asm-generic/cacheflush.h: flush icache when copying to user pages
[linux-block.git] / mm / swap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
183ff22b 8 * This file contains the default values for the operation of the
1da177e4
LT
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/mm_inline.h>
26#include <linux/buffer_head.h> /* for try_to_release_page() */
1da177e4
LT
27#include <linux/percpu_counter.h>
28#include <linux/percpu.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
e0bf68dd 31#include <linux/backing-dev.h>
66e1707b 32#include <linux/memcontrol.h>
5a0e3ad6 33#include <linux/gfp.h>
1da177e4 34
64d6519d
LS
35#include "internal.h"
36
1da177e4
LT
37/* How many pages do we try to swap or page in/out together? */
38int page_cluster;
39
f04e9ebb 40static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
f84f9504 41static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
31560180 42static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
902aaed0 43
b221385b
AB
44/*
45 * This path almost never happens for VM activity - pages are normally
46 * freed via pagevecs. But it gets used by networking.
47 */
920c7a5d 48static void __page_cache_release(struct page *page)
b221385b
AB
49{
50 if (PageLRU(page)) {
51 unsigned long flags;
52 struct zone *zone = page_zone(page);
53
54 spin_lock_irqsave(&zone->lru_lock, flags);
55 VM_BUG_ON(!PageLRU(page));
56 __ClearPageLRU(page);
57 del_page_from_lru(zone, page);
58 spin_unlock_irqrestore(&zone->lru_lock, flags);
59 }
91807063
AA
60}
61
62static void __put_single_page(struct page *page)
63{
64 __page_cache_release(page);
fc91668e 65 free_hot_cold_page(page, 0);
b221385b
AB
66}
67
91807063 68static void __put_compound_page(struct page *page)
1da177e4 69{
91807063 70 compound_page_dtor *dtor;
1da177e4 71
91807063
AA
72 __page_cache_release(page);
73 dtor = get_compound_page_dtor(page);
74 (*dtor)(page);
75}
76
77static void put_compound_page(struct page *page)
78{
79 if (unlikely(PageTail(page))) {
80 /* __split_huge_page_refcount can run under us */
81 struct page *page_head = page->first_page;
82 smp_rmb();
83 /*
84 * If PageTail is still set after smp_rmb() we can be sure
85 * that the page->first_page we read wasn't a dangling pointer.
86 * See __split_huge_page_refcount() smp_wmb().
87 */
88 if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
89 unsigned long flags;
90 /*
91 * Verify that our page_head wasn't converted
92 * to a a regular page before we got a
93 * reference on it.
94 */
95 if (unlikely(!PageHead(page_head))) {
96 /* PageHead is cleared after PageTail */
97 smp_rmb();
98 VM_BUG_ON(PageTail(page));
99 goto out_put_head;
100 }
101 /*
102 * Only run compound_lock on a valid PageHead,
103 * after having it pinned with
104 * get_page_unless_zero() above.
105 */
106 smp_mb();
107 /* page_head wasn't a dangling pointer */
108 flags = compound_lock_irqsave(page_head);
109 if (unlikely(!PageTail(page))) {
110 /* __split_huge_page_refcount run before us */
111 compound_unlock_irqrestore(page_head, flags);
112 VM_BUG_ON(PageHead(page_head));
113 out_put_head:
114 if (put_page_testzero(page_head))
115 __put_single_page(page_head);
116 out_put_single:
117 if (put_page_testzero(page))
118 __put_single_page(page);
119 return;
120 }
121 VM_BUG_ON(page_head != page->first_page);
122 /*
123 * We can release the refcount taken by
124 * get_page_unless_zero now that
125 * split_huge_page_refcount is blocked on the
126 * compound_lock.
