mm/swap: Add folio_activate()
[linux-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
8cc621d2 39#include <linux/buffer_head.h>
1da177e4 40
64d6519d
LS
41#include "internal.h"
42
c6286c98
MG
43#define CREATE_TRACE_POINTS
44#include <trace/events/pagemap.h>
45
1da177e4
LT
46/* How many pages do we try to swap or page in/out together? */
47int page_cluster;
48
b01b2141
IM
49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
50struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53};
54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56};
57
58/*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
a4a921aa 68#ifdef CONFIG_SMP
b01b2141 69 struct pagevec activate_page;
a4a921aa 70#endif
b01b2141
IM
71};
72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74};
902aaed0 75
b221385b
AB
76/*
77 * This path almost never happens for VM activity - pages are normally
78 * freed via pagevecs. But it gets used by networking.
79 */
920c7a5d 80static void __page_cache_release(struct page *page)
b221385b
AB
81{
82 if (PageLRU(page)) {
e809c3fe 83 struct folio *folio = page_folio(page);
fa9add64
HD
84 struct lruvec *lruvec;
85 unsigned long flags;
b221385b 86
e809c3fe 87 lruvec = folio_lruvec_lock_irqsave(folio, &flags);
46ae6b2c 88 del_page_from_lru_list(page, lruvec);
87560179 89 __clear_page_lru_flags(page);
6168d0da 90 unlock_page_lruvec_irqrestore(lruvec, flags);
b221385b 91 }
62906027 92 __ClearPageWaiters(page);
91807063
AA
93}
94
95static void __put_single_page(struct page *page)
96{
97 __page_cache_release(page);
bbc6b703 98 mem_cgroup_uncharge(page_folio(page));
44042b44 99 free_unref_page(page, 0);
b221385b
AB
100}
101
91807063 102static void __put_compound_page(struct page *page)
1da177e4 103{
822fc613
NH
104 /*
105 * __page_cache_release() is supposed to be called for thp, not for
106 * hugetlb. This is because hugetlb page does never have PageLRU set
107 * (it's never listed to any LRU lists) and no memcg routines should
108 * be called for hugetlb (it has a separate hugetlb_cgroup.)
109 */
110 if (!PageHuge(page))
111 __page_cache_release(page);
ff45fc3c 112 destroy_compound_page(page);
91807063
AA
113}
114
ddc58f27 115void __put_page(struct page *page)
8519fb30 116{
71389703
DW
117 if (is_zone_device_page(page)) {
118 put_dev_pagemap(page->pgmap);
119
120 /*
121 * The page belongs to the device that created pgmap. Do
122 * not return it to page allocator.
123 */
124 return;
125 }
126
8519fb30 127 if (unlikely(PageCompound(page)))
ddc58f27
KS
128 __put_compound_page(page);
129 else
91807063 130 __put_single_page(page);
1da177e4 131}
ddc58f27 132EXPORT_SYMBOL(__put_page);
70b50f94 133
1d7ea732 134/**
7682486b
RD
135 * put_pages_list() - release a list of pages
136 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
137 *
138 * Release a list of pages which are strung together on page.lru. Currently
139 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
140 */
141void put_pages_list(struct list_head *pages)
142{
143 while (!list_empty(pages)) {
144 struct page *victim;
145
f86196ea 146 victim = lru_to_page(pages);
1d7ea732 147 list_del(&victim->lru);
09cbfeaf 148 put_page(victim);
1d7ea732
AZ
149 }
150}
151EXPORT_SYMBOL(put_pages_list);
152
18022c5d
MG
153/*
154 * get_kernel_pages() - pin kernel pages in memory
155 * @kiov: An array of struct kvec structures
156 * @nr_segs: number of segments to pin
157 * @write: pinning for read/write, currently ignored
158 * @pages: array that receives pointers to the pages pinned.
159 * Should be at least nr_segs long.
160 *
161 * Returns number of pages pinned. This may be fewer than the number
162 * requested. If nr_pages is 0 or negative, returns 0. If no pages
163 * were pinned, returns -errno. Each page returned must be released
164 * with a put_page() call when it is finished with.
