mm: fix check_move_unevictable_pages() on THP
[linux-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
1da177e4 39
64d6519d
LS
40#include "internal.h"
41
c6286c98
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/pagemap.h>
44
1da177e4
LT
45/* How many pages do we try to swap or page in/out together? */
46int page_cluster;
47
b01b2141
IM
48/* Protecting only lru_rotate.pvec which requires disabling interrupts */
49struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52};
53static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55};
56
57/*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
a4a921aa 67#ifdef CONFIG_SMP
b01b2141 68 struct pagevec activate_page;
a4a921aa 69#endif
b01b2141
IM
70};
71static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73};
902aaed0 74
b221385b
AB
75/*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
920c7a5d 79static void __page_cache_release(struct page *page)
b221385b
AB
80{
81 if (PageLRU(page)) {
f4b7e272 82 pg_data_t *pgdat = page_pgdat(page);
fa9add64
HD
83 struct lruvec *lruvec;
84 unsigned long flags;
b221385b 85
f4b7e272
AR
86 spin_lock_irqsave(&pgdat->lru_lock, flags);
87 lruvec = mem_cgroup_page_lruvec(page, pgdat);
309381fe 88 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 89 __ClearPageLRU(page);
fa9add64 90 del_page_from_lru_list(page, lruvec, page_off_lru(page));
f4b7e272 91 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
b221385b 92 }
62906027 93 __ClearPageWaiters(page);
91807063
AA
94}
95
96static void __put_single_page(struct page *page)
97{
98 __page_cache_release(page);
7ae88534 99 mem_cgroup_uncharge(page);
2d4894b5 100 free_unref_page(page);
b221385b
AB
101}
102
91807063 103static void __put_compound_page(struct page *page)
1da177e4 104{
822fc613
NH
105 /*
106 * __page_cache_release() is supposed to be called for thp, not for
107 * hugetlb. This is because hugetlb page does never have PageLRU set
108 * (it's never listed to any LRU lists) and no memcg routines should
109 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110 */
111 if (!PageHuge(page))
112 __page_cache_release(page);
ff45fc3c 113 destroy_compound_page(page);
91807063
AA
114}
115
ddc58f27 116void __put_page(struct page *page)
8519fb30 117{
71389703
DW
118 if (is_zone_device_page(page)) {
119 put_dev_pagemap(page->pgmap);
120
121 /*
122 * The page belongs to the device that created pgmap. Do
123 * not return it to page allocator.
124 */
125 return;
126 }
127
8519fb30 128 if (unlikely(PageCompound(page)))
ddc58f27
KS
129 __put_compound_page(page);
130 else
91807063 131 __put_single_page(page);
1da177e4 132}
ddc58f27 133EXPORT_SYMBOL(__put_page);
70b50f94 134
1d7ea732 135/**
7682486b
RD
136 * put_pages_list() - release a list of pages
137 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
138 *
139 * Release a list of pages which are strung together on page.lru. Currently
140 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
141 */
142void put_pages_list(struct list_head *pages)
143{
144 while (!list_empty(pages)) {
145 struct page *victim;
146
f86196ea 147 victim = lru_to_page(pages);
1d7ea732 148 list_del(&victim->lru);
09cbfeaf 149 put_page(victim);
1d7ea732
AZ
150 }
151}
152EXPORT_SYMBOL(put_pages_list);
153
18022c5d
MG
154/*
155 * get_kernel_pages() - pin kernel pages in memory
156 * @kiov: An array of struct kvec structures
157 * @nr_segs: number of segments to pin
158 * @write: pinning for read/write, currently ignored
159 * @pages: array that receives pointers to the pages pinned.
160 * Should be at least nr_segs long.
161 *
162 * Returns number of pages pinned. This may be fewer than the number
163 * requested. If nr_pages is 0 or negative, returns 0. If no pages
164 * were pinned, returns -errno. Each page returned must be released
165 * with a put_page() call when it is finished with.
166 */
167int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168 struct page **pages)
169{
170 int seg;
171
172 for (seg = 0; seg < nr_segs; seg++) {
173 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174 return seg;
175
5a178119 176 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 177 get_page(pages[seg]);
18022c5d
MG
178 }
179
180 return seg;
181}
182EXPORT_SYMBOL_GPL(get_kernel_pages);
183
184/*
185 * get_kernel_page() - pin a kernel page in memory
186 * @start: starting kernel address
187 * @write: pinning for read/write, currently ignored
188 * @pages: array that receives pointer to the page pinned.
189 * Must be at least nr_segs long.
190 *
191 * Returns 1 if page is pinned. If the page was not pinned, returns
192 * -errno. The page returned must be released with a put_page() call
193 * when it is finished with.
