mm/sparse.c: introduce new function fill_subsection_map()
[linux-block.git] / mm / sparse.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
d41dee36
AW
2/*
3 * sparse memory mappings.
4 */
d41dee36 5#include <linux/mm.h>
5a0e3ad6 6#include <linux/slab.h>
d41dee36 7#include <linux/mmzone.h>
97ad1087 8#include <linux/memblock.h>
3b32123d 9#include <linux/compiler.h>
0b0acbec 10#include <linux/highmem.h>
b95f1b31 11#include <linux/export.h>
28ae55c9 12#include <linux/spinlock.h>
0b0acbec 13#include <linux/vmalloc.h>
9f82883c
AS
14#include <linux/swap.h>
15#include <linux/swapops.h>
3b32123d 16
0c0a4a51 17#include "internal.h"
d41dee36 18#include <asm/dma.h>
8f6aac41
CL
19#include <asm/pgalloc.h>
20#include <asm/pgtable.h>
d41dee36
AW
21
22/*
23 * Permanent SPARSEMEM data:
24 *
25 * 1) mem_section - memory sections, mem_map's for valid memory
26 */
3e347261 27#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 28struct mem_section **mem_section;
3e347261
BP
29#else
30struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 31 ____cacheline_internodealigned_in_smp;
3e347261
BP
32#endif
33EXPORT_SYMBOL(mem_section);
34
89689ae7
CL
35#ifdef NODE_NOT_IN_PAGE_FLAGS
36/*
37 * If we did not store the node number in the page then we have to
38 * do a lookup in the section_to_node_table in order to find which
39 * node the page belongs to.
40 */
41#if MAX_NUMNODES <= 256
42static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43#else
44static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45#endif
46
33dd4e0e 47int page_to_nid(const struct page *page)
89689ae7
CL
48{
49 return section_to_node_table[page_to_section(page)];
50}
51EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
52
53static void set_section_nid(unsigned long section_nr, int nid)
54{
55 section_to_node_table[section_nr] = nid;
56}
57#else /* !NODE_NOT_IN_PAGE_FLAGS */
58static inline void set_section_nid(unsigned long section_nr, int nid)
59{
60}
89689ae7
CL
61#endif
62
3e347261 63#ifdef CONFIG_SPARSEMEM_EXTREME
bd721ea7 64static noinline struct mem_section __ref *sparse_index_alloc(int nid)
28ae55c9
DH
65{
66 struct mem_section *section = NULL;
67 unsigned long array_size = SECTIONS_PER_ROOT *
68 sizeof(struct mem_section);
69
8a7f97b9 70 if (slab_is_available()) {
b95046b0 71 section = kzalloc_node(array_size, GFP_KERNEL, nid);
8a7f97b9 72 } else {
7e1c4e27
MR
73 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74 nid);
8a7f97b9
MR
75 if (!section)
76 panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 __func__, array_size, nid);
78 }
28ae55c9
DH
79
80 return section;
3e347261 81}
802f192e 82
a3142c8e 83static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 84{
28ae55c9
DH
85 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86 struct mem_section *section;
802f192e 87
ba72b4c8
DW
88 /*
89 * An existing section is possible in the sub-section hotplug
90 * case. First hot-add instantiates, follow-on hot-add reuses
91 * the existing section.
92 *
93 * The mem_hotplug_lock resolves the apparent race below.
