mm: memcontrol: rewrite uncharge API
[linux-block.git] / mm / swap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
183ff22b 8 * This file contains the default values for the operation of the
1da177e4
LT
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
b95f1b31 24#include <linux/export.h>
1da177e4 25#include <linux/mm_inline.h>
1da177e4
LT
26#include <linux/percpu_counter.h>
27#include <linux/percpu.h>
28#include <linux/cpu.h>
29#include <linux/notifier.h>
e0bf68dd 30#include <linux/backing-dev.h>
66e1707b 31#include <linux/memcontrol.h>
5a0e3ad6 32#include <linux/gfp.h>
a27bb332 33#include <linux/uio.h>
1da177e4 34
64d6519d
LS
35#include "internal.h"
36
c6286c98
MG
37#define CREATE_TRACE_POINTS
38#include <trace/events/pagemap.h>
39
1da177e4
LT
40/* How many pages do we try to swap or page in/out together? */
41int page_cluster;
42
13f7f789 43static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
f84f9504 44static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
31560180 45static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
902aaed0 46
b221385b
AB
47/*
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
50 */
920c7a5d 51static void __page_cache_release(struct page *page)
b221385b
AB
52{
53 if (PageLRU(page)) {
b221385b 54 struct zone *zone = page_zone(page);
fa9add64
HD
55 struct lruvec *lruvec;
56 unsigned long flags;
b221385b
AB
57
58 spin_lock_irqsave(&zone->lru_lock, flags);
fa9add64 59 lruvec = mem_cgroup_page_lruvec(page, zone);
309381fe 60 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 61 __ClearPageLRU(page);
fa9add64 62 del_page_from_lru_list(page, lruvec, page_off_lru(page));
b221385b
AB
63 spin_unlock_irqrestore(&zone->lru_lock, flags);
64 }
0a31bc97 65 mem_cgroup_uncharge(page);
91807063
AA
66}
67
68static void __put_single_page(struct page *page)
69{
70 __page_cache_release(page);
b745bc85 71 free_hot_cold_page(page, false);
b221385b
AB
72}
73
91807063 74static void __put_compound_page(struct page *page)
1da177e4 75{
91807063 76 compound_page_dtor *dtor;
1da177e4 77
91807063
AA
78 __page_cache_release(page);
79 dtor = get_compound_page_dtor(page);
80 (*dtor)(page);
81}
82
c747ce79
JZ
83/**
84 * Two special cases here: we could avoid taking compound_lock_irqsave
85 * and could skip the tail refcounting(in _mapcount).
86 *
87 * 1. Hugetlbfs page:
88 *
89 * PageHeadHuge will remain true until the compound page
90 * is released and enters the buddy allocator, and it could
91 * not be split by __split_huge_page_refcount().
92 *
93 * So if we see PageHeadHuge set, and we have the tail page pin,
94 * then we could safely put head page.
95 *
96 * 2. Slab THP page:
97 *
98 * PG_slab is cleared before the slab frees the head page, and
99 * tail pin cannot be the last reference left on the head page,
100 * because the slab code is free to reuse the compound page
101 * after a kfree/kmem_cache_free without having to check if
102 * there's any tail pin left. In turn all tail pinsmust be always
103 * released while the head is still pinned by the slab code
104 * and so we know PG_slab will be still set too.
105 *
106 * So if we see PageSlab set, and we have the tail page pin,
107 * then we could safely put head page.
108 */
109static __always_inline
110void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
111{
112 /*
113 * If @page is a THP tail, we must read the tail page
114 * flags after the head page flags. The
115 * __split_huge_page_refcount side enforces write memory barriers
116 * between clearing PageTail and before the head page
117 * can be freed and reallocated.
118 */
119 smp_rmb();
120 if (likely(PageTail(page))) {
121 /*
122 * __split_huge_page_refcount cannot race
123 * here, see the comment above this function.
124 */
125 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
126 VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
127 if (put_page_testzero(page_head)) {
128 /*
129 * If this is the tail of a slab THP page,
130 * the tail pin must not be the last reference
131 * held on the page, because the PG_slab cannot
132 * be cleared before all tail pins (which skips
133 * the _mapcount tail refcounting) have been
134 * released.
135 *
136 * If this is the tail of a hugetlbfs page,
137 * the tail pin may be the last reference on
138 * the page instead, because PageHeadHuge will
139 * not go away until the compound page enters
140 * the buddy allocator.
141 */
142 VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
143 __put_compound_page(page_head);
144 }
145 } else
146 /*
147 * __split_huge_page_refcount run before us,
148 * @page was a THP tail. The split @page_head
149 * has been freed and reallocated as slab or
150 * hugetlbfs page of smaller order (only
151 * possible if reallocated as slab on x86).
152 */
153 if (put_page_testzero(page))
154 __put_single_page(page);
155}
156
157static __always_inline
158void put_refcounted_compound_page(struct page *page_head, struct page *page)
159{
160 if (likely(page != page_head && get_page_unless_zero(page_head))) {
161 unsigned long flags;
162
163 /*
164 * @page_head wasn't a dangling pointer but it may not
165 * be a head page anymore by the time we obtain the
166 * lock. That is ok as long as it can't be freed from
167 * under us.