165 */
166int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
167 struct page **pages)
168{
169 int seg;
170
171 for (seg = 0; seg < nr_segs; seg++) {
172 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
173 return seg;
174
5a178119 175 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 176 get_page(pages[seg]);
18022c5d
MG
177 }
178
179 return seg;
180}
181EXPORT_SYMBOL_GPL(get_kernel_pages);
182
3dd7ae8e 183static void pagevec_lru_move_fn(struct pagevec *pvec,
c7c7b80c 184 void (*move_fn)(struct page *page, struct lruvec *lruvec))
902aaed0
HH
185{
186 int i;
6168d0da 187 struct lruvec *lruvec = NULL;
3dd7ae8e 188 unsigned long flags = 0;
902aaed0
HH
189
190 for (i = 0; i < pagevec_count(pvec); i++) {
191 struct page *page = pvec->pages[i];
0de340cb 192 struct folio *folio = page_folio(page);
3dd7ae8e 193
fc574c23
AS
194 /* block memcg migration during page moving between lru */
195 if (!TestClearPageLRU(page))
196 continue;
197
0de340cb 198 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
c7c7b80c 199 (*move_fn)(page, lruvec);
fc574c23
AS
200
201 SetPageLRU(page);
902aaed0 202 }
6168d0da
AS
203 if (lruvec)
204 unlock_page_lruvec_irqrestore(lruvec, flags);
c6f92f9f 205 release_pages(pvec->pages, pvec->nr);
83896fb5 206 pagevec_reinit(pvec);
d8505dee
SL
207}
208
c7c7b80c 209static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 210{
575ced1c
MWO
211 struct folio *folio = page_folio(page);
212
213 if (!folio_test_unevictable(folio)) {
214 lruvec_del_folio(lruvec, folio);
215 folio_clear_active(folio);
216 lruvec_add_folio_tail(lruvec, folio);
217 __count_vm_events(PGROTATED, folio_nr_pages(folio));
3dd7ae8e
SL
218 }
219}
220
d479960e
MK
221/* return true if pagevec needs to drain */
222static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
223{
224 bool ret = false;
225
226 if (!pagevec_add(pvec, page) || PageCompound(page) ||
227 lru_cache_disabled())
228 ret = true;
229
230 return ret;
231}
232
1da177e4 233/*
575ced1c
MWO
234 * Writeback is about to end against a folio which has been marked for
235 * immediate reclaim. If it still appears to be reclaimable, move it
236 * to the tail of the inactive list.
c7c7b80c 237 *
575ced1c 238 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
1da177e4 239 */
575ced1c 240void folio_rotate_reclaimable(struct folio *folio)
1da177e4 241{
575ced1c
MWO
242 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
243 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
ac6aadb2
MS
244 struct pagevec *pvec;
245 unsigned long flags;
246
575ced1c 247 folio_get(folio);
b01b2141
IM
248 local_lock_irqsave(&lru_rotate.lock, flags);
249 pvec = this_cpu_ptr(&lru_rotate.pvec);
575ced1c 250 if (pagevec_add_and_need_flush(pvec, &folio->page))
c7c7b80c 251 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 252 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 253 }
1da177e4
LT
254}
255
96f8bf4f 256void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 257{
7cf111bc
JW
258 do {
259 unsigned long lrusize;
260
6168d0da
AS
261 /*
262 * Hold lruvec->lru_lock is safe here, since
263 * 1) The pinned lruvec in reclaim, or
264 * 2) From a pre-LRU page during refault (which also holds the
265 * rcu lock, so would be safe even if the page was on the LRU
266 * and could move simultaneously to a new lruvec).
267 */
268 spin_lock_irq(&lruvec->lru_lock);
7cf111bc 269 /* Record cost event */
96f8bf4f
JW
270 if (file)
271 lruvec->file_cost += nr_pages;
7cf111bc 272 else
96f8bf4f 273 lruvec->anon_cost += nr_pages;
7cf111bc
JW
274
275 /*
276 * Decay previous events
277 *
278 * Because workloads change over time (and to avoid
279 * overflow) we keep these statistics as a floating
280 * average, which ends up weighing recent refaults
281 * more than old ones.
282 */
283 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
284 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
285 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
286 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
287
288 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
289 lruvec->file_cost /= 2;
290 lruvec->anon_cost /= 2;
291 }
6168d0da 292 spin_unlock_irq(&lruvec->lru_lock);
7cf111bc 293 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
294}
295
96f8bf4f
JW
296void lru_note_cost_page(struct page *page)
297{
b1baabd9
MWO
298 struct folio *folio = page_folio(page);
299 lru_note_cost(folio_lruvec(folio),
6c357848 300 page_is_file_lru(page), thp_nr_pages(page));
96f8bf4f
JW
301}
302
f2d27392 303static void __folio_activate(struct folio *folio, struct lruvec *lruvec)
1da177e4 304{
f2d27392
MWO
305 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
306 long nr_pages = folio_nr_pages(folio);
744ed144 307
f2d27392
MWO
308 lruvec_del_folio(lruvec, folio);
309 folio_set_active(folio);
310 lruvec_add_folio(lruvec, folio);
311 trace_mm_lru_activate(folio);
4f98a2fe 312
21e330fc
SB
313 __count_vm_events(PGACTIVATE, nr_pages);
314 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
315 nr_pages);
1da177e4 316 }
eb709b0d
SL
317}
318
319#ifdef CONFIG_SMP
f2d27392
MWO
320static void __activate_page(struct page *page, struct lruvec *lruvec)
321{
322 return __folio_activate(page_folio(page), lruvec);
323}
324
eb709b0d
SL
