mm/memcg: Convert mem_cgroup_move_account() to use a folio
[linux-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
8cc621d2 39#include <linux/buffer_head.h>
1da177e4 40
64d6519d
LS
41#include "internal.h"
42
c6286c98
MG
43#define CREATE_TRACE_POINTS
44#include <trace/events/pagemap.h>
45
1da177e4
LT
46/* How many pages do we try to swap or page in/out together? */
47int page_cluster;
48
b01b2141
IM
49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
50struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53};
54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56};
57
58/*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
a4a921aa 68#ifdef CONFIG_SMP
b01b2141 69 struct pagevec activate_page;
a4a921aa 70#endif
b01b2141
IM
71};
72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74};
902aaed0 75
b221385b
AB
76/*
77 * This path almost never happens for VM activity - pages are normally
78 * freed via pagevecs. But it gets used by networking.
79 */
920c7a5d 80static void __page_cache_release(struct page *page)
b221385b
AB
81{
82 if (PageLRU(page)) {
fa9add64
HD
83 struct lruvec *lruvec;
84 unsigned long flags;
b221385b 85
6168d0da 86 lruvec = lock_page_lruvec_irqsave(page, &flags);
46ae6b2c 87 del_page_from_lru_list(page, lruvec);
87560179 88 __clear_page_lru_flags(page);
6168d0da 89 unlock_page_lruvec_irqrestore(lruvec, flags);
b221385b 90 }
62906027 91 __ClearPageWaiters(page);
91807063
AA
92}
93
94static void __put_single_page(struct page *page)
95{
96 __page_cache_release(page);
bbc6b703 97 mem_cgroup_uncharge(page_folio(page));
44042b44 98 free_unref_page(page, 0);
b221385b
AB
99}
100
91807063 101static void __put_compound_page(struct page *page)
1da177e4 102{
822fc613
NH
103 /*
104 * __page_cache_release() is supposed to be called for thp, not for
105 * hugetlb. This is because hugetlb page does never have PageLRU set
106 * (it's never listed to any LRU lists) and no memcg routines should
107 * be called for hugetlb (it has a separate hugetlb_cgroup.)
108 */
109 if (!PageHuge(page))
110 __page_cache_release(page);
ff45fc3c 111 destroy_compound_page(page);
91807063
AA
112}
113
ddc58f27 114void __put_page(struct page *page)
8519fb30 115{
71389703
DW
116 if (is_zone_device_page(page)) {
117 put_dev_pagemap(page->pgmap);
118
119 /*
120 * The page belongs to the device that created pgmap. Do
121 * not return it to page allocator.
122 */
123 return;
124 }
125
8519fb30 126 if (unlikely(PageCompound(page)))
ddc58f27
KS
127 __put_compound_page(page);
128 else
91807063 129 __put_single_page(page);
1da177e4 130}
ddc58f27 131EXPORT_SYMBOL(__put_page);
70b50f94 132
1d7ea732 133/**
7682486b
RD
134 * put_pages_list() - release a list of pages
135 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
136 *
137 * Release a list of pages which are strung together on page.lru. Currently
138 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
139 */
140void put_pages_list(struct list_head *pages)
141{
142 while (!list_empty(pages)) {
143 struct page *victim;
144
f86196ea 145 victim = lru_to_page(pages);
1d7ea732 146 list_del(&victim->lru);
09cbfeaf 147 put_page(victim);
1d7ea732
AZ
148 }
149}
150EXPORT_SYMBOL(put_pages_list);
151
18022c5d
MG
152/*
153 * get_kernel_pages() - pin kernel pages in memory
154 * @kiov: An array of struct kvec structures
155 * @nr_segs: number of segments to pin
156 * @write: pinning for read/write, currently ignored
157 * @pages: array that receives pointers to the pages pinned.
158 * Should be at least nr_segs long.
159 *
160 * Returns number of pages pinned. This may be fewer than the number
161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
162 * were pinned, returns -errno. Each page returned must be released
163 * with a put_page() call when it is finished with.
