mm: Add folio_young and folio_idle
[linux-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
8cc621d2 39#include <linux/buffer_head.h>
1da177e4 40
64d6519d
LS
41#include "internal.h"
42
c6286c98
MG
43#define CREATE_TRACE_POINTS
44#include <trace/events/pagemap.h>
45
1da177e4
LT
46/* How many pages do we try to swap or page in/out together? */
47int page_cluster;
48
b01b2141
IM
49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
50struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53};
54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56};
57
58/*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
a4a921aa 68#ifdef CONFIG_SMP
b01b2141 69 struct pagevec activate_page;
a4a921aa 70#endif
b01b2141
IM
71};
72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74};
902aaed0 75
b221385b
AB
76/*
77 * This path almost never happens for VM activity - pages are normally
78 * freed via pagevecs. But it gets used by networking.
79 */
920c7a5d 80static void __page_cache_release(struct page *page)
b221385b
AB
81{
82 if (PageLRU(page)) {
e809c3fe 83 struct folio *folio = page_folio(page);
fa9add64
HD
84 struct lruvec *lruvec;
85 unsigned long flags;
b221385b 86
e809c3fe 87 lruvec = folio_lruvec_lock_irqsave(folio, &flags);
46ae6b2c 88 del_page_from_lru_list(page, lruvec);
87560179 89 __clear_page_lru_flags(page);
6168d0da 90 unlock_page_lruvec_irqrestore(lruvec, flags);
b221385b 91 }
62906027 92 __ClearPageWaiters(page);
91807063
AA
93}
94
95static void __put_single_page(struct page *page)
96{
97 __page_cache_release(page);
bbc6b703 98 mem_cgroup_uncharge(page_folio(page));
44042b44 99 free_unref_page(page, 0);
b221385b
AB
100}
101
91807063 102static void __put_compound_page(struct page *page)
1da177e4 103{
822fc613
NH
104 /*
105 * __page_cache_release() is supposed to be called for thp, not for
106 * hugetlb. This is because hugetlb page does never have PageLRU set
107 * (it's never listed to any LRU lists) and no memcg routines should
108 * be called for hugetlb (it has a separate hugetlb_cgroup.)
109 */
110 if (!PageHuge(page))
111 __page_cache_release(page);
ff45fc3c 112 destroy_compound_page(page);
91807063
AA
113}
114
ddc58f27 115void __put_page(struct page *page)
8519fb30 116{
71389703
DW
117 if (is_zone_device_page(page)) {
118 put_dev_pagemap(page->pgmap);
119
120 /*
121 * The page belongs to the device that created pgmap. Do
122 * not return it to page allocator.
123 */
124 return;
125 }
126
8519fb30 127 if (unlikely(PageCompound(page)))
ddc58f27
KS
128 __put_compound_page(page);
129 else
91807063 130 __put_single_page(page);
1da177e4 131}
ddc58f27 132EXPORT_SYMBOL(__put_page);
70b50f94 133
1d7ea732 134/**
7682486b
RD
135 * put_pages_list() - release a list of pages
136 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
137 *
138 * Release a list of pages which are strung together on page.lru. Currently
139 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
140 */
141void put_pages_list(struct list_head *pages)
142{
143 while (!list_empty(pages)) {
144 struct page *victim;
145
f86196ea 146 victim = lru_to_page(pages);
1d7ea732 147 list_del(&victim->lru);
09cbfeaf 148 put_page(victim);
1d7ea732
AZ
149 }
150}
151EXPORT_SYMBOL(put_pages_list);
152
18022c5d
MG
153/*
154 * get_kernel_pages() - pin kernel pages in memory
155 * @kiov: An array of struct kvec structures
156 * @nr_segs: number of segments to pin
157 * @write: pinning for read/write, currently ignored
158 * @pages: array that receives pointers to the pages pinned.
159 * Should be at least nr_segs long.
160 *
161 * Returns number of pages pinned. This may be fewer than the number
162 * requested. If nr_pages is 0 or negative, returns 0. If no pages
163 * were pinned, returns -errno. Each page returned must be released
164 * with a put_page() call when it is finished with.