168 */
169 flags = compound_lock_irqsave(page_head);
170 if (unlikely(!PageTail(page))) {
171 /* __split_huge_page_refcount run before us */
172 compound_unlock_irqrestore(page_head, flags);
173 if (put_page_testzero(page_head)) {
174 /*
175 * The @page_head may have been freed
176 * and reallocated as a compound page
177 * of smaller order and then freed
178 * again. All we know is that it
179 * cannot have become: a THP page, a
180 * compound page of higher order, a
181 * tail page. That is because we
182 * still hold the refcount of the
183 * split THP tail and page_head was
184 * the THP head before the split.
185 */
186 if (PageHead(page_head))
187 __put_compound_page(page_head);
188 else
189 __put_single_page(page_head);
190 }
191out_put_single:
192 if (put_page_testzero(page))
193 __put_single_page(page);
194 return;
195 }
196 VM_BUG_ON_PAGE(page_head != page->first_page, page);
197 /*
198 * We can release the refcount taken by
199 * get_page_unless_zero() now that
200 * __split_huge_page_refcount() is blocked on the
201 * compound_lock.
202 */
203 if (put_page_testzero(page_head))
204 VM_BUG_ON_PAGE(1, page_head);
205 /* __split_huge_page_refcount will wait now */
206 VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
207 atomic_dec(&page->_mapcount);
208 VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
209 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
210 compound_unlock_irqrestore(page_head, flags);
211
212 if (put_page_testzero(page_head)) {
213 if (PageHead(page_head))
214 __put_compound_page(page_head);
215 else
216 __put_single_page(page_head);
217 }
218 } else {
219 /* @page_head is a dangling pointer */
220 VM_BUG_ON_PAGE(PageTail(page), page);
221 goto out_put_single;
222 }
223}
224
91807063
AA
225static void put_compound_page(struct page *page)
226{
26296ad2 227 struct page *page_head;
70b50f94 228
4bd3e8f7
JZ
229 /*
230 * We see the PageCompound set and PageTail not set, so @page maybe:
231 * 1. hugetlbfs head page, or
232 * 2. THP head page.
233 */
26296ad2
AM
234 if (likely(!PageTail(page))) {
235 if (put_page_testzero(page)) {
ebf360f9 236 /*
26296ad2
AM
237 * By the time all refcounts have been released
238 * split_huge_page cannot run anymore from under us.
ebf360f9 239 */
26296ad2
AM
240 if (PageHead(page))
241 __put_compound_page(page);
242 else
243 __put_single_page(page);
ebf360f9 244 }
26296ad2
AM
245 return;
246 }
ebf360f9 247
26296ad2 248 /*
4bd3e8f7
JZ
249 * We see the PageCompound set and PageTail set, so @page maybe:
250 * 1. a tail hugetlbfs page, or
251 * 2. a tail THP page, or
252 * 3. a split THP page.
26296ad2 253 *
4bd3e8f7
JZ
254 * Case 3 is possible, as we may race with
255 * __split_huge_page_refcount tearing down a THP page.
26296ad2 256 */
d2ee40ea 257 page_head = compound_head_by_tail(page);
4bd3e8f7
JZ
258 if (!__compound_tail_refcounted(page_head))
259 put_unrefcounted_compound_page(page_head, page);
260 else
261 put_refcounted_compound_page(page_head, page);
8519fb30
NP
262}
263
264void put_page(struct page *page)
265{
266 if (unlikely(PageCompound(page)))
267 put_compound_page(page);
268 else if (put_page_testzero(page))
91807063 269 __put_single_page(page);
1da177e4
LT
270}
271EXPORT_SYMBOL(put_page);
1da177e4 272
70b50f94
AA
273/*
274 * This function is exported but must not be called by anything other
275 * than get_page(). It implements the slow path of get_page().
276 */
277bool __get_page_tail(struct page *page)
278{
279 /*
280 * This takes care of get_page() if run on a tail page
281 * returned by one of the get_user_pages/follow_page variants.
282 * get_user_pages/follow_page itself doesn't need the compound
283 * lock because it runs __get_page_tail_foll() under the
284 * proper PT lock that already serializes against
285 * split_huge_page().
286 */
27c73ae7 287 unsigned long flags;
ebf360f9 288 bool got;
668f9abb 289 struct page *page_head = compound_head(page);
70b50f94 290
ebf360f9 291 /* Ref to put_compound_page() comment. */
3bfcd13e 292 if (!__compound_tail_refcounted(page_head)) {
ebf360f9
AA
293 smp_rmb();
294 if (likely(PageTail(page))) {
295 /*
296 * This is a hugetlbfs page or a slab
297 * page. __split_huge_page_refcount
298 * cannot race here.
