mm: replace migrate_[prep|finish] with lru_cache_[disable|enable]
[linux-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
1da177e4 39
64d6519d
LS
40#include "internal.h"
41
c6286c98
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/pagemap.h>
44
1da177e4
LT
45/* How many pages do we try to swap or page in/out together? */
46int page_cluster;
47
b01b2141
IM
48/* Protecting only lru_rotate.pvec which requires disabling interrupts */
49struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52};
53static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55};
56
57/*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
a4a921aa 67#ifdef CONFIG_SMP
b01b2141 68 struct pagevec activate_page;
a4a921aa 69#endif
b01b2141
IM
70};
71static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73};
902aaed0 74
b221385b
AB
75/*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
920c7a5d 79static void __page_cache_release(struct page *page)
b221385b
AB
80{
81 if (PageLRU(page)) {
fa9add64
HD
82 struct lruvec *lruvec;
83 unsigned long flags;
b221385b 84
6168d0da 85 lruvec = lock_page_lruvec_irqsave(page, &flags);
46ae6b2c 86 del_page_from_lru_list(page, lruvec);
87560179 87 __clear_page_lru_flags(page);
6168d0da 88 unlock_page_lruvec_irqrestore(lruvec, flags);
b221385b 89 }
62906027 90 __ClearPageWaiters(page);
91807063
AA
91}
92
93static void __put_single_page(struct page *page)
94{
95 __page_cache_release(page);
7ae88534 96 mem_cgroup_uncharge(page);
2d4894b5 97 free_unref_page(page);
b221385b
AB
98}
99
91807063 100static void __put_compound_page(struct page *page)
1da177e4 101{
822fc613
NH
102 /*
103 * __page_cache_release() is supposed to be called for thp, not for
104 * hugetlb. This is because hugetlb page does never have PageLRU set
105 * (it's never listed to any LRU lists) and no memcg routines should
106 * be called for hugetlb (it has a separate hugetlb_cgroup.)
107 */
108 if (!PageHuge(page))
109 __page_cache_release(page);
ff45fc3c 110 destroy_compound_page(page);
91807063
AA
111}
112
ddc58f27 113void __put_page(struct page *page)
8519fb30 114{
71389703
DW
115 if (is_zone_device_page(page)) {
116 put_dev_pagemap(page->pgmap);
117
118 /*
119 * The page belongs to the device that created pgmap. Do
120 * not return it to page allocator.
121 */
122 return;
123 }
124
8519fb30 125 if (unlikely(PageCompound(page)))
ddc58f27
KS
126 __put_compound_page(page);
127 else
91807063 128 __put_single_page(page);
1da177e4 129}
ddc58f27 130EXPORT_SYMBOL(__put_page);
70b50f94 131
1d7ea732 132/**
7682486b
RD
133 * put_pages_list() - release a list of pages
134 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
135 *
136 * Release a list of pages which are strung together on page.lru. Currently
137 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
138 */
139void put_pages_list(struct list_head *pages)
140{
141 while (!list_empty(pages)) {
142 struct page *victim;
143
f86196ea 144 victim = lru_to_page(pages);
1d7ea732 145 list_del(&victim->lru);
09cbfeaf 146 put_page(victim);
1d7ea732
AZ
147 }
148}
149EXPORT_SYMBOL(put_pages_list);
150
18022c5d
MG
151/*
152 * get_kernel_pages() - pin kernel pages in memory
153 * @kiov: An array of struct kvec structures
154 * @nr_segs: number of segments to pin
155 * @write: pinning for read/write, currently ignored
156 * @pages: array that receives pointers to the pages pinned.
157 * Should be at least nr_segs long.
158 *
159 * Returns number of pages pinned. This may be fewer than the number
160 * requested. If nr_pages is 0 or negative, returns 0. If no pages
161 * were pinned, returns -errno. Each page returned must be released
162 * with a put_page() call when it is finished with.
163 */
164int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
165 struct page **pages)
166{
167 int seg;
168
169 for (seg = 0; seg < nr_segs; seg++) {
170 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
171 return seg;
172
5a178119 173 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 174 get_page(pages[seg]);
18022c5d
MG
175 }
176
177 return seg;
178}
179EXPORT_SYMBOL_GPL(get_kernel_pages);
180
181/*
182 * get_kernel_page() - pin a kernel page in memory
183 * @start: starting kernel address
184 * @write: pinning for read/write, currently ignored
185 * @pages: array that receives pointer to the page pinned.
186 * Must be at least nr_segs long.
187 *
188 * Returns 1 if page is pinned. If the page was not pinned, returns
189 * -errno. The page returned must be released with a put_page() call
190 * when it is finished with.
