drm/amd/display: Perform DMUB hw_init on resume
[linux-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
1da177e4 38
64d6519d
LS
39#include "internal.h"
40
c6286c98
MG
41#define CREATE_TRACE_POINTS
42#include <trace/events/pagemap.h>
43
1da177e4
LT
44/* How many pages do we try to swap or page in/out together? */
45int page_cluster;
46
13f7f789 47static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
f84f9504 48static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
cc5993bd 49static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
9c276cc6 50static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
f7ad2a6c 51static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
a4a921aa
ML
52#ifdef CONFIG_SMP
53static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
54#endif
902aaed0 55
b221385b
AB
56/*
57 * This path almost never happens for VM activity - pages are normally
58 * freed via pagevecs. But it gets used by networking.
59 */
920c7a5d 60static void __page_cache_release(struct page *page)
b221385b
AB
61{
62 if (PageLRU(page)) {
f4b7e272 63 pg_data_t *pgdat = page_pgdat(page);
fa9add64
HD
64 struct lruvec *lruvec;
65 unsigned long flags;
b221385b 66
f4b7e272
AR
67 spin_lock_irqsave(&pgdat->lru_lock, flags);
68 lruvec = mem_cgroup_page_lruvec(page, pgdat);
309381fe 69 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 70 __ClearPageLRU(page);
fa9add64 71 del_page_from_lru_list(page, lruvec, page_off_lru(page));
f4b7e272 72 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
b221385b 73 }
62906027 74 __ClearPageWaiters(page);
91807063
AA
75}
76
77static void __put_single_page(struct page *page)
78{
79 __page_cache_release(page);
7ae88534 80 mem_cgroup_uncharge(page);
2d4894b5 81 free_unref_page(page);
b221385b
AB
82}
83
91807063 84static void __put_compound_page(struct page *page)
1da177e4 85{
91807063 86 compound_page_dtor *dtor;
1da177e4 87
822fc613
NH
88 /*
89 * __page_cache_release() is supposed to be called for thp, not for
90 * hugetlb. This is because hugetlb page does never have PageLRU set
91 * (it's never listed to any LRU lists) and no memcg routines should
92 * be called for hugetlb (it has a separate hugetlb_cgroup.)
93 */
94 if (!PageHuge(page))
95 __page_cache_release(page);
91807063
AA
96 dtor = get_compound_page_dtor(page);
97 (*dtor)(page);
98}
99
ddc58f27 100void __put_page(struct page *page)
8519fb30 101{
71389703
DW
102 if (is_zone_device_page(page)) {
103 put_dev_pagemap(page->pgmap);
104
105 /*
106 * The page belongs to the device that created pgmap. Do
107 * not return it to page allocator.
108 */
109 return;
110 }
111
8519fb30 112 if (unlikely(PageCompound(page)))
ddc58f27
KS
113 __put_compound_page(page);
114 else
91807063 115 __put_single_page(page);
1da177e4 116}
ddc58f27 117EXPORT_SYMBOL(__put_page);
70b50f94 118
1d7ea732 119/**
7682486b
RD
120 * put_pages_list() - release a list of pages
121 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
122 *
123 * Release a list of pages which are strung together on page.lru. Currently
124 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
125 */
126void put_pages_list(struct list_head *pages)
127{
128 while (!list_empty(pages)) {
129 struct page *victim;
130
f86196ea 131 victim = lru_to_page(pages);
1d7ea732 132 list_del(&victim->lru);
09cbfeaf 133 put_page(victim);
1d7ea732
AZ
134 }
135}
136EXPORT_SYMBOL(put_pages_list);
137
18022c5d
MG
138/*
139 * get_kernel_pages() - pin kernel pages in memory
140 * @kiov: An array of struct kvec structures
141 * @nr_segs: number of segments to pin
142 * @write: pinning for read/write, currently ignored
143 * @pages: array that receives pointers to the pages pinned.
144 * Should be at least nr_segs long.
145 *
146 * Returns number of pages pinned. This may be fewer than the number
147 * requested. If nr_pages is 0 or negative, returns 0. If no pages
148 * were pinned, returns -errno. Each page returned must be released
149 * with a put_page() call when it is finished with.
150 */
151int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
152 struct page **pages)
153{
154 int seg;
155
156 for (seg = 0; seg < nr_segs; seg++) {
157 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
158 return seg;
159
5a178119 160 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 161 get_page(pages[seg]);
18022c5d
MG
162 }
163
164 return seg;
165}
166EXPORT_SYMBOL_GPL(get_kernel_pages);
167
168/*
169 * get_kernel_page() - pin a kernel page in memory
170 * @start: starting kernel address
171 * @write: pinning for read/write, currently ignored
172 * @pages: array that receives pointer to the page pinned.