164 */
165int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
166 struct page **pages)
167{
168 int seg;
169
170 for (seg = 0; seg < nr_segs; seg++) {
171 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
172 return seg;
173
5a178119 174 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 175 get_page(pages[seg]);
18022c5d
MG
176 }
177
178 return seg;
179}
180EXPORT_SYMBOL_GPL(get_kernel_pages);
181
3dd7ae8e 182static void pagevec_lru_move_fn(struct pagevec *pvec,
c7c7b80c 183 void (*move_fn)(struct page *page, struct lruvec *lruvec))
902aaed0
HH
184{
185 int i;
6168d0da 186 struct lruvec *lruvec = NULL;
3dd7ae8e 187 unsigned long flags = 0;
902aaed0
HH
188
189 for (i = 0; i < pagevec_count(pvec); i++) {
190 struct page *page = pvec->pages[i];
3dd7ae8e 191
fc574c23
AS
192 /* block memcg migration during page moving between lru */
193 if (!TestClearPageLRU(page))
194 continue;
195
2a5e4e34 196 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
c7c7b80c 197 (*move_fn)(page, lruvec);
fc574c23
AS
198
199 SetPageLRU(page);
902aaed0 200 }
6168d0da
AS
201 if (lruvec)
202 unlock_page_lruvec_irqrestore(lruvec, flags);
c6f92f9f 203 release_pages(pvec->pages, pvec->nr);
83896fb5 204 pagevec_reinit(pvec);
d8505dee
SL
205}
206
c7c7b80c 207static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 208{
575ced1c
MWO
209 struct folio *folio = page_folio(page);
210
211 if (!folio_test_unevictable(folio)) {
212 lruvec_del_folio(lruvec, folio);
213 folio_clear_active(folio);
214 lruvec_add_folio_tail(lruvec, folio);
215 __count_vm_events(PGROTATED, folio_nr_pages(folio));
3dd7ae8e
SL
216 }
217}
218
d479960e
MK
219/* return true if pagevec needs to drain */
220static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
221{
222 bool ret = false;
223
224 if (!pagevec_add(pvec, page) || PageCompound(page) ||
225 lru_cache_disabled())
226 ret = true;
227
228 return ret;
229}
230
1da177e4 231/*
575ced1c
MWO
232 * Writeback is about to end against a folio which has been marked for
233 * immediate reclaim. If it still appears to be reclaimable, move it
234 * to the tail of the inactive list.
c7c7b80c 235 *
575ced1c 236 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
1da177e4 237 */
575ced1c 238void folio_rotate_reclaimable(struct folio *folio)
1da177e4 239{
575ced1c
MWO
240 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
241 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
ac6aadb2
MS
242 struct pagevec *pvec;
243 unsigned long flags;
244
575ced1c 245 folio_get(folio);
b01b2141
IM
246 local_lock_irqsave(&lru_rotate.lock, flags);
247 pvec = this_cpu_ptr(&lru_rotate.pvec);
575ced1c 248 if (pagevec_add_and_need_flush(pvec, &folio->page))
c7c7b80c 249 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 250 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 251 }
1da177e4
LT
252}
253
96f8bf4f 254void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 255{
7cf111bc
JW
256 do {
257 unsigned long lrusize;
258
6168d0da
AS
259 /*
260 * Hold lruvec->lru_lock is safe here, since
261 * 1) The pinned lruvec in reclaim, or
262 * 2) From a pre-LRU page during refault (which also holds the
263 * rcu lock, so would be safe even if the page was on the LRU
264 * and could move simultaneously to a new lruvec).
265 */
266 spin_lock_irq(&lruvec->lru_lock);
7cf111bc 267 /* Record cost event */
96f8bf4f
JW
268 if (file)
269 lruvec->file_cost += nr_pages;
7cf111bc 270 else
96f8bf4f 271 lruvec->anon_cost += nr_pages;
7cf111bc
JW
272
273 /*
274 * Decay previous events
275 *
276 * Because workloads change over time (and to avoid
277 * overflow) we keep these statistics as a floating
278 * average, which ends up weighing recent refaults
279 * more than old ones.
280 */
281 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
282 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
283 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
284 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
285
286 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
287 lruvec->file_cost /= 2;
288 lruvec->anon_cost /= 2;
289 }
6168d0da 290 spin_unlock_irq(&lruvec->lru_lock);
7cf111bc 291 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
292}
293
96f8bf4f
JW
294void lru_note_cost_page(struct page *page)
295{
a984226f 296 lru_note_cost(mem_cgroup_page_lruvec(page),
6c357848 297 page_is_file_lru(page), thp_nr_pages(page));
96f8bf4f
JW
298}
299
c7c7b80c 300static void __activate_page(struct page *page, struct lruvec *lruvec)
1da177e4 301{
fc574c23 302 if (!PageActive(page) && !PageUnevictable(page)) {
6c357848 303 int nr_pages = thp_nr_pages(page);
744ed144 304
46ae6b2c 305 del_page_from_lru_list(page, lruvec);
7a608572 306 SetPageActive(page);
3a9c9788 307 add_page_to_lru_list(page, lruvec);
24b7e581 308 trace_mm_lru_activate(page);
4f98a2fe 309
21e330fc
SB
310 __count_vm_events(PGACTIVATE, nr_pages);
311 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
312 nr_pages);
1da177e4 313 }
eb709b0d
SL
314}
315
316#ifdef CONFIG_SMP
eb709b0d
SL
317static void activate_page_drain(int cpu)
318{
