mm: base LRU balancing on an explicit cost model
[linux-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
1da177e4 39
64d6519d
LS
40#include "internal.h"
41
c6286c98
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/pagemap.h>
44
1da177e4
LT
45/* How many pages do we try to swap or page in/out together? */
46int page_cluster;
47
b01b2141
IM
48/* Protecting only lru_rotate.pvec which requires disabling interrupts */
49struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52};
53static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55};
56
57/*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
a4a921aa 67#ifdef CONFIG_SMP
b01b2141 68 struct pagevec activate_page;
a4a921aa 69#endif
b01b2141
IM
70};
71static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73};
902aaed0 74
b221385b
AB
75/*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
920c7a5d 79static void __page_cache_release(struct page *page)
b221385b
AB
80{
81 if (PageLRU(page)) {
f4b7e272 82 pg_data_t *pgdat = page_pgdat(page);
fa9add64
HD
83 struct lruvec *lruvec;
84 unsigned long flags;
b221385b 85
f4b7e272
AR
86 spin_lock_irqsave(&pgdat->lru_lock, flags);
87 lruvec = mem_cgroup_page_lruvec(page, pgdat);
309381fe 88 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 89 __ClearPageLRU(page);
fa9add64 90 del_page_from_lru_list(page, lruvec, page_off_lru(page));
f4b7e272 91 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
b221385b 92 }
62906027 93 __ClearPageWaiters(page);
91807063
AA
94}
95
96static void __put_single_page(struct page *page)
97{
98 __page_cache_release(page);
7ae88534 99 mem_cgroup_uncharge(page);
2d4894b5 100 free_unref_page(page);
b221385b
AB
101}
102
91807063 103static void __put_compound_page(struct page *page)
1da177e4 104{
822fc613
NH
105 /*
106 * __page_cache_release() is supposed to be called for thp, not for
107 * hugetlb. This is because hugetlb page does never have PageLRU set
108 * (it's never listed to any LRU lists) and no memcg routines should
109 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110 */
111 if (!PageHuge(page))
112 __page_cache_release(page);
ff45fc3c 113 destroy_compound_page(page);
91807063
AA
114}
115
ddc58f27 116void __put_page(struct page *page)
8519fb30 117{
71389703
DW
118 if (is_zone_device_page(page)) {
119 put_dev_pagemap(page->pgmap);
120
121 /*
122 * The page belongs to the device that created pgmap. Do
123 * not return it to page allocator.
124 */
125 return;
126 }
127
8519fb30 128 if (unlikely(PageCompound(page)))
ddc58f27
KS
129 __put_compound_page(page);
130 else
91807063 131 __put_single_page(page);
1da177e4 132}
ddc58f27 133EXPORT_SYMBOL(__put_page);
70b50f94 134
1d7ea732 135/**
7682486b
RD
136 * put_pages_list() - release a list of pages
137 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
138 *
139 * Release a list of pages which are strung together on page.lru. Currently
140 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
141 */
142void put_pages_list(struct list_head *pages)
143{
144 while (!list_empty(pages)) {
145 struct page *victim;
146
f86196ea 147 victim = lru_to_page(pages);
1d7ea732 148 list_del(&victim->lru);
09cbfeaf 149 put_page(victim);
1d7ea732
AZ
150 }
151}
152EXPORT_SYMBOL(put_pages_list);
153
18022c5d
MG
154/*
155 * get_kernel_pages() - pin kernel pages in memory
156 * @kiov: An array of struct kvec structures
157 * @nr_segs: number of segments to pin
158 * @write: pinning for read/write, currently ignored
159 * @pages: array that receives pointers to the pages pinned.
160 * Should be at least nr_segs long.
161 *
162 * Returns number of pages pinned. This may be fewer than the number
163 * requested. If nr_pages is 0 or negative, returns 0. If no pages
164 * were pinned, returns -errno. Each page returned must be released
165 * with a put_page() call when it is finished with.
166 */
167int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168 struct page **pages)
169{
170 int seg;
171
172 for (seg = 0; seg < nr_segs; seg++) {
173 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174 return seg;
175
5a178119 176 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 177 get_page(pages[seg]);
18022c5d
MG
178 }
179
180 return seg;
181}
182EXPORT_SYMBOL_GPL(get_kernel_pages);
183
184/*
185 * get_kernel_page() - pin a kernel page in memory
186 * @start: starting kernel address
187 * @write: pinning for read/write, currently ignored
188 * @pages: array that receives pointer to the page pinned.
189 * Must be at least nr_segs long.
190 *
191 * Returns 1 if page is pinned. If the page was not pinned, returns
192 * -errno. The page returned must be released with a put_page() call
193 * when it is finished with.