194 */
195int get_kernel_page(unsigned long start, int write, struct page **pages)
196{
197 const struct kvec kiov = {
198 .iov_base = (void *)start,
199 .iov_len = PAGE_SIZE
200 };
201
202 return get_kernel_pages(&kiov, 1, write, pages);
203}
204EXPORT_SYMBOL_GPL(get_kernel_page);
205
3dd7ae8e 206static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
207 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208 void *arg)
902aaed0
HH
209{
210 int i;
68eb0731 211 struct pglist_data *pgdat = NULL;
fa9add64 212 struct lruvec *lruvec;
3dd7ae8e 213 unsigned long flags = 0;
902aaed0
HH
214
215 for (i = 0; i < pagevec_count(pvec); i++) {
216 struct page *page = pvec->pages[i];
68eb0731 217 struct pglist_data *pagepgdat = page_pgdat(page);
902aaed0 218
68eb0731
MG
219 if (pagepgdat != pgdat) {
220 if (pgdat)
221 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222 pgdat = pagepgdat;
223 spin_lock_irqsave(&pgdat->lru_lock, flags);
902aaed0 224 }
3dd7ae8e 225
68eb0731 226 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 227 (*move_fn)(page, lruvec, arg);
902aaed0 228 }
68eb0731
MG
229 if (pgdat)
230 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
c6f92f9f 231 release_pages(pvec->pages, pvec->nr);
83896fb5 232 pagevec_reinit(pvec);
d8505dee
SL
233}
234
fa9add64
HD
235static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236 void *arg)
3dd7ae8e
SL
237{
238 int *pgmoved = arg;
3dd7ae8e 239
c55e8d03
JW
240 if (PageLRU(page) && !PageUnevictable(page)) {
241 del_page_from_lru_list(page, lruvec, page_lru(page));
242 ClearPageActive(page);
243 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
6c357848 244 (*pgmoved) += thp_nr_pages(page);
3dd7ae8e
SL
245 }
246}
247
248/*
249 * pagevec_move_tail() must be called with IRQ disabled.
250 * Otherwise this may cause nasty races.
251 */
252static void pagevec_move_tail(struct pagevec *pvec)
253{
254 int pgmoved = 0;
255
256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257 __count_vm_events(PGROTATED, pgmoved);
258}
259
1da177e4
LT
260/*
261 * Writeback is about to end against a page which has been marked for immediate
262 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 263 * inactive list.
1da177e4 264 */
3dd7ae8e 265void rotate_reclaimable_page(struct page *page)
1da177e4 266{
c55e8d03 267 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 268 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
269 struct pagevec *pvec;
270 unsigned long flags;
271
09cbfeaf 272 get_page(page);
b01b2141
IM
273 local_lock_irqsave(&lru_rotate.lock, flags);
274 pvec = this_cpu_ptr(&lru_rotate.pvec);
8f182270 275 if (!pagevec_add(pvec, page) || PageCompound(page))
ac6aadb2 276 pagevec_move_tail(pvec);
b01b2141 277 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 278 }
1da177e4
LT
279}
280
96f8bf4f 281void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 282{
7cf111bc
JW
283 do {
284 unsigned long lrusize;
285
286 /* Record cost event */
96f8bf4f
JW
287 if (file)
288 lruvec->file_cost += nr_pages;
7cf111bc 289 else
96f8bf4f 290 lruvec->anon_cost += nr_pages;
7cf111bc
JW
291
292 /*
293 * Decay previous events
294 *
295 * Because workloads change over time (and to avoid
296 * overflow) we keep these statistics as a floating
297 * average, which ends up weighing recent refaults
298 * more than old ones.
