mm: vmscan: determine anon/file pressure balance at the reclaim root
[linux-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
1da177e4 39
64d6519d
LS
40#include "internal.h"
41
c6286c98
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/pagemap.h>
44
1da177e4
LT
45/* How many pages do we try to swap or page in/out together? */
46int page_cluster;
47
b01b2141
IM
48/* Protecting only lru_rotate.pvec which requires disabling interrupts */
49struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52};
53static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55};
56
57/*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
a4a921aa 67#ifdef CONFIG_SMP
b01b2141 68 struct pagevec activate_page;
a4a921aa 69#endif
b01b2141
IM
70};
71static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73};
902aaed0 74
b221385b
AB
75/*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
920c7a5d 79static void __page_cache_release(struct page *page)
b221385b
AB
80{
81 if (PageLRU(page)) {
f4b7e272 82 pg_data_t *pgdat = page_pgdat(page);
fa9add64
HD
83 struct lruvec *lruvec;
84 unsigned long flags;
b221385b 85
f4b7e272
AR
86 spin_lock_irqsave(&pgdat->lru_lock, flags);
87 lruvec = mem_cgroup_page_lruvec(page, pgdat);
309381fe 88 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 89 __ClearPageLRU(page);
fa9add64 90 del_page_from_lru_list(page, lruvec, page_off_lru(page));
f4b7e272 91 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
b221385b 92 }
62906027 93 __ClearPageWaiters(page);
91807063
AA
94}
95
96static void __put_single_page(struct page *page)
97{
98 __page_cache_release(page);
7ae88534 99 mem_cgroup_uncharge(page);
2d4894b5 100 free_unref_page(page);
b221385b
AB
101}
102
91807063 103static void __put_compound_page(struct page *page)
1da177e4 104{
822fc613
NH
105 /*
106 * __page_cache_release() is supposed to be called for thp, not for
107 * hugetlb. This is because hugetlb page does never have PageLRU set
108 * (it's never listed to any LRU lists) and no memcg routines should
109 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110 */
111 if (!PageHuge(page))
112 __page_cache_release(page);
ff45fc3c 113 destroy_compound_page(page);
91807063
AA
114}
115
ddc58f27 116void __put_page(struct page *page)
8519fb30 117{
71389703
DW
118 if (is_zone_device_page(page)) {
119 put_dev_pagemap(page->pgmap);
120
121 /*
122 * The page belongs to the device that created pgmap. Do
123 * not return it to page allocator.
124 */
125 return;
126 }
127
8519fb30 128 if (unlikely(PageCompound(page)))
ddc58f27
KS
129 __put_compound_page(page);
130 else
91807063 131 __put_single_page(page);
1da177e4 132}
ddc58f27 133EXPORT_SYMBOL(__put_page);
70b50f94 134
1d7ea732 135/**
7682486b
RD
136 * put_pages_list() - release a list of pages
137 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
138 *
139 * Release a list of pages which are strung together on page.lru. Currently
140 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
141 */
142void put_pages_list(struct list_head *pages)
143{
144 while (!list_empty(pages)) {
145 struct page *victim;
146
f86196ea 147 victim = lru_to_page(pages);
1d7ea732 148 list_del(&victim->lru);
09cbfeaf 149 put_page(victim);
1d7ea732
AZ
150 }
151}
152EXPORT_SYMBOL(put_pages_list);
153
18022c5d
MG
154/*
155 * get_kernel_pages() - pin kernel pages in memory
156 * @kiov: An array of struct kvec structures
157 * @nr_segs: number of segments to pin
158 * @write: pinning for read/write, currently ignored
159 * @pages: array that receives pointers to the pages pinned.
160 * Should be at least nr_segs long.
161 *
162 * Returns number of pages pinned. This may be fewer than the number
163 * requested. If nr_pages is 0 or negative, returns 0. If no pages
164 * were pinned, returns -errno. Each page returned must be released
165 * with a put_page() call when it is finished with.
166 */
167int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168 struct page **pages)
169{
170 int seg;
171
172 for (seg = 0; seg < nr_segs; seg++) {
173 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174 return seg;
175
5a178119 176 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 177 get_page(pages[seg]);
18022c5d
MG
178 }
179
180 return seg;
181}
182EXPORT_SYMBOL_GPL(get_kernel_pages);
183
184/*
185 * get_kernel_page() - pin a kernel page in memory
186 * @start: starting kernel address
187 * @write: pinning for read/write, currently ignored
188 * @pages: array that receives pointer to the page pinned.
189 * Must be at least nr_segs long.
190 *
191 * Returns 1 if page is pinned. If the page was not pinned, returns
192 * -errno. The page returned must be released with a put_page() call
193 * when it is finished with.