b01b2141 319 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
320
321 if (pagevec_count(pvec))
c7c7b80c 322 pagevec_lru_move_fn(pvec, __activate_page);
eb709b0d
SL
323}
324
5fbc4616
CM
325static bool need_activate_page_drain(int cpu)
326{
b01b2141 327 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
328}
329
cc2828b2 330static void activate_page(struct page *page)
eb709b0d 331{
800d8c63 332 page = compound_head(page);
eb709b0d 333 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
b01b2141 334 struct pagevec *pvec;
eb709b0d 335
b01b2141
IM
336 local_lock(&lru_pvecs.lock);
337 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
09cbfeaf 338 get_page(page);
d479960e 339 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 340 pagevec_lru_move_fn(pvec, __activate_page);
b01b2141 341 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
342 }
343}
344
345#else
346static inline void activate_page_drain(int cpu)
347{
348}
349
cc2828b2 350static void activate_page(struct page *page)
eb709b0d 351{
6168d0da 352 struct lruvec *lruvec;
eb709b0d 353
800d8c63 354 page = compound_head(page);
6168d0da
AS
355 if (TestClearPageLRU(page)) {
356 lruvec = lock_page_lruvec_irq(page);
357 __activate_page(page, lruvec);
358 unlock_page_lruvec_irq(lruvec);
359 SetPageLRU(page);
360 }
1da177e4 361}
eb709b0d 362#endif
1da177e4 363
059285a2
MG
364static void __lru_cache_activate_page(struct page *page)
365{
b01b2141 366 struct pagevec *pvec;
059285a2
MG
367 int i;
368
b01b2141
IM
369 local_lock(&lru_pvecs.lock);
370 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
371
059285a2
MG
372 /*
373 * Search backwards on the optimistic assumption that the page being
374 * activated has just been added to this pagevec. Note that only
375 * the local pagevec is examined as a !PageLRU page could be in the
376 * process of being released, reclaimed, migrated or on a remote
377 * pagevec that is currently being drained. Furthermore, marking
378 * a remote pagevec's page PageActive potentially hits a race where
379 * a page is marked PageActive just after it is added to the inactive
380 * list causing accounting errors and BUG_ON checks to trigger.
381 */
382 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
383 struct page *pagevec_page = pvec->pages[i];
384
385 if (pagevec_page == page) {
386 SetPageActive(page);
387 break;
388 }
389 }
390
b01b2141 391 local_unlock(&lru_pvecs.lock);
059285a2
MG
392}
393
1da177e4
LT
394/*
395 * Mark a page as having seen activity.
396 *
397 * inactive,unreferenced -> inactive,referenced
398 * inactive,referenced -> active,unreferenced
399 * active,unreferenced -> active,referenced
eb39d618
HD
400 *
401 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
402 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 403 */
920c7a5d 404void mark_page_accessed(struct page *page)
1da177e4 405{
e90309c9 406 page = compound_head(page);
059285a2 407
a1100a74
FW
408 if (!PageReferenced(page)) {
409 SetPageReferenced(page);
410 } else if (PageUnevictable(page)) {
411 /*
412 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
413 * this list is never rotated or maintained, so marking an
414 * evictable page accessed has no effect.
415 */
416 } else if (!PageActive(page)) {
059285a2
MG
417 /*
418 * If the page is on the LRU, queue it for activation via
b01b2141 419 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
420 * pagevec, mark it active and it'll be moved to the active
421 * LRU on the next drain.
422 */
423 if (PageLRU(page))
424 activate_page(page);
425 else
426 __lru_cache_activate_page(page);
1da177e4 427 ClearPageReferenced(page);
cb686883 428 workingset_activation(page);
1da177e4 429 }
33c3fc71
VD
430 if (page_is_idle(page))
431 clear_page_idle(page);
1da177e4 432}
1da177e4
LT
433EXPORT_SYMBOL(mark_page_accessed);
434
f04e9ebb 435/**
c53954a0 436 * lru_cache_add - add a page to a page list
f04e9ebb 437 * @page: the page to be added to the LRU.
2329d375
JZ
438 *
439 * Queue the page for addition to the LRU via pagevec. The decision on whether
440 * to add the page to the [in]active [file|anon] list is deferred until the
441 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
442 * have the page added to the active list using mark_page_accessed().
f04e9ebb 443 */
c53954a0 444void lru_cache_add(struct page *page)
1da177e4 445{
6058eaec
JW
446 struct pagevec *pvec;
447
309381fe
SL
448 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
449 VM_BUG_ON_PAGE(PageLRU(page), page);
6058eaec
JW
450
451 get_page(page);
452 local_lock(&lru_pvecs.lock);
453 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
d479960e 454 if (pagevec_add_and_need_flush(pvec, page))
6058eaec
JW
455 __pagevec_lru_add(pvec);
456 local_unlock(&lru_pvecs.lock);
1da177e4 457}
6058eaec 458EXPORT_SYMBOL(lru_cache_add);
1da177e4 459
00501b53 460/**
b518154e 461 * lru_cache_add_inactive_or_unevictable
00501b53
JW
462 * @page: the page to be added to LRU
463 * @vma: vma in which page is mapped for determining reclaimability
464 *
b518154e 465 * Place @page on the inactive or unevictable LRU list, depending on its
12eab428 466 * evictability.