191 */
192int get_kernel_page(unsigned long start, int write, struct page **pages)
193{
194 const struct kvec kiov = {
195 .iov_base = (void *)start,
196 .iov_len = PAGE_SIZE
197 };
198
199 return get_kernel_pages(&kiov, 1, write, pages);
200}
201EXPORT_SYMBOL_GPL(get_kernel_page);
202
3dd7ae8e 203static void pagevec_lru_move_fn(struct pagevec *pvec,
c7c7b80c 204 void (*move_fn)(struct page *page, struct lruvec *lruvec))
902aaed0
HH
205{
206 int i;
6168d0da 207 struct lruvec *lruvec = NULL;
3dd7ae8e 208 unsigned long flags = 0;
902aaed0
HH
209
210 for (i = 0; i < pagevec_count(pvec); i++) {
211 struct page *page = pvec->pages[i];
3dd7ae8e 212
fc574c23
AS
213 /* block memcg migration during page moving between lru */
214 if (!TestClearPageLRU(page))
215 continue;
216
2a5e4e34 217 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
c7c7b80c 218 (*move_fn)(page, lruvec);
fc574c23
AS
219
220 SetPageLRU(page);
902aaed0 221 }
6168d0da
AS
222 if (lruvec)
223 unlock_page_lruvec_irqrestore(lruvec, flags);
c6f92f9f 224 release_pages(pvec->pages, pvec->nr);
83896fb5 225 pagevec_reinit(pvec);
d8505dee
SL
226}
227
c7c7b80c 228static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 229{
fc574c23 230 if (!PageUnevictable(page)) {
46ae6b2c 231 del_page_from_lru_list(page, lruvec);
c55e8d03 232 ClearPageActive(page);
3a9c9788 233 add_page_to_lru_list_tail(page, lruvec);
c7c7b80c 234 __count_vm_events(PGROTATED, thp_nr_pages(page));
3dd7ae8e
SL
235 }
236}
237
d479960e
MK
238/* return true if pagevec needs to drain */
239static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
240{
241 bool ret = false;
242
243 if (!pagevec_add(pvec, page) || PageCompound(page) ||
244 lru_cache_disabled())
245 ret = true;
246
247 return ret;
248}
249
1da177e4
LT
250/*
251 * Writeback is about to end against a page which has been marked for immediate
252 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 253 * inactive list.
c7c7b80c
AS
254 *
255 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
1da177e4 256 */
3dd7ae8e 257void rotate_reclaimable_page(struct page *page)
1da177e4 258{
c55e8d03 259 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 260 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
261 struct pagevec *pvec;
262 unsigned long flags;
263
09cbfeaf 264 get_page(page);
b01b2141
IM
265 local_lock_irqsave(&lru_rotate.lock, flags);
266 pvec = this_cpu_ptr(&lru_rotate.pvec);
d479960e 267 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 268 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 269 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 270 }
1da177e4
LT
271}
272
96f8bf4f 273void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 274{
7cf111bc
JW
275 do {
276 unsigned long lrusize;
277
6168d0da
AS
278 /*
279 * Hold lruvec->lru_lock is safe here, since
280 * 1) The pinned lruvec in reclaim, or
281 * 2) From a pre-LRU page during refault (which also holds the
282 * rcu lock, so would be safe even if the page was on the LRU
283 * and could move simultaneously to a new lruvec).
284 */
285 spin_lock_irq(&lruvec->lru_lock);
7cf111bc 286 /* Record cost event */
96f8bf4f
JW
287 if (file)
288 lruvec->file_cost += nr_pages;
7cf111bc 289 else
96f8bf4f 290 lruvec->anon_cost += nr_pages;
7cf111bc
JW
291
292 /*
293 * Decay previous events
294 *
295 * Because workloads change over time (and to avoid
296 * overflow) we keep these statistics as a floating
297 * average, which ends up weighing recent refaults
298 * more than old ones.