194 */
195int get_kernel_page(unsigned long start, int write, struct page **pages)
196{
197 const struct kvec kiov = {
198 .iov_base = (void *)start,
199 .iov_len = PAGE_SIZE
200 };
201
202 return get_kernel_pages(&kiov, 1, write, pages);
203}
204EXPORT_SYMBOL_GPL(get_kernel_page);
205
3dd7ae8e 206static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
207 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208 void *arg)
902aaed0
HH
209{
210 int i;
68eb0731 211 struct pglist_data *pgdat = NULL;
fa9add64 212 struct lruvec *lruvec;
3dd7ae8e 213 unsigned long flags = 0;
902aaed0
HH
214
215 for (i = 0; i < pagevec_count(pvec); i++) {
216 struct page *page = pvec->pages[i];
68eb0731 217 struct pglist_data *pagepgdat = page_pgdat(page);
902aaed0 218
68eb0731
MG
219 if (pagepgdat != pgdat) {
220 if (pgdat)
221 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222 pgdat = pagepgdat;
223 spin_lock_irqsave(&pgdat->lru_lock, flags);
902aaed0 224 }
3dd7ae8e 225
68eb0731 226 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 227 (*move_fn)(page, lruvec, arg);
902aaed0 228 }
68eb0731
MG
229 if (pgdat)
230 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
c6f92f9f 231 release_pages(pvec->pages, pvec->nr);
83896fb5 232 pagevec_reinit(pvec);
d8505dee
SL
233}
234
fa9add64
HD
235static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236 void *arg)
3dd7ae8e
SL
237{
238 int *pgmoved = arg;
3dd7ae8e 239
c55e8d03
JW
240 if (PageLRU(page) && !PageUnevictable(page)) {
241 del_page_from_lru_list(page, lruvec, page_lru(page));
242 ClearPageActive(page);
243 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
3dd7ae8e
SL
244 (*pgmoved)++;
245 }
246}
247
248/*
249 * pagevec_move_tail() must be called with IRQ disabled.
250 * Otherwise this may cause nasty races.
251 */
252static void pagevec_move_tail(struct pagevec *pvec)
253{
254 int pgmoved = 0;
255
256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257 __count_vm_events(PGROTATED, pgmoved);
258}
259
1da177e4
LT
260/*
261 * Writeback is about to end against a page which has been marked for immediate
262 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 263 * inactive list.
1da177e4 264 */
3dd7ae8e 265void rotate_reclaimable_page(struct page *page)
1da177e4 266{
c55e8d03 267 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 268 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
269 struct pagevec *pvec;
270 unsigned long flags;
271
09cbfeaf 272 get_page(page);
b01b2141
IM
273 local_lock_irqsave(&lru_rotate.lock, flags);
274 pvec = this_cpu_ptr(&lru_rotate.pvec);
8f182270 275 if (!pagevec_add(pvec, page) || PageCompound(page))
ac6aadb2 276 pagevec_move_tail(pvec);
b01b2141 277 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 278 }
1da177e4
LT
279}
280
314b57fb 281void lru_note_cost(struct page *page)
3e2f41f1 282{
314b57fb
JW
283 struct lruvec *lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
284
7cf111bc
JW
285 do {
286 unsigned long lrusize;
287
288 /* Record cost event */
289 if (page_is_file_lru(page))
290 lruvec->file_cost++;
291 else
292 lruvec->anon_cost++;
293
294 /*
295 * Decay previous events
296 *
297 * Because workloads change over time (and to avoid
298 * overflow) we keep these statistics as a floating
299 * average, which ends up weighing recent refaults
300 * more than old ones.
