mm, thp: tweak reclaim/compaction effort of local-only and all-node allocations
[linux-2.6-block.git] / mm / sparse.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
d41dee36
AW
2/*
3 * sparse memory mappings.
4 */
d41dee36 5#include <linux/mm.h>
5a0e3ad6 6#include <linux/slab.h>
d41dee36 7#include <linux/mmzone.h>
97ad1087 8#include <linux/memblock.h>
3b32123d 9#include <linux/compiler.h>
0b0acbec 10#include <linux/highmem.h>
b95f1b31 11#include <linux/export.h>
28ae55c9 12#include <linux/spinlock.h>
0b0acbec 13#include <linux/vmalloc.h>
9f82883c
AS
14#include <linux/swap.h>
15#include <linux/swapops.h>
3b32123d 16
0c0a4a51 17#include "internal.h"
d41dee36 18#include <asm/dma.h>
8f6aac41
CL
19#include <asm/pgalloc.h>
20#include <asm/pgtable.h>
d41dee36
AW
21
22/*
23 * Permanent SPARSEMEM data:
24 *
25 * 1) mem_section - memory sections, mem_map's for valid memory
26 */
3e347261 27#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 28struct mem_section **mem_section;
3e347261
BP
29#else
30struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 31 ____cacheline_internodealigned_in_smp;
3e347261
BP
32#endif
33EXPORT_SYMBOL(mem_section);
34
89689ae7
CL
35#ifdef NODE_NOT_IN_PAGE_FLAGS
36/*
37 * If we did not store the node number in the page then we have to
38 * do a lookup in the section_to_node_table in order to find which
39 * node the page belongs to.
40 */
41#if MAX_NUMNODES <= 256
42static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43#else
44static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45#endif
46
33dd4e0e 47int page_to_nid(const struct page *page)
89689ae7
CL
48{
49 return section_to_node_table[page_to_section(page)];
50}
51EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
52
53static void set_section_nid(unsigned long section_nr, int nid)
54{
55 section_to_node_table[section_nr] = nid;
56}
57#else /* !NODE_NOT_IN_PAGE_FLAGS */
58static inline void set_section_nid(unsigned long section_nr, int nid)
59{
60}
89689ae7
CL
61#endif
62
3e347261 63#ifdef CONFIG_SPARSEMEM_EXTREME
bd721ea7 64static noinline struct mem_section __ref *sparse_index_alloc(int nid)
28ae55c9
DH
65{
66 struct mem_section *section = NULL;
67 unsigned long array_size = SECTIONS_PER_ROOT *
68 sizeof(struct mem_section);
69
8a7f97b9 70 if (slab_is_available()) {
b95046b0 71 section = kzalloc_node(array_size, GFP_KERNEL, nid);
8a7f97b9 72 } else {
7e1c4e27
MR
73 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74 nid);
8a7f97b9
MR
75 if (!section)
76 panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 __func__, array_size, nid);
78 }
28ae55c9
DH
79
80 return section;
3e347261 81}
802f192e 82
a3142c8e 83static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 84{
28ae55c9
DH
85 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86 struct mem_section *section;
802f192e 87
ba72b4c8
DW
88 /*
89 * An existing section is possible in the sub-section hotplug
90 * case. First hot-add instantiates, follow-on hot-add reuses
91 * the existing section.
92 *
93 * The mem_hotplug_lock resolves the apparent race below.