299 */
300 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304
305 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 lruvec->file_cost /= 2;
307 lruvec->anon_cost /= 2;
308 }
6168d0da 309 spin_unlock_irq(&lruvec->lru_lock);
7cf111bc 310 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
311}
312
96f8bf4f
JW
313void lru_note_cost_page(struct page *page)
314{
315 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
6c357848 316 page_is_file_lru(page), thp_nr_pages(page));
96f8bf4f
JW
317}
318
c7c7b80c 319static void __activate_page(struct page *page, struct lruvec *lruvec)
1da177e4 320{
fc574c23 321 if (!PageActive(page) && !PageUnevictable(page)) {
6c357848 322 int nr_pages = thp_nr_pages(page);
744ed144 323
46ae6b2c 324 del_page_from_lru_list(page, lruvec);
7a608572 325 SetPageActive(page);
3a9c9788 326 add_page_to_lru_list(page, lruvec);
24b7e581 327 trace_mm_lru_activate(page);
4f98a2fe 328
21e330fc
SB
329 __count_vm_events(PGACTIVATE, nr_pages);
330 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
331 nr_pages);
1da177e4 332 }
eb709b0d
SL
333}
334
335#ifdef CONFIG_SMP
eb709b0d
SL
336static void activate_page_drain(int cpu)
337{
b01b2141 338 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
339
340 if (pagevec_count(pvec))
c7c7b80c 341 pagevec_lru_move_fn(pvec, __activate_page);
eb709b0d
SL
342}
343
5fbc4616
CM
344static bool need_activate_page_drain(int cpu)
345{
b01b2141 346 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
347}
348
cc2828b2 349static void activate_page(struct page *page)
eb709b0d 350{
800d8c63 351 page = compound_head(page);
eb709b0d 352 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
b01b2141 353 struct pagevec *pvec;
eb709b0d 354
b01b2141
IM
355 local_lock(&lru_pvecs.lock);
356 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
09cbfeaf 357 get_page(page);
d479960e 358 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 359 pagevec_lru_move_fn(pvec, __activate_page);
b01b2141 360 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
361 }
362}
363
364#else
365static inline void activate_page_drain(int cpu)
366{
367}
368
cc2828b2 369static void activate_page(struct page *page)
eb709b0d 370{
6168d0da 371 struct lruvec *lruvec;
eb709b0d 372
800d8c63 373 page = compound_head(page);
6168d0da
AS
374 if (TestClearPageLRU(page)) {
375 lruvec = lock_page_lruvec_irq(page);
376 __activate_page(page, lruvec);
377 unlock_page_lruvec_irq(lruvec);
378 SetPageLRU(page);
379 }
1da177e4 380}
eb709b0d 381#endif
1da177e4 382
059285a2
MG
383static void __lru_cache_activate_page(struct page *page)
384{
b01b2141 385 struct pagevec *pvec;
059285a2
MG
386 int i;
387
b01b2141
IM
388 local_lock(&lru_pvecs.lock);
389 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
390
059285a2
MG
391 /*
392 * Search backwards on the optimistic assumption that the page being
393 * activated has just been added to this pagevec. Note that only
394 * the local pagevec is examined as a !PageLRU page could be in the
395 * process of being released, reclaimed, migrated or on a remote
396 * pagevec that is currently being drained. Furthermore, marking
397 * a remote pagevec's page PageActive potentially hits a race where
398 * a page is marked PageActive just after it is added to the inactive
399 * list causing accounting errors and BUG_ON checks to trigger.
400 */
401 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
402 struct page *pagevec_page = pvec->pages[i];
403
404 if (pagevec_page == page) {
405 SetPageActive(page);
406 break;
407 }
408 }
409
b01b2141 410 local_unlock(&lru_pvecs.lock);
059285a2
MG
411}
412
1da177e4
LT
413/*
414 * Mark a page as having seen activity.
415 *
416 * inactive,unreferenced -> inactive,referenced
417 * inactive,referenced -> active,unreferenced
418 * active,unreferenced -> active,referenced
eb39d618
HD
419 *
420 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
421 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 422 */
920c7a5d 423void mark_page_accessed(struct page *page)
1da177e4 424{
e90309c9 425 page = compound_head(page);
059285a2 426
a1100a74
FW
427 if (!PageReferenced(page)) {
428 SetPageReferenced(page);
429 } else if (PageUnevictable(page)) {
430 /*
431 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
432 * this list is never rotated or maintained, so marking an
433 * evictable page accessed has no effect.
434 */
435 } else if (!PageActive(page)) {
059285a2
MG
436 /*
437 * If the page is on the LRU, queue it for activation via
b01b2141 438 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
439 * pagevec, mark it active and it'll be moved to the active
440 * LRU on the next drain.
441 */
442 if (PageLRU(page))
443 activate_page(page);
444 else
445 __lru_cache_activate_page(page);
1da177e4 446 ClearPageReferenced(page);
cb686883 447 workingset_activation(page);
1da177e4 448 }
33c3fc71
VD
449 if (page_is_idle(page))
450 clear_page_idle(page);
1da177e4 451}
1da177e4
LT
452EXPORT_SYMBOL(mark_page_accessed);
453
f04e9ebb 454/**
c53954a0 455 * lru_cache_add - add a page to a page list
f04e9ebb 456 * @page: the page to be added to the LRU.
2329d375
JZ
457 *
458 * Queue the page for addition to the LRU via pagevec. The decision on whether
459 * to add the page to the [in]active [file|anon] list is deferred until the
460 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
461 * have the page added to the active list using mark_page_accessed().
f04e9ebb 462 */
c53954a0 463void lru_cache_add(struct page *page)
1da177e4 464{
6058eaec
JW
465 struct pagevec *pvec;
466
309381fe
SL
467 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
468 VM_BUG_ON_PAGE(PageLRU(page), page);
6058eaec
JW
469
470 get_page(page);
471 local_lock(&lru_pvecs.lock);
472 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
d479960e 473 if (pagevec_add_and_need_flush(pvec, page))
6058eaec
JW
474 __pagevec_lru_add(pvec);
475 local_unlock(&lru_pvecs.lock);
1da177e4 476}
6058eaec 477EXPORT_SYMBOL(lru_cache_add);
1da177e4 478
00501b53 479/**
b518154e 480 * lru_cache_add_inactive_or_unevictable
00501b53
JW
481 * @page: the page to be added to LRU
482 * @vma: vma in which page is mapped for determining reclaimability
483 *
b518154e 484 * Place @page on the inactive or unevictable LRU list, depending on its
12eab428 485 * evictability.