299 */
309381fe 300 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
ebf360f9
AA
301 __get_page_tail_foll(page, true);
302 return true;
303 } else {
304 /*
305 * __split_huge_page_refcount run
306 * before us, "page" was a THP
307 * tail. The split page_head has been
308 * freed and reallocated as slab or
309 * hugetlbfs page of smaller order
310 * (only possible if reallocated as
311 * slab on x86).
312 */
313 return false;
27c73ae7 314 }
ebf360f9 315 }
27c73ae7 316
ebf360f9
AA
317 got = false;
318 if (likely(page != page_head && get_page_unless_zero(page_head))) {
27c73ae7
AA
319 /*
320 * page_head wasn't a dangling pointer but it
321 * may not be a head page anymore by the time
322 * we obtain the lock. That is ok as long as it
323 * can't be freed from under us.
324 */
325 flags = compound_lock_irqsave(page_head);
326 /* here __split_huge_page_refcount won't run anymore */
327 if (likely(PageTail(page))) {
328 __get_page_tail_foll(page, false);
329 got = true;
5bf5f03c 330 }
27c73ae7
AA
331 compound_unlock_irqrestore(page_head, flags);
332 if (unlikely(!got))
333 put_page(page_head);
70b50f94
AA
334 }
335 return got;
336}
337EXPORT_SYMBOL(__get_page_tail);
338
1d7ea732 339/**
7682486b
RD
340 * put_pages_list() - release a list of pages
341 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
342 *
343 * Release a list of pages which are strung together on page.lru. Currently
344 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
345 */
346void put_pages_list(struct list_head *pages)
347{
348 while (!list_empty(pages)) {
349 struct page *victim;
350
351 victim = list_entry(pages->prev, struct page, lru);
352 list_del(&victim->lru);
353 page_cache_release(victim);
354 }
355}
356EXPORT_SYMBOL(put_pages_list);
357
18022c5d
MG
358/*
359 * get_kernel_pages() - pin kernel pages in memory
360 * @kiov: An array of struct kvec structures
361 * @nr_segs: number of segments to pin
362 * @write: pinning for read/write, currently ignored
363 * @pages: array that receives pointers to the pages pinned.
364 * Should be at least nr_segs long.
365 *
366 * Returns number of pages pinned. This may be fewer than the number
367 * requested. If nr_pages is 0 or negative, returns 0. If no pages
368 * were pinned, returns -errno. Each page returned must be released
369 * with a put_page() call when it is finished with.
370 */
371int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
372 struct page **pages)
373{
374 int seg;
375
376 for (seg = 0; seg < nr_segs; seg++) {
377 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
378 return seg;
379
5a178119 380 pages[seg] = kmap_to_page(kiov[seg].iov_base);
18022c5d
MG
381 page_cache_get(pages[seg]);
382 }
383
384 return seg;
385}
386EXPORT_SYMBOL_GPL(get_kernel_pages);
387
388/*
389 * get_kernel_page() - pin a kernel page in memory
390 * @start: starting kernel address
391 * @write: pinning for read/write, currently ignored
392 * @pages: array that receives pointer to the page pinned.
393 * Must be at least nr_segs long.
394 *
395 * Returns 1 if page is pinned. If the page was not pinned, returns
396 * -errno. The page returned must be released with a put_page() call
397 * when it is finished with.
398 */
399int get_kernel_page(unsigned long start, int write, struct page **pages)
400{
401 const struct kvec kiov = {
402 .iov_base = (void *)start,
403 .iov_len = PAGE_SIZE
404 };
405
406 return get_kernel_pages(&kiov, 1, write, pages);
407}
408EXPORT_SYMBOL_GPL(get_kernel_page);
409
3dd7ae8e 410static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
411 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
412 void *arg)
902aaed0
HH
413{
414 int i;
902aaed0 415 struct zone *zone = NULL;
fa9add64 416 struct lruvec *lruvec;
3dd7ae8e 417 unsigned long flags = 0;
902aaed0
HH
418
419 for (i = 0; i < pagevec_count(pvec); i++) {
420 struct page *page = pvec->pages[i];
421 struct zone *pagezone = page_zone(page);
422
423 if (pagezone != zone) {
424 if (zone)
3dd7ae8e 425 spin_unlock_irqrestore(&zone->lru_lock, flags);
902aaed0 426 zone = pagezone;
3dd7ae8e 427 spin_lock_irqsave(&zone->lru_lock, flags);
902aaed0 428 }
3dd7ae8e 429
fa9add64
HD
430 lruvec = mem_cgroup_page_lruvec(page, zone);
431 (*move_fn)(page, lruvec, arg);
902aaed0
HH
432 }
433 if (zone)
3dd7ae8e 434 spin_unlock_irqrestore(&zone->lru_lock, flags);
83896fb5
LT
435 release_pages(pvec->pages, pvec->nr, pvec->cold);
436 pagevec_reinit(pvec);
d8505dee
SL
437}
438
fa9add64
HD
439static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
440 void *arg)
3dd7ae8e
SL
441{
442 int *pgmoved = arg;
3dd7ae8e
SL
443
444 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
445 enum lru_list lru = page_lru_base_type(page);
925b7673 446 list_move_tail(&page->lru, &lruvec->lists[lru]);
3dd7ae8e
SL
447 (*pgmoved)++;
448 }
449}
450
451/*
452 * pagevec_move_tail() must be called with IRQ disabled.