299 */
300 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304
305 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 lruvec->file_cost /= 2;
307 lruvec->anon_cost /= 2;
308 }
309 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
310}
311
96f8bf4f
JW
312void lru_note_cost_page(struct page *page)
313{
314 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
6c357848 315 page_is_file_lru(page), thp_nr_pages(page));
96f8bf4f
JW
316}
317
fa9add64
HD
318static void __activate_page(struct page *page, struct lruvec *lruvec,
319 void *arg)
1da177e4 320{
744ed144 321 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572 322 int lru = page_lru_base_type(page);
6c357848 323 int nr_pages = thp_nr_pages(page);
744ed144 324
fa9add64 325 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
326 SetPageActive(page);
327 lru += LRU_ACTIVE;
fa9add64 328 add_page_to_lru_list(page, lruvec, lru);
24b7e581 329 trace_mm_lru_activate(page);
4f98a2fe 330
21e330fc
SB
331 __count_vm_events(PGACTIVATE, nr_pages);
332 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
333 nr_pages);
1da177e4 334 }
eb709b0d
SL
335}
336
337#ifdef CONFIG_SMP
eb709b0d
SL
338static void activate_page_drain(int cpu)
339{
b01b2141 340 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
341
342 if (pagevec_count(pvec))
343 pagevec_lru_move_fn(pvec, __activate_page, NULL);
344}
345
5fbc4616
CM
346static bool need_activate_page_drain(int cpu)
347{
b01b2141 348 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
349}
350
eb709b0d
SL
351void activate_page(struct page *page)
352{
800d8c63 353 page = compound_head(page);
eb709b0d 354 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
b01b2141 355 struct pagevec *pvec;
eb709b0d 356
b01b2141
IM
357 local_lock(&lru_pvecs.lock);
358 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
09cbfeaf 359 get_page(page);
8f182270 360 if (!pagevec_add(pvec, page) || PageCompound(page))
eb709b0d 361 pagevec_lru_move_fn(pvec, __activate_page, NULL);
b01b2141 362 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
363 }
364}
365
366#else
367static inline void activate_page_drain(int cpu)
368{
369}
370
371void activate_page(struct page *page)
372{
f4b7e272 373 pg_data_t *pgdat = page_pgdat(page);
eb709b0d 374
800d8c63 375 page = compound_head(page);
f4b7e272
AR
376 spin_lock_irq(&pgdat->lru_lock);
377 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
378 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 379}
eb709b0d 380#endif
1da177e4 381
059285a2
MG
382static void __lru_cache_activate_page(struct page *page)
383{
b01b2141 384 struct pagevec *pvec;
059285a2
MG
385 int i;
386
b01b2141
IM
387 local_lock(&lru_pvecs.lock);
388 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
389
059285a2
MG
390 /*
391 * Search backwards on the optimistic assumption that the page being
392 * activated has just been added to this pagevec. Note that only
393 * the local pagevec is examined as a !PageLRU page could be in the
394 * process of being released, reclaimed, migrated or on a remote
395 * pagevec that is currently being drained. Furthermore, marking
396 * a remote pagevec's page PageActive potentially hits a race where
397 * a page is marked PageActive just after it is added to the inactive
398 * list causing accounting errors and BUG_ON checks to trigger.
399 */
400 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
401 struct page *pagevec_page = pvec->pages[i];
402
403 if (pagevec_page == page) {
404 SetPageActive(page);
405 break;
406 }
407 }
408
b01b2141 409 local_unlock(&lru_pvecs.lock);
059285a2
MG
410}
411
1da177e4
LT
412/*
413 * Mark a page as having seen activity.
414 *
415 * inactive,unreferenced -> inactive,referenced
416 * inactive,referenced -> active,unreferenced
417 * active,unreferenced -> active,referenced
eb39d618
HD
418 *
419 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
420 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 421 */
920c7a5d 422void mark_page_accessed(struct page *page)
1da177e4 423{
e90309c9 424 page = compound_head(page);
059285a2 425
a1100a74
FW
426 if (!PageReferenced(page)) {
427 SetPageReferenced(page);
428 } else if (PageUnevictable(page)) {
429 /*
430 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
431 * this list is never rotated or maintained, so marking an
432 * evictable page accessed has no effect.
433 */
434 } else if (!PageActive(page)) {
059285a2
MG
435 /*
436 * If the page is on the LRU, queue it for activation via
b01b2141 437 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
438 * pagevec, mark it active and it'll be moved to the active
439 * LRU on the next drain.
440 */
441 if (PageLRU(page))
442 activate_page(page);
443 else
444 __lru_cache_activate_page(page);
1da177e4 445 ClearPageReferenced(page);
cb686883 446 workingset_activation(page);
1da177e4 447 }
33c3fc71
VD
448 if (page_is_idle(page))
449 clear_page_idle(page);
1da177e4 450}
1da177e4
LT
451EXPORT_SYMBOL(mark_page_accessed);
452
f04e9ebb 453/**
c53954a0 454 * lru_cache_add - add a page to a page list
f04e9ebb 455 * @page: the page to be added to the LRU.
2329d375
JZ
456 *
457 * Queue the page for addition to the LRU via pagevec. The decision on whether
458 * to add the page to the [in]active [file|anon] list is deferred until the
459 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
460 * have the page added to the active list using mark_page_accessed().
f04e9ebb 461 */
c53954a0 462void lru_cache_add(struct page *page)
1da177e4 463{
6058eaec
JW
464 struct pagevec *pvec;
465
309381fe
SL
466 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
467 VM_BUG_ON_PAGE(PageLRU(page), page);
6058eaec
JW
468
469 get_page(page);
470 local_lock(&lru_pvecs.lock);
471 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
472 if (!pagevec_add(pvec, page) || PageCompound(page))
473 __pagevec_lru_add(pvec);
474 local_unlock(&lru_pvecs.lock);
1da177e4 475}
6058eaec 476EXPORT_SYMBOL(lru_cache_add);
1da177e4 477
00501b53 478/**
b518154e 479 * lru_cache_add_inactive_or_unevictable
00501b53
JW
480 * @page: the page to be added to LRU
481 * @vma: vma in which page is mapped for determining reclaimability
482 *
b518154e 483 * Place @page on the inactive or unevictable LRU list, depending on its
00501b53
JW
484 * evictability. Note that if the page is not evictable, it goes
485 * directly back onto it's zone's unevictable list, it does NOT use a
486 * per cpu pagevec.