00501b53 486 */
b518154e 487void lru_cache_add_inactive_or_unevictable(struct page *page,
00501b53
JW
488 struct vm_area_struct *vma)
489{
b518154e
JK
490 bool unevictable;
491
00501b53
JW
492 VM_BUG_ON_PAGE(PageLRU(page), page);
493
b518154e
JK
494 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
495 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
0964730b 496 int nr_pages = thp_nr_pages(page);
00501b53
JW
497 /*
498 * We use the irq-unsafe __mod_zone_page_stat because this
499 * counter is not modified from interrupt context, and the pte
500 * lock is held(spinlock), which implies preemption disabled.
501 */
0964730b
HD
502 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
503 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
00501b53 504 }
9c4e6b1a 505 lru_cache_add(page);
00501b53
JW
506}
507
31560180
MK
508/*
509 * If the page can not be invalidated, it is moved to the
510 * inactive list to speed up its reclaim. It is moved to the
511 * head of the list, rather than the tail, to give the flusher
512 * threads some time to write it out, as this is much more
513 * effective than the single-page writeout from reclaim.
278df9f4
MK
514 *
515 * If the page isn't page_mapped and dirty/writeback, the page
516 * could reclaim asap using PG_reclaim.
517 *
518 * 1. active, mapped page -> none
519 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
520 * 3. inactive, mapped page -> none
521 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
522 * 5. inactive, clean -> inactive, tail
523 * 6. Others -> none
524 *
525 * In 4, why it moves inactive's head, the VM expects the page would
526 * be write it out by flusher threads as this is much more effective
527 * than the single-page writeout from reclaim.
31560180 528 */
c7c7b80c 529static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
31560180 530{
46ae6b2c 531 bool active = PageActive(page);
6c357848 532 int nr_pages = thp_nr_pages(page);
31560180 533
bad49d9c
MK
534 if (PageUnevictable(page))
535 return;
536
31560180
MK
537 /* Some processes are using the page */
538 if (page_mapped(page))
539 return;
540
46ae6b2c 541 del_page_from_lru_list(page, lruvec);
31560180
MK
542 ClearPageActive(page);
543 ClearPageReferenced(page);
31560180 544
278df9f4
MK
545 if (PageWriteback(page) || PageDirty(page)) {
546 /*
547 * PG_reclaim could be raced with end_page_writeback
548 * It can make readahead confusing. But race window
549 * is _really_ small and it's non-critical problem.
550 */
3a9c9788 551 add_page_to_lru_list(page, lruvec);
278df9f4
MK
552 SetPageReclaim(page);
553 } else {
554 /*
555 * The page's writeback ends up during pagevec
556 * We moves tha page into tail of inactive.
557 */
3a9c9788 558 add_page_to_lru_list_tail(page, lruvec);
5d91f31f 559 __count_vm_events(PGROTATED, nr_pages);
278df9f4
MK
560 }
561
21e330fc 562 if (active) {
5d91f31f 563 __count_vm_events(PGDEACTIVATE, nr_pages);
21e330fc
SB
564 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
565 nr_pages);
566 }
31560180
MK
567}
568
c7c7b80c 569static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
9c276cc6 570{
fc574c23 571 if (PageActive(page) && !PageUnevictable(page)) {
6c357848 572 int nr_pages = thp_nr_pages(page);
9c276cc6 573
46ae6b2c 574 del_page_from_lru_list(page, lruvec);
9c276cc6
MK
575 ClearPageActive(page);
576 ClearPageReferenced(page);
3a9c9788 577 add_page_to_lru_list(page, lruvec);
9c276cc6 578
21e330fc
SB
579 __count_vm_events(PGDEACTIVATE, nr_pages);
580 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
581 nr_pages);
9c276cc6
MK
582 }
583}
10853a03 584
c7c7b80c 585static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
10853a03 586{
fc574c23 587 if (PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 588 !PageSwapCache(page) && !PageUnevictable(page)) {
6c357848 589 int nr_pages = thp_nr_pages(page);
10853a03 590
46ae6b2c 591 del_page_from_lru_list(page, lruvec);
10853a03
MK
592 ClearPageActive(page);
593 ClearPageReferenced(page);
f7ad2a6c 594 /*
9de4f22a
HY
595 * Lazyfree pages are clean anonymous pages. They have
596 * PG_swapbacked flag cleared, to distinguish them from normal
597 * anonymous pages
f7ad2a6c
SL
598 */
599 ClearPageSwapBacked(page);
3a9c9788 600 add_page_to_lru_list(page, lruvec);
10853a03 601
21e330fc
SB
602 __count_vm_events(PGLAZYFREE, nr_pages);
603 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
604 nr_pages);
10853a03
MK
605 }
606}
607
902aaed0
HH
608/*
609 * Drain pages out of the cpu's pagevecs.
