mm/swap.c: introduce put_[un]refcounted_compound_page helpers for splitting put_compo...
[linux-block.git] / mm / swap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
183ff22b 8 * This file contains the default values for the operation of the
1da177e4
LT
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
b95f1b31 24#include <linux/export.h>
1da177e4 25#include <linux/mm_inline.h>
1da177e4
LT
26#include <linux/percpu_counter.h>
27#include <linux/percpu.h>
28#include <linux/cpu.h>
29#include <linux/notifier.h>
e0bf68dd 30#include <linux/backing-dev.h>
66e1707b 31#include <linux/memcontrol.h>
5a0e3ad6 32#include <linux/gfp.h>
a27bb332 33#include <linux/uio.h>
1da177e4 34
64d6519d
LS
35#include "internal.h"
36
c6286c98
MG
37#define CREATE_TRACE_POINTS
38#include <trace/events/pagemap.h>
39
1da177e4
LT
40/* How many pages do we try to swap or page in/out together? */
41int page_cluster;
42
13f7f789 43static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
f84f9504 44static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
31560180 45static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
902aaed0 46
b221385b
AB
47/*
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
50 */
920c7a5d 51static void __page_cache_release(struct page *page)
b221385b
AB
52{
53 if (PageLRU(page)) {
b221385b 54 struct zone *zone = page_zone(page);
fa9add64
HD
55 struct lruvec *lruvec;
56 unsigned long flags;
b221385b
AB
57
58 spin_lock_irqsave(&zone->lru_lock, flags);
fa9add64 59 lruvec = mem_cgroup_page_lruvec(page, zone);
309381fe 60 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 61 __ClearPageLRU(page);
fa9add64 62 del_page_from_lru_list(page, lruvec, page_off_lru(page));
b221385b
AB
63 spin_unlock_irqrestore(&zone->lru_lock, flags);
64 }
91807063
AA
65}
66
67static void __put_single_page(struct page *page)
68{
69 __page_cache_release(page);
fc91668e 70 free_hot_cold_page(page, 0);
b221385b
AB
71}
72
91807063 73static void __put_compound_page(struct page *page)
1da177e4 74{
91807063 75 compound_page_dtor *dtor;
1da177e4 76
91807063
AA
77 __page_cache_release(page);
78 dtor = get_compound_page_dtor(page);
79 (*dtor)(page);
80}
81
c747ce79
JZ
82/**
83 * Two special cases here: we could avoid taking compound_lock_irqsave
84 * and could skip the tail refcounting(in _mapcount).
85 *
86 * 1. Hugetlbfs page:
87 *
88 * PageHeadHuge will remain true until the compound page
89 * is released and enters the buddy allocator, and it could
90 * not be split by __split_huge_page_refcount().
91 *
92 * So if we see PageHeadHuge set, and we have the tail page pin,
93 * then we could safely put head page.
94 *
95 * 2. Slab THP page:
96 *
97 * PG_slab is cleared before the slab frees the head page, and
98 * tail pin cannot be the last reference left on the head page,
99 * because the slab code is free to reuse the compound page
100 * after a kfree/kmem_cache_free without having to check if
101 * there's any tail pin left. In turn all tail pinsmust be always
102 * released while the head is still pinned by the slab code
103 * and so we know PG_slab will be still set too.
104 *
105 * So if we see PageSlab set, and we have the tail page pin,
106 * then we could safely put head page.
107 */
108static __always_inline
109void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
110{
111 /*
112 * If @page is a THP tail, we must read the tail page
113 * flags after the head page flags. The
114 * __split_huge_page_refcount side enforces write memory barriers
115 * between clearing PageTail and before the head page
116 * can be freed and reallocated.
117 */
118 smp_rmb();
119 if (likely(PageTail(page))) {
120 /*
121 * __split_huge_page_refcount cannot race
122 * here, see the comment above this function.
123 */
124 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
125 VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
126 if (put_page_testzero(page_head)) {
127 /*
128 * If this is the tail of a slab THP page,
129 * the tail pin must not be the last reference
130 * held on the page, because the PG_slab cannot
131 * be cleared before all tail pins (which skips
132 * the _mapcount tail refcounting) have been
133 * released.
134 *
135 * If this is the tail of a hugetlbfs page,
136 * the tail pin may be the last reference on
137 * the page instead, because PageHeadHuge will
138 * not go away until the compound page enters
139 * the buddy allocator.
140 */
141 VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
142 __put_compound_page(page_head);
143 }
144 } else
145 /*
146 * __split_huge_page_refcount run before us,
147 * @page was a THP tail. The split @page_head
148 * has been freed and reallocated as slab or
149 * hugetlbfs page of smaller order (only
150 * possible if reallocated as slab on x86).
151 */
152 if (put_page_testzero(page))
153 __put_single_page(page);
154}
155
156static __always_inline
157void put_refcounted_compound_page(struct page *page_head, struct page *page)
158{
159 if (likely(page != page_head && get_page_unless_zero(page_head))) {
160 unsigned long flags;
161
162 /*
163 * @page_head wasn't a dangling pointer but it may not
164 * be a head page anymore by the time we obtain the
165 * lock. That is ok as long as it can't be freed from
166 * under us.