194 */
195int get_kernel_page(unsigned long start, int write, struct page **pages)
196{
197 const struct kvec kiov = {
198 .iov_base = (void *)start,
199 .iov_len = PAGE_SIZE
200 };
201
202 return get_kernel_pages(&kiov, 1, write, pages);
203}
204EXPORT_SYMBOL_GPL(get_kernel_page);
205
3dd7ae8e 206static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
207 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208 void *arg)
902aaed0
HH
209{
210 int i;
68eb0731 211 struct pglist_data *pgdat = NULL;
fa9add64 212 struct lruvec *lruvec;
3dd7ae8e 213 unsigned long flags = 0;
902aaed0
HH
214
215 for (i = 0; i < pagevec_count(pvec); i++) {
216 struct page *page = pvec->pages[i];
68eb0731 217 struct pglist_data *pagepgdat = page_pgdat(page);
902aaed0 218
68eb0731
MG
219 if (pagepgdat != pgdat) {
220 if (pgdat)
221 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222 pgdat = pagepgdat;
223 spin_lock_irqsave(&pgdat->lru_lock, flags);
902aaed0 224 }
3dd7ae8e 225
68eb0731 226 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 227 (*move_fn)(page, lruvec, arg);
902aaed0 228 }
68eb0731
MG
229 if (pgdat)
230 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
c6f92f9f 231 release_pages(pvec->pages, pvec->nr);
83896fb5 232 pagevec_reinit(pvec);
d8505dee
SL
233}
234
fa9add64
HD
235static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236 void *arg)
3dd7ae8e
SL
237{
238 int *pgmoved = arg;
3dd7ae8e 239
c55e8d03
JW
240 if (PageLRU(page) && !PageUnevictable(page)) {
241 del_page_from_lru_list(page, lruvec, page_lru(page));
242 ClearPageActive(page);
243 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
3dd7ae8e
SL
244 (*pgmoved)++;
245 }
246}
247
248/*
249 * pagevec_move_tail() must be called with IRQ disabled.
250 * Otherwise this may cause nasty races.
251 */
252static void pagevec_move_tail(struct pagevec *pvec)
253{
254 int pgmoved = 0;
255
256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257 __count_vm_events(PGROTATED, pgmoved);
258}
259
1da177e4
LT
260/*
261 * Writeback is about to end against a page which has been marked for immediate
262 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 263 * inactive list.
1da177e4 264 */
3dd7ae8e 265void rotate_reclaimable_page(struct page *page)
1da177e4 266{
c55e8d03 267 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 268 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
269 struct pagevec *pvec;
270 unsigned long flags;
271
09cbfeaf 272 get_page(page);
b01b2141
IM
273 local_lock_irqsave(&lru_rotate.lock, flags);
274 pvec = this_cpu_ptr(&lru_rotate.pvec);
8f182270 275 if (!pagevec_add(pvec, page) || PageCompound(page))
ac6aadb2 276 pagevec_move_tail(pvec);
b01b2141 277 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 278 }
1da177e4
LT
279}
280
1431d4d1 281void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 282{
1431d4d1
JW
283 if (file)
284 lruvec->file_cost += nr_pages;
285 else
286 lruvec->anon_cost += nr_pages;
3e2f41f1
KM
287}
288
fa9add64
HD
289static void __activate_page(struct page *page, struct lruvec *lruvec,
290 void *arg)
1da177e4 291{
744ed144 292 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572 293 int lru = page_lru_base_type(page);
744ed144 294
fa9add64 295 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
296 SetPageActive(page);
297 lru += LRU_ACTIVE;
fa9add64 298 add_page_to_lru_list(page, lruvec, lru);
24b7e581 299 trace_mm_lru_activate(page);
4f98a2fe 300
fa9add64 301 __count_vm_event(PGACTIVATE);
1da177e4 302 }
eb709b0d
SL
303}
304
305#ifdef CONFIG_SMP
eb709b0d
SL
306static void activate_page_drain(int cpu)
307{
b01b2141 308 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
309
310 if (pagevec_count(pvec))
311 pagevec_lru_move_fn(pvec, __activate_page, NULL);
312}
313
5fbc4616
CM
314static bool need_activate_page_drain(int cpu)
315{
b01b2141 316 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
317}
318
eb709b0d
SL
319void activate_page(struct page *page)
320{
800d8c63 321 page = compound_head(page);
eb709b0d 322 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
b01b2141 323 struct pagevec *pvec;
eb709b0d 324
b01b2141
IM
325 local_lock(&lru_pvecs.lock);
326 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
09cbfeaf 327 get_page(page);
8f182270 328 if (!pagevec_add(pvec, page) || PageCompound(page))
eb709b0d 329 pagevec_lru_move_fn(pvec, __activate_page, NULL);
b01b2141 330 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
331 }
332}
333
334#else
335static inline void activate_page_drain(int cpu)
336{
337}
338
339void activate_page(struct page *page)
340{
f4b7e272 341 pg_data_t *pgdat = page_pgdat(page);
eb709b0d 342
800d8c63 343 page = compound_head(page);
f4b7e272
AR
344 spin_lock_irq(&pgdat->lru_lock);
345 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
346 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 347}
eb709b0d 348#endif
1da177e4 349
059285a2
MG
350static void __lru_cache_activate_page(struct page *page)
351{
b01b2141 352 struct pagevec *pvec;
059285a2
MG
353 int i;
354
b01b2141
IM
355 local_lock(&lru_pvecs.lock);
356 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
357
059285a2
MG
358 /*
359 * Search backwards on the optimistic assumption that the page being
360 * activated has just been added to this pagevec. Note that only
361 * the local pagevec is examined as a !PageLRU page could be in the
362 * process of being released, reclaimed, migrated or on a remote
363 * pagevec that is currently being drained. Furthermore, marking
364 * a remote pagevec's page PageActive potentially hits a race where
365 * a page is marked PageActive just after it is added to the inactive
366 * list causing accounting errors and BUG_ON checks to trigger.