173 * Must be at least nr_segs long.
174 *
175 * Returns 1 if page is pinned. If the page was not pinned, returns
176 * -errno. The page returned must be released with a put_page() call
177 * when it is finished with.
178 */
179int get_kernel_page(unsigned long start, int write, struct page **pages)
180{
181 const struct kvec kiov = {
182 .iov_base = (void *)start,
183 .iov_len = PAGE_SIZE
184 };
185
186 return get_kernel_pages(&kiov, 1, write, pages);
187}
188EXPORT_SYMBOL_GPL(get_kernel_page);
189
3dd7ae8e 190static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
191 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
192 void *arg)
902aaed0
HH
193{
194 int i;
68eb0731 195 struct pglist_data *pgdat = NULL;
fa9add64 196 struct lruvec *lruvec;
3dd7ae8e 197 unsigned long flags = 0;
902aaed0
HH
198
199 for (i = 0; i < pagevec_count(pvec); i++) {
200 struct page *page = pvec->pages[i];
68eb0731 201 struct pglist_data *pagepgdat = page_pgdat(page);
902aaed0 202
68eb0731
MG
203 if (pagepgdat != pgdat) {
204 if (pgdat)
205 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
206 pgdat = pagepgdat;
207 spin_lock_irqsave(&pgdat->lru_lock, flags);
902aaed0 208 }
3dd7ae8e 209
68eb0731 210 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 211 (*move_fn)(page, lruvec, arg);
902aaed0 212 }
68eb0731
MG
213 if (pgdat)
214 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
c6f92f9f 215 release_pages(pvec->pages, pvec->nr);
83896fb5 216 pagevec_reinit(pvec);
d8505dee
SL
217}
218
fa9add64
HD
219static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
220 void *arg)
3dd7ae8e
SL
221{
222 int *pgmoved = arg;
3dd7ae8e 223
c55e8d03
JW
224 if (PageLRU(page) && !PageUnevictable(page)) {
225 del_page_from_lru_list(page, lruvec, page_lru(page));
226 ClearPageActive(page);
227 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
3dd7ae8e
SL
228 (*pgmoved)++;
229 }
230}
231
232/*
233 * pagevec_move_tail() must be called with IRQ disabled.
234 * Otherwise this may cause nasty races.
235 */
236static void pagevec_move_tail(struct pagevec *pvec)
237{
238 int pgmoved = 0;
239
240 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
241 __count_vm_events(PGROTATED, pgmoved);
242}
243
1da177e4
LT
244/*
245 * Writeback is about to end against a page which has been marked for immediate
246 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 247 * inactive list.
1da177e4 248 */
3dd7ae8e 249void rotate_reclaimable_page(struct page *page)
1da177e4 250{
c55e8d03 251 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 252 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
253 struct pagevec *pvec;
254 unsigned long flags;
255
09cbfeaf 256 get_page(page);
ac6aadb2 257 local_irq_save(flags);
7c8e0181 258 pvec = this_cpu_ptr(&lru_rotate_pvecs);
8f182270 259 if (!pagevec_add(pvec, page) || PageCompound(page))
ac6aadb2
MS
260 pagevec_move_tail(pvec);
261 local_irq_restore(flags);
262 }
1da177e4
LT
263}
264
fa9add64 265static void update_page_reclaim_stat(struct lruvec *lruvec,
3e2f41f1
KM
266 int file, int rotated)
267{
fa9add64 268 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
3e2f41f1
KM
269
270 reclaim_stat->recent_scanned[file]++;
271 if (rotated)
272 reclaim_stat->recent_rotated[file]++;
3e2f41f1
KM
273}
274
fa9add64
HD
275static void __activate_page(struct page *page, struct lruvec *lruvec,
276 void *arg)
1da177e4 277{
744ed144 278 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
279 int file = page_is_file_cache(page);
280 int lru = page_lru_base_type(page);
744ed144 281
fa9add64 282 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
283 SetPageActive(page);
284 lru += LRU_ACTIVE;
fa9add64 285 add_page_to_lru_list(page, lruvec, lru);
24b7e581 286 trace_mm_lru_activate(page);
4f98a2fe 287
fa9add64
HD
288 __count_vm_event(PGACTIVATE);
289 update_page_reclaim_stat(lruvec, file, 1);
1da177e4 290 }
eb709b0d
SL
291}
292
293#ifdef CONFIG_SMP
eb709b0d
SL
294static void activate_page_drain(int cpu)
295{
296 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
297
298 if (pagevec_count(pvec))
299 pagevec_lru_move_fn(pvec, __activate_page, NULL);
300}
301
5fbc4616
CM
302static bool need_activate_page_drain(int cpu)
303{
304 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
