memcg: cleanup root memcg checks
[linux-block.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
1da177e4 39
64d6519d
LS
40#include "internal.h"
41
c6286c98
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/pagemap.h>
44
1da177e4
LT
45/* How many pages do we try to swap or page in/out together? */
46int page_cluster;
47
b01b2141
IM
48/* Protecting only lru_rotate.pvec which requires disabling interrupts */
49struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52};
53static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55};
56
57/*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
a4a921aa 67#ifdef CONFIG_SMP
b01b2141 68 struct pagevec activate_page;
a4a921aa 69#endif
b01b2141
IM
70};
71static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73};
902aaed0 74
b221385b
AB
75/*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
920c7a5d 79static void __page_cache_release(struct page *page)
b221385b
AB
80{
81 if (PageLRU(page)) {
fa9add64
HD
82 struct lruvec *lruvec;
83 unsigned long flags;
b221385b 84
6168d0da 85 lruvec = lock_page_lruvec_irqsave(page, &flags);
46ae6b2c 86 del_page_from_lru_list(page, lruvec);
87560179 87 __clear_page_lru_flags(page);
6168d0da 88 unlock_page_lruvec_irqrestore(lruvec, flags);
b221385b 89 }
62906027 90 __ClearPageWaiters(page);
91807063
AA
91}
92
93static void __put_single_page(struct page *page)
94{
95 __page_cache_release(page);
7ae88534 96 mem_cgroup_uncharge(page);
2d4894b5 97 free_unref_page(page);
b221385b
AB
98}
99
91807063 100static void __put_compound_page(struct page *page)
1da177e4 101{
822fc613
NH
102 /*
103 * __page_cache_release() is supposed to be called for thp, not for
104 * hugetlb. This is because hugetlb page does never have PageLRU set
105 * (it's never listed to any LRU lists) and no memcg routines should
106 * be called for hugetlb (it has a separate hugetlb_cgroup.)
107 */
108 if (!PageHuge(page))
109 __page_cache_release(page);
ff45fc3c 110 destroy_compound_page(page);
91807063
AA
111}
112
ddc58f27 113void __put_page(struct page *page)
8519fb30 114{
71389703
DW
115 if (is_zone_device_page(page)) {
116 put_dev_pagemap(page->pgmap);
117
118 /*
119 * The page belongs to the device that created pgmap. Do
120 * not return it to page allocator.
121 */
122 return;
123 }
124
8519fb30 125 if (unlikely(PageCompound(page)))
ddc58f27
KS
126 __put_compound_page(page);
127 else
91807063 128 __put_single_page(page);
1da177e4 129}
ddc58f27 130EXPORT_SYMBOL(__put_page);
70b50f94 131
1d7ea732 132/**
7682486b
RD
133 * put_pages_list() - release a list of pages
134 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
135 *
136 * Release a list of pages which are strung together on page.lru. Currently
137 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
138 */
139void put_pages_list(struct list_head *pages)
140{
141 while (!list_empty(pages)) {
142 struct page *victim;
143
f86196ea 144 victim = lru_to_page(pages);
1d7ea732 145 list_del(&victim->lru);
09cbfeaf 146 put_page(victim);
1d7ea732
AZ
147 }
148}
149EXPORT_SYMBOL(put_pages_list);
150
18022c5d
MG
151/*
152 * get_kernel_pages() - pin kernel pages in memory
153 * @kiov: An array of struct kvec structures
154 * @nr_segs: number of segments to pin
155 * @write: pinning for read/write, currently ignored
156 * @pages: array that receives pointers to the pages pinned.
157 * Should be at least nr_segs long.
158 *
159 * Returns number of pages pinned. This may be fewer than the number
160 * requested. If nr_pages is 0 or negative, returns 0. If no pages
161 * were pinned, returns -errno. Each page returned must be released
162 * with a put_page() call when it is finished with.
163 */
164int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
165 struct page **pages)
166{
167 int seg;
168
169 for (seg = 0; seg < nr_segs; seg++) {
170 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
171 return seg;
172
5a178119 173 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 174 get_page(pages[seg]);
18022c5d
MG
175 }
176
177 return seg;
178}
179EXPORT_SYMBOL_GPL(get_kernel_pages);
180
181/*
182 * get_kernel_page() - pin a kernel page in memory
183 * @start: starting kernel address
184 * @write: pinning for read/write, currently ignored
185 * @pages: array that receives pointer to the page pinned.
186 * Must be at least nr_segs long.
187 *
188 * Returns 1 if page is pinned. If the page was not pinned, returns
189 * -errno. The page returned must be released with a put_page() call
190 * when it is finished with.
