mm, THP, swap: enable THP swap optimization only if has compound map
[linux-2.6-block.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36 4#include <linux/mm.h>
5a0e3ad6 5#include <linux/slab.h>
d41dee36
AW
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
3b32123d 8#include <linux/compiler.h>
0b0acbec 9#include <linux/highmem.h>
b95f1b31 10#include <linux/export.h>
28ae55c9 11#include <linux/spinlock.h>
0b0acbec 12#include <linux/vmalloc.h>
3b32123d 13
0c0a4a51 14#include "internal.h"
d41dee36 15#include <asm/dma.h>
8f6aac41
CL
16#include <asm/pgalloc.h>
17#include <asm/pgtable.h>
d41dee36
AW
18
19/*
20 * Permanent SPARSEMEM data:
21 *
22 * 1) mem_section - memory sections, mem_map's for valid memory
23 */
3e347261 24#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 25struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 26 ____cacheline_internodealigned_in_smp;
3e347261
BP
27#else
28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 29 ____cacheline_internodealigned_in_smp;
3e347261
BP
30#endif
31EXPORT_SYMBOL(mem_section);
32
89689ae7
CL
33#ifdef NODE_NOT_IN_PAGE_FLAGS
34/*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39#if MAX_NUMNODES <= 256
40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#else
42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43#endif
44
33dd4e0e 45int page_to_nid(const struct page *page)
89689ae7
CL
46{
47 return section_to_node_table[page_to_section(page)];
48}
49EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
50
51static void set_section_nid(unsigned long section_nr, int nid)
52{
53 section_to_node_table[section_nr] = nid;
54}
55#else /* !NODE_NOT_IN_PAGE_FLAGS */
56static inline void set_section_nid(unsigned long section_nr, int nid)
57{
58}
89689ae7
CL
59#endif
60
3e347261 61#ifdef CONFIG_SPARSEMEM_EXTREME
bd721ea7 62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
28ae55c9
DH
63{
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
f52407ce
SL
68 if (slab_is_available()) {
69 if (node_state(nid, N_HIGH_MEMORY))
5b760e64 70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
f52407ce 71 else
5b760e64
GS
72 section = kzalloc(array_size, GFP_KERNEL);
73 } else {
bb016b84 74 section = memblock_virt_alloc_node(array_size, nid);
5b760e64 75 }
28ae55c9
DH
76
77 return section;
3e347261 78}
802f192e 79
a3142c8e 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 81{
28ae55c9
DH
82 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 struct mem_section *section;
802f192e
BP
84
85 if (mem_section[root])
28ae55c9 86 return -EEXIST;
3e347261 87
28ae55c9 88 section = sparse_index_alloc(nid);
af0cd5a7
WC
89 if (!section)
90 return -ENOMEM;
28ae55c9
DH
91
92 mem_section[root] = section;
c1c95183 93
9d1936cf 94 return 0;
28ae55c9
DH
95}
96#else /* !SPARSEMEM_EXTREME */
97static inline int sparse_index_init(unsigned long section_nr, int nid)
98{
99 return 0;
802f192e 100}
28ae55c9
DH
101#endif
102
91fd8b95 103#ifdef CONFIG_SPARSEMEM_EXTREME
4ca644d9
DH
104int __section_nr(struct mem_section* ms)
105{
106 unsigned long root_nr;
107 struct mem_section* root;
108
12783b00
MK
109 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
110 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
111 if (!root)
112 continue;
113
114 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
115 break;
116 }
117
db36a461
GS
118 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
119
4ca644d9
DH
120 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
121}
91fd8b95
ZC
122#else
123int __section_nr(struct mem_section* ms)
124{
125 return (int)(ms - mem_section[0]);
126}
127#endif
4ca644d9 128
30c253e6
AW
129/*
130 * During early boot, before section_mem_map is used for an actual
131 * mem_map, we use section_mem_map to store the section's NUMA
132 * node. This keeps us from having to use another data structure. The
133 * node information is cleared just before we store the real mem_map.