367 */
368 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
369 struct page *pagevec_page = pvec->pages[i];
370
371 if (pagevec_page == page) {
372 SetPageActive(page);
373 break;
374 }
375 }
376
b01b2141 377 local_unlock(&lru_pvecs.lock);
059285a2
MG
378}
379
1da177e4
LT
380/*
381 * Mark a page as having seen activity.
382 *
383 * inactive,unreferenced -> inactive,referenced
384 * inactive,referenced -> active,unreferenced
385 * active,unreferenced -> active,referenced
eb39d618
HD
386 *
387 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
388 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 389 */
920c7a5d 390void mark_page_accessed(struct page *page)
1da177e4 391{
e90309c9 392 page = compound_head(page);
059285a2 393
a1100a74
FW
394 if (!PageReferenced(page)) {
395 SetPageReferenced(page);
396 } else if (PageUnevictable(page)) {
397 /*
398 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
399 * this list is never rotated or maintained, so marking an
400 * evictable page accessed has no effect.
401 */
402 } else if (!PageActive(page)) {
059285a2
MG
403 /*
404 * If the page is on the LRU, queue it for activation via
b01b2141 405 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
406 * pagevec, mark it active and it'll be moved to the active
407 * LRU on the next drain.
408 */
409 if (PageLRU(page))
410 activate_page(page);
411 else
412 __lru_cache_activate_page(page);
1da177e4 413 ClearPageReferenced(page);
9de4f22a 414 if (page_is_file_lru(page))
a528910e 415 workingset_activation(page);
1da177e4 416 }
33c3fc71
VD
417 if (page_is_idle(page))
418 clear_page_idle(page);
1da177e4 419}
1da177e4
LT
420EXPORT_SYMBOL(mark_page_accessed);
421
f04e9ebb 422/**
c53954a0 423 * lru_cache_add - add a page to a page list
f04e9ebb 424 * @page: the page to be added to the LRU.
2329d375
JZ
425 *
426 * Queue the page for addition to the LRU via pagevec. The decision on whether
427 * to add the page to the [in]active [file|anon] list is deferred until the
428 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
429 * have the page added to the active list using mark_page_accessed().
f04e9ebb 430 */
c53954a0 431void lru_cache_add(struct page *page)
1da177e4 432{
6058eaec
JW
433 struct pagevec *pvec;
434
309381fe
SL
435 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
436 VM_BUG_ON_PAGE(PageLRU(page), page);
6058eaec
JW
437
438 get_page(page);
439 local_lock(&lru_pvecs.lock);
440 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
441 if (!pagevec_add(pvec, page) || PageCompound(page))
442 __pagevec_lru_add(pvec);
443 local_unlock(&lru_pvecs.lock);
1da177e4 444}
6058eaec 445EXPORT_SYMBOL(lru_cache_add);
1da177e4 446
00501b53
JW
447/**
448 * lru_cache_add_active_or_unevictable
449 * @page: the page to be added to LRU
450 * @vma: vma in which page is mapped for determining reclaimability
451 *
452 * Place @page on the active or unevictable LRU list, depending on its
453 * evictability. Note that if the page is not evictable, it goes
454 * directly back onto it's zone's unevictable list, it does NOT use a
455 * per cpu pagevec.