167 */
168 flags = compound_lock_irqsave(page_head);
169 if (unlikely(!PageTail(page))) {
170 /* __split_huge_page_refcount run before us */
171 compound_unlock_irqrestore(page_head, flags);
172 if (put_page_testzero(page_head)) {
173 /*
174 * The @page_head may have been freed
175 * and reallocated as a compound page
176 * of smaller order and then freed
177 * again. All we know is that it
178 * cannot have become: a THP page, a
179 * compound page of higher order, a
180 * tail page. That is because we
181 * still hold the refcount of the
182 * split THP tail and page_head was
183 * the THP head before the split.
184 */
185 if (PageHead(page_head))
186 __put_compound_page(page_head);
187 else
188 __put_single_page(page_head);
189 }
190out_put_single:
191 if (put_page_testzero(page))
192 __put_single_page(page);
193 return;
194 }
195 VM_BUG_ON_PAGE(page_head != page->first_page, page);
196 /*
197 * We can release the refcount taken by
198 * get_page_unless_zero() now that
199 * __split_huge_page_refcount() is blocked on the
200 * compound_lock.
201 */
202 if (put_page_testzero(page_head))
203 VM_BUG_ON_PAGE(1, page_head);
204 /* __split_huge_page_refcount will wait now */
205 VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
206 atomic_dec(&page->_mapcount);
207 VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
208 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
209 compound_unlock_irqrestore(page_head, flags);
210
211 if (put_page_testzero(page_head)) {
212 if (PageHead(page_head))
213 __put_compound_page(page_head);
214 else
215 __put_single_page(page_head);
216 }
217 } else {
218 /* @page_head is a dangling pointer */
219 VM_BUG_ON_PAGE(PageTail(page), page);
220 goto out_put_single;
221 }
222}
223
91807063
AA
224static void put_compound_page(struct page *page)
225{
26296ad2 226 struct page *page_head;
70b50f94 227
26296ad2
AM
228 if (likely(!PageTail(page))) {
229 if (put_page_testzero(page)) {
ebf360f9 230 /*
26296ad2
AM
231 * By the time all refcounts have been released
232 * split_huge_page cannot run anymore from under us.
ebf360f9 233 */
26296ad2
AM
234 if (PageHead(page))
235 __put_compound_page(page);
236 else
237 __put_single_page(page);
ebf360f9 238 }
26296ad2
AM
239 return;
240 }
ebf360f9 241
26296ad2 242 /* __split_huge_page_refcount can run under us */
668f9abb 243 page_head = compound_head(page);
5bf5f03c 244
26296ad2
AM
245 /*
246 * THP can not break up slab pages so avoid taking
247 * compound_lock() and skip the tail page refcounting (in
248 * _mapcount) too. Slab performs non-atomic bit ops on
249 * page->flags for better performance. In particular
250 * slab_unlock() in slub used to be a hot path. It is still
251 * hot on arches that do not support
252 * this_cpu_cmpxchg_double().
253 *
254 * If "page" is part of a slab or hugetlbfs page it cannot be
255 * splitted and the head page cannot change from under us. And
256 * if "page" is part of a THP page under splitting, if the
257 * head page pointed by the THP tail isn't a THP head anymore,
258 * we'll find PageTail clear after smp_rmb() and we'll treat
259 * it as a single page.
260 */
261 if (!__compound_tail_refcounted(page_head)) {
262 /*
263 * If "page" is a THP tail, we must read the tail page
264 * flags after the head page flags. The
265 * split_huge_page side enforces write memory barriers
266 * between clearing PageTail and before the head page
267 * can be freed and reallocated.
268 */
269 smp_rmb();
270 if (likely(PageTail(page))) {
91807063 271 /*
26296ad2
AM
272 * __split_huge_page_refcount cannot race
273 * here.
91807063 274 */
309381fe
SL
275 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
276 VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
26296ad2
AM
277 if (put_page_testzero(page_head)) {
278 /*
279 * If this is the tail of a slab
280 * compound page, the tail pin must
281 * not be the last reference held on
282 * the page, because the PG_slab
283 * cannot be cleared before all tail
284 * pins (which skips the _mapcount
285 * tail refcounting) have been
286 * released. For hugetlbfs the tail
287 * pin may be the last reference on
288 * the page instead, because
289 * PageHeadHuge will not go away until
290 * the compound page enters the buddy
291 * allocator.
292 */
309381fe 293 VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
26296ad2 294 __put_compound_page(page_head);
91807063 295 }
26296ad2
AM
296 return;
297 } else
91807063 298 /*
26296ad2
AM
299 * __split_huge_page_refcount run before us,
300 * "page" was a THP tail. The split page_head
301 * has been freed and reallocated as slab or
302 * hugetlbfs page of smaller order (only
303 * possible if reallocated as slab on x86).
91807063 304 */
26296ad2
AM
305 goto out_put_single;
306 }
5bf5f03c 307
26296ad2
AM
308 if (likely(page != page_head && get_page_unless_zero(page_head))) {
309 unsigned long flags;
310
311 /*
312 * page_head wasn't a dangling pointer but it may not
313 * be a head page anymore by the time we obtain the
314 * lock. That is ok as long as it can't be freed from
315 * under us.