127 */
128 if (put_page_testzero(page_head))
129 VM_BUG_ON(1);
130 /* __split_huge_page_refcount will wait now */
131 VM_BUG_ON(atomic_read(&page->_count) <= 0);
132 atomic_dec(&page->_count);
133 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
134 compound_unlock_irqrestore(page_head, flags);
a95a82e9
AA
135 if (put_page_testzero(page_head)) {
136 if (PageHead(page_head))
137 __put_compound_page(page_head);
138 else
139 __put_single_page(page_head);
140 }
91807063
AA
141 } else {
142 /* page_head is a dangling pointer */
143 VM_BUG_ON(PageTail(page));
144 goto out_put_single;
145 }
146 } else if (put_page_testzero(page)) {
147 if (PageHead(page))
148 __put_compound_page(page);
149 else
150 __put_single_page(page);
1da177e4 151 }
8519fb30
NP
152}
153
154void put_page(struct page *page)
155{
156 if (unlikely(PageCompound(page)))
157 put_compound_page(page);
158 else if (put_page_testzero(page))
91807063 159 __put_single_page(page);
1da177e4
LT
160}
161EXPORT_SYMBOL(put_page);
1da177e4 162
1d7ea732 163/**
7682486b
RD
164 * put_pages_list() - release a list of pages
165 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
166 *
167 * Release a list of pages which are strung together on page.lru. Currently
168 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
169 */
170void put_pages_list(struct list_head *pages)
171{
172 while (!list_empty(pages)) {
173 struct page *victim;
174
175 victim = list_entry(pages->prev, struct page, lru);
176 list_del(&victim->lru);
177 page_cache_release(victim);
178 }
179}
180EXPORT_SYMBOL(put_pages_list);
181
3dd7ae8e
SL
182static void pagevec_lru_move_fn(struct pagevec *pvec,
183 void (*move_fn)(struct page *page, void *arg),
184 void *arg)
902aaed0
HH
185{
186 int i;
902aaed0 187 struct zone *zone = NULL;
3dd7ae8e 188 unsigned long flags = 0;
902aaed0
HH
189
190 for (i = 0; i < pagevec_count(pvec); i++) {
191 struct page *page = pvec->pages[i];
192 struct zone *pagezone = page_zone(page);
193
194 if (pagezone != zone) {
195 if (zone)
3dd7ae8e 196 spin_unlock_irqrestore(&zone->lru_lock, flags);
902aaed0 197 zone = pagezone;
3dd7ae8e 198 spin_lock_irqsave(&zone->lru_lock, flags);
902aaed0 199 }
3dd7ae8e
SL
200
201 (*move_fn)(page, arg);
902aaed0
HH
202 }
203 if (zone)
3dd7ae8e 204 spin_unlock_irqrestore(&zone->lru_lock, flags);
83896fb5
LT
205 release_pages(pvec->pages, pvec->nr, pvec->cold);
206 pagevec_reinit(pvec);
d8505dee
SL
207}
208
3dd7ae8e
SL
209static void pagevec_move_tail_fn(struct page *page, void *arg)
210{
211 int *pgmoved = arg;
212 struct zone *zone = page_zone(page);
213
214 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
215 enum lru_list lru = page_lru_base_type(page);
216 list_move_tail(&page->lru, &zone->lru[lru].list);
217 mem_cgroup_rotate_reclaimable_page(page);
218 (*pgmoved)++;
219 }
220}
221
222/*
223 * pagevec_move_tail() must be called with IRQ disabled.
224 * Otherwise this may cause nasty races.
225 */
226static void pagevec_move_tail(struct pagevec *pvec)
227{
228 int pgmoved = 0;
229
230 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
231 __count_vm_events(PGROTATED, pgmoved);
232}
233
1da177e4
LT
234/*
235 * Writeback is about to end against a page which has been marked for immediate
236 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 237 * inactive list.
1da177e4 238 */
3dd7ae8e 239void rotate_reclaimable_page(struct page *page)
1da177e4 240{
ac6aadb2 241 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
894bc310 242 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
243 struct pagevec *pvec;
244 unsigned long flags;
245
246 page_cache_get(page);
247 local_irq_save(flags);
248 pvec = &__get_cpu_var(lru_rotate_pvecs);
249 if (!pagevec_add(pvec, page))
250 pagevec_move_tail(pvec);
251 local_irq_restore(flags);
252 }
1da177e4
LT
253}
254
3e2f41f1
KM
255static void update_page_reclaim_stat(struct zone *zone, struct page *page,
256 int file, int rotated)
257{
258 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
259 struct zone_reclaim_stat *memcg_reclaim_stat;
260
261 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
262
263 reclaim_stat->recent_scanned[file]++;
264 if (rotated)
265 reclaim_stat->recent_rotated[file]++;
266
267 if (!memcg_reclaim_stat)
268 return;
269
270 memcg_reclaim_stat->recent_scanned[file]++;
271 if (rotated)
272 memcg_reclaim_stat->recent_rotated[file]++;
273}
274
1da177e4 275/*
7a608572 276 * FIXME: speed this up?