456 */
457void lru_cache_add_active_or_unevictable(struct page *page,
458 struct vm_area_struct *vma)
459{
460 VM_BUG_ON_PAGE(PageLRU(page), page);
461
9c4e6b1a 462 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
00501b53 463 SetPageActive(page);
9c4e6b1a 464 else if (!TestSetPageMlocked(page)) {
00501b53
JW
465 /*
466 * We use the irq-unsafe __mod_zone_page_stat because this
467 * counter is not modified from interrupt context, and the pte
468 * lock is held(spinlock), which implies preemption disabled.
469 */
470 __mod_zone_page_state(page_zone(page), NR_MLOCK,
471 hpage_nr_pages(page));
472 count_vm_event(UNEVICTABLE_PGMLOCKED);
473 }
9c4e6b1a 474 lru_cache_add(page);
00501b53
JW
475}
476
31560180
MK
477/*
478 * If the page can not be invalidated, it is moved to the
479 * inactive list to speed up its reclaim. It is moved to the
480 * head of the list, rather than the tail, to give the flusher
481 * threads some time to write it out, as this is much more
482 * effective than the single-page writeout from reclaim.
278df9f4
MK
483 *
484 * If the page isn't page_mapped and dirty/writeback, the page
485 * could reclaim asap using PG_reclaim.
486 *
487 * 1. active, mapped page -> none
488 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
489 * 3. inactive, mapped page -> none
490 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
491 * 5. inactive, clean -> inactive, tail
492 * 6. Others -> none
493 *
494 * In 4, why it moves inactive's head, the VM expects the page would
495 * be write it out by flusher threads as this is much more effective
496 * than the single-page writeout from reclaim.
31560180 497 */
cc5993bd 498static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
fa9add64 499 void *arg)
31560180
MK
500{
501 int lru, file;
278df9f4 502 bool active;
31560180 503
278df9f4 504 if (!PageLRU(page))
31560180
MK
505 return;
506
bad49d9c
MK
507 if (PageUnevictable(page))
508 return;
509
31560180
MK
510 /* Some processes are using the page */
511 if (page_mapped(page))
512 return;
513
278df9f4 514 active = PageActive(page);
9de4f22a 515 file = page_is_file_lru(page);
31560180 516 lru = page_lru_base_type(page);
fa9add64
HD
517
518 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
519 ClearPageActive(page);
520 ClearPageReferenced(page);
31560180 521
278df9f4
MK
522 if (PageWriteback(page) || PageDirty(page)) {
523 /*
524 * PG_reclaim could be raced with end_page_writeback
525 * It can make readahead confusing. But race window
526 * is _really_ small and it's non-critical problem.
527 */
e7a1aaf2 528 add_page_to_lru_list(page, lruvec, lru);
278df9f4
MK
529 SetPageReclaim(page);
530 } else {
531 /*
532 * The page's writeback ends up during pagevec
533 * We moves tha page into tail of inactive.
534 */
e7a1aaf2 535 add_page_to_lru_list_tail(page, lruvec, lru);
278df9f4
MK
536 __count_vm_event(PGROTATED);
537 }
538
539 if (active)
540 __count_vm_event(PGDEACTIVATE);
1431d4d1 541 lru_note_cost(lruvec, !file, hpage_nr_pages(page));
31560180
MK
542}
543
9c276cc6
MK
544static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
545 void *arg)
546{
547 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
9de4f22a 548 int file = page_is_file_lru(page);
9c276cc6
MK
549 int lru = page_lru_base_type(page);
550
551 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
552 ClearPageActive(page);
553 ClearPageReferenced(page);
554 add_page_to_lru_list(page, lruvec, lru);
555
556 __count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
1431d4d1 557 lru_note_cost(lruvec, !file, hpage_nr_pages(page));
9c276cc6
MK
558 }
559}
10853a03 560
f7ad2a6c 561static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
10853a03
MK
562 void *arg)
563{
f7ad2a6c 564 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 565 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 566 bool active = PageActive(page);
10853a03 567
f7ad2a6c
SL
568 del_page_from_lru_list(page, lruvec,
569 LRU_INACTIVE_ANON + active);
10853a03
MK
570 ClearPageActive(page);
571 ClearPageReferenced(page);
f7ad2a6c 572 /*
9de4f22a
HY
573 * Lazyfree pages are clean anonymous pages. They have
574 * PG_swapbacked flag cleared, to distinguish them from normal
575 * anonymous pages
f7ad2a6c
SL
576 */
577 ClearPageSwapBacked(page);
578 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
10853a03 579
f7ad2a6c 580 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
2262185c 581 count_memcg_page_event(page, PGLAZYFREE);
1431d4d1 582 lru_note_cost(lruvec, 0, hpage_nr_pages(page));
10853a03
MK
583 }
584}
585
902aaed0
HH
586/*
587 * Drain pages out of the cpu's pagevecs.
588 * Either "cpu" is the current CPU, and preemption has already been
589 * disabled; or "cpu" is being hot-unplugged, and is already dead.