610 * Either "cpu" is the current CPU, and preemption has already been
611 * disabled; or "cpu" is being hot-unplugged, and is already dead.
612 */
f0cb3c76 613void lru_add_drain_cpu(int cpu)
1da177e4 614{
b01b2141 615 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 616
13f7f789 617 if (pagevec_count(pvec))
a0b8cab3 618 __pagevec_lru_add(pvec);
902aaed0 619
b01b2141 620 pvec = &per_cpu(lru_rotate.pvec, cpu);
7e0cc01e
QC
621 /* Disabling interrupts below acts as a compiler barrier. */
622 if (data_race(pagevec_count(pvec))) {
902aaed0
HH
623 unsigned long flags;
624
625 /* No harm done if a racing interrupt already did this */
b01b2141 626 local_lock_irqsave(&lru_rotate.lock, flags);
c7c7b80c 627 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 628 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 629 }
31560180 630
b01b2141 631 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 632 if (pagevec_count(pvec))
c7c7b80c 633 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
eb709b0d 634
b01b2141 635 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6 636 if (pagevec_count(pvec))
c7c7b80c 637 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
9c276cc6 638
b01b2141 639 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 640 if (pagevec_count(pvec))
c7c7b80c 641 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
10853a03 642
eb709b0d 643 activate_page_drain(cpu);
31560180
MK
644}
645
646/**
cc5993bd 647 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
648 * @page: page to deactivate
649 *
650 * This function hints the VM that @page is a good reclaim candidate,
651 * for example if its invalidation fails due to the page being dirty
652 * or under writeback.
653 */
cc5993bd 654void deactivate_file_page(struct page *page)
31560180 655{
821ed6bb 656 /*
cc5993bd
MK
657 * In a workload with many unevictable page such as mprotect,
658 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
659 */
660 if (PageUnevictable(page))
661 return;
662
31560180 663 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
664 struct pagevec *pvec;
665
666 local_lock(&lru_pvecs.lock);
667 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 668
d479960e 669 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 670 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
b01b2141 671 local_unlock(&lru_pvecs.lock);
31560180 672 }
80bfed90
AM
673}
674
9c276cc6
MK
675/*
676 * deactivate_page - deactivate a page
677 * @page: page to deactivate
678 *
679 * deactivate_page() moves @page to the inactive list if @page was on the active
680 * list and was not an unevictable page. This is done to accelerate the reclaim
681 * of @page.
682 */
683void deactivate_page(struct page *page)
684{
685 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 686 struct pagevec *pvec;
9c276cc6 687
b01b2141
IM
688 local_lock(&lru_pvecs.lock);
689 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6 690 get_page(page);
d479960e 691 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 692 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
b01b2141 693 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
694 }
695}
696
10853a03 697/**
f7ad2a6c 698 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
699 * @page: page to deactivate
700 *
f7ad2a6c
SL
701 * mark_page_lazyfree() moves @page to the inactive file list.
702 * This is done to accelerate the reclaim of @page.
10853a03 703 */
f7ad2a6c 704void mark_page_lazyfree(struct page *page)
10853a03 705{
f7ad2a6c 706 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 707 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 708 struct pagevec *pvec;
10853a03 709
b01b2141
IM
710 local_lock(&lru_pvecs.lock);
711 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 712 get_page(page);
d479960e 713 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 714 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
b01b2141 715 local_unlock(&lru_pvecs.lock);
10853a03
MK
716 }
717}
718
80bfed90
AM
719void lru_add_drain(void)
720{
b01b2141
IM
721 local_lock(&lru_pvecs.lock);
722 lru_add_drain_cpu(smp_processor_id());
723 local_unlock(&lru_pvecs.lock);
724}
725
726void lru_add_drain_cpu_zone(struct zone *zone)
727{
728 local_lock(&lru_pvecs.lock);
729 lru_add_drain_cpu(smp_processor_id());
730 drain_local_pages(zone);
731 local_unlock(&lru_pvecs.lock);
1da177e4
LT
732}
733
6ea183d6
MH
734#ifdef CONFIG_SMP
735
736static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
737
c4028958 738static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
739{
740 lru_add_drain();
741}
742
9852a721
MH
743/*
744 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
745 * kworkers being shut down before our page_alloc_cpu_dead callback is
746 * executed on the offlined cpu.
747 * Calling this function with cpu hotplug locks held can actually lead
748 * to obscure indirect dependencies via WQ context.
749 */
d479960e 750inline void __lru_add_drain_all(bool force_all_cpus)
053837fc 751{
6446a513
AD
752 /*
753 * lru_drain_gen - Global pages generation number
754 *
755 * (A) Definition: global lru_drain_gen = x implies that all generations
756 * 0 < n <= x are already *scheduled* for draining.