165 */
166int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
167 struct page **pages)
168{
169 int seg;
170
171 for (seg = 0; seg < nr_segs; seg++) {
172 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
173 return seg;
174
5a178119 175 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 176 get_page(pages[seg]);
18022c5d
MG
177 }
178
179 return seg;
180}
181EXPORT_SYMBOL_GPL(get_kernel_pages);
182
3dd7ae8e 183static void pagevec_lru_move_fn(struct pagevec *pvec,
c7c7b80c 184 void (*move_fn)(struct page *page, struct lruvec *lruvec))
902aaed0
HH
185{
186 int i;
6168d0da 187 struct lruvec *lruvec = NULL;
3dd7ae8e 188 unsigned long flags = 0;
902aaed0
HH
189
190 for (i = 0; i < pagevec_count(pvec); i++) {
191 struct page *page = pvec->pages[i];
0de340cb 192 struct folio *folio = page_folio(page);
3dd7ae8e 193
fc574c23
AS
194 /* block memcg migration during page moving between lru */
195 if (!TestClearPageLRU(page))
196 continue;
197
0de340cb 198 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
c7c7b80c 199 (*move_fn)(page, lruvec);
fc574c23
AS
200
201 SetPageLRU(page);
902aaed0 202 }
6168d0da
AS
203 if (lruvec)
204 unlock_page_lruvec_irqrestore(lruvec, flags);
c6f92f9f 205 release_pages(pvec->pages, pvec->nr);
83896fb5 206 pagevec_reinit(pvec);
d8505dee
SL
207}
208
c7c7b80c 209static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 210{
575ced1c
MWO
211 struct folio *folio = page_folio(page);
212
213 if (!folio_test_unevictable(folio)) {
214 lruvec_del_folio(lruvec, folio);
215 folio_clear_active(folio);
216 lruvec_add_folio_tail(lruvec, folio);
217 __count_vm_events(PGROTATED, folio_nr_pages(folio));
3dd7ae8e
SL
218 }
219}
220
d479960e
MK
221/* return true if pagevec needs to drain */
222static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
223{
224 bool ret = false;
225
226 if (!pagevec_add(pvec, page) || PageCompound(page) ||
227 lru_cache_disabled())
228 ret = true;
229
230 return ret;
231}
232
1da177e4 233/*
575ced1c
MWO
234 * Writeback is about to end against a folio which has been marked for
235 * immediate reclaim. If it still appears to be reclaimable, move it
236 * to the tail of the inactive list.
c7c7b80c 237 *
575ced1c 238 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
1da177e4 239 */
575ced1c 240void folio_rotate_reclaimable(struct folio *folio)
1da177e4 241{
575ced1c
MWO
242 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
243 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
ac6aadb2
MS
244 struct pagevec *pvec;
245 unsigned long flags;
246
575ced1c 247 folio_get(folio);
b01b2141
IM
248 local_lock_irqsave(&lru_rotate.lock, flags);
249 pvec = this_cpu_ptr(&lru_rotate.pvec);
575ced1c 250 if (pagevec_add_and_need_flush(pvec, &folio->page))
c7c7b80c 251 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 252 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 253 }
1da177e4
LT
254}
255
96f8bf4f 256void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 257{
7cf111bc
JW
258 do {
259 unsigned long lrusize;
260
6168d0da
AS
261 /*
262 * Hold lruvec->lru_lock is safe here, since
263 * 1) The pinned lruvec in reclaim, or
264 * 2) From a pre-LRU page during refault (which also holds the
265 * rcu lock, so would be safe even if the page was on the LRU
266 * and could move simultaneously to a new lruvec).
267 */
268 spin_lock_irq(&lruvec->lru_lock);
7cf111bc 269 /* Record cost event */
96f8bf4f
JW
270 if (file)
271 lruvec->file_cost += nr_pages;
7cf111bc 272 else
96f8bf4f 273 lruvec->anon_cost += nr_pages;
7cf111bc
JW
274
275 /*
276 * Decay previous events
277 *
278 * Because workloads change over time (and to avoid
279 * overflow) we keep these statistics as a floating
280 * average, which ends up weighing recent refaults
281 * more than old ones.
282 */
283 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
284 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
285 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
286 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
287
288 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
289 lruvec->file_cost /= 2;
290 lruvec->anon_cost /= 2;
291 }
6168d0da 292 spin_unlock_irq(&lruvec->lru_lock);
7cf111bc 293 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
294}
295
96f8bf4f
JW
296void lru_note_cost_page(struct page *page)
297{
b1baabd9
MWO
298 struct folio *folio = page_folio(page);
299 lru_note_cost(folio_lruvec(folio),
6c357848 300 page_is_file_lru(page), thp_nr_pages(page));
96f8bf4f
JW
301}
302
c7c7b80c 303static void __activate_page(struct page *page, struct lruvec *lruvec)
1da177e4 304{
fc574c23 305 if (!PageActive(page) && !PageUnevictable(page)) {
6c357848 306 int nr_pages = thp_nr_pages(page);
744ed144 307
46ae6b2c 308 del_page_from_lru_list(page, lruvec);
7a608572 309 SetPageActive(page);
3a9c9788 310 add_page_to_lru_list(page, lruvec);
24b7e581 311 trace_mm_lru_activate(page);
4f98a2fe 312
21e330fc
SB
313 __count_vm_events(PGACTIVATE, nr_pages);
314 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
315 nr_pages);
1da177e4 316 }
eb709b0d
SL
317}
318
319#ifdef CONFIG_SMP
eb709b0d
SL
320static void activate_page_drain(int cpu)
321{