487 */
b518154e 488void lru_cache_add_inactive_or_unevictable(struct page *page,
00501b53
JW
489 struct vm_area_struct *vma)
490{
b518154e
JK
491 bool unevictable;
492
00501b53
JW
493 VM_BUG_ON_PAGE(PageLRU(page), page);
494
b518154e
JK
495 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
496 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
00501b53
JW
497 /*
498 * We use the irq-unsafe __mod_zone_page_stat because this
499 * counter is not modified from interrupt context, and the pte
500 * lock is held(spinlock), which implies preemption disabled.
501 */
502 __mod_zone_page_state(page_zone(page), NR_MLOCK,
6c357848 503 thp_nr_pages(page));
00501b53
JW
504 count_vm_event(UNEVICTABLE_PGMLOCKED);
505 }
9c4e6b1a 506 lru_cache_add(page);
00501b53
JW
507}
508
31560180
MK
509/*
510 * If the page can not be invalidated, it is moved to the
511 * inactive list to speed up its reclaim. It is moved to the
512 * head of the list, rather than the tail, to give the flusher
513 * threads some time to write it out, as this is much more
514 * effective than the single-page writeout from reclaim.
278df9f4
MK
515 *
516 * If the page isn't page_mapped and dirty/writeback, the page
517 * could reclaim asap using PG_reclaim.
518 *
519 * 1. active, mapped page -> none
520 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
521 * 3. inactive, mapped page -> none
522 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
523 * 5. inactive, clean -> inactive, tail
524 * 6. Others -> none
525 *
526 * In 4, why it moves inactive's head, the VM expects the page would
527 * be write it out by flusher threads as this is much more effective
528 * than the single-page writeout from reclaim.
31560180 529 */
cc5993bd 530static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
fa9add64 531 void *arg)
31560180 532{
fbbb602e 533 int lru;
278df9f4 534 bool active;
6c357848 535 int nr_pages = thp_nr_pages(page);
31560180 536
278df9f4 537 if (!PageLRU(page))
31560180
MK
538 return;
539
bad49d9c
MK
540 if (PageUnevictable(page))
541 return;
542
31560180
MK
543 /* Some processes are using the page */
544 if (page_mapped(page))
545 return;
546
278df9f4 547 active = PageActive(page);
31560180 548 lru = page_lru_base_type(page);
fa9add64
HD
549
550 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
551 ClearPageActive(page);
552 ClearPageReferenced(page);
31560180 553
278df9f4
MK
554 if (PageWriteback(page) || PageDirty(page)) {
555 /*
556 * PG_reclaim could be raced with end_page_writeback
557 * It can make readahead confusing. But race window
558 * is _really_ small and it's non-critical problem.
559 */
e7a1aaf2 560 add_page_to_lru_list(page, lruvec, lru);
278df9f4
MK
561 SetPageReclaim(page);
562 } else {
563 /*
564 * The page's writeback ends up during pagevec
565 * We moves tha page into tail of inactive.
566 */
e7a1aaf2 567 add_page_to_lru_list_tail(page, lruvec, lru);
5d91f31f 568 __count_vm_events(PGROTATED, nr_pages);
278df9f4
MK
569 }
570
21e330fc 571 if (active) {
5d91f31f 572 __count_vm_events(PGDEACTIVATE, nr_pages);
21e330fc
SB
573 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
574 nr_pages);
575 }
31560180
MK
576}
577
9c276cc6
MK
578static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
579 void *arg)
580{
581 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
9c276cc6 582 int lru = page_lru_base_type(page);
6c357848 583 int nr_pages = thp_nr_pages(page);
9c276cc6
MK
584
585 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
586 ClearPageActive(page);
587 ClearPageReferenced(page);
588 add_page_to_lru_list(page, lruvec, lru);
589
21e330fc
SB
590 __count_vm_events(PGDEACTIVATE, nr_pages);
591 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
592 nr_pages);
9c276cc6
MK
593 }
594}
10853a03 595
f7ad2a6c 596static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
10853a03
MK
597 void *arg)
598{
f7ad2a6c 599 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 600 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 601 bool active = PageActive(page);
6c357848 602 int nr_pages = thp_nr_pages(page);
10853a03 603
f7ad2a6c
SL
604 del_page_from_lru_list(page, lruvec,
605 LRU_INACTIVE_ANON + active);
10853a03
MK
606 ClearPageActive(page);
607 ClearPageReferenced(page);
f7ad2a6c 608 /*
9de4f22a
HY
609 * Lazyfree pages are clean anonymous pages. They have
610 * PG_swapbacked flag cleared, to distinguish them from normal
611 * anonymous pages
f7ad2a6c
SL
612 */
613 ClearPageSwapBacked(page);
614 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
10853a03 615
21e330fc
SB
616 __count_vm_events(PGLAZYFREE, nr_pages);
617 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
618 nr_pages);
10853a03
MK
619 }
620}
621
902aaed0
HH
622/*
623 * Drain pages out of the cpu's pagevecs.