191 */
192int get_kernel_page(unsigned long start, int write, struct page **pages)
193{
194 const struct kvec kiov = {
195 .iov_base = (void *)start,
196 .iov_len = PAGE_SIZE
197 };
198
199 return get_kernel_pages(&kiov, 1, write, pages);
200}
201EXPORT_SYMBOL_GPL(get_kernel_page);
202
3dd7ae8e 203static void pagevec_lru_move_fn(struct pagevec *pvec,
c7c7b80c 204 void (*move_fn)(struct page *page, struct lruvec *lruvec))
902aaed0
HH
205{
206 int i;
6168d0da 207 struct lruvec *lruvec = NULL;
3dd7ae8e 208 unsigned long flags = 0;
902aaed0
HH
209
210 for (i = 0; i < pagevec_count(pvec); i++) {
211 struct page *page = pvec->pages[i];
3dd7ae8e 212
fc574c23
AS
213 /* block memcg migration during page moving between lru */
214 if (!TestClearPageLRU(page))
215 continue;
216
2a5e4e34 217 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
c7c7b80c 218 (*move_fn)(page, lruvec);
fc574c23
AS
219
220 SetPageLRU(page);
902aaed0 221 }
6168d0da
AS
222 if (lruvec)
223 unlock_page_lruvec_irqrestore(lruvec, flags);
c6f92f9f 224 release_pages(pvec->pages, pvec->nr);
83896fb5 225 pagevec_reinit(pvec);
d8505dee
SL
226}
227
c7c7b80c 228static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 229{
fc574c23 230 if (!PageUnevictable(page)) {
46ae6b2c 231 del_page_from_lru_list(page, lruvec);
c55e8d03 232 ClearPageActive(page);
3a9c9788 233 add_page_to_lru_list_tail(page, lruvec);
c7c7b80c 234 __count_vm_events(PGROTATED, thp_nr_pages(page));
3dd7ae8e
SL
235 }
236}
237
1da177e4
LT
238/*
239 * Writeback is about to end against a page which has been marked for immediate
240 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 241 * inactive list.
c7c7b80c
AS
242 *
243 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
1da177e4 244 */
3dd7ae8e 245void rotate_reclaimable_page(struct page *page)
1da177e4 246{
c55e8d03 247 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 248 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
249 struct pagevec *pvec;
250 unsigned long flags;
251
09cbfeaf 252 get_page(page);
b01b2141
IM
253 local_lock_irqsave(&lru_rotate.lock, flags);
254 pvec = this_cpu_ptr(&lru_rotate.pvec);
8f182270 255 if (!pagevec_add(pvec, page) || PageCompound(page))
c7c7b80c 256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 257 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 258 }
1da177e4
LT
259}
260
96f8bf4f 261void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 262{
7cf111bc
JW
263 do {
264 unsigned long lrusize;
265
6168d0da
AS
266 /*
267 * Hold lruvec->lru_lock is safe here, since
268 * 1) The pinned lruvec in reclaim, or
269 * 2) From a pre-LRU page during refault (which also holds the
270 * rcu lock, so would be safe even if the page was on the LRU
271 * and could move simultaneously to a new lruvec).
272 */
273 spin_lock_irq(&lruvec->lru_lock);
7cf111bc 274 /* Record cost event */
96f8bf4f
JW
275 if (file)
276 lruvec->file_cost += nr_pages;
7cf111bc 277 else
96f8bf4f 278 lruvec->anon_cost += nr_pages;
7cf111bc
JW
279
280 /*
281 * Decay previous events
282 *
283 * Because workloads change over time (and to avoid
284 * overflow) we keep these statistics as a floating
285 * average, which ends up weighing recent refaults
286 * more than old ones.