757 *
758 * This is an optimization for the highly-contended use case where a
759 * user space workload keeps constantly generating a flow of pages for
760 * each CPU.
761 */
762 static unsigned int lru_drain_gen;
5fbc4616 763 static struct cpumask has_work;
6446a513
AD
764 static DEFINE_MUTEX(lock);
765 unsigned cpu, this_gen;
5fbc4616 766
ce612879
MH
767 /*
768 * Make sure nobody triggers this path before mm_percpu_wq is fully
769 * initialized.
770 */
771 if (WARN_ON(!mm_percpu_wq))
772 return;
773
6446a513
AD
774 /*
775 * Guarantee pagevec counter stores visible by this CPU are visible to
776 * other CPUs before loading the current drain generation.
777 */
778 smp_mb();
779
780 /*
781 * (B) Locally cache global LRU draining generation number
782 *
783 * The read barrier ensures that the counter is loaded before the mutex
784 * is taken. It pairs with smp_mb() inside the mutex critical section
785 * at (D).
786 */
787 this_gen = smp_load_acquire(&lru_drain_gen);
eef1a429 788
5fbc4616 789 mutex_lock(&lock);
eef1a429
KK
790
791 /*
6446a513
AD
792 * (C) Exit the draining operation if a newer generation, from another
793 * lru_add_drain_all(), was already scheduled for draining. Check (A).
eef1a429 794 */
d479960e 795 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
eef1a429
KK
796 goto done;
797
6446a513
AD
798 /*
799 * (D) Increment global generation number
800 *
801 * Pairs with smp_load_acquire() at (B), outside of the critical
802 * section. Use a full memory barrier to guarantee that the new global
803 * drain generation number is stored before loading pagevec counters.
804 *
805 * This pairing must be done here, before the for_each_online_cpu loop
806 * below which drains the page vectors.
807 *
808 * Let x, y, and z represent some system CPU numbers, where x < y < z.
809 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
810 * below and has already reached CPU #y's per-cpu data. CPU #x comes
811 * along, adds some pages to its per-cpu vectors, then calls
812 * lru_add_drain_all().
813 *
814 * If the paired barrier is done at any later step, e.g. after the
815 * loop, CPU #x will just exit at (C) and miss flushing out all of its
816 * added pages.
817 */
818 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
819 smp_mb();
eef1a429 820
5fbc4616 821 cpumask_clear(&has_work);
5fbc4616
CM
822 for_each_online_cpu(cpu) {
823 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
824
d479960e
MK
825 if (force_all_cpus ||
826 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
7e0cc01e 827 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
b01b2141
IM
828 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
829 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
830 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
5fbc4616
CM
831 need_activate_page_drain(cpu)) {
832 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 833 queue_work_on(cpu, mm_percpu_wq, work);
6446a513 834 __cpumask_set_cpu(cpu, &has_work);
5fbc4616
CM
835 }
836 }
837
838 for_each_cpu(cpu, &has_work)
839 flush_work(&per_cpu(lru_add_drain_work, cpu));
840
eef1a429 841done:
5fbc4616 842 mutex_unlock(&lock);
053837fc 843}
d479960e
MK
844
845void lru_add_drain_all(void)
846{
847 __lru_add_drain_all(false);
848}
6ea183d6
MH
849#else
850void lru_add_drain_all(void)
851{
852 lru_add_drain();
853}
6446a513 854#endif /* CONFIG_SMP */
053837fc 855
d479960e
MK
856atomic_t lru_disable_count = ATOMIC_INIT(0);
857
858/*
859 * lru_cache_disable() needs to be called before we start compiling
860 * a list of pages to be migrated using isolate_lru_page().
861 * It drains pages on LRU cache and then disable on all cpus until
862 * lru_cache_enable is called.
863 *
864 * Must be paired with a call to lru_cache_enable().
865 */
866void lru_cache_disable(void)
867{
868 atomic_inc(&lru_disable_count);
869#ifdef CONFIG_SMP
870 /*
871 * lru_add_drain_all in the force mode will schedule draining on
872 * all online CPUs so any calls of lru_cache_disabled wrapped by
873 * local_lock or preemption disabled would be ordered by that.
874 * The atomic operation doesn't need to have stronger ordering
875 * requirements because that is enforeced by the scheduling
876 * guarantees.
877 */
878 __lru_add_drain_all(true);
879#else
880 lru_add_drain();
881#endif
882}
883
aabfb572 884/**
ea1754a0 885 * release_pages - batched put_page()
aabfb572
MH
886 * @pages: array of pages to release
887 * @nr: number of pages
1da177e4 888 *
aabfb572
MH
889 * Decrement the reference count on all the pages in @pages. If it
890 * fell to zero, remove the page from the LRU and free it.