624 * Either "cpu" is the current CPU, and preemption has already been
625 * disabled; or "cpu" is being hot-unplugged, and is already dead.
626 */
f0cb3c76 627void lru_add_drain_cpu(int cpu)
1da177e4 628{
b01b2141 629 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 630
13f7f789 631 if (pagevec_count(pvec))
a0b8cab3 632 __pagevec_lru_add(pvec);
902aaed0 633
b01b2141 634 pvec = &per_cpu(lru_rotate.pvec, cpu);
7e0cc01e
QC
635 /* Disabling interrupts below acts as a compiler barrier. */
636 if (data_race(pagevec_count(pvec))) {
902aaed0
HH
637 unsigned long flags;
638
639 /* No harm done if a racing interrupt already did this */
b01b2141 640 local_lock_irqsave(&lru_rotate.lock, flags);
902aaed0 641 pagevec_move_tail(pvec);
b01b2141 642 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 643 }
31560180 644
b01b2141 645 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 646 if (pagevec_count(pvec))
cc5993bd 647 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
eb709b0d 648
b01b2141 649 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6
MK
650 if (pagevec_count(pvec))
651 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
652
b01b2141 653 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 654 if (pagevec_count(pvec))
f7ad2a6c 655 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
10853a03 656
eb709b0d 657 activate_page_drain(cpu);
31560180
MK
658}
659
660/**
cc5993bd 661 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
662 * @page: page to deactivate
663 *
664 * This function hints the VM that @page is a good reclaim candidate,
665 * for example if its invalidation fails due to the page being dirty
666 * or under writeback.
667 */
cc5993bd 668void deactivate_file_page(struct page *page)
31560180 669{
821ed6bb 670 /*
cc5993bd
MK
671 * In a workload with many unevictable page such as mprotect,
672 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
673 */
674 if (PageUnevictable(page))
675 return;
676
31560180 677 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
678 struct pagevec *pvec;
679
680 local_lock(&lru_pvecs.lock);
681 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 682
8f182270 683 if (!pagevec_add(pvec, page) || PageCompound(page))
cc5993bd 684 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
b01b2141 685 local_unlock(&lru_pvecs.lock);
31560180 686 }
80bfed90
AM
687}
688
9c276cc6
MK
689/*
690 * deactivate_page - deactivate a page
691 * @page: page to deactivate
692 *
693 * deactivate_page() moves @page to the inactive list if @page was on the active
694 * list and was not an unevictable page. This is done to accelerate the reclaim
695 * of @page.
696 */
697void deactivate_page(struct page *page)
698{
699 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 700 struct pagevec *pvec;
9c276cc6 701
b01b2141
IM
702 local_lock(&lru_pvecs.lock);
703 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6
MK
704 get_page(page);
705 if (!pagevec_add(pvec, page) || PageCompound(page))
706 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
b01b2141 707 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
708 }
709}
710
10853a03 711/**
f7ad2a6c 712 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
713 * @page: page to deactivate
714 *
f7ad2a6c
SL
715 * mark_page_lazyfree() moves @page to the inactive file list.
716 * This is done to accelerate the reclaim of @page.
10853a03 717 */
f7ad2a6c 718void mark_page_lazyfree(struct page *page)
10853a03 719{
f7ad2a6c 720 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 721 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 722 struct pagevec *pvec;
10853a03 723
b01b2141
IM
724 local_lock(&lru_pvecs.lock);
725 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 726 get_page(page);
8f182270 727 if (!pagevec_add(pvec, page) || PageCompound(page))
f7ad2a6c 728 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
b01b2141 729 local_unlock(&lru_pvecs.lock);
10853a03
MK
730 }
731}
732
80bfed90
AM
733void lru_add_drain(void)
734{
b01b2141
IM
735 local_lock(&lru_pvecs.lock);
736 lru_add_drain_cpu(smp_processor_id());
737 local_unlock(&lru_pvecs.lock);
738}
739
740void lru_add_drain_cpu_zone(struct zone *zone)
741{
742 local_lock(&lru_pvecs.lock);
743 lru_add_drain_cpu(smp_processor_id());
744 drain_local_pages(zone);
745 local_unlock(&lru_pvecs.lock);
1da177e4
LT
746}
747
6ea183d6
MH
748#ifdef CONFIG_SMP
749
750static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
751
c4028958 752static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
753{
754 lru_add_drain();
755}
756
9852a721
MH
757/*
758 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
759 * kworkers being shut down before our page_alloc_cpu_dead callback is
760 * executed on the offlined cpu.