94 */
802f192e 95 if (mem_section[root])
ba72b4c8 96 return 0;
3e347261 97
28ae55c9 98 section = sparse_index_alloc(nid);
af0cd5a7
WC
99 if (!section)
100 return -ENOMEM;
28ae55c9
DH
101
102 mem_section[root] = section;
c1c95183 103
9d1936cf 104 return 0;
28ae55c9
DH
105}
106#else /* !SPARSEMEM_EXTREME */
107static inline int sparse_index_init(unsigned long section_nr, int nid)
108{
109 return 0;
802f192e 110}
28ae55c9
DH
111#endif
112
91fd8b95 113#ifdef CONFIG_SPARSEMEM_EXTREME
2491f0a2 114unsigned long __section_nr(struct mem_section *ms)
4ca644d9
DH
115{
116 unsigned long root_nr;
83e3c487 117 struct mem_section *root = NULL;
4ca644d9 118
12783b00
MK
119 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
121 if (!root)
122 continue;
123
124 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125 break;
126 }
127
83e3c487 128 VM_BUG_ON(!root);
db36a461 129
4ca644d9
DH
130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131}
91fd8b95 132#else
2491f0a2 133unsigned long __section_nr(struct mem_section *ms)
91fd8b95 134{
2491f0a2 135 return (unsigned long)(ms - mem_section[0]);
91fd8b95
ZC
136}
137#endif
4ca644d9 138
30c253e6
AW
139/*
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node. This keeps us from having to use another data structure. The
143 * node information is cleared just before we store the real mem_map.
144 */
145static inline unsigned long sparse_encode_early_nid(int nid)
146{
147 return (nid << SECTION_NID_SHIFT);
148}
149
150static inline int sparse_early_nid(struct mem_section *section)
151{
152 return (section->section_mem_map >> SECTION_NID_SHIFT);
153}
154
2dbb51c4
MG
155/* Validate the physical addressing limitations of the model */
156void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157 unsigned long *end_pfn)
d41dee36 158{
2dbb51c4 159 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 160
bead9a3a
IM
161 /*
162 * Sanity checks - do not allow an architecture to pass
163 * in larger pfns than the maximum scope of sparsemem:
164 */
2dbb51c4
MG
165 if (*start_pfn > max_sparsemem_pfn) {
166 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 *start_pfn, *end_pfn, max_sparsemem_pfn);
169 WARN_ON_ONCE(1);
170 *start_pfn = max_sparsemem_pfn;
171 *end_pfn = max_sparsemem_pfn;
ef161a98 172 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
173 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 *start_pfn, *end_pfn, max_sparsemem_pfn);
176 WARN_ON_ONCE(1);
177 *end_pfn = max_sparsemem_pfn;
178 }
179}
180
c4e1be9e
DH
181/*
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each. But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
186 *
187 * Keeping track of this gives us an easy way to break out of
188 * those loops early.
189 */
2491f0a2 190unsigned long __highest_present_section_nr;
c4e1be9e
DH
191static void section_mark_present(struct mem_section *ms)
192{
2491f0a2 193 unsigned long section_nr = __section_nr(ms);
c4e1be9e
DH
194
195 if (section_nr > __highest_present_section_nr)
196 __highest_present_section_nr = section_nr;
197
198 ms->section_mem_map |= SECTION_MARKED_PRESENT;
199}
200
c4e1be9e
DH
201#define for_each_present_section_nr(start, section_nr) \
202 for (section_nr = next_present_section_nr(start-1); \
d778015a 203 ((section_nr != -1) && \
c4e1be9e
DH
204 (section_nr <= __highest_present_section_nr)); \
205 section_nr = next_present_section_nr(section_nr))
206
85c77f79
PT
207static inline unsigned long first_present_section_nr(void)
208{
209 return next_present_section_nr(-1);
210}
211
758b8db4 212static void subsection_mask_set(unsigned long *map, unsigned long pfn,
f46edbd1
DW
213 unsigned long nr_pages)
214{
215 int idx = subsection_map_index(pfn);
216 int end = subsection_map_index(pfn + nr_pages - 1);
217
218 bitmap_set(map, idx, end - idx + 1);
219}
220
221void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
222{
223 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
9a845030 224 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
f46edbd1
DW
225
226 if (!nr_pages)
227 return;
228
9a845030 229 for (nr = start_sec; nr <= end_sec; nr++) {
f46edbd1
DW
230 struct mem_section *ms;
231 unsigned long pfns;
232
233 pfns = min(nr_pages, PAGES_PER_SECTION
234 - (pfn & ~PAGE_SECTION_MASK));
9a845030 235 ms = __nr_to_section(nr);
f46edbd1
DW
236 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
237