305}
306
eb709b0d
SL
307void activate_page(struct page *page)
308{
800d8c63 309 page = compound_head(page);
eb709b0d
SL
310 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
311 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
312
09cbfeaf 313 get_page(page);
8f182270 314 if (!pagevec_add(pvec, page) || PageCompound(page))
eb709b0d
SL
315 pagevec_lru_move_fn(pvec, __activate_page, NULL);
316 put_cpu_var(activate_page_pvecs);
317 }
318}
319
320#else
321static inline void activate_page_drain(int cpu)
322{
323}
324
325void activate_page(struct page *page)
326{
f4b7e272 327 pg_data_t *pgdat = page_pgdat(page);
eb709b0d 328
800d8c63 329 page = compound_head(page);
f4b7e272
AR
330 spin_lock_irq(&pgdat->lru_lock);
331 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
332 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 333}
eb709b0d 334#endif
1da177e4 335
059285a2
MG
336static void __lru_cache_activate_page(struct page *page)
337{
338 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
339 int i;
340
341 /*
342 * Search backwards on the optimistic assumption that the page being
343 * activated has just been added to this pagevec. Note that only
344 * the local pagevec is examined as a !PageLRU page could be in the
345 * process of being released, reclaimed, migrated or on a remote
346 * pagevec that is currently being drained. Furthermore, marking
347 * a remote pagevec's page PageActive potentially hits a race where
348 * a page is marked PageActive just after it is added to the inactive
349 * list causing accounting errors and BUG_ON checks to trigger.
350 */
351 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
352 struct page *pagevec_page = pvec->pages[i];
353
354 if (pagevec_page == page) {
355 SetPageActive(page);
356 break;
357 }
358 }
359
360 put_cpu_var(lru_add_pvec);
361}
362
1da177e4
LT
363/*
364 * Mark a page as having seen activity.
365 *
366 * inactive,unreferenced -> inactive,referenced
367 * inactive,referenced -> active,unreferenced
368 * active,unreferenced -> active,referenced
eb39d618
HD
369 *
370 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
371 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 372 */
920c7a5d 373void mark_page_accessed(struct page *page)
1da177e4 374{
e90309c9 375 page = compound_head(page);
059285a2 376
a1100a74
FW
377 if (!PageReferenced(page)) {
378 SetPageReferenced(page);
379 } else if (PageUnevictable(page)) {
380 /*
381 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
382 * this list is never rotated or maintained, so marking an
383 * evictable page accessed has no effect.
384 */
385 } else if (!PageActive(page)) {
059285a2
MG
386 /*
387 * If the page is on the LRU, queue it for activation via
388 * activate_page_pvecs. Otherwise, assume the page is on a
389 * pagevec, mark it active and it'll be moved to the active
390 * LRU on the next drain.
391 */
392 if (PageLRU(page))
393 activate_page(page);
394 else
395 __lru_cache_activate_page(page);
1da177e4 396 ClearPageReferenced(page);
a528910e
JW
397 if (page_is_file_cache(page))
398 workingset_activation(page);
1da177e4 399 }
33c3fc71
VD
400 if (page_is_idle(page))
401 clear_page_idle(page);
1da177e4 402}
1da177e4
LT
403EXPORT_SYMBOL(mark_page_accessed);
404
2329d375 405static void __lru_cache_add(struct page *page)
1da177e4 406{
13f7f789
MG
407 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
408
09cbfeaf 409 get_page(page);
8f182270 410 if (!pagevec_add(pvec, page) || PageCompound(page))
a0b8cab3 411 __pagevec_lru_add(pvec);
13f7f789 412 put_cpu_var(lru_add_pvec);
1da177e4 413}
2329d375
JZ
414
415/**
e02a9f04 416 * lru_cache_add_anon - add a page to the page lists
2329d375
JZ
417 * @page: the page to add
418 */
419void lru_cache_add_anon(struct page *page)
420{
6fb81a17
MG
421 if (PageActive(page))
422 ClearPageActive(page);
2329d375
JZ
423 __lru_cache_add(page);
424}
425
426void lru_cache_add_file(struct page *page)
427{
6fb81a17
MG
428 if (PageActive(page))
429 ClearPageActive(page);
2329d375
JZ
430 __lru_cache_add(page);
431}
432EXPORT_SYMBOL(lru_cache_add_file);
1da177e4 433
f04e9ebb 434/**
c53954a0 435 * lru_cache_add - add a page to a page list
f04e9ebb 436 * @page: the page to be added to the LRU.