00501b53 467 */
b518154e 468void lru_cache_add_inactive_or_unevictable(struct page *page,
00501b53
JW
469 struct vm_area_struct *vma)
470{
b518154e
JK
471 bool unevictable;
472
00501b53
JW
473 VM_BUG_ON_PAGE(PageLRU(page), page);
474
b518154e
JK
475 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
476 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
0964730b 477 int nr_pages = thp_nr_pages(page);
00501b53 478 /*
cb152a1a 479 * We use the irq-unsafe __mod_zone_page_state because this
00501b53
JW
480 * counter is not modified from interrupt context, and the pte
481 * lock is held(spinlock), which implies preemption disabled.
482 */
0964730b
HD
483 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
484 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
00501b53 485 }
9c4e6b1a 486 lru_cache_add(page);
00501b53
JW
487}
488
31560180
MK
489/*
490 * If the page can not be invalidated, it is moved to the
491 * inactive list to speed up its reclaim. It is moved to the
492 * head of the list, rather than the tail, to give the flusher
493 * threads some time to write it out, as this is much more
494 * effective than the single-page writeout from reclaim.
278df9f4
MK
495 *
496 * If the page isn't page_mapped and dirty/writeback, the page
497 * could reclaim asap using PG_reclaim.
498 *
499 * 1. active, mapped page -> none
500 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
501 * 3. inactive, mapped page -> none
502 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
503 * 5. inactive, clean -> inactive, tail
504 * 6. Others -> none
505 *
506 * In 4, why it moves inactive's head, the VM expects the page would
507 * be write it out by flusher threads as this is much more effective
508 * than the single-page writeout from reclaim.
31560180 509 */
c7c7b80c 510static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
31560180 511{
46ae6b2c 512 bool active = PageActive(page);
6c357848 513 int nr_pages = thp_nr_pages(page);
31560180 514
bad49d9c
MK
515 if (PageUnevictable(page))
516 return;
517
31560180
MK
518 /* Some processes are using the page */
519 if (page_mapped(page))
520 return;
521
46ae6b2c 522 del_page_from_lru_list(page, lruvec);
31560180
MK
523 ClearPageActive(page);
524 ClearPageReferenced(page);
31560180 525
278df9f4
MK
526 if (PageWriteback(page) || PageDirty(page)) {
527 /*
528 * PG_reclaim could be raced with end_page_writeback
529 * It can make readahead confusing. But race window
530 * is _really_ small and it's non-critical problem.
531 */
3a9c9788 532 add_page_to_lru_list(page, lruvec);
278df9f4
MK
533 SetPageReclaim(page);
534 } else {
535 /*
536 * The page's writeback ends up during pagevec
c4ffefd1 537 * We move that page into tail of inactive.
278df9f4 538 */
3a9c9788 539 add_page_to_lru_list_tail(page, lruvec);
5d91f31f 540 __count_vm_events(PGROTATED, nr_pages);
278df9f4
MK
541 }
542
21e330fc 543 if (active) {
5d91f31f 544 __count_vm_events(PGDEACTIVATE, nr_pages);
21e330fc
SB
545 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
546 nr_pages);
547 }
31560180
MK
548}
549
c7c7b80c 550static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
9c276cc6 551{
fc574c23 552 if (PageActive(page) && !PageUnevictable(page)) {
6c357848 553 int nr_pages = thp_nr_pages(page);
9c276cc6 554
46ae6b2c 555 del_page_from_lru_list(page, lruvec);
9c276cc6
MK
556 ClearPageActive(page);
557 ClearPageReferenced(page);
3a9c9788 558 add_page_to_lru_list(page, lruvec);
9c276cc6 559
21e330fc
SB
560 __count_vm_events(PGDEACTIVATE, nr_pages);
561 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
562 nr_pages);
9c276cc6
MK
563 }
564}
10853a03 565
c7c7b80c 566static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
10853a03 567{
fc574c23 568 if (PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 569 !PageSwapCache(page) && !PageUnevictable(page)) {
6c357848 570 int nr_pages = thp_nr_pages(page);
10853a03 571
46ae6b2c 572 del_page_from_lru_list(page, lruvec);
10853a03
MK
573 ClearPageActive(page);
574 ClearPageReferenced(page);
f7ad2a6c 575 /*
9de4f22a
HY
576 * Lazyfree pages are clean anonymous pages. They have
577 * PG_swapbacked flag cleared, to distinguish them from normal
578 * anonymous pages
f7ad2a6c
SL
579 */
580 ClearPageSwapBacked(page);
3a9c9788 581 add_page_to_lru_list(page, lruvec);
10853a03 582
21e330fc
SB
583 __count_vm_events(PGLAZYFREE, nr_pages);
584 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
585 nr_pages);
10853a03
MK
586 }
587}
588
902aaed0
HH
589/*
590 * Drain pages out of the cpu's pagevecs.
591 * Either "cpu" is the current CPU, and preemption has already been
592 * disabled; or "cpu" is being hot-unplugged, and is already dead.