325static void activate_page_drain(int cpu)
326{
b01b2141 327 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
328
329 if (pagevec_count(pvec))
c7c7b80c 330 pagevec_lru_move_fn(pvec, __activate_page);
eb709b0d
SL
331}
332
5fbc4616
CM
333static bool need_activate_page_drain(int cpu)
334{
b01b2141 335 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
336}
337
f2d27392 338static void folio_activate(struct folio *folio)
eb709b0d 339{
f2d27392
MWO
340 if (folio_test_lru(folio) && !folio_test_active(folio) &&
341 !folio_test_unevictable(folio)) {
b01b2141 342 struct pagevec *pvec;
eb709b0d 343
f2d27392 344 folio_get(folio);
b01b2141
IM
345 local_lock(&lru_pvecs.lock);
346 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
f2d27392 347 if (pagevec_add_and_need_flush(pvec, &folio->page))
c7c7b80c 348 pagevec_lru_move_fn(pvec, __activate_page);
b01b2141 349 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
350 }
351}
352
353#else
354static inline void activate_page_drain(int cpu)
355{
356}
357
f2d27392 358static void folio_activate(struct folio *folio)
eb709b0d 359{
6168d0da 360 struct lruvec *lruvec;
eb709b0d 361
f2d27392 362 if (folio_test_clear_lru(folio)) {
e809c3fe 363 lruvec = folio_lruvec_lock_irq(folio);
f2d27392 364 __folio_activate(folio, lruvec);
6168d0da 365 unlock_page_lruvec_irq(lruvec);
f2d27392 366 folio_set_lru(folio);
6168d0da 367 }
1da177e4 368}
eb709b0d 369#endif
1da177e4 370
059285a2
MG
371static void __lru_cache_activate_page(struct page *page)
372{
b01b2141 373 struct pagevec *pvec;
059285a2
MG
374 int i;
375
b01b2141
IM
376 local_lock(&lru_pvecs.lock);
377 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
378
059285a2
MG
379 /*
380 * Search backwards on the optimistic assumption that the page being
381 * activated has just been added to this pagevec. Note that only
382 * the local pagevec is examined as a !PageLRU page could be in the
383 * process of being released, reclaimed, migrated or on a remote
384 * pagevec that is currently being drained. Furthermore, marking
385 * a remote pagevec's page PageActive potentially hits a race where
386 * a page is marked PageActive just after it is added to the inactive
387 * list causing accounting errors and BUG_ON checks to trigger.
388 */
389 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
390 struct page *pagevec_page = pvec->pages[i];
391
392 if (pagevec_page == page) {
393 SetPageActive(page);
394 break;
395 }
396 }
397
b01b2141 398 local_unlock(&lru_pvecs.lock);
059285a2
MG
399}
400
1da177e4
LT
401/*
402 * Mark a page as having seen activity.
403 *
404 * inactive,unreferenced -> inactive,referenced
405 * inactive,referenced -> active,unreferenced
406 * active,unreferenced -> active,referenced
eb39d618
HD
407 *
408 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
409 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 410 */
920c7a5d 411void mark_page_accessed(struct page *page)
1da177e4 412{
e90309c9 413 page = compound_head(page);
059285a2 414
a1100a74
FW
415 if (!PageReferenced(page)) {
416 SetPageReferenced(page);
417 } else if (PageUnevictable(page)) {
418 /*
419 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
420 * this list is never rotated or maintained, so marking an
421 * evictable page accessed has no effect.
422 */
423 } else if (!PageActive(page)) {
059285a2
MG
424 /*
425 * If the page is on the LRU, queue it for activation via
b01b2141 426 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
427 * pagevec, mark it active and it'll be moved to the active
428 * LRU on the next drain.
429 */
430 if (PageLRU(page))
f2d27392 431 folio_activate(page_folio(page));
059285a2
MG
432 else
433 __lru_cache_activate_page(page);
1da177e4 434 ClearPageReferenced(page);
c5ce619a 435 workingset_activation(page_folio(page));
1da177e4 436 }
33c3fc71
VD
437 if (page_is_idle(page))
438 clear_page_idle(page);
1da177e4 439}
1da177e4
LT
440EXPORT_SYMBOL(mark_page_accessed);
441
f04e9ebb 442/**
c53954a0 443 * lru_cache_add - add a page to a page list
f04e9ebb 444 * @page: the page to be added to the LRU.
2329d375
JZ
445 *
446 * Queue the page for addition to the LRU via pagevec. The decision on whether
447 * to add the page to the [in]active [file|anon] list is deferred until the
448 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
449 * have the page added to the active list using mark_page_accessed().
f04e9ebb 450 */
c53954a0 451void lru_cache_add(struct page *page)
1da177e4 452{
6058eaec
JW
453 struct pagevec *pvec;
454
309381fe
SL
455 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
456 VM_BUG_ON_PAGE(PageLRU(page), page);
6058eaec
JW
457
458 get_page(page);
459 local_lock(&lru_pvecs.lock);
460 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
d479960e 461 if (pagevec_add_and_need_flush(pvec, page))
6058eaec
JW
462 __pagevec_lru_add(pvec);
463 local_unlock(&lru_pvecs.lock);
1da177e4 464}
6058eaec 465EXPORT_SYMBOL(lru_cache_add);
1da177e4 466
00501b53 467/**
b518154e 468 * lru_cache_add_inactive_or_unevictable
00501b53
JW
469 * @page: the page to be added to LRU
470 * @vma: vma in which page is mapped for determining reclaimability
471 *
b518154e 472 * Place @page on the inactive or unevictable LRU list, depending on its
12eab428 473 * evictability.