2329d375
JZ
437 *
438 * Queue the page for addition to the LRU via pagevec. The decision on whether
439 * to add the page to the [in]active [file|anon] list is deferred until the
440 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
441 * have the page added to the active list using mark_page_accessed().
f04e9ebb 442 */
c53954a0 443void lru_cache_add(struct page *page)
1da177e4 444{
309381fe
SL
445 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
446 VM_BUG_ON_PAGE(PageLRU(page), page);
c53954a0 447 __lru_cache_add(page);
1da177e4
LT
448}
449
00501b53
JW
450/**
451 * lru_cache_add_active_or_unevictable
452 * @page: the page to be added to LRU
453 * @vma: vma in which page is mapped for determining reclaimability
454 *
455 * Place @page on the active or unevictable LRU list, depending on its
456 * evictability. Note that if the page is not evictable, it goes
457 * directly back onto it's zone's unevictable list, it does NOT use a
458 * per cpu pagevec.
459 */
460void lru_cache_add_active_or_unevictable(struct page *page,
461 struct vm_area_struct *vma)
462{
463 VM_BUG_ON_PAGE(PageLRU(page), page);
464
9c4e6b1a 465 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
00501b53 466 SetPageActive(page);
9c4e6b1a 467 else if (!TestSetPageMlocked(page)) {
00501b53
JW
468 /*
469 * We use the irq-unsafe __mod_zone_page_stat because this
470 * counter is not modified from interrupt context, and the pte
471 * lock is held(spinlock), which implies preemption disabled.
472 */
473 __mod_zone_page_state(page_zone(page), NR_MLOCK,
474 hpage_nr_pages(page));
475 count_vm_event(UNEVICTABLE_PGMLOCKED);
476 }
9c4e6b1a 477 lru_cache_add(page);
00501b53
JW
478}
479
31560180
MK
480/*
481 * If the page can not be invalidated, it is moved to the
482 * inactive list to speed up its reclaim. It is moved to the
483 * head of the list, rather than the tail, to give the flusher
484 * threads some time to write it out, as this is much more
485 * effective than the single-page writeout from reclaim.
278df9f4
MK
486 *
487 * If the page isn't page_mapped and dirty/writeback, the page
488 * could reclaim asap using PG_reclaim.
489 *
490 * 1. active, mapped page -> none
491 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
492 * 3. inactive, mapped page -> none
493 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
494 * 5. inactive, clean -> inactive, tail
495 * 6. Others -> none
496 *
497 * In 4, why it moves inactive's head, the VM expects the page would
498 * be write it out by flusher threads as this is much more effective
499 * than the single-page writeout from reclaim.
31560180 500 */
cc5993bd 501static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
fa9add64 502 void *arg)
31560180
MK
503{
504 int lru, file;
278df9f4 505 bool active;
31560180 506
278df9f4 507 if (!PageLRU(page))
31560180
MK
508 return;
509
bad49d9c
MK
510 if (PageUnevictable(page))
511 return;
512
31560180
MK
513 /* Some processes are using the page */
514 if (page_mapped(page))
515 return;
516
278df9f4 517 active = PageActive(page);
31560180
MK
518 file = page_is_file_cache(page);
519 lru = page_lru_base_type(page);
fa9add64
HD
520
521 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
522 ClearPageActive(page);
523 ClearPageReferenced(page);
31560180 524
278df9f4
MK
525 if (PageWriteback(page) || PageDirty(page)) {
526 /*
527 * PG_reclaim could be raced with end_page_writeback
528 * It can make readahead confusing. But race window
529 * is _really_ small and it's non-critical problem.
530 */
e7a1aaf2 531 add_page_to_lru_list(page, lruvec, lru);
278df9f4
MK
532 SetPageReclaim(page);
533 } else {
534 /*
535 * The page's writeback ends up during pagevec
536 * We moves tha page into tail of inactive.