b01b2141 322 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
323
324 if (pagevec_count(pvec))
c7c7b80c 325 pagevec_lru_move_fn(pvec, __activate_page);
eb709b0d
SL
326}
327
5fbc4616
CM
328static bool need_activate_page_drain(int cpu)
329{
b01b2141 330 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
331}
332
cc2828b2 333static void activate_page(struct page *page)
eb709b0d 334{
800d8c63 335 page = compound_head(page);
eb709b0d 336 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
b01b2141 337 struct pagevec *pvec;
eb709b0d 338
b01b2141
IM
339 local_lock(&lru_pvecs.lock);
340 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
09cbfeaf 341 get_page(page);
d479960e 342 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 343 pagevec_lru_move_fn(pvec, __activate_page);
b01b2141 344 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
345 }
346}
347
348#else
349static inline void activate_page_drain(int cpu)
350{
351}
352
cc2828b2 353static void activate_page(struct page *page)
eb709b0d 354{
e809c3fe 355 struct folio *folio = page_folio(page);
6168d0da 356 struct lruvec *lruvec;
eb709b0d 357
e809c3fe 358 page = &folio->page;
6168d0da 359 if (TestClearPageLRU(page)) {
e809c3fe 360 lruvec = folio_lruvec_lock_irq(folio);
6168d0da
AS
361 __activate_page(page, lruvec);
362 unlock_page_lruvec_irq(lruvec);
363 SetPageLRU(page);
364 }
1da177e4 365}
eb709b0d 366#endif
1da177e4 367
059285a2
MG
368static void __lru_cache_activate_page(struct page *page)
369{
b01b2141 370 struct pagevec *pvec;
059285a2
MG
371 int i;
372
b01b2141
IM
373 local_lock(&lru_pvecs.lock);
374 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
375
059285a2
MG
376 /*
377 * Search backwards on the optimistic assumption that the page being
378 * activated has just been added to this pagevec. Note that only
379 * the local pagevec is examined as a !PageLRU page could be in the
380 * process of being released, reclaimed, migrated or on a remote
381 * pagevec that is currently being drained. Furthermore, marking
382 * a remote pagevec's page PageActive potentially hits a race where
383 * a page is marked PageActive just after it is added to the inactive
384 * list causing accounting errors and BUG_ON checks to trigger.
385 */
386 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
387 struct page *pagevec_page = pvec->pages[i];
388
389 if (pagevec_page == page) {
390 SetPageActive(page);
391 break;
392 }
393 }
394
b01b2141 395 local_unlock(&lru_pvecs.lock);
059285a2
MG
396}
397
1da177e4
LT
398/*
399 * Mark a page as having seen activity.
400 *
401 * inactive,unreferenced -> inactive,referenced
402 * inactive,referenced -> active,unreferenced
403 * active,unreferenced -> active,referenced
eb39d618
HD
404 *
405 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
406 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 407 */
920c7a5d 408void mark_page_accessed(struct page *page)
1da177e4 409{
e90309c9 410 page = compound_head(page);
059285a2 411
a1100a74
FW
412 if (!PageReferenced(page)) {
413 SetPageReferenced(page);
414 } else if (PageUnevictable(page)) {
415 /*
416 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
417 * this list is never rotated or maintained, so marking an
418 * evictable page accessed has no effect.
419 */
420 } else if (!PageActive(page)) {
059285a2
MG
421 /*
422 * If the page is on the LRU, queue it for activation via
b01b2141 423 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
424 * pagevec, mark it active and it'll be moved to the active
425 * LRU on the next drain.
426 */
427 if (PageLRU(page))
428 activate_page(page);
429 else
430 __lru_cache_activate_page(page);
1da177e4 431 ClearPageReferenced(page);
c5ce619a 432 workingset_activation(page_folio(page));
1da177e4 433 }
33c3fc71
VD
434 if (page_is_idle(page))
435 clear_page_idle(page);
1da177e4 436}
1da177e4
LT
437EXPORT_SYMBOL(mark_page_accessed);
438
f04e9ebb 439/**
c53954a0 440 * lru_cache_add - add a page to a page list
f04e9ebb 441 * @page: the page to be added to the LRU.
2329d375
JZ
442 *
443 * Queue the page for addition to the LRU via pagevec. The decision on whether
444 * to add the page to the [in]active [file|anon] list is deferred until the
445 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
446 * have the page added to the active list using mark_page_accessed().
f04e9ebb 447 */
c53954a0 448void lru_cache_add(struct page *page)
1da177e4 449{
6058eaec
JW
450 struct pagevec *pvec;
451
309381fe
SL
452 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
453 VM_BUG_ON_PAGE(PageLRU(page), page);
6058eaec
JW
454
455 get_page(page);
456 local_lock(&lru_pvecs.lock);
457 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
d479960e 458 if (pagevec_add_and_need_flush(pvec, page))
6058eaec
JW
459 __pagevec_lru_add(pvec);
460 local_unlock(&lru_pvecs.lock);
1da177e4 461}
6058eaec 462EXPORT_SYMBOL(lru_cache_add);
1da177e4 463
00501b53 464/**
b518154e 465 * lru_cache_add_inactive_or_unevictable
00501b53
JW
466 * @page: the page to be added to LRU
467 * @vma: vma in which page is mapped for determining reclaimability
468 *
b518154e 469 * Place @page on the inactive or unevictable LRU list, depending on its
12eab428 470 * evictability.