134 */
135static inline unsigned long sparse_encode_early_nid(int nid)
136{
137 return (nid << SECTION_NID_SHIFT);
138}
139
140static inline int sparse_early_nid(struct mem_section *section)
141{
142 return (section->section_mem_map >> SECTION_NID_SHIFT);
143}
144
2dbb51c4
MG
145/* Validate the physical addressing limitations of the model */
146void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
147 unsigned long *end_pfn)
d41dee36 148{
2dbb51c4 149 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 150
bead9a3a
IM
151 /*
152 * Sanity checks - do not allow an architecture to pass
153 * in larger pfns than the maximum scope of sparsemem:
154 */
2dbb51c4
MG
155 if (*start_pfn > max_sparsemem_pfn) {
156 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
157 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
158 *start_pfn, *end_pfn, max_sparsemem_pfn);
159 WARN_ON_ONCE(1);
160 *start_pfn = max_sparsemem_pfn;
161 *end_pfn = max_sparsemem_pfn;
ef161a98 162 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
163 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
164 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165 *start_pfn, *end_pfn, max_sparsemem_pfn);
166 WARN_ON_ONCE(1);
167 *end_pfn = max_sparsemem_pfn;
168 }
169}
170
c4e1be9e
DH
171/*
172 * There are a number of times that we loop over NR_MEM_SECTIONS,
173 * looking for section_present() on each. But, when we have very
174 * large physical address spaces, NR_MEM_SECTIONS can also be
175 * very large which makes the loops quite long.
176 *
177 * Keeping track of this gives us an easy way to break out of
178 * those loops early.
179 */
180int __highest_present_section_nr;
181static void section_mark_present(struct mem_section *ms)
182{
183 int section_nr = __section_nr(ms);
184
185 if (section_nr > __highest_present_section_nr)
186 __highest_present_section_nr = section_nr;
187
188 ms->section_mem_map |= SECTION_MARKED_PRESENT;
189}
190
191static inline int next_present_section_nr(int section_nr)
192{
193 do {
194 section_nr++;
195 if (present_section_nr(section_nr))
196 return section_nr;
197 } while ((section_nr < NR_MEM_SECTIONS) &&
198 (section_nr <= __highest_present_section_nr));
199
200 return -1;
201}
202#define for_each_present_section_nr(start, section_nr) \
203 for (section_nr = next_present_section_nr(start-1); \
204 ((section_nr >= 0) && \
205 (section_nr < NR_MEM_SECTIONS) && \
206 (section_nr <= __highest_present_section_nr)); \
207 section_nr = next_present_section_nr(section_nr))
208
2dbb51c4
MG
209/* Record a memory area against a node. */
210void __init memory_present(int nid, unsigned long start, unsigned long end)
211{
212 unsigned long pfn;
bead9a3a 213
d41dee36 214 start &= PAGE_SECTION_MASK;
2dbb51c4 215 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
216 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
217 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
218 struct mem_section *ms;
219
220 sparse_index_init(section, nid);
85770ffe 221 set_section_nid(section, nid);
802f192e
BP
222
223 ms = __nr_to_section(section);
c4e1be9e
DH
224 if (!ms->section_mem_map) {
225 ms->section_mem_map = sparse_encode_early_nid(nid);
226 section_mark_present(ms);
227 }
d41dee36
AW
228 }
229}
230
231/*
232 * Only used by the i386 NUMA architecures, but relatively
233 * generic code.
234 */
235unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
236 unsigned long end_pfn)
237{
238 unsigned long pfn;
239 unsigned long nr_pages = 0;
240
2dbb51c4 241 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
d41dee36
AW
242 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
243 if (nid != early_pfn_to_nid(pfn))
244 continue;
245
540557b9 246 if (pfn_present(pfn))
d41dee36
AW
247 nr_pages += PAGES_PER_SECTION;
248 }
249
250 return nr_pages * sizeof(struct page);
251}
252
29751f69
AW
253/*
254 * Subtle, we encode the real pfn into the mem_map such that
255 * the identity pfn - section_mem_map will return the actual
256 * physical page frame number.