316 */
317 flags = compound_lock_irqsave(page_head);
318 if (unlikely(!PageTail(page))) {
319 /* __split_huge_page_refcount run before us */
320 compound_unlock_irqrestore(page_head, flags);
a95a82e9 321 if (put_page_testzero(page_head)) {
26296ad2
AM
322 /*
323 * The head page may have been freed
324 * and reallocated as a compound page
325 * of smaller order and then freed
326 * again. All we know is that it
327 * cannot have become: a THP page, a
328 * compound page of higher order, a
329 * tail page. That is because we
330 * still hold the refcount of the
331 * split THP tail and page_head was
332 * the THP head before the split.
333 */
a95a82e9
AA
334 if (PageHead(page_head))
335 __put_compound_page(page_head);
336 else
337 __put_single_page(page_head);
338 }
26296ad2
AM
339out_put_single:
340 if (put_page_testzero(page))
341 __put_single_page(page);
342 return;
343 }
309381fe 344 VM_BUG_ON_PAGE(page_head != page->first_page, page);
26296ad2
AM
345 /*
346 * We can release the refcount taken by
347 * get_page_unless_zero() now that
348 * __split_huge_page_refcount() is blocked on the
349 * compound_lock.
350 */
351 if (put_page_testzero(page_head))
309381fe 352 VM_BUG_ON_PAGE(1, page_head);
26296ad2 353 /* __split_huge_page_refcount will wait now */
309381fe 354 VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
26296ad2 355 atomic_dec(&page->_mapcount);
309381fe
SL
356 VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
357 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
26296ad2
AM
358 compound_unlock_irqrestore(page_head, flags);
359
360 if (put_page_testzero(page_head)) {
361 if (PageHead(page_head))
362 __put_compound_page(page_head);
363 else
364 __put_single_page(page_head);
91807063 365 }
26296ad2
AM
366 } else {
367 /* page_head is a dangling pointer */
309381fe 368 VM_BUG_ON_PAGE(PageTail(page), page);
26296ad2 369 goto out_put_single;
1da177e4 370 }
8519fb30
NP
371}
372
373void put_page(struct page *page)
374{
375 if (unlikely(PageCompound(page)))
376 put_compound_page(page);
377 else if (put_page_testzero(page))
91807063 378 __put_single_page(page);
1da177e4
LT
379}
380EXPORT_SYMBOL(put_page);
1da177e4 381
70b50f94
AA
382/*
383 * This function is exported but must not be called by anything other
384 * than get_page(). It implements the slow path of get_page().
385 */
386bool __get_page_tail(struct page *page)
387{
388 /*
389 * This takes care of get_page() if run on a tail page
390 * returned by one of the get_user_pages/follow_page variants.
391 * get_user_pages/follow_page itself doesn't need the compound
392 * lock because it runs __get_page_tail_foll() under the
393 * proper PT lock that already serializes against
394 * split_huge_page().
395 */
27c73ae7 396 unsigned long flags;
ebf360f9 397 bool got;
668f9abb 398 struct page *page_head = compound_head(page);
70b50f94 399
ebf360f9 400 /* Ref to put_compound_page() comment. */
3bfcd13e 401 if (!__compound_tail_refcounted(page_head)) {
ebf360f9
AA
402 smp_rmb();
403 if (likely(PageTail(page))) {
404 /*
405 * This is a hugetlbfs page or a slab
406 * page. __split_huge_page_refcount
407 * cannot race here.
408 */
309381fe 409 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
ebf360f9
AA
410 __get_page_tail_foll(page, true);
411 return true;
412 } else {
413 /*
414 * __split_huge_page_refcount run
415 * before us, "page" was a THP
416 * tail. The split page_head has been
417 * freed and reallocated as slab or
418 * hugetlbfs page of smaller order
419 * (only possible if reallocated as
420 * slab on x86).
421 */
422 return false;
27c73ae7 423 }
ebf360f9 424 }
27c73ae7 425
ebf360f9
AA
426 got = false;
427 if (likely(page != page_head && get_page_unless_zero(page_head))) {
27c73ae7
AA
428 /*
429 * page_head wasn't a dangling pointer but it
430 * may not be a head page anymore by the time
431 * we obtain the lock. That is ok as long as it
432 * can't be freed from under us.
433 */
434 flags = compound_lock_irqsave(page_head);
435 /* here __split_huge_page_refcount won't run anymore */
436 if (likely(PageTail(page))) {
437 __get_page_tail_foll(page, false);
438 got = true;
5bf5f03c 439 }
27c73ae7
AA
440 compound_unlock_irqrestore(page_head, flags);
441 if (unlikely(!got))
442 put_page(page_head);
70b50f94
AA
443 }
444 return got;
445}
446EXPORT_SYMBOL(__get_page_tail);
447
1d7ea732 448/**
7682486b
RD
449 * put_pages_list() - release a list of pages
450 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
451 *
452 * Release a list of pages which are strung together on page.lru. Currently
453 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
454 */
455void put_pages_list(struct list_head *pages)
456{
457 while (!list_empty(pages)) {
458 struct page *victim;
459
460 victim = list_entry(pages->prev, struct page, lru);
461 list_del(&victim->lru);
462 page_cache_release(victim);
463 }
464}
465EXPORT_SYMBOL(put_pages_list);
466
18022c5d
MG
467/*
468 * get_kernel_pages() - pin kernel pages in memory
469 * @kiov: An array of struct kvec structures
470 * @nr_segs: number of segments to pin
471 * @write: pinning for read/write, currently ignored
472 * @pages: array that receives pointers to the pages pinned.