1da177e4 277 */
7a608572 278void activate_page(struct page *page)
1da177e4
LT
279{
280 struct zone *zone = page_zone(page);
744ed144 281
7a608572 282 spin_lock_irq(&zone->lru_lock);
744ed144 283 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
284 int file = page_is_file_cache(page);
285 int lru = page_lru_base_type(page);
286 del_page_from_lru_list(zone, page, lru);
744ed144 287
7a608572
LT
288 SetPageActive(page);
289 lru += LRU_ACTIVE;
290 add_page_to_lru_list(zone, page, lru);
291 __count_vm_event(PGACTIVATE);
4f98a2fe 292
7a608572 293 update_page_reclaim_stat(zone, page, file, 1);
1da177e4
LT
294 }
295 spin_unlock_irq(&zone->lru_lock);
296}
297
298/*
299 * Mark a page as having seen activity.
300 *
301 * inactive,unreferenced -> inactive,referenced
302 * inactive,referenced -> active,unreferenced
303 * active,unreferenced -> active,referenced
304 */
920c7a5d 305void mark_page_accessed(struct page *page)
1da177e4 306{
894bc310
LS
307 if (!PageActive(page) && !PageUnevictable(page) &&
308 PageReferenced(page) && PageLRU(page)) {
1da177e4
LT
309 activate_page(page);
310 ClearPageReferenced(page);
311 } else if (!PageReferenced(page)) {
312 SetPageReferenced(page);
313 }
314}
315
316EXPORT_SYMBOL(mark_page_accessed);
317
f04e9ebb 318void __lru_cache_add(struct page *page, enum lru_list lru)
1da177e4 319{
f04e9ebb 320 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
1da177e4
LT
321
322 page_cache_get(page);
323 if (!pagevec_add(pvec, page))
f04e9ebb 324 ____pagevec_lru_add(pvec, lru);
1da177e4
LT
325 put_cpu_var(lru_add_pvecs);
326}
47846b06 327EXPORT_SYMBOL(__lru_cache_add);
1da177e4 328
f04e9ebb
KM
329/**
330 * lru_cache_add_lru - add a page to a page list
331 * @page: the page to be added to the LRU.
332 * @lru: the LRU list to which the page is added.
333 */
334void lru_cache_add_lru(struct page *page, enum lru_list lru)
1da177e4 335{
f04e9ebb 336 if (PageActive(page)) {
894bc310 337 VM_BUG_ON(PageUnevictable(page));
f04e9ebb 338 ClearPageActive(page);
894bc310
LS
339 } else if (PageUnevictable(page)) {
340 VM_BUG_ON(PageActive(page));
341 ClearPageUnevictable(page);
f04e9ebb 342 }
1da177e4 343
894bc310 344 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
f04e9ebb 345 __lru_cache_add(page, lru);
1da177e4
LT
346}
347
894bc310
LS
348/**
349 * add_page_to_unevictable_list - add a page to the unevictable list
350 * @page: the page to be added to the unevictable list
351 *
352 * Add page directly to its zone's unevictable list. To avoid races with
353 * tasks that might be making the page evictable, through eg. munlock,
354 * munmap or exit, while it's not on the lru, we want to add the page
355 * while it's locked or otherwise "invisible" to other tasks. This is
356 * difficult to do when using the pagevec cache, so bypass that.
357 */
358void add_page_to_unevictable_list(struct page *page)
359{
360 struct zone *zone = page_zone(page);
361
362 spin_lock_irq(&zone->lru_lock);
363 SetPageUnevictable(page);
364 SetPageLRU(page);
365 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
366 spin_unlock_irq(&zone->lru_lock);
367}
368
31560180
MK
369/*
370 * If the page can not be invalidated, it is moved to the
371 * inactive list to speed up its reclaim. It is moved to the
372 * head of the list, rather than the tail, to give the flusher
373 * threads some time to write it out, as this is much more
374 * effective than the single-page writeout from reclaim.