301 */
302 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
303 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
304 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
305 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
306
307 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
308 lruvec->file_cost /= 2;
309 lruvec->anon_cost /= 2;
310 }
311 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
312}
313
fa9add64
HD
314static void __activate_page(struct page *page, struct lruvec *lruvec,
315 void *arg)
1da177e4 316{
744ed144 317 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572 318 int lru = page_lru_base_type(page);
744ed144 319
fa9add64 320 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
321 SetPageActive(page);
322 lru += LRU_ACTIVE;
fa9add64 323 add_page_to_lru_list(page, lruvec, lru);
24b7e581 324 trace_mm_lru_activate(page);
4f98a2fe 325
fa9add64 326 __count_vm_event(PGACTIVATE);
1da177e4 327 }
eb709b0d
SL
328}
329
330#ifdef CONFIG_SMP
eb709b0d
SL
331static void activate_page_drain(int cpu)
332{
b01b2141 333 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
334
335 if (pagevec_count(pvec))
336 pagevec_lru_move_fn(pvec, __activate_page, NULL);
337}
338
5fbc4616
CM
339static bool need_activate_page_drain(int cpu)
340{
b01b2141 341 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
342}
343
eb709b0d
SL
344void activate_page(struct page *page)
345{
800d8c63 346 page = compound_head(page);
eb709b0d 347 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
b01b2141 348 struct pagevec *pvec;
eb709b0d 349
b01b2141
IM
350 local_lock(&lru_pvecs.lock);
351 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
09cbfeaf 352 get_page(page);
8f182270 353 if (!pagevec_add(pvec, page) || PageCompound(page))
eb709b0d 354 pagevec_lru_move_fn(pvec, __activate_page, NULL);
b01b2141 355 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
356 }
357}
358
359#else
360static inline void activate_page_drain(int cpu)
361{
362}
363
364void activate_page(struct page *page)
365{
f4b7e272 366 pg_data_t *pgdat = page_pgdat(page);
eb709b0d 367
800d8c63 368 page = compound_head(page);
f4b7e272
AR
369 spin_lock_irq(&pgdat->lru_lock);
370 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
371 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 372}
eb709b0d 373#endif
1da177e4 374
059285a2
MG
375static void __lru_cache_activate_page(struct page *page)
376{
b01b2141 377 struct pagevec *pvec;
059285a2
MG
378 int i;
379
b01b2141
IM
380 local_lock(&lru_pvecs.lock);
381 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
382
059285a2
MG
383 /*
384 * Search backwards on the optimistic assumption that the page being
385 * activated has just been added to this pagevec. Note that only
386 * the local pagevec is examined as a !PageLRU page could be in the
387 * process of being released, reclaimed, migrated or on a remote
388 * pagevec that is currently being drained. Furthermore, marking
389 * a remote pagevec's page PageActive potentially hits a race where
390 * a page is marked PageActive just after it is added to the inactive
391 * list causing accounting errors and BUG_ON checks to trigger.
392 */
393 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
394 struct page *pagevec_page = pvec->pages[i];
395
396 if (pagevec_page == page) {
397 SetPageActive(page);
398 break;
399 }
400 }
401
b01b2141 402 local_unlock(&lru_pvecs.lock);
059285a2
MG
403}
404
1da177e4
LT
405/*
406 * Mark a page as having seen activity.
407 *
408 * inactive,unreferenced -> inactive,referenced
409 * inactive,referenced -> active,unreferenced
410 * active,unreferenced -> active,referenced
eb39d618
HD
411 *
412 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
413 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 414 */
920c7a5d 415void mark_page_accessed(struct page *page)
1da177e4 416{
e90309c9 417 page = compound_head(page);
059285a2 418
a1100a74
FW
419 if (!PageReferenced(page)) {
420 SetPageReferenced(page);
421 } else if (PageUnevictable(page)) {
422 /*
423 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
424 * this list is never rotated or maintained, so marking an
425 * evictable page accessed has no effect.
426 */
427 } else if (!PageActive(page)) {
059285a2
MG
428 /*
429 * If the page is on the LRU, queue it for activation via
b01b2141 430 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
431 * pagevec, mark it active and it'll be moved to the active
432 * LRU on the next drain.
433 */
434 if (PageLRU(page))
435 activate_page(page);
436 else
437 __lru_cache_activate_page(page);
1da177e4 438 ClearPageReferenced(page);
9de4f22a 439 if (page_is_file_lru(page))
a528910e 440 workingset_activation(page);
1da177e4 441 }
33c3fc71
VD
442 if (page_is_idle(page))
443 clear_page_idle(page);
1da177e4 444}
1da177e4
LT
445EXPORT_SYMBOL(mark_page_accessed);
446
f04e9ebb 447/**
c53954a0 448 * lru_cache_add - add a page to a page list
f04e9ebb 449 * @page: the page to be added to the LRU.
2329d375
JZ
450 *
451 * Queue the page for addition to the LRU via pagevec. The decision on whether
452 * to add the page to the [in]active [file|anon] list is deferred until the
453 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
454 * have the page added to the active list using mark_page_accessed().
f04e9ebb 455 */
c53954a0 456void lru_cache_add(struct page *page)
1da177e4 457{
6058eaec
JW
458 struct pagevec *pvec;
459
309381fe
SL
460 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
461 VM_BUG_ON_PAGE(PageLRU(page), page);
6058eaec
JW
462
463 get_page(page);
464 local_lock(&lru_pvecs.lock);
465 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
466 if (!pagevec_add(pvec, page) || PageCompound(page))
467 __pagevec_lru_add(pvec);
468 local_unlock(&lru_pvecs.lock);
1da177e4 469}
6058eaec 470EXPORT_SYMBOL(lru_cache_add);
1da177e4 471
00501b53
JW
472/**
473 * lru_cache_add_active_or_unevictable
474 * @page: the page to be added to LRU
475 * @vma: vma in which page is mapped for determining reclaimability
476 *
477 * Place @page on the active or unevictable LRU list, depending on its
478 * evictability. Note that if the page is not evictable, it goes
479 * directly back onto it's zone's unevictable list, it does NOT use a
480 * per cpu pagevec.
