mm/list_lru: optimize memcg_reparent_list_lru_node()
[linux-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
8cc621d2 39#include <linux/buffer_head.h>
1da177e4 40
64d6519d
LS
41#include "internal.h"
42
c6286c98
MG
43#define CREATE_TRACE_POINTS
44#include <trace/events/pagemap.h>
45
1da177e4
LT
46/* How many pages do we try to swap or page in/out together? */
47int page_cluster;
48
b01b2141
IM
49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
50struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53};
54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56};
57
58/*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
a4a921aa 68#ifdef CONFIG_SMP
b01b2141 69 struct pagevec activate_page;
a4a921aa 70#endif
b01b2141
IM
71};
72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74};
902aaed0 75
b221385b
AB
76/*
77 * This path almost never happens for VM activity - pages are normally
78 * freed via pagevecs. But it gets used by networking.
79 */
920c7a5d 80static void __page_cache_release(struct page *page)
b221385b
AB
81{
82 if (PageLRU(page)) {
e809c3fe 83 struct folio *folio = page_folio(page);
fa9add64
HD
84 struct lruvec *lruvec;
85 unsigned long flags;
b221385b 86
e809c3fe 87 lruvec = folio_lruvec_lock_irqsave(folio, &flags);
46ae6b2c 88 del_page_from_lru_list(page, lruvec);
87560179 89 __clear_page_lru_flags(page);
6168d0da 90 unlock_page_lruvec_irqrestore(lruvec, flags);
b221385b 91 }
62906027 92 __ClearPageWaiters(page);
91807063
AA
93}
94
95static void __put_single_page(struct page *page)
96{
97 __page_cache_release(page);
bbc6b703 98 mem_cgroup_uncharge(page_folio(page));
44042b44 99 free_unref_page(page, 0);
b221385b
AB
100}
101
91807063 102static void __put_compound_page(struct page *page)
1da177e4 103{
822fc613
NH
104 /*
105 * __page_cache_release() is supposed to be called for thp, not for
106 * hugetlb. This is because hugetlb page does never have PageLRU set
107 * (it's never listed to any LRU lists) and no memcg routines should
108 * be called for hugetlb (it has a separate hugetlb_cgroup.)
109 */
110 if (!PageHuge(page))
111 __page_cache_release(page);
ff45fc3c 112 destroy_compound_page(page);
91807063
AA
113}
114
ddc58f27 115void __put_page(struct page *page)
8519fb30 116{
71389703
DW
117 if (is_zone_device_page(page)) {
118 put_dev_pagemap(page->pgmap);
119
120 /*
121 * The page belongs to the device that created pgmap. Do
122 * not return it to page allocator.
123 */
124 return;
125 }
126
8519fb30 127 if (unlikely(PageCompound(page)))
ddc58f27
KS
128 __put_compound_page(page);
129 else
91807063 130 __put_single_page(page);
1da177e4 131}
ddc58f27 132EXPORT_SYMBOL(__put_page);
70b50f94 133
1d7ea732 134/**
7682486b
RD
135 * put_pages_list() - release a list of pages
136 * @pages: list of pages threaded on page->lru
1d7ea732 137 *
988c69f1 138 * Release a list of pages which are strung together on page.lru.
1d7ea732
AZ
139 */
140void put_pages_list(struct list_head *pages)
141{
988c69f1
MWO
142 struct page *page, *next;
143
144 list_for_each_entry_safe(page, next, pages, lru) {
145 if (!put_page_testzero(page)) {
146 list_del(&page->lru);
147 continue;
148 }
149 if (PageHead(page)) {
150 list_del(&page->lru);
151 __put_compound_page(page);
152 continue;
153 }
154 /* Cannot be PageLRU because it's passed to us using the lru */
155 __ClearPageWaiters(page);
1d7ea732 156 }
988c69f1
MWO
157
158 free_unref_page_list(pages);
3cd018b4 159 INIT_LIST_HEAD(pages);
1d7ea732
AZ
160}
161EXPORT_SYMBOL(put_pages_list);
162
18022c5d
MG
163/*
164 * get_kernel_pages() - pin kernel pages in memory
165 * @kiov: An array of struct kvec structures
166 * @nr_segs: number of segments to pin
167 * @write: pinning for read/write, currently ignored
168 * @pages: array that receives pointers to the pages pinned.
169 * Should be at least nr_segs long.
170 *
171 * Returns number of pages pinned. This may be fewer than the number
172 * requested. If nr_pages is 0 or negative, returns 0. If no pages
173 * were pinned, returns -errno. Each page returned must be released
174 * with a put_page() call when it is finished with.