9a845030 238 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
f46edbd1
DW
239 pfns, subsection_map_index(pfn),
240 subsection_map_index(pfn + pfns - 1));
241
242 pfn += pfns;
243 nr_pages -= pfns;
244 }
245}
246
2dbb51c4
MG
247/* Record a memory area against a node. */
248void __init memory_present(int nid, unsigned long start, unsigned long end)
249{
250 unsigned long pfn;
bead9a3a 251
629a359b
KS
252#ifdef CONFIG_SPARSEMEM_EXTREME
253 if (unlikely(!mem_section)) {
254 unsigned long size, align;
255
d09cfbbf 256 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
629a359b 257 align = 1 << (INTERNODE_CACHE_SHIFT);
eb31d559 258 mem_section = memblock_alloc(size, align);
8a7f97b9
MR
259 if (!mem_section)
260 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
261 __func__, size, align);
629a359b
KS
262 }
263#endif
264
d41dee36 265 start &= PAGE_SECTION_MASK;
2dbb51c4 266 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
267 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
268 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
269 struct mem_section *ms;
270
271 sparse_index_init(section, nid);
85770ffe 272 set_section_nid(section, nid);
802f192e
BP
273
274 ms = __nr_to_section(section);
c4e1be9e 275 if (!ms->section_mem_map) {
2d070eab
MH
276 ms->section_mem_map = sparse_encode_early_nid(nid) |
277 SECTION_IS_ONLINE;
c4e1be9e
DH
278 section_mark_present(ms);
279 }
d41dee36
AW
280 }
281}
282
9def36e0
LG
283/*
284 * Mark all memblocks as present using memory_present(). This is a
285 * convienence function that is useful for a number of arches
286 * to mark all of the systems memory as present during initialization.
287 */
288void __init memblocks_present(void)
289{
290 struct memblock_region *reg;
291
292 for_each_memblock(memory, reg) {
293 memory_present(memblock_get_region_node(reg),
294 memblock_region_memory_base_pfn(reg),
295 memblock_region_memory_end_pfn(reg));
296 }
297}
298
29751f69
AW
299/*
300 * Subtle, we encode the real pfn into the mem_map such that
301 * the identity pfn - section_mem_map will return the actual
302 * physical page frame number.
303 */
304static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
305{
def9b71e
PT
306 unsigned long coded_mem_map =
307 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
308 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
309 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
310 return coded_mem_map;
29751f69
AW
311}
312
313/*
ea01ea93 314 * Decode mem_map from the coded memmap
29751f69 315 */
29751f69
AW
316struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
317{
ea01ea93
BP
318 /* mask off the extra low bits of information */
319 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
320 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
321}
322
4e40987f 323static void __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066 324 unsigned long pnum, struct page *mem_map,
326e1b8f 325 struct mem_section_usage *usage, unsigned long flags)
29751f69 326{
30c253e6 327 ms->section_mem_map &= ~SECTION_MAP_MASK;
326e1b8f
DW
328 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
329 | SECTION_HAS_MEM_MAP | flags;
f1eca35a 330 ms->usage = usage;
29751f69
AW
331}
332
f1eca35a 333static unsigned long usemap_size(void)
5c0e3066 334{
60a7a88d 335 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
5c0e3066
MG
336}
337
f1eca35a 338size_t mem_section_usage_size(void)
5c0e3066 339{
f1eca35a 340 return sizeof(struct mem_section_usage) + usemap_size();
5c0e3066 341}
5c0e3066 342
48c90682 343#ifdef CONFIG_MEMORY_HOTREMOVE
f1eca35a 344static struct mem_section_usage * __init
a4322e1b 345sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 346 unsigned long size)
48c90682 347{
f1eca35a 348 struct mem_section_usage *usage;
99ab7b19 349 unsigned long goal, limit;
99ab7b19 350 int nid;
48c90682
YG
351 /*
352 * A page may contain usemaps for other sections preventing the
353 * page being freed and making a section unremovable while
c800bcd5 354 * other sections referencing the usemap remain active. Similarly,
48c90682
YG
355 * a pgdat can prevent a section being removed. If section A
356 * contains a pgdat and section B contains the usemap, both
357 * sections become inter-dependent. This allocates usemaps
358 * from the same section as the pgdat where possible to avoid
359 * this problem.