257 */
258static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
259{
260 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
261}
262
263/*
ea01ea93 264 * Decode mem_map from the coded memmap
29751f69 265 */
29751f69
AW
266struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
267{
ea01ea93
BP
268 /* mask off the extra low bits of information */
269 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
270 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
271}
272
a3142c8e 273static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
274 unsigned long pnum, struct page *mem_map,
275 unsigned long *pageblock_bitmap)
29751f69 276{
540557b9 277 if (!present_section(ms))
29751f69
AW
278 return -EINVAL;
279
30c253e6 280 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
281 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
282 SECTION_HAS_MEM_MAP;
5c0e3066 283 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
284
285 return 1;
286}
287
04753278 288unsigned long usemap_size(void)
5c0e3066 289{
60a7a88d 290 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
5c0e3066
MG
291}
292
293#ifdef CONFIG_MEMORY_HOTPLUG
294static unsigned long *__kmalloc_section_usemap(void)
295{
296 return kmalloc(usemap_size(), GFP_KERNEL);
297}
298#endif /* CONFIG_MEMORY_HOTPLUG */
299
48c90682
YG
300#ifdef CONFIG_MEMORY_HOTREMOVE
301static unsigned long * __init
a4322e1b 302sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 303 unsigned long size)
48c90682 304{
99ab7b19
YL
305 unsigned long goal, limit;
306 unsigned long *p;
307 int nid;
48c90682
YG
308 /*
309 * A page may contain usemaps for other sections preventing the
310 * page being freed and making a section unremovable while
c800bcd5 311 * other sections referencing the usemap remain active. Similarly,
48c90682
YG
312 * a pgdat can prevent a section being removed. If section A
313 * contains a pgdat and section B contains the usemap, both
314 * sections become inter-dependent. This allocates usemaps
315 * from the same section as the pgdat where possible to avoid
316 * this problem.
317 */
07b4e2bc 318 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
99ab7b19
YL
319 limit = goal + (1UL << PA_SECTION_SHIFT);
320 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
321again:
bb016b84
SS
322 p = memblock_virt_alloc_try_nid_nopanic(size,
323 SMP_CACHE_BYTES, goal, limit,
324 nid);
99ab7b19
YL
325 if (!p && limit) {
326 limit = 0;
327 goto again;
328 }
329 return p;
48c90682
YG
330}
331
332static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
333{
334 unsigned long usemap_snr, pgdat_snr;
335 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
336 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
337 struct pglist_data *pgdat = NODE_DATA(nid);
338 int usemap_nid;
339
340 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
341 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
342 if (usemap_snr == pgdat_snr)
343 return;
344
345 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
346 /* skip redundant message */
347 return;
348
349 old_usemap_snr = usemap_snr;
350 old_pgdat_snr = pgdat_snr;
351
352 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
353 if (usemap_nid != nid) {
1170532b
JP
354 pr_info("node %d must be removed before remove section %ld\n",
355 nid, usemap_snr);
48c90682
YG
356 return;
357 }
358 /*
359 * There is a circular dependency.
360 * Some platforms allow un-removable section because they will just
361 * gather other removable sections for dynamic partitioning.
362 * Just notify un-removable section's number here.