473 * Should be at least nr_segs long.
474 *
475 * Returns number of pages pinned. This may be fewer than the number
476 * requested. If nr_pages is 0 or negative, returns 0. If no pages
477 * were pinned, returns -errno. Each page returned must be released
478 * with a put_page() call when it is finished with.
479 */
480int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
481 struct page **pages)
482{
483 int seg;
484
485 for (seg = 0; seg < nr_segs; seg++) {
486 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
487 return seg;
488
5a178119 489 pages[seg] = kmap_to_page(kiov[seg].iov_base);
18022c5d
MG
490 page_cache_get(pages[seg]);
491 }
492
493 return seg;
494}
495EXPORT_SYMBOL_GPL(get_kernel_pages);
496
497/*
498 * get_kernel_page() - pin a kernel page in memory
499 * @start: starting kernel address
500 * @write: pinning for read/write, currently ignored
501 * @pages: array that receives pointer to the page pinned.
502 * Must be at least nr_segs long.
503 *
504 * Returns 1 if page is pinned. If the page was not pinned, returns
505 * -errno. The page returned must be released with a put_page() call
506 * when it is finished with.
507 */
508int get_kernel_page(unsigned long start, int write, struct page **pages)
509{
510 const struct kvec kiov = {
511 .iov_base = (void *)start,
512 .iov_len = PAGE_SIZE
513 };
514
515 return get_kernel_pages(&kiov, 1, write, pages);
516}
517EXPORT_SYMBOL_GPL(get_kernel_page);
518
3dd7ae8e 519static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
520 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
521 void *arg)
902aaed0
HH
522{
523 int i;
902aaed0 524 struct zone *zone = NULL;
fa9add64 525 struct lruvec *lruvec;
3dd7ae8e 526 unsigned long flags = 0;
902aaed0
HH
527
528 for (i = 0; i < pagevec_count(pvec); i++) {
529 struct page *page = pvec->pages[i];
530 struct zone *pagezone = page_zone(page);
531
532 if (pagezone != zone) {
533 if (zone)
3dd7ae8e 534 spin_unlock_irqrestore(&zone->lru_lock, flags);
902aaed0 535 zone = pagezone;
3dd7ae8e 536 spin_lock_irqsave(&zone->lru_lock, flags);
902aaed0 537 }
3dd7ae8e 538
fa9add64
HD
539 lruvec = mem_cgroup_page_lruvec(page, zone);
540 (*move_fn)(page, lruvec, arg);
902aaed0
HH
541 }
542 if (zone)
3dd7ae8e 543 spin_unlock_irqrestore(&zone->lru_lock, flags);
83896fb5
LT
544 release_pages(pvec->pages, pvec->nr, pvec->cold);
545 pagevec_reinit(pvec);
d8505dee
SL
546}
547
fa9add64
HD
548static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
549 void *arg)
3dd7ae8e
SL
550{
551 int *pgmoved = arg;
3dd7ae8e
SL
552
553 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
554 enum lru_list lru = page_lru_base_type(page);
925b7673 555 list_move_tail(&page->lru, &lruvec->lists[lru]);
3dd7ae8e
SL
556 (*pgmoved)++;
557 }
558}
559
560/*
561 * pagevec_move_tail() must be called with IRQ disabled.
562 * Otherwise this may cause nasty races.
563 */
564static void pagevec_move_tail(struct pagevec *pvec)
565{
566 int pgmoved = 0;
567
568 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
569 __count_vm_events(PGROTATED, pgmoved);
570}
571
1da177e4
LT
572/*
573 * Writeback is about to end against a page which has been marked for immediate
574 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 575 * inactive list.