360 */
07b4e2bc 361 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
99ab7b19
YL
362 limit = goal + (1UL << PA_SECTION_SHIFT);
363 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
364again:
f1eca35a
DW
365 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
366 if (!usage && limit) {
99ab7b19
YL
367 limit = 0;
368 goto again;
369 }
f1eca35a 370 return usage;
48c90682
YG
371}
372
f1eca35a
DW
373static void __init check_usemap_section_nr(int nid,
374 struct mem_section_usage *usage)
48c90682
YG
375{
376 unsigned long usemap_snr, pgdat_snr;
83e3c487
KS
377 static unsigned long old_usemap_snr;
378 static unsigned long old_pgdat_snr;
48c90682
YG
379 struct pglist_data *pgdat = NODE_DATA(nid);
380 int usemap_nid;
381
83e3c487
KS
382 /* First call */
383 if (!old_usemap_snr) {
384 old_usemap_snr = NR_MEM_SECTIONS;
385 old_pgdat_snr = NR_MEM_SECTIONS;
386 }
387
f1eca35a 388 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
48c90682
YG
389 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
390 if (usemap_snr == pgdat_snr)
391 return;
392
393 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
394 /* skip redundant message */
395 return;
396
397 old_usemap_snr = usemap_snr;
398 old_pgdat_snr = pgdat_snr;
399
400 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
401 if (usemap_nid != nid) {
1170532b
JP
402 pr_info("node %d must be removed before remove section %ld\n",
403 nid, usemap_snr);
48c90682
YG
404 return;
405 }
406 /*
407 * There is a circular dependency.
408 * Some platforms allow un-removable section because they will just
409 * gather other removable sections for dynamic partitioning.
410 * Just notify un-removable section's number here.
411 */
1170532b
JP
412 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
413 usemap_snr, pgdat_snr, nid);
48c90682
YG
414}
415#else
f1eca35a 416static struct mem_section_usage * __init
a4322e1b 417sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 418 unsigned long size)
48c90682 419{
26fb3dae 420 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
48c90682
YG
421}
422
f1eca35a
DW
423static void __init check_usemap_section_nr(int nid,
424 struct mem_section_usage *usage)
48c90682
YG
425{
426}
427#endif /* CONFIG_MEMORY_HOTREMOVE */
428
35fd1eb1 429#ifdef CONFIG_SPARSEMEM_VMEMMAP
afda57bc 430static unsigned long __init section_map_size(void)
35fd1eb1
PT
431{
432 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
433}
434
435#else
afda57bc 436static unsigned long __init section_map_size(void)
e131c06b
PT
437{
438 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
439}
440
e9c0a3f0
DW
441struct page __init *__populate_section_memmap(unsigned long pfn,
442 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
29751f69 443{
e131c06b
PT
444 unsigned long size = section_map_size();
445 struct page *map = sparse_buffer_alloc(size);
8a7f97b9 446 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
e131c06b
PT
447
448 if (map)
449 return map;
29751f69 450
09dbcf42 451 map = memblock_alloc_try_nid_raw(size, size, addr,
97ad1087 452 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
8a7f97b9
MR
453 if (!map)
454 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
455 __func__, size, PAGE_SIZE, nid, &addr);
456
8f6aac41
CL
457 return map;
458}
459#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
460
35fd1eb1
PT
461static void *sparsemap_buf __meminitdata;
462static void *sparsemap_buf_end __meminitdata;
463
ae831894
LC