481 */
482void lru_cache_add_active_or_unevictable(struct page *page,
483 struct vm_area_struct *vma)
484{
485 VM_BUG_ON_PAGE(PageLRU(page), page);
486
9c4e6b1a 487 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
00501b53 488 SetPageActive(page);
9c4e6b1a 489 else if (!TestSetPageMlocked(page)) {
00501b53
JW
490 /*
491 * We use the irq-unsafe __mod_zone_page_stat because this
492 * counter is not modified from interrupt context, and the pte
493 * lock is held(spinlock), which implies preemption disabled.
494 */
495 __mod_zone_page_state(page_zone(page), NR_MLOCK,
496 hpage_nr_pages(page));
497 count_vm_event(UNEVICTABLE_PGMLOCKED);
498 }
9c4e6b1a 499 lru_cache_add(page);
00501b53
JW
500}
501
31560180
MK
502/*
503 * If the page can not be invalidated, it is moved to the
504 * inactive list to speed up its reclaim. It is moved to the
505 * head of the list, rather than the tail, to give the flusher
506 * threads some time to write it out, as this is much more
507 * effective than the single-page writeout from reclaim.
278df9f4
MK
508 *
509 * If the page isn't page_mapped and dirty/writeback, the page
510 * could reclaim asap using PG_reclaim.
511 *
512 * 1. active, mapped page -> none
513 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
514 * 3. inactive, mapped page -> none
515 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
516 * 5. inactive, clean -> inactive, tail
517 * 6. Others -> none
518 *
519 * In 4, why it moves inactive's head, the VM expects the page would
520 * be write it out by flusher threads as this is much more effective
521 * than the single-page writeout from reclaim.
31560180 522 */
cc5993bd 523static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
fa9add64 524 void *arg)
31560180 525{
fbbb602e 526 int lru;
278df9f4 527 bool active;
31560180 528
278df9f4 529 if (!PageLRU(page))
31560180
MK
530 return;
531
bad49d9c
MK
532 if (PageUnevictable(page))
533 return;
534
31560180
MK
535 /* Some processes are using the page */
536 if (page_mapped(page))
537 return;
538
278df9f4 539 active = PageActive(page);
31560180 540 lru = page_lru_base_type(page);
fa9add64
HD
541
542 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
543 ClearPageActive(page);
544 ClearPageReferenced(page);
31560180 545
278df9f4
MK
546 if (PageWriteback(page) || PageDirty(page)) {
547 /*
548 * PG_reclaim could be raced with end_page_writeback
549 * It can make readahead confusing. But race window
550 * is _really_ small and it's non-critical problem.
551 */
e7a1aaf2 552 add_page_to_lru_list(page, lruvec, lru);
278df9f4
MK
553 SetPageReclaim(page);
554 } else {
555 /*
556 * The page's writeback ends up during pagevec
557 * We moves tha page into tail of inactive.
558 */
e7a1aaf2 559 add_page_to_lru_list_tail(page, lruvec, lru);
278df9f4
MK
560 __count_vm_event(PGROTATED);
561 }
562
563 if (active)
564 __count_vm_event(PGDEACTIVATE);
31560180
MK
565}
566
9c276cc6
MK
567static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
568 void *arg)
569{
570 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
9c276cc6
MK
571 int lru = page_lru_base_type(page);
572
573 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
574 ClearPageActive(page);
575 ClearPageReferenced(page);
576 add_page_to_lru_list(page, lruvec, lru);
577
578 __count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
9c276cc6
MK
579 }
580}
10853a03 581
f7ad2a6c 582static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
10853a03
MK
583 void *arg)
584{
f7ad2a6c 585 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 586 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 587 bool active = PageActive(page);
10853a03 588
f7ad2a6c
SL
589 del_page_from_lru_list(page, lruvec,
590 LRU_INACTIVE_ANON + active);
10853a03
MK
591 ClearPageActive(page);
592 ClearPageReferenced(page);
f7ad2a6c 593 /*
9de4f22a
HY
594 * Lazyfree pages are clean anonymous pages. They have
595 * PG_swapbacked flag cleared, to distinguish them from normal
596 * anonymous pages
f7ad2a6c
SL
597 */
598 ClearPageSwapBacked(page);
599 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
10853a03 600
f7ad2a6c 601 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
2262185c 602 count_memcg_page_event(page, PGLAZYFREE);
10853a03
MK
603 }
604}
605
902aaed0
HH
606/*
607 * Drain pages out of the cpu's pagevecs.