590 */
f0cb3c76 591void lru_add_drain_cpu(int cpu)
1da177e4 592{
b01b2141 593 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 594
13f7f789 595 if (pagevec_count(pvec))
a0b8cab3 596 __pagevec_lru_add(pvec);
902aaed0 597
b01b2141 598 pvec = &per_cpu(lru_rotate.pvec, cpu);
902aaed0
HH
599 if (pagevec_count(pvec)) {
600 unsigned long flags;
601
602 /* No harm done if a racing interrupt already did this */
b01b2141 603 local_lock_irqsave(&lru_rotate.lock, flags);
902aaed0 604 pagevec_move_tail(pvec);
b01b2141 605 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 606 }
31560180 607
b01b2141 608 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 609 if (pagevec_count(pvec))
cc5993bd 610 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
eb709b0d 611
b01b2141 612 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6
MK
613 if (pagevec_count(pvec))
614 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
615
b01b2141 616 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 617 if (pagevec_count(pvec))
f7ad2a6c 618 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
10853a03 619
eb709b0d 620 activate_page_drain(cpu);
31560180
MK
621}
622
623/**
cc5993bd 624 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
625 * @page: page to deactivate
626 *
627 * This function hints the VM that @page is a good reclaim candidate,
628 * for example if its invalidation fails due to the page being dirty
629 * or under writeback.
630 */
cc5993bd 631void deactivate_file_page(struct page *page)
31560180 632{
821ed6bb 633 /*
cc5993bd
MK
634 * In a workload with many unevictable page such as mprotect,
635 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
636 */
637 if (PageUnevictable(page))
638 return;
639
31560180 640 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
641 struct pagevec *pvec;
642
643 local_lock(&lru_pvecs.lock);
644 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 645
8f182270 646 if (!pagevec_add(pvec, page) || PageCompound(page))
cc5993bd 647 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
b01b2141 648 local_unlock(&lru_pvecs.lock);
31560180 649 }
80bfed90
AM
650}
651
9c276cc6
MK
652/*
653 * deactivate_page - deactivate a page
654 * @page: page to deactivate
655 *
656 * deactivate_page() moves @page to the inactive list if @page was on the active
657 * list and was not an unevictable page. This is done to accelerate the reclaim
658 * of @page.
659 */
660void deactivate_page(struct page *page)
661{
662 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 663 struct pagevec *pvec;
9c276cc6 664
b01b2141
IM
665 local_lock(&lru_pvecs.lock);
666 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6
MK
667 get_page(page);
668 if (!pagevec_add(pvec, page) || PageCompound(page))
669 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
b01b2141 670 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
671 }
672}
673
10853a03 674/**
f7ad2a6c 675 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
676 * @page: page to deactivate
677 *
f7ad2a6c
SL
678 * mark_page_lazyfree() moves @page to the inactive file list.
679 * This is done to accelerate the reclaim of @page.
10853a03 680 */
f7ad2a6c 681void mark_page_lazyfree(struct page *page)
10853a03 682{
f7ad2a6c 683 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 684 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 685 struct pagevec *pvec;
10853a03 686
b01b2141
IM
687 local_lock(&lru_pvecs.lock);
688 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 689 get_page(page);
8f182270 690 if (!pagevec_add(pvec, page) || PageCompound(page))
f7ad2a6c 691 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
b01b2141 692 local_unlock(&lru_pvecs.lock);
10853a03
MK
693 }
694}
695
80bfed90
AM
696void lru_add_drain(void)
697{
b01b2141
IM
698 local_lock(&lru_pvecs.lock);
699 lru_add_drain_cpu(smp_processor_id());
700 local_unlock(&lru_pvecs.lock);
701}
702
703void lru_add_drain_cpu_zone(struct zone *zone)
704{
705 local_lock(&lru_pvecs.lock);
706 lru_add_drain_cpu(smp_processor_id());
707 drain_local_pages(zone);
708 local_unlock(&lru_pvecs.lock);
1da177e4
LT
709}
710
6ea183d6
MH
711#ifdef CONFIG_SMP
712
713static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
714
c4028958 715static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
716{
717 lru_add_drain();
718}
719
9852a721
MH
720/*
721 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
722 * kworkers being shut down before our page_alloc_cpu_dead callback is
723 * executed on the offlined cpu.
724 * Calling this function with cpu hotplug locks held can actually lead
725 * to obscure indirect dependencies via WQ context.
726 */
727void lru_add_drain_all(void)
053837fc 728{
eef1a429 729 static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
5fbc4616
CM
730 static DEFINE_MUTEX(lock);
731 static struct cpumask has_work;
eef1a429 732 int cpu, seq;
5fbc4616 733
ce612879
MH
734 /*
735 * Make sure nobody triggers this path before mm_percpu_wq is fully
736 * initialized.