464static inline void __meminit sparse_buffer_free(unsigned long size)
465{
466 WARN_ON(!sparsemap_buf || size == 0);
467 memblock_free_early(__pa(sparsemap_buf), size);
468}
469
afda57bc 470static void __init sparse_buffer_init(unsigned long size, int nid)
35fd1eb1 471{
8a7f97b9 472 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
35fd1eb1 473 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
09dbcf42
MH
474 /*
475 * Pre-allocated buffer is mainly used by __populate_section_memmap
476 * and we want it to be properly aligned to the section size - this is
477 * especially the case for VMEMMAP which maps memmap to PMDs
478 */
0ac398b1 479 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
09dbcf42 480 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
35fd1eb1
PT
481 sparsemap_buf_end = sparsemap_buf + size;
482}
483
afda57bc 484static void __init sparse_buffer_fini(void)
35fd1eb1
PT
485{
486 unsigned long size = sparsemap_buf_end - sparsemap_buf;
487
488 if (sparsemap_buf && size > 0)
ae831894 489 sparse_buffer_free(size);
35fd1eb1
PT
490 sparsemap_buf = NULL;
491}
492
493void * __meminit sparse_buffer_alloc(unsigned long size)
494{
495 void *ptr = NULL;
496
497 if (sparsemap_buf) {
db57e98d 498 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
35fd1eb1
PT
499 if (ptr + size > sparsemap_buf_end)
500 ptr = NULL;
ae831894
LC
501 else {
502 /* Free redundant aligned space */
503 if ((unsigned long)(ptr - sparsemap_buf) > 0)
504 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
35fd1eb1 505 sparsemap_buf = ptr + size;
ae831894 506 }
35fd1eb1
PT
507 }
508 return ptr;
509}
510
3b32123d 511void __weak __meminit vmemmap_populate_print_last(void)
c2b91e2e
YL
512{
513}
a4322e1b 514
85c77f79
PT
515/*
516 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
517 * And number of present sections in this node is map_count.
518 */
519static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
520 unsigned long pnum_end,
521 unsigned long map_count)
522{
f1eca35a
DW
523 struct mem_section_usage *usage;
524 unsigned long pnum;
85c77f79
PT
525 struct page *map;
526
f1eca35a
DW
527 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
528 mem_section_usage_size() * map_count);
529 if (!usage) {
85c77f79
PT
530 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
531 goto failed;
532 }
533 sparse_buffer_init(map_count * section_map_size(), nid);
534 for_each_present_section_nr(pnum_begin, pnum) {
e9c0a3f0
DW
535 unsigned long pfn = section_nr_to_pfn(pnum);
536
85c77f79
PT
537 if (pnum >= pnum_end)
538 break;
539
e9c0a3f0
DW
540 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
541 nid, NULL);
85c77f79
PT
542 if (!map) {
543 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
544 __func__, nid);
545 pnum_begin = pnum;
546 goto failed;
547 }
f1eca35a 548 check_usemap_section_nr(nid, usage);
326e1b8f
DW
549 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
550 SECTION_IS_EARLY);
f1eca35a 551 usage = (void *) usage + mem_section_usage_size();
85c77f79
PT
552 }
553 sparse_buffer_fini();
554 return;
555failed:
556 /* We failed to allocate, mark all the following pnums as not present */
557 for_each_present_section_nr(pnum_begin, pnum) {
558 struct mem_section *ms;
559
560 if (pnum >= pnum_end)
561 break;
562 ms = __nr_to_section(pnum);
563 ms->section_mem_map = 0;
564 }
565}
566
567/*
568 * Allocate the accumulated non-linear sections, allocate a mem_map
569 * for each and record the physical to section mapping.