537 */
e7a1aaf2 538 add_page_to_lru_list_tail(page, lruvec, lru);
278df9f4
MK
539 __count_vm_event(PGROTATED);
540 }
541
542 if (active)
543 __count_vm_event(PGDEACTIVATE);
fa9add64 544 update_page_reclaim_stat(lruvec, file, 0);
31560180
MK
545}
546
9c276cc6
MK
547static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
548 void *arg)
549{
550 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
551 int file = page_is_file_cache(page);
552 int lru = page_lru_base_type(page);
553
554 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
555 ClearPageActive(page);
556 ClearPageReferenced(page);
557 add_page_to_lru_list(page, lruvec, lru);
558
559 __count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
560 update_page_reclaim_stat(lruvec, file, 0);
561 }
562}
10853a03 563
f7ad2a6c 564static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
10853a03
MK
565 void *arg)
566{
f7ad2a6c 567 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 568 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 569 bool active = PageActive(page);
10853a03 570
f7ad2a6c
SL
571 del_page_from_lru_list(page, lruvec,
572 LRU_INACTIVE_ANON + active);
10853a03
MK
573 ClearPageActive(page);
574 ClearPageReferenced(page);
f7ad2a6c
SL
575 /*
576 * lazyfree pages are clean anonymous pages. They have
577 * SwapBacked flag cleared to distinguish normal anonymous
578 * pages
579 */
580 ClearPageSwapBacked(page);
581 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
10853a03 582
f7ad2a6c 583 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
2262185c 584 count_memcg_page_event(page, PGLAZYFREE);
f7ad2a6c 585 update_page_reclaim_stat(lruvec, 1, 0);
10853a03
MK
586 }
587}
588
902aaed0
HH
589/*
590 * Drain pages out of the cpu's pagevecs.
591 * Either "cpu" is the current CPU, and preemption has already been
592 * disabled; or "cpu" is being hot-unplugged, and is already dead.
593 */
f0cb3c76 594void lru_add_drain_cpu(int cpu)
1da177e4 595{
13f7f789 596 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
1da177e4 597
13f7f789 598 if (pagevec_count(pvec))
a0b8cab3 599 __pagevec_lru_add(pvec);
902aaed0
HH
600
601 pvec = &per_cpu(lru_rotate_pvecs, cpu);
602 if (pagevec_count(pvec)) {
603 unsigned long flags;
604
605 /* No harm done if a racing interrupt already did this */
606 local_irq_save(flags);
607 pagevec_move_tail(pvec);
608 local_irq_restore(flags);
609 }
31560180 610
cc5993bd 611 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
31560180 612 if (pagevec_count(pvec))
cc5993bd 613 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
eb709b0d 614
9c276cc6
MK
615 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
616 if (pagevec_count(pvec))
617 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
618
f7ad2a6c 619 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
10853a03 620 if (pagevec_count(pvec))
f7ad2a6c 621 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
10853a03 622
eb709b0d 623 activate_page_drain(cpu);
31560180
MK
624}
625
626/**
cc5993bd 627 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
628 * @page: page to deactivate
629 *
630 * This function hints the VM that @page is a good reclaim candidate,
631 * for example if its invalidation fails due to the page being dirty
632 * or under writeback.
633 */
cc5993bd 634void deactivate_file_page(struct page *page)
31560180 635{
821ed6bb 636 /*
cc5993bd
MK
637 * In a workload with many unevictable page such as mprotect,
638 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
639 */
640 if (PageUnevictable(page))
641 return;
642
31560180 643 if (likely(get_page_unless_zero(page))) {
cc5993bd 644 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
31560180 645
8f182270 646 if (!pagevec_add(pvec, page) || PageCompound(page))
cc5993bd
MK
647 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
648 put_cpu_var(lru_deactivate_file_pvecs);
31560180 649 }
80bfed90
AM
650}
651
9c276cc6
MK
652/*
653 * deactivate_page - deactivate a page
654 * @page: page to deactivate
655 *
656 * deactivate_page() moves @page to the inactive list if @page was on the active
657 * list and was not an unevictable page. This is done to accelerate the reclaim
658 * of @page.
659 */
660void deactivate_page(struct page *page)
661{
662 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
663 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
664
665 get_page(page);
666 if (!pagevec_add(pvec, page) || PageCompound(page))
667 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
668 put_cpu_var(lru_deactivate_pvecs);
669 }
670}
671
10853a03 672/**
f7ad2a6c 673 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
674 * @page: page to deactivate
675 *
f7ad2a6c
SL
676 * mark_page_lazyfree() moves @page to the inactive file list.
677 * This is done to accelerate the reclaim of @page.
10853a03 678 */
f7ad2a6c 679void mark_page_lazyfree(struct page *page)
10853a03 680{
f7ad2a6c 681 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 682 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 683 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
10853a03 684
09cbfeaf 685 get_page(page);
8f182270 686 if (!pagevec_add(pvec, page) || PageCompound(page))
f7ad2a6c
SL
687 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
688 put_cpu_var(lru_lazyfree_pvecs);
10853a03
MK
689 }
690}
691
80bfed90
AM
692void lru_add_drain(void)
693{
f0cb3c76 694 lru_add_drain_cpu(get_cpu());
80bfed90 695 put_cpu();
1da177e4
LT
696}
697
6ea183d6
MH
698#ifdef CONFIG_SMP
699
700static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
701
c4028958 702static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
703{
704 lru_add_drain();
705}
706
9852a721
MH
707/*
708 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
709 * kworkers being shut down before our page_alloc_cpu_dead callback is
710 * executed on the offlined cpu.