1da177e4 891 */
c6f92f9f 892void release_pages(struct page **pages, int nr)
1da177e4
LT
893{
894 int i;
cc59850e 895 LIST_HEAD(pages_to_free);
6168d0da 896 struct lruvec *lruvec = NULL;
3f649ab7
KC
897 unsigned long flags;
898 unsigned int lock_batch;
1da177e4 899
1da177e4
LT
900 for (i = 0; i < nr; i++) {
901 struct page *page = pages[i];
1da177e4 902
aabfb572
MH
903 /*
904 * Make sure the IRQ-safe lock-holding time does not get
905 * excessive with a continuous string of pages from the
6168d0da 906 * same lruvec. The lock is held only if lruvec != NULL.
aabfb572 907 */
6168d0da
AS
908 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
909 unlock_page_lruvec_irqrestore(lruvec, flags);
910 lruvec = NULL;
aabfb572
MH
911 }
912
a9b576f7 913 page = compound_head(page);
6fcb52a5 914 if (is_huge_zero_page(page))
aa88b68c 915 continue;
aa88b68c 916
c5d6c45e 917 if (is_zone_device_page(page)) {
6168d0da
AS
918 if (lruvec) {
919 unlock_page_lruvec_irqrestore(lruvec, flags);
920 lruvec = NULL;
df6ad698 921 }
c5d6c45e
IW
922 /*
923 * ZONE_DEVICE pages that return 'false' from
a3e7bea0 924 * page_is_devmap_managed() do not require special
c5d6c45e
IW
925 * processing, and instead, expect a call to
926 * put_page_testzero().
927 */
07d80269
JH
928 if (page_is_devmap_managed(page)) {
929 put_devmap_managed_page(page);
c5d6c45e 930 continue;
07d80269 931 }
43fbdeb3
RC
932 if (put_page_testzero(page))
933 put_dev_pagemap(page->pgmap);
934 continue;
df6ad698
JG
935 }
936
b5810039 937 if (!put_page_testzero(page))
1da177e4
LT
938 continue;
939
ddc58f27 940 if (PageCompound(page)) {
6168d0da
AS
941 if (lruvec) {
942 unlock_page_lruvec_irqrestore(lruvec, flags);
943 lruvec = NULL;
ddc58f27
KS
944 }
945 __put_compound_page(page);
946 continue;
947 }
948
46453a6e 949 if (PageLRU(page)) {
2a5e4e34
AD
950 struct lruvec *prev_lruvec = lruvec;
951
952 lruvec = relock_page_lruvec_irqsave(page, lruvec,
953 &flags);
954 if (prev_lruvec != lruvec)
aabfb572 955 lock_batch = 0;
fa9add64 956
46ae6b2c 957 del_page_from_lru_list(page, lruvec);
87560179 958 __clear_page_lru_flags(page);
46453a6e
NP
959 }
960
62906027 961 __ClearPageWaiters(page);
c53954a0 962
cc59850e 963 list_add(&page->lru, &pages_to_free);
1da177e4 964 }
6168d0da
AS
965 if (lruvec)
966 unlock_page_lruvec_irqrestore(lruvec, flags);
1da177e4 967
747db954 968 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 969 free_unref_page_list(&pages_to_free);
1da177e4 970}
0be8557b 971EXPORT_SYMBOL(release_pages);
1da177e4
LT
972
973/*
974 * The pages which we're about to release may be in the deferred lru-addition
975 * queues. That would prevent them from really being freed right now. That's
976 * OK from a correctness point of view but is inefficient - those pages may be
977 * cache-warm and we want to give them back to the page allocator ASAP.
978 *
979 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
980 * and __pagevec_lru_add_active() call release_pages() directly to avoid
981 * mutual recursion.
982 */
983void __pagevec_release(struct pagevec *pvec)
984{
7f0b5fb9 985 if (!pvec->percpu_pvec_drained) {
d9ed0d08 986 lru_add_drain();
7f0b5fb9 987 pvec->percpu_pvec_drained = true;
d9ed0d08 988 }
c6f92f9f 989 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
990 pagevec_reinit(pvec);
991}
7f285701
SF
992EXPORT_SYMBOL(__pagevec_release);
993
c7c7b80c 994static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 995{
9c4e6b1a 996 int was_unevictable = TestClearPageUnevictable(page);
6c357848 997 int nr_pages = thp_nr_pages(page);
3dd7ae8e 998
309381fe 999 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e 1000
9c4e6b1a
SB
1001 /*
1002 * Page becomes evictable in two ways:
dae966dc 1003 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
1004 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1005 * a) do PageLRU check with lock [check_move_unevictable_pages]
1006 * b) do PageLRU check before lock [clear_page_mlock]
1007 *
1008 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1009 * following strict ordering:
1010 *
1011 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1012 *
1013 * SetPageLRU() TestClearPageMlocked()
1014 * smp_mb() // explicit ordering // above provides strict
1015 * // ordering
1016 * PageMlocked() PageLRU()
1017 *
1018 *
1019 * if '#1' does not observe setting of PG_lru by '#0' and fails
1020 * isolation, the explicit barrier will make sure that page_evictable
1021 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1022 * can be reordered after PageMlocked check and can make '#1' to fail
1023 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1024 * looking at the same page) and the evictable page will be stranded
1025 * in an unevictable LRU.