608 * Either "cpu" is the current CPU, and preemption has already been
609 * disabled; or "cpu" is being hot-unplugged, and is already dead.
610 */
f0cb3c76 611void lru_add_drain_cpu(int cpu)
1da177e4 612{
b01b2141 613 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 614
13f7f789 615 if (pagevec_count(pvec))
a0b8cab3 616 __pagevec_lru_add(pvec);
902aaed0 617
b01b2141 618 pvec = &per_cpu(lru_rotate.pvec, cpu);
902aaed0
HH
619 if (pagevec_count(pvec)) {
620 unsigned long flags;
621
622 /* No harm done if a racing interrupt already did this */
b01b2141 623 local_lock_irqsave(&lru_rotate.lock, flags);
902aaed0 624 pagevec_move_tail(pvec);
b01b2141 625 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 626 }
31560180 627
b01b2141 628 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 629 if (pagevec_count(pvec))
cc5993bd 630 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
eb709b0d 631
b01b2141 632 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6
MK
633 if (pagevec_count(pvec))
634 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
635
b01b2141 636 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 637 if (pagevec_count(pvec))
f7ad2a6c 638 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
10853a03 639
eb709b0d 640 activate_page_drain(cpu);
31560180
MK
641}
642
643/**
cc5993bd 644 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
645 * @page: page to deactivate
646 *
647 * This function hints the VM that @page is a good reclaim candidate,
648 * for example if its invalidation fails due to the page being dirty
649 * or under writeback.
650 */
cc5993bd 651void deactivate_file_page(struct page *page)
31560180 652{
821ed6bb 653 /*
cc5993bd
MK
654 * In a workload with many unevictable page such as mprotect,
655 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
656 */
657 if (PageUnevictable(page))
658 return;
659
31560180 660 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
661 struct pagevec *pvec;
662
663 local_lock(&lru_pvecs.lock);
664 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 665
8f182270 666 if (!pagevec_add(pvec, page) || PageCompound(page))
cc5993bd 667 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
b01b2141 668 local_unlock(&lru_pvecs.lock);
31560180 669 }
80bfed90
AM
670}
671
9c276cc6
MK
672/*
673 * deactivate_page - deactivate a page
674 * @page: page to deactivate
675 *
676 * deactivate_page() moves @page to the inactive list if @page was on the active
677 * list and was not an unevictable page. This is done to accelerate the reclaim
678 * of @page.
679 */
680void deactivate_page(struct page *page)
681{
682 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 683 struct pagevec *pvec;
9c276cc6 684
b01b2141
IM
685 local_lock(&lru_pvecs.lock);
686 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6
MK
687 get_page(page);
688 if (!pagevec_add(pvec, page) || PageCompound(page))
689 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
b01b2141 690 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
691 }
692}
693
10853a03 694/**
f7ad2a6c 695 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
696 * @page: page to deactivate
697 *
f7ad2a6c
SL
698 * mark_page_lazyfree() moves @page to the inactive file list.
699 * This is done to accelerate the reclaim of @page.
10853a03 700 */
f7ad2a6c 701void mark_page_lazyfree(struct page *page)
10853a03 702{
f7ad2a6c 703 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 704 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 705 struct pagevec *pvec;
10853a03 706
b01b2141
IM
707 local_lock(&lru_pvecs.lock);
708 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 709 get_page(page);
8f182270 710 if (!pagevec_add(pvec, page) || PageCompound(page))
f7ad2a6c 711 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
b01b2141 712 local_unlock(&lru_pvecs.lock);
10853a03
MK
713 }
714}
715
80bfed90
AM
716void lru_add_drain(void)
717{
b01b2141
IM
718 local_lock(&lru_pvecs.lock);
719 lru_add_drain_cpu(smp_processor_id());
720 local_unlock(&lru_pvecs.lock);
721}
722
723void lru_add_drain_cpu_zone(struct zone *zone)
724{
725 local_lock(&lru_pvecs.lock);
726 lru_add_drain_cpu(smp_processor_id());
727 drain_local_pages(zone);
728 local_unlock(&lru_pvecs.lock);
1da177e4
LT
729}
730
6ea183d6
MH
731#ifdef CONFIG_SMP
732
733static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
734
c4028958 735static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
736{
737 lru_add_drain();
738}
739
9852a721
MH
740/*
741 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
742 * kworkers being shut down before our page_alloc_cpu_dead callback is
743 * executed on the offlined cpu.
744 * Calling this function with cpu hotplug locks held can actually lead
745 * to obscure indirect dependencies via WQ context.
746 */
747void lru_add_drain_all(void)
053837fc 748{
eef1a429 749 static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
5fbc4616
CM
750 static DEFINE_MUTEX(lock);
751 static struct cpumask has_work;
eef1a429 752 int cpu, seq;
5fbc4616 753
ce612879
MH
754 /*
755 * Make sure nobody triggers this path before mm_percpu_wq is fully
756 * initialized.