453 * Otherwise this may cause nasty races.
454 */
455static void pagevec_move_tail(struct pagevec *pvec)
456{
457 int pgmoved = 0;
458
459 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
460 __count_vm_events(PGROTATED, pgmoved);
461}
462
1da177e4
LT
463/*
464 * Writeback is about to end against a page which has been marked for immediate
465 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 466 * inactive list.
1da177e4 467 */
3dd7ae8e 468void rotate_reclaimable_page(struct page *page)
1da177e4 469{
ac6aadb2 470 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
894bc310 471 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
472 struct pagevec *pvec;
473 unsigned long flags;
474
475 page_cache_get(page);
476 local_irq_save(flags);
7c8e0181 477 pvec = this_cpu_ptr(&lru_rotate_pvecs);
ac6aadb2
MS
478 if (!pagevec_add(pvec, page))
479 pagevec_move_tail(pvec);
480 local_irq_restore(flags);
481 }
1da177e4
LT
482}
483
fa9add64 484static void update_page_reclaim_stat(struct lruvec *lruvec,
3e2f41f1
KM
485 int file, int rotated)
486{
fa9add64 487 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
3e2f41f1
KM
488
489 reclaim_stat->recent_scanned[file]++;
490 if (rotated)
491 reclaim_stat->recent_rotated[file]++;
3e2f41f1
KM
492}
493
fa9add64
HD
494static void __activate_page(struct page *page, struct lruvec *lruvec,
495 void *arg)
1da177e4 496{
744ed144 497 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
498 int file = page_is_file_cache(page);
499 int lru = page_lru_base_type(page);
744ed144 500
fa9add64 501 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
502 SetPageActive(page);
503 lru += LRU_ACTIVE;
fa9add64 504 add_page_to_lru_list(page, lruvec, lru);
24b7e581 505 trace_mm_lru_activate(page);
4f98a2fe 506
fa9add64
HD
507 __count_vm_event(PGACTIVATE);
508 update_page_reclaim_stat(lruvec, file, 1);
1da177e4 509 }
eb709b0d
SL
510}
511
512#ifdef CONFIG_SMP
513static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
514
515static void activate_page_drain(int cpu)
516{
517 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
518
519 if (pagevec_count(pvec))
520 pagevec_lru_move_fn(pvec, __activate_page, NULL);
521}
522
5fbc4616
CM
523static bool need_activate_page_drain(int cpu)
524{
525 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
526}
527
eb709b0d
SL
528void activate_page(struct page *page)
529{
530 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
531 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
532
533 page_cache_get(page);
534 if (!pagevec_add(pvec, page))
535 pagevec_lru_move_fn(pvec, __activate_page, NULL);
536 put_cpu_var(activate_page_pvecs);
537 }
538}
539
540#else
541static inline void activate_page_drain(int cpu)
542{
543}
544
5fbc4616
CM
545static bool need_activate_page_drain(int cpu)
546{
547 return false;
548}
549
eb709b0d
SL
550void activate_page(struct page *page)
551{
552 struct zone *zone = page_zone(page);
553
554 spin_lock_irq(&zone->lru_lock);
fa9add64 555 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
1da177e4
LT
556 spin_unlock_irq(&zone->lru_lock);
557}
eb709b0d 558#endif
1da177e4 559
059285a2
MG
560static void __lru_cache_activate_page(struct page *page)
561{
562 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
563 int i;
564
565 /*
566 * Search backwards on the optimistic assumption that the page being
567 * activated has just been added to this pagevec. Note that only
568 * the local pagevec is examined as a !PageLRU page could be in the
569 * process of being released, reclaimed, migrated or on a remote
570 * pagevec that is currently being drained. Furthermore, marking
571 * a remote pagevec's page PageActive potentially hits a race where
572 * a page is marked PageActive just after it is added to the inactive
573 * list causing accounting errors and BUG_ON checks to trigger.
574 */
575 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
576 struct page *pagevec_page = pvec->pages[i];
577
578 if (pagevec_page == page) {
579 SetPageActive(page);
580 break;
581 }
582 }
583
584 put_cpu_var(lru_add_pvec);
585}
586
1da177e4
LT
587/*
588 * Mark a page as having seen activity.
589 *
590 * inactive,unreferenced -> inactive,referenced
591 * inactive,referenced -> active,unreferenced
592 * active,unreferenced -> active,referenced
eb39d618
HD
593 *
594 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
595 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 596 */
920c7a5d 597void mark_page_accessed(struct page *page)
1da177e4 598{
894bc310 599 if (!PageActive(page) && !PageUnevictable(page) &&
059285a2
MG
600 PageReferenced(page)) {
601
602 /*
603 * If the page is on the LRU, queue it for activation via
604 * activate_page_pvecs. Otherwise, assume the page is on a
605 * pagevec, mark it active and it'll be moved to the active
606 * LRU on the next drain.