593 */
f0cb3c76 594void lru_add_drain_cpu(int cpu)
1da177e4 595{
b01b2141 596 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 597
13f7f789 598 if (pagevec_count(pvec))
a0b8cab3 599 __pagevec_lru_add(pvec);
902aaed0 600
b01b2141 601 pvec = &per_cpu(lru_rotate.pvec, cpu);
7e0cc01e
QC
602 /* Disabling interrupts below acts as a compiler barrier. */
603 if (data_race(pagevec_count(pvec))) {
902aaed0
HH
604 unsigned long flags;
605
606 /* No harm done if a racing interrupt already did this */
b01b2141 607 local_lock_irqsave(&lru_rotate.lock, flags);
c7c7b80c 608 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 609 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 610 }
31560180 611
b01b2141 612 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 613 if (pagevec_count(pvec))
c7c7b80c 614 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
eb709b0d 615
b01b2141 616 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6 617 if (pagevec_count(pvec))
c7c7b80c 618 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
9c276cc6 619
b01b2141 620 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 621 if (pagevec_count(pvec))
c7c7b80c 622 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
10853a03 623
eb709b0d 624 activate_page_drain(cpu);
31560180
MK
625}
626
627/**
cc5993bd 628 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
629 * @page: page to deactivate
630 *
631 * This function hints the VM that @page is a good reclaim candidate,
632 * for example if its invalidation fails due to the page being dirty
633 * or under writeback.
634 */
cc5993bd 635void deactivate_file_page(struct page *page)
31560180 636{
821ed6bb 637 /*
cc5993bd
MK
638 * In a workload with many unevictable page such as mprotect,
639 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
640 */
641 if (PageUnevictable(page))
642 return;
643
31560180 644 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
645 struct pagevec *pvec;
646
647 local_lock(&lru_pvecs.lock);
648 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 649
d479960e 650 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 651 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
b01b2141 652 local_unlock(&lru_pvecs.lock);
31560180 653 }
80bfed90
AM
654}
655
9c276cc6
MK
656/*
657 * deactivate_page - deactivate a page
658 * @page: page to deactivate
659 *
660 * deactivate_page() moves @page to the inactive list if @page was on the active
661 * list and was not an unevictable page. This is done to accelerate the reclaim
662 * of @page.
663 */
664void deactivate_page(struct page *page)
665{
666 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 667 struct pagevec *pvec;
9c276cc6 668
b01b2141
IM
669 local_lock(&lru_pvecs.lock);
670 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6 671 get_page(page);
d479960e 672 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 673 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
b01b2141 674 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
675 }
676}
677
10853a03 678/**
f7ad2a6c 679 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
680 * @page: page to deactivate
681 *
f7ad2a6c
SL
682 * mark_page_lazyfree() moves @page to the inactive file list.
683 * This is done to accelerate the reclaim of @page.
10853a03 684 */
f7ad2a6c 685void mark_page_lazyfree(struct page *page)
10853a03 686{
f7ad2a6c 687 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 688 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 689 struct pagevec *pvec;
10853a03 690
b01b2141
IM
691 local_lock(&lru_pvecs.lock);
692 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 693 get_page(page);
d479960e 694 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 695 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
b01b2141 696 local_unlock(&lru_pvecs.lock);
10853a03
MK
697 }
698}
699
80bfed90
AM
700void lru_add_drain(void)
701{
b01b2141
IM
702 local_lock(&lru_pvecs.lock);
703 lru_add_drain_cpu(smp_processor_id());
704 local_unlock(&lru_pvecs.lock);
705}
706
243418e3
MK
707/*
708 * It's called from per-cpu workqueue context in SMP case so
709 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
710 * the same cpu. It shouldn't be a problem in !SMP case since
711 * the core is only one and the locks will disable preemption.
712 */
713static void lru_add_and_bh_lrus_drain(void)
714{
715 local_lock(&lru_pvecs.lock);
716 lru_add_drain_cpu(smp_processor_id());
717 local_unlock(&lru_pvecs.lock);
718 invalidate_bh_lrus_cpu();
719}
720
b01b2141
IM
721void lru_add_drain_cpu_zone(struct zone *zone)
722{
723 local_lock(&lru_pvecs.lock);
724 lru_add_drain_cpu(smp_processor_id());
725 drain_local_pages(zone);
726 local_unlock(&lru_pvecs.lock);
1da177e4
LT
727}
728
6ea183d6
MH
729#ifdef CONFIG_SMP
730
731static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
732
c4028958 733static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc 734{
243418e3 735 lru_add_and_bh_lrus_drain();
053837fc
NP
736}
737
9852a721
MH
738/*
739 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
740 * kworkers being shut down before our page_alloc_cpu_dead callback is
741 * executed on the offlined cpu.
742 * Calling this function with cpu hotplug locks held can actually lead
743 * to obscure indirect dependencies via WQ context.
744 */
d479960e 745inline void __lru_add_drain_all(bool force_all_cpus)
053837fc 746{
6446a513
AD
747 /*
748 * lru_drain_gen - Global pages generation number
749 *
750 * (A) Definition: global lru_drain_gen = x implies that all generations
751 * 0 < n <= x are already *scheduled* for draining.
