mm/mempolicy: add nodes_empty check in SYSC_migrate_pages
[linux-block.git] / mm / swap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
183ff22b 8 * This file contains the default values for the operation of the
1da177e4
LT
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
b95f1b31 24#include <linux/export.h>
1da177e4 25#include <linux/mm_inline.h>
1da177e4 26#include <linux/percpu_counter.h>
3565fce3 27#include <linux/memremap.h>
1da177e4
LT
28#include <linux/percpu.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
e0bf68dd 31#include <linux/backing-dev.h>
66e1707b 32#include <linux/memcontrol.h>
5a0e3ad6 33#include <linux/gfp.h>
a27bb332 34#include <linux/uio.h>
822fc613 35#include <linux/hugetlb.h>
33c3fc71 36#include <linux/page_idle.h>
1da177e4 37
64d6519d
LS
38#include "internal.h"
39
c6286c98
MG
40#define CREATE_TRACE_POINTS
41#include <trace/events/pagemap.h>
42
1da177e4
LT
43/* How many pages do we try to swap or page in/out together? */
44int page_cluster;
45
13f7f789 46static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
f84f9504 47static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
cc5993bd 48static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
f7ad2a6c 49static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
a4a921aa
ML
50#ifdef CONFIG_SMP
51static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52#endif
902aaed0 53
b221385b
AB
54/*
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
57 */
920c7a5d 58static void __page_cache_release(struct page *page)
b221385b
AB
59{
60 if (PageLRU(page)) {
b221385b 61 struct zone *zone = page_zone(page);
fa9add64
HD
62 struct lruvec *lruvec;
63 unsigned long flags;
b221385b 64
a52633d8 65 spin_lock_irqsave(zone_lru_lock(zone), flags);
599d0c95 66 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
309381fe 67 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 68 __ClearPageLRU(page);
fa9add64 69 del_page_from_lru_list(page, lruvec, page_off_lru(page));
a52633d8 70 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
b221385b 71 }
62906027 72 __ClearPageWaiters(page);
0a31bc97 73 mem_cgroup_uncharge(page);
91807063
AA
74}
75
76static void __put_single_page(struct page *page)
77{
78 __page_cache_release(page);
2d4894b5 79 free_unref_page(page);
b221385b
AB
80}
81
91807063 82static void __put_compound_page(struct page *page)
1da177e4 83{
91807063 84 compound_page_dtor *dtor;
1da177e4 85
822fc613
NH
86 /*
87 * __page_cache_release() is supposed to be called for thp, not for
88 * hugetlb. This is because hugetlb page does never have PageLRU set
89 * (it's never listed to any LRU lists) and no memcg routines should
90 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 */
92 if (!PageHuge(page))
93 __page_cache_release(page);
91807063
AA
94 dtor = get_compound_page_dtor(page);
95 (*dtor)(page);
96}
97
ddc58f27 98void __put_page(struct page *page)
8519fb30 99{
71389703
DW
100 if (is_zone_device_page(page)) {
101 put_dev_pagemap(page->pgmap);
102
103 /*
104 * The page belongs to the device that created pgmap. Do
105 * not return it to page allocator.
106 */
107 return;
108 }
109
8519fb30 110 if (unlikely(PageCompound(page)))
ddc58f27
KS
111 __put_compound_page(page);
112 else
91807063 113 __put_single_page(page);
1da177e4 114}
ddc58f27 115EXPORT_SYMBOL(__put_page);
70b50f94 116
1d7ea732 117/**
7682486b
RD
118 * put_pages_list() - release a list of pages
119 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
120 *
121 * Release a list of pages which are strung together on page.lru. Currently
122 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
123 */
124void put_pages_list(struct list_head *pages)
125{
126 while (!list_empty(pages)) {
127 struct page *victim;
128
129 victim = list_entry(pages->prev, struct page, lru);
130 list_del(&victim->lru);
09cbfeaf 131 put_page(victim);
1d7ea732
AZ
132 }
133}
134EXPORT_SYMBOL(put_pages_list);
135
18022c5d
MG
136/*
137 * get_kernel_pages() - pin kernel pages in memory
138 * @kiov: An array of struct kvec structures
139 * @nr_segs: number of segments to pin
140 * @write: pinning for read/write, currently ignored
141 * @pages: array that receives pointers to the pages pinned.
142 * Should be at least nr_segs long.