1da177e4 576 */
3dd7ae8e 577void rotate_reclaimable_page(struct page *page)
1da177e4 578{
ac6aadb2 579 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
894bc310 580 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
581 struct pagevec *pvec;
582 unsigned long flags;
583
584 page_cache_get(page);
585 local_irq_save(flags);
7c8e0181 586 pvec = this_cpu_ptr(&lru_rotate_pvecs);
ac6aadb2
MS
587 if (!pagevec_add(pvec, page))
588 pagevec_move_tail(pvec);
589 local_irq_restore(flags);
590 }
1da177e4
LT
591}
592
fa9add64 593static void update_page_reclaim_stat(struct lruvec *lruvec,
3e2f41f1
KM
594 int file, int rotated)
595{
fa9add64 596 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
3e2f41f1
KM
597
598 reclaim_stat->recent_scanned[file]++;
599 if (rotated)
600 reclaim_stat->recent_rotated[file]++;
3e2f41f1
KM
601}
602
fa9add64
HD
603static void __activate_page(struct page *page, struct lruvec *lruvec,
604 void *arg)
1da177e4 605{
744ed144 606 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
607 int file = page_is_file_cache(page);
608 int lru = page_lru_base_type(page);
744ed144 609
fa9add64 610 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
611 SetPageActive(page);
612 lru += LRU_ACTIVE;
fa9add64 613 add_page_to_lru_list(page, lruvec, lru);
c6286c98 614 trace_mm_lru_activate(page, page_to_pfn(page));
4f98a2fe 615
fa9add64
HD
616 __count_vm_event(PGACTIVATE);
617 update_page_reclaim_stat(lruvec, file, 1);
1da177e4 618 }
eb709b0d
SL
619}
620
621#ifdef CONFIG_SMP
622static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
623
624static void activate_page_drain(int cpu)
625{
626 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
627
628 if (pagevec_count(pvec))
629 pagevec_lru_move_fn(pvec, __activate_page, NULL);
630}
631
5fbc4616
CM
632static bool need_activate_page_drain(int cpu)
633{
634 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
635}
636
eb709b0d
SL
637void activate_page(struct page *page)
638{
639 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
640 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
641
642 page_cache_get(page);
643 if (!pagevec_add(pvec, page))
644 pagevec_lru_move_fn(pvec, __activate_page, NULL);
645 put_cpu_var(activate_page_pvecs);
646 }
647}
648
649#else
650static inline void activate_page_drain(int cpu)
651{
652}
653
5fbc4616
CM
654static bool need_activate_page_drain(int cpu)
655{
656 return false;
657}
658
eb709b0d
SL
659void activate_page(struct page *page)
660{
661 struct zone *zone = page_zone(page);
662
663 spin_lock_irq(&zone->lru_lock);
fa9add64 664 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
1da177e4
LT
665 spin_unlock_irq(&zone->lru_lock);
666}
eb709b0d 667#endif
1da177e4 668
059285a2
MG
669static void __lru_cache_activate_page(struct page *page)
670{
671 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
672 int i;
673
674 /*
675 * Search backwards on the optimistic assumption that the page being
676 * activated has just been added to this pagevec. Note that only
677 * the local pagevec is examined as a !PageLRU page could be in the
678 * process of being released, reclaimed, migrated or on a remote
679 * pagevec that is currently being drained. Furthermore, marking
680 * a remote pagevec's page PageActive potentially hits a race where
681 * a page is marked PageActive just after it is added to the inactive
682 * list causing accounting errors and BUG_ON checks to trigger.
683 */
684 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
685 struct page *pagevec_page = pvec->pages[i];
686
687 if (pagevec_page == page) {
688 SetPageActive(page);
689 break;
690 }
691 }
692
693 put_cpu_var(lru_add_pvec);
694}
695
1da177e4
LT
696/*
697 * Mark a page as having seen activity.
698 *
699 * inactive,unreferenced -> inactive,referenced
700 * inactive,referenced -> active,unreferenced
701 * active,unreferenced -> active,referenced
702 */
920c7a5d 703void mark_page_accessed(struct page *page)
1da177e4 704{
894bc310 705 if (!PageActive(page) && !PageUnevictable(page) &&
059285a2
MG
706 PageReferenced(page)) {
707
708 /*
709 * If the page is on the LRU, queue it for activation via
710 * activate_page_pvecs. Otherwise, assume the page is on a
711 * pagevec, mark it active and it'll be moved to the active
712 * LRU on the next drain.
713 */
714 if (PageLRU(page))
715 activate_page(page);
716 else
717 __lru_cache_activate_page(page);
1da177e4 718 ClearPageReferenced(page);
a528910e
JW
719 if (page_is_file_cache(page))
720 workingset_activation(page);
1da177e4
LT
721 } else if (!PageReferenced(page)) {
722 SetPageReferenced(page);
723 }
724}
1da177e4
LT
725EXPORT_SYMBOL(mark_page_accessed);
726
2329d375 727static void __lru_cache_add(struct page *page)
1da177e4 728{
13f7f789
MG
729 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
730
1da177e4 731 page_cache_get(page);
d741c9cd 732 if (!pagevec_space(pvec))
a0b8cab3 733 __pagevec_lru_add(pvec);
d741c9cd 734 pagevec_add(pvec, page);
13f7f789 735 put_cpu_var(lru_add_pvec);
1da177e4 736}
2329d375
JZ
737
738/**
739 * lru_cache_add: add a page to the page lists
740 * @page: the page to add
741 */
742void lru_cache_add_anon(struct page *page)
743{
744 ClearPageActive(page);
745 __lru_cache_add(page);
746}
747
748void lru_cache_add_file(struct page *page)
749{
750 ClearPageActive(page);
751 __lru_cache_add(page);
752}
753EXPORT_SYMBOL(lru_cache_add_file);
1da177e4 754
f04e9ebb 755/**
c53954a0 756 * lru_cache_add - add a page to a page list
f04e9ebb 757 * @page: the page to be added to the LRU.
2329d375
JZ
758 *
759 * Queue the page for addition to the LRU via pagevec. The decision on whether
760 * to add the page to the [in]active [file|anon] list is deferred until the
761 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
762 * have the page added to the active list using mark_page_accessed().
f04e9ebb 763 */
c53954a0 764void lru_cache_add(struct page *page)
1da177e4 765{
309381fe
SL
766 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
767 VM_BUG_ON_PAGE(PageLRU(page), page);
c53954a0 768 __lru_cache_add(page);
1da177e4
LT
769}
770
894bc310
LS
771/**
772 * add_page_to_unevictable_list - add a page to the unevictable list
773 * @page: the page to be added to the unevictable list
774 *
775 * Add page directly to its zone's unevictable list. To avoid races with
776 * tasks that might be making the page evictable, through eg. munlock,
777 * munmap or exit, while it's not on the lru, we want to add the page
778 * while it's locked or otherwise "invisible" to other tasks. This is
779 * difficult to do when using the pagevec cache, so bypass that.