00501b53 471 */
b518154e 472void lru_cache_add_inactive_or_unevictable(struct page *page,
00501b53
JW
473 struct vm_area_struct *vma)
474{
b518154e
JK
475 bool unevictable;
476
00501b53
JW
477 VM_BUG_ON_PAGE(PageLRU(page), page);
478
b518154e
JK
479 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
480 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
0964730b 481 int nr_pages = thp_nr_pages(page);
00501b53 482 /*
cb152a1a 483 * We use the irq-unsafe __mod_zone_page_state because this
00501b53
JW
484 * counter is not modified from interrupt context, and the pte
485 * lock is held(spinlock), which implies preemption disabled.
486 */
0964730b
HD
487 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
488 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
00501b53 489 }
9c4e6b1a 490 lru_cache_add(page);
00501b53
JW
491}
492
31560180
MK
493/*
494 * If the page can not be invalidated, it is moved to the
495 * inactive list to speed up its reclaim. It is moved to the
496 * head of the list, rather than the tail, to give the flusher
497 * threads some time to write it out, as this is much more
498 * effective than the single-page writeout from reclaim.
278df9f4
MK
499 *
500 * If the page isn't page_mapped and dirty/writeback, the page
501 * could reclaim asap using PG_reclaim.
502 *
503 * 1. active, mapped page -> none
504 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
505 * 3. inactive, mapped page -> none
506 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
507 * 5. inactive, clean -> inactive, tail
508 * 6. Others -> none
509 *
510 * In 4, why it moves inactive's head, the VM expects the page would
511 * be write it out by flusher threads as this is much more effective
512 * than the single-page writeout from reclaim.
31560180 513 */
c7c7b80c 514static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
31560180 515{
46ae6b2c 516 bool active = PageActive(page);
6c357848 517 int nr_pages = thp_nr_pages(page);
31560180 518
bad49d9c
MK
519 if (PageUnevictable(page))
520 return;
521
31560180
MK
522 /* Some processes are using the page */
523 if (page_mapped(page))
524 return;
525
46ae6b2c 526 del_page_from_lru_list(page, lruvec);
31560180
MK
527 ClearPageActive(page);
528 ClearPageReferenced(page);
31560180 529
278df9f4
MK
530 if (PageWriteback(page) || PageDirty(page)) {
531 /*
532 * PG_reclaim could be raced with end_page_writeback
533 * It can make readahead confusing. But race window
534 * is _really_ small and it's non-critical problem.
535 */
3a9c9788 536 add_page_to_lru_list(page, lruvec);
278df9f4
MK
537 SetPageReclaim(page);
538 } else {
539 /*
540 * The page's writeback ends up during pagevec
c4ffefd1 541 * We move that page into tail of inactive.
278df9f4 542 */
3a9c9788 543 add_page_to_lru_list_tail(page, lruvec);
5d91f31f 544 __count_vm_events(PGROTATED, nr_pages);
278df9f4
MK
545 }
546
21e330fc 547 if (active) {
5d91f31f 548 __count_vm_events(PGDEACTIVATE, nr_pages);
21e330fc
SB
549 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
550 nr_pages);
551 }
31560180
MK
552}
553
c7c7b80c 554static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
9c276cc6 555{
fc574c23 556 if (PageActive(page) && !PageUnevictable(page)) {
6c357848 557 int nr_pages = thp_nr_pages(page);
9c276cc6 558
46ae6b2c 559 del_page_from_lru_list(page, lruvec);
9c276cc6
MK
560 ClearPageActive(page);
561 ClearPageReferenced(page);
3a9c9788 562 add_page_to_lru_list(page, lruvec);
9c276cc6 563
21e330fc
SB
564 __count_vm_events(PGDEACTIVATE, nr_pages);
565 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
566 nr_pages);
9c276cc6
MK
567 }
568}
10853a03 569
c7c7b80c 570static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
10853a03 571{
fc574c23 572 if (PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 573 !PageSwapCache(page) && !PageUnevictable(page)) {
6c357848 574 int nr_pages = thp_nr_pages(page);
10853a03 575
46ae6b2c 576 del_page_from_lru_list(page, lruvec);
10853a03
MK
577 ClearPageActive(page);
578 ClearPageReferenced(page);
f7ad2a6c 579 /*
9de4f22a
HY
580 * Lazyfree pages are clean anonymous pages. They have
581 * PG_swapbacked flag cleared, to distinguish them from normal
582 * anonymous pages
f7ad2a6c
SL
583 */
584 ClearPageSwapBacked(page);
3a9c9788 585 add_page_to_lru_list(page, lruvec);
10853a03 586
21e330fc
SB
587 __count_vm_events(PGLAZYFREE, nr_pages);
588 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
589 nr_pages);
10853a03
MK
590 }
591}
592
902aaed0
HH
593/*
594 * Drain pages out of the cpu's pagevecs.
595 * Either "cpu" is the current CPU, and preemption has already been
596 * disabled; or "cpu" is being hot-unplugged, and is already dead.