761 * Calling this function with cpu hotplug locks held can actually lead
762 * to obscure indirect dependencies via WQ context.
763 */
764void lru_add_drain_all(void)
053837fc 765{
eef1a429 766 static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
5fbc4616
CM
767 static DEFINE_MUTEX(lock);
768 static struct cpumask has_work;
eef1a429 769 int cpu, seq;
5fbc4616 770
ce612879
MH
771 /*
772 * Make sure nobody triggers this path before mm_percpu_wq is fully
773 * initialized.
774 */
775 if (WARN_ON(!mm_percpu_wq))
776 return;
777
eef1a429
KK
778 seq = raw_read_seqcount_latch(&seqcount);
779
5fbc4616 780 mutex_lock(&lock);
eef1a429
KK
781
782 /*
783 * Piggyback on drain started and finished while we waited for lock:
784 * all pages pended at the time of our enter were drained from vectors.
785 */
786 if (__read_seqcount_retry(&seqcount, seq))
787 goto done;
788
789 raw_write_seqcount_latch(&seqcount);
790
5fbc4616
CM
791 cpumask_clear(&has_work);
792
793 for_each_online_cpu(cpu) {
794 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
795
b01b2141 796 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
7e0cc01e 797 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
b01b2141
IM
798 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
799 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
800 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
5fbc4616
CM
801 need_activate_page_drain(cpu)) {
802 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 803 queue_work_on(cpu, mm_percpu_wq, work);
5fbc4616
CM
804 cpumask_set_cpu(cpu, &has_work);
805 }
806 }
807
808 for_each_cpu(cpu, &has_work)
809 flush_work(&per_cpu(lru_add_drain_work, cpu));
810
eef1a429 811done:
5fbc4616 812 mutex_unlock(&lock);
053837fc 813}
6ea183d6
MH
814#else
815void lru_add_drain_all(void)
816{
817 lru_add_drain();
818}
819#endif
053837fc 820
aabfb572 821/**
ea1754a0 822 * release_pages - batched put_page()
aabfb572
MH
823 * @pages: array of pages to release
824 * @nr: number of pages
1da177e4 825 *
aabfb572
MH
826 * Decrement the reference count on all the pages in @pages. If it
827 * fell to zero, remove the page from the LRU and free it.
1da177e4 828 */
c6f92f9f 829void release_pages(struct page **pages, int nr)
1da177e4
LT
830{
831 int i;
cc59850e 832 LIST_HEAD(pages_to_free);
599d0c95 833 struct pglist_data *locked_pgdat = NULL;
fa9add64 834 struct lruvec *lruvec;
3f649ab7
KC
835 unsigned long flags;
836 unsigned int lock_batch;
1da177e4 837
1da177e4
LT
838 for (i = 0; i < nr; i++) {
839 struct page *page = pages[i];
1da177e4 840
aabfb572
MH
841 /*
842 * Make sure the IRQ-safe lock-holding time does not get
843 * excessive with a continuous string of pages from the
599d0c95 844 * same pgdat. The lock is held only if pgdat != NULL.
aabfb572 845 */
599d0c95
MG
846 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
847 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
848 locked_pgdat = NULL;
aabfb572
MH
849 }
850
6fcb52a5 851 if (is_huge_zero_page(page))
aa88b68c 852 continue;
aa88b68c 853
c5d6c45e 854 if (is_zone_device_page(page)) {
df6ad698
JG
855 if (locked_pgdat) {
856 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
857 flags);
858 locked_pgdat = NULL;
859 }
c5d6c45e
IW
860 /*
861 * ZONE_DEVICE pages that return 'false' from
862 * put_devmap_managed_page() do not require special
863 * processing, and instead, expect a call to
864 * put_page_testzero().
865 */
07d80269
JH
866 if (page_is_devmap_managed(page)) {
867 put_devmap_managed_page(page);
c5d6c45e 868 continue;
07d80269 869 }
df6ad698
JG
870 }
871
ddc58f27 872 page = compound_head(page);
b5810039 873 if (!put_page_testzero(page))
1da177e4
LT
874 continue;
875
ddc58f27 876 if (PageCompound(page)) {
599d0c95
MG
877 if (locked_pgdat) {
878 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
879 locked_pgdat = NULL;
ddc58f27
KS
880 }
881 __put_compound_page(page);
882 continue;
883 }
884
46453a6e 885 if (PageLRU(page)) {
599d0c95 886 struct pglist_data *pgdat = page_pgdat(page);
894bc310 887
599d0c95
MG
888 if (pgdat != locked_pgdat) {
889 if (locked_pgdat)
890 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
902aaed0 891 flags);
aabfb572 892 lock_batch = 0;
599d0c95
MG
893 locked_pgdat = pgdat;
894 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
46453a6e 895 }
fa9add64 896
599d0c95 897 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
309381fe 898 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 899 __ClearPageLRU(page);
fa9add64 900 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
901 }
902
c53954a0 903 /* Clear Active bit in case of parallel mark_page_accessed */
e3741b50 904 __ClearPageActive(page);
62906027 905 __ClearPageWaiters(page);
c53954a0 906
cc59850e 907 list_add(&page->lru, &pages_to_free);
1da177e4 908 }
599d0c95
MG
909 if (locked_pgdat)
910 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1da177e4 911
747db954 912 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 913 free_unref_page_list(&pages_to_free);
1da177e4 914}
0be8557b 915EXPORT_SYMBOL(release_pages);
1da177e4
LT
916
917/*
918 * The pages which we're about to release may be in the deferred lru-addition
919 * queues. That would prevent them from really being freed right now. That's
920 * OK from a correctness point of view but is inefficient - those pages may be
921 * cache-warm and we want to give them back to the page allocator ASAP.