00501b53 474 */
b518154e 475void lru_cache_add_inactive_or_unevictable(struct page *page,
00501b53
JW
476 struct vm_area_struct *vma)
477{
b518154e
JK
478 bool unevictable;
479
00501b53
JW
480 VM_BUG_ON_PAGE(PageLRU(page), page);
481
b518154e
JK
482 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
483 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
0964730b 484 int nr_pages = thp_nr_pages(page);
00501b53 485 /*
cb152a1a 486 * We use the irq-unsafe __mod_zone_page_state because this
00501b53
JW
487 * counter is not modified from interrupt context, and the pte
488 * lock is held(spinlock), which implies preemption disabled.
489 */
0964730b
HD
490 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
491 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
00501b53 492 }
9c4e6b1a 493 lru_cache_add(page);
00501b53
JW
494}
495
31560180
MK
496/*
497 * If the page can not be invalidated, it is moved to the
498 * inactive list to speed up its reclaim. It is moved to the
499 * head of the list, rather than the tail, to give the flusher
500 * threads some time to write it out, as this is much more
501 * effective than the single-page writeout from reclaim.
278df9f4
MK
502 *
503 * If the page isn't page_mapped and dirty/writeback, the page
504 * could reclaim asap using PG_reclaim.
505 *
506 * 1. active, mapped page -> none
507 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
508 * 3. inactive, mapped page -> none
509 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
510 * 5. inactive, clean -> inactive, tail
511 * 6. Others -> none
512 *
513 * In 4, why it moves inactive's head, the VM expects the page would
514 * be write it out by flusher threads as this is much more effective
515 * than the single-page writeout from reclaim.
31560180 516 */
c7c7b80c 517static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
31560180 518{
46ae6b2c 519 bool active = PageActive(page);
6c357848 520 int nr_pages = thp_nr_pages(page);
31560180 521
bad49d9c
MK
522 if (PageUnevictable(page))
523 return;
524
31560180
MK
525 /* Some processes are using the page */
526 if (page_mapped(page))
527 return;
528
46ae6b2c 529 del_page_from_lru_list(page, lruvec);
31560180
MK
530 ClearPageActive(page);
531 ClearPageReferenced(page);
31560180 532
278df9f4
MK
533 if (PageWriteback(page) || PageDirty(page)) {
534 /*
535 * PG_reclaim could be raced with end_page_writeback
536 * It can make readahead confusing. But race window
537 * is _really_ small and it's non-critical problem.
538 */
3a9c9788 539 add_page_to_lru_list(page, lruvec);
278df9f4
MK
540 SetPageReclaim(page);
541 } else {
542 /*
543 * The page's writeback ends up during pagevec
c4ffefd1 544 * We move that page into tail of inactive.
278df9f4 545 */
3a9c9788 546 add_page_to_lru_list_tail(page, lruvec);
5d91f31f 547 __count_vm_events(PGROTATED, nr_pages);
278df9f4
MK
548 }
549
21e330fc 550 if (active) {
5d91f31f 551 __count_vm_events(PGDEACTIVATE, nr_pages);
21e330fc
SB
552 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
553 nr_pages);
554 }
31560180
MK
555}
556
c7c7b80c 557static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
9c276cc6 558{
fc574c23 559 if (PageActive(page) && !PageUnevictable(page)) {
6c357848 560 int nr_pages = thp_nr_pages(page);
9c276cc6 561
46ae6b2c 562 del_page_from_lru_list(page, lruvec);
9c276cc6
MK
563 ClearPageActive(page);
564 ClearPageReferenced(page);
3a9c9788 565 add_page_to_lru_list(page, lruvec);
9c276cc6 566
21e330fc
SB
567 __count_vm_events(PGDEACTIVATE, nr_pages);
568 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
569 nr_pages);
9c276cc6
MK
570 }
571}
10853a03 572
c7c7b80c 573static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
10853a03 574{
fc574c23 575 if (PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 576 !PageSwapCache(page) && !PageUnevictable(page)) {
6c357848 577 int nr_pages = thp_nr_pages(page);
10853a03 578
46ae6b2c 579 del_page_from_lru_list(page, lruvec);
10853a03
MK
580 ClearPageActive(page);
581 ClearPageReferenced(page);
f7ad2a6c 582 /*
9de4f22a
HY
583 * Lazyfree pages are clean anonymous pages. They have
584 * PG_swapbacked flag cleared, to distinguish them from normal
585 * anonymous pages
f7ad2a6c
SL
586 */
587 ClearPageSwapBacked(page);
3a9c9788 588 add_page_to_lru_list(page, lruvec);
10853a03 589
21e330fc
SB
590 __count_vm_events(PGLAZYFREE, nr_pages);
591 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
592 nr_pages);
10853a03
MK
593 }
594}
595
902aaed0
HH
596/*
597 * Drain pages out of the cpu's pagevecs.
598 * Either "cpu" is the current CPU, and preemption has already been
599 * disabled; or "cpu" is being hot-unplugged, and is already dead.