711 * Calling this function with cpu hotplug locks held can actually lead
712 * to obscure indirect dependencies via WQ context.
713 */
714void lru_add_drain_all(void)
053837fc 715{
eef1a429 716 static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
5fbc4616
CM
717 static DEFINE_MUTEX(lock);
718 static struct cpumask has_work;
eef1a429 719 int cpu, seq;
5fbc4616 720
ce612879
MH
721 /*
722 * Make sure nobody triggers this path before mm_percpu_wq is fully
723 * initialized.
724 */
725 if (WARN_ON(!mm_percpu_wq))
726 return;
727
eef1a429
KK
728 seq = raw_read_seqcount_latch(&seqcount);
729
5fbc4616 730 mutex_lock(&lock);
eef1a429
KK
731
732 /*
733 * Piggyback on drain started and finished while we waited for lock:
734 * all pages pended at the time of our enter were drained from vectors.
735 */
736 if (__read_seqcount_retry(&seqcount, seq))
737 goto done;
738
739 raw_write_seqcount_latch(&seqcount);
740
5fbc4616
CM
741 cpumask_clear(&has_work);
742
743 for_each_online_cpu(cpu) {
744 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
745
746 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
747 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
cc5993bd 748 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
9c276cc6 749 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
f7ad2a6c 750 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
5fbc4616
CM
751 need_activate_page_drain(cpu)) {
752 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 753 queue_work_on(cpu, mm_percpu_wq, work);
5fbc4616
CM
754 cpumask_set_cpu(cpu, &has_work);
755 }
756 }
757
758 for_each_cpu(cpu, &has_work)
759 flush_work(&per_cpu(lru_add_drain_work, cpu));
760
eef1a429 761done:
5fbc4616 762 mutex_unlock(&lock);
053837fc 763}
6ea183d6
MH
764#else
765void lru_add_drain_all(void)
766{
767 lru_add_drain();
768}
769#endif
053837fc 770
aabfb572 771/**
ea1754a0 772 * release_pages - batched put_page()
aabfb572
MH
773 * @pages: array of pages to release
774 * @nr: number of pages
1da177e4 775 *
aabfb572
MH
776 * Decrement the reference count on all the pages in @pages. If it
777 * fell to zero, remove the page from the LRU and free it.
1da177e4 778 */
c6f92f9f 779void release_pages(struct page **pages, int nr)
1da177e4
LT
780{
781 int i;
cc59850e 782 LIST_HEAD(pages_to_free);
599d0c95 783 struct pglist_data *locked_pgdat = NULL;
fa9add64 784 struct lruvec *lruvec;
902aaed0 785 unsigned long uninitialized_var(flags);
aabfb572 786 unsigned int uninitialized_var(lock_batch);
1da177e4 787
1da177e4
LT
788 for (i = 0; i < nr; i++) {
789 struct page *page = pages[i];
1da177e4 790
aabfb572
MH
791 /*
792 * Make sure the IRQ-safe lock-holding time does not get
793 * excessive with a continuous string of pages from the
599d0c95 794 * same pgdat. The lock is held only if pgdat != NULL.
aabfb572 795 */
599d0c95
MG
796 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
797 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
798 locked_pgdat = NULL;
aabfb572
MH
799 }
800
6fcb52a5 801 if (is_huge_zero_page(page))
aa88b68c 802 continue;
aa88b68c 803
c5d6c45e 804 if (is_zone_device_page(page)) {
df6ad698
JG
805 if (locked_pgdat) {
806 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
807 flags);
808 locked_pgdat = NULL;
809 }
c5d6c45e
IW
810 /*
811 * ZONE_DEVICE pages that return 'false' from
812 * put_devmap_managed_page() do not require special
813 * processing, and instead, expect a call to
814 * put_page_testzero().