287 */
288 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
289 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
290 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
291 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
292
293 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
294 lruvec->file_cost /= 2;
295 lruvec->anon_cost /= 2;
296 }
6168d0da 297 spin_unlock_irq(&lruvec->lru_lock);
7cf111bc 298 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
299}
300
96f8bf4f
JW
301void lru_note_cost_page(struct page *page)
302{
303 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
6c357848 304 page_is_file_lru(page), thp_nr_pages(page));
96f8bf4f
JW
305}
306
c7c7b80c 307static void __activate_page(struct page *page, struct lruvec *lruvec)
1da177e4 308{
fc574c23 309 if (!PageActive(page) && !PageUnevictable(page)) {
6c357848 310 int nr_pages = thp_nr_pages(page);
744ed144 311
46ae6b2c 312 del_page_from_lru_list(page, lruvec);
7a608572 313 SetPageActive(page);
3a9c9788 314 add_page_to_lru_list(page, lruvec);
24b7e581 315 trace_mm_lru_activate(page);
4f98a2fe 316
21e330fc
SB
317 __count_vm_events(PGACTIVATE, nr_pages);
318 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
319 nr_pages);
1da177e4 320 }
eb709b0d
SL
321}
322
323#ifdef CONFIG_SMP
eb709b0d
SL
324static void activate_page_drain(int cpu)
325{
b01b2141 326 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
327
328 if (pagevec_count(pvec))
c7c7b80c 329 pagevec_lru_move_fn(pvec, __activate_page);
eb709b0d
SL
330}
331
5fbc4616
CM
332static bool need_activate_page_drain(int cpu)
333{
b01b2141 334 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
335}
336
cc2828b2 337static void activate_page(struct page *page)
eb709b0d 338{
800d8c63 339 page = compound_head(page);
eb709b0d 340 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
b01b2141 341 struct pagevec *pvec;
eb709b0d 342
b01b2141
IM
343 local_lock(&lru_pvecs.lock);
344 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
09cbfeaf 345 get_page(page);
8f182270 346 if (!pagevec_add(pvec, page) || PageCompound(page))
c7c7b80c 347 pagevec_lru_move_fn(pvec, __activate_page);
b01b2141 348 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
349 }
350}
351
352#else
353static inline void activate_page_drain(int cpu)
354{
355}
356
cc2828b2 357static void activate_page(struct page *page)
eb709b0d 358{
6168d0da 359 struct lruvec *lruvec;
eb709b0d 360
800d8c63 361 page = compound_head(page);
6168d0da
AS
362 if (TestClearPageLRU(page)) {
363 lruvec = lock_page_lruvec_irq(page);
364 __activate_page(page, lruvec);
365 unlock_page_lruvec_irq(lruvec);
366 SetPageLRU(page);
367 }
1da177e4 368}
eb709b0d 369#endif
1da177e4 370
059285a2
MG
371static void __lru_cache_activate_page(struct page *page)
372{
b01b2141 373 struct pagevec *pvec;
059285a2
MG
374 int i;
375
b01b2141
IM
376 local_lock(&lru_pvecs.lock);
377 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
378
059285a2
MG
379 /*
380 * Search backwards on the optimistic assumption that the page being
381 * activated has just been added to this pagevec. Note that only
382 * the local pagevec is examined as a !PageLRU page could be in the
383 * process of being released, reclaimed, migrated or on a remote
384 * pagevec that is currently being drained. Furthermore, marking
385 * a remote pagevec's page PageActive potentially hits a race where
386 * a page is marked PageActive just after it is added to the inactive
387 * list causing accounting errors and BUG_ON checks to trigger.
388 */
389 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
390 struct page *pagevec_page = pvec->pages[i];
391
392 if (pagevec_page == page) {
393 SetPageActive(page);
394 break;
395 }
396 }
397
b01b2141 398 local_unlock(&lru_pvecs.lock);
059285a2
MG
399}
400
1da177e4
LT
401/*
402 * Mark a page as having seen activity.
403 *
404 * inactive,unreferenced -> inactive,referenced
405 * inactive,referenced -> active,unreferenced
406 * active,unreferenced -> active,referenced
eb39d618
HD
407 *
408 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
409 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 410 */
920c7a5d 411void mark_page_accessed(struct page *page)
1da177e4 412{
e90309c9 413 page = compound_head(page);
059285a2 414
a1100a74
FW
415 if (!PageReferenced(page)) {
416 SetPageReferenced(page);
417 } else if (PageUnevictable(page)) {
418 /*
419 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
420 * this list is never rotated or maintained, so marking an
421 * evictable page accessed has no effect.
422 */
423 } else if (!PageActive(page)) {
059285a2
MG
424 /*
425 * If the page is on the LRU, queue it for activation via
b01b2141 426 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
427 * pagevec, mark it active and it'll be moved to the active
428 * LRU on the next drain.
429 */
430 if (PageLRU(page))
431 activate_page(page);
432 else
433 __lru_cache_activate_page(page);
1da177e4 434 ClearPageReferenced(page);
cb686883 435 workingset_activation(page);
1da177e4 436 }
33c3fc71
VD
437 if (page_is_idle(page))
438 clear_page_idle(page);
1da177e4 439}
1da177e4
LT
440EXPORT_SYMBOL(mark_page_accessed);
441
f04e9ebb 442/**
c53954a0 443 * lru_cache_add - add a page to a page list
f04e9ebb 444 * @page: the page to be added to the LRU.
2329d375
JZ
445 *
446 * Queue the page for addition to the LRU via pagevec. The decision on whether
447 * to add the page to the [in]active [file|anon] list is deferred until the
448 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
449 * have the page added to the active list using mark_page_accessed().
f04e9ebb 450 */
c53954a0 451void lru_cache_add(struct page *page)
1da177e4 452{
6058eaec
JW
453 struct pagevec *pvec;
454
309381fe
SL
455 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
456 VM_BUG_ON_PAGE(PageLRU(page), page);
6058eaec
JW
457
458 get_page(page);
459 local_lock(&lru_pvecs.lock);
460 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
461 if (!pagevec_add(pvec, page) || PageCompound(page))
462 __pagevec_lru_add(pvec);
463 local_unlock(&lru_pvecs.lock);
1da177e4 464}
6058eaec 465EXPORT_SYMBOL(lru_cache_add);
1da177e4 466
00501b53 467/**
b518154e 468 * lru_cache_add_inactive_or_unevictable
00501b53
JW
469 * @page: the page to be added to LRU
470 * @vma: vma in which page is mapped for determining reclaimability
471 *
b518154e 472 * Place @page on the inactive or unevictable LRU list, depending on its
12eab428 473 * evictability.