175 */
176int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
177 struct page **pages)
178{
179 int seg;
180
181 for (seg = 0; seg < nr_segs; seg++) {
182 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
183 return seg;
184
5a178119 185 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 186 get_page(pages[seg]);
18022c5d
MG
187 }
188
189 return seg;
190}
191EXPORT_SYMBOL_GPL(get_kernel_pages);
192
3dd7ae8e 193static void pagevec_lru_move_fn(struct pagevec *pvec,
c7c7b80c 194 void (*move_fn)(struct page *page, struct lruvec *lruvec))
902aaed0
HH
195{
196 int i;
6168d0da 197 struct lruvec *lruvec = NULL;
3dd7ae8e 198 unsigned long flags = 0;
902aaed0
HH
199
200 for (i = 0; i < pagevec_count(pvec); i++) {
201 struct page *page = pvec->pages[i];
0de340cb 202 struct folio *folio = page_folio(page);
3dd7ae8e 203
fc574c23
AS
204 /* block memcg migration during page moving between lru */
205 if (!TestClearPageLRU(page))
206 continue;
207
0de340cb 208 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
c7c7b80c 209 (*move_fn)(page, lruvec);
fc574c23
AS
210
211 SetPageLRU(page);
902aaed0 212 }
6168d0da
AS
213 if (lruvec)
214 unlock_page_lruvec_irqrestore(lruvec, flags);
c6f92f9f 215 release_pages(pvec->pages, pvec->nr);
83896fb5 216 pagevec_reinit(pvec);
d8505dee
SL
217}
218
c7c7b80c 219static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 220{
575ced1c
MWO
221 struct folio *folio = page_folio(page);
222
223 if (!folio_test_unevictable(folio)) {
224 lruvec_del_folio(lruvec, folio);
225 folio_clear_active(folio);
226 lruvec_add_folio_tail(lruvec, folio);
227 __count_vm_events(PGROTATED, folio_nr_pages(folio));
3dd7ae8e
SL
228 }
229}
230
d479960e
MK
231/* return true if pagevec needs to drain */
232static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
233{
234 bool ret = false;
235
236 if (!pagevec_add(pvec, page) || PageCompound(page) ||
237 lru_cache_disabled())
238 ret = true;
239
240 return ret;
241}
242
1da177e4 243/*
575ced1c
MWO
244 * Writeback is about to end against a folio which has been marked for
245 * immediate reclaim. If it still appears to be reclaimable, move it
246 * to the tail of the inactive list.
c7c7b80c 247 *
575ced1c 248 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
1da177e4 249 */
575ced1c 250void folio_rotate_reclaimable(struct folio *folio)
1da177e4 251{
575ced1c
MWO
252 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
253 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
ac6aadb2
MS
254 struct pagevec *pvec;
255 unsigned long flags;
256
575ced1c 257 folio_get(folio);
b01b2141
IM
258 local_lock_irqsave(&lru_rotate.lock, flags);
259 pvec = this_cpu_ptr(&lru_rotate.pvec);
575ced1c 260 if (pagevec_add_and_need_flush(pvec, &folio->page))
c7c7b80c 261 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 262 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 263 }
1da177e4
LT
264}
265
96f8bf4f 266void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 267{
7cf111bc
JW
268 do {
269 unsigned long lrusize;
270
6168d0da
AS
271 /*
272 * Hold lruvec->lru_lock is safe here, since
273 * 1) The pinned lruvec in reclaim, or
274 * 2) From a pre-LRU page during refault (which also holds the
275 * rcu lock, so would be safe even if the page was on the LRU
276 * and could move simultaneously to a new lruvec).
277 */
278 spin_lock_irq(&lruvec->lru_lock);
7cf111bc 279 /* Record cost event */
96f8bf4f
JW
280 if (file)
281 lruvec->file_cost += nr_pages;
7cf111bc 282 else
96f8bf4f 283 lruvec->anon_cost += nr_pages;
7cf111bc
JW
284
285 /*
286 * Decay previous events
287 *
288 * Because workloads change over time (and to avoid
289 * overflow) we keep these statistics as a floating
290 * average, which ends up weighing recent refaults
291 * more than old ones.
292 */
293 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
294 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
295 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
296 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
297
298 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
299 lruvec->file_cost /= 2;
300 lruvec->anon_cost /= 2;
301 }
6168d0da 302 spin_unlock_irq(&lruvec->lru_lock);
7cf111bc 303 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
304}
305
0995d7e5 306void lru_note_cost_folio(struct folio *folio)
96f8bf4f 307{
0995d7e5
MWO
308 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
309 folio_nr_pages(folio));
96f8bf4f
JW
310}
311
f2d27392 312static void __folio_activate(struct folio *folio, struct lruvec *lruvec)
1da177e4 313{
f2d27392
MWO
314 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
315 long nr_pages = folio_nr_pages(folio);
744ed144 316
f2d27392
MWO
317 lruvec_del_folio(lruvec, folio);
318 folio_set_active(folio);
319 lruvec_add_folio(lruvec, folio);
320 trace_mm_lru_activate(folio);
4f98a2fe 321
21e330fc
SB
322 __count_vm_events(PGACTIVATE, nr_pages);
323 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
324 nr_pages);
1da177e4 325 }
eb709b0d
SL
326}
327
328#ifdef CONFIG_SMP
f2d27392
MWO
329static void __activate_page(struct page *page, struct lruvec *lruvec)
330{
331 return __folio_activate(page_folio(page), lruvec);
332}
333
eb709b0d
SL
334static void activate_page_drain(int cpu)
335{
b01b2141 336 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