143 *
144 * Returns number of pages pinned. This may be fewer than the number
145 * requested. If nr_pages is 0 or negative, returns 0. If no pages
146 * were pinned, returns -errno. Each page returned must be released
147 * with a put_page() call when it is finished with.
148 */
149int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
150 struct page **pages)
151{
152 int seg;
153
154 for (seg = 0; seg < nr_segs; seg++) {
155 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
156 return seg;
157
5a178119 158 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 159 get_page(pages[seg]);
18022c5d
MG
160 }
161
162 return seg;
163}
164EXPORT_SYMBOL_GPL(get_kernel_pages);
165
166/*
167 * get_kernel_page() - pin a kernel page in memory
168 * @start: starting kernel address
169 * @write: pinning for read/write, currently ignored
170 * @pages: array that receives pointer to the page pinned.
171 * Must be at least nr_segs long.
172 *
173 * Returns 1 if page is pinned. If the page was not pinned, returns
174 * -errno. The page returned must be released with a put_page() call
175 * when it is finished with.
176 */
177int get_kernel_page(unsigned long start, int write, struct page **pages)
178{
179 const struct kvec kiov = {
180 .iov_base = (void *)start,
181 .iov_len = PAGE_SIZE
182 };
183
184 return get_kernel_pages(&kiov, 1, write, pages);
185}
186EXPORT_SYMBOL_GPL(get_kernel_page);
187
3dd7ae8e 188static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
189 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
190 void *arg)
902aaed0
HH
191{
192 int i;
68eb0731 193 struct pglist_data *pgdat = NULL;
fa9add64 194 struct lruvec *lruvec;
3dd7ae8e 195 unsigned long flags = 0;
902aaed0
HH
196
197 for (i = 0; i < pagevec_count(pvec); i++) {
198 struct page *page = pvec->pages[i];
68eb0731 199 struct pglist_data *pagepgdat = page_pgdat(page);
902aaed0 200
68eb0731
MG
201 if (pagepgdat != pgdat) {
202 if (pgdat)
203 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
204 pgdat = pagepgdat;
205 spin_lock_irqsave(&pgdat->lru_lock, flags);
902aaed0 206 }
3dd7ae8e 207
68eb0731 208 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 209 (*move_fn)(page, lruvec, arg);
902aaed0 210 }
68eb0731
MG
211 if (pgdat)
212 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
c6f92f9f 213 release_pages(pvec->pages, pvec->nr);
83896fb5 214 pagevec_reinit(pvec);
d8505dee
SL
215}
216
fa9add64
HD
217static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
218 void *arg)
3dd7ae8e
SL
219{
220 int *pgmoved = arg;
3dd7ae8e 221
c55e8d03
JW
222 if (PageLRU(page) && !PageUnevictable(page)) {
223 del_page_from_lru_list(page, lruvec, page_lru(page));
224 ClearPageActive(page);
225 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
3dd7ae8e
SL
226 (*pgmoved)++;
227 }
228}
229
230/*
231 * pagevec_move_tail() must be called with IRQ disabled.
232 * Otherwise this may cause nasty races.
233 */
234static void pagevec_move_tail(struct pagevec *pvec)
235{
236 int pgmoved = 0;
237
238 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
239 __count_vm_events(PGROTATED, pgmoved);
240}
241
1da177e4
LT
242/*
243 * Writeback is about to end against a page which has been marked for immediate
244 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 245 * inactive list.