94 */
802f192e 95 if (mem_section[root])
ba72b4c8 96 return 0;
3e347261 97
28ae55c9 98 section = sparse_index_alloc(nid);
af0cd5a7
WC
99 if (!section)
100 return -ENOMEM;
28ae55c9
DH
101
102 mem_section[root] = section;
c1c95183 103
9d1936cf 104 return 0;
28ae55c9
DH
105}
106#else /* !SPARSEMEM_EXTREME */
107static inline int sparse_index_init(unsigned long section_nr, int nid)
108{
109 return 0;
802f192e 110}
28ae55c9
DH
111#endif
112
91fd8b95 113#ifdef CONFIG_SPARSEMEM_EXTREME
2491f0a2 114unsigned long __section_nr(struct mem_section *ms)
4ca644d9
DH
115{
116 unsigned long root_nr;
83e3c487 117 struct mem_section *root = NULL;
4ca644d9 118
12783b00
MK
119 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
121 if (!root)
122 continue;
123
124 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125 break;
126 }
127
83e3c487 128 VM_BUG_ON(!root);
db36a461 129
4ca644d9
DH
130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131}
91fd8b95 132#else
2491f0a2 133unsigned long __section_nr(struct mem_section *ms)
91fd8b95 134{
2491f0a2 135 return (unsigned long)(ms - mem_section[0]);
91fd8b95
ZC
136}
137#endif
4ca644d9 138
30c253e6
AW
139/*
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node. This keeps us from having to use another data structure. The
143 * node information is cleared just before we store the real mem_map.
144 */
145static inline unsigned long sparse_encode_early_nid(int nid)
146{
147 return (nid << SECTION_NID_SHIFT);
148}
149
150static inline int sparse_early_nid(struct mem_section *section)
151{
152 return (section->section_mem_map >> SECTION_NID_SHIFT);
153}
154
2dbb51c4
MG
155/* Validate the physical addressing limitations of the model */
156void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157 unsigned long *end_pfn)
d41dee36 158{
2dbb51c4 159 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 160
bead9a3a
IM
161 /*
162 * Sanity checks - do not allow an architecture to pass
163 * in larger pfns than the maximum scope of sparsemem:
164 */
2dbb51c4
MG
165 if (*start_pfn > max_sparsemem_pfn) {
166 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 *start_pfn, *end_pfn, max_sparsemem_pfn);
169 WARN_ON_ONCE(1);
170 *start_pfn = max_sparsemem_pfn;
171 *end_pfn = max_sparsemem_pfn;
ef161a98 172 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
173 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 *start_pfn, *end_pfn, max_sparsemem_pfn);
176 WARN_ON_ONCE(1);
177 *end_pfn = max_sparsemem_pfn;
178 }
179}
180
c4e1be9e
DH
181/*
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each. But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
186 *
187 * Keeping track of this gives us an easy way to break out of
188 * those loops early.
189 */
2491f0a2 190unsigned long __highest_present_section_nr;
c4e1be9e
DH
191static void section_mark_present(struct mem_section *ms)
192{
2491f0a2 193 unsigned long section_nr = __section_nr(ms);
c4e1be9e
DH
194
195 if (section_nr > __highest_present_section_nr)
196 __highest_present_section_nr = section_nr;
197
198 ms->section_mem_map |= SECTION_MARKED_PRESENT;
199}
200
2491f0a2 201static inline unsigned long next_present_section_nr(unsigned long section_nr)
c4e1be9e
DH
202{
203 do {
204 section_nr++;
205 if (present_section_nr(section_nr))
206 return section_nr;
d538c164 207 } while ((section_nr <= __highest_present_section_nr));
c4e1be9e
DH
208
209 return -1;
210}
211#define for_each_present_section_nr(start, section_nr) \
212 for (section_nr = next_present_section_nr(start-1); \
d778015a 213 ((section_nr != -1) && \
c4e1be9e
DH
214 (section_nr <= __highest_present_section_nr)); \
215 section_nr = next_present_section_nr(section_nr))
216
85c77f79
PT
217static inline unsigned long first_present_section_nr(void)
218{
219 return next_present_section_nr(-1);
220}
221
758b8db4 222static void subsection_mask_set(unsigned long *map, unsigned long pfn,
f46edbd1
DW
223 unsigned long nr_pages)
224{
225 int idx = subsection_map_index(pfn);
226 int end = subsection_map_index(pfn + nr_pages - 1);
227
228 bitmap_set(map, idx, end - idx + 1);
229}
230
231void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
232{
233 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
9a845030 234 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
f46edbd1
DW
235
236 if (!nr_pages)
237 return;
238
9a845030 239 for (nr = start_sec; nr <= end_sec; nr++) {
f46edbd1
DW
240 struct mem_section *ms;
241 unsigned long pfns;
242
243 pfns = min(nr_pages, PAGES_PER_SECTION