337
338 if (pagevec_count(pvec))
c7c7b80c 339 pagevec_lru_move_fn(pvec, __activate_page);
eb709b0d
SL
340}
341
5fbc4616
CM
342static bool need_activate_page_drain(int cpu)
343{
b01b2141 344 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
345}
346
f2d27392 347static void folio_activate(struct folio *folio)
eb709b0d 348{
f2d27392
MWO
349 if (folio_test_lru(folio) && !folio_test_active(folio) &&
350 !folio_test_unevictable(folio)) {
b01b2141 351 struct pagevec *pvec;
eb709b0d 352
f2d27392 353 folio_get(folio);
b01b2141
IM
354 local_lock(&lru_pvecs.lock);
355 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
f2d27392 356 if (pagevec_add_and_need_flush(pvec, &folio->page))
c7c7b80c 357 pagevec_lru_move_fn(pvec, __activate_page);
b01b2141 358 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
359 }
360}
361
362#else
363static inline void activate_page_drain(int cpu)
364{
365}
366
f2d27392 367static void folio_activate(struct folio *folio)
eb709b0d 368{
6168d0da 369 struct lruvec *lruvec;
eb709b0d 370
f2d27392 371 if (folio_test_clear_lru(folio)) {
e809c3fe 372 lruvec = folio_lruvec_lock_irq(folio);
f2d27392 373 __folio_activate(folio, lruvec);
6168d0da 374 unlock_page_lruvec_irq(lruvec);
f2d27392 375 folio_set_lru(folio);
6168d0da 376 }
1da177e4 377}
eb709b0d 378#endif
1da177e4 379
76580b65 380static void __lru_cache_activate_folio(struct folio *folio)
059285a2 381{
b01b2141 382 struct pagevec *pvec;
059285a2
MG
383 int i;
384
b01b2141
IM
385 local_lock(&lru_pvecs.lock);
386 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
387
059285a2
MG
388 /*
389 * Search backwards on the optimistic assumption that the page being
390 * activated has just been added to this pagevec. Note that only
391 * the local pagevec is examined as a !PageLRU page could be in the
392 * process of being released, reclaimed, migrated or on a remote
393 * pagevec that is currently being drained. Furthermore, marking
394 * a remote pagevec's page PageActive potentially hits a race where
395 * a page is marked PageActive just after it is added to the inactive
396 * list causing accounting errors and BUG_ON checks to trigger.
397 */
398 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
399 struct page *pagevec_page = pvec->pages[i];
400
76580b65
MWO
401 if (pagevec_page == &folio->page) {
402 folio_set_active(folio);
059285a2
MG
403 break;
404 }
405 }
406
b01b2141 407 local_unlock(&lru_pvecs.lock);
059285a2
MG
408}
409
1da177e4
LT
410/*
411 * Mark a page as having seen activity.
412 *
413 * inactive,unreferenced -> inactive,referenced
414 * inactive,referenced -> active,unreferenced
415 * active,unreferenced -> active,referenced
eb39d618
HD
416 *
417 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
418 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 419 */
76580b65 420void folio_mark_accessed(struct folio *folio)
1da177e4 421{
76580b65
MWO
422 if (!folio_test_referenced(folio)) {
423 folio_set_referenced(folio);
424 } else if (folio_test_unevictable(folio)) {
a1100a74
FW
425 /*
426 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
427 * this list is never rotated or maintained, so marking an
914c32e4 428 * unevictable page accessed has no effect.
a1100a74 429 */
76580b65 430 } else if (!folio_test_active(folio)) {
059285a2
MG
431 /*
432 * If the page is on the LRU, queue it for activation via
b01b2141 433 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
434 * pagevec, mark it active and it'll be moved to the active
435 * LRU on the next drain.
436 */
76580b65
MWO
437 if (folio_test_lru(folio))
438 folio_activate(folio);
059285a2 439 else
76580b65
MWO
440 __lru_cache_activate_folio(folio);
441 folio_clear_referenced(folio);
442 workingset_activation(folio);
1da177e4 443 }
76580b65
MWO
444 if (folio_test_idle(folio))
445 folio_clear_idle(folio);
1da177e4 446}
76580b65 447EXPORT_SYMBOL(folio_mark_accessed);
1da177e4 448
f04e9ebb 449/**
0d31125d
MWO
450 * folio_add_lru - Add a folio to an LRU list.
451 * @folio: The folio to be added to the LRU.
2329d375 452 *
0d31125d 453 * Queue the folio for addition to the LRU. The decision on whether
2329d375 454 * to add the page to the [in]active [file|anon] list is deferred until the
0d31125d
MWO
455 * pagevec is drained. This gives a chance for the caller of folio_add_lru()
456 * have the folio added to the active list using folio_mark_accessed().
f04e9ebb 457 */
0d31125d 458void folio_add_lru(struct folio *folio)
1da177e4 459{
6058eaec
JW
460 struct pagevec *pvec;
461
0d31125d
MWO
462 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
463 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6058eaec 464
0d31125d 465 folio_get(folio);
6058eaec
JW
466 local_lock(&lru_pvecs.lock);
467 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
0d31125d 468 if (pagevec_add_and_need_flush(pvec, &folio->page))
6058eaec
JW
469 __pagevec_lru_add(pvec);
470 local_unlock(&lru_pvecs.lock);
1da177e4 471}
0d31125d 472EXPORT_SYMBOL(folio_add_lru);
1da177e4 473
00501b53 474/**
b518154e 475 * lru_cache_add_inactive_or_unevictable
00501b53
JW
476 * @page: the page to be added to LRU
477 * @vma: vma in which page is mapped for determining reclaimability
478 *
b518154e 479 * Place @page on the inactive or unevictable LRU list, depending on its
12eab428 480 * evictability.