1da177e4 246 */
3dd7ae8e 247void rotate_reclaimable_page(struct page *page)
1da177e4 248{
c55e8d03 249 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 250 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
251 struct pagevec *pvec;
252 unsigned long flags;
253
09cbfeaf 254 get_page(page);
ac6aadb2 255 local_irq_save(flags);
7c8e0181 256 pvec = this_cpu_ptr(&lru_rotate_pvecs);
8f182270 257 if (!pagevec_add(pvec, page) || PageCompound(page))
ac6aadb2
MS
258 pagevec_move_tail(pvec);
259 local_irq_restore(flags);
260 }
1da177e4
LT
261}
262
fa9add64 263static void update_page_reclaim_stat(struct lruvec *lruvec,
3e2f41f1
KM
264 int file, int rotated)
265{
fa9add64 266 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
3e2f41f1
KM
267
268 reclaim_stat->recent_scanned[file]++;
269 if (rotated)
270 reclaim_stat->recent_rotated[file]++;
3e2f41f1
KM
271}
272
fa9add64
HD
273static void __activate_page(struct page *page, struct lruvec *lruvec,
274 void *arg)
1da177e4 275{
744ed144 276 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
277 int file = page_is_file_cache(page);
278 int lru = page_lru_base_type(page);
744ed144 279
fa9add64 280 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
281 SetPageActive(page);
282 lru += LRU_ACTIVE;
fa9add64 283 add_page_to_lru_list(page, lruvec, lru);
24b7e581 284 trace_mm_lru_activate(page);
4f98a2fe 285
fa9add64
HD
286 __count_vm_event(PGACTIVATE);
287 update_page_reclaim_stat(lruvec, file, 1);
1da177e4 288 }
eb709b0d
SL
289}
290
291#ifdef CONFIG_SMP
eb709b0d
SL
292static void activate_page_drain(int cpu)
293{
294 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
295
296 if (pagevec_count(pvec))
297 pagevec_lru_move_fn(pvec, __activate_page, NULL);
298}
299
5fbc4616
CM
300static bool need_activate_page_drain(int cpu)
301{
302 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
303}
304
eb709b0d
SL
305void activate_page(struct page *page)
306{
800d8c63 307 page = compound_head(page);
eb709b0d
SL
308 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
309 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
310
09cbfeaf 311 get_page(page);
8f182270 312 if (!pagevec_add(pvec, page) || PageCompound(page))
eb709b0d
SL
313 pagevec_lru_move_fn(pvec, __activate_page, NULL);
314 put_cpu_var(activate_page_pvecs);
315 }
316}
317
318#else
319static inline void activate_page_drain(int cpu)
320{
321}
322
5fbc4616
CM
323static bool need_activate_page_drain(int cpu)
324{
325 return false;
326}
327
eb709b0d
SL
328void activate_page(struct page *page)
329{
330 struct zone *zone = page_zone(page);
331
800d8c63 332 page = compound_head(page);
a52633d8 333 spin_lock_irq(zone_lru_lock(zone));
599d0c95 334 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
a52633d8 335 spin_unlock_irq(zone_lru_lock(zone));
1da177e4 336}
eb709b0d 337#endif
1da177e4 338
059285a2
MG
339static void __lru_cache_activate_page(struct page *page)
340{
341 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
342 int i;
343
344 /*
345 * Search backwards on the optimistic assumption that the page being
346 * activated has just been added to this pagevec. Note that only
347 * the local pagevec is examined as a !PageLRU page could be in the
348 * process of being released, reclaimed, migrated or on a remote
349 * pagevec that is currently being drained. Furthermore, marking
350 * a remote pagevec's page PageActive potentially hits a race where
351 * a page is marked PageActive just after it is added to the inactive
352 * list causing accounting errors and BUG_ON checks to trigger.
353 */
354 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
355 struct page *pagevec_page = pvec->pages[i];
356
357 if (pagevec_page == page) {
358 SetPageActive(page);
359 break;
360 }
361 }
362
363 put_cpu_var(lru_add_pvec);
364}
365
1da177e4
LT
366/*
367 * Mark a page as having seen activity.
368 *
369 * inactive,unreferenced -> inactive,referenced
370 * inactive,referenced -> active,unreferenced
371 * active,unreferenced -> active,referenced
eb39d618
HD
372 *
373 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
374 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 375 */
920c7a5d 376void mark_page_accessed(struct page *page)
1da177e4 377{
e90309c9 378 page = compound_head(page);
894bc310 379 if (!PageActive(page) && !PageUnevictable(page) &&
059285a2
MG
380 PageReferenced(page)) {
381
382 /*
383 * If the page is on the LRU, queue it for activation via
384 * activate_page_pvecs. Otherwise, assume the page is on a
385 * pagevec, mark it active and it'll be moved to the active
386 * LRU on the next drain.