922 *
923 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
924 * and __pagevec_lru_add_active() call release_pages() directly to avoid
925 * mutual recursion.
926 */
927void __pagevec_release(struct pagevec *pvec)
928{
7f0b5fb9 929 if (!pvec->percpu_pvec_drained) {
d9ed0d08 930 lru_add_drain();
7f0b5fb9 931 pvec->percpu_pvec_drained = true;
d9ed0d08 932 }
c6f92f9f 933 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
934 pagevec_reinit(pvec);
935}
7f285701
SF
936EXPORT_SYMBOL(__pagevec_release);
937
12d27107 938#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 939/* used by __split_huge_page_refcount() */
fa9add64 940void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 941 struct lruvec *lruvec, struct list_head *list)
71e3aac0 942{
309381fe
SL
943 VM_BUG_ON_PAGE(!PageHead(page), page);
944 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
945 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
35f3aa39 946 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
71e3aac0 947
5bc7b8ac
SL
948 if (!list)
949 SetPageLRU(page_tail);
71e3aac0 950
12d27107
HD
951 if (likely(PageLRU(page)))
952 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
953 else if (list) {
954 /* page reclaim is reclaiming a huge page */
955 get_page(page_tail);
956 list_add_tail(&page_tail->lru, list);
957 } else {
12d27107
HD
958 /*
959 * Head page has not yet been counted, as an hpage,
960 * so we must account for each subpage individually.
961 *
e7a1aaf2
YZ
962 * Put page_tail on the list at the correct position
963 * so they all end up in order.
12d27107 964 */
e7a1aaf2
YZ
965 add_page_to_lru_list_tail(page_tail, lruvec,
966 page_lru(page_tail));
71e3aac0
AA
967 }
968}
12d27107 969#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 970
fa9add64
HD
971static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
972 void *arg)
3dd7ae8e 973{
9c4e6b1a
SB
974 enum lru_list lru;
975 int was_unevictable = TestClearPageUnevictable(page);
6c357848 976 int nr_pages = thp_nr_pages(page);
3dd7ae8e 977
309381fe 978 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e 979
9c4e6b1a
SB
980 /*
981 * Page becomes evictable in two ways:
dae966dc 982 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
983 * 2) Before acquiring LRU lock to put the page to correct LRU and then
984 * a) do PageLRU check with lock [check_move_unevictable_pages]
985 * b) do PageLRU check before lock [clear_page_mlock]
986 *
987 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
988 * following strict ordering:
989 *
990 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
991 *
992 * SetPageLRU() TestClearPageMlocked()
993 * smp_mb() // explicit ordering // above provides strict
994 * // ordering
995 * PageMlocked() PageLRU()
996 *
997 *
998 * if '#1' does not observe setting of PG_lru by '#0' and fails
999 * isolation, the explicit barrier will make sure that page_evictable
1000 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1001 * can be reordered after PageMlocked check and can make '#1' to fail
1002 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1003 * looking at the same page) and the evictable page will be stranded
1004 * in an unevictable LRU.
1005 */
9a9b6cce
YS
1006 SetPageLRU(page);
1007 smp_mb__after_atomic();
9c4e6b1a
SB
1008
1009 if (page_evictable(page)) {
1010 lru = page_lru(page);
9c4e6b1a 1011 if (was_unevictable)
5d91f31f 1012 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
9c4e6b1a
SB
1013 } else {
1014 lru = LRU_UNEVICTABLE;
1015 ClearPageActive(page);
1016 SetPageUnevictable(page);
1017 if (!was_unevictable)
5d91f31f 1018 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
9c4e6b1a
SB
1019 }
1020
fa9add64 1021 add_page_to_lru_list(page, lruvec, lru);
24b7e581 1022 trace_mm_lru_insertion(page, lru);
3dd7ae8e
SL
1023}
1024
1da177e4
LT
1025/*
1026 * Add the passed pages to the LRU, then drop the caller's refcount
1027 * on them. Reinitialises the caller's pagevec.