00501b53 474 */
b518154e 475void lru_cache_add_inactive_or_unevictable(struct page *page,
00501b53
JW
476 struct vm_area_struct *vma)
477{
b518154e
JK
478 bool unevictable;
479
00501b53
JW
480 VM_BUG_ON_PAGE(PageLRU(page), page);
481
b518154e
JK
482 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
483 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
0964730b 484 int nr_pages = thp_nr_pages(page);
00501b53
JW
485 /*
486 * We use the irq-unsafe __mod_zone_page_stat because this
487 * counter is not modified from interrupt context, and the pte
488 * lock is held(spinlock), which implies preemption disabled.
489 */
0964730b
HD
490 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
491 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
00501b53 492 }
9c4e6b1a 493 lru_cache_add(page);
00501b53
JW
494}
495
31560180
MK
496/*
497 * If the page can not be invalidated, it is moved to the
498 * inactive list to speed up its reclaim. It is moved to the
499 * head of the list, rather than the tail, to give the flusher
500 * threads some time to write it out, as this is much more
501 * effective than the single-page writeout from reclaim.
278df9f4
MK
502 *
503 * If the page isn't page_mapped and dirty/writeback, the page
504 * could reclaim asap using PG_reclaim.
505 *
506 * 1. active, mapped page -> none
507 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
508 * 3. inactive, mapped page -> none
509 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
510 * 5. inactive, clean -> inactive, tail
511 * 6. Others -> none
512 *
513 * In 4, why it moves inactive's head, the VM expects the page would
514 * be write it out by flusher threads as this is much more effective
515 * than the single-page writeout from reclaim.
31560180 516 */
c7c7b80c 517static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
31560180 518{
46ae6b2c 519 bool active = PageActive(page);
6c357848 520 int nr_pages = thp_nr_pages(page);
31560180 521
bad49d9c
MK
522 if (PageUnevictable(page))
523 return;
524
31560180
MK
525 /* Some processes are using the page */
526 if (page_mapped(page))
527 return;
528
46ae6b2c 529 del_page_from_lru_list(page, lruvec);
31560180
MK
530 ClearPageActive(page);
531 ClearPageReferenced(page);
31560180 532
278df9f4
MK
533 if (PageWriteback(page) || PageDirty(page)) {
534 /*
535 * PG_reclaim could be raced with end_page_writeback
536 * It can make readahead confusing. But race window
537 * is _really_ small and it's non-critical problem.
538 */
3a9c9788 539 add_page_to_lru_list(page, lruvec);
278df9f4
MK
540 SetPageReclaim(page);
541 } else {
542 /*
543 * The page's writeback ends up during pagevec
544 * We moves tha page into tail of inactive.
545 */
3a9c9788 546 add_page_to_lru_list_tail(page, lruvec);
5d91f31f 547 __count_vm_events(PGROTATED, nr_pages);
278df9f4
MK
548 }
549
21e330fc 550 if (active) {
5d91f31f 551 __count_vm_events(PGDEACTIVATE, nr_pages);
21e330fc
SB
552 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
553 nr_pages);
554 }
31560180
MK
555}
556
c7c7b80c 557static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
9c276cc6 558{
fc574c23 559 if (PageActive(page) && !PageUnevictable(page)) {
6c357848 560 int nr_pages = thp_nr_pages(page);
9c276cc6 561
46ae6b2c 562 del_page_from_lru_list(page, lruvec);
9c276cc6
MK
563 ClearPageActive(page);
564 ClearPageReferenced(page);
3a9c9788 565 add_page_to_lru_list(page, lruvec);
9c276cc6 566
21e330fc
SB
567 __count_vm_events(PGDEACTIVATE, nr_pages);
568 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
569 nr_pages);
9c276cc6
MK
570 }
571}
10853a03 572
c7c7b80c 573static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
10853a03 574{
fc574c23 575 if (PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 576 !PageSwapCache(page) && !PageUnevictable(page)) {
6c357848 577 int nr_pages = thp_nr_pages(page);
10853a03 578
46ae6b2c 579 del_page_from_lru_list(page, lruvec);
10853a03
MK
580 ClearPageActive(page);
581 ClearPageReferenced(page);
f7ad2a6c 582 /*
9de4f22a
HY
583 * Lazyfree pages are clean anonymous pages. They have
584 * PG_swapbacked flag cleared, to distinguish them from normal
585 * anonymous pages
f7ad2a6c
SL
586 */
587 ClearPageSwapBacked(page);
3a9c9788 588 add_page_to_lru_list(page, lruvec);
10853a03 589
21e330fc
SB
590 __count_vm_events(PGLAZYFREE, nr_pages);
591 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
592 nr_pages);
10853a03
MK
593 }
594}
595
902aaed0
HH
596/*
597 * Drain pages out of the cpu's pagevecs.