363 */
1170532b
JP
364 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
365 usemap_snr, pgdat_snr, nid);
48c90682
YG
366}
367#else
368static unsigned long * __init
a4322e1b 369sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 370 unsigned long size)
48c90682 371{
bb016b84 372 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
48c90682
YG
373}
374
375static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
376{
377}
378#endif /* CONFIG_MEMORY_HOTREMOVE */
379
18732093 380static void __init sparse_early_usemaps_alloc_node(void *data,
a4322e1b
YL
381 unsigned long pnum_begin,
382 unsigned long pnum_end,
383 unsigned long usemap_count, int nodeid)
5c0e3066 384{
a4322e1b
YL
385 void *usemap;
386 unsigned long pnum;
18732093 387 unsigned long **usemap_map = (unsigned long **)data;
a4322e1b 388 int size = usemap_size();
5c0e3066 389
a4322e1b 390 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
238305bb 391 size * usemap_count);
f5bf18fa 392 if (!usemap) {
1170532b 393 pr_warn("%s: allocation failed\n", __func__);
238305bb 394 return;
48c90682
YG
395 }
396
f5bf18fa
NA
397 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
398 if (!present_section_nr(pnum))
399 continue;
400 usemap_map[pnum] = usemap;
401 usemap += size;
402 check_usemap_section_nr(nodeid, usemap_map[pnum]);
a4322e1b 403 }
5c0e3066
MG
404}
405
8f6aac41 406#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 407struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
408{
409 struct page *map;
e48e67e0 410 unsigned long size;
29751f69
AW
411
412 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
413 if (map)
414 return map;
415
e48e67e0 416 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
bb016b84
SS
417 map = memblock_virt_alloc_try_nid(size,
418 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
419 BOOTMEM_ALLOC_ACCESSIBLE, nid);
8f6aac41
CL
420 return map;
421}
9bdac914
YL
422void __init sparse_mem_maps_populate_node(struct page **map_map,
423 unsigned long pnum_begin,
424 unsigned long pnum_end,
425 unsigned long map_count, int nodeid)
426{
427 void *map;
428 unsigned long pnum;
429 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
430
431 map = alloc_remap(nodeid, size * map_count);
432 if (map) {
433 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
434 if (!present_section_nr(pnum))
435 continue;
436 map_map[pnum] = map;
437 map += size;
438 }
439 return;
440 }
441
442 size = PAGE_ALIGN(size);
bb016b84
SS
443 map = memblock_virt_alloc_try_nid(size * map_count,
444 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
445 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
9bdac914
YL
446 if (map) {
447 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
448 if (!present_section_nr(pnum))
449 continue;
450 map_map[pnum] = map;
451 map += size;
452 }
453 return;
454 }
455
456 /* fallback */
457 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
458 struct mem_section *ms;
459
460 if (!present_section_nr(pnum))
461 continue;
462 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
463 if (map_map[pnum])
464 continue;
465 ms = __nr_to_section(pnum);
1170532b 466 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
756a025f 467 __func__);
9bdac914
YL
468 ms->section_mem_map = 0;
469 }
470}
8f6aac41
CL
471#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
472
81d0d950 473#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
18732093 474static void __init sparse_early_mem_maps_alloc_node(void *data,
9bdac914
YL
475 unsigned long pnum_begin,
476 unsigned long pnum_end,
477 unsigned long map_count, int nodeid)
478{
18732093 479 struct page **map_map = (struct page **)data;
9bdac914
YL
480 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
481 map_count, nodeid);
482}
81d0d950 483#else
9e5c6da7 484static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
8f6aac41