244 - (pfn & ~PAGE_SECTION_MASK));
9a845030 245 ms = __nr_to_section(nr);
f46edbd1
DW
246 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
247
9a845030 248 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
f46edbd1
DW
249 pfns, subsection_map_index(pfn),
250 subsection_map_index(pfn + pfns - 1));
251
252 pfn += pfns;
253 nr_pages -= pfns;
254 }
255}
256
2dbb51c4
MG
257/* Record a memory area against a node. */
258void __init memory_present(int nid, unsigned long start, unsigned long end)
259{
260 unsigned long pfn;
bead9a3a 261
629a359b
KS
262#ifdef CONFIG_SPARSEMEM_EXTREME
263 if (unlikely(!mem_section)) {
264 unsigned long size, align;
265
d09cfbbf 266 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
629a359b 267 align = 1 << (INTERNODE_CACHE_SHIFT);
eb31d559 268 mem_section = memblock_alloc(size, align);
8a7f97b9
MR
269 if (!mem_section)
270 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
271 __func__, size, align);
629a359b
KS
272 }
273#endif
274
d41dee36 275 start &= PAGE_SECTION_MASK;
2dbb51c4 276 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
277 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
278 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
279 struct mem_section *ms;
280
281 sparse_index_init(section, nid);
85770ffe 282 set_section_nid(section, nid);
802f192e
BP
283
284 ms = __nr_to_section(section);
c4e1be9e 285 if (!ms->section_mem_map) {
2d070eab
MH
286 ms->section_mem_map = sparse_encode_early_nid(nid) |
287 SECTION_IS_ONLINE;
c4e1be9e
DH
288 section_mark_present(ms);
289 }
d41dee36
AW
290 }
291}
292
9def36e0
LG
293/*
294 * Mark all memblocks as present using memory_present(). This is a
295 * convienence function that is useful for a number of arches
296 * to mark all of the systems memory as present during initialization.
297 */
298void __init memblocks_present(void)
299{
300 struct memblock_region *reg;
301
302 for_each_memblock(memory, reg) {
303 memory_present(memblock_get_region_node(reg),
304 memblock_region_memory_base_pfn(reg),
305 memblock_region_memory_end_pfn(reg));
306 }
307}
308
29751f69
AW
309/*
310 * Subtle, we encode the real pfn into the mem_map such that
311 * the identity pfn - section_mem_map will return the actual
312 * physical page frame number.
313 */
314static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
315{
def9b71e
PT
316 unsigned long coded_mem_map =
317 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
318 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
319 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
320 return coded_mem_map;
29751f69
AW
321}
322
323/*
ea01ea93 324 * Decode mem_map from the coded memmap
29751f69 325 */
29751f69
AW
326struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
327{
ea01ea93
BP
328 /* mask off the extra low bits of information */
329 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
330 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
331}
332
4e40987f 333static void __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066 334 unsigned long pnum, struct page *mem_map,
326e1b8f 335 struct mem_section_usage *usage, unsigned long flags)
29751f69 336{
30c253e6 337 ms->section_mem_map &= ~SECTION_MAP_MASK;
326e1b8f
DW
338 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
339 | SECTION_HAS_MEM_MAP | flags;
f1eca35a 340 ms->usage = usage;
29751f69
AW
341}
342
f1eca35a 343static unsigned long usemap_size(void)
5c0e3066 344{
60a7a88d 345 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
5c0e3066
MG
346}
347
f1eca35a 348size_t mem_section_usage_size(void)
5c0e3066 349{
f1eca35a 350 return sizeof(struct mem_section_usage) + usemap_size();
5c0e3066 351}
5c0e3066 352
48c90682 353#ifdef CONFIG_MEMORY_HOTREMOVE
f1eca35a 354static struct mem_section_usage * __init
a4322e1b 355sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 356 unsigned long size)
48c90682 357{
f1eca35a 358 struct mem_section_usage *usage;
99ab7b19 359 unsigned long goal, limit;
99ab7b19 360 int nid;
48c90682
YG
361 /*
362 * A page may contain usemaps for other sections preventing the
363 * page being freed and making a section unremovable while
c800bcd5 364 * other sections referencing the usemap remain active. Similarly,
48c90682
YG
365 * a pgdat can prevent a section being removed. If section A
366 * contains a pgdat and section B contains the usemap, both
367 * sections become inter-dependent. This allocates usemaps
368 * from the same section as the pgdat where possible to avoid
369 * this problem.