607 */
608 if (PageLRU(page))
609 activate_page(page);
610 else
611 __lru_cache_activate_page(page);
1da177e4 612 ClearPageReferenced(page);
a528910e
JW
613 if (page_is_file_cache(page))
614 workingset_activation(page);
1da177e4
LT
615 } else if (!PageReferenced(page)) {
616 SetPageReferenced(page);
617 }
618}
1da177e4
LT
619EXPORT_SYMBOL(mark_page_accessed);
620
2329d375 621static void __lru_cache_add(struct page *page)
1da177e4 622{
13f7f789
MG
623 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
624
1da177e4 625 page_cache_get(page);
d741c9cd 626 if (!pagevec_space(pvec))
a0b8cab3 627 __pagevec_lru_add(pvec);
d741c9cd 628 pagevec_add(pvec, page);
13f7f789 629 put_cpu_var(lru_add_pvec);
1da177e4 630}
2329d375
JZ
631
632/**
633 * lru_cache_add: add a page to the page lists
634 * @page: the page to add
635 */
636void lru_cache_add_anon(struct page *page)
637{
6fb81a17
MG
638 if (PageActive(page))
639 ClearPageActive(page);
2329d375
JZ
640 __lru_cache_add(page);
641}
642
643void lru_cache_add_file(struct page *page)
644{
6fb81a17
MG
645 if (PageActive(page))
646 ClearPageActive(page);
2329d375
JZ
647 __lru_cache_add(page);
648}
649EXPORT_SYMBOL(lru_cache_add_file);
1da177e4 650
f04e9ebb 651/**
c53954a0 652 * lru_cache_add - add a page to a page list
f04e9ebb 653 * @page: the page to be added to the LRU.
2329d375
JZ
654 *
655 * Queue the page for addition to the LRU via pagevec. The decision on whether
656 * to add the page to the [in]active [file|anon] list is deferred until the
657 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
658 * have the page added to the active list using mark_page_accessed().
f04e9ebb 659 */
c53954a0 660void lru_cache_add(struct page *page)
1da177e4 661{
309381fe
SL
662 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
663 VM_BUG_ON_PAGE(PageLRU(page), page);
c53954a0 664 __lru_cache_add(page);
1da177e4
LT
665}
666
894bc310
LS
667/**
668 * add_page_to_unevictable_list - add a page to the unevictable list
669 * @page: the page to be added to the unevictable list
670 *
671 * Add page directly to its zone's unevictable list. To avoid races with
672 * tasks that might be making the page evictable, through eg. munlock,
673 * munmap or exit, while it's not on the lru, we want to add the page
674 * while it's locked or otherwise "invisible" to other tasks. This is
675 * difficult to do when using the pagevec cache, so bypass that.
676 */
677void add_page_to_unevictable_list(struct page *page)
678{
679 struct zone *zone = page_zone(page);
fa9add64 680 struct lruvec *lruvec;
894bc310
LS
681
682 spin_lock_irq(&zone->lru_lock);
fa9add64 683 lruvec = mem_cgroup_page_lruvec(page, zone);
ef2a2cbd 684 ClearPageActive(page);
894bc310
LS
685 SetPageUnevictable(page);
686 SetPageLRU(page);
fa9add64 687 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
894bc310
LS
688 spin_unlock_irq(&zone->lru_lock);
689}
690
00501b53
JW
691/**
692 * lru_cache_add_active_or_unevictable
693 * @page: the page to be added to LRU
694 * @vma: vma in which page is mapped for determining reclaimability
695 *
696 * Place @page on the active or unevictable LRU list, depending on its
697 * evictability. Note that if the page is not evictable, it goes
698 * directly back onto it's zone's unevictable list, it does NOT use a
699 * per cpu pagevec.
700 */
701void lru_cache_add_active_or_unevictable(struct page *page,
702 struct vm_area_struct *vma)
703{
704 VM_BUG_ON_PAGE(PageLRU(page), page);
705
706 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
707 SetPageActive(page);
708 lru_cache_add(page);
709 return;
710 }
711
712 if (!TestSetPageMlocked(page)) {
713 /*
714 * We use the irq-unsafe __mod_zone_page_stat because this
715 * counter is not modified from interrupt context, and the pte
716 * lock is held(spinlock), which implies preemption disabled.
717 */
718 __mod_zone_page_state(page_zone(page), NR_MLOCK,
719 hpage_nr_pages(page));
720 count_vm_event(UNEVICTABLE_PGMLOCKED);
721 }
722 add_page_to_unevictable_list(page);
723}
724
31560180
MK
725/*
726 * If the page can not be invalidated, it is moved to the
727 * inactive list to speed up its reclaim. It is moved to the
728 * head of the list, rather than the tail, to give the flusher
729 * threads some time to write it out, as this is much more
730 * effective than the single-page writeout from reclaim.