00501b53 481 */
b518154e 482void lru_cache_add_inactive_or_unevictable(struct page *page,
00501b53
JW
483 struct vm_area_struct *vma)
484{
b518154e
JK
485 bool unevictable;
486
00501b53
JW
487 VM_BUG_ON_PAGE(PageLRU(page), page);
488
b518154e
JK
489 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
490 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
0964730b 491 int nr_pages = thp_nr_pages(page);
00501b53 492 /*
cb152a1a 493 * We use the irq-unsafe __mod_zone_page_state because this
00501b53
JW
494 * counter is not modified from interrupt context, and the pte
495 * lock is held(spinlock), which implies preemption disabled.
496 */
0964730b
HD
497 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
498 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
00501b53 499 }
9c4e6b1a 500 lru_cache_add(page);
00501b53
JW
501}
502
31560180
MK
503/*
504 * If the page can not be invalidated, it is moved to the
505 * inactive list to speed up its reclaim. It is moved to the
506 * head of the list, rather than the tail, to give the flusher
507 * threads some time to write it out, as this is much more
508 * effective than the single-page writeout from reclaim.
278df9f4
MK
509 *
510 * If the page isn't page_mapped and dirty/writeback, the page
511 * could reclaim asap using PG_reclaim.
512 *
513 * 1. active, mapped page -> none
514 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
515 * 3. inactive, mapped page -> none
516 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
517 * 5. inactive, clean -> inactive, tail
518 * 6. Others -> none
519 *
520 * In 4, why it moves inactive's head, the VM expects the page would
521 * be write it out by flusher threads as this is much more effective
522 * than the single-page writeout from reclaim.
31560180 523 */
c7c7b80c 524static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
31560180 525{
46ae6b2c 526 bool active = PageActive(page);
6c357848 527 int nr_pages = thp_nr_pages(page);
31560180 528
bad49d9c
MK
529 if (PageUnevictable(page))
530 return;
531
31560180
MK
532 /* Some processes are using the page */
533 if (page_mapped(page))
534 return;
535
46ae6b2c 536 del_page_from_lru_list(page, lruvec);
31560180
MK
537 ClearPageActive(page);
538 ClearPageReferenced(page);
31560180 539
278df9f4
MK
540 if (PageWriteback(page) || PageDirty(page)) {
541 /*
542 * PG_reclaim could be raced with end_page_writeback
543 * It can make readahead confusing. But race window
544 * is _really_ small and it's non-critical problem.
545 */
3a9c9788 546 add_page_to_lru_list(page, lruvec);
278df9f4
MK
547 SetPageReclaim(page);
548 } else {
549 /*
550 * The page's writeback ends up during pagevec
c4ffefd1 551 * We move that page into tail of inactive.
278df9f4 552 */
3a9c9788 553 add_page_to_lru_list_tail(page, lruvec);
5d91f31f 554 __count_vm_events(PGROTATED, nr_pages);
278df9f4
MK
555 }
556
21e330fc 557 if (active) {
5d91f31f 558 __count_vm_events(PGDEACTIVATE, nr_pages);
21e330fc
SB
559 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
560 nr_pages);
561 }
31560180
MK
562}
563
c7c7b80c 564static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
9c276cc6 565{
fc574c23 566 if (PageActive(page) && !PageUnevictable(page)) {
6c357848 567 int nr_pages = thp_nr_pages(page);
9c276cc6 568
46ae6b2c 569 del_page_from_lru_list(page, lruvec);
9c276cc6
MK
570 ClearPageActive(page);
571 ClearPageReferenced(page);
3a9c9788 572 add_page_to_lru_list(page, lruvec);
9c276cc6 573
21e330fc
SB
574 __count_vm_events(PGDEACTIVATE, nr_pages);
575 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
576 nr_pages);
9c276cc6
MK
577 }
578}
10853a03 579
c7c7b80c 580static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
10853a03 581{
fc574c23 582 if (PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 583 !PageSwapCache(page) && !PageUnevictable(page)) {
6c357848 584 int nr_pages = thp_nr_pages(page);
10853a03 585
46ae6b2c 586 del_page_from_lru_list(page, lruvec);
10853a03
MK
587 ClearPageActive(page);
588 ClearPageReferenced(page);
f7ad2a6c 589 /*
9de4f22a
HY
590 * Lazyfree pages are clean anonymous pages. They have
591 * PG_swapbacked flag cleared, to distinguish them from normal
592 * anonymous pages
f7ad2a6c
SL
593 */
594 ClearPageSwapBacked(page);
3a9c9788 595 add_page_to_lru_list(page, lruvec);
10853a03 596
21e330fc
SB
597 __count_vm_events(PGLAZYFREE, nr_pages);
598 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
599 nr_pages);
10853a03
MK
600 }
601}
602
902aaed0
HH
603/*
604 * Drain pages out of the cpu's pagevecs.
605 * Either "cpu" is the current CPU, and preemption has already been
606 * disabled; or "cpu" is being hot-unplugged, and is already dead.