370 */
07b4e2bc 371 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
99ab7b19
YL
372 limit = goal + (1UL << PA_SECTION_SHIFT);
373 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
374again:
f1eca35a
DW
375 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
376 if (!usage && limit) {
99ab7b19
YL
377 limit = 0;
378 goto again;
379 }
f1eca35a 380 return usage;
48c90682
YG
381}
382
f1eca35a
DW
383static void __init check_usemap_section_nr(int nid,
384 struct mem_section_usage *usage)
48c90682
YG
385{
386 unsigned long usemap_snr, pgdat_snr;
83e3c487
KS
387 static unsigned long old_usemap_snr;
388 static unsigned long old_pgdat_snr;
48c90682
YG
389 struct pglist_data *pgdat = NODE_DATA(nid);
390 int usemap_nid;
391
83e3c487
KS
392 /* First call */
393 if (!old_usemap_snr) {
394 old_usemap_snr = NR_MEM_SECTIONS;
395 old_pgdat_snr = NR_MEM_SECTIONS;
396 }
397
f1eca35a 398 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
48c90682
YG
399 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
400 if (usemap_snr == pgdat_snr)
401 return;
402
403 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
404 /* skip redundant message */
405 return;
406
407 old_usemap_snr = usemap_snr;
408 old_pgdat_snr = pgdat_snr;
409
410 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
411 if (usemap_nid != nid) {
1170532b
JP
412 pr_info("node %d must be removed before remove section %ld\n",
413 nid, usemap_snr);
48c90682
YG
414 return;
415 }
416 /*
417 * There is a circular dependency.
418 * Some platforms allow un-removable section because they will just
419 * gather other removable sections for dynamic partitioning.
420 * Just notify un-removable section's number here.
421 */
1170532b
JP
422 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
423 usemap_snr, pgdat_snr, nid);
48c90682
YG
424}
425#else
f1eca35a 426static struct mem_section_usage * __init
a4322e1b 427sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 428 unsigned long size)
48c90682 429{
26fb3dae 430 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
48c90682
YG
431}
432
f1eca35a
DW
433static void __init check_usemap_section_nr(int nid,
434 struct mem_section_usage *usage)
48c90682
YG
435{
436}
437#endif /* CONFIG_MEMORY_HOTREMOVE */
438
35fd1eb1 439#ifdef CONFIG_SPARSEMEM_VMEMMAP
afda57bc 440static unsigned long __init section_map_size(void)
35fd1eb1
PT
441{
442 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
443}
444
445#else
afda57bc 446static unsigned long __init section_map_size(void)
e131c06b
PT
447{
448 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
449}
450
e9c0a3f0
DW
451struct page __init *__populate_section_memmap(unsigned long pfn,
452 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
29751f69 453{
e131c06b
PT
454 unsigned long size = section_map_size();
455 struct page *map = sparse_buffer_alloc(size);
8a7f97b9 456 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
e131c06b
PT
457
458 if (map)
459 return map;
29751f69 460
09dbcf42 461 map = memblock_alloc_try_nid_raw(size, size, addr,
97ad1087 462 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
8a7f97b9
MR
463 if (!map)
464 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
465 __func__, size, PAGE_SIZE, nid, &addr);
466
8f6aac41
CL
467 return map;
468}
469#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
470
35fd1eb1
PT
471static void *sparsemap_buf __meminitdata;
472static void *sparsemap_buf_end __meminitdata;
473
ae831894
LC
