280
281 /* search the next swapcache until we meet end */
282 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
283 curr++;
284 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
285 if (curr > end)
286 break;
287 }
288}
289
1da177e4
LT
290/*
291 * If we are the only user, then try to free up the swap cache.
292 *
293 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
294 * here because we are going to recheck again inside
295 * try_to_free_swap() _with_ the lock.
1da177e4
LT
296 * - Marcelo
297 */
298static inline void free_swap_cache(struct page *page)
299{
a2c43eed
HD
300 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
301 try_to_free_swap(page);
1da177e4
LT
302 unlock_page(page);
303 }
304}
305
306/*
307 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 308 * this page if it is the last user of the page.
1da177e4
LT
309 */
310void free_page_and_swap_cache(struct page *page)
311{
312 free_swap_cache(page);
6fcb52a5 313 if (!is_huge_zero_page(page))
770a5370 314 put_page(page);
1da177e4
LT
315}
316
317/*
318 * Passed an array of pages, drop them all from swapcache and then release
319 * them. They are removed from the LRU and freed if this is their last use.
320 */
321void free_pages_and_swap_cache(struct page **pages, int nr)
322{
1da177e4 323 struct page **pagep = pages;
aabfb572 324 int i;
1da177e4
LT
325
326 lru_add_drain();
aabfb572
MH
327 for (i = 0; i < nr; i++)
328 free_swap_cache(pagep[i]);
c6f92f9f 329 release_pages(pagep, nr);
1da177e4
LT
330}
331
e9e9b7ec
MK
332static inline bool swap_use_vma_readahead(void)
333{
334 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
335}
336
1da177e4
LT
337/*
338 * Lookup a swap entry in the swap cache. A found page will be returned
339 * unlocked and with its refcount incremented - we rely on the kernel
340 * lock getting page table operations atomic even if we drop the page
341 * lock before returning.
342 */
ec560175
HY
343struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
344 unsigned long addr)
1da177e4
LT
345{
346 struct page *page;
eb085574 347 struct swap_info_struct *si;
1da177e4 348
eb085574
HY
349 si = get_swap_device(entry);
350 if (!si)
351 return NULL;
f6ab1f7f 352 page = find_get_page(swap_address_space(entry), swp_offset(entry));
eb085574 353 put_swap_device(si);
1da177e4 354
ec560175
HY
355 INC_CACHE_INFO(find_total);
356 if (page) {
eaf649eb
MK
357 bool vma_ra = swap_use_vma_readahead();
358 bool readahead;
359
1da177e4 360 INC_CACHE_INFO(find_success);
eaf649eb
MK
361 /*
362 * At the moment, we don't support PG_readahead for anon THP
363 * so let's bail out rather than confusing the readahead stat.
364 */
ec560175
HY
365 if (unlikely(PageTransCompound(page)))
366 return page;
eaf649eb 367
ec560175 368 readahead = TestClearPageReadahead(page);
eaf649eb
MK
369 if (vma && vma_ra) {
370 unsigned long ra_val;
371 int win, hits;
372
373 ra_val = GET_SWAP_RA_VAL(vma);
374 win = SWAP_RA_WIN(ra_val);
375 hits = SWAP_RA_HITS(ra_val);
ec560175
HY
376 if (readahead)
377 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
378 atomic_long_set(&vma->swap_readahead_info,
379 SWAP_RA_VAL(addr, win, hits));
380 }
eaf649eb 381
ec560175 382 if (readahead) {
cbc65df2 383 count_vm_event(SWAP_RA_HIT);
eaf649eb 384 if (!vma || !vma_ra)
ec560175 385 atomic_inc(&swapin_readahead_hits);
cbc65df2 386 }
579f8290 387 }
eaf649eb 388
1da177e4
LT
389 return page;
390}
391
61ef1865
MWO
392/**
393 * find_get_incore_page - Find and get a page from the page or swap caches.