752 *
753 * This is an optimization for the highly-contended use case where a
754 * user space workload keeps constantly generating a flow of pages for
755 * each CPU.
756 */
757 static unsigned int lru_drain_gen;
5fbc4616 758 static struct cpumask has_work;
6446a513
AD
759 static DEFINE_MUTEX(lock);
760 unsigned cpu, this_gen;
5fbc4616 761
ce612879
MH
762 /*
763 * Make sure nobody triggers this path before mm_percpu_wq is fully
764 * initialized.
765 */
766 if (WARN_ON(!mm_percpu_wq))
767 return;
768
6446a513
AD
769 /*
770 * Guarantee pagevec counter stores visible by this CPU are visible to
771 * other CPUs before loading the current drain generation.
772 */
773 smp_mb();
774
775 /*
776 * (B) Locally cache global LRU draining generation number
777 *
778 * The read barrier ensures that the counter is loaded before the mutex
779 * is taken. It pairs with smp_mb() inside the mutex critical section
780 * at (D).
781 */
782 this_gen = smp_load_acquire(&lru_drain_gen);
eef1a429 783
5fbc4616 784 mutex_lock(&lock);
eef1a429
KK
785
786 /*
6446a513
AD
787 * (C) Exit the draining operation if a newer generation, from another
788 * lru_add_drain_all(), was already scheduled for draining. Check (A).
eef1a429 789 */
d479960e 790 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
eef1a429
KK
791 goto done;
792
6446a513
AD
793 /*
794 * (D) Increment global generation number
795 *
796 * Pairs with smp_load_acquire() at (B), outside of the critical
797 * section. Use a full memory barrier to guarantee that the new global
798 * drain generation number is stored before loading pagevec counters.
799 *
800 * This pairing must be done here, before the for_each_online_cpu loop
801 * below which drains the page vectors.
802 *
803 * Let x, y, and z represent some system CPU numbers, where x < y < z.
cb152a1a 804 * Assume CPU #z is in the middle of the for_each_online_cpu loop
6446a513
AD
805 * below and has already reached CPU #y's per-cpu data. CPU #x comes
806 * along, adds some pages to its per-cpu vectors, then calls
807 * lru_add_drain_all().
808 *
809 * If the paired barrier is done at any later step, e.g. after the
810 * loop, CPU #x will just exit at (C) and miss flushing out all of its
811 * added pages.
812 */
813 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
814 smp_mb();
eef1a429 815
5fbc4616 816 cpumask_clear(&has_work);
5fbc4616
CM
817 for_each_online_cpu(cpu) {
818 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
819
d479960e
MK
820 if (force_all_cpus ||
821 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
7e0cc01e 822 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
b01b2141
IM
823 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
824 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
825 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
8cc621d2
MK
826 need_activate_page_drain(cpu) ||
827 has_bh_in_lru(cpu, NULL)) {
5fbc4616 828 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 829 queue_work_on(cpu, mm_percpu_wq, work);
6446a513 830 __cpumask_set_cpu(cpu, &has_work);
5fbc4616
CM
831 }
832 }
833
834 for_each_cpu(cpu, &has_work)
835 flush_work(&per_cpu(lru_add_drain_work, cpu));
836
eef1a429 837done:
5fbc4616 838 mutex_unlock(&lock);
053837fc 839}
d479960e
MK
840
841void lru_add_drain_all(void)
842{
843 __lru_add_drain_all(false);
844}
6ea183d6
MH
845#else
846void lru_add_drain_all(void)
847{
848 lru_add_drain();
849}
6446a513 850#endif /* CONFIG_SMP */
053837fc 851
d479960e
MK
852atomic_t lru_disable_count = ATOMIC_INIT(0);
853
854/*
855 * lru_cache_disable() needs to be called before we start compiling
856 * a list of pages to be migrated using isolate_lru_page().
857 * It drains pages on LRU cache and then disable on all cpus until
858 * lru_cache_enable is called.
859 *
860 * Must be paired with a call to lru_cache_enable().
861 */
862void lru_cache_disable(void)
863{
864 atomic_inc(&lru_disable_count);
865#ifdef CONFIG_SMP
866 /*
867 * lru_add_drain_all in the force mode will schedule draining on
868 * all online CPUs so any calls of lru_cache_disabled wrapped by
869 * local_lock or preemption disabled would be ordered by that.
870 * The atomic operation doesn't need to have stronger ordering
871 * requirements because that is enforeced by the scheduling
872 * guarantees.
873 */
874 __lru_add_drain_all(true);
875#else
243418e3 876 lru_add_and_bh_lrus_drain();
d479960e
MK
877#endif
878}
879
aabfb572 880/**
ea1754a0 881 * release_pages - batched put_page()
aabfb572
MH
882 * @pages: array of pages to release
883 * @nr: number of pages
1da177e4 884 *
aabfb572
MH
885 * Decrement the reference count on all the pages in @pages. If it
886 * fell to zero, remove the page from the LRU and free it.