597 */
f0cb3c76 598void lru_add_drain_cpu(int cpu)
1da177e4 599{
b01b2141 600 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 601
13f7f789 602 if (pagevec_count(pvec))
a0b8cab3 603 __pagevec_lru_add(pvec);
902aaed0 604
b01b2141 605 pvec = &per_cpu(lru_rotate.pvec, cpu);
7e0cc01e
QC
606 /* Disabling interrupts below acts as a compiler barrier. */
607 if (data_race(pagevec_count(pvec))) {
902aaed0
HH
608 unsigned long flags;
609
610 /* No harm done if a racing interrupt already did this */
b01b2141 611 local_lock_irqsave(&lru_rotate.lock, flags);
c7c7b80c 612 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 613 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 614 }
31560180 615
b01b2141 616 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 617 if (pagevec_count(pvec))
c7c7b80c 618 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
eb709b0d 619
b01b2141 620 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6 621 if (pagevec_count(pvec))
c7c7b80c 622 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
9c276cc6 623
b01b2141 624 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 625 if (pagevec_count(pvec))
c7c7b80c 626 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
10853a03 627
eb709b0d 628 activate_page_drain(cpu);
31560180
MK
629}
630
631/**
cc5993bd 632 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
633 * @page: page to deactivate
634 *
635 * This function hints the VM that @page is a good reclaim candidate,
636 * for example if its invalidation fails due to the page being dirty
637 * or under writeback.
638 */
cc5993bd 639void deactivate_file_page(struct page *page)
31560180 640{
821ed6bb 641 /*
cc5993bd
MK
642 * In a workload with many unevictable page such as mprotect,
643 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
644 */
645 if (PageUnevictable(page))
646 return;
647
31560180 648 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
649 struct pagevec *pvec;
650
651 local_lock(&lru_pvecs.lock);
652 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 653
d479960e 654 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 655 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
b01b2141 656 local_unlock(&lru_pvecs.lock);
31560180 657 }
80bfed90
AM
658}
659
9c276cc6
MK
660/*
661 * deactivate_page - deactivate a page
662 * @page: page to deactivate
663 *
664 * deactivate_page() moves @page to the inactive list if @page was on the active
665 * list and was not an unevictable page. This is done to accelerate the reclaim
666 * of @page.
667 */
668void deactivate_page(struct page *page)
669{
670 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 671 struct pagevec *pvec;
9c276cc6 672
b01b2141
IM
673 local_lock(&lru_pvecs.lock);
674 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6 675 get_page(page);
d479960e 676 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 677 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
b01b2141 678 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
679 }
680}
681
10853a03 682/**
f7ad2a6c 683 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
684 * @page: page to deactivate
685 *
f7ad2a6c
SL
686 * mark_page_lazyfree() moves @page to the inactive file list.
687 * This is done to accelerate the reclaim of @page.
10853a03 688 */
f7ad2a6c 689void mark_page_lazyfree(struct page *page)
10853a03 690{
f7ad2a6c 691 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 692 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 693 struct pagevec *pvec;
10853a03 694
b01b2141
IM
695 local_lock(&lru_pvecs.lock);
696 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 697 get_page(page);
d479960e 698 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 699 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
b01b2141 700 local_unlock(&lru_pvecs.lock);
10853a03
MK
701 }
702}
703
80bfed90
AM
704void lru_add_drain(void)
705{
b01b2141
IM
706 local_lock(&lru_pvecs.lock);
707 lru_add_drain_cpu(smp_processor_id());
708 local_unlock(&lru_pvecs.lock);
709}
710
243418e3
MK
711/*
712 * It's called from per-cpu workqueue context in SMP case so
713 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
714 * the same cpu. It shouldn't be a problem in !SMP case since
715 * the core is only one and the locks will disable preemption.
716 */
717static void lru_add_and_bh_lrus_drain(void)
718{
719 local_lock(&lru_pvecs.lock);
720 lru_add_drain_cpu(smp_processor_id());
721 local_unlock(&lru_pvecs.lock);
722 invalidate_bh_lrus_cpu();
723}
724
b01b2141
IM
725void lru_add_drain_cpu_zone(struct zone *zone)
726{
727 local_lock(&lru_pvecs.lock);
728 lru_add_drain_cpu(smp_processor_id());
729 drain_local_pages(zone);
730 local_unlock(&lru_pvecs.lock);
1da177e4
LT
731}
732
6ea183d6
MH
733#ifdef CONFIG_SMP
734
735static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
736
c4028958 737static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc 738{
243418e3 739 lru_add_and_bh_lrus_drain();
053837fc
NP
740}
741
9852a721
MH
742/*
743 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
744 * kworkers being shut down before our page_alloc_cpu_dead callback is
745 * executed on the offlined cpu.
746 * Calling this function with cpu hotplug locks held can actually lead
747 * to obscure indirect dependencies via WQ context.