387 */
388 if (PageLRU(page))
389 activate_page(page);
390 else
391 __lru_cache_activate_page(page);
1da177e4 392 ClearPageReferenced(page);
a528910e
JW
393 if (page_is_file_cache(page))
394 workingset_activation(page);
1da177e4
LT
395 } else if (!PageReferenced(page)) {
396 SetPageReferenced(page);
397 }
33c3fc71
VD
398 if (page_is_idle(page))
399 clear_page_idle(page);
1da177e4 400}
1da177e4
LT
401EXPORT_SYMBOL(mark_page_accessed);
402
2329d375 403static void __lru_cache_add(struct page *page)
1da177e4 404{
13f7f789
MG
405 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
406
09cbfeaf 407 get_page(page);
8f182270 408 if (!pagevec_add(pvec, page) || PageCompound(page))
a0b8cab3 409 __pagevec_lru_add(pvec);
13f7f789 410 put_cpu_var(lru_add_pvec);
1da177e4 411}
2329d375
JZ
412
413/**
414 * lru_cache_add: add a page to the page lists
415 * @page: the page to add
416 */
417void lru_cache_add_anon(struct page *page)
418{
6fb81a17
MG
419 if (PageActive(page))
420 ClearPageActive(page);
2329d375
JZ
421 __lru_cache_add(page);
422}
423
424void lru_cache_add_file(struct page *page)
425{
6fb81a17
MG
426 if (PageActive(page))
427 ClearPageActive(page);
2329d375
JZ
428 __lru_cache_add(page);
429}
430EXPORT_SYMBOL(lru_cache_add_file);
1da177e4 431
f04e9ebb 432/**
c53954a0 433 * lru_cache_add - add a page to a page list
f04e9ebb 434 * @page: the page to be added to the LRU.
2329d375
JZ
435 *
436 * Queue the page for addition to the LRU via pagevec. The decision on whether
437 * to add the page to the [in]active [file|anon] list is deferred until the
438 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
439 * have the page added to the active list using mark_page_accessed().
f04e9ebb 440 */
c53954a0 441void lru_cache_add(struct page *page)
1da177e4 442{
309381fe
SL
443 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
444 VM_BUG_ON_PAGE(PageLRU(page), page);
c53954a0 445 __lru_cache_add(page);
1da177e4
LT
446}
447
894bc310
LS
448/**
449 * add_page_to_unevictable_list - add a page to the unevictable list
450 * @page: the page to be added to the unevictable list
451 *
452 * Add page directly to its zone's unevictable list. To avoid races with
453 * tasks that might be making the page evictable, through eg. munlock,
454 * munmap or exit, while it's not on the lru, we want to add the page
455 * while it's locked or otherwise "invisible" to other tasks. This is
456 * difficult to do when using the pagevec cache, so bypass that.
457 */
458void add_page_to_unevictable_list(struct page *page)
459{
599d0c95 460 struct pglist_data *pgdat = page_pgdat(page);
fa9add64 461 struct lruvec *lruvec;
894bc310 462
599d0c95
MG
463 spin_lock_irq(&pgdat->lru_lock);
464 lruvec = mem_cgroup_page_lruvec(page, pgdat);
ef2a2cbd 465 ClearPageActive(page);
894bc310
LS
466 SetPageUnevictable(page);
467 SetPageLRU(page);
fa9add64 468 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
599d0c95 469 spin_unlock_irq(&pgdat->lru_lock);
894bc310
LS
470}
471
00501b53
JW
472/**
473 * lru_cache_add_active_or_unevictable
474 * @page: the page to be added to LRU
475 * @vma: vma in which page is mapped for determining reclaimability
476 *
477 * Place @page on the active or unevictable LRU list, depending on its
478 * evictability. Note that if the page is not evictable, it goes
479 * directly back onto it's zone's unevictable list, it does NOT use a
480 * per cpu pagevec.
481 */
482void lru_cache_add_active_or_unevictable(struct page *page,
483 struct vm_area_struct *vma)
484{
485 VM_BUG_ON_PAGE(PageLRU(page), page);
486
487 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
488 SetPageActive(page);
489 lru_cache_add(page);
490 return;
491 }
492
493 if (!TestSetPageMlocked(page)) {
494 /*
495 * We use the irq-unsafe __mod_zone_page_stat because this
496 * counter is not modified from interrupt context, and the pte
497 * lock is held(spinlock), which implies preemption disabled.
498 */
499 __mod_zone_page_state(page_zone(page), NR_MLOCK,
500 hpage_nr_pages(page));
501 count_vm_event(UNEVICTABLE_PGMLOCKED);
502 }
503 add_page_to_unevictable_list(page);
504}
505
31560180
MK
506/*
507 * If the page can not be invalidated, it is moved to the
508 * inactive list to speed up its reclaim. It is moved to the
509 * head of the list, rather than the tail, to give the flusher
510 * threads some time to write it out, as this is much more
511 * effective than the single-page writeout from reclaim.
278df9f4
MK
512 *
513 * If the page isn't page_mapped and dirty/writeback, the page
514 * could reclaim asap using PG_reclaim.