607 */
f0cb3c76 608void lru_add_drain_cpu(int cpu)
1da177e4 609{
b01b2141 610 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 611
13f7f789 612 if (pagevec_count(pvec))
a0b8cab3 613 __pagevec_lru_add(pvec);
902aaed0 614
b01b2141 615 pvec = &per_cpu(lru_rotate.pvec, cpu);
7e0cc01e
QC
616 /* Disabling interrupts below acts as a compiler barrier. */
617 if (data_race(pagevec_count(pvec))) {
902aaed0
HH
618 unsigned long flags;
619
620 /* No harm done if a racing interrupt already did this */
b01b2141 621 local_lock_irqsave(&lru_rotate.lock, flags);
c7c7b80c 622 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 623 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 624 }
31560180 625
b01b2141 626 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 627 if (pagevec_count(pvec))
c7c7b80c 628 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
eb709b0d 629
b01b2141 630 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6 631 if (pagevec_count(pvec))
c7c7b80c 632 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
9c276cc6 633
b01b2141 634 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 635 if (pagevec_count(pvec))
c7c7b80c 636 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
10853a03 637
eb709b0d 638 activate_page_drain(cpu);
31560180
MK
639}
640
641/**
cc5993bd 642 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
643 * @page: page to deactivate
644 *
645 * This function hints the VM that @page is a good reclaim candidate,
646 * for example if its invalidation fails due to the page being dirty
647 * or under writeback.
648 */
cc5993bd 649void deactivate_file_page(struct page *page)
31560180 650{
821ed6bb 651 /*
cc5993bd
MK
652 * In a workload with many unevictable page such as mprotect,
653 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
654 */
655 if (PageUnevictable(page))
656 return;
657
31560180 658 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
659 struct pagevec *pvec;
660
661 local_lock(&lru_pvecs.lock);
662 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 663
d479960e 664 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 665 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
b01b2141 666 local_unlock(&lru_pvecs.lock);
31560180 667 }
80bfed90
AM
668}
669
9c276cc6
MK
670/*
671 * deactivate_page - deactivate a page
672 * @page: page to deactivate
673 *
674 * deactivate_page() moves @page to the inactive list if @page was on the active
675 * list and was not an unevictable page. This is done to accelerate the reclaim
676 * of @page.
677 */
678void deactivate_page(struct page *page)
679{
680 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 681 struct pagevec *pvec;
9c276cc6 682
b01b2141
IM
683 local_lock(&lru_pvecs.lock);
684 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6 685 get_page(page);
d479960e 686 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 687 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
b01b2141 688 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
689 }
690}
691
10853a03 692/**
f7ad2a6c 693 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
694 * @page: page to deactivate
695 *
f7ad2a6c
SL
696 * mark_page_lazyfree() moves @page to the inactive file list.
697 * This is done to accelerate the reclaim of @page.
10853a03 698 */
f7ad2a6c 699void mark_page_lazyfree(struct page *page)
10853a03 700{
f7ad2a6c 701 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 702 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 703 struct pagevec *pvec;
10853a03 704
b01b2141
IM
705 local_lock(&lru_pvecs.lock);
706 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 707 get_page(page);
d479960e 708 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 709 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
b01b2141 710 local_unlock(&lru_pvecs.lock);
10853a03
MK
711 }
712}
713
80bfed90
AM
714void lru_add_drain(void)
715{
b01b2141
IM
716 local_lock(&lru_pvecs.lock);
717 lru_add_drain_cpu(smp_processor_id());
718 local_unlock(&lru_pvecs.lock);
719}
720
243418e3
MK
721/*
722 * It's called from per-cpu workqueue context in SMP case so
723 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
724 * the same cpu. It shouldn't be a problem in !SMP case since
725 * the core is only one and the locks will disable preemption.
726 */
727static void lru_add_and_bh_lrus_drain(void)
728{
729 local_lock(&lru_pvecs.lock);
730 lru_add_drain_cpu(smp_processor_id());
731 local_unlock(&lru_pvecs.lock);
732 invalidate_bh_lrus_cpu();
733}
734
b01b2141
IM
735void lru_add_drain_cpu_zone(struct zone *zone)
736{
737 local_lock(&lru_pvecs.lock);
738 lru_add_drain_cpu(smp_processor_id());
739 drain_local_pages(zone);
740 local_unlock(&lru_pvecs.lock);
1da177e4
LT
741}
742
6ea183d6
MH
743#ifdef CONFIG_SMP
744
745static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
746
c4028958 747static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc 748{
243418e3 749 lru_add_and_bh_lrus_drain();
053837fc
NP
750}
751
9852a721
MH
752/*
753 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
754 * kworkers being shut down before our page_alloc_cpu_dead callback is
755 * executed on the offlined cpu.
756 * Calling this function with cpu hotplug locks held can actually lead
757 * to obscure indirect dependencies via WQ context.
758 */
d479960e 759inline void __lru_add_drain_all(bool force_all_cpus)
053837fc 760{
6446a513
AD
761 /*
762 * lru_drain_gen - Global pages generation number
763 *
764 * (A) Definition: global lru_drain_gen = x implies that all generations
765 * 0 < n <= x are already *scheduled* for draining.