278df9f4
MK
375 *
376 * If the page isn't page_mapped and dirty/writeback, the page
377 * could reclaim asap using PG_reclaim.
378 *
379 * 1. active, mapped page -> none
380 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
381 * 3. inactive, mapped page -> none
382 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
383 * 5. inactive, clean -> inactive, tail
384 * 6. Others -> none
385 *
386 * In 4, why it moves inactive's head, the VM expects the page would
387 * be write it out by flusher threads as this is much more effective
388 * than the single-page writeout from reclaim.
31560180 389 */
3dd7ae8e 390static void lru_deactivate_fn(struct page *page, void *arg)
31560180
MK
391{
392 int lru, file;
278df9f4 393 bool active;
3dd7ae8e 394 struct zone *zone = page_zone(page);
31560180 395
278df9f4 396 if (!PageLRU(page))
31560180
MK
397 return;
398
bad49d9c
MK
399 if (PageUnevictable(page))
400 return;
401
31560180
MK
402 /* Some processes are using the page */
403 if (page_mapped(page))
404 return;
405
278df9f4
MK
406 active = PageActive(page);
407
31560180
MK
408 file = page_is_file_cache(page);
409 lru = page_lru_base_type(page);
278df9f4 410 del_page_from_lru_list(zone, page, lru + active);
31560180
MK
411 ClearPageActive(page);
412 ClearPageReferenced(page);
413 add_page_to_lru_list(zone, page, lru);
31560180 414
278df9f4
MK
415 if (PageWriteback(page) || PageDirty(page)) {
416 /*
417 * PG_reclaim could be raced with end_page_writeback
418 * It can make readahead confusing. But race window
419 * is _really_ small and it's non-critical problem.
420 */
421 SetPageReclaim(page);
422 } else {
423 /*
424 * The page's writeback ends up during pagevec
425 * We moves tha page into tail of inactive.
426 */
427 list_move_tail(&page->lru, &zone->lru[lru].list);
428 mem_cgroup_rotate_reclaimable_page(page);
429 __count_vm_event(PGROTATED);
430 }
431
432 if (active)
433 __count_vm_event(PGDEACTIVATE);
31560180
MK
434 update_page_reclaim_stat(zone, page, file, 0);
435}
436
902aaed0
HH
437/*
438 * Drain pages out of the cpu's pagevecs.
439 * Either "cpu" is the current CPU, and preemption has already been
440 * disabled; or "cpu" is being hot-unplugged, and is already dead.
441 */
442static void drain_cpu_pagevecs(int cpu)
1da177e4 443{
f04e9ebb 444 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
902aaed0 445 struct pagevec *pvec;
f04e9ebb 446 int lru;
1da177e4 447
f04e9ebb
KM
448 for_each_lru(lru) {
449 pvec = &pvecs[lru - LRU_BASE];
450 if (pagevec_count(pvec))
451 ____pagevec_lru_add(pvec, lru);
452 }
902aaed0
HH
453
454 pvec = &per_cpu(lru_rotate_pvecs, cpu);
455 if (pagevec_count(pvec)) {
456 unsigned long flags;
457
458 /* No harm done if a racing interrupt already did this */
459 local_irq_save(flags);
460 pagevec_move_tail(pvec);
461 local_irq_restore(flags);
462 }
31560180
MK
463
464 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
465 if (pagevec_count(pvec))
3dd7ae8e 466 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
31560180
MK
467}
468
469/**
470 * deactivate_page - forcefully deactivate a page
471 * @page: page to deactivate
472 *
473 * This function hints the VM that @page is a good reclaim candidate,
474 * for example if its invalidation fails due to the page being dirty
475 * or under writeback.
476 */
477void deactivate_page(struct page *page)
478{
821ed6bb
MK
479 /*
480 * In a workload with many unevictable page such as mprotect, unevictable
481 * page deactivation for accelerating reclaim is pointless.