598 * Either "cpu" is the current CPU, and preemption has already been
599 * disabled; or "cpu" is being hot-unplugged, and is already dead.
600 */
f0cb3c76 601void lru_add_drain_cpu(int cpu)
1da177e4 602{
b01b2141 603 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 604
13f7f789 605 if (pagevec_count(pvec))
a0b8cab3 606 __pagevec_lru_add(pvec);
902aaed0 607
b01b2141 608 pvec = &per_cpu(lru_rotate.pvec, cpu);
7e0cc01e
QC
609 /* Disabling interrupts below acts as a compiler barrier. */
610 if (data_race(pagevec_count(pvec))) {
902aaed0
HH
611 unsigned long flags;
612
613 /* No harm done if a racing interrupt already did this */
b01b2141 614 local_lock_irqsave(&lru_rotate.lock, flags);
c7c7b80c 615 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 616 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 617 }
31560180 618
b01b2141 619 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 620 if (pagevec_count(pvec))
c7c7b80c 621 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
eb709b0d 622
b01b2141 623 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6 624 if (pagevec_count(pvec))
c7c7b80c 625 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
9c276cc6 626
b01b2141 627 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 628 if (pagevec_count(pvec))
c7c7b80c 629 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
10853a03 630
eb709b0d 631 activate_page_drain(cpu);
31560180
MK
632}
633
634/**
cc5993bd 635 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
636 * @page: page to deactivate
637 *
638 * This function hints the VM that @page is a good reclaim candidate,
639 * for example if its invalidation fails due to the page being dirty
640 * or under writeback.
641 */
cc5993bd 642void deactivate_file_page(struct page *page)
31560180 643{
821ed6bb 644 /*
cc5993bd
MK
645 * In a workload with many unevictable page such as mprotect,
646 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
647 */
648 if (PageUnevictable(page))
649 return;
650
31560180 651 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
652 struct pagevec *pvec;
653
654 local_lock(&lru_pvecs.lock);
655 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 656
8f182270 657 if (!pagevec_add(pvec, page) || PageCompound(page))
c7c7b80c 658 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
b01b2141 659 local_unlock(&lru_pvecs.lock);
31560180 660 }
80bfed90
AM
661}
662
9c276cc6
MK
663/*
664 * deactivate_page - deactivate a page
665 * @page: page to deactivate
666 *
667 * deactivate_page() moves @page to the inactive list if @page was on the active
668 * list and was not an unevictable page. This is done to accelerate the reclaim
669 * of @page.
670 */
671void deactivate_page(struct page *page)
672{
673 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 674 struct pagevec *pvec;
9c276cc6 675
b01b2141
IM
676 local_lock(&lru_pvecs.lock);
677 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6
MK
678 get_page(page);
679 if (!pagevec_add(pvec, page) || PageCompound(page))
c7c7b80c 680 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
b01b2141 681 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
682 }
683}
684
10853a03 685/**
f7ad2a6c 686 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
687 * @page: page to deactivate
688 *
f7ad2a6c
SL
689 * mark_page_lazyfree() moves @page to the inactive file list.
690 * This is done to accelerate the reclaim of @page.
10853a03 691 */
f7ad2a6c 692void mark_page_lazyfree(struct page *page)
10853a03 693{
f7ad2a6c 694 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 695 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 696 struct pagevec *pvec;
10853a03 697
b01b2141
IM
698 local_lock(&lru_pvecs.lock);
699 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 700 get_page(page);
8f182270 701 if (!pagevec_add(pvec, page) || PageCompound(page))
c7c7b80c 702 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
b01b2141 703 local_unlock(&lru_pvecs.lock);
10853a03
MK
704 }
705}
706
80bfed90
AM
707void lru_add_drain(void)
708{
b01b2141
IM
709 local_lock(&lru_pvecs.lock);
710 lru_add_drain_cpu(smp_processor_id());
711 local_unlock(&lru_pvecs.lock);
712}
713
714void lru_add_drain_cpu_zone(struct zone *zone)
715{
716 local_lock(&lru_pvecs.lock);
717 lru_add_drain_cpu(smp_processor_id());
718 drain_local_pages(zone);
719 local_unlock(&lru_pvecs.lock);
1da177e4
LT
720}
721
6ea183d6
MH
722#ifdef CONFIG_SMP
723
724static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
725
c4028958 726static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
727{
728 lru_add_drain();
729}
730
9852a721
MH
731/*
732 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
733 * kworkers being shut down before our page_alloc_cpu_dead callback is
734 * executed on the offlined cpu.