600 */
f0cb3c76 601void lru_add_drain_cpu(int cpu)
1da177e4 602{
b01b2141 603 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 604
13f7f789 605 if (pagevec_count(pvec))
a0b8cab3 606 __pagevec_lru_add(pvec);
902aaed0 607
b01b2141 608 pvec = &per_cpu(lru_rotate.pvec, cpu);
7e0cc01e
QC
609 /* Disabling interrupts below acts as a compiler barrier. */
610 if (data_race(pagevec_count(pvec))) {
902aaed0
HH
611 unsigned long flags;
612
613 /* No harm done if a racing interrupt already did this */
b01b2141 614 local_lock_irqsave(&lru_rotate.lock, flags);
c7c7b80c 615 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 616 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 617 }
31560180 618
b01b2141 619 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 620 if (pagevec_count(pvec))
c7c7b80c 621 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
eb709b0d 622
b01b2141 623 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6 624 if (pagevec_count(pvec))
c7c7b80c 625 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
9c276cc6 626
b01b2141 627 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 628 if (pagevec_count(pvec))
c7c7b80c 629 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
10853a03 630
eb709b0d 631 activate_page_drain(cpu);
31560180
MK
632}
633
634/**
cc5993bd 635 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
636 * @page: page to deactivate
637 *
638 * This function hints the VM that @page is a good reclaim candidate,
639 * for example if its invalidation fails due to the page being dirty
640 * or under writeback.
641 */
cc5993bd 642void deactivate_file_page(struct page *page)
31560180 643{
821ed6bb 644 /*
cc5993bd
MK
645 * In a workload with many unevictable page such as mprotect,
646 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
647 */
648 if (PageUnevictable(page))
649 return;
650
31560180 651 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
652 struct pagevec *pvec;
653
654 local_lock(&lru_pvecs.lock);
655 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 656
d479960e 657 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 658 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
b01b2141 659 local_unlock(&lru_pvecs.lock);
31560180 660 }
80bfed90
AM
661}
662
9c276cc6
MK
663/*
664 * deactivate_page - deactivate a page
665 * @page: page to deactivate
666 *
667 * deactivate_page() moves @page to the inactive list if @page was on the active
668 * list and was not an unevictable page. This is done to accelerate the reclaim
669 * of @page.
670 */
671void deactivate_page(struct page *page)
672{
673 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 674 struct pagevec *pvec;
9c276cc6 675
b01b2141
IM
676 local_lock(&lru_pvecs.lock);
677 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6 678 get_page(page);
d479960e 679 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 680 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
b01b2141 681 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
682 }
683}
684
10853a03 685/**
f7ad2a6c 686 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
687 * @page: page to deactivate
688 *
f7ad2a6c
SL
689 * mark_page_lazyfree() moves @page to the inactive file list.
690 * This is done to accelerate the reclaim of @page.
10853a03 691 */
f7ad2a6c 692void mark_page_lazyfree(struct page *page)
10853a03 693{
f7ad2a6c 694 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 695 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 696 struct pagevec *pvec;
10853a03 697
b01b2141
IM
698 local_lock(&lru_pvecs.lock);
699 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 700 get_page(page);
d479960e 701 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 702 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
b01b2141 703 local_unlock(&lru_pvecs.lock);
10853a03
MK
704 }
705}
706
80bfed90
AM
707void lru_add_drain(void)
708{
b01b2141
IM
709 local_lock(&lru_pvecs.lock);
710 lru_add_drain_cpu(smp_processor_id());
711 local_unlock(&lru_pvecs.lock);
712}
713
243418e3
MK
714/*
715 * It's called from per-cpu workqueue context in SMP case so
716 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
717 * the same cpu. It shouldn't be a problem in !SMP case since
718 * the core is only one and the locks will disable preemption.
719 */
720static void lru_add_and_bh_lrus_drain(void)
721{
722 local_lock(&lru_pvecs.lock);
723 lru_add_drain_cpu(smp_processor_id());
724 local_unlock(&lru_pvecs.lock);
725 invalidate_bh_lrus_cpu();
726}
727
b01b2141
IM
728void lru_add_drain_cpu_zone(struct zone *zone)
729{
730 local_lock(&lru_pvecs.lock);
731 lru_add_drain_cpu(smp_processor_id());
732 drain_local_pages(zone);
733 local_unlock(&lru_pvecs.lock);
1da177e4
LT
734}
735
6ea183d6
MH
736#ifdef CONFIG_SMP
737
738static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
739
c4028958 740static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc 741{
243418e3 742 lru_add_and_bh_lrus_drain();
053837fc
NP
743}
744
9852a721
MH
745/*
746 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
747 * kworkers being shut down before our page_alloc_cpu_dead callback is
748 * executed on the offlined cpu.
749 * Calling this function with cpu hotplug locks held can actually lead
750 * to obscure indirect dependencies via WQ context.
751 */
d479960e 752inline void __lru_add_drain_all(bool force_all_cpus)
053837fc 753{
6446a513
AD
754 /*
755 * lru_drain_gen - Global pages generation number
756 *
757 * (A) Definition: global lru_drain_gen = x implies that all generations
758 * 0 < n <= x are already *scheduled* for draining.