394 * @mapping: The address_space to search.
395 * @index: The page cache index.
396 *
397 * This differs from find_get_page() in that it will also look for the
398 * page in the swap cache.
399 *
400 * Return: The found page or %NULL.
401 */
402struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
403{
404 swp_entry_t swp;
405 struct swap_info_struct *si;
44835d20
MWO
406 struct page *page = pagecache_get_page(mapping, index,
407 FGP_ENTRY | FGP_HEAD, 0);
61ef1865 408
a6de4b48 409 if (!page)
61ef1865 410 return page;
a6de4b48
MWO
411 if (!xa_is_value(page))
412 return find_subpage(page, index);
61ef1865
MWO
413 if (!shmem_mapping(mapping))
414 return NULL;
415
416 swp = radix_to_swp_entry(page);
417 /* Prevent swapoff from happening to us */
418 si = get_swap_device(swp);
419 if (!si)
420 return NULL;
421 page = find_get_page(swap_address_space(swp), swp_offset(swp));
422 put_swap_device(si);
423 return page;
424}
425
5b999aad
DS
426struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
427 struct vm_area_struct *vma, unsigned long addr,
428 bool *new_page_allocated)
1da177e4 429{
eb085574 430 struct swap_info_struct *si;
4c6355b2 431 struct page *page;
aae466b0 432 void *shadow = NULL;
4c6355b2 433
5b999aad 434 *new_page_allocated = false;
1da177e4 435
4c6355b2
JW
436 for (;;) {
437 int err;
1da177e4
LT
438 /*
439 * First check the swap cache. Since this is normally
440 * called after lookup_swap_cache() failed, re-calling
441 * that would confuse statistics.
442 */
eb085574
HY
443 si = get_swap_device(entry);
444 if (!si)
4c6355b2
JW
445 return NULL;
446 page = find_get_page(swap_address_space(entry),
447 swp_offset(entry));
eb085574 448 put_swap_device(si);
4c6355b2
JW
449 if (page)
450 return page;
1da177e4 451
ba81f838
HY
452 /*
453 * Just skip read ahead for unused swap slot.
454 * During swap_off when swap_slot_cache is disabled,
455 * we have to handle the race between putting
456 * swap entry in swap cache and marking swap slot
457 * as SWAP_HAS_CACHE. That's done in later part of code or
458 * else swap_off will be aborted if we return NULL.
459 */
460 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
4c6355b2 461 return NULL;
e8c26ab6 462
1da177e4 463 /*
4c6355b2
JW
464 * Get a new page to read into from swap. Allocate it now,
465 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
466 * cause any racers to loop around until we add it to cache.
1da177e4 467 */
4c6355b2
JW
468 page = alloc_page_vma(gfp_mask, vma, addr);
469 if (!page)
470 return NULL;
1da177e4 471
f000944d
HD
472 /*
473 * Swap entry may have been freed since our caller observed it.
474 */
355cfa73 475 err = swapcache_prepare(entry);
4c6355b2 476 if (!err)
f000944d
HD
477 break;
478
4c6355b2
JW
479 put_page(page);
480 if (err != -EEXIST)
481 return NULL;
482
2ca4532a 483 /*
4c6355b2
JW
484 * We might race against __delete_from_swap_cache(), and
485 * stumble across a swap_map entry whose SWAP_HAS_CACHE
486 * has not yet been cleared. Or race against another
487 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
488 * in swap_map, but not yet added its page to swap cache.
2ca4532a 489 */
4c6355b2
JW
490 cond_resched();
491 }
492
493 /*
494 * The swap entry is ours to swap in. Prepare the new page.