1da177e4 887 */
c6f92f9f 888void release_pages(struct page **pages, int nr)
1da177e4
LT
889{
890 int i;
cc59850e 891 LIST_HEAD(pages_to_free);
6168d0da 892 struct lruvec *lruvec = NULL;
3f649ab7
KC
893 unsigned long flags;
894 unsigned int lock_batch;
1da177e4 895
1da177e4
LT
896 for (i = 0; i < nr; i++) {
897 struct page *page = pages[i];
1da177e4 898
aabfb572
MH
899 /*
900 * Make sure the IRQ-safe lock-holding time does not get
901 * excessive with a continuous string of pages from the
6168d0da 902 * same lruvec. The lock is held only if lruvec != NULL.
aabfb572 903 */
6168d0da
AS
904 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
905 unlock_page_lruvec_irqrestore(lruvec, flags);
906 lruvec = NULL;
aabfb572
MH
907 }
908
a9b576f7 909 page = compound_head(page);
6fcb52a5 910 if (is_huge_zero_page(page))
aa88b68c 911 continue;
aa88b68c 912
c5d6c45e 913 if (is_zone_device_page(page)) {
6168d0da
AS
914 if (lruvec) {
915 unlock_page_lruvec_irqrestore(lruvec, flags);
916 lruvec = NULL;
df6ad698 917 }
c5d6c45e
IW
918 /*
919 * ZONE_DEVICE pages that return 'false' from
a3e7bea0 920 * page_is_devmap_managed() do not require special
c5d6c45e
IW
921 * processing, and instead, expect a call to
922 * put_page_testzero().
923 */
07d80269
JH
924 if (page_is_devmap_managed(page)) {
925 put_devmap_managed_page(page);
c5d6c45e 926 continue;
07d80269 927 }
43fbdeb3
RC
928 if (put_page_testzero(page))
929 put_dev_pagemap(page->pgmap);
930 continue;
df6ad698
JG
931 }
932
b5810039 933 if (!put_page_testzero(page))
1da177e4
LT
934 continue;
935
ddc58f27 936 if (PageCompound(page)) {
6168d0da
AS
937 if (lruvec) {
938 unlock_page_lruvec_irqrestore(lruvec, flags);
939 lruvec = NULL;
ddc58f27
KS
940 }
941 __put_compound_page(page);
942 continue;
943 }
944
46453a6e 945 if (PageLRU(page)) {
2a5e4e34
AD
946 struct lruvec *prev_lruvec = lruvec;
947
948 lruvec = relock_page_lruvec_irqsave(page, lruvec,
949 &flags);
950 if (prev_lruvec != lruvec)
aabfb572 951 lock_batch = 0;
fa9add64 952
46ae6b2c 953 del_page_from_lru_list(page, lruvec);
87560179 954 __clear_page_lru_flags(page);
46453a6e
NP
955 }
956
62906027 957 __ClearPageWaiters(page);
c53954a0 958
cc59850e 959 list_add(&page->lru, &pages_to_free);
1da177e4 960 }
6168d0da
AS
961 if (lruvec)
962 unlock_page_lruvec_irqrestore(lruvec, flags);
1da177e4 963
747db954 964 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 965 free_unref_page_list(&pages_to_free);
1da177e4 966}
0be8557b 967EXPORT_SYMBOL(release_pages);
1da177e4
LT
968
969/*
970 * The pages which we're about to release may be in the deferred lru-addition
971 * queues. That would prevent them from really being freed right now. That's
972 * OK from a correctness point of view but is inefficient - those pages may be
973 * cache-warm and we want to give them back to the page allocator ASAP.
974 *
975 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
976 * and __pagevec_lru_add_active() call release_pages() directly to avoid
977 * mutual recursion.
978 */
979void __pagevec_release(struct pagevec *pvec)
980{
7f0b5fb9 981 if (!pvec->percpu_pvec_drained) {
d9ed0d08 982 lru_add_drain();
7f0b5fb9 983 pvec->percpu_pvec_drained = true;
d9ed0d08 984 }
c6f92f9f 985 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
986 pagevec_reinit(pvec);
987}
7f285701
SF
988EXPORT_SYMBOL(__pagevec_release);
989
c7c7b80c 990static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 991{
9c4e6b1a 992 int was_unevictable = TestClearPageUnevictable(page);
6c357848 993 int nr_pages = thp_nr_pages(page);
3dd7ae8e 994
309381fe 995 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e 996
9c4e6b1a
SB
997 /*
998 * Page becomes evictable in two ways:
dae966dc 999 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
1000 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1001 * a) do PageLRU check with lock [check_move_unevictable_pages]
1002 * b) do PageLRU check before lock [clear_page_mlock]
1003 *
1004 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1005 * following strict ordering:
1006 *
1007 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1008 *
1009 * SetPageLRU() TestClearPageMlocked()
1010 * smp_mb() // explicit ordering // above provides strict
1011 * // ordering
1012 * PageMlocked() PageLRU()
1013 *
1014 *
1015 * if '#1' does not observe setting of PG_lru by '#0' and fails
1016 * isolation, the explicit barrier will make sure that page_evictable
1017 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1018 * can be reordered after PageMlocked check and can make '#1' to fail
1019 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1020 * looking at the same page) and the evictable page will be stranded
1021 * in an unevictable LRU.