780 */
781void add_page_to_unevictable_list(struct page *page)
782{
783 struct zone *zone = page_zone(page);
fa9add64 784 struct lruvec *lruvec;
894bc310
LS
785
786 spin_lock_irq(&zone->lru_lock);
fa9add64 787 lruvec = mem_cgroup_page_lruvec(page, zone);
ef2a2cbd 788 ClearPageActive(page);
894bc310
LS
789 SetPageUnevictable(page);
790 SetPageLRU(page);
fa9add64 791 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
894bc310
LS
792 spin_unlock_irq(&zone->lru_lock);
793}
794
31560180
MK
795/*
796 * If the page can not be invalidated, it is moved to the
797 * inactive list to speed up its reclaim. It is moved to the
798 * head of the list, rather than the tail, to give the flusher
799 * threads some time to write it out, as this is much more
800 * effective than the single-page writeout from reclaim.
278df9f4
MK
801 *
802 * If the page isn't page_mapped and dirty/writeback, the page
803 * could reclaim asap using PG_reclaim.
804 *
805 * 1. active, mapped page -> none
806 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
807 * 3. inactive, mapped page -> none
808 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
809 * 5. inactive, clean -> inactive, tail
810 * 6. Others -> none
811 *
812 * In 4, why it moves inactive's head, the VM expects the page would
813 * be write it out by flusher threads as this is much more effective
814 * than the single-page writeout from reclaim.
31560180 815 */
fa9add64
HD
816static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
817 void *arg)
31560180
MK
818{
819 int lru, file;
278df9f4 820 bool active;
31560180 821
278df9f4 822 if (!PageLRU(page))
31560180
MK
823 return;
824
bad49d9c
MK
825 if (PageUnevictable(page))
826 return;
827
31560180
MK
828 /* Some processes are using the page */
829 if (page_mapped(page))
830 return;
831
278df9f4 832 active = PageActive(page);
31560180
MK
833 file = page_is_file_cache(page);
834 lru = page_lru_base_type(page);
fa9add64
HD
835
836 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
837 ClearPageActive(page);
838 ClearPageReferenced(page);
fa9add64 839 add_page_to_lru_list(page, lruvec, lru);
31560180 840
278df9f4
MK
841 if (PageWriteback(page) || PageDirty(page)) {
842 /*
843 * PG_reclaim could be raced with end_page_writeback
844 * It can make readahead confusing. But race window
845 * is _really_ small and it's non-critical problem.
846 */
847 SetPageReclaim(page);
848 } else {
849 /*
850 * The page's writeback ends up during pagevec
851 * We moves tha page into tail of inactive.
852 */
925b7673 853 list_move_tail(&page->lru, &lruvec->lists[lru]);
278df9f4
MK
854 __count_vm_event(PGROTATED);
855 }
856
857 if (active)
858 __count_vm_event(PGDEACTIVATE);
fa9add64 859 update_page_reclaim_stat(lruvec, file, 0);
31560180
MK
860}
861
902aaed0
HH
862/*
863 * Drain pages out of the cpu's pagevecs.
864 * Either "cpu" is the current CPU, and preemption has already been
865 * disabled; or "cpu" is being hot-unplugged, and is already dead.
866 */
f0cb3c76 867void lru_add_drain_cpu(int cpu)
1da177e4 868{
13f7f789 869 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
1da177e4 870
13f7f789 871 if (pagevec_count(pvec))
a0b8cab3 872 __pagevec_lru_add(pvec);
902aaed0
HH
873
874 pvec = &per_cpu(lru_rotate_pvecs, cpu);
875 if (pagevec_count(pvec)) {
876 unsigned long flags;
877
878 /* No harm done if a racing interrupt already did this */
879 local_irq_save(flags);
880 pagevec_move_tail(pvec);
881 local_irq_restore(flags);
882 }
31560180
MK
883
884 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
885 if (pagevec_count(pvec))
3dd7ae8e 886 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
eb709b0d
SL
887
888 activate_page_drain(cpu);
31560180
MK
889}
890
891/**
892 * deactivate_page - forcefully deactivate a page
893 * @page: page to deactivate
894 *
895 * This function hints the VM that @page is a good reclaim candidate,
896 * for example if its invalidation fails due to the page being dirty
897 * or under writeback.
898 */
899void deactivate_page(struct page *page)
900{
821ed6bb
MK
901 /*
902 * In a workload with many unevictable page such as mprotect, unevictable
903 * page deactivation for accelerating reclaim is pointless.