759 *
760 * This is an optimization for the highly-contended use case where a
761 * user space workload keeps constantly generating a flow of pages for
762 * each CPU.
763 */
764 static unsigned int lru_drain_gen;
5fbc4616 765 static struct cpumask has_work;
6446a513
AD
766 static DEFINE_MUTEX(lock);
767 unsigned cpu, this_gen;
5fbc4616 768
ce612879
MH
769 /*
770 * Make sure nobody triggers this path before mm_percpu_wq is fully
771 * initialized.
772 */
773 if (WARN_ON(!mm_percpu_wq))
774 return;
775
6446a513
AD
776 /*
777 * Guarantee pagevec counter stores visible by this CPU are visible to
778 * other CPUs before loading the current drain generation.
779 */
780 smp_mb();
781
782 /*
783 * (B) Locally cache global LRU draining generation number
784 *
785 * The read barrier ensures that the counter is loaded before the mutex
786 * is taken. It pairs with smp_mb() inside the mutex critical section
787 * at (D).
788 */
789 this_gen = smp_load_acquire(&lru_drain_gen);
eef1a429 790
5fbc4616 791 mutex_lock(&lock);
eef1a429
KK
792
793 /*
6446a513
AD
794 * (C) Exit the draining operation if a newer generation, from another
795 * lru_add_drain_all(), was already scheduled for draining. Check (A).
eef1a429 796 */
d479960e 797 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
eef1a429
KK
798 goto done;
799
6446a513
AD
800 /*
801 * (D) Increment global generation number
802 *
803 * Pairs with smp_load_acquire() at (B), outside of the critical
804 * section. Use a full memory barrier to guarantee that the new global
805 * drain generation number is stored before loading pagevec counters.
806 *
807 * This pairing must be done here, before the for_each_online_cpu loop
808 * below which drains the page vectors.
809 *
810 * Let x, y, and z represent some system CPU numbers, where x < y < z.
cb152a1a 811 * Assume CPU #z is in the middle of the for_each_online_cpu loop
6446a513
AD
812 * below and has already reached CPU #y's per-cpu data. CPU #x comes
813 * along, adds some pages to its per-cpu vectors, then calls
814 * lru_add_drain_all().
815 *
816 * If the paired barrier is done at any later step, e.g. after the
817 * loop, CPU #x will just exit at (C) and miss flushing out all of its
818 * added pages.
819 */
820 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
821 smp_mb();
eef1a429 822
5fbc4616 823 cpumask_clear(&has_work);
5fbc4616
CM
824 for_each_online_cpu(cpu) {
825 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
826
d479960e
MK
827 if (force_all_cpus ||
828 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
7e0cc01e 829 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
b01b2141
IM
830 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
831 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
832 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
8cc621d2
MK
833 need_activate_page_drain(cpu) ||
834 has_bh_in_lru(cpu, NULL)) {
5fbc4616 835 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 836 queue_work_on(cpu, mm_percpu_wq, work);
6446a513 837 __cpumask_set_cpu(cpu, &has_work);
5fbc4616
CM
838 }
839 }
840
841 for_each_cpu(cpu, &has_work)
842 flush_work(&per_cpu(lru_add_drain_work, cpu));
843
eef1a429 844done:
5fbc4616 845 mutex_unlock(&lock);
053837fc 846}
d479960e
MK
847
848void lru_add_drain_all(void)
849{
850 __lru_add_drain_all(false);
851}
6ea183d6
MH
852#else
853void lru_add_drain_all(void)
854{
855 lru_add_drain();
856}
6446a513 857#endif /* CONFIG_SMP */
053837fc 858
d479960e
MK
859atomic_t lru_disable_count = ATOMIC_INIT(0);
860
861/*
862 * lru_cache_disable() needs to be called before we start compiling
863 * a list of pages to be migrated using isolate_lru_page().
864 * It drains pages on LRU cache and then disable on all cpus until
865 * lru_cache_enable is called.
866 *
867 * Must be paired with a call to lru_cache_enable().
868 */
869void lru_cache_disable(void)
870{
871 atomic_inc(&lru_disable_count);
872#ifdef CONFIG_SMP
873 /*
874 * lru_add_drain_all in the force mode will schedule draining on
875 * all online CPUs so any calls of lru_cache_disabled wrapped by
876 * local_lock or preemption disabled would be ordered by that.
877 * The atomic operation doesn't need to have stronger ordering
878 * requirements because that is enforeced by the scheduling
879 * guarantees.
880 */
881 __lru_add_drain_all(true);
882#else
243418e3 883 lru_add_and_bh_lrus_drain();
d479960e
MK
884#endif
885}
886
aabfb572 887/**
ea1754a0 888 * release_pages - batched put_page()
aabfb572
MH
889 * @pages: array of pages to release
890 * @nr: number of pages
1da177e4 891 *
aabfb572
MH
892 * Decrement the reference count on all the pages in @pages. If it
893 * fell to zero, remove the page from the LRU and free it.