570 */
2a3cb8ba 571void __init sparse_init(void)
85c77f79
PT
572{
573 unsigned long pnum_begin = first_present_section_nr();
574 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
575 unsigned long pnum_end, map_count = 1;
576
577 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
578 set_pageblock_order();
579
580 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
581 int nid = sparse_early_nid(__nr_to_section(pnum_end));
582
583 if (nid == nid_begin) {
584 map_count++;
585 continue;
586 }
587 /* Init node with sections in range [pnum_begin, pnum_end) */
588 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
589 nid_begin = nid;
590 pnum_begin = pnum_end;
591 map_count = 1;
592 }
593 /* cover the last node */
594 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
595 vmemmap_populate_print_last();
596}
597
193faea9 598#ifdef CONFIG_MEMORY_HOTPLUG
2d070eab
MH
599
600/* Mark all memory sections within the pfn range as online */
601void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
602{
603 unsigned long pfn;
604
605 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
b4ccec41 606 unsigned long section_nr = pfn_to_section_nr(pfn);
2d070eab
MH
607 struct mem_section *ms;
608
609 /* onlining code should never touch invalid ranges */
610 if (WARN_ON(!valid_section_nr(section_nr)))
611 continue;
612
613 ms = __nr_to_section(section_nr);
614 ms->section_mem_map |= SECTION_IS_ONLINE;
615 }
616}
617
618#ifdef CONFIG_MEMORY_HOTREMOVE
9b7ea46a 619/* Mark all memory sections within the pfn range as offline */
2d070eab
MH
620void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
621{
622 unsigned long pfn;
623
624 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
27227c73 625 unsigned long section_nr = pfn_to_section_nr(pfn);
2d070eab
MH
626 struct mem_section *ms;
627
628 /*
629 * TODO this needs some double checking. Offlining code makes
630 * sure to check pfn_valid but those checks might be just bogus
631 */
632 if (WARN_ON(!valid_section_nr(section_nr)))
633 continue;
634
635 ms = __nr_to_section(section_nr);
636 ms->section_mem_map &= ~SECTION_IS_ONLINE;
637 }
638}
639#endif
640
98f3cfc1 641#ifdef CONFIG_SPARSEMEM_VMEMMAP
030eab4f 642static struct page * __meminit populate_section_memmap(unsigned long pfn,
e9c0a3f0 643 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
98f3cfc1 644{
e9c0a3f0 645 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
98f3cfc1 646}
e9c0a3f0
DW
647
648static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
24b6d416 649 struct vmem_altmap *altmap)
98f3cfc1 650{
e9c0a3f0
DW
651 unsigned long start = (unsigned long) pfn_to_page(pfn);
652 unsigned long end = start + nr_pages * sizeof(struct page);
0aad818b 653
24b6d416 654 vmemmap_free(start, end, altmap);
98f3cfc1 655}
81556b02 656static void free_map_bootmem(struct page *memmap)
0c0a4a51 657{
0aad818b 658 unsigned long start = (unsigned long)memmap;
81556b02 659 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
0aad818b 660
24b6d416 661 vmemmap_free(start, end, NULL);
0c0a4a51 662}
98f3cfc1 663#else
030eab4f 664struct page * __meminit populate_section_memmap(unsigned long pfn,
e9c0a3f0 665 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
0b0acbec 666{
4027149a
BH
667 return kvmalloc_node(array_size(sizeof(struct page),
668 PAGES_PER_SECTION), GFP_KERNEL, nid);
0b0acbec
DH
669}
670
e9c0a3f0 671static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
7b73d978 672 struct vmem_altmap *altmap)
98f3cfc1 673{
3af776f6 674 kvfree(pfn_to_page(pfn));
0b0acbec 675}
0c0a4a51 676
81556b02 677static void free_map_bootmem(struct page *memmap)
0c0a4a51
YG
678{
679 unsigned long maps_section_nr, removing_section_nr, i;
81556b02 680 unsigned long magic, nr_pages;
ae64ffca 681 struct page *page = virt_to_page(memmap);
0c0a4a51 682
81556b02
ZY
683 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
684 >> PAGE_SHIFT;
685
0c0a4a51 686 for (i = 0; i < nr_pages; i++, page++) {
ddffe98d 687 magic = (unsigned long) page->freelist;
0c0a4a51
YG
688
689 BUG_ON(magic == NODE_INFO);
690
691 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
857e522a 692 removing_section_nr = page_private(page);
0c0a4a51
YG
693
694 /*
695 * When this function is called, the removing section is
696 * logical offlined state. This means all pages are isolated
697 * from page allocator. If removing section's memmap is placed
698 * on the same section, it must not be freed.