757 */
758 if (WARN_ON(!mm_percpu_wq))
759 return;
760
eef1a429
KK
761 seq = raw_read_seqcount_latch(&seqcount);
762
5fbc4616 763 mutex_lock(&lock);
eef1a429
KK
764
765 /*
766 * Piggyback on drain started and finished while we waited for lock:
767 * all pages pended at the time of our enter were drained from vectors.
768 */
769 if (__read_seqcount_retry(&seqcount, seq))
770 goto done;
771
772 raw_write_seqcount_latch(&seqcount);
773
5fbc4616
CM
774 cpumask_clear(&has_work);
775
776 for_each_online_cpu(cpu) {
777 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
778
b01b2141
IM
779 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
780 pagevec_count(&per_cpu(lru_rotate.pvec, cpu)) ||
781 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
782 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
783 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
5fbc4616
CM
784 need_activate_page_drain(cpu)) {
785 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 786 queue_work_on(cpu, mm_percpu_wq, work);
5fbc4616
CM
787 cpumask_set_cpu(cpu, &has_work);
788 }
789 }
790
791 for_each_cpu(cpu, &has_work)
792 flush_work(&per_cpu(lru_add_drain_work, cpu));
793
eef1a429 794done:
5fbc4616 795 mutex_unlock(&lock);
053837fc 796}
6ea183d6
MH
797#else
798void lru_add_drain_all(void)
799{
800 lru_add_drain();
801}
802#endif
053837fc 803
aabfb572 804/**
ea1754a0 805 * release_pages - batched put_page()
aabfb572
MH
806 * @pages: array of pages to release
807 * @nr: number of pages
1da177e4 808 *
aabfb572
MH
809 * Decrement the reference count on all the pages in @pages. If it
810 * fell to zero, remove the page from the LRU and free it.
1da177e4 811 */
c6f92f9f 812void release_pages(struct page **pages, int nr)
1da177e4
LT
813{
814 int i;
cc59850e 815 LIST_HEAD(pages_to_free);
599d0c95 816 struct pglist_data *locked_pgdat = NULL;
fa9add64 817 struct lruvec *lruvec;
902aaed0 818 unsigned long uninitialized_var(flags);
aabfb572 819 unsigned int uninitialized_var(lock_batch);
1da177e4 820
1da177e4
LT
821 for (i = 0; i < nr; i++) {
822 struct page *page = pages[i];
1da177e4 823
aabfb572
MH
824 /*
825 * Make sure the IRQ-safe lock-holding time does not get
826 * excessive with a continuous string of pages from the
599d0c95 827 * same pgdat. The lock is held only if pgdat != NULL.
aabfb572 828 */
599d0c95
MG
829 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
830 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
831 locked_pgdat = NULL;
aabfb572
MH
832 }
833
6fcb52a5 834 if (is_huge_zero_page(page))
aa88b68c 835 continue;
aa88b68c 836
c5d6c45e 837 if (is_zone_device_page(page)) {
df6ad698
JG
838 if (locked_pgdat) {
839 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
840 flags);
841 locked_pgdat = NULL;
842 }
c5d6c45e
IW
843 /*
844 * ZONE_DEVICE pages that return 'false' from
845 * put_devmap_managed_page() do not require special
846 * processing, and instead, expect a call to
847 * put_page_testzero().
848 */
07d80269
JH
849 if (page_is_devmap_managed(page)) {
850 put_devmap_managed_page(page);
c5d6c45e 851 continue;
07d80269 852 }
df6ad698
JG
853 }
854
ddc58f27 855 page = compound_head(page);
b5810039 856 if (!put_page_testzero(page))
1da177e4
LT
857 continue;
858
ddc58f27 859 if (PageCompound(page)) {
599d0c95
MG
860 if (locked_pgdat) {
861 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
862 locked_pgdat = NULL;
ddc58f27
KS
863 }
864 __put_compound_page(page);
865 continue;
866 }
867
46453a6e 868 if (PageLRU(page)) {
599d0c95 869 struct pglist_data *pgdat = page_pgdat(page);
894bc310 870
599d0c95
MG
871 if (pgdat != locked_pgdat) {
872 if (locked_pgdat)
873 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
902aaed0 874 flags);
aabfb572 875 lock_batch = 0;
599d0c95
MG
876 locked_pgdat = pgdat;
877 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
46453a6e 878 }
fa9add64 879
599d0c95 880 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
309381fe 881 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 882 __ClearPageLRU(page);
fa9add64 883 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
884 }
885
c53954a0 886 /* Clear Active bit in case of parallel mark_page_accessed */
e3741b50 887 __ClearPageActive(page);
62906027 888 __ClearPageWaiters(page);
c53954a0 889
cc59850e 890 list_add(&page->lru, &pages_to_free);
1da177e4 891 }
599d0c95
MG
892 if (locked_pgdat)
893 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1da177e4 894
747db954 895 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 896 free_unref_page_list(&pages_to_free);
1da177e4 897}
0be8557b 898EXPORT_SYMBOL(release_pages);
1da177e4
LT
899
900/*
901 * The pages which we're about to release may be in the deferred lru-addition
902 * queues. That would prevent them from really being freed right now. That's
903 * OK from a correctness point of view but is inefficient - those pages may be
904 * cache-warm and we want to give them back to the page allocator ASAP.