515 *
516 * 1. active, mapped page -> none
517 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
518 * 3. inactive, mapped page -> none
519 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
520 * 5. inactive, clean -> inactive, tail
521 * 6. Others -> none
522 *
523 * In 4, why it moves inactive's head, the VM expects the page would
524 * be write it out by flusher threads as this is much more effective
525 * than the single-page writeout from reclaim.
31560180 526 */
cc5993bd 527static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
fa9add64 528 void *arg)
31560180
MK
529{
530 int lru, file;
278df9f4 531 bool active;
31560180 532
278df9f4 533 if (!PageLRU(page))
31560180
MK
534 return;
535
bad49d9c
MK
536 if (PageUnevictable(page))
537 return;
538
31560180
MK
539 /* Some processes are using the page */
540 if (page_mapped(page))
541 return;
542
278df9f4 543 active = PageActive(page);
31560180
MK
544 file = page_is_file_cache(page);
545 lru = page_lru_base_type(page);
fa9add64
HD
546
547 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
548 ClearPageActive(page);
549 ClearPageReferenced(page);
fa9add64 550 add_page_to_lru_list(page, lruvec, lru);
31560180 551
278df9f4
MK
552 if (PageWriteback(page) || PageDirty(page)) {
553 /*
554 * PG_reclaim could be raced with end_page_writeback
555 * It can make readahead confusing. But race window
556 * is _really_ small and it's non-critical problem.
557 */
558 SetPageReclaim(page);
559 } else {
560 /*
561 * The page's writeback ends up during pagevec
562 * We moves tha page into tail of inactive.
563 */
925b7673 564 list_move_tail(&page->lru, &lruvec->lists[lru]);
278df9f4
MK
565 __count_vm_event(PGROTATED);
566 }
567
568 if (active)
569 __count_vm_event(PGDEACTIVATE);
fa9add64 570 update_page_reclaim_stat(lruvec, file, 0);
31560180
MK
571}
572
10853a03 573
f7ad2a6c 574static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
10853a03
MK
575 void *arg)
576{
f7ad2a6c 577 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 578 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 579 bool active = PageActive(page);
10853a03 580
f7ad2a6c
SL
581 del_page_from_lru_list(page, lruvec,
582 LRU_INACTIVE_ANON + active);
10853a03
MK
583 ClearPageActive(page);
584 ClearPageReferenced(page);
f7ad2a6c
SL
585 /*
586 * lazyfree pages are clean anonymous pages. They have
587 * SwapBacked flag cleared to distinguish normal anonymous
588 * pages
589 */
590 ClearPageSwapBacked(page);
591 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
10853a03 592
f7ad2a6c 593 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
2262185c 594 count_memcg_page_event(page, PGLAZYFREE);
f7ad2a6c 595 update_page_reclaim_stat(lruvec, 1, 0);
10853a03
MK
596 }
597}
598
902aaed0
HH
599/*
600 * Drain pages out of the cpu's pagevecs.
601 * Either "cpu" is the current CPU, and preemption has already been
602 * disabled; or "cpu" is being hot-unplugged, and is already dead.
603 */
f0cb3c76 604void lru_add_drain_cpu(int cpu)
1da177e4 605{
13f7f789 606 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
1da177e4 607
13f7f789 608 if (pagevec_count(pvec))
a0b8cab3 609 __pagevec_lru_add(pvec);
902aaed0
HH
610
611 pvec = &per_cpu(lru_rotate_pvecs, cpu);
612 if (pagevec_count(pvec)) {
613 unsigned long flags;
614
615 /* No harm done if a racing interrupt already did this */
616 local_irq_save(flags);
617 pagevec_move_tail(pvec);
618 local_irq_restore(flags);
619 }
31560180 620
cc5993bd 621 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
31560180 622 if (pagevec_count(pvec))
cc5993bd 623 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
eb709b0d 624
f7ad2a6c 625 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
10853a03 626 if (pagevec_count(pvec))
f7ad2a6c 627 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
10853a03 628
eb709b0d 629 activate_page_drain(cpu);
31560180
MK
630}
631
632/**
cc5993bd 633 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
634 * @page: page to deactivate
635 *
636 * This function hints the VM that @page is a good reclaim candidate,
637 * for example if its invalidation fails due to the page being dirty
638 * or under writeback.