699 * If it is freed, page allocator may allocate it which will
700 * be removed physically soon.
701 */
702 if (maps_section_nr != removing_section_nr)
703 put_page_bootmem(page);
704 }
705}
98f3cfc1 706#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 707
ba72b4c8
DW
708static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
709 struct vmem_altmap *altmap)
710{
711 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
712 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
713 struct mem_section *ms = __pfn_to_section(pfn);
714 bool section_is_early = early_section(ms);
715 struct page *memmap = NULL;
d41e2f3b 716 bool empty;
ba72b4c8
DW
717 unsigned long *subsection_map = ms->usage
718 ? &ms->usage->subsection_map[0] : NULL;
719
720 subsection_mask_set(map, pfn, nr_pages);
721 if (subsection_map)
722 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
723
724 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
725 "section already deactivated (%#lx + %ld)\n",
726 pfn, nr_pages))
727 return;
728
729 /*
730 * There are 3 cases to handle across two configurations
731 * (SPARSEMEM_VMEMMAP={y,n}):
732 *
733 * 1/ deactivation of a partial hot-added section (only possible
734 * in the SPARSEMEM_VMEMMAP=y case).
735 * a/ section was present at memory init
736 * b/ section was hot-added post memory init
737 * 2/ deactivation of a complete hot-added section
738 * 3/ deactivation of a complete section from memory init
739 *
740 * For 1/, when subsection_map does not empty we will not be
741 * freeing the usage map, but still need to free the vmemmap
742 * range.
743 *
744 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
745 */
746 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
d41e2f3b
BH
747 empty = bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION);
748 if (empty) {
ba72b4c8
DW
749 unsigned long section_nr = pfn_to_section_nr(pfn);
750
8068df3b
DH
751 /*
752 * When removing an early section, the usage map is kept (as the
753 * usage maps of other sections fall into the same page). It
754 * will be re-used when re-adding the section - which is then no
755 * longer an early section. If the usage map is PageReserved, it
756 * was allocated during boot.
757 */
758 if (!PageReserved(virt_to_page(ms->usage))) {
ba72b4c8
DW
759 kfree(ms->usage);
760 ms->usage = NULL;
761 }
762 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
b943f045
AK
763 /*
764 * Mark the section invalid so that valid_section()
765 * return false. This prevents code from dereferencing
766 * ms->usage array.
767 */
768 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
ba72b4c8
DW
769 }
770
771 if (section_is_early && memmap)
772 free_map_bootmem(memmap);
773 else
774 depopulate_section_memmap(pfn, nr_pages, altmap);
d41e2f3b
BH
775
776 if (empty)
777 ms->section_mem_map = (unsigned long)NULL;
ba72b4c8
DW
778}
779
5d87255c 780static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
ba72b4c8 781{
ba72b4c8 782 struct mem_section *ms = __pfn_to_section(pfn);
5d87255c 783 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
ba72b4c8 784 unsigned long *subsection_map;
ba72b4c8
DW
785 int rc = 0;
786
787 subsection_mask_set(map, pfn, nr_pages);
788
ba72b4c8
DW
789 subsection_map = &ms->usage->subsection_map[0];
790
791 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
792 rc = -EINVAL;
793 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
794 rc = -EEXIST;
795 else
796 bitmap_or(subsection_map, map, subsection_map,
797 SUBSECTIONS_PER_SECTION);
798
5d87255c
BH
799 return rc;
800}
801
802static struct page * __meminit section_activate(int nid, unsigned long pfn,
803 unsigned long nr_pages, struct vmem_altmap *altmap)
804{
805 struct mem_section *ms = __pfn_to_section(pfn);
806 struct mem_section_usage *usage = NULL;
807 struct page *memmap;
808 int rc = 0;
809
810 if (!ms->usage) {
811 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
812 if (!usage)
813 return ERR_PTR(-ENOMEM);
814 ms->usage = usage;
815 }
816
817 rc = fill_subsection_map(pfn, nr_pages);
ba72b4c8
DW
818 if (rc) {
819 if (usage)
820 ms->usage = NULL;
821 kfree(usage);
822 return ERR_PTR(rc);
823 }
824
825 /*
826 * The early init code does not consider partially populated
827 * initial sections, it simply assumes that memory will never be
828 * referenced. If we hot-add memory into such a section then we
829 * do not need to populate the memmap and can simply reuse what
830 * is already there.