904 */
905 if (PageUnevictable(page))
906 return;
907
31560180
MK
908 if (likely(get_page_unless_zero(page))) {
909 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
910
911 if (!pagevec_add(pvec, page))
3dd7ae8e 912 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
31560180
MK
913 put_cpu_var(lru_deactivate_pvecs);
914 }
80bfed90
AM
915}
916
917void lru_add_drain(void)
918{
f0cb3c76 919 lru_add_drain_cpu(get_cpu());
80bfed90 920 put_cpu();
1da177e4
LT
921}
922
c4028958 923static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
924{
925 lru_add_drain();
926}
927
5fbc4616
CM
928static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
929
930void lru_add_drain_all(void)
053837fc 931{
5fbc4616
CM
932 static DEFINE_MUTEX(lock);
933 static struct cpumask has_work;
934 int cpu;
935
936 mutex_lock(&lock);
937 get_online_cpus();
938 cpumask_clear(&has_work);
939
940 for_each_online_cpu(cpu) {
941 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
942
943 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
944 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
945 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
946 need_activate_page_drain(cpu)) {
947 INIT_WORK(work, lru_add_drain_per_cpu);
948 schedule_work_on(cpu, work);
949 cpumask_set_cpu(cpu, &has_work);
950 }
951 }
952
953 for_each_cpu(cpu, &has_work)
954 flush_work(&per_cpu(lru_add_drain_work, cpu));
955
956 put_online_cpus();
957 mutex_unlock(&lock);
053837fc
NP
958}
959
1da177e4
LT
960/*
961 * Batched page_cache_release(). Decrement the reference count on all the
962 * passed pages. If it fell to zero then remove the page from the LRU and
963 * free it.
964 *
965 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
966 * for the remainder of the operation.
967 *
ab33dc09
FLVC
968 * The locking in this function is against shrink_inactive_list(): we recheck
969 * the page count inside the lock to see whether shrink_inactive_list()
970 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
971 * will free it.
1da177e4
LT
972 */
973void release_pages(struct page **pages, int nr, int cold)
974{
975 int i;
cc59850e 976 LIST_HEAD(pages_to_free);
1da177e4 977 struct zone *zone = NULL;
fa9add64 978 struct lruvec *lruvec;
902aaed0 979 unsigned long uninitialized_var(flags);
1da177e4 980
1da177e4
LT
981 for (i = 0; i < nr; i++) {
982 struct page *page = pages[i];
1da177e4 983
8519fb30
NP
984 if (unlikely(PageCompound(page))) {
985 if (zone) {
902aaed0 986 spin_unlock_irqrestore(&zone->lru_lock, flags);
8519fb30
NP
987 zone = NULL;
988 }
989 put_compound_page(page);
990 continue;
991 }
992
b5810039 993 if (!put_page_testzero(page))
1da177e4
LT
994 continue;
995
46453a6e
NP
996 if (PageLRU(page)) {
997 struct zone *pagezone = page_zone(page);
894bc310 998
46453a6e
NP
999 if (pagezone != zone) {
1000 if (zone)
902aaed0
HH
1001 spin_unlock_irqrestore(&zone->lru_lock,
1002 flags);
46453a6e 1003 zone = pagezone;
902aaed0 1004 spin_lock_irqsave(&zone->lru_lock, flags);
46453a6e 1005 }
fa9add64
HD
1006
1007 lruvec = mem_cgroup_page_lruvec(page, zone);
309381fe 1008 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 1009 __ClearPageLRU(page);
fa9add64 1010 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
1011 }
1012
c53954a0
MG
1013 /* Clear Active bit in case of parallel mark_page_accessed */
1014 ClearPageActive(page);
1015
cc59850e 1016 list_add(&page->lru, &pages_to_free);
1da177e4
LT
1017 }
1018 if (zone)
902aaed0 1019 spin_unlock_irqrestore(&zone->lru_lock, flags);
1da177e4 1020
cc59850e 1021 free_hot_cold_page_list(&pages_to_free, cold);
1da177e4 1022}
0be8557b 1023EXPORT_SYMBOL(release_pages);
1da177e4
LT
1024
1025/*
1026 * The pages which we're about to release may be in the deferred lru-addition
1027 * queues. That would prevent them from really being freed right now. That's
1028 * OK from a correctness point of view but is inefficient - those pages may be
1029 * cache-warm and we want to give them back to the page allocator ASAP.
1030 *
1031 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
1032 * and __pagevec_lru_add_active() call release_pages() directly to avoid
1033 * mutual recursion.
1034 */
1035void __pagevec_release(struct pagevec *pvec)
1036{
1037 lru_add_drain();
1038 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
1039 pagevec_reinit(pvec);
1040}
7f285701
SF
1041EXPORT_SYMBOL(__pagevec_release);
1042
12d27107 1043#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 1044/* used by __split_huge_page_refcount() */
fa9add64 1045void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 1046 struct lruvec *lruvec, struct list_head *list)
71e3aac0 1047{
71e3aac0 1048 const int file = 0;
71e3aac0 1049
309381fe
SL
1050 VM_BUG_ON_PAGE(!PageHead(page), page);
1051 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
1052 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
fa9add64
HD
1053 VM_BUG_ON(NR_CPUS != 1 &&
1054 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
71e3aac0 1055
5bc7b8ac
SL
1056 if (!list)
1057 SetPageLRU(page_tail);
71e3aac0 1058
12d27107
HD
1059 if (likely(PageLRU(page)))
1060 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
1061 else if (list) {
1062 /* page reclaim is reclaiming a huge page */
1063 get_page(page_tail);
1064 list_add_tail(&page_tail->lru, list);
1065 } else {
12d27107
HD
1066 struct list_head *list_head;
1067 /*
1068 * Head page has not yet been counted, as an hpage,
1069 * so we must account for each subpage individually.
1070 *
1071 * Use the standard add function to put page_tail on the list,
1072 * but then correct its position so they all end up in order.