639 */
cc5993bd 640void deactivate_file_page(struct page *page)
31560180 641{
821ed6bb 642 /*
cc5993bd
MK
643 * In a workload with many unevictable page such as mprotect,
644 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
645 */
646 if (PageUnevictable(page))
647 return;
648
31560180 649 if (likely(get_page_unless_zero(page))) {
cc5993bd 650 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
31560180 651
8f182270 652 if (!pagevec_add(pvec, page) || PageCompound(page))
cc5993bd
MK
653 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
654 put_cpu_var(lru_deactivate_file_pvecs);
31560180 655 }
80bfed90
AM
656}
657
10853a03 658/**
f7ad2a6c 659 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
660 * @page: page to deactivate
661 *
f7ad2a6c
SL
662 * mark_page_lazyfree() moves @page to the inactive file list.
663 * This is done to accelerate the reclaim of @page.
10853a03 664 */
f7ad2a6c 665void mark_page_lazyfree(struct page *page)
10853a03 666{
f7ad2a6c 667 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 668 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 669 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
10853a03 670
09cbfeaf 671 get_page(page);
8f182270 672 if (!pagevec_add(pvec, page) || PageCompound(page))
f7ad2a6c
SL
673 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
674 put_cpu_var(lru_lazyfree_pvecs);
10853a03
MK
675 }
676}
677
80bfed90
AM
678void lru_add_drain(void)
679{
f0cb3c76 680 lru_add_drain_cpu(get_cpu());
80bfed90 681 put_cpu();
1da177e4
LT
682}
683
c4028958 684static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
685{
686 lru_add_drain();
687}
688
5fbc4616
CM
689static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
690
a47fed5b 691void lru_add_drain_all_cpuslocked(void)
053837fc 692{
5fbc4616
CM
693 static DEFINE_MUTEX(lock);
694 static struct cpumask has_work;
695 int cpu;
696
ce612879
MH
697 /*
698 * Make sure nobody triggers this path before mm_percpu_wq is fully
699 * initialized.
700 */
701 if (WARN_ON(!mm_percpu_wq))
702 return;
703
5fbc4616 704 mutex_lock(&lock);
5fbc4616
CM
705 cpumask_clear(&has_work);
706
707 for_each_online_cpu(cpu) {
708 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
709
710 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
711 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
cc5993bd 712 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
f7ad2a6c 713 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
5fbc4616
CM
714 need_activate_page_drain(cpu)) {
715 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 716 queue_work_on(cpu, mm_percpu_wq, work);
5fbc4616
CM
717 cpumask_set_cpu(cpu, &has_work);
718 }
719 }
720
721 for_each_cpu(cpu, &has_work)
722 flush_work(&per_cpu(lru_add_drain_work, cpu));
723
5fbc4616 724 mutex_unlock(&lock);
053837fc
NP
725}
726
a47fed5b
TG
727void lru_add_drain_all(void)
728{
729 get_online_cpus();
730 lru_add_drain_all_cpuslocked();
731 put_online_cpus();
732}
733
aabfb572 734/**
ea1754a0 735 * release_pages - batched put_page()
aabfb572
MH
736 * @pages: array of pages to release
737 * @nr: number of pages
738 * @cold: whether the pages are cache cold
1da177e4 739 *
aabfb572
MH
740 * Decrement the reference count on all the pages in @pages. If it
741 * fell to zero, remove the page from the LRU and free it.
1da177e4 742 */
c6f92f9f 743void release_pages(struct page **pages, int nr)
1da177e4
LT
744{
745 int i;
cc59850e 746 LIST_HEAD(pages_to_free);
599d0c95 747 struct pglist_data *locked_pgdat = NULL;
fa9add64 748 struct lruvec *lruvec;
902aaed0 749 unsigned long uninitialized_var(flags);
aabfb572 750 unsigned int uninitialized_var(lock_batch);
1da177e4 751
1da177e4
LT
752 for (i = 0; i < nr; i++) {
753 struct page *page = pages[i];
1da177e4 754
aabfb572
MH
755 /*
756 * Make sure the IRQ-safe lock-holding time does not get
757 * excessive with a continuous string of pages from the
599d0c95 758 * same pgdat. The lock is held only if pgdat != NULL.