831 */
832 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
833 return pfn_to_page(pfn);
834
835 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
836 if (!memmap) {
837 section_deactivate(pfn, nr_pages, altmap);
838 return ERR_PTR(-ENOMEM);
839 }
840
841 return memmap;
842}
843
7567cfc5 844/**
ba72b4c8 845 * sparse_add_section - add a memory section, or populate an existing one
7567cfc5
BH
846 * @nid: The node to add section on
847 * @start_pfn: start pfn of the memory range
ba72b4c8 848 * @nr_pages: number of pfns to add in the section
7567cfc5
BH
849 * @altmap: device page map
850 *
851 * This is only intended for hotplug.
852 *
853 * Return:
854 * * 0 - On success.
855 * * -EEXIST - Section has been present.
856 * * -ENOMEM - Out of memory.
29751f69 857 */
7ea62160
DW
858int __meminit sparse_add_section(int nid, unsigned long start_pfn,
859 unsigned long nr_pages, struct vmem_altmap *altmap)
29751f69 860{
0b0acbec 861 unsigned long section_nr = pfn_to_section_nr(start_pfn);
0b0acbec
DH
862 struct mem_section *ms;
863 struct page *memmap;
0b0acbec 864 int ret;
29751f69 865
4e0d2e7e 866 ret = sparse_index_init(section_nr, nid);
ba72b4c8 867 if (ret < 0)
bbd06825 868 return ret;
0b0acbec 869
ba72b4c8
DW
870 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
871 if (IS_ERR(memmap))
872 return PTR_ERR(memmap);
5c0e3066 873
d0dc12e8
PT
874 /*
875 * Poison uninitialized struct pages in order to catch invalid flags
876 * combinations.
877 */
18e19f19 878 page_init_poison(memmap, sizeof(struct page) * nr_pages);
3ac19f8e 879
c1cbc3ee 880 ms = __nr_to_section(section_nr);
26f26bed 881 set_section_nid(section_nr, nid);
c4e1be9e 882 section_mark_present(ms);
0b0acbec 883
ba72b4c8
DW
884 /* Align memmap to section boundary in the subsection case */
885 if (section_nr_to_pfn(section_nr) != start_pfn)
4627d76d 886 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
ba72b4c8
DW
887 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
888
889 return 0;
29751f69 890}
ea01ea93 891
95a4774d
WC
892#ifdef CONFIG_MEMORY_FAILURE
893static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
894{
895 int i;
896
5eb570a8
BS
897 /*
898 * A further optimization is to have per section refcounted
899 * num_poisoned_pages. But that would need more space per memmap, so
900 * for now just do a quick global check to speed up this routine in the
901 * absence of bad pages.
902 */
903 if (atomic_long_read(&num_poisoned_pages) == 0)
904 return;
905
4b94ffdc 906 for (i = 0; i < nr_pages; i++) {
95a4774d 907 if (PageHWPoison(&memmap[i])) {
9f82883c 908 num_poisoned_pages_dec();
95a4774d
WC
909 ClearPageHWPoison(&memmap[i]);
910 }
911 }
912}
913#else
914static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
915{
916}
917#endif
918
ba72b4c8 919void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
7ea62160
DW
920 unsigned long nr_pages, unsigned long map_offset,
921 struct vmem_altmap *altmap)
ea01ea93 922{
ba72b4c8
DW
923 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
924 nr_pages - map_offset);
925 section_deactivate(pfn, nr_pages, altmap);
ea01ea93 926}
4edd7cef 927#endif /* CONFIG_MEMORY_HOTPLUG */