737 */
738 if (WARN_ON(!mm_percpu_wq))
739 return;
740
eef1a429
KK
741 seq = raw_read_seqcount_latch(&seqcount);
742
5fbc4616 743 mutex_lock(&lock);
eef1a429
KK
744
745 /*
746 * Piggyback on drain started and finished while we waited for lock:
747 * all pages pended at the time of our enter were drained from vectors.
748 */
749 if (__read_seqcount_retry(&seqcount, seq))
750 goto done;
751
752 raw_write_seqcount_latch(&seqcount);
753
5fbc4616
CM
754 cpumask_clear(&has_work);
755
756 for_each_online_cpu(cpu) {
757 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
758
b01b2141
IM
759 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
760 pagevec_count(&per_cpu(lru_rotate.pvec, cpu)) ||
761 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
762 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
763 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
5fbc4616
CM
764 need_activate_page_drain(cpu)) {
765 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 766 queue_work_on(cpu, mm_percpu_wq, work);
5fbc4616
CM
767 cpumask_set_cpu(cpu, &has_work);
768 }
769 }
770
771 for_each_cpu(cpu, &has_work)
772 flush_work(&per_cpu(lru_add_drain_work, cpu));
773
eef1a429 774done:
5fbc4616 775 mutex_unlock(&lock);
053837fc 776}
6ea183d6
MH
777#else
778void lru_add_drain_all(void)
779{
780 lru_add_drain();
781}
782#endif
053837fc 783
aabfb572 784/**
ea1754a0 785 * release_pages - batched put_page()
aabfb572
MH
786 * @pages: array of pages to release
787 * @nr: number of pages
1da177e4 788 *
aabfb572
MH
789 * Decrement the reference count on all the pages in @pages. If it
790 * fell to zero, remove the page from the LRU and free it.
1da177e4 791 */
c6f92f9f 792void release_pages(struct page **pages, int nr)
1da177e4
LT
793{
794 int i;
cc59850e 795 LIST_HEAD(pages_to_free);
599d0c95 796 struct pglist_data *locked_pgdat = NULL;
fa9add64 797 struct lruvec *lruvec;
902aaed0 798 unsigned long uninitialized_var(flags);
aabfb572 799 unsigned int uninitialized_var(lock_batch);
1da177e4 800
1da177e4
LT
801 for (i = 0; i < nr; i++) {
802 struct page *page = pages[i];
1da177e4 803
aabfb572
MH
804 /*
805 * Make sure the IRQ-safe lock-holding time does not get
806 * excessive with a continuous string of pages from the
599d0c95 807 * same pgdat. The lock is held only if pgdat != NULL.
aabfb572 808 */
599d0c95
MG
809 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
810 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
811 locked_pgdat = NULL;
aabfb572
MH
812 }
813
6fcb52a5 814 if (is_huge_zero_page(page))
aa88b68c 815 continue;
aa88b68c 816
c5d6c45e 817 if (is_zone_device_page(page)) {
df6ad698
JG
818 if (locked_pgdat) {
819 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
820 flags);
821 locked_pgdat = NULL;
822 }
c5d6c45e
IW
823 /*
824 * ZONE_DEVICE pages that return 'false' from
825 * put_devmap_managed_page() do not require special
826 * processing, and instead, expect a call to
827 * put_page_testzero().
828 */
07d80269
JH
829 if (page_is_devmap_managed(page)) {
830 put_devmap_managed_page(page);
c5d6c45e 831 continue;
07d80269 832 }
df6ad698
JG
833 }
834
ddc58f27 835 page = compound_head(page);
b5810039 836 if (!put_page_testzero(page))
1da177e4
LT
837 continue;
838
ddc58f27 839 if (PageCompound(page)) {
599d0c95
MG
840 if (locked_pgdat) {
841 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
842 locked_pgdat = NULL;
ddc58f27
KS
843 }
844 __put_compound_page(page);
845 continue;
846 }
847
46453a6e 848 if (PageLRU(page)) {
599d0c95 849 struct pglist_data *pgdat = page_pgdat(page);
894bc310 850
599d0c95
MG
851 if (pgdat != locked_pgdat) {
852 if (locked_pgdat)
853 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
902aaed0 854 flags);
aabfb572 855 lock_batch = 0;
599d0c95
MG
856 locked_pgdat = pgdat;
857 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
46453a6e 858 }
fa9add64 859
599d0c95 860 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
309381fe 861 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 862 __ClearPageLRU(page);
fa9add64 863 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
864 }
865
c53954a0 866 /* Clear Active bit in case of parallel mark_page_accessed */
e3741b50 867 __ClearPageActive(page);
62906027 868 __ClearPageWaiters(page);
c53954a0 869
cc59850e 870 list_add(&page->lru, &pages_to_free);
1da177e4 871 }
599d0c95
MG
872 if (locked_pgdat)
873 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1da177e4 874
747db954 875 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 876 free_unref_page_list(&pages_to_free);
1da177e4 877}
0be8557b 878EXPORT_SYMBOL(release_pages);
1da177e4
LT
879
880/*
881 * The pages which we're about to release may be in the deferred lru-addition
882 * queues. That would prevent them from really being freed right now. That's
883 * OK from a correctness point of view but is inefficient - those pages may be
884 * cache-warm and we want to give them back to the page allocator ASAP.