474static inline void __meminit sparse_buffer_free(unsigned long size)
475{
476 WARN_ON(!sparsemap_buf || size == 0);
477 memblock_free_early(__pa(sparsemap_buf), size);
478}
479
afda57bc 480static void __init sparse_buffer_init(unsigned long size, int nid)
35fd1eb1 481{
8a7f97b9 482 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
35fd1eb1 483 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
09dbcf42
MH
484 /*
485 * Pre-allocated buffer is mainly used by __populate_section_memmap
486 * and we want it to be properly aligned to the section size - this is
487 * especially the case for VMEMMAP which maps memmap to PMDs
488 */
0ac398b1 489 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
09dbcf42 490 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
35fd1eb1
PT
491 sparsemap_buf_end = sparsemap_buf + size;
492}
493
afda57bc 494static void __init sparse_buffer_fini(void)
35fd1eb1
PT
495{
496 unsigned long size = sparsemap_buf_end - sparsemap_buf;
497
498 if (sparsemap_buf && size > 0)
ae831894 499 sparse_buffer_free(size);
35fd1eb1
PT
500 sparsemap_buf = NULL;
501}
502
503void * __meminit sparse_buffer_alloc(unsigned long size)
504{
505 void *ptr = NULL;
506
507 if (sparsemap_buf) {
db57e98d 508 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
35fd1eb1
PT
509 if (ptr + size > sparsemap_buf_end)
510 ptr = NULL;
ae831894
LC
511 else {
512 /* Free redundant aligned space */
513 if ((unsigned long)(ptr - sparsemap_buf) > 0)
514 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
35fd1eb1 515 sparsemap_buf = ptr + size;
ae831894 516 }
35fd1eb1
PT
517 }
518 return ptr;
519}
520
3b32123d 521void __weak __meminit vmemmap_populate_print_last(void)
c2b91e2e
YL
522{
523}
a4322e1b 524
85c77f79
PT
525/*
526 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
527 * And number of present sections in this node is map_count.
528 */
529static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
530 unsigned long pnum_end,
531 unsigned long map_count)
532{
f1eca35a
DW
533 struct mem_section_usage *usage;
534 unsigned long pnum;
85c77f79
PT
535 struct page *map;
536
f1eca35a
DW
537 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
538 mem_section_usage_size() * map_count);
539 if (!usage) {
85c77f79
PT
540 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
541 goto failed;
542 }
543 sparse_buffer_init(map_count * section_map_size(), nid);
544 for_each_present_section_nr(pnum_begin, pnum) {
e9c0a3f0
DW
545 unsigned long pfn = section_nr_to_pfn(pnum);
546
85c77f79
PT
547 if (pnum >= pnum_end)
548 break;
549
e9c0a3f0
DW
550 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
551 nid, NULL);
85c77f79
PT
552 if (!map) {
553 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
554 __func__, nid);
555 pnum_begin = pnum;
556 goto failed;
557 }
f1eca35a 558 check_usemap_section_nr(nid, usage);
326e1b8f
DW
559 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
560 SECTION_IS_EARLY);
f1eca35a 561 usage = (void *) usage + mem_section_usage_size();
85c77f79
PT
562 }
563 sparse_buffer_fini();
564 return;
565failed:
566 /* We failed to allocate, mark all the following pnums as not present */
567 for_each_present_section_nr(pnum_begin, pnum) {
568 struct mem_section *ms;
569
570 if (pnum >= pnum_end)
571 break;
572 ms = __nr_to_section(pnum);
573 ms->section_mem_map = 0;
574 }
575}
576
577/*
578 * Allocate the accumulated non-linear sections, allocate a mem_map
579 * for each and record the physical to section mapping.