278df9f4
MK
731 *
732 * If the page isn't page_mapped and dirty/writeback, the page
733 * could reclaim asap using PG_reclaim.
734 *
735 * 1. active, mapped page -> none
736 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
737 * 3. inactive, mapped page -> none
738 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
739 * 5. inactive, clean -> inactive, tail
740 * 6. Others -> none
741 *
742 * In 4, why it moves inactive's head, the VM expects the page would
743 * be write it out by flusher threads as this is much more effective
744 * than the single-page writeout from reclaim.
31560180 745 */
fa9add64
HD
746static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
747 void *arg)
31560180
MK
748{
749 int lru, file;
278df9f4 750 bool active;
31560180 751
278df9f4 752 if (!PageLRU(page))
31560180
MK
753 return;
754
bad49d9c
MK
755 if (PageUnevictable(page))
756 return;
757
31560180
MK
758 /* Some processes are using the page */
759 if (page_mapped(page))
760 return;
761
278df9f4 762 active = PageActive(page);
31560180
MK
763 file = page_is_file_cache(page);
764 lru = page_lru_base_type(page);
fa9add64
HD
765
766 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
767 ClearPageActive(page);
768 ClearPageReferenced(page);
fa9add64 769 add_page_to_lru_list(page, lruvec, lru);
31560180 770
278df9f4
MK
771 if (PageWriteback(page) || PageDirty(page)) {
772 /*
773 * PG_reclaim could be raced with end_page_writeback
774 * It can make readahead confusing. But race window
775 * is _really_ small and it's non-critical problem.
776 */
777 SetPageReclaim(page);
778 } else {
779 /*
780 * The page's writeback ends up during pagevec
781 * We moves tha page into tail of inactive.
782 */
925b7673 783 list_move_tail(&page->lru, &lruvec->lists[lru]);
278df9f4
MK
784 __count_vm_event(PGROTATED);
785 }
786
787 if (active)
788 __count_vm_event(PGDEACTIVATE);
fa9add64 789 update_page_reclaim_stat(lruvec, file, 0);
31560180
MK
790}
791
902aaed0
HH
792/*
793 * Drain pages out of the cpu's pagevecs.
794 * Either "cpu" is the current CPU, and preemption has already been
795 * disabled; or "cpu" is being hot-unplugged, and is already dead.
796 */
f0cb3c76 797void lru_add_drain_cpu(int cpu)
1da177e4 798{
13f7f789 799 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
1da177e4 800
13f7f789 801 if (pagevec_count(pvec))
a0b8cab3 802 __pagevec_lru_add(pvec);
902aaed0
HH
803
804 pvec = &per_cpu(lru_rotate_pvecs, cpu);
805 if (pagevec_count(pvec)) {
806 unsigned long flags;
807
808 /* No harm done if a racing interrupt already did this */
809 local_irq_save(flags);
810 pagevec_move_tail(pvec);
811 local_irq_restore(flags);
812 }
31560180
MK
813
814 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
815 if (pagevec_count(pvec))
3dd7ae8e 816 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
eb709b0d
SL
817
818 activate_page_drain(cpu);
31560180
MK
819}
820
821/**
822 * deactivate_page - forcefully deactivate a page
823 * @page: page to deactivate
824 *
825 * This function hints the VM that @page is a good reclaim candidate,
826 * for example if its invalidation fails due to the page being dirty
827 * or under writeback.
828 */
829void deactivate_page(struct page *page)
830{
821ed6bb
MK
831 /*
832 * In a workload with many unevictable page such as mprotect, unevictable
833 * page deactivation for accelerating reclaim is pointless.
834 */
835 if (PageUnevictable(page))
836 return;
837
31560180
MK
838 if (likely(get_page_unless_zero(page))) {
839 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
840
841 if (!pagevec_add(pvec, page))
3dd7ae8e 842 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
31560180
MK
843 put_cpu_var(lru_deactivate_pvecs);
844 }
80bfed90
AM
845}
846
847void lru_add_drain(void)
848{
f0cb3c76 849 lru_add_drain_cpu(get_cpu());
80bfed90 850 put_cpu();
1da177e4
LT
851}
852
c4028958 853static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
854{
855 lru_add_drain();
856}
857
5fbc4616
CM
858static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
859
860void lru_add_drain_all(void)
053837fc 861{
5fbc4616
CM
862 static DEFINE_MUTEX(lock);
863 static struct cpumask has_work;
864 int cpu;
865
866 mutex_lock(&lock);
867 get_online_cpus();
868 cpumask_clear(&has_work);
869
870 for_each_online_cpu(cpu) {
871 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
872
873 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
874 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
875 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
876 need_activate_page_drain(cpu)) {
877 INIT_WORK(work, lru_add_drain_per_cpu);
878 schedule_work_on(cpu, work);
879 cpumask_set_cpu(cpu, &has_work);
880 }
881 }
882
883 for_each_cpu(cpu, &has_work)
884 flush_work(&per_cpu(lru_add_drain_work, cpu));
885
886 put_online_cpus();
887 mutex_unlock(&lock);
053837fc
NP
888}
889
1da177e4
LT
890/*
891 * Batched page_cache_release(). Decrement the reference count on all the
892 * passed pages. If it fell to zero then remove the page from the LRU and
893 * free it.