1073 */
e180cf80 1074 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
12d27107
HD
1075 list_head = page_tail->lru.prev;
1076 list_move_tail(&page_tail->lru, list_head);
71e3aac0 1077 }
7512102c
HD
1078
1079 if (!PageUnevictable(page))
e180cf80 1080 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
71e3aac0 1081}
12d27107 1082#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 1083
fa9add64
HD
1084static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1085 void *arg)
3dd7ae8e 1086{
13f7f789
MG
1087 int file = page_is_file_cache(page);
1088 int active = PageActive(page);
1089 enum lru_list lru = page_lru(page);
3dd7ae8e 1090
309381fe 1091 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e
SL
1092
1093 SetPageLRU(page);
fa9add64
HD
1094 add_page_to_lru_list(page, lruvec, lru);
1095 update_page_reclaim_stat(lruvec, file, active);
c6286c98 1096 trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
3dd7ae8e
SL
1097}
1098
1da177e4
LT
1099/*
1100 * Add the passed pages to the LRU, then drop the caller's refcount
1101 * on them. Reinitialises the caller's pagevec.
1102 */
a0b8cab3 1103void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1104{
a0b8cab3 1105 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 1106}
5095ae83 1107EXPORT_SYMBOL(__pagevec_lru_add);
1da177e4 1108
0cd6144a
JW
1109/**
1110 * pagevec_lookup_entries - gang pagecache lookup
1111 * @pvec: Where the resulting entries are placed
1112 * @mapping: The address_space to search
1113 * @start: The starting entry index
1114 * @nr_entries: The maximum number of entries
1115 * @indices: The cache indices corresponding to the entries in @pvec
1116 *
1117 * pagevec_lookup_entries() will search for and return a group of up
1118 * to @nr_entries pages and shadow entries in the mapping. All
1119 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1120 * reference against actual pages in @pvec.
1121 *
1122 * The search returns a group of mapping-contiguous entries with
1123 * ascending indexes. There may be holes in the indices due to
1124 * not-present entries.
1125 *
1126 * pagevec_lookup_entries() returns the number of entries which were
1127 * found.
1128 */
1129unsigned pagevec_lookup_entries(struct pagevec *pvec,
1130 struct address_space *mapping,
1131 pgoff_t start, unsigned nr_pages,
1132 pgoff_t *indices)
1133{
1134 pvec->nr = find_get_entries(mapping, start, nr_pages,
1135 pvec->pages, indices);
1136 return pagevec_count(pvec);
1137}
1138
1139/**
1140 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1141 * @pvec: The pagevec to prune
1142 *
1143 * pagevec_lookup_entries() fills both pages and exceptional radix
1144 * tree entries into the pagevec. This function prunes all
1145 * exceptionals from @pvec without leaving holes, so that it can be
1146 * passed on to page-only pagevec operations.
1147 */
1148void pagevec_remove_exceptionals(struct pagevec *pvec)
1149{
1150 int i, j;
1151
1152 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1153 struct page *page = pvec->pages[i];
1154 if (!radix_tree_exceptional_entry(page))
1155 pvec->pages[j++] = page;
1156 }
1157 pvec->nr = j;
1158}
1159
1da177e4
LT
1160/**
1161 * pagevec_lookup - gang pagecache lookup
1162 * @pvec: Where the resulting pages are placed
1163 * @mapping: The address_space to search
1164 * @start: The starting page index
1165 * @nr_pages: The maximum number of pages
1166 *
1167 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1168 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1169 * reference against the pages in @pvec.
1170 *
1171 * The search returns a group of mapping-contiguous pages with ascending
1172 * indexes. There may be holes in the indices due to not-present pages.
1173 *
1174 * pagevec_lookup() returns the number of pages which were found.
1175 */
1176unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1177 pgoff_t start, unsigned nr_pages)
1178{
1179 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1180 return pagevec_count(pvec);
1181}
78539fdf
CH
1182EXPORT_SYMBOL(pagevec_lookup);
1183
1da177e4
LT
1184unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1185 pgoff_t *index, int tag, unsigned nr_pages)
1186{
1187 pvec->nr = find_get_pages_tag(mapping, index, tag,
1188 nr_pages, pvec->pages);
1189 return pagevec_count(pvec);
1190}
7f285701 1191EXPORT_SYMBOL(pagevec_lookup_tag);
1da177e4 1192
1da177e4
LT
1193/*
1194 * Perform any setup for the swap system
1195 */
1196void __init swap_setup(void)
1197{
4481374c 1198 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
e0bf68dd 1199#ifdef CONFIG_SWAP
33806f06
SL
1200 int i;
1201
8077c0d9
MP
1202 if (bdi_init(swapper_spaces[0].backing_dev_info))
1203 panic("Failed to init swap bdi");
33806f06
SL
1204 for (i = 0; i < MAX_SWAPFILES; i++) {
1205 spin_lock_init(&swapper_spaces[i].tree_lock);
1206 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1207 }
e0bf68dd
PZ
1208#endif
1209
1da177e4
LT
1210 /* Use a smaller cluster for small-memory machines */
1211 if (megs < 16)
1212 page_cluster = 2;
1213 else
1214 page_cluster = 3;
1215 /*
1216 * Right now other parts of the system means that we
1217 * _really_ don't want to cluster much more
1218 */
1da177e4 1219}