580 */
2a3cb8ba 581void __init sparse_init(void)
85c77f79
PT
582{
583 unsigned long pnum_begin = first_present_section_nr();
584 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
585 unsigned long pnum_end, map_count = 1;
586
587 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
588 set_pageblock_order();
589
590 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
591 int nid = sparse_early_nid(__nr_to_section(pnum_end));
592
593 if (nid == nid_begin) {
594 map_count++;
595 continue;
596 }
597 /* Init node with sections in range [pnum_begin, pnum_end) */
598 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
599 nid_begin = nid;
600 pnum_begin = pnum_end;
601 map_count = 1;
602 }
603 /* cover the last node */
604 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
605 vmemmap_populate_print_last();
606}
607
193faea9 608#ifdef CONFIG_MEMORY_HOTPLUG
2d070eab
MH
609
610/* Mark all memory sections within the pfn range as online */
611void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
612{
613 unsigned long pfn;
614
615 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
b4ccec41 616 unsigned long section_nr = pfn_to_section_nr(pfn);
2d070eab
MH
617 struct mem_section *ms;
618
619 /* onlining code should never touch invalid ranges */
620 if (WARN_ON(!valid_section_nr(section_nr)))
621 continue;
622
623 ms = __nr_to_section(section_nr);
624 ms->section_mem_map |= SECTION_IS_ONLINE;
625 }
626}
627
628#ifdef CONFIG_MEMORY_HOTREMOVE
9b7ea46a 629/* Mark all memory sections within the pfn range as offline */
2d070eab
MH
630void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
631{
632 unsigned long pfn;
633
634 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
27227c73 635 unsigned long section_nr = pfn_to_section_nr(pfn);
2d070eab
MH
636 struct mem_section *ms;
637
638 /*
639 * TODO this needs some double checking. Offlining code makes
640 * sure to check pfn_valid but those checks might be just bogus
641 */
642 if (WARN_ON(!valid_section_nr(section_nr)))
643 continue;
644
645 ms = __nr_to_section(section_nr);
646 ms->section_mem_map &= ~SECTION_IS_ONLINE;
647 }
648}
649#endif
650
98f3cfc1 651#ifdef CONFIG_SPARSEMEM_VMEMMAP
030eab4f 652static struct page * __meminit populate_section_memmap(unsigned long pfn,
e9c0a3f0 653 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
98f3cfc1 654{
e9c0a3f0 655 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
98f3cfc1 656}
e9c0a3f0
DW
657
658static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
24b6d416 659 struct vmem_altmap *altmap)
98f3cfc1 660{
e9c0a3f0
DW
661 unsigned long start = (unsigned long) pfn_to_page(pfn);
662 unsigned long end = start + nr_pages * sizeof(struct page);
0aad818b 663
24b6d416 664 vmemmap_free(start, end, altmap);
98f3cfc1 665}
81556b02 666static void free_map_bootmem(struct page *memmap)
0c0a4a51 667{
0aad818b 668 unsigned long start = (unsigned long)memmap;
81556b02 669 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
0aad818b 670
24b6d416 671 vmemmap_free(start, end, NULL);
0c0a4a51 672}
98f3cfc1 673#else
030eab4f 674struct page * __meminit populate_section_memmap(unsigned long pfn,
e9c0a3f0 675 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
0b0acbec
DH
676{
677 struct page *page, *ret;
85b35fea 678 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
0b0acbec 679
f2d0aa5b 680 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
681 if (page)
682 goto got_map_page;
683
684 ret = vmalloc(memmap_size);
685 if (ret)
686 goto got_map_ptr;
687
688 return NULL;
689got_map_page:
690 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
691got_map_ptr:
0b0acbec
DH
692
693 return ret;
694}
695
e9c0a3f0 696static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
7b73d978 697 struct vmem_altmap *altmap)
98f3cfc1 698{
e9c0a3f0 699 struct page *memmap = pfn_to_page(pfn);
98f3cfc1 700
9e2779fa 701 if (is_vmalloc_addr(memmap))
0b0acbec
DH
702 vfree(memmap);
703 else
704 free_pages((unsigned long)memmap,
85b35fea 705 get_order(sizeof(struct page) * PAGES_PER_SECTION));
0b0acbec 706}
0c0a4a51 707
81556b02 708static void free_map_bootmem(struct page *memmap)
0c0a4a51
YG
709{
710 unsigned long maps_section_nr, removing_section_nr, i;