905 *
906 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
907 * and __pagevec_lru_add_active() call release_pages() directly to avoid
908 * mutual recursion.
909 */
910void __pagevec_release(struct pagevec *pvec)
911{
7f0b5fb9 912 if (!pvec->percpu_pvec_drained) {
d9ed0d08 913 lru_add_drain();
7f0b5fb9 914 pvec->percpu_pvec_drained = true;
d9ed0d08 915 }
c6f92f9f 916 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
917 pagevec_reinit(pvec);
918}
7f285701
SF
919EXPORT_SYMBOL(__pagevec_release);
920
12d27107 921#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 922/* used by __split_huge_page_refcount() */
fa9add64 923void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 924 struct lruvec *lruvec, struct list_head *list)
71e3aac0 925{
309381fe
SL
926 VM_BUG_ON_PAGE(!PageHead(page), page);
927 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
928 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
35f3aa39 929 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
71e3aac0 930
5bc7b8ac
SL
931 if (!list)
932 SetPageLRU(page_tail);
71e3aac0 933
12d27107
HD
934 if (likely(PageLRU(page)))
935 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
936 else if (list) {
937 /* page reclaim is reclaiming a huge page */
938 get_page(page_tail);
939 list_add_tail(&page_tail->lru, list);
940 } else {
12d27107
HD
941 /*
942 * Head page has not yet been counted, as an hpage,
943 * so we must account for each subpage individually.
944 *
e7a1aaf2
YZ
945 * Put page_tail on the list at the correct position
946 * so they all end up in order.
12d27107 947 */
e7a1aaf2
YZ
948 add_page_to_lru_list_tail(page_tail, lruvec,
949 page_lru(page_tail));
71e3aac0
AA
950 }
951}
12d27107 952#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 953
fa9add64
HD
954static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
955 void *arg)
3dd7ae8e 956{
9c4e6b1a
SB
957 enum lru_list lru;
958 int was_unevictable = TestClearPageUnevictable(page);
3dd7ae8e 959
309381fe 960 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e 961
9c4e6b1a
SB
962 /*
963 * Page becomes evictable in two ways:
dae966dc 964 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
965 * 2) Before acquiring LRU lock to put the page to correct LRU and then
966 * a) do PageLRU check with lock [check_move_unevictable_pages]
967 * b) do PageLRU check before lock [clear_page_mlock]
968 *
969 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
970 * following strict ordering:
971 *
972 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
973 *
974 * SetPageLRU() TestClearPageMlocked()
975 * smp_mb() // explicit ordering // above provides strict
976 * // ordering
977 * PageMlocked() PageLRU()
978 *
979 *
980 * if '#1' does not observe setting of PG_lru by '#0' and fails
981 * isolation, the explicit barrier will make sure that page_evictable
982 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
983 * can be reordered after PageMlocked check and can make '#1' to fail
984 * the isolation of the page whose Mlocked bit is cleared (#0 is also
985 * looking at the same page) and the evictable page will be stranded
986 * in an unevictable LRU.
987 */
9a9b6cce
YS
988 SetPageLRU(page);
989 smp_mb__after_atomic();
9c4e6b1a
SB
990
991 if (page_evictable(page)) {
992 lru = page_lru(page);
9c4e6b1a
SB
993 if (was_unevictable)
994 count_vm_event(UNEVICTABLE_PGRESCUED);
995 } else {
996 lru = LRU_UNEVICTABLE;
997 ClearPageActive(page);
998 SetPageUnevictable(page);
999 if (!was_unevictable)
1000 count_vm_event(UNEVICTABLE_PGCULLED);
1001 }
1002
fa9add64 1003 add_page_to_lru_list(page, lruvec, lru);
24b7e581 1004 trace_mm_lru_insertion(page, lru);
3dd7ae8e
SL
1005}
1006
1da177e4
LT
1007/*
1008 * Add the passed pages to the LRU, then drop the caller's refcount
1009 * on them. Reinitialises the caller's pagevec.