766 *
767 * This is an optimization for the highly-contended use case where a
768 * user space workload keeps constantly generating a flow of pages for
769 * each CPU.
770 */
771 static unsigned int lru_drain_gen;
5fbc4616 772 static struct cpumask has_work;
6446a513
AD
773 static DEFINE_MUTEX(lock);
774 unsigned cpu, this_gen;
5fbc4616 775
ce612879
MH
776 /*
777 * Make sure nobody triggers this path before mm_percpu_wq is fully
778 * initialized.
779 */
780 if (WARN_ON(!mm_percpu_wq))
781 return;
782
6446a513
AD
783 /*
784 * Guarantee pagevec counter stores visible by this CPU are visible to
785 * other CPUs before loading the current drain generation.
786 */
787 smp_mb();
788
789 /*
790 * (B) Locally cache global LRU draining generation number
791 *
792 * The read barrier ensures that the counter is loaded before the mutex
793 * is taken. It pairs with smp_mb() inside the mutex critical section
794 * at (D).
795 */
796 this_gen = smp_load_acquire(&lru_drain_gen);
eef1a429 797
5fbc4616 798 mutex_lock(&lock);
eef1a429
KK
799
800 /*
6446a513
AD
801 * (C) Exit the draining operation if a newer generation, from another
802 * lru_add_drain_all(), was already scheduled for draining. Check (A).
eef1a429 803 */
d479960e 804 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
eef1a429
KK
805 goto done;
806
6446a513
AD
807 /*
808 * (D) Increment global generation number
809 *
810 * Pairs with smp_load_acquire() at (B), outside of the critical
811 * section. Use a full memory barrier to guarantee that the new global
812 * drain generation number is stored before loading pagevec counters.
813 *
814 * This pairing must be done here, before the for_each_online_cpu loop
815 * below which drains the page vectors.
816 *
817 * Let x, y, and z represent some system CPU numbers, where x < y < z.
cb152a1a 818 * Assume CPU #z is in the middle of the for_each_online_cpu loop
6446a513
AD
819 * below and has already reached CPU #y's per-cpu data. CPU #x comes
820 * along, adds some pages to its per-cpu vectors, then calls
821 * lru_add_drain_all().
822 *
823 * If the paired barrier is done at any later step, e.g. after the
824 * loop, CPU #x will just exit at (C) and miss flushing out all of its
825 * added pages.
826 */
827 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
828 smp_mb();
eef1a429 829
5fbc4616 830 cpumask_clear(&has_work);
5fbc4616
CM
831 for_each_online_cpu(cpu) {
832 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
833
d479960e
MK
834 if (force_all_cpus ||
835 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
7e0cc01e 836 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
b01b2141
IM
837 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
838 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
839 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
8cc621d2
MK
840 need_activate_page_drain(cpu) ||
841 has_bh_in_lru(cpu, NULL)) {
5fbc4616 842 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 843 queue_work_on(cpu, mm_percpu_wq, work);
6446a513 844 __cpumask_set_cpu(cpu, &has_work);
5fbc4616
CM
845 }
846 }
847
848 for_each_cpu(cpu, &has_work)
849 flush_work(&per_cpu(lru_add_drain_work, cpu));
850
eef1a429 851done:
5fbc4616 852 mutex_unlock(&lock);
053837fc 853}
d479960e
MK
854
855void lru_add_drain_all(void)
856{
857 __lru_add_drain_all(false);
858}
6ea183d6
MH
859#else
860void lru_add_drain_all(void)
861{
862 lru_add_drain();
863}
6446a513 864#endif /* CONFIG_SMP */
053837fc 865
d479960e
MK
866atomic_t lru_disable_count = ATOMIC_INIT(0);
867
868/*
869 * lru_cache_disable() needs to be called before we start compiling
870 * a list of pages to be migrated using isolate_lru_page().
871 * It drains pages on LRU cache and then disable on all cpus until
872 * lru_cache_enable is called.
873 *
874 * Must be paired with a call to lru_cache_enable().
875 */
876void lru_cache_disable(void)
877{
878 atomic_inc(&lru_disable_count);
879#ifdef CONFIG_SMP
880 /*
881 * lru_add_drain_all in the force mode will schedule draining on
882 * all online CPUs so any calls of lru_cache_disabled wrapped by
883 * local_lock or preemption disabled would be ordered by that.
884 * The atomic operation doesn't need to have stronger ordering
0b8f0d87 885 * requirements because that is enforced by the scheduling
d479960e
MK
886 * guarantees.
887 */
888 __lru_add_drain_all(true);
889#else
243418e3 890 lru_add_and_bh_lrus_drain();
d479960e
MK
891#endif
892}
893
aabfb572 894/**
ea1754a0 895 * release_pages - batched put_page()
aabfb572
MH
896 * @pages: array of pages to release
897 * @nr: number of pages
1da177e4 898 *
aabfb572
MH
899 * Decrement the reference count on all the pages in @pages. If it
900 * fell to zero, remove the page from the LRU and free it.