81556b02 711 unsigned long magic, nr_pages;
ae64ffca 712 struct page *page = virt_to_page(memmap);
0c0a4a51 713
81556b02
ZY
714 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
715 >> PAGE_SHIFT;
716
0c0a4a51 717 for (i = 0; i < nr_pages; i++, page++) {
ddffe98d 718 magic = (unsigned long) page->freelist;
0c0a4a51
YG
719
720 BUG_ON(magic == NODE_INFO);
721
722 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
857e522a 723 removing_section_nr = page_private(page);
0c0a4a51
YG
724
725 /*
726 * When this function is called, the removing section is
727 * logical offlined state. This means all pages are isolated
728 * from page allocator. If removing section's memmap is placed
729 * on the same section, it must not be freed.
730 * If it is freed, page allocator may allocate it which will
731 * be removed physically soon.
732 */
733 if (maps_section_nr != removing_section_nr)
734 put_page_bootmem(page);
735 }
736}
98f3cfc1 737#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 738
ba72b4c8
DW
739static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
740 struct vmem_altmap *altmap)
741{
742 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
743 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
744 struct mem_section *ms = __pfn_to_section(pfn);
745 bool section_is_early = early_section(ms);
746 struct page *memmap = NULL;
747 unsigned long *subsection_map = ms->usage
748 ? &ms->usage->subsection_map[0] : NULL;
749
750 subsection_mask_set(map, pfn, nr_pages);
751 if (subsection_map)
752 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
753
754 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
755 "section already deactivated (%#lx + %ld)\n",
756 pfn, nr_pages))
757 return;
758
759 /*
760 * There are 3 cases to handle across two configurations
761 * (SPARSEMEM_VMEMMAP={y,n}):
762 *
763 * 1/ deactivation of a partial hot-added section (only possible
764 * in the SPARSEMEM_VMEMMAP=y case).
765 * a/ section was present at memory init
766 * b/ section was hot-added post memory init
767 * 2/ deactivation of a complete hot-added section
768 * 3/ deactivation of a complete section from memory init
769 *
770 * For 1/, when subsection_map does not empty we will not be
771 * freeing the usage map, but still need to free the vmemmap
772 * range.
773 *
774 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
775 */
776 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
777 if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) {
778 unsigned long section_nr = pfn_to_section_nr(pfn);
779
780 if (!section_is_early) {
781 kfree(ms->usage);
782 ms->usage = NULL;
783 }
784 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
785 ms->section_mem_map = sparse_encode_mem_map(NULL, section_nr);
786 }
787
788 if (section_is_early && memmap)
789 free_map_bootmem(memmap);
790 else
791 depopulate_section_memmap(pfn, nr_pages, altmap);
792}
793
794static struct page * __meminit section_activate(int nid, unsigned long pfn,
795 unsigned long nr_pages, struct vmem_altmap *altmap)
796{
797 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
798 struct mem_section *ms = __pfn_to_section(pfn);
799 struct mem_section_usage *usage = NULL;
800 unsigned long *subsection_map;
801 struct page *memmap;
802 int rc = 0;
803
804 subsection_mask_set(map, pfn, nr_pages);
805
806 if (!ms->usage) {
807 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
808 if (!usage)
809 return ERR_PTR(-ENOMEM);
810 ms->usage = usage;
811 }
812 subsection_map = &ms->usage->subsection_map[0];
813
814 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
815 rc = -EINVAL;
816 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
817 rc = -EEXIST;
818 else
819 bitmap_or(subsection_map, map, subsection_map,
820 SUBSECTIONS_PER_SECTION);
821
822 if (rc) {
823 if (usage)
824 ms->usage = NULL;
825 kfree(usage);
826 return ERR_PTR(rc);
827 }
828
829 /*
830 * The early init code does not consider partially populated
831 * initial sections, it simply assumes that memory will never be
832 * referenced. If we hot-add memory into such a section then we
833 * do not need to populate the memmap and can simply reuse what
834 * is already there.