748 */
d479960e 749inline void __lru_add_drain_all(bool force_all_cpus)
053837fc 750{
6446a513
AD
751 /*
752 * lru_drain_gen - Global pages generation number
753 *
754 * (A) Definition: global lru_drain_gen = x implies that all generations
755 * 0 < n <= x are already *scheduled* for draining.
756 *
757 * This is an optimization for the highly-contended use case where a
758 * user space workload keeps constantly generating a flow of pages for
759 * each CPU.
760 */
761 static unsigned int lru_drain_gen;
5fbc4616 762 static struct cpumask has_work;
6446a513
AD
763 static DEFINE_MUTEX(lock);
764 unsigned cpu, this_gen;
5fbc4616 765
ce612879
MH
766 /*
767 * Make sure nobody triggers this path before mm_percpu_wq is fully
768 * initialized.
769 */
770 if (WARN_ON(!mm_percpu_wq))
771 return;
772
6446a513
AD
773 /*
774 * Guarantee pagevec counter stores visible by this CPU are visible to
775 * other CPUs before loading the current drain generation.
776 */
777 smp_mb();
778
779 /*
780 * (B) Locally cache global LRU draining generation number
781 *
782 * The read barrier ensures that the counter is loaded before the mutex
783 * is taken. It pairs with smp_mb() inside the mutex critical section
784 * at (D).
785 */
786 this_gen = smp_load_acquire(&lru_drain_gen);
eef1a429 787
5fbc4616 788 mutex_lock(&lock);
eef1a429
KK
789
790 /*
6446a513
AD
791 * (C) Exit the draining operation if a newer generation, from another
792 * lru_add_drain_all(), was already scheduled for draining. Check (A).
eef1a429 793 */
d479960e 794 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
eef1a429
KK
795 goto done;
796
6446a513
AD
797 /*
798 * (D) Increment global generation number
799 *
800 * Pairs with smp_load_acquire() at (B), outside of the critical
801 * section. Use a full memory barrier to guarantee that the new global
802 * drain generation number is stored before loading pagevec counters.
803 *
804 * This pairing must be done here, before the for_each_online_cpu loop
805 * below which drains the page vectors.
806 *
807 * Let x, y, and z represent some system CPU numbers, where x < y < z.
cb152a1a 808 * Assume CPU #z is in the middle of the for_each_online_cpu loop
6446a513
AD
809 * below and has already reached CPU #y's per-cpu data. CPU #x comes
810 * along, adds some pages to its per-cpu vectors, then calls
811 * lru_add_drain_all().
812 *
813 * If the paired barrier is done at any later step, e.g. after the
814 * loop, CPU #x will just exit at (C) and miss flushing out all of its
815 * added pages.
816 */
817 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
818 smp_mb();
eef1a429 819
5fbc4616 820 cpumask_clear(&has_work);
5fbc4616
CM
821 for_each_online_cpu(cpu) {
822 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
823
d479960e
MK
824 if (force_all_cpus ||
825 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
7e0cc01e 826 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
b01b2141
IM
827 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
828 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
829 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
8cc621d2
MK
830 need_activate_page_drain(cpu) ||
831 has_bh_in_lru(cpu, NULL)) {
5fbc4616 832 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 833 queue_work_on(cpu, mm_percpu_wq, work);
6446a513 834 __cpumask_set_cpu(cpu, &has_work);
5fbc4616
CM
835 }
836 }
837
838 for_each_cpu(cpu, &has_work)
839 flush_work(&per_cpu(lru_add_drain_work, cpu));
840
eef1a429 841done:
5fbc4616 842 mutex_unlock(&lock);
053837fc 843}
d479960e
MK
844
845void lru_add_drain_all(void)
846{
847 __lru_add_drain_all(false);
848}
6ea183d6
MH
849#else
850void lru_add_drain_all(void)
851{
852 lru_add_drain();
853}
6446a513 854#endif /* CONFIG_SMP */
053837fc 855
d479960e
MK
856atomic_t lru_disable_count = ATOMIC_INIT(0);
857
858/*
859 * lru_cache_disable() needs to be called before we start compiling
860 * a list of pages to be migrated using isolate_lru_page().
861 * It drains pages on LRU cache and then disable on all cpus until
862 * lru_cache_enable is called.
863 *
864 * Must be paired with a call to lru_cache_enable().
865 */
866void lru_cache_disable(void)
867{
868 atomic_inc(&lru_disable_count);
869#ifdef CONFIG_SMP
870 /*
871 * lru_add_drain_all in the force mode will schedule draining on
872 * all online CPUs so any calls of lru_cache_disabled wrapped by
873 * local_lock or preemption disabled would be ordered by that.
874 * The atomic operation doesn't need to have stronger ordering
875 * requirements because that is enforeced by the scheduling
876 * guarantees.
877 */
878 __lru_add_drain_all(true);
879#else
243418e3 880 lru_add_and_bh_lrus_drain();
d479960e
MK
881#endif
882}
883
aabfb572 884/**
ea1754a0 885 * release_pages - batched put_page()
aabfb572
MH
886 * @pages: array of pages to release
887 * @nr: number of pages
1da177e4 888 *
aabfb572
MH
889 * Decrement the reference count on all the pages in @pages. If it
890 * fell to zero, remove the page from the LRU and free it.
