mm/slub: Convert print_page_info() to print_slab_info()
[linux-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b89fb5ef 31#include <linux/kfence.h>
b9049e23 32#include <linux/memory.h>
f8bd2258 33#include <linux/math64.h>
773ff60e 34#include <linux/fault-inject.h>
bfa71457 35#include <linux/stacktrace.h>
4de900b4 36#include <linux/prefetch.h>
2633d7a0 37#include <linux/memcontrol.h>
2482ddec 38#include <linux/random.h>
1f9f78b1 39#include <kunit/test.h>
81819f0f 40
64dd6849 41#include <linux/debugfs.h>
4a92379b
RK
42#include <trace/events/kmem.h>
43
072bb0aa
MG
44#include "internal.h"
45
81819f0f
CL
46/*
47 * Lock order:
18004c5d 48 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
49 * 2. node->list_lock (Spinlock)
50 * 3. kmem_cache->cpu_slab->lock (Local lock)
51 * 4. slab_lock(page) (Only on some arches or for debugging)
52 * 5. object_map_lock (Only for debugging)
81819f0f 53 *
18004c5d 54 * slab_mutex
881db7fb 55 *
18004c5d 56 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 57 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
58 * Also synchronizes memory hotplug callbacks.
59 *
60 * slab_lock
61 *
62 * The slab_lock is a wrapper around the page lock, thus it is a bit
63 * spinlock.
881db7fb
CL
64 *
65 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 66 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 67 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
68 * B. page->inuse -> Number of objects in use
69 * C. page->objects -> Number of objects in page
70 * D. page->frozen -> frozen state
881db7fb 71 *
bd0e7491
VB
72 * Frozen slabs
73 *
881db7fb 74 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
75 * on any list except per cpu partial list. The processor that froze the
76 * slab is the one who can perform list operations on the page. Other
77 * processors may put objects onto the freelist but the processor that
78 * froze the slab is the only one that can retrieve the objects from the
79 * page's freelist.
81819f0f 80 *
bd0e7491
VB
81 * list_lock
82 *
81819f0f
CL
83 * The list_lock protects the partial and full list on each node and
84 * the partial slab counter. If taken then no new slabs may be added or
85 * removed from the lists nor make the number of partial slabs be modified.
86 * (Note that the total number of slabs is an atomic value that may be
87 * modified without taking the list lock).
88 *
89 * The list_lock is a centralized lock and thus we avoid taking it as
90 * much as possible. As long as SLUB does not have to handle partial
91 * slabs, operations can continue without any centralized lock. F.e.
92 * allocating a long series of objects that fill up slabs does not require
93 * the list lock.
bd0e7491
VB
94 *
95 * cpu_slab->lock local lock
96 *
97 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
98 * except the stat counters. This is a percpu structure manipulated only by
99 * the local cpu, so the lock protects against being preempted or interrupted
100 * by an irq. Fast path operations rely on lockless operations instead.
101 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
102 * prevent the lockless operations), so fastpath operations also need to take
103 * the lock and are no longer lockless.
104 *
105 * lockless fastpaths
106 *
107 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
108 * are fully lockless when satisfied from the percpu slab (and when
109 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
110 * They also don't disable preemption or migration or irqs. They rely on
111 * the transaction id (tid) field to detect being preempted or moved to
112 * another cpu.
113 *
114 * irq, preemption, migration considerations
115 *
116 * Interrupts are disabled as part of list_lock or local_lock operations, or
117 * around the slab_lock operation, in order to make the slab allocator safe
118 * to use in the context of an irq.
119 *
120 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
121 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
122 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
123 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
124 *
125 * SLUB assigns one slab for allocation to each processor.
126 * Allocations only occur from these slabs called cpu slabs.
127 *
672bba3a
CL
128 * Slabs with free elements are kept on a partial list and during regular
129 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 130 * freed then the slab will show up again on the partial lists.
672bba3a
CL
131 * We track full slabs for debugging purposes though because otherwise we
132 * cannot scan all objects.
81819f0f
CL
133 *
134 * Slabs are freed when they become empty. Teardown and setup is
135 * minimal so we rely on the page allocators per cpu caches for
136 * fast frees and allocs.