835 */
836 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
837 return pfn_to_page(pfn);
838
839 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
840 if (!memmap) {
841 section_deactivate(pfn, nr_pages, altmap);
842 return ERR_PTR(-ENOMEM);
843 }
844
845 return memmap;
846}
847
7567cfc5 848/**
ba72b4c8 849 * sparse_add_section - add a memory section, or populate an existing one
7567cfc5
BH
850 * @nid: The node to add section on
851 * @start_pfn: start pfn of the memory range
ba72b4c8 852 * @nr_pages: number of pfns to add in the section
7567cfc5
BH
853 * @altmap: device page map
854 *
855 * This is only intended for hotplug.
856 *
857 * Return:
858 * * 0 - On success.
859 * * -EEXIST - Section has been present.
860 * * -ENOMEM - Out of memory.
29751f69 861 */
7ea62160
DW
862int __meminit sparse_add_section(int nid, unsigned long start_pfn,
863 unsigned long nr_pages, struct vmem_altmap *altmap)
29751f69 864{
0b0acbec 865 unsigned long section_nr = pfn_to_section_nr(start_pfn);
0b0acbec
DH
866 struct mem_section *ms;
867 struct page *memmap;
0b0acbec 868 int ret;
29751f69 869
4e0d2e7e 870 ret = sparse_index_init(section_nr, nid);
ba72b4c8 871 if (ret < 0)
bbd06825 872 return ret;
0b0acbec 873
ba72b4c8
DW
874 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
875 if (IS_ERR(memmap))
876 return PTR_ERR(memmap);
5c0e3066 877
d0dc12e8
PT
878 /*
879 * Poison uninitialized struct pages in order to catch invalid flags
880 * combinations.
881 */
ba72b4c8 882 page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
3ac19f8e 883
c1cbc3ee 884 ms = __nr_to_section(section_nr);
26f26bed 885 set_section_nid(section_nr, nid);
c4e1be9e 886 section_mark_present(ms);
0b0acbec 887
ba72b4c8
DW
888 /* Align memmap to section boundary in the subsection case */
889 if (section_nr_to_pfn(section_nr) != start_pfn)
890 memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
891 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
892
893 return 0;
29751f69 894}
ea01ea93 895
95a4774d
WC
896#ifdef CONFIG_MEMORY_FAILURE
897static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
898{
899 int i;
900
5eb570a8
BS
901 /*
902 * A further optimization is to have per section refcounted
903 * num_poisoned_pages. But that would need more space per memmap, so
904 * for now just do a quick global check to speed up this routine in the
905 * absence of bad pages.
906 */
907 if (atomic_long_read(&num_poisoned_pages) == 0)
908 return;
909
4b94ffdc 910 for (i = 0; i < nr_pages; i++) {
95a4774d 911 if (PageHWPoison(&memmap[i])) {
9f82883c 912 num_poisoned_pages_dec();
95a4774d
WC
913 ClearPageHWPoison(&memmap[i]);
914 }
915 }
916}
917#else
918static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
919{
920}
921#endif
922
ba72b4c8 923void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
7ea62160
DW
924 unsigned long nr_pages, unsigned long map_offset,
925 struct vmem_altmap *altmap)
ea01ea93 926{
ba72b4c8
DW
927 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
928 nr_pages - map_offset);
929 section_deactivate(pfn, nr_pages, altmap);
ea01ea93 930}
4edd7cef 931#endif /* CONFIG_MEMORY_HOTPLUG */