1da177e4 891 */
c6f92f9f 892void release_pages(struct page **pages, int nr)
1da177e4
LT
893{
894 int i;
cc59850e 895 LIST_HEAD(pages_to_free);
6168d0da 896 struct lruvec *lruvec = NULL;
0de340cb 897 unsigned long flags = 0;
3f649ab7 898 unsigned int lock_batch;
1da177e4 899
1da177e4
LT
900 for (i = 0; i < nr; i++) {
901 struct page *page = pages[i];
0de340cb 902 struct folio *folio = page_folio(page);
1da177e4 903
aabfb572
MH
904 /*
905 * Make sure the IRQ-safe lock-holding time does not get
906 * excessive with a continuous string of pages from the
6168d0da 907 * same lruvec. The lock is held only if lruvec != NULL.
aabfb572 908 */
6168d0da
AS
909 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
910 unlock_page_lruvec_irqrestore(lruvec, flags);
911 lruvec = NULL;
aabfb572
MH
912 }
913
0de340cb 914 page = &folio->page;
6fcb52a5 915 if (is_huge_zero_page(page))
aa88b68c 916 continue;
aa88b68c 917
c5d6c45e 918 if (is_zone_device_page(page)) {
6168d0da
AS
919 if (lruvec) {
920 unlock_page_lruvec_irqrestore(lruvec, flags);
921 lruvec = NULL;
df6ad698 922 }
c5d6c45e
IW
923 /*
924 * ZONE_DEVICE pages that return 'false' from
a3e7bea0 925 * page_is_devmap_managed() do not require special
c5d6c45e
IW
926 * processing, and instead, expect a call to
927 * put_page_testzero().
928 */
07d80269
JH
929 if (page_is_devmap_managed(page)) {
930 put_devmap_managed_page(page);
c5d6c45e 931 continue;
07d80269 932 }
43fbdeb3
RC
933 if (put_page_testzero(page))
934 put_dev_pagemap(page->pgmap);
935 continue;
df6ad698
JG
936 }
937
b5810039 938 if (!put_page_testzero(page))
1da177e4
LT
939 continue;
940
ddc58f27 941 if (PageCompound(page)) {
6168d0da
AS
942 if (lruvec) {
943 unlock_page_lruvec_irqrestore(lruvec, flags);
944 lruvec = NULL;
ddc58f27
KS
945 }
946 __put_compound_page(page);
947 continue;
948 }
949
46453a6e 950 if (PageLRU(page)) {
2a5e4e34
AD
951 struct lruvec *prev_lruvec = lruvec;
952
0de340cb 953 lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
2a5e4e34
AD
954 &flags);
955 if (prev_lruvec != lruvec)
aabfb572 956 lock_batch = 0;
fa9add64 957
46ae6b2c 958 del_page_from_lru_list(page, lruvec);
87560179 959 __clear_page_lru_flags(page);
46453a6e
NP
960 }
961
62906027 962 __ClearPageWaiters(page);
c53954a0 963
cc59850e 964 list_add(&page->lru, &pages_to_free);
1da177e4 965 }
6168d0da
AS
966 if (lruvec)
967 unlock_page_lruvec_irqrestore(lruvec, flags);
1da177e4 968
747db954 969 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 970 free_unref_page_list(&pages_to_free);
1da177e4 971}
0be8557b 972EXPORT_SYMBOL(release_pages);
1da177e4
LT
973
974/*
975 * The pages which we're about to release may be in the deferred lru-addition
976 * queues. That would prevent them from really being freed right now. That's
977 * OK from a correctness point of view but is inefficient - those pages may be
978 * cache-warm and we want to give them back to the page allocator ASAP.
979 *
980 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
981 * and __pagevec_lru_add_active() call release_pages() directly to avoid
982 * mutual recursion.
983 */
984void __pagevec_release(struct pagevec *pvec)
985{
7f0b5fb9 986 if (!pvec->percpu_pvec_drained) {
d9ed0d08 987 lru_add_drain();
7f0b5fb9 988 pvec->percpu_pvec_drained = true;
d9ed0d08 989 }
c6f92f9f 990 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
991 pagevec_reinit(pvec);
992}
7f285701
SF
993EXPORT_SYMBOL(__pagevec_release);
994
c7c7b80c 995static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 996{
9c4e6b1a 997 int was_unevictable = TestClearPageUnevictable(page);
6c357848 998 int nr_pages = thp_nr_pages(page);
3dd7ae8e 999
309381fe 1000 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e 1001
9c4e6b1a
SB
1002 /*
1003 * Page becomes evictable in two ways:
dae966dc 1004 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
1005 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1006 * a) do PageLRU check with lock [check_move_unevictable_pages]
1007 * b) do PageLRU check before lock [clear_page_mlock]
1008 *
1009 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1010 * following strict ordering:
1011 *
1012 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1013 *
1014 * SetPageLRU() TestClearPageMlocked()
1015 * smp_mb() // explicit ordering // above provides strict
1016 * // ordering
1017 * PageMlocked() PageLRU()
1018 *
1019 *
1020 * if '#1' does not observe setting of PG_lru by '#0' and fails
1021 * isolation, the explicit barrier will make sure that page_evictable
1022 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1023 * can be reordered after PageMlocked check and can make '#1' to fail
1024 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1025 * looking at the same page) and the evictable page will be stranded
1026 * in an unevictable LRU.