495 */
496
497 __SetPageLocked(page);
498 __SetPageSwapBacked(page);
499
500 /* May fail (-ENOMEM) if XArray node allocation failed. */
aae466b0 501 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) {
4c6355b2
JW
502 put_swap_page(page, entry);
503 goto fail_unlock;
504 }
505
d9eb1ea2 506 if (mem_cgroup_charge(page, NULL, gfp_mask)) {
4c6355b2
JW
507 delete_from_swap_cache(page);
508 goto fail_unlock;
509 }
510
aae466b0
JK
511 if (shadow)
512 workingset_refault(page, shadow);
314b57fb 513
4c6355b2 514 /* Caller will initiate read into locked page */
6058eaec 515 lru_cache_add(page);
4c6355b2
JW
516 *new_page_allocated = true;
517 return page;
1da177e4 518
4c6355b2
JW
519fail_unlock:
520 unlock_page(page);
521 put_page(page);
522 return NULL;
1da177e4 523}
46017e95 524
5b999aad
DS
525/*
526 * Locate a page of swap in physical memory, reserving swap cache space
527 * and reading the disk if it is not already cached.
528 * A failure return means that either the page allocation failed or that
529 * the swap entry is no longer in use.
530 */
531struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
23955622 532 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
5b999aad
DS
533{
534 bool page_was_allocated;
535 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
536 vma, addr, &page_was_allocated);
537
538 if (page_was_allocated)
23955622 539 swap_readpage(retpage, do_poll);
5b999aad
DS
540
541 return retpage;
542}
543
ec560175
HY
544static unsigned int __swapin_nr_pages(unsigned long prev_offset,
545 unsigned long offset,
546 int hits,
547 int max_pages,
548 int prev_win)
579f8290 549{
ec560175 550 unsigned int pages, last_ra;
579f8290
SL
551
552 /*
553 * This heuristic has been found to work well on both sequential and
554 * random loads, swapping to hard disk or to SSD: please don't ask
555 * what the "+ 2" means, it just happens to work well, that's all.
556 */
ec560175 557 pages = hits + 2;
579f8290
SL
558 if (pages == 2) {
559 /*
560 * We can have no readahead hits to judge by: but must not get
561 * stuck here forever, so check for an adjacent offset instead
562 * (and don't even bother to check whether swap type is same).
563 */
564 if (offset != prev_offset + 1 && offset != prev_offset - 1)
565 pages = 1;
579f8290
SL
566 } else {
567 unsigned int roundup = 4;
568 while (roundup < pages)
569 roundup <<= 1;
570 pages = roundup;
571 }
572
573 if (pages > max_pages)
574 pages = max_pages;
575
576 /* Don't shrink readahead too fast */
ec560175 577 last_ra = prev_win / 2;
579f8290
SL
578 if (pages < last_ra)
579 pages = last_ra;
ec560175
HY
580
581 return pages;
582}
583
584static unsigned long swapin_nr_pages(unsigned long offset)
585{
586 static unsigned long prev_offset;
587 unsigned int hits, pages, max_pages;
588 static atomic_t last_readahead_pages;
589
590 max_pages = 1 << READ_ONCE(page_cluster);
591 if (max_pages <= 1)
592 return 1;
593
594 hits = atomic_xchg(&swapin_readahead_hits, 0);
d6c1f098
QC
595 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
596 max_pages,
ec560175
HY
597 atomic_read(&last_readahead_pages));
598 if (!hits)
d6c1f098 599 WRITE_ONCE(prev_offset, offset);
579f8290
SL
600 atomic_set(&last_readahead_pages, pages);
601
602 return pages;
603}
604
46017e95 605/**
e9e9b7ec 606 * swap_cluster_readahead - swap in pages in hope we need them soon
46017e95 607 * @entry: swap entry of this memory
7682486b 608 * @gfp_mask: memory allocation flags
e9e9b7ec 609 * @vmf: fault information
46017e95
HD
610 *
611 * Returns the struct page for entry and addr, after queueing swapin.
612 *
613 * Primitive swap readahead code. We simply read an aligned block of
614 * (1 << page_cluster) entries in the swap area. This method is chosen
615 * because it doesn't cost us any seek time. We also make sure to queue
616 * the 'original' request together with the readahead ones...