735 * Calling this function with cpu hotplug locks held can actually lead
736 * to obscure indirect dependencies via WQ context.
737 */
738void lru_add_drain_all(void)
053837fc 739{
6446a513
AD
740 /*
741 * lru_drain_gen - Global pages generation number
742 *
743 * (A) Definition: global lru_drain_gen = x implies that all generations
744 * 0 < n <= x are already *scheduled* for draining.
745 *
746 * This is an optimization for the highly-contended use case where a
747 * user space workload keeps constantly generating a flow of pages for
748 * each CPU.
749 */
750 static unsigned int lru_drain_gen;
5fbc4616 751 static struct cpumask has_work;
6446a513
AD
752 static DEFINE_MUTEX(lock);
753 unsigned cpu, this_gen;
5fbc4616 754
ce612879
MH
755 /*
756 * Make sure nobody triggers this path before mm_percpu_wq is fully
757 * initialized.
758 */
759 if (WARN_ON(!mm_percpu_wq))
760 return;
761
6446a513
AD
762 /*
763 * Guarantee pagevec counter stores visible by this CPU are visible to
764 * other CPUs before loading the current drain generation.
765 */
766 smp_mb();
767
768 /*
769 * (B) Locally cache global LRU draining generation number
770 *
771 * The read barrier ensures that the counter is loaded before the mutex
772 * is taken. It pairs with smp_mb() inside the mutex critical section
773 * at (D).
774 */
775 this_gen = smp_load_acquire(&lru_drain_gen);
eef1a429 776
5fbc4616 777 mutex_lock(&lock);
eef1a429
KK
778
779 /*
6446a513
AD
780 * (C) Exit the draining operation if a newer generation, from another
781 * lru_add_drain_all(), was already scheduled for draining. Check (A).
eef1a429 782 */
6446a513 783 if (unlikely(this_gen != lru_drain_gen))
eef1a429
KK
784 goto done;
785
6446a513
AD
786 /*
787 * (D) Increment global generation number
788 *
789 * Pairs with smp_load_acquire() at (B), outside of the critical
790 * section. Use a full memory barrier to guarantee that the new global
791 * drain generation number is stored before loading pagevec counters.
792 *
793 * This pairing must be done here, before the for_each_online_cpu loop
794 * below which drains the page vectors.
795 *
796 * Let x, y, and z represent some system CPU numbers, where x < y < z.
797 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
798 * below and has already reached CPU #y's per-cpu data. CPU #x comes
799 * along, adds some pages to its per-cpu vectors, then calls
800 * lru_add_drain_all().
801 *
802 * If the paired barrier is done at any later step, e.g. after the
803 * loop, CPU #x will just exit at (C) and miss flushing out all of its
804 * added pages.
805 */
806 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
807 smp_mb();
eef1a429 808
5fbc4616 809 cpumask_clear(&has_work);
5fbc4616
CM
810 for_each_online_cpu(cpu) {
811 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
812
b01b2141 813 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
7e0cc01e 814 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
b01b2141
IM
815 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
816 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
817 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
5fbc4616
CM
818 need_activate_page_drain(cpu)) {
819 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 820 queue_work_on(cpu, mm_percpu_wq, work);
6446a513 821 __cpumask_set_cpu(cpu, &has_work);
5fbc4616
CM
822 }
823 }
824
825 for_each_cpu(cpu, &has_work)
826 flush_work(&per_cpu(lru_add_drain_work, cpu));
827
eef1a429 828done:
5fbc4616 829 mutex_unlock(&lock);
053837fc 830}
6ea183d6
MH
831#else
832void lru_add_drain_all(void)
833{
834 lru_add_drain();
835}
6446a513 836#endif /* CONFIG_SMP */
053837fc 837
aabfb572 838/**
ea1754a0 839 * release_pages - batched put_page()
aabfb572
MH
840 * @pages: array of pages to release
841 * @nr: number of pages
1da177e4 842 *
aabfb572
MH
843 * Decrement the reference count on all the pages in @pages. If it
844 * fell to zero, remove the page from the LRU and free it.