aabfb572 759 */
599d0c95
MG
760 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
761 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
762 locked_pgdat = NULL;
aabfb572
MH
763 }
764
6fcb52a5 765 if (is_huge_zero_page(page))
aa88b68c 766 continue;
aa88b68c 767
df6ad698
JG
768 /* Device public page can not be huge page */
769 if (is_device_public_page(page)) {
770 if (locked_pgdat) {
771 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
772 flags);
773 locked_pgdat = NULL;
774 }
775 put_zone_device_private_or_public_page(page);
776 continue;
777 }
778
ddc58f27 779 page = compound_head(page);
b5810039 780 if (!put_page_testzero(page))
1da177e4
LT
781 continue;
782
ddc58f27 783 if (PageCompound(page)) {
599d0c95
MG
784 if (locked_pgdat) {
785 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
786 locked_pgdat = NULL;
ddc58f27
KS
787 }
788 __put_compound_page(page);
789 continue;
790 }
791
46453a6e 792 if (PageLRU(page)) {
599d0c95 793 struct pglist_data *pgdat = page_pgdat(page);
894bc310 794
599d0c95
MG
795 if (pgdat != locked_pgdat) {
796 if (locked_pgdat)
797 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
902aaed0 798 flags);
aabfb572 799 lock_batch = 0;
599d0c95
MG
800 locked_pgdat = pgdat;
801 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
46453a6e 802 }
fa9add64 803
599d0c95 804 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
309381fe 805 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 806 __ClearPageLRU(page);
fa9add64 807 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
808 }
809
c53954a0 810 /* Clear Active bit in case of parallel mark_page_accessed */
e3741b50 811 __ClearPageActive(page);
62906027 812 __ClearPageWaiters(page);
c53954a0 813
cc59850e 814 list_add(&page->lru, &pages_to_free);
1da177e4 815 }
599d0c95
MG
816 if (locked_pgdat)
817 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1da177e4 818
747db954 819 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 820 free_unref_page_list(&pages_to_free);
1da177e4 821}
0be8557b 822EXPORT_SYMBOL(release_pages);
1da177e4
LT
823
824/*
825 * The pages which we're about to release may be in the deferred lru-addition
826 * queues. That would prevent them from really being freed right now. That's
827 * OK from a correctness point of view but is inefficient - those pages may be
828 * cache-warm and we want to give them back to the page allocator ASAP.
829 *
830 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
831 * and __pagevec_lru_add_active() call release_pages() directly to avoid
832 * mutual recursion.
833 */
834void __pagevec_release(struct pagevec *pvec)
835{
7f0b5fb9 836 if (!pvec->percpu_pvec_drained) {
d9ed0d08 837 lru_add_drain();
7f0b5fb9 838 pvec->percpu_pvec_drained = true;
d9ed0d08 839 }
c6f92f9f 840 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
841 pagevec_reinit(pvec);
842}
7f285701
SF
843EXPORT_SYMBOL(__pagevec_release);
844
12d27107 845#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 846/* used by __split_huge_page_refcount() */
fa9add64 847void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 848 struct lruvec *lruvec, struct list_head *list)
71e3aac0 849{
71e3aac0 850 const int file = 0;
71e3aac0 851
309381fe
SL
852 VM_BUG_ON_PAGE(!PageHead(page), page);
853 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
854 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
fa9add64 855 VM_BUG_ON(NR_CPUS != 1 &&
599d0c95 856 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
71e3aac0 857
5bc7b8ac
SL
858 if (!list)
859 SetPageLRU(page_tail);
71e3aac0 860
12d27107
HD
861 if (likely(PageLRU(page)))
862 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
863 else if (list) {
864 /* page reclaim is reclaiming a huge page */
865 get_page(page_tail);
866 list_add_tail(&page_tail->lru, list);
867 } else {
12d27107
HD
868 struct list_head *list_head;
869 /*
870 * Head page has not yet been counted, as an hpage,
871 * so we must account for each subpage individually.
872 *
873 * Use the standard add function to put page_tail on the list,
874 * but then correct its position so they all end up in order.
875 */
e180cf80 876 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
12d27107
HD
877 list_head = page_tail->lru.prev;
878 list_move_tail(&page_tail->lru, list_head);
71e3aac0 879 }
7512102c
HD
880
881 if (!PageUnevictable(page))
e180cf80 882 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
71e3aac0 883}
12d27107 884#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 885
fa9add64
HD
886static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
887 void *arg)
3dd7ae8e 888{
13f7f789
MG
889 int file = page_is_file_cache(page);
890 int active = PageActive(page);
891 enum lru_list lru = page_lru(page);
3dd7ae8e 892
309381fe 893 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e
SL
894
895 SetPageLRU(page);
fa9add64
HD
896 add_page_to_lru_list(page, lruvec, lru);
897 update_page_reclaim_stat(lruvec, file, active);
24b7e581 898 trace_mm_lru_insertion(page, lru);
3dd7ae8e
SL
899}
900
1da177e4
LT
901/*
902 * Add the passed pages to the LRU, then drop the caller's refcount
903 * on them. Reinitialises the caller's pagevec.