482 */
483 if (PageUnevictable(page))
484 return;
485
31560180
MK
486 if (likely(get_page_unless_zero(page))) {
487 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
488
489 if (!pagevec_add(pvec, page))
3dd7ae8e 490 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
31560180
MK
491 put_cpu_var(lru_deactivate_pvecs);
492 }
80bfed90
AM
493}
494
495void lru_add_drain(void)
496{
902aaed0 497 drain_cpu_pagevecs(get_cpu());
80bfed90 498 put_cpu();
1da177e4
LT
499}
500
c4028958 501static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
502{
503 lru_add_drain();
504}
505
506/*
507 * Returns 0 for success
508 */
509int lru_add_drain_all(void)
510{
c4028958 511 return schedule_on_each_cpu(lru_add_drain_per_cpu);
053837fc
NP
512}
513
1da177e4
LT
514/*
515 * Batched page_cache_release(). Decrement the reference count on all the
516 * passed pages. If it fell to zero then remove the page from the LRU and
517 * free it.
518 *
519 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
520 * for the remainder of the operation.
521 *
ab33dc09
FLVC
522 * The locking in this function is against shrink_inactive_list(): we recheck
523 * the page count inside the lock to see whether shrink_inactive_list()
524 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
525 * will free it.
1da177e4
LT
526 */
527void release_pages(struct page **pages, int nr, int cold)
528{
529 int i;
530 struct pagevec pages_to_free;
531 struct zone *zone = NULL;
902aaed0 532 unsigned long uninitialized_var(flags);
1da177e4
LT
533
534 pagevec_init(&pages_to_free, cold);
535 for (i = 0; i < nr; i++) {
536 struct page *page = pages[i];
1da177e4 537
8519fb30
NP
538 if (unlikely(PageCompound(page))) {
539 if (zone) {
902aaed0 540 spin_unlock_irqrestore(&zone->lru_lock, flags);
8519fb30
NP
541 zone = NULL;
542 }
543 put_compound_page(page);
544 continue;
545 }
546
b5810039 547 if (!put_page_testzero(page))
1da177e4
LT
548 continue;
549
46453a6e
NP
550 if (PageLRU(page)) {
551 struct zone *pagezone = page_zone(page);
894bc310 552
46453a6e
NP
553 if (pagezone != zone) {
554 if (zone)
902aaed0
HH
555 spin_unlock_irqrestore(&zone->lru_lock,
556 flags);
46453a6e 557 zone = pagezone;
902aaed0 558 spin_lock_irqsave(&zone->lru_lock, flags);
46453a6e 559 }
725d704e 560 VM_BUG_ON(!PageLRU(page));
67453911 561 __ClearPageLRU(page);
1da177e4 562 del_page_from_lru(zone, page);
46453a6e
NP
563 }
564
565 if (!pagevec_add(&pages_to_free, page)) {
566 if (zone) {
902aaed0 567 spin_unlock_irqrestore(&zone->lru_lock, flags);
46453a6e 568 zone = NULL;
1da177e4 569 }
46453a6e
NP
570 __pagevec_free(&pages_to_free);
571 pagevec_reinit(&pages_to_free);
572 }
1da177e4
LT
573 }
574 if (zone)
902aaed0 575 spin_unlock_irqrestore(&zone->lru_lock, flags);
1da177e4
LT
576
577 pagevec_free(&pages_to_free);
578}
0be8557b 579EXPORT_SYMBOL(release_pages);
1da177e4
LT
580
581/*
582 * The pages which we're about to release may be in the deferred lru-addition
583 * queues. That would prevent them from really being freed right now. That's
584 * OK from a correctness point of view but is inefficient - those pages may be
585 * cache-warm and we want to give them back to the page allocator ASAP.
586 *
587 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
588 * and __pagevec_lru_add_active() call release_pages() directly to avoid
589 * mutual recursion.