1da177e4 901 */
c6f92f9f 902void release_pages(struct page **pages, int nr)
1da177e4
LT
903{
904 int i;
cc59850e 905 LIST_HEAD(pages_to_free);
6168d0da 906 struct lruvec *lruvec = NULL;
0de340cb 907 unsigned long flags = 0;
3f649ab7 908 unsigned int lock_batch;
1da177e4 909
1da177e4
LT
910 for (i = 0; i < nr; i++) {
911 struct page *page = pages[i];
0de340cb 912 struct folio *folio = page_folio(page);
1da177e4 913
aabfb572
MH
914 /*
915 * Make sure the IRQ-safe lock-holding time does not get
916 * excessive with a continuous string of pages from the
6168d0da 917 * same lruvec. The lock is held only if lruvec != NULL.
aabfb572 918 */
6168d0da
AS
919 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
920 unlock_page_lruvec_irqrestore(lruvec, flags);
921 lruvec = NULL;
aabfb572
MH
922 }
923
0de340cb 924 page = &folio->page;
6fcb52a5 925 if (is_huge_zero_page(page))
aa88b68c 926 continue;
aa88b68c 927
c5d6c45e 928 if (is_zone_device_page(page)) {
6168d0da
AS
929 if (lruvec) {
930 unlock_page_lruvec_irqrestore(lruvec, flags);
931 lruvec = NULL;
df6ad698 932 }
c5d6c45e
IW
933 /*
934 * ZONE_DEVICE pages that return 'false' from
a3e7bea0 935 * page_is_devmap_managed() do not require special
c5d6c45e
IW
936 * processing, and instead, expect a call to
937 * put_page_testzero().
938 */
07d80269
JH
939 if (page_is_devmap_managed(page)) {
940 put_devmap_managed_page(page);
c5d6c45e 941 continue;
07d80269 942 }
43fbdeb3
RC
943 if (put_page_testzero(page))
944 put_dev_pagemap(page->pgmap);
945 continue;
df6ad698
JG
946 }
947
b5810039 948 if (!put_page_testzero(page))
1da177e4
LT
949 continue;
950
ddc58f27 951 if (PageCompound(page)) {
6168d0da
AS
952 if (lruvec) {
953 unlock_page_lruvec_irqrestore(lruvec, flags);
954 lruvec = NULL;
ddc58f27
KS
955 }
956 __put_compound_page(page);
957 continue;
958 }
959
46453a6e 960 if (PageLRU(page)) {
2a5e4e34
AD
961 struct lruvec *prev_lruvec = lruvec;
962
0de340cb 963 lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
2a5e4e34
AD
964 &flags);
965 if (prev_lruvec != lruvec)
aabfb572 966 lock_batch = 0;
fa9add64 967
46ae6b2c 968 del_page_from_lru_list(page, lruvec);
87560179 969 __clear_page_lru_flags(page);
46453a6e
NP
970 }
971
62906027 972 __ClearPageWaiters(page);
c53954a0 973
cc59850e 974 list_add(&page->lru, &pages_to_free);
1da177e4 975 }
6168d0da
AS
976 if (lruvec)
977 unlock_page_lruvec_irqrestore(lruvec, flags);
1da177e4 978
747db954 979 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 980 free_unref_page_list(&pages_to_free);
1da177e4 981}
0be8557b 982EXPORT_SYMBOL(release_pages);
1da177e4
LT
983
984/*
985 * The pages which we're about to release may be in the deferred lru-addition
986 * queues. That would prevent them from really being freed right now. That's
987 * OK from a correctness point of view but is inefficient - those pages may be
988 * cache-warm and we want to give them back to the page allocator ASAP.
989 *
990 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
991 * and __pagevec_lru_add_active() call release_pages() directly to avoid
992 * mutual recursion.
993 */
994void __pagevec_release(struct pagevec *pvec)
995{
7f0b5fb9 996 if (!pvec->percpu_pvec_drained) {
d9ed0d08 997 lru_add_drain();
7f0b5fb9 998 pvec->percpu_pvec_drained = true;
d9ed0d08 999 }
c6f92f9f 1000 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
1001 pagevec_reinit(pvec);
1002}
7f285701
SF
1003EXPORT_SYMBOL(__pagevec_release);
1004
934387c9 1005static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec)
3dd7ae8e 1006{
934387c9
MWO
1007 int was_unevictable = folio_test_clear_unevictable(folio);
1008 long nr_pages = folio_nr_pages(folio);
3dd7ae8e 1009
934387c9 1010 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
3dd7ae8e 1011
9c4e6b1a 1012 /*
934387c9 1013 * A folio becomes evictable in two ways:
dae966dc 1014 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
934387c9
MWO
1015 * 2) Before acquiring LRU lock to put the folio on the correct LRU
1016 * and then
9c4e6b1a
SB
1017 * a) do PageLRU check with lock [check_move_unevictable_pages]
1018 * b) do PageLRU check before lock [clear_page_mlock]
1019 *
1020 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1021 * following strict ordering:
1022 *
1023 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1024 *
934387c9 1025 * folio_set_lru() folio_test_clear_mlocked()
9c4e6b1a
SB
1026 * smp_mb() // explicit ordering // above provides strict
1027 * // ordering
934387c9 1028 * folio_test_mlocked() folio_test_lru()
9c4e6b1a
SB
1029 *
1030 *
934387c9
MWO
1031 * if '#1' does not observe setting of PG_lru by '#0' and
1032 * fails isolation, the explicit barrier will make sure that
1033 * folio_evictable check will put the folio on the correct
1034 * LRU. Without smp_mb(), folio_set_lru() can be reordered
1035 * after folio_test_mlocked() check and can make '#1' fail the
1036 * isolation of the folio whose mlocked bit is cleared (#0 is
1037 * also looking at the same folio) and the evictable folio will
1038 * be stranded on an unevictable LRU.