904 */
a0b8cab3 905void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 906{
a0b8cab3 907 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 908}
5095ae83 909EXPORT_SYMBOL(__pagevec_lru_add);
1da177e4 910
0cd6144a
JW
911/**
912 * pagevec_lookup_entries - gang pagecache lookup
913 * @pvec: Where the resulting entries are placed
914 * @mapping: The address_space to search
915 * @start: The starting entry index
916 * @nr_entries: The maximum number of entries
917 * @indices: The cache indices corresponding to the entries in @pvec
918 *
919 * pagevec_lookup_entries() will search for and return a group of up
920 * to @nr_entries pages and shadow entries in the mapping. All
921 * entries are placed in @pvec. pagevec_lookup_entries() takes a
922 * reference against actual pages in @pvec.
923 *
924 * The search returns a group of mapping-contiguous entries with
925 * ascending indexes. There may be holes in the indices due to
926 * not-present entries.
927 *
928 * pagevec_lookup_entries() returns the number of entries which were
929 * found.
930 */
931unsigned pagevec_lookup_entries(struct pagevec *pvec,
932 struct address_space *mapping,
933 pgoff_t start, unsigned nr_pages,
934 pgoff_t *indices)
935{
936 pvec->nr = find_get_entries(mapping, start, nr_pages,
937 pvec->pages, indices);
938 return pagevec_count(pvec);
939}
940
941/**
942 * pagevec_remove_exceptionals - pagevec exceptionals pruning
943 * @pvec: The pagevec to prune
944 *
945 * pagevec_lookup_entries() fills both pages and exceptional radix
946 * tree entries into the pagevec. This function prunes all
947 * exceptionals from @pvec without leaving holes, so that it can be
948 * passed on to page-only pagevec operations.
949 */
950void pagevec_remove_exceptionals(struct pagevec *pvec)
951{
952 int i, j;
953
954 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
955 struct page *page = pvec->pages[i];
956 if (!radix_tree_exceptional_entry(page))
957 pvec->pages[j++] = page;
958 }
959 pvec->nr = j;
960}
961
1da177e4 962/**
b947cee4 963 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
964 * @pvec: Where the resulting pages are placed
965 * @mapping: The address_space to search
966 * @start: The starting page index
b947cee4 967 * @end: The final page index
1da177e4
LT
968 * @nr_pages: The maximum number of pages
969 *
b947cee4
JK
970 * pagevec_lookup_range() will search for and return a group of up to @nr_pages
971 * pages in the mapping starting from index @start and upto index @end
972 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
973 * reference against the pages in @pvec.
974 *
975 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
976 * indexes. There may be holes in the indices due to not-present pages. We
977 * also update @start to index the next page for the traversal.
1da177e4 978 *
b947cee4
JK
979 * pagevec_lookup_range() returns the number of pages which were found. If this
980 * number is smaller than @nr_pages, the end of specified range has been
981 * reached.
1da177e4 982 */
b947cee4 983unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 984 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 985{
397162ff 986 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 987 pvec->pages);
1da177e4
LT
988 return pagevec_count(pvec);
989}
b947cee4 990EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 991
72b045ae
JK
992unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
993 struct address_space *mapping, pgoff_t *index, pgoff_t end,
67fd707f 994 int tag)
1da177e4 995{
72b045ae 996 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 997 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
998 return pagevec_count(pvec);
999}
72b045ae 1000EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1001
93d3b714
JK
1002unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1003 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1004 int tag, unsigned max_pages)
1005{
1006 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1007 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1008 return pagevec_count(pvec);
1009}
1010EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1da177e4
LT
1011/*
1012 * Perform any setup for the swap system
1013 */
1014void __init swap_setup(void)
1015{
4481374c 1016 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
e0bf68dd 1017
1da177e4
LT
1018 /* Use a smaller cluster for small-memory machines */
1019 if (megs < 16)
1020 page_cluster = 2;
1021 else
1022 page_cluster = 3;
1023 /*
1024 * Right now other parts of the system means that we
1025 * _really_ don't want to cluster much more
1026 */
1da177e4 1027}