590 */
591void __pagevec_release(struct pagevec *pvec)
592{
593 lru_add_drain();
594 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
595 pagevec_reinit(pvec);
596}
597
7f285701
SF
598EXPORT_SYMBOL(__pagevec_release);
599
71e3aac0
AA
600/* used by __split_huge_page_refcount() */
601void lru_add_page_tail(struct zone* zone,
602 struct page *page, struct page *page_tail)
603{
604 int active;
605 enum lru_list lru;
606 const int file = 0;
607 struct list_head *head;
608
609 VM_BUG_ON(!PageHead(page));
610 VM_BUG_ON(PageCompound(page_tail));
611 VM_BUG_ON(PageLRU(page_tail));
612 VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
613
614 SetPageLRU(page_tail);
615
616 if (page_evictable(page_tail, NULL)) {
617 if (PageActive(page)) {
618 SetPageActive(page_tail);
619 active = 1;
620 lru = LRU_ACTIVE_ANON;
621 } else {
622 active = 0;
623 lru = LRU_INACTIVE_ANON;
624 }
625 update_page_reclaim_stat(zone, page_tail, file, active);
626 if (likely(PageLRU(page)))
627 head = page->lru.prev;
628 else
629 head = &zone->lru[lru].list;
630 __add_page_to_lru_list(zone, page_tail, lru, head);
631 } else {
632 SetPageUnevictable(page_tail);
633 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
634 }
635}
636
3dd7ae8e
SL
637static void ____pagevec_lru_add_fn(struct page *page, void *arg)
638{
639 enum lru_list lru = (enum lru_list)arg;
640 struct zone *zone = page_zone(page);
641 int file = is_file_lru(lru);
642 int active = is_active_lru(lru);
643
644 VM_BUG_ON(PageActive(page));
645 VM_BUG_ON(PageUnevictable(page));
646 VM_BUG_ON(PageLRU(page));
647
648 SetPageLRU(page);
649 if (active)
650 SetPageActive(page);
651 update_page_reclaim_stat(zone, page, file, active);
652 add_page_to_lru_list(zone, page, lru);
653}
654
1da177e4
LT
655/*
656 * Add the passed pages to the LRU, then drop the caller's refcount
657 * on them. Reinitialises the caller's pagevec.
658 */
f04e9ebb 659void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
1da177e4 660{
894bc310 661 VM_BUG_ON(is_unevictable_lru(lru));
1da177e4 662
3dd7ae8e 663 pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
1da177e4
LT
664}
665
f04e9ebb 666EXPORT_SYMBOL(____pagevec_lru_add);
1da177e4
LT
667
668/*
669 * Try to drop buffers from the pages in a pagevec
670 */
671void pagevec_strip(struct pagevec *pvec)
672{
673 int i;
674
675 for (i = 0; i < pagevec_count(pvec); i++) {
676 struct page *page = pvec->pages[i];
677
266cf658
DH
678 if (page_has_private(page) && trylock_page(page)) {
679 if (page_has_private(page))
5b40dc78 680 try_to_release_page(page, 0);
1da177e4
LT
681 unlock_page(page);
682 }
683 }
684}
685
686/**
687 * pagevec_lookup - gang pagecache lookup
688 * @pvec: Where the resulting pages are placed
689 * @mapping: The address_space to search
690 * @start: The starting page index
691 * @nr_pages: The maximum number of pages
692 *
693 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
694 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
695 * reference against the pages in @pvec.
696 *
697 * The search returns a group of mapping-contiguous pages with ascending
698 * indexes. There may be holes in the indices due to not-present pages.
699 *
700 * pagevec_lookup() returns the number of pages which were found.
701 */
702unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
703 pgoff_t start, unsigned nr_pages)
704{
705 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
706 return pagevec_count(pvec);
707}
708
78539fdf
CH
709EXPORT_SYMBOL(pagevec_lookup);
710
1da177e4
LT
711unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
712 pgoff_t *index, int tag, unsigned nr_pages)
713{
714 pvec->nr = find_get_pages_tag(mapping, index, tag,
715 nr_pages, pvec->pages);
716 return pagevec_count(pvec);
717}
718
7f285701 719EXPORT_SYMBOL(pagevec_lookup_tag);
1da177e4 720
1da177e4
LT
721/*
722 * Perform any setup for the swap system
723 */
724void __init swap_setup(void)
725{
4481374c 726 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1da177e4 727
e0bf68dd
PZ
728#ifdef CONFIG_SWAP
729 bdi_init(swapper_space.backing_dev_info);
730#endif
731
1da177e4
LT
732 /* Use a smaller cluster for small-memory machines */
733 if (megs < 16)
734 page_cluster = 2;
735 else
736 page_cluster = 3;
737 /*
738 * Right now other parts of the system means that we
739 * _really_ don't want to cluster much more
740 */
1da177e4 741}