617 *
618 * This has been extended to use the NUMA policies from the mm triggering
619 * the readahead.
620 *
c1e8d7c6 621 * Caller must hold read mmap_lock if vmf->vma is not NULL.
46017e95 622 */
e9e9b7ec
MK
623struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
624 struct vm_fault *vmf)
46017e95 625{
46017e95 626 struct page *page;
579f8290
SL
627 unsigned long entry_offset = swp_offset(entry);
628 unsigned long offset = entry_offset;
67f96aa2 629 unsigned long start_offset, end_offset;
579f8290 630 unsigned long mask;
e9a6effa 631 struct swap_info_struct *si = swp_swap_info(entry);
3fb5c298 632 struct blk_plug plug;
c4fa6309 633 bool do_poll = true, page_allocated;
e9e9b7ec
MK
634 struct vm_area_struct *vma = vmf->vma;
635 unsigned long addr = vmf->address;
46017e95 636
579f8290
SL
637 mask = swapin_nr_pages(offset) - 1;
638 if (!mask)
639 goto skip;
640
8fd2e0b5 641 /* Test swap type to make sure the dereference is safe */
32646315 642 if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) {
8fd2e0b5
YS
643 struct inode *inode = si->swap_file->f_mapping->host;
644 if (inode_read_congested(inode))
645 goto skip;
646 }
647
23955622 648 do_poll = false;
67f96aa2
RR
649 /* Read a page_cluster sized and aligned cluster around offset. */
650 start_offset = offset & ~mask;
651 end_offset = offset | mask;
652 if (!start_offset) /* First page is swap header. */
653 start_offset++;
e9a6effa
HY
654 if (end_offset >= si->max)
655 end_offset = si->max - 1;
67f96aa2 656
3fb5c298 657 blk_start_plug(&plug);
67f96aa2 658 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95 659 /* Ok, do the async read-ahead now */
c4fa6309
HY
660 page = __read_swap_cache_async(
661 swp_entry(swp_type(entry), offset),
662 gfp_mask, vma, addr, &page_allocated);
46017e95 663 if (!page)
67f96aa2 664 continue;
c4fa6309
HY
665 if (page_allocated) {
666 swap_readpage(page, false);
eaf649eb 667 if (offset != entry_offset) {
c4fa6309
HY
668 SetPageReadahead(page);
669 count_vm_event(SWAP_RA);
670 }
cbc65df2 671 }
09cbfeaf 672 put_page(page);
46017e95 673 }
3fb5c298
CE
674 blk_finish_plug(&plug);
675
46017e95 676 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 677skip:
23955622 678 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
46017e95 679}
4b3ef9da
HY
680
681int init_swap_address_space(unsigned int type, unsigned long nr_pages)
682{
683 struct address_space *spaces, *space;
684 unsigned int i, nr;
685
686 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
778e1cdd 687 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
4b3ef9da
HY
688 if (!spaces)
689 return -ENOMEM;
690 for (i = 0; i < nr; i++) {
691 space = spaces + i;
a2833486 692 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
4b3ef9da
HY
693 atomic_set(&space->i_mmap_writable, 0);
694 space->a_ops = &swap_aops;
695 /* swap cache doesn't use writeback related tags */
696 mapping_set_no_writeback_tags(space);
4b3ef9da
HY
697 }
698 nr_swapper_spaces[type] = nr;
054f1d1f 699 swapper_spaces[type] = spaces;
4b3ef9da
HY
700
701 return 0;
702}
703
704void exit_swap_address_space(unsigned int type)
705{