9c4e6b1a 1039 */
934387c9 1040 folio_set_lru(folio);
9a9b6cce 1041 smp_mb__after_atomic();
9c4e6b1a 1042
934387c9 1043 if (folio_evictable(folio)) {
9c4e6b1a 1044 if (was_unevictable)
5d91f31f 1045 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
9c4e6b1a 1046 } else {
934387c9
MWO
1047 folio_clear_active(folio);
1048 folio_set_unevictable(folio);
9c4e6b1a 1049 if (!was_unevictable)
5d91f31f 1050 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
9c4e6b1a
SB
1051 }
1052
934387c9
MWO
1053 lruvec_add_folio(lruvec, folio);
1054 trace_mm_lru_insertion(folio);
3dd7ae8e
SL
1055}
1056
1da177e4
LT
1057/*
1058 * Add the passed pages to the LRU, then drop the caller's refcount
1059 * on them. Reinitialises the caller's pagevec.
1060 */
a0b8cab3 1061void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1062{
fc574c23 1063 int i;
6168d0da 1064 struct lruvec *lruvec = NULL;
fc574c23
AS
1065 unsigned long flags = 0;
1066
1067 for (i = 0; i < pagevec_count(pvec); i++) {
934387c9 1068 struct folio *folio = page_folio(pvec->pages[i]);
fc574c23 1069
0de340cb 1070 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
934387c9 1071 __pagevec_lru_add_fn(folio, lruvec);
fc574c23 1072 }
6168d0da
AS
1073 if (lruvec)
1074 unlock_page_lruvec_irqrestore(lruvec, flags);
fc574c23
AS
1075 release_pages(pvec->pages, pvec->nr);
1076 pagevec_reinit(pvec);
1da177e4 1077}
1da177e4 1078
0cd6144a 1079/**
1613fac9
MWO
1080 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1081 * @fbatch: The batch to prune
0cd6144a 1082 *
1613fac9
MWO
1083 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1084 * entries. This function prunes all the non-folio entries from @fbatch
1085 * without leaving holes, so that it can be passed on to folio-only batch
1086 * operations.
0cd6144a 1087 */
1613fac9 1088void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
0cd6144a 1089{
1613fac9 1090 unsigned int i, j;
0cd6144a 1091
1613fac9
MWO
1092 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1093 struct folio *folio = fbatch->folios[i];
1094 if (!xa_is_value(folio))
1095 fbatch->folios[j++] = folio;
0cd6144a 1096 }
1613fac9 1097 fbatch->nr = j;
0cd6144a
JW
1098}
1099
1da177e4 1100/**
b947cee4 1101 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1102 * @pvec: Where the resulting pages are placed
1103 * @mapping: The address_space to search
1104 * @start: The starting page index
b947cee4 1105 * @end: The final page index
1da177e4 1106 *
e02a9f04 1107 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1108 * pages in the mapping starting from index @start and upto index @end
1109 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1110 * reference against the pages in @pvec.
1111 *
1112 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1113 * indexes. There may be holes in the indices due to not-present pages. We
1114 * also update @start to index the next page for the traversal.
1da177e4 1115 *
b947cee4 1116 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1117 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1118 * reached.
1da177e4 1119 */
b947cee4 1120unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1121 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1122{
397162ff 1123 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1124 pvec->pages);
1da177e4
LT
1125 return pagevec_count(pvec);
1126}
b947cee4 1127EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1128
72b045ae
JK
1129unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1130 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1131 xa_mark_t tag)
1da177e4 1132{
72b045ae 1133 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1134 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1135 return pagevec_count(pvec);
1136}
72b045ae 1137EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1138
1da177e4
LT
1139/*
1140 * Perform any setup for the swap system
1141 */
1142void __init swap_setup(void)
1143{
ca79b0c2 1144 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1145
1da177e4
LT
1146 /* Use a smaller cluster for small-memory machines */
1147 if (megs < 16)
1148 page_cluster = 2;
1149 else
1150 page_cluster = 3;
1151 /*
1152 * Right now other parts of the system means that we
1153 * _really_ don't want to cluster much more
1154 */
1da177e4 1155}
07d80269
JH
1156
1157#ifdef CONFIG_DEV_PAGEMAP_OPS
1158void put_devmap_managed_page(struct page *page)
1159{
1160 int count;
1161
1162 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1163 return;
1164
1165 count = page_ref_dec_return(page);
1166
1167 /*
1168 * devmap page refcounts are 1-based, rather than 0-based: if
1169 * refcount is 1, then the page is free and the refcount is
1170 * stable because nobody holds a reference on the page.
1171 */
1172 if (count == 1)
1173 free_devmap_managed_page(page);
1174 else if (!count)
1175 __put_page(page);
1176}
1177EXPORT_SYMBOL(put_devmap_managed_page);
1178#endif