1028 */
a0b8cab3 1029void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1030{
a0b8cab3 1031 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 1032}
1da177e4 1033
0cd6144a
JW
1034/**
1035 * pagevec_lookup_entries - gang pagecache lookup
1036 * @pvec: Where the resulting entries are placed
1037 * @mapping: The address_space to search
1038 * @start: The starting entry index
cb6f0f34 1039 * @nr_entries: The maximum number of pages
0cd6144a
JW
1040 * @indices: The cache indices corresponding to the entries in @pvec
1041 *
1042 * pagevec_lookup_entries() will search for and return a group of up
f144c390 1043 * to @nr_pages pages and shadow entries in the mapping. All
0cd6144a
JW
1044 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1045 * reference against actual pages in @pvec.
1046 *
1047 * The search returns a group of mapping-contiguous entries with
1048 * ascending indexes. There may be holes in the indices due to
1049 * not-present entries.
1050 *
71725ed1
HD
1051 * Only one subpage of a Transparent Huge Page is returned in one call:
1052 * allowing truncate_inode_pages_range() to evict the whole THP without
1053 * cycling through a pagevec of extra references.
1054 *
0cd6144a
JW
1055 * pagevec_lookup_entries() returns the number of entries which were
1056 * found.
1057 */
1058unsigned pagevec_lookup_entries(struct pagevec *pvec,
1059 struct address_space *mapping,
e02a9f04 1060 pgoff_t start, unsigned nr_entries,
0cd6144a
JW
1061 pgoff_t *indices)
1062{
e02a9f04 1063 pvec->nr = find_get_entries(mapping, start, nr_entries,
0cd6144a
JW
1064 pvec->pages, indices);
1065 return pagevec_count(pvec);
1066}
1067
1068/**
1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1070 * @pvec: The pagevec to prune
1071 *
1072 * pagevec_lookup_entries() fills both pages and exceptional radix
1073 * tree entries into the pagevec. This function prunes all
1074 * exceptionals from @pvec without leaving holes, so that it can be
1075 * passed on to page-only pagevec operations.
1076 */
1077void pagevec_remove_exceptionals(struct pagevec *pvec)
1078{
1079 int i, j;
1080
1081 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1082 struct page *page = pvec->pages[i];
3159f943 1083 if (!xa_is_value(page))
0cd6144a
JW
1084 pvec->pages[j++] = page;
1085 }
1086 pvec->nr = j;
1087}
1088
1da177e4 1089/**
b947cee4 1090 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1091 * @pvec: Where the resulting pages are placed
1092 * @mapping: The address_space to search
1093 * @start: The starting page index
b947cee4 1094 * @end: The final page index
1da177e4 1095 *
e02a9f04 1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1099 * reference against the pages in @pvec.
1100 *
1101 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1102 * indexes. There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1da177e4 1104 *
b947cee4 1105 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1107 * reached.
1da177e4 1108 */
b947cee4 1109unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1110 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1111{
397162ff 1112 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1113 pvec->pages);
1da177e4
LT
1114 return pagevec_count(pvec);
1115}
b947cee4 1116EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1117
72b045ae
JK
1118unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1119 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1120 xa_mark_t tag)
1da177e4 1121{
72b045ae 1122 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1123 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1124 return pagevec_count(pvec);
1125}
72b045ae 1126EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1127
93d3b714
JK
1128unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1129 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1130 xa_mark_t tag, unsigned max_pages)
93d3b714
JK
1131{
1132 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1133 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1134 return pagevec_count(pvec);
1135}
1136EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1da177e4
LT
1137/*
1138 * Perform any setup for the swap system
1139 */
1140void __init swap_setup(void)
1141{
ca79b0c2 1142 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1143
1da177e4
LT
1144 /* Use a smaller cluster for small-memory machines */
1145 if (megs < 16)
1146 page_cluster = 2;
1147 else
1148 page_cluster = 3;
1149 /*
1150 * Right now other parts of the system means that we
1151 * _really_ don't want to cluster much more
1152 */
1da177e4 1153}
07d80269
JH
1154
1155#ifdef CONFIG_DEV_PAGEMAP_OPS
1156void put_devmap_managed_page(struct page *page)
1157{
1158 int count;
1159
1160 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1161 return;
1162
1163 count = page_ref_dec_return(page);
1164
1165 /*
1166 * devmap page refcounts are 1-based, rather than 0-based: if
1167 * refcount is 1, then the page is free and the refcount is
1168 * stable because nobody holds a reference on the page.
1169 */
1170 if (count == 1)
1171 free_devmap_managed_page(page);
1172 else if (!count)
1173 __put_page(page);
1174}
1175EXPORT_SYMBOL(put_devmap_managed_page);
1176#endif