1022 */
9a9b6cce
YS
1023 SetPageLRU(page);
1024 smp_mb__after_atomic();
9c4e6b1a
SB
1025
1026 if (page_evictable(page)) {
9c4e6b1a 1027 if (was_unevictable)
5d91f31f 1028 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
9c4e6b1a 1029 } else {
9c4e6b1a
SB
1030 ClearPageActive(page);
1031 SetPageUnevictable(page);
1032 if (!was_unevictable)
5d91f31f 1033 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
9c4e6b1a
SB
1034 }
1035
3a9c9788 1036 add_page_to_lru_list(page, lruvec);
86140453 1037 trace_mm_lru_insertion(page);
3dd7ae8e
SL
1038}
1039
1da177e4
LT
1040/*
1041 * Add the passed pages to the LRU, then drop the caller's refcount
1042 * on them. Reinitialises the caller's pagevec.
1043 */
a0b8cab3 1044void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1045{
fc574c23 1046 int i;
6168d0da 1047 struct lruvec *lruvec = NULL;
fc574c23
AS
1048 unsigned long flags = 0;
1049
1050 for (i = 0; i < pagevec_count(pvec); i++) {
1051 struct page *page = pvec->pages[i];
fc574c23 1052
2a5e4e34 1053 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
fc574c23
AS
1054 __pagevec_lru_add_fn(page, lruvec);
1055 }
6168d0da
AS
1056 if (lruvec)
1057 unlock_page_lruvec_irqrestore(lruvec, flags);
fc574c23
AS
1058 release_pages(pvec->pages, pvec->nr);
1059 pagevec_reinit(pvec);
1da177e4 1060}
1da177e4 1061
0cd6144a
JW
1062/**
1063 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1064 * @pvec: The pagevec to prune
1065 *
a656a202
MWO
1066 * find_get_entries() fills both pages and XArray value entries (aka
1067 * exceptional entries) into the pagevec. This function prunes all
0cd6144a
JW
1068 * exceptionals from @pvec without leaving holes, so that it can be
1069 * passed on to page-only pagevec operations.
1070 */
1071void pagevec_remove_exceptionals(struct pagevec *pvec)
1072{
1073 int i, j;
1074
1075 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1076 struct page *page = pvec->pages[i];
3159f943 1077 if (!xa_is_value(page))
0cd6144a
JW
1078 pvec->pages[j++] = page;
1079 }
1080 pvec->nr = j;
1081}
1082
1da177e4 1083/**
b947cee4 1084 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1085 * @pvec: Where the resulting pages are placed
1086 * @mapping: The address_space to search
1087 * @start: The starting page index
b947cee4 1088 * @end: The final page index
1da177e4 1089 *
e02a9f04 1090 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1091 * pages in the mapping starting from index @start and upto index @end
1092 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1093 * reference against the pages in @pvec.
1094 *
1095 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1096 * indexes. There may be holes in the indices due to not-present pages. We
1097 * also update @start to index the next page for the traversal.
1da177e4 1098 *
b947cee4 1099 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1100 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1101 * reached.
1da177e4 1102 */
b947cee4 1103unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1104 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1105{
397162ff 1106 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1107 pvec->pages);
1da177e4
LT
1108 return pagevec_count(pvec);
1109}
b947cee4 1110EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1111
72b045ae
JK
1112unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1113 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1114 xa_mark_t tag)
1da177e4 1115{
72b045ae 1116 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1117 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1118 return pagevec_count(pvec);
1119}
72b045ae 1120EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1121
1da177e4
LT
1122/*
1123 * Perform any setup for the swap system
1124 */
1125void __init swap_setup(void)
1126{
ca79b0c2 1127 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1128
1da177e4
LT
1129 /* Use a smaller cluster for small-memory machines */
1130 if (megs < 16)
1131 page_cluster = 2;
1132 else
1133 page_cluster = 3;
1134 /*
1135 * Right now other parts of the system means that we
1136 * _really_ don't want to cluster much more
1137 */
1da177e4 1138}
07d80269
JH
1139
1140#ifdef CONFIG_DEV_PAGEMAP_OPS
1141void put_devmap_managed_page(struct page *page)
1142{
1143 int count;
1144
1145 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1146 return;
1147
1148 count = page_ref_dec_return(page);
1149
1150 /*
1151 * devmap page refcounts are 1-based, rather than 0-based: if
1152 * refcount is 1, then the page is free and the refcount is
1153 * stable because nobody holds a reference on the page.
1154 */
1155 if (count == 1)
1156 free_devmap_managed_page(page);
1157 else if (!count)
1158 __put_page(page);
1159}
1160EXPORT_SYMBOL(put_devmap_managed_page);
1161#endif