1026 */
9a9b6cce
YS
1027 SetPageLRU(page);
1028 smp_mb__after_atomic();
9c4e6b1a
SB
1029
1030 if (page_evictable(page)) {
9c4e6b1a 1031 if (was_unevictable)
5d91f31f 1032 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
9c4e6b1a 1033 } else {
9c4e6b1a
SB
1034 ClearPageActive(page);
1035 SetPageUnevictable(page);
1036 if (!was_unevictable)
5d91f31f 1037 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
9c4e6b1a
SB
1038 }
1039
3a9c9788 1040 add_page_to_lru_list(page, lruvec);
86140453 1041 trace_mm_lru_insertion(page);
3dd7ae8e
SL
1042}
1043
1da177e4
LT
1044/*
1045 * Add the passed pages to the LRU, then drop the caller's refcount
1046 * on them. Reinitialises the caller's pagevec.
1047 */
a0b8cab3 1048void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1049{
fc574c23 1050 int i;
6168d0da 1051 struct lruvec *lruvec = NULL;
fc574c23
AS
1052 unsigned long flags = 0;
1053
1054 for (i = 0; i < pagevec_count(pvec); i++) {
1055 struct page *page = pvec->pages[i];
fc574c23 1056
2a5e4e34 1057 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
fc574c23
AS
1058 __pagevec_lru_add_fn(page, lruvec);
1059 }
6168d0da
AS
1060 if (lruvec)
1061 unlock_page_lruvec_irqrestore(lruvec, flags);
fc574c23
AS
1062 release_pages(pvec->pages, pvec->nr);
1063 pagevec_reinit(pvec);
1da177e4 1064}
1da177e4 1065
0cd6144a
JW
1066/**
1067 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1068 * @pvec: The pagevec to prune
1069 *
a656a202
MWO
1070 * find_get_entries() fills both pages and XArray value entries (aka
1071 * exceptional entries) into the pagevec. This function prunes all
0cd6144a
JW
1072 * exceptionals from @pvec without leaving holes, so that it can be
1073 * passed on to page-only pagevec operations.
1074 */
1075void pagevec_remove_exceptionals(struct pagevec *pvec)
1076{
1077 int i, j;
1078
1079 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1080 struct page *page = pvec->pages[i];
3159f943 1081 if (!xa_is_value(page))
0cd6144a
JW
1082 pvec->pages[j++] = page;
1083 }
1084 pvec->nr = j;
1085}
1086
1da177e4 1087/**
b947cee4 1088 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1089 * @pvec: Where the resulting pages are placed
1090 * @mapping: The address_space to search
1091 * @start: The starting page index
b947cee4 1092 * @end: The final page index
1da177e4 1093 *
e02a9f04 1094 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1095 * pages in the mapping starting from index @start and upto index @end
1096 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1097 * reference against the pages in @pvec.
1098 *
1099 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1100 * indexes. There may be holes in the indices due to not-present pages. We
1101 * also update @start to index the next page for the traversal.
1da177e4 1102 *
b947cee4 1103 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1104 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1105 * reached.
1da177e4 1106 */
b947cee4 1107unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1108 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1109{
397162ff 1110 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1111 pvec->pages);
1da177e4
LT
1112 return pagevec_count(pvec);
1113}
b947cee4 1114EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1115
72b045ae
JK
1116unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1117 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1118 xa_mark_t tag)
1da177e4 1119{
72b045ae 1120 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1121 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1122 return pagevec_count(pvec);
1123}
72b045ae 1124EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1125
1da177e4
LT
1126/*
1127 * Perform any setup for the swap system
1128 */
1129void __init swap_setup(void)
1130{
ca79b0c2 1131 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1132
1da177e4
LT
1133 /* Use a smaller cluster for small-memory machines */
1134 if (megs < 16)
1135 page_cluster = 2;
1136 else
1137 page_cluster = 3;
1138 /*
1139 * Right now other parts of the system means that we
1140 * _really_ don't want to cluster much more
1141 */
1da177e4 1142}
07d80269
JH
1143
1144#ifdef CONFIG_DEV_PAGEMAP_OPS
1145void put_devmap_managed_page(struct page *page)
1146{
1147 int count;
1148
1149 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1150 return;
1151
1152 count = page_ref_dec_return(page);
1153
1154 /*
1155 * devmap page refcounts are 1-based, rather than 0-based: if
1156 * refcount is 1, then the page is free and the refcount is
1157 * stable because nobody holds a reference on the page.
1158 */
1159 if (count == 1)
1160 free_devmap_managed_page(page);
1161 else if (!count)
1162 __put_page(page);
1163}
1164EXPORT_SYMBOL(put_devmap_managed_page);
1165#endif