1da177e4 894 */
c6f92f9f 895void release_pages(struct page **pages, int nr)
1da177e4
LT
896{
897 int i;
cc59850e 898 LIST_HEAD(pages_to_free);
6168d0da 899 struct lruvec *lruvec = NULL;
0de340cb 900 unsigned long flags = 0;
3f649ab7 901 unsigned int lock_batch;
1da177e4 902
1da177e4
LT
903 for (i = 0; i < nr; i++) {
904 struct page *page = pages[i];
0de340cb 905 struct folio *folio = page_folio(page);
1da177e4 906
aabfb572
MH
907 /*
908 * Make sure the IRQ-safe lock-holding time does not get
909 * excessive with a continuous string of pages from the
6168d0da 910 * same lruvec. The lock is held only if lruvec != NULL.
aabfb572 911 */
6168d0da
AS
912 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
913 unlock_page_lruvec_irqrestore(lruvec, flags);
914 lruvec = NULL;
aabfb572
MH
915 }
916
0de340cb 917 page = &folio->page;
6fcb52a5 918 if (is_huge_zero_page(page))
aa88b68c 919 continue;
aa88b68c 920
c5d6c45e 921 if (is_zone_device_page(page)) {
6168d0da
AS
922 if (lruvec) {
923 unlock_page_lruvec_irqrestore(lruvec, flags);
924 lruvec = NULL;
df6ad698 925 }
c5d6c45e
IW
926 /*
927 * ZONE_DEVICE pages that return 'false' from
a3e7bea0 928 * page_is_devmap_managed() do not require special
c5d6c45e
IW
929 * processing, and instead, expect a call to
930 * put_page_testzero().
931 */
07d80269
JH
932 if (page_is_devmap_managed(page)) {
933 put_devmap_managed_page(page);
c5d6c45e 934 continue;
07d80269 935 }
43fbdeb3
RC
936 if (put_page_testzero(page))
937 put_dev_pagemap(page->pgmap);
938 continue;
df6ad698
JG
939 }
940
b5810039 941 if (!put_page_testzero(page))
1da177e4
LT
942 continue;
943
ddc58f27 944 if (PageCompound(page)) {
6168d0da
AS
945 if (lruvec) {
946 unlock_page_lruvec_irqrestore(lruvec, flags);
947 lruvec = NULL;
ddc58f27
KS
948 }
949 __put_compound_page(page);
950 continue;
951 }
952
46453a6e 953 if (PageLRU(page)) {
2a5e4e34
AD
954 struct lruvec *prev_lruvec = lruvec;
955
0de340cb 956 lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
2a5e4e34
AD
957 &flags);
958 if (prev_lruvec != lruvec)
aabfb572 959 lock_batch = 0;
fa9add64 960
46ae6b2c 961 del_page_from_lru_list(page, lruvec);
87560179 962 __clear_page_lru_flags(page);
46453a6e
NP
963 }
964
62906027 965 __ClearPageWaiters(page);
c53954a0 966
cc59850e 967 list_add(&page->lru, &pages_to_free);
1da177e4 968 }
6168d0da
AS
969 if (lruvec)
970 unlock_page_lruvec_irqrestore(lruvec, flags);
1da177e4 971
747db954 972 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 973 free_unref_page_list(&pages_to_free);
1da177e4 974}
0be8557b 975EXPORT_SYMBOL(release_pages);
1da177e4
LT
976
977/*
978 * The pages which we're about to release may be in the deferred lru-addition
979 * queues. That would prevent them from really being freed right now. That's
980 * OK from a correctness point of view but is inefficient - those pages may be
981 * cache-warm and we want to give them back to the page allocator ASAP.
982 *
983 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
984 * and __pagevec_lru_add_active() call release_pages() directly to avoid
985 * mutual recursion.
986 */
987void __pagevec_release(struct pagevec *pvec)
988{
7f0b5fb9 989 if (!pvec->percpu_pvec_drained) {
d9ed0d08 990 lru_add_drain();
7f0b5fb9 991 pvec->percpu_pvec_drained = true;
d9ed0d08 992 }
c6f92f9f 993 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
994 pagevec_reinit(pvec);
995}
7f285701
SF
996EXPORT_SYMBOL(__pagevec_release);
997
c7c7b80c 998static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 999{
9c4e6b1a 1000 int was_unevictable = TestClearPageUnevictable(page);
6c357848 1001 int nr_pages = thp_nr_pages(page);
3dd7ae8e 1002
309381fe 1003 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e 1004
9c4e6b1a
SB
1005 /*
1006 * Page becomes evictable in two ways:
dae966dc 1007 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
1008 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1009 * a) do PageLRU check with lock [check_move_unevictable_pages]
1010 * b) do PageLRU check before lock [clear_page_mlock]
1011 *
1012 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1013 * following strict ordering:
1014 *
1015 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1016 *
1017 * SetPageLRU() TestClearPageMlocked()
1018 * smp_mb() // explicit ordering // above provides strict
1019 * // ordering
1020 * PageMlocked() PageLRU()
1021 *
1022 *
1023 * if '#1' does not observe setting of PG_lru by '#0' and fails
1024 * isolation, the explicit barrier will make sure that page_evictable
1025 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1026 * can be reordered after PageMlocked check and can make '#1' to fail
1027 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1028 * looking at the same page) and the evictable page will be stranded
1029 * in an unevictable LRU.