885 *
886 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
887 * and __pagevec_lru_add_active() call release_pages() directly to avoid
888 * mutual recursion.
889 */
890void __pagevec_release(struct pagevec *pvec)
891{
7f0b5fb9 892 if (!pvec->percpu_pvec_drained) {
d9ed0d08 893 lru_add_drain();
7f0b5fb9 894 pvec->percpu_pvec_drained = true;
d9ed0d08 895 }
c6f92f9f 896 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
897 pagevec_reinit(pvec);
898}
7f285701
SF
899EXPORT_SYMBOL(__pagevec_release);
900
12d27107 901#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 902/* used by __split_huge_page_refcount() */
fa9add64 903void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 904 struct lruvec *lruvec, struct list_head *list)
71e3aac0 905{
309381fe
SL
906 VM_BUG_ON_PAGE(!PageHead(page), page);
907 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
908 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
35f3aa39 909 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
71e3aac0 910
5bc7b8ac
SL
911 if (!list)
912 SetPageLRU(page_tail);
71e3aac0 913
12d27107
HD
914 if (likely(PageLRU(page)))
915 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
916 else if (list) {
917 /* page reclaim is reclaiming a huge page */
918 get_page(page_tail);
919 list_add_tail(&page_tail->lru, list);
920 } else {
12d27107
HD
921 /*
922 * Head page has not yet been counted, as an hpage,
923 * so we must account for each subpage individually.
924 *
e7a1aaf2
YZ
925 * Put page_tail on the list at the correct position
926 * so they all end up in order.
12d27107 927 */
e7a1aaf2
YZ
928 add_page_to_lru_list_tail(page_tail, lruvec,
929 page_lru(page_tail));
71e3aac0
AA
930 }
931}
12d27107 932#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 933
fa9add64
HD
934static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
935 void *arg)
3dd7ae8e 936{
9c4e6b1a
SB
937 enum lru_list lru;
938 int was_unevictable = TestClearPageUnevictable(page);
3dd7ae8e 939
309381fe 940 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e 941
9c4e6b1a
SB
942 /*
943 * Page becomes evictable in two ways:
dae966dc 944 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
945 * 2) Before acquiring LRU lock to put the page to correct LRU and then
946 * a) do PageLRU check with lock [check_move_unevictable_pages]
947 * b) do PageLRU check before lock [clear_page_mlock]
948 *
949 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
950 * following strict ordering:
951 *
952 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
953 *
954 * SetPageLRU() TestClearPageMlocked()
955 * smp_mb() // explicit ordering // above provides strict
956 * // ordering
957 * PageMlocked() PageLRU()
958 *
959 *
960 * if '#1' does not observe setting of PG_lru by '#0' and fails
961 * isolation, the explicit barrier will make sure that page_evictable
962 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
963 * can be reordered after PageMlocked check and can make '#1' to fail
964 * the isolation of the page whose Mlocked bit is cleared (#0 is also
965 * looking at the same page) and the evictable page will be stranded
966 * in an unevictable LRU.
967 */
9a9b6cce
YS
968 SetPageLRU(page);
969 smp_mb__after_atomic();
9c4e6b1a
SB
970
971 if (page_evictable(page)) {
972 lru = page_lru(page);
9c4e6b1a
SB
973 if (was_unevictable)
974 count_vm_event(UNEVICTABLE_PGRESCUED);
975 } else {
976 lru = LRU_UNEVICTABLE;
977 ClearPageActive(page);
978 SetPageUnevictable(page);
979 if (!was_unevictable)
980 count_vm_event(UNEVICTABLE_PGCULLED);
981 }
982
fa9add64 983 add_page_to_lru_list(page, lruvec, lru);
24b7e581 984 trace_mm_lru_insertion(page, lru);
3dd7ae8e
SL
985}
986
1da177e4
LT
987/*
988 * Add the passed pages to the LRU, then drop the caller's refcount
989 * on them. Reinitialises the caller's pagevec.