CL
485{
486 struct page *map;
487 struct mem_section *ms = __nr_to_section(pnum);
488 int nid = sparse_early_nid(ms);
489
98f3cfc1 490 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
491 if (map)
492 return map;
493
1170532b 494 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
756a025f 495 __func__);
802f192e 496 ms->section_mem_map = 0;
29751f69
AW
497 return NULL;
498}
9bdac914 499#endif
29751f69 500
3b32123d 501void __weak __meminit vmemmap_populate_print_last(void)
c2b91e2e
YL
502{
503}
a4322e1b 504
18732093
WL
505/**
506 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
507 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
508 */
509static void __init alloc_usemap_and_memmap(void (*alloc_func)
510 (void *, unsigned long, unsigned long,
511 unsigned long, int), void *data)
512{
513 unsigned long pnum;
514 unsigned long map_count;
515 int nodeid_begin = 0;
516 unsigned long pnum_begin = 0;
517
c4e1be9e 518 for_each_present_section_nr(0, pnum) {
18732093
WL
519 struct mem_section *ms;
520
18732093
WL
521 ms = __nr_to_section(pnum);
522 nodeid_begin = sparse_early_nid(ms);
523 pnum_begin = pnum;
524 break;
525 }
526 map_count = 1;
c4e1be9e 527 for_each_present_section_nr(pnum_begin + 1, pnum) {
18732093
WL
528 struct mem_section *ms;
529 int nodeid;
530
18732093
WL
531 ms = __nr_to_section(pnum);
532 nodeid = sparse_early_nid(ms);
533 if (nodeid == nodeid_begin) {
534 map_count++;
535 continue;
536 }
537 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
538 alloc_func(data, pnum_begin, pnum,
539 map_count, nodeid_begin);
540 /* new start, update count etc*/
541 nodeid_begin = nodeid;
542 pnum_begin = pnum;
543 map_count = 1;
544 }
545 /* ok, last chunk */
546 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
547 map_count, nodeid_begin);
548}
549
193faea9
SR
550/*
551 * Allocate the accumulated non-linear sections, allocate a mem_map
552 * for each and record the physical to section mapping.
553 */
554void __init sparse_init(void)
555{
556 unsigned long pnum;
557 struct page *map;
5c0e3066 558 unsigned long *usemap;
e123dd3f 559 unsigned long **usemap_map;
81d0d950 560 int size;
81d0d950 561#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
81d0d950
YL
562 int size2;
563 struct page **map_map;
564#endif
e123dd3f 565
55878e88
CS
566 /* see include/linux/mmzone.h 'struct mem_section' definition */
567 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
568
ca57df79
XQ
569 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
570 set_pageblock_order();
571
e123dd3f
YL
572 /*
573 * map is using big page (aka 2M in x86 64 bit)
574 * usemap is less one page (aka 24 bytes)
575 * so alloc 2M (with 2M align) and 24 bytes in turn will
576 * make next 2M slip to one more 2M later.
577 * then in big system, the memory will have a lot of holes...
25985edc 578 * here try to allocate 2M pages continuously.
e123dd3f
YL
579 *
580 * powerpc need to call sparse_init_one_section right after each
581 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
582 */
583 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
bb016b84 584 usemap_map = memblock_virt_alloc(size, 0);
e123dd3f
YL
585 if (!usemap_map)
586 panic("can not allocate usemap_map\n");
18732093
WL
587 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
588 (void *)usemap_map);
193faea9 589
9bdac914
YL
590#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
bb016b84 592 map_map = memblock_virt_alloc(size2, 0);
9bdac914
YL
593 if (!map_map)
594 panic("can not allocate map_map\n");
18732093
WL
595 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
596 (void *)map_map);
9bdac914
YL
597#endif
598
c4e1be9e 599 for_each_present_section_nr(0, pnum) {
e123dd3f 600 usemap = usemap_map[pnum];
5c0e3066
MG
601 if (!usemap)
602 continue;
603
9bdac914
YL
604#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