1030 */
9a9b6cce
YS
1031 SetPageLRU(page);
1032 smp_mb__after_atomic();
9c4e6b1a
SB
1033
1034 if (page_evictable(page)) {
9c4e6b1a 1035 if (was_unevictable)
5d91f31f 1036 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
9c4e6b1a 1037 } else {
9c4e6b1a
SB
1038 ClearPageActive(page);
1039 SetPageUnevictable(page);
1040 if (!was_unevictable)
5d91f31f 1041 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
9c4e6b1a
SB
1042 }
1043
3a9c9788 1044 add_page_to_lru_list(page, lruvec);
86140453 1045 trace_mm_lru_insertion(page);
3dd7ae8e
SL
1046}
1047
1da177e4
LT
1048/*
1049 * Add the passed pages to the LRU, then drop the caller's refcount
1050 * on them. Reinitialises the caller's pagevec.
1051 */
a0b8cab3 1052void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1053{
fc574c23 1054 int i;
6168d0da 1055 struct lruvec *lruvec = NULL;
fc574c23
AS
1056 unsigned long flags = 0;
1057
1058 for (i = 0; i < pagevec_count(pvec); i++) {
1059 struct page *page = pvec->pages[i];
0de340cb 1060 struct folio *folio = page_folio(page);
fc574c23 1061
0de340cb 1062 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
fc574c23
AS
1063 __pagevec_lru_add_fn(page, lruvec);
1064 }
6168d0da
AS
1065 if (lruvec)
1066 unlock_page_lruvec_irqrestore(lruvec, flags);
fc574c23
AS
1067 release_pages(pvec->pages, pvec->nr);
1068 pagevec_reinit(pvec);
1da177e4 1069}
1da177e4 1070
0cd6144a
JW
1071/**
1072 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1073 * @pvec: The pagevec to prune
1074 *
a656a202
MWO
1075 * find_get_entries() fills both pages and XArray value entries (aka
1076 * exceptional entries) into the pagevec. This function prunes all
0cd6144a
JW
1077 * exceptionals from @pvec without leaving holes, so that it can be
1078 * passed on to page-only pagevec operations.
1079 */
1080void pagevec_remove_exceptionals(struct pagevec *pvec)
1081{
1082 int i, j;
1083
1084 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1085 struct page *page = pvec->pages[i];
3159f943 1086 if (!xa_is_value(page))
0cd6144a
JW
1087 pvec->pages[j++] = page;
1088 }
1089 pvec->nr = j;
1090}
1091
1da177e4 1092/**
b947cee4 1093 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1094 * @pvec: Where the resulting pages are placed
1095 * @mapping: The address_space to search
1096 * @start: The starting page index
b947cee4 1097 * @end: The final page index
1da177e4 1098 *
e02a9f04 1099 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1100 * pages in the mapping starting from index @start and upto index @end
1101 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1102 * reference against the pages in @pvec.
1103 *
1104 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1105 * indexes. There may be holes in the indices due to not-present pages. We
1106 * also update @start to index the next page for the traversal.
1da177e4 1107 *
b947cee4 1108 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1109 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1110 * reached.
1da177e4 1111 */
b947cee4 1112unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1113 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1114{
397162ff 1115 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1116 pvec->pages);
1da177e4
LT
1117 return pagevec_count(pvec);
1118}
b947cee4 1119EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1120
72b045ae
JK
1121unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1122 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1123 xa_mark_t tag)
1da177e4 1124{
72b045ae 1125 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1126 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1127 return pagevec_count(pvec);
1128}
72b045ae 1129EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1130
1da177e4
LT
1131/*
1132 * Perform any setup for the swap system
1133 */
1134void __init swap_setup(void)
1135{
ca79b0c2 1136 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1137
1da177e4
LT
1138 /* Use a smaller cluster for small-memory machines */
1139 if (megs < 16)
1140 page_cluster = 2;
1141 else
1142 page_cluster = 3;
1143 /*
1144 * Right now other parts of the system means that we
1145 * _really_ don't want to cluster much more
1146 */
1da177e4 1147}
07d80269
JH
1148
1149#ifdef CONFIG_DEV_PAGEMAP_OPS
1150void put_devmap_managed_page(struct page *page)
1151{
1152 int count;
1153
1154 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1155 return;
1156
1157 count = page_ref_dec_return(page);
1158
1159 /*
1160 * devmap page refcounts are 1-based, rather than 0-based: if
1161 * refcount is 1, then the page is free and the refcount is
1162 * stable because nobody holds a reference on the page.
1163 */
1164 if (count == 1)
1165 free_devmap_managed_page(page);
1166 else if (!count)
1167 __put_page(page);
1168}
1169EXPORT_SYMBOL(put_devmap_managed_page);
1170#endif