894 *
895 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
896 * for the remainder of the operation.
897 *
ab33dc09
FLVC
898 * The locking in this function is against shrink_inactive_list(): we recheck
899 * the page count inside the lock to see whether shrink_inactive_list()
900 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
901 * will free it.
1da177e4 902 */
b745bc85 903void release_pages(struct page **pages, int nr, bool cold)
1da177e4
LT
904{
905 int i;
cc59850e 906 LIST_HEAD(pages_to_free);
1da177e4 907 struct zone *zone = NULL;
fa9add64 908 struct lruvec *lruvec;
902aaed0 909 unsigned long uninitialized_var(flags);
1da177e4 910
0a31bc97
JW
911 mem_cgroup_uncharge_start();
912
1da177e4
LT
913 for (i = 0; i < nr; i++) {
914 struct page *page = pages[i];
1da177e4 915
8519fb30
NP
916 if (unlikely(PageCompound(page))) {
917 if (zone) {
902aaed0 918 spin_unlock_irqrestore(&zone->lru_lock, flags);
8519fb30
NP
919 zone = NULL;
920 }
921 put_compound_page(page);
922 continue;
923 }
924
b5810039 925 if (!put_page_testzero(page))
1da177e4
LT
926 continue;
927
46453a6e
NP
928 if (PageLRU(page)) {
929 struct zone *pagezone = page_zone(page);
894bc310 930
46453a6e
NP
931 if (pagezone != zone) {
932 if (zone)
902aaed0
HH
933 spin_unlock_irqrestore(&zone->lru_lock,
934 flags);
46453a6e 935 zone = pagezone;
902aaed0 936 spin_lock_irqsave(&zone->lru_lock, flags);
46453a6e 937 }
fa9add64
HD
938
939 lruvec = mem_cgroup_page_lruvec(page, zone);
309381fe 940 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 941 __ClearPageLRU(page);
fa9add64 942 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e 943 }
0a31bc97 944 mem_cgroup_uncharge(page);
46453a6e 945
c53954a0 946 /* Clear Active bit in case of parallel mark_page_accessed */
e3741b50 947 __ClearPageActive(page);
c53954a0 948
cc59850e 949 list_add(&page->lru, &pages_to_free);
1da177e4
LT
950 }
951 if (zone)
902aaed0 952 spin_unlock_irqrestore(&zone->lru_lock, flags);
1da177e4 953
0a31bc97
JW
954 mem_cgroup_uncharge_end();
955
cc59850e 956 free_hot_cold_page_list(&pages_to_free, cold);
1da177e4 957}
0be8557b 958EXPORT_SYMBOL(release_pages);
1da177e4
LT
959
960/*
961 * The pages which we're about to release may be in the deferred lru-addition
962 * queues. That would prevent them from really being freed right now. That's
963 * OK from a correctness point of view but is inefficient - those pages may be
964 * cache-warm and we want to give them back to the page allocator ASAP.
965 *
966 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
967 * and __pagevec_lru_add_active() call release_pages() directly to avoid
968 * mutual recursion.
969 */
970void __pagevec_release(struct pagevec *pvec)
971{
972 lru_add_drain();
973 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
974 pagevec_reinit(pvec);
975}
7f285701
SF
976EXPORT_SYMBOL(__pagevec_release);
977
12d27107 978#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 979/* used by __split_huge_page_refcount() */
fa9add64 980void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 981 struct lruvec *lruvec, struct list_head *list)
71e3aac0 982{
71e3aac0 983 const int file = 0;
71e3aac0 984
309381fe
SL
985 VM_BUG_ON_PAGE(!PageHead(page), page);
986 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
987 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
fa9add64
HD
988 VM_BUG_ON(NR_CPUS != 1 &&
989 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
71e3aac0 990
5bc7b8ac
SL
991 if (!list)
992 SetPageLRU(page_tail);
71e3aac0 993
12d27107
HD
994 if (likely(PageLRU(page)))
995 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
996 else if (list) {
997 /* page reclaim is reclaiming a huge page */
998 get_page(page_tail);
999 list_add_tail(&page_tail->lru, list);
1000 } else {
12d27107
HD
1001 struct list_head *list_head;
1002 /*
1003 * Head page has not yet been counted, as an hpage,
1004 * so we must account for each subpage individually.
1005 *
1006 * Use the standard add function to put page_tail on the list,
1007 * but then correct its position so they all end up in order.