605 map = map_map[pnum];
606#else
e123dd3f 607 map = sparse_early_mem_map_alloc(pnum);
9bdac914 608#endif
e123dd3f
YL
609 if (!map)
610 continue;
611
5c0e3066
MG
612 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
613 usemap);
193faea9 614 }
e123dd3f 615
c2b91e2e
YL
616 vmemmap_populate_print_last();
617
9bdac914 618#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
bb016b84 619 memblock_free_early(__pa(map_map), size2);
9bdac914 620#endif
bb016b84 621 memblock_free_early(__pa(usemap_map), size);
193faea9
SR
622}
623
624#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1 625#ifdef CONFIG_SPARSEMEM_VMEMMAP
85b35fea 626static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
98f3cfc1
YG
627{
628 /* This will make the necessary allocations eventually. */
629 return sparse_mem_map_populate(pnum, nid);
630}
85b35fea 631static void __kfree_section_memmap(struct page *memmap)
98f3cfc1 632{
0aad818b 633 unsigned long start = (unsigned long)memmap;
85b35fea 634 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
0aad818b
JW
635
636 vmemmap_free(start, end);
98f3cfc1 637}
4edd7cef 638#ifdef CONFIG_MEMORY_HOTREMOVE
81556b02 639static void free_map_bootmem(struct page *memmap)
0c0a4a51 640{
0aad818b 641 unsigned long start = (unsigned long)memmap;
81556b02 642 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
0aad818b
JW
643
644 vmemmap_free(start, end);
0c0a4a51 645}
4edd7cef 646#endif /* CONFIG_MEMORY_HOTREMOVE */
98f3cfc1 647#else
85b35fea 648static struct page *__kmalloc_section_memmap(void)
0b0acbec
DH
649{
650 struct page *page, *ret;
85b35fea 651 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
0b0acbec 652
f2d0aa5b 653 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
654 if (page)
655 goto got_map_page;
656
657 ret = vmalloc(memmap_size);
658 if (ret)
659 goto got_map_ptr;
660
661 return NULL;
662got_map_page:
663 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
664got_map_ptr:
0b0acbec
DH
665
666 return ret;
667}
668
85b35fea 669static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
98f3cfc1 670{
85b35fea 671 return __kmalloc_section_memmap();
98f3cfc1
YG
672}
673
85b35fea 674static void __kfree_section_memmap(struct page *memmap)
0b0acbec 675{
9e2779fa 676 if (is_vmalloc_addr(memmap))
0b0acbec
DH
677 vfree(memmap);
678 else
679 free_pages((unsigned long)memmap,
85b35fea 680 get_order(sizeof(struct page) * PAGES_PER_SECTION));
0b0acbec 681}
0c0a4a51 682
4edd7cef 683#ifdef CONFIG_MEMORY_HOTREMOVE
81556b02 684static void free_map_bootmem(struct page *memmap)
0c0a4a51
YG
685{
686 unsigned long maps_section_nr, removing_section_nr, i;
81556b02 687 unsigned long magic, nr_pages;
ae64ffca 688 struct page *page = virt_to_page(memmap);
0c0a4a51 689
81556b02
ZY
690 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
691 >> PAGE_SHIFT;
692
0c0a4a51 693 for (i = 0; i < nr_pages; i++, page++) {
ddffe98d 694 magic = (unsigned long) page->freelist;
0c0a4a51
YG
695
696 BUG_ON(magic == NODE_INFO);
697
698 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
857e522a 699 removing_section_nr = page_private(page);
0c0a4a51
YG
700
701 /*
702 * When this function is called, the removing section is
703 * logical offlined state. This means all pages are isolated
704 * from page allocator. If removing section's memmap is placed
705 * on the same section, it must not be freed.
706 * If it is freed, page allocator may allocate it which will
707 * be removed physically soon.
708 */
709 if (maps_section_nr != removing_section_nr)
710 put_page_bootmem(page);
711 }
712}
4edd7cef 713#endif /* CONFIG_MEMORY_HOTREMOVE */
98f3cfc1 714#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 715
29751f69
AW
716/*
717 * returns the number of sections whose mem_maps were properly
718 * set. If this is <=0, then that means that the passed-in
719 * map was not consumed and must be freed.