990 */
a0b8cab3 991void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 992{
a0b8cab3 993 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 994}
1da177e4 995
0cd6144a
JW
996/**
997 * pagevec_lookup_entries - gang pagecache lookup
998 * @pvec: Where the resulting entries are placed
999 * @mapping: The address_space to search
1000 * @start: The starting entry index
cb6f0f34 1001 * @nr_entries: The maximum number of pages
0cd6144a
JW
1002 * @indices: The cache indices corresponding to the entries in @pvec
1003 *
1004 * pagevec_lookup_entries() will search for and return a group of up
f144c390 1005 * to @nr_pages pages and shadow entries in the mapping. All
0cd6144a
JW
1006 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1007 * reference against actual pages in @pvec.
1008 *
1009 * The search returns a group of mapping-contiguous entries with
1010 * ascending indexes. There may be holes in the indices due to
1011 * not-present entries.
1012 *
71725ed1
HD
1013 * Only one subpage of a Transparent Huge Page is returned in one call:
1014 * allowing truncate_inode_pages_range() to evict the whole THP without
1015 * cycling through a pagevec of extra references.
1016 *
0cd6144a
JW
1017 * pagevec_lookup_entries() returns the number of entries which were
1018 * found.
1019 */
1020unsigned pagevec_lookup_entries(struct pagevec *pvec,
1021 struct address_space *mapping,
e02a9f04 1022 pgoff_t start, unsigned nr_entries,
0cd6144a
JW
1023 pgoff_t *indices)
1024{
e02a9f04 1025 pvec->nr = find_get_entries(mapping, start, nr_entries,
0cd6144a
JW
1026 pvec->pages, indices);
1027 return pagevec_count(pvec);
1028}
1029
1030/**
1031 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1032 * @pvec: The pagevec to prune
1033 *
1034 * pagevec_lookup_entries() fills both pages and exceptional radix
1035 * tree entries into the pagevec. This function prunes all
1036 * exceptionals from @pvec without leaving holes, so that it can be
1037 * passed on to page-only pagevec operations.
1038 */
1039void pagevec_remove_exceptionals(struct pagevec *pvec)
1040{
1041 int i, j;
1042
1043 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1044 struct page *page = pvec->pages[i];
3159f943 1045 if (!xa_is_value(page))
0cd6144a
JW
1046 pvec->pages[j++] = page;
1047 }
1048 pvec->nr = j;
1049}
1050
1da177e4 1051/**
b947cee4 1052 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1053 * @pvec: Where the resulting pages are placed
1054 * @mapping: The address_space to search
1055 * @start: The starting page index
b947cee4 1056 * @end: The final page index
1da177e4 1057 *
e02a9f04 1058 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1059 * pages in the mapping starting from index @start and upto index @end
1060 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1061 * reference against the pages in @pvec.
1062 *
1063 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1064 * indexes. There may be holes in the indices due to not-present pages. We
1065 * also update @start to index the next page for the traversal.
1da177e4 1066 *
b947cee4 1067 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1068 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1069 * reached.
1da177e4 1070 */
b947cee4 1071unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1072 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1073{
397162ff 1074 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1075 pvec->pages);
1da177e4
LT
1076 return pagevec_count(pvec);
1077}
b947cee4 1078EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1079
72b045ae
JK
1080unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1081 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1082 xa_mark_t tag)
1da177e4 1083{
72b045ae 1084 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1085 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1086 return pagevec_count(pvec);
1087}
72b045ae 1088EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1089
93d3b714
JK
1090unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1091 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1092 xa_mark_t tag, unsigned max_pages)
93d3b714
JK
1093{
1094 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1095 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1096 return pagevec_count(pvec);
1097}
1098EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1da177e4
LT
1099/*
1100 * Perform any setup for the swap system
1101 */
1102void __init swap_setup(void)
1103{
ca79b0c2 1104 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1105
1da177e4
LT
1106 /* Use a smaller cluster for small-memory machines */
1107 if (megs < 16)
1108 page_cluster = 2;
1109 else
1110 page_cluster = 3;
1111 /*
1112 * Right now other parts of the system means that we
1113 * _really_ don't want to cluster much more
1114 */
1da177e4 1115}
07d80269
JH
1116
1117#ifdef CONFIG_DEV_PAGEMAP_OPS
1118void put_devmap_managed_page(struct page *page)
1119{
1120 int count;
1121
1122 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1123 return;
1124
1125 count = page_ref_dec_return(page);
1126
1127 /*
1128 * devmap page refcounts are 1-based, rather than 0-based: if
1129 * refcount is 1, then the page is free and the refcount is
1130 * stable because nobody holds a reference on the page.
1131 */
1132 if (count == 1)
1133 free_devmap_managed_page(page);
1134 else if (!count)
1135 __put_page(page);
1136}
1137EXPORT_SYMBOL(put_devmap_managed_page);
1138#endif