1da177e4 845 */
c6f92f9f 846void release_pages(struct page **pages, int nr)
1da177e4
LT
847{
848 int i;
cc59850e 849 LIST_HEAD(pages_to_free);
6168d0da 850 struct lruvec *lruvec = NULL;
3f649ab7
KC
851 unsigned long flags;
852 unsigned int lock_batch;
1da177e4 853
1da177e4
LT
854 for (i = 0; i < nr; i++) {
855 struct page *page = pages[i];
1da177e4 856
aabfb572
MH
857 /*
858 * Make sure the IRQ-safe lock-holding time does not get
859 * excessive with a continuous string of pages from the
6168d0da 860 * same lruvec. The lock is held only if lruvec != NULL.
aabfb572 861 */
6168d0da
AS
862 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
863 unlock_page_lruvec_irqrestore(lruvec, flags);
864 lruvec = NULL;
aabfb572
MH
865 }
866
a9b576f7 867 page = compound_head(page);
6fcb52a5 868 if (is_huge_zero_page(page))
aa88b68c 869 continue;
aa88b68c 870
c5d6c45e 871 if (is_zone_device_page(page)) {
6168d0da
AS
872 if (lruvec) {
873 unlock_page_lruvec_irqrestore(lruvec, flags);
874 lruvec = NULL;
df6ad698 875 }
c5d6c45e
IW
876 /*
877 * ZONE_DEVICE pages that return 'false' from
a3e7bea0 878 * page_is_devmap_managed() do not require special
c5d6c45e
IW
879 * processing, and instead, expect a call to
880 * put_page_testzero().
881 */
07d80269
JH
882 if (page_is_devmap_managed(page)) {
883 put_devmap_managed_page(page);
c5d6c45e 884 continue;
07d80269 885 }
43fbdeb3
RC
886 if (put_page_testzero(page))
887 put_dev_pagemap(page->pgmap);
888 continue;
df6ad698
JG
889 }
890
b5810039 891 if (!put_page_testzero(page))
1da177e4
LT
892 continue;
893
ddc58f27 894 if (PageCompound(page)) {
6168d0da
AS
895 if (lruvec) {
896 unlock_page_lruvec_irqrestore(lruvec, flags);
897 lruvec = NULL;
ddc58f27
KS
898 }
899 __put_compound_page(page);
900 continue;
901 }
902
46453a6e 903 if (PageLRU(page)) {
2a5e4e34
AD
904 struct lruvec *prev_lruvec = lruvec;
905
906 lruvec = relock_page_lruvec_irqsave(page, lruvec,
907 &flags);
908 if (prev_lruvec != lruvec)
aabfb572 909 lock_batch = 0;
fa9add64 910
46ae6b2c 911 del_page_from_lru_list(page, lruvec);
87560179 912 __clear_page_lru_flags(page);
46453a6e
NP
913 }
914
62906027 915 __ClearPageWaiters(page);
c53954a0 916
cc59850e 917 list_add(&page->lru, &pages_to_free);
1da177e4 918 }
6168d0da
AS
919 if (lruvec)
920 unlock_page_lruvec_irqrestore(lruvec, flags);
1da177e4 921
747db954 922 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 923 free_unref_page_list(&pages_to_free);
1da177e4 924}
0be8557b 925EXPORT_SYMBOL(release_pages);
1da177e4
LT
926
927/*
928 * The pages which we're about to release may be in the deferred lru-addition
929 * queues. That would prevent them from really being freed right now. That's
930 * OK from a correctness point of view but is inefficient - those pages may be
931 * cache-warm and we want to give them back to the page allocator ASAP.
932 *
933 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
934 * and __pagevec_lru_add_active() call release_pages() directly to avoid
935 * mutual recursion.
936 */
937void __pagevec_release(struct pagevec *pvec)
938{
7f0b5fb9 939 if (!pvec->percpu_pvec_drained) {
d9ed0d08 940 lru_add_drain();
7f0b5fb9 941 pvec->percpu_pvec_drained = true;
d9ed0d08 942 }
c6f92f9f 943 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
944 pagevec_reinit(pvec);
945}
7f285701
SF
946EXPORT_SYMBOL(__pagevec_release);
947
c7c7b80c 948static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 949{
9c4e6b1a 950 int was_unevictable = TestClearPageUnevictable(page);
6c357848 951 int nr_pages = thp_nr_pages(page);
3dd7ae8e 952
309381fe 953 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e 954
9c4e6b1a
SB
955 /*
956 * Page becomes evictable in two ways:
dae966dc 957 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
958 * 2) Before acquiring LRU lock to put the page to correct LRU and then
959 * a) do PageLRU check with lock [check_move_unevictable_pages]
960 * b) do PageLRU check before lock [clear_page_mlock]
961 *
962 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
963 * following strict ordering:
964 *
965 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
966 *
967 * SetPageLRU() TestClearPageMlocked()
968 * smp_mb() // explicit ordering // above provides strict
969 * // ordering
970 * PageMlocked() PageLRU()
971 *
972 *
973 * if '#1' does not observe setting of PG_lru by '#0' and fails
974 * isolation, the explicit barrier will make sure that page_evictable
975 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
976 * can be reordered after PageMlocked check and can make '#1' to fail
977 * the isolation of the page whose Mlocked bit is cleared (#0 is also
978 * looking at the same page) and the evictable page will be stranded
979 * in an unevictable LRU.