1010 */
a0b8cab3 1011void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1012{
a0b8cab3 1013 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 1014}
1da177e4 1015
0cd6144a
JW
1016/**
1017 * pagevec_lookup_entries - gang pagecache lookup
1018 * @pvec: Where the resulting entries are placed
1019 * @mapping: The address_space to search
1020 * @start: The starting entry index
cb6f0f34 1021 * @nr_entries: The maximum number of pages
0cd6144a
JW
1022 * @indices: The cache indices corresponding to the entries in @pvec
1023 *
1024 * pagevec_lookup_entries() will search for and return a group of up
f144c390 1025 * to @nr_pages pages and shadow entries in the mapping. All
0cd6144a
JW
1026 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1027 * reference against actual pages in @pvec.
1028 *
1029 * The search returns a group of mapping-contiguous entries with
1030 * ascending indexes. There may be holes in the indices due to
1031 * not-present entries.
1032 *
71725ed1
HD
1033 * Only one subpage of a Transparent Huge Page is returned in one call:
1034 * allowing truncate_inode_pages_range() to evict the whole THP without
1035 * cycling through a pagevec of extra references.
1036 *
0cd6144a
JW
1037 * pagevec_lookup_entries() returns the number of entries which were
1038 * found.
1039 */
1040unsigned pagevec_lookup_entries(struct pagevec *pvec,
1041 struct address_space *mapping,
e02a9f04 1042 pgoff_t start, unsigned nr_entries,
0cd6144a
JW
1043 pgoff_t *indices)
1044{
e02a9f04 1045 pvec->nr = find_get_entries(mapping, start, nr_entries,
0cd6144a
JW
1046 pvec->pages, indices);
1047 return pagevec_count(pvec);
1048}
1049
1050/**
1051 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1052 * @pvec: The pagevec to prune
1053 *
1054 * pagevec_lookup_entries() fills both pages and exceptional radix
1055 * tree entries into the pagevec. This function prunes all
1056 * exceptionals from @pvec without leaving holes, so that it can be
1057 * passed on to page-only pagevec operations.
1058 */
1059void pagevec_remove_exceptionals(struct pagevec *pvec)
1060{
1061 int i, j;
1062
1063 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1064 struct page *page = pvec->pages[i];
3159f943 1065 if (!xa_is_value(page))
0cd6144a
JW
1066 pvec->pages[j++] = page;
1067 }
1068 pvec->nr = j;
1069}
1070
1da177e4 1071/**
b947cee4 1072 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1073 * @pvec: Where the resulting pages are placed
1074 * @mapping: The address_space to search
1075 * @start: The starting page index
b947cee4 1076 * @end: The final page index
1da177e4 1077 *
e02a9f04 1078 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1079 * pages in the mapping starting from index @start and upto index @end
1080 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1081 * reference against the pages in @pvec.
1082 *
1083 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1084 * indexes. There may be holes in the indices due to not-present pages. We
1085 * also update @start to index the next page for the traversal.
1da177e4 1086 *
b947cee4 1087 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1088 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1089 * reached.
1da177e4 1090 */
b947cee4 1091unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1092 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1093{
397162ff 1094 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1095 pvec->pages);
1da177e4
LT
1096 return pagevec_count(pvec);
1097}
b947cee4 1098EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1099
72b045ae
JK
1100unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1101 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1102 xa_mark_t tag)
1da177e4 1103{
72b045ae 1104 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1105 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1106 return pagevec_count(pvec);
1107}
72b045ae 1108EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1109
93d3b714
JK
1110unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1111 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1112 xa_mark_t tag, unsigned max_pages)
93d3b714
JK
1113{
1114 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1115 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1116 return pagevec_count(pvec);
1117}
1118EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1da177e4
LT
1119/*
1120 * Perform any setup for the swap system
1121 */
1122void __init swap_setup(void)
1123{
ca79b0c2 1124 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1125
1da177e4
LT
1126 /* Use a smaller cluster for small-memory machines */
1127 if (megs < 16)
1128 page_cluster = 2;
1129 else
1130 page_cluster = 3;
1131 /*
1132 * Right now other parts of the system means that we
1133 * _really_ don't want to cluster much more
1134 */
1da177e4 1135}
07d80269
JH
1136
1137#ifdef CONFIG_DEV_PAGEMAP_OPS
1138void put_devmap_managed_page(struct page *page)
1139{
1140 int count;
1141
1142 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1143 return;
1144
1145 count = page_ref_dec_return(page);
1146
1147 /*
1148 * devmap page refcounts are 1-based, rather than 0-based: if
1149 * refcount is 1, then the page is free and the refcount is
1150 * stable because nobody holds a reference on the page.
1151 */
1152 if (count == 1)
1153 free_devmap_managed_page(page);
1154 else if (!count)
1155 __put_page(page);
1156}
1157EXPORT_SYMBOL(put_devmap_managed_page);
1158#endif