054f1d1f 706 kvfree(swapper_spaces[type]);
4b3ef9da 707 nr_swapper_spaces[type] = 0;
054f1d1f 708 swapper_spaces[type] = NULL;
4b3ef9da 709}
ec560175
HY
710
711static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
712 unsigned long faddr,
713 unsigned long lpfn,
714 unsigned long rpfn,
715 unsigned long *start,
716 unsigned long *end)
717{
718 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
719 PFN_DOWN(faddr & PMD_MASK));
720 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
721 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
722}
723
eaf649eb
MK
724static void swap_ra_info(struct vm_fault *vmf,
725 struct vma_swap_readahead *ra_info)
ec560175
HY
726{
727 struct vm_area_struct *vma = vmf->vma;
eaf649eb 728 unsigned long ra_val;
ec560175
HY
729 swp_entry_t entry;
730 unsigned long faddr, pfn, fpfn;
731 unsigned long start, end;
eaf649eb 732 pte_t *pte, *orig_pte;
ec560175
HY
733 unsigned int max_win, hits, prev_win, win, left;
734#ifndef CONFIG_64BIT
735 pte_t *tpte;
736#endif
737
61b63972
HY
738 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
739 SWAP_RA_ORDER_CEILING);
740 if (max_win == 1) {
eaf649eb
MK
741 ra_info->win = 1;
742 return;
61b63972
HY
743 }
744
ec560175 745 faddr = vmf->address;
eaf649eb
MK
746 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
747 entry = pte_to_swp_entry(*pte);
748 if ((unlikely(non_swap_entry(entry)))) {
749 pte_unmap(orig_pte);
750 return;
751 }
ec560175 752
ec560175 753 fpfn = PFN_DOWN(faddr);
eaf649eb
MK
754 ra_val = GET_SWAP_RA_VAL(vma);
755 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
756 prev_win = SWAP_RA_WIN(ra_val);
757 hits = SWAP_RA_HITS(ra_val);
758 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
ec560175
HY
759 max_win, prev_win);
760 atomic_long_set(&vma->swap_readahead_info,
761 SWAP_RA_VAL(faddr, win, 0));
762
eaf649eb
MK
763 if (win == 1) {
764 pte_unmap(orig_pte);
765 return;
766 }
ec560175
HY
767
768 /* Copy the PTEs because the page table may be unmapped */
769 if (fpfn == pfn + 1)
770 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
771 else if (pfn == fpfn + 1)
772 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
773 &start, &end);
774 else {
775 left = (win - 1) / 2;
776 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
777 &start, &end);
778 }
eaf649eb
MK
779 ra_info->nr_pte = end - start;
780 ra_info->offset = fpfn - start;
781 pte -= ra_info->offset;
ec560175 782#ifdef CONFIG_64BIT
eaf649eb 783 ra_info->ptes = pte;
ec560175 784#else
eaf649eb 785 tpte = ra_info->ptes;
ec560175
HY
786 for (pfn = start; pfn != end; pfn++)
787 *tpte++ = *pte++;
788#endif
eaf649eb 789 pte_unmap(orig_pte);
ec560175
HY
790}
791
e9f59873
YS
792/**
793 * swap_vma_readahead - swap in pages in hope we need them soon
27ec4878 794 * @fentry: swap entry of this memory
e9f59873
YS
795 * @gfp_mask: memory allocation flags
796 * @vmf: fault information
797 *
798 * Returns the struct page for entry and addr, after queueing swapin.
799 *
800 * Primitive swap readahead code. We simply read in a few pages whoes
801 * virtual addresses are around the fault address in the same vma.