1008 */
e180cf80 1009 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
12d27107
HD
1010 list_head = page_tail->lru.prev;
1011 list_move_tail(&page_tail->lru, list_head);
71e3aac0 1012 }
7512102c
HD
1013
1014 if (!PageUnevictable(page))
e180cf80 1015 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
71e3aac0 1016}
12d27107 1017#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 1018
fa9add64
HD
1019static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1020 void *arg)
3dd7ae8e 1021{
13f7f789
MG
1022 int file = page_is_file_cache(page);
1023 int active = PageActive(page);
1024 enum lru_list lru = page_lru(page);
3dd7ae8e 1025
309381fe 1026 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e
SL
1027
1028 SetPageLRU(page);
fa9add64
HD
1029 add_page_to_lru_list(page, lruvec, lru);
1030 update_page_reclaim_stat(lruvec, file, active);
24b7e581 1031 trace_mm_lru_insertion(page, lru);
3dd7ae8e
SL
1032}
1033
1da177e4
LT
1034/*
1035 * Add the passed pages to the LRU, then drop the caller's refcount
1036 * on them. Reinitialises the caller's pagevec.
1037 */
a0b8cab3 1038void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1039{
a0b8cab3 1040 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 1041}
5095ae83 1042EXPORT_SYMBOL(__pagevec_lru_add);
1da177e4 1043
0cd6144a
JW
1044/**
1045 * pagevec_lookup_entries - gang pagecache lookup
1046 * @pvec: Where the resulting entries are placed
1047 * @mapping: The address_space to search
1048 * @start: The starting entry index
1049 * @nr_entries: The maximum number of entries
1050 * @indices: The cache indices corresponding to the entries in @pvec
1051 *
1052 * pagevec_lookup_entries() will search for and return a group of up
1053 * to @nr_entries pages and shadow entries in the mapping. All
1054 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1055 * reference against actual pages in @pvec.
1056 *
1057 * The search returns a group of mapping-contiguous entries with
1058 * ascending indexes. There may be holes in the indices due to
1059 * not-present entries.
1060 *
1061 * pagevec_lookup_entries() returns the number of entries which were
1062 * found.
1063 */
1064unsigned pagevec_lookup_entries(struct pagevec *pvec,
1065 struct address_space *mapping,
1066 pgoff_t start, unsigned nr_pages,
1067 pgoff_t *indices)
1068{
1069 pvec->nr = find_get_entries(mapping, start, nr_pages,
1070 pvec->pages, indices);
1071 return pagevec_count(pvec);
1072}
1073
1074/**
1075 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1076 * @pvec: The pagevec to prune
1077 *
1078 * pagevec_lookup_entries() fills both pages and exceptional radix
1079 * tree entries into the pagevec. This function prunes all
1080 * exceptionals from @pvec without leaving holes, so that it can be
1081 * passed on to page-only pagevec operations.
1082 */
1083void pagevec_remove_exceptionals(struct pagevec *pvec)
1084{
1085 int i, j;
1086
1087 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1088 struct page *page = pvec->pages[i];
1089 if (!radix_tree_exceptional_entry(page))
1090 pvec->pages[j++] = page;
1091 }
1092 pvec->nr = j;
1093}
1094
1da177e4
LT
1095/**
1096 * pagevec_lookup - gang pagecache lookup
1097 * @pvec: Where the resulting pages are placed
1098 * @mapping: The address_space to search
1099 * @start: The starting page index
1100 * @nr_pages: The maximum number of pages
1101 *
1102 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1103 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1104 * reference against the pages in @pvec.
1105 *
1106 * The search returns a group of mapping-contiguous pages with ascending
1107 * indexes. There may be holes in the indices due to not-present pages.
1108 *
1109 * pagevec_lookup() returns the number of pages which were found.
1110 */
1111unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1112 pgoff_t start, unsigned nr_pages)
1113{
1114 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1115 return pagevec_count(pvec);
1116}
78539fdf
CH
1117EXPORT_SYMBOL(pagevec_lookup);
1118
1da177e4
LT
1119unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1120 pgoff_t *index, int tag, unsigned nr_pages)
1121{
1122 pvec->nr = find_get_pages_tag(mapping, index, tag,
1123 nr_pages, pvec->pages);
1124 return pagevec_count(pvec);
1125}
7f285701 1126EXPORT_SYMBOL(pagevec_lookup_tag);
1da177e4 1127
1da177e4
LT
1128/*
1129 * Perform any setup for the swap system
1130 */
1131void __init swap_setup(void)
1132{
4481374c 1133 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
e0bf68dd 1134#ifdef CONFIG_SWAP
33806f06
SL
1135 int i;
1136
8077c0d9
MP
1137 if (bdi_init(swapper_spaces[0].backing_dev_info))
1138 panic("Failed to init swap bdi");
33806f06
SL
1139 for (i = 0; i < MAX_SWAPFILES; i++) {
1140 spin_lock_init(&swapper_spaces[i].tree_lock);
1141 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1142 }
e0bf68dd
PZ
1143#endif
1144
1da177e4
LT
1145 /* Use a smaller cluster for small-memory machines */
1146 if (megs < 16)
1147 page_cluster = 2;
1148 else
1149 page_cluster = 3;
1150 /*
1151 * Right now other parts of the system means that we
1152 * _really_ don't want to cluster much more
1153 */
1da177e4 1154}