720 */
85b35fea 721int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
29751f69 722{
0b0acbec
DH
723 unsigned long section_nr = pfn_to_section_nr(start_pfn);
724 struct pglist_data *pgdat = zone->zone_pgdat;
725 struct mem_section *ms;
726 struct page *memmap;
5c0e3066 727 unsigned long *usemap;
0b0acbec
DH
728 unsigned long flags;
729 int ret;
29751f69 730
0b0acbec
DH
731 /*
732 * no locking for this, because it does its own
733 * plus, it does a kmalloc
734 */
bbd06825
WC
735 ret = sparse_index_init(section_nr, pgdat->node_id);
736 if (ret < 0 && ret != -EEXIST)
737 return ret;
85b35fea 738 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
bbd06825
WC
739 if (!memmap)
740 return -ENOMEM;
5c0e3066 741 usemap = __kmalloc_section_usemap();
bbd06825 742 if (!usemap) {
85b35fea 743 __kfree_section_memmap(memmap);
bbd06825
WC
744 return -ENOMEM;
745 }
0b0acbec
DH
746
747 pgdat_resize_lock(pgdat, &flags);
29751f69 748
0b0acbec
DH
749 ms = __pfn_to_section(start_pfn);
750 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
751 ret = -EEXIST;
752 goto out;
753 }
5c0e3066 754
85b35fea 755 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
3ac19f8e 756
c4e1be9e 757 section_mark_present(ms);
29751f69 758
5c0e3066 759 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 760
0b0acbec
DH
761out:
762 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
763 if (ret <= 0) {
764 kfree(usemap);
85b35fea 765 __kfree_section_memmap(memmap);
bbd06825 766 }
0b0acbec 767 return ret;
29751f69 768}
ea01ea93 769
f3deb687 770#ifdef CONFIG_MEMORY_HOTREMOVE
95a4774d
WC
771#ifdef CONFIG_MEMORY_FAILURE
772static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
773{
774 int i;
775
776 if (!memmap)
777 return;
778
4b94ffdc 779 for (i = 0; i < nr_pages; i++) {
95a4774d 780 if (PageHWPoison(&memmap[i])) {
293c07e3 781 atomic_long_sub(1, &num_poisoned_pages);
95a4774d
WC
782 ClearPageHWPoison(&memmap[i]);
783 }
784 }
785}
786#else
787static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
788{
789}
790#endif
791
4edd7cef
DR
792static void free_section_usemap(struct page *memmap, unsigned long *usemap)
793{
794 struct page *usemap_page;
4edd7cef
DR
795
796 if (!usemap)
797 return;
798
799 usemap_page = virt_to_page(usemap);
800 /*
801 * Check to see if allocation came from hot-plug-add
802 */
803 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
804 kfree(usemap);
805 if (memmap)
85b35fea 806 __kfree_section_memmap(memmap);
4edd7cef
DR
807 return;
808 }
809
810 /*
811 * The usemap came from bootmem. This is packed with other usemaps
812 * on the section which has pgdat at boot time. Just keep it as is now.
813 */
814
81556b02
ZY
815 if (memmap)
816 free_map_bootmem(memmap);
4edd7cef
DR
817}
818
4b94ffdc
DW
819void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
820 unsigned long map_offset)
ea01ea93
BP
821{
822 struct page *memmap = NULL;
cd099682
TC
823 unsigned long *usemap = NULL, flags;
824 struct pglist_data *pgdat = zone->zone_pgdat;
ea01ea93 825
cd099682 826 pgdat_resize_lock(pgdat, &flags);
ea01ea93
BP
827 if (ms->section_mem_map) {
828 usemap = ms->pageblock_flags;
829 memmap = sparse_decode_mem_map(ms->section_mem_map,
830 __section_nr(ms));
831 ms->section_mem_map = 0;
832 ms->pageblock_flags = NULL;
833 }
cd099682 834 pgdat_resize_unlock(pgdat, &flags);
ea01ea93 835
4b94ffdc
DW
836 clear_hwpoisoned_pages(memmap + map_offset,
837 PAGES_PER_SECTION - map_offset);
ea01ea93
BP
838 free_section_usemap(memmap, usemap);
839}
4edd7cef
DR
840#endif /* CONFIG_MEMORY_HOTREMOVE */
841#endif /* CONFIG_MEMORY_HOTPLUG */