815 */
816 if (put_devmap_managed_page(page))
817 continue;
df6ad698
JG
818 }
819
ddc58f27 820 page = compound_head(page);
b5810039 821 if (!put_page_testzero(page))
1da177e4
LT
822 continue;
823
ddc58f27 824 if (PageCompound(page)) {
599d0c95
MG
825 if (locked_pgdat) {
826 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
827 locked_pgdat = NULL;
ddc58f27
KS
828 }
829 __put_compound_page(page);
830 continue;
831 }
832
46453a6e 833 if (PageLRU(page)) {
599d0c95 834 struct pglist_data *pgdat = page_pgdat(page);
894bc310 835
599d0c95
MG
836 if (pgdat != locked_pgdat) {
837 if (locked_pgdat)
838 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
902aaed0 839 flags);
aabfb572 840 lock_batch = 0;
599d0c95
MG
841 locked_pgdat = pgdat;
842 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
46453a6e 843 }
fa9add64 844
599d0c95 845 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
309381fe 846 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 847 __ClearPageLRU(page);
fa9add64 848 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
849 }
850
c53954a0 851 /* Clear Active bit in case of parallel mark_page_accessed */
e3741b50 852 __ClearPageActive(page);
62906027 853 __ClearPageWaiters(page);
c53954a0 854
cc59850e 855 list_add(&page->lru, &pages_to_free);
1da177e4 856 }
599d0c95
MG
857 if (locked_pgdat)
858 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1da177e4 859
747db954 860 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 861 free_unref_page_list(&pages_to_free);
1da177e4 862}
0be8557b 863EXPORT_SYMBOL(release_pages);
1da177e4
LT
864
865/*
866 * The pages which we're about to release may be in the deferred lru-addition
867 * queues. That would prevent them from really being freed right now. That's
868 * OK from a correctness point of view but is inefficient - those pages may be
869 * cache-warm and we want to give them back to the page allocator ASAP.
870 *
871 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
872 * and __pagevec_lru_add_active() call release_pages() directly to avoid
873 * mutual recursion.
874 */
875void __pagevec_release(struct pagevec *pvec)
876{
7f0b5fb9 877 if (!pvec->percpu_pvec_drained) {
d9ed0d08 878 lru_add_drain();
7f0b5fb9 879 pvec->percpu_pvec_drained = true;
d9ed0d08 880 }
c6f92f9f 881 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
882 pagevec_reinit(pvec);
883}
7f285701
SF
884EXPORT_SYMBOL(__pagevec_release);
885
12d27107 886#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 887/* used by __split_huge_page_refcount() */
fa9add64 888void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 889 struct lruvec *lruvec, struct list_head *list)
71e3aac0 890{
71e3aac0 891 const int file = 0;
71e3aac0 892
309381fe
SL
893 VM_BUG_ON_PAGE(!PageHead(page), page);
894 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
895 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
35f3aa39 896 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
71e3aac0 897
5bc7b8ac
SL
898 if (!list)
899 SetPageLRU(page_tail);
71e3aac0 900
12d27107
HD
901 if (likely(PageLRU(page)))
902 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
903 else if (list) {
904 /* page reclaim is reclaiming a huge page */
905 get_page(page_tail);
906 list_add_tail(&page_tail->lru, list);
907 } else {
12d27107
HD
908 /*
909 * Head page has not yet been counted, as an hpage,
910 * so we must account for each subpage individually.
911 *
e7a1aaf2
YZ
912 * Put page_tail on the list at the correct position
913 * so they all end up in order.
12d27107 914 */
e7a1aaf2
YZ
915 add_page_to_lru_list_tail(page_tail, lruvec,
916 page_lru(page_tail));
71e3aac0 917 }
7512102c
HD
918
919 if (!PageUnevictable(page))
e180cf80 920 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
71e3aac0 921}
12d27107 922#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 923
fa9add64
HD
924static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
925 void *arg)
3dd7ae8e 926{
9c4e6b1a
SB
927 enum lru_list lru;
928 int was_unevictable = TestClearPageUnevictable(page);
3dd7ae8e 929
309381fe 930 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e
SL
931
932 SetPageLRU(page);
9c4e6b1a
SB
933 /*
934 * Page becomes evictable in two ways:
dae966dc 935 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
936 * 2) Before acquiring LRU lock to put the page to correct LRU and then
937 * a) do PageLRU check with lock [check_move_unevictable_pages]
938 * b) do PageLRU check before lock [clear_page_mlock]
939 *
940 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
941 * following strict ordering:
942 *
943 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
944 *
945 * SetPageLRU() TestClearPageMlocked()
946 * smp_mb() // explicit ordering // above provides strict
947 * // ordering
948 * PageMlocked() PageLRU()
949 *
950 *
951 * if '#1' does not observe setting of PG_lru by '#0' and fails
952 * isolation, the explicit barrier will make sure that page_evictable
953 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
954 * can be reordered after PageMlocked check and can make '#1' to fail
955 * the isolation of the page whose Mlocked bit is cleared (#0 is also
956 * looking at the same page) and the evictable page will be stranded
957 * in an unevictable LRU.