980 */
9a9b6cce
YS
981 SetPageLRU(page);
982 smp_mb__after_atomic();
9c4e6b1a
SB
983
984 if (page_evictable(page)) {
9c4e6b1a 985 if (was_unevictable)
5d91f31f 986 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
9c4e6b1a 987 } else {
9c4e6b1a
SB
988 ClearPageActive(page);
989 SetPageUnevictable(page);
990 if (!was_unevictable)
5d91f31f 991 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
9c4e6b1a
SB
992 }
993
3a9c9788 994 add_page_to_lru_list(page, lruvec);
86140453 995 trace_mm_lru_insertion(page);
3dd7ae8e
SL
996}
997
1da177e4
LT
998/*
999 * Add the passed pages to the LRU, then drop the caller's refcount
1000 * on them. Reinitialises the caller's pagevec.
1001 */
a0b8cab3 1002void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1003{
fc574c23 1004 int i;
6168d0da 1005 struct lruvec *lruvec = NULL;
fc574c23
AS
1006 unsigned long flags = 0;
1007
1008 for (i = 0; i < pagevec_count(pvec); i++) {
1009 struct page *page = pvec->pages[i];
fc574c23 1010
2a5e4e34 1011 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
fc574c23
AS
1012 __pagevec_lru_add_fn(page, lruvec);
1013 }
6168d0da
AS
1014 if (lruvec)
1015 unlock_page_lruvec_irqrestore(lruvec, flags);
fc574c23
AS
1016 release_pages(pvec->pages, pvec->nr);
1017 pagevec_reinit(pvec);
1da177e4 1018}
1da177e4 1019
0cd6144a
JW
1020/**
1021 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1022 * @pvec: The pagevec to prune
1023 *
a656a202
MWO
1024 * find_get_entries() fills both pages and XArray value entries (aka
1025 * exceptional entries) into the pagevec. This function prunes all
0cd6144a
JW
1026 * exceptionals from @pvec without leaving holes, so that it can be
1027 * passed on to page-only pagevec operations.
1028 */
1029void pagevec_remove_exceptionals(struct pagevec *pvec)
1030{
1031 int i, j;
1032
1033 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1034 struct page *page = pvec->pages[i];
3159f943 1035 if (!xa_is_value(page))
0cd6144a
JW
1036 pvec->pages[j++] = page;
1037 }
1038 pvec->nr = j;
1039}
1040
1da177e4 1041/**
b947cee4 1042 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1043 * @pvec: Where the resulting pages are placed
1044 * @mapping: The address_space to search
1045 * @start: The starting page index
b947cee4 1046 * @end: The final page index
1da177e4 1047 *
e02a9f04 1048 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1049 * pages in the mapping starting from index @start and upto index @end
1050 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1051 * reference against the pages in @pvec.
1052 *
1053 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1054 * indexes. There may be holes in the indices due to not-present pages. We
1055 * also update @start to index the next page for the traversal.
1da177e4 1056 *
b947cee4 1057 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1058 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1059 * reached.
1da177e4 1060 */
b947cee4 1061unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1062 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1063{
397162ff 1064 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1065 pvec->pages);
1da177e4
LT
1066 return pagevec_count(pvec);
1067}
b947cee4 1068EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1069
72b045ae
JK
1070unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1071 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1072 xa_mark_t tag)
1da177e4 1073{
72b045ae 1074 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1075 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1076 return pagevec_count(pvec);
1077}
72b045ae 1078EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1079
1da177e4
LT
1080/*
1081 * Perform any setup for the swap system
1082 */
1083void __init swap_setup(void)
1084{
ca79b0c2 1085 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1086
1da177e4
LT
1087 /* Use a smaller cluster for small-memory machines */
1088 if (megs < 16)
1089 page_cluster = 2;
1090 else
1091 page_cluster = 3;
1092 /*
1093 * Right now other parts of the system means that we
1094 * _really_ don't want to cluster much more
1095 */
1da177e4 1096}
07d80269
JH
1097
1098#ifdef CONFIG_DEV_PAGEMAP_OPS
1099void put_devmap_managed_page(struct page *page)
1100{
1101 int count;
1102
1103 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1104 return;
1105
1106 count = page_ref_dec_return(page);
1107
1108 /*
1109 * devmap page refcounts are 1-based, rather than 0-based: if
1110 * refcount is 1, then the page is free and the refcount is
1111 * stable because nobody holds a reference on the page.
1112 */
1113 if (count == 1)
1114 free_devmap_managed_page(page);
1115 else if (!count)
1116 __put_page(page);
1117}
1118EXPORT_SYMBOL(put_devmap_managed_page);
1119#endif