802 *
c1e8d7c6 803 * Caller must hold read mmap_lock if vmf->vma is not NULL.
e9f59873
YS
804 *
805 */
f5c754d6
CIK
806static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
807 struct vm_fault *vmf)
ec560175
HY
808{
809 struct blk_plug plug;
810 struct vm_area_struct *vma = vmf->vma;
811 struct page *page;
812 pte_t *pte, pentry;
813 swp_entry_t entry;
814 unsigned int i;
815 bool page_allocated;
e97af699
ML
816 struct vma_swap_readahead ra_info = {
817 .win = 1,
818 };
ec560175 819
eaf649eb
MK
820 swap_ra_info(vmf, &ra_info);
821 if (ra_info.win == 1)
ec560175
HY
822 goto skip;
823
824 blk_start_plug(&plug);
eaf649eb 825 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
ec560175
HY
826 i++, pte++) {
827 pentry = *pte;
828 if (pte_none(pentry))
829 continue;
830 if (pte_present(pentry))
831 continue;
832 entry = pte_to_swp_entry(pentry);
833 if (unlikely(non_swap_entry(entry)))
834 continue;
835 page = __read_swap_cache_async(entry, gfp_mask, vma,
836 vmf->address, &page_allocated);
837 if (!page)
838 continue;
839 if (page_allocated) {
840 swap_readpage(page, false);
eaf649eb 841 if (i != ra_info.offset) {
ec560175
HY
842 SetPageReadahead(page);
843 count_vm_event(SWAP_RA);
844 }
845 }
846 put_page(page);
847 }
848 blk_finish_plug(&plug);
849 lru_add_drain();
850skip:
851 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
eaf649eb 852 ra_info.win == 1);
ec560175 853}
d9bfcfdc 854
e9e9b7ec
MK
855/**
856 * swapin_readahead - swap in pages in hope we need them soon
857 * @entry: swap entry of this memory
858 * @gfp_mask: memory allocation flags
859 * @vmf: fault information
860 *
861 * Returns the struct page for entry and addr, after queueing swapin.
862 *
863 * It's a main entry function for swap readahead. By the configuration,
864 * it will read ahead blocks by cluster-based(ie, physical disk based)
865 * or vma-based(ie, virtual address based on faulty address) readahead.
866 */
867struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
868 struct vm_fault *vmf)
869{
870 return swap_use_vma_readahead() ?
871 swap_vma_readahead(entry, gfp_mask, vmf) :
872 swap_cluster_readahead(entry, gfp_mask, vmf);
873}
874
d9bfcfdc
HY
875#ifdef CONFIG_SYSFS
876static ssize_t vma_ra_enabled_show(struct kobject *kobj,
877 struct kobj_attribute *attr, char *buf)
878{
ae7a927d
JP
879 return sysfs_emit(buf, "%s\n",
880 enable_vma_readahead ? "true" : "false");
d9bfcfdc
HY
881}
882static ssize_t vma_ra_enabled_store(struct kobject *kobj,
883 struct kobj_attribute *attr,
884 const char *buf, size_t count)
885{
886 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
e9e9b7ec 887 enable_vma_readahead = true;
d9bfcfdc 888 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
e9e9b7ec 889 enable_vma_readahead = false;
d9bfcfdc
HY
890 else
891 return -EINVAL;
892
893 return count;
894}
895static struct kobj_attribute vma_ra_enabled_attr =
896 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
897 vma_ra_enabled_store);
898
d9bfcfdc
HY
899static struct attribute *swap_attrs[] = {
900 &vma_ra_enabled_attr.attr,
d9bfcfdc
HY
901 NULL,
902};
903
e48333b6 904static const struct attribute_group swap_attr_group = {
d9bfcfdc
HY
905 .attrs = swap_attrs,
906};
907
908static int __init swap_init_sysfs(void)
909{
910 int err;
911 struct kobject *swap_kobj;
912
913 swap_kobj = kobject_create_and_add("swap", mm_kobj);
914 if (!swap_kobj) {
915 pr_err("failed to create swap kobject\n");
916 return -ENOMEM;
917 }
918 err = sysfs_create_group(swap_kobj, &swap_attr_group);
919 if (err) {
920 pr_err("failed to register swap group\n");
921 goto delete_obj;
922 }
923 return 0;
924
925delete_obj:
926 kobject_put(swap_kobj);
927 return err;
928}
929subsys_initcall(swap_init_sysfs);
930#endif