958 */
959 smp_mb();
960
961 if (page_evictable(page)) {
962 lru = page_lru(page);
963 update_page_reclaim_stat(lruvec, page_is_file_cache(page),
964 PageActive(page));
965 if (was_unevictable)
966 count_vm_event(UNEVICTABLE_PGRESCUED);
967 } else {
968 lru = LRU_UNEVICTABLE;
969 ClearPageActive(page);
970 SetPageUnevictable(page);
971 if (!was_unevictable)
972 count_vm_event(UNEVICTABLE_PGCULLED);
973 }
974
fa9add64 975 add_page_to_lru_list(page, lruvec, lru);
24b7e581 976 trace_mm_lru_insertion(page, lru);
3dd7ae8e
SL
977}
978
1da177e4
LT
979/*
980 * Add the passed pages to the LRU, then drop the caller's refcount
981 * on them. Reinitialises the caller's pagevec.
982 */
a0b8cab3 983void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 984{
a0b8cab3 985 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 986}
5095ae83 987EXPORT_SYMBOL(__pagevec_lru_add);
1da177e4 988
0cd6144a
JW
989/**
990 * pagevec_lookup_entries - gang pagecache lookup
991 * @pvec: Where the resulting entries are placed
992 * @mapping: The address_space to search
993 * @start: The starting entry index
cb6f0f34 994 * @nr_entries: The maximum number of pages
0cd6144a
JW
995 * @indices: The cache indices corresponding to the entries in @pvec
996 *
997 * pagevec_lookup_entries() will search for and return a group of up
f144c390 998 * to @nr_pages pages and shadow entries in the mapping. All
0cd6144a
JW
999 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1000 * reference against actual pages in @pvec.
1001 *
1002 * The search returns a group of mapping-contiguous entries with
1003 * ascending indexes. There may be holes in the indices due to
1004 * not-present entries.
1005 *
1006 * pagevec_lookup_entries() returns the number of entries which were
1007 * found.
1008 */
1009unsigned pagevec_lookup_entries(struct pagevec *pvec,
1010 struct address_space *mapping,
e02a9f04 1011 pgoff_t start, unsigned nr_entries,
0cd6144a
JW
1012 pgoff_t *indices)
1013{
e02a9f04 1014 pvec->nr = find_get_entries(mapping, start, nr_entries,
0cd6144a
JW
1015 pvec->pages, indices);
1016 return pagevec_count(pvec);
1017}
1018
1019/**
1020 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1021 * @pvec: The pagevec to prune
1022 *
1023 * pagevec_lookup_entries() fills both pages and exceptional radix
1024 * tree entries into the pagevec. This function prunes all
1025 * exceptionals from @pvec without leaving holes, so that it can be
1026 * passed on to page-only pagevec operations.
1027 */
1028void pagevec_remove_exceptionals(struct pagevec *pvec)
1029{
1030 int i, j;
1031
1032 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1033 struct page *page = pvec->pages[i];
3159f943 1034 if (!xa_is_value(page))
0cd6144a
JW
1035 pvec->pages[j++] = page;
1036 }
1037 pvec->nr = j;
1038}
1039
1da177e4 1040/**
b947cee4 1041 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1042 * @pvec: Where the resulting pages are placed
1043 * @mapping: The address_space to search
1044 * @start: The starting page index
b947cee4 1045 * @end: The final page index
1da177e4 1046 *
e02a9f04 1047 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1048 * pages in the mapping starting from index @start and upto index @end
1049 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1050 * reference against the pages in @pvec.
1051 *
1052 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1053 * indexes. There may be holes in the indices due to not-present pages. We
1054 * also update @start to index the next page for the traversal.
1da177e4 1055 *
b947cee4 1056 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1057 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1058 * reached.
1da177e4 1059 */
b947cee4 1060unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1061 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1062{
397162ff 1063 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1064 pvec->pages);
1da177e4
LT
1065 return pagevec_count(pvec);
1066}
b947cee4 1067EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1068
72b045ae
JK
1069unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1070 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1071 xa_mark_t tag)
1da177e4 1072{
72b045ae 1073 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1074 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1075 return pagevec_count(pvec);
1076}
72b045ae 1077EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1078
93d3b714
JK
1079unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1080 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1081 xa_mark_t tag, unsigned max_pages)
93d3b714
JK
1082{
1083 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1084 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1085 return pagevec_count(pvec);
1086}
1087EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1da177e4
LT
1088/*
1089 * Perform any setup for the swap system
1090 */
1091void __init swap_setup(void)
1092{
ca79b0c2 1093 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1094
1da177e4
LT
1095 /* Use a smaller cluster for small-memory machines */
1096 if (megs < 16)
1097 page_cluster = 2;
1098 else
1099 page_cluster = 3;
1100 /*
1101 * Right now other parts of the system means that we
1102 * _really_ don't want to cluster much more
1103 */
1da177e4 1104}