1027 */
9a9b6cce
YS
1028 SetPageLRU(page);
1029 smp_mb__after_atomic();
9c4e6b1a
SB
1030
1031 if (page_evictable(page)) {
9c4e6b1a 1032 if (was_unevictable)
5d91f31f 1033 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
9c4e6b1a 1034 } else {
9c4e6b1a
SB
1035 ClearPageActive(page);
1036 SetPageUnevictable(page);
1037 if (!was_unevictable)
5d91f31f 1038 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
9c4e6b1a
SB
1039 }
1040
3a9c9788 1041 add_page_to_lru_list(page, lruvec);
86140453 1042 trace_mm_lru_insertion(page);
3dd7ae8e
SL
1043}
1044
1da177e4
LT
1045/*
1046 * Add the passed pages to the LRU, then drop the caller's refcount
1047 * on them. Reinitialises the caller's pagevec.
1048 */
a0b8cab3 1049void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1050{
fc574c23 1051 int i;
6168d0da 1052 struct lruvec *lruvec = NULL;
fc574c23
AS
1053 unsigned long flags = 0;
1054
1055 for (i = 0; i < pagevec_count(pvec); i++) {
1056 struct page *page = pvec->pages[i];
0de340cb 1057 struct folio *folio = page_folio(page);
fc574c23 1058
0de340cb 1059 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
fc574c23
AS
1060 __pagevec_lru_add_fn(page, lruvec);
1061 }
6168d0da
AS
1062 if (lruvec)
1063 unlock_page_lruvec_irqrestore(lruvec, flags);
fc574c23
AS
1064 release_pages(pvec->pages, pvec->nr);
1065 pagevec_reinit(pvec);
1da177e4 1066}
1da177e4 1067
0cd6144a
JW
1068/**
1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1070 * @pvec: The pagevec to prune
1071 *
a656a202
MWO
1072 * find_get_entries() fills both pages and XArray value entries (aka
1073 * exceptional entries) into the pagevec. This function prunes all
0cd6144a
JW
1074 * exceptionals from @pvec without leaving holes, so that it can be
1075 * passed on to page-only pagevec operations.
1076 */
1077void pagevec_remove_exceptionals(struct pagevec *pvec)
1078{
1079 int i, j;
1080
1081 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1082 struct page *page = pvec->pages[i];
3159f943 1083 if (!xa_is_value(page))
0cd6144a
JW
1084 pvec->pages[j++] = page;
1085 }
1086 pvec->nr = j;
1087}
1088
1da177e4 1089/**
b947cee4 1090 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1091 * @pvec: Where the resulting pages are placed
1092 * @mapping: The address_space to search
1093 * @start: The starting page index
b947cee4 1094 * @end: The final page index
1da177e4 1095 *
e02a9f04 1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1099 * reference against the pages in @pvec.
1100 *
1101 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1102 * indexes. There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1da177e4 1104 *
b947cee4 1105 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1107 * reached.
1da177e4 1108 */
b947cee4 1109unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1110 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1111{
397162ff 1112 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1113 pvec->pages);
1da177e4
LT
1114 return pagevec_count(pvec);
1115}
b947cee4 1116EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1117
72b045ae
JK
1118unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1119 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1120 xa_mark_t tag)
1da177e4 1121{
72b045ae 1122 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1123 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1124 return pagevec_count(pvec);
1125}
72b045ae 1126EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1127
1da177e4
LT
1128/*
1129 * Perform any setup for the swap system
1130 */
1131void __init swap_setup(void)
1132{
ca79b0c2 1133 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1134
1da177e4
LT
1135 /* Use a smaller cluster for small-memory machines */
1136 if (megs < 16)
1137 page_cluster = 2;
1138 else
1139 page_cluster = 3;
1140 /*
1141 * Right now other parts of the system means that we
1142 * _really_ don't want to cluster much more
1143 */
1da177e4 1144}
07d80269
JH
1145
1146#ifdef CONFIG_DEV_PAGEMAP_OPS
1147void put_devmap_managed_page(struct page *page)
1148{
1149 int count;
1150
1151 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1152 return;
1153
1154 count = page_ref_dec_return(page);
1155
1156 /*
1157 * devmap page refcounts are 1-based, rather than 0-based: if
1158 * refcount is 1, then the page is free and the refcount is
1159 * stable because nobody holds a reference on the page.
1160 */
1161 if (count == 1)
1162 free_devmap_managed_page(page);
1163 else if (!count)
1164 __put_page(page);
1165}
1166EXPORT_SYMBOL(put_devmap_managed_page);
1167#endif