137 *
aed68148 138 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
139 * This means that the slab is dedicated to a purpose
140 * such as satisfying allocations for a specific
141 * processor. Objects may be freed in the slab while
142 * it is frozen but slab_free will then skip the usual
143 * list operations. It is up to the processor holding
144 * the slab to integrate the slab into the slab lists
145 * when the slab is no longer needed.
146 *
147 * One use of this flag is to mark slabs that are
148 * used for allocations. Then such a slab becomes a cpu
149 * slab. The cpu slab may be equipped with an additional
dfb4f096 150 * freelist that allows lockless access to
894b8788
CL
151 * free objects in addition to the regular freelist
152 * that requires the slab lock.
81819f0f 153 *
aed68148 154 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 155 * options set. This moves slab handling out of
894b8788 156 * the fast path and disables lockless freelists.
81819f0f
CL
157 */
158
25c00c50
VB
159/*
160 * We could simply use migrate_disable()/enable() but as long as it's a
161 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
162 */
163#ifndef CONFIG_PREEMPT_RT
164#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
165#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
166#else
167#define slub_get_cpu_ptr(var) \
168({ \
169 migrate_disable(); \
170 this_cpu_ptr(var); \
171})
172#define slub_put_cpu_ptr(var) \
173do { \
174 (void)(var); \
175 migrate_enable(); \
176} while (0)
177#endif
178
ca0cab65
VB
179#ifdef CONFIG_SLUB_DEBUG
180#ifdef CONFIG_SLUB_DEBUG_ON
181DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
182#else
183DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
184#endif
79270291 185#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 186
59052e89
VB
187static inline bool kmem_cache_debug(struct kmem_cache *s)
188{
189 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 190}
5577bd8a 191
117d54df 192void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 193{
59052e89 194 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
195 p += s->red_left_pad;
196
197 return p;
198}
199
345c905d
JK
200static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
201{
202#ifdef CONFIG_SLUB_CPU_PARTIAL
203 return !kmem_cache_debug(s);
204#else
205 return false;
206#endif
207}
208
81819f0f
CL
209/*
210 * Issues still to be resolved:
211 *
81819f0f
CL
212 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
213 *
81819f0f
CL
214 * - Variable sizing of the per node arrays
215 */
216
b789ef51
CL
217/* Enable to log cmpxchg failures */
218#undef SLUB_DEBUG_CMPXCHG
219
2086d26a 220/*
dc84207d 221 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
222 * lists even if they are empty. kmem_cache_shrink may reclaim them.
223 */
76be8950 224#define MIN_PARTIAL 5
e95eed57 225
2086d26a
CL
226/*
227 * Maximum number of desirable partial slabs.
228 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 229 * sort the partial list by the number of objects in use.
2086d26a
CL
230 */
231#define MAX_PARTIAL 10
232
becfda68 233#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 234 SLAB_POISON | SLAB_STORE_USER)
672bba3a 235
149daaf3
LA
236/*
237 * These debug flags cannot use CMPXCHG because there might be consistency
238 * issues when checking or reading debug information
239 */
240#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
241 SLAB_TRACE)
242
243
fa5ec8a1 244/*
3de47213
DR
245 * Debugging flags that require metadata to be stored in the slab. These get
246 * disabled when slub_debug=O is used and a cache's min order increases with
247 * metadata.
fa5ec8a1 248 */
3de47213 249#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 250
210b5c06
CG
251#define OO_SHIFT 16
252#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 253#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 254
81819f0f 255/* Internal SLUB flags */
d50112ed 256/* Poison object */
4fd0b46e 257#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 258/* Use cmpxchg_double */
4fd0b46e 259#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 260
02cbc874
CL
261/*
262 * Tracking user of a slab.
263 */
d6543e39 264#define TRACK_ADDRS_COUNT 16
02cbc874 265struct track {
ce71e27c 266 unsigned long addr; /* Called from address */
ae14c63a
LT
267#ifdef CONFIG_STACKTRACE
268 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
d6543e39 269#endif
02cbc874
CL
270 int cpu; /* Was running on cpu */
271 int pid; /* Pid context */
272 unsigned long when; /* When did the operation occur */
273};
274
275enum track_item { TRACK_ALLOC, TRACK_FREE };
276
ab4d5ed5 277#ifdef CONFIG_SYSFS
81819f0f
CL
278static int sysfs_slab_add(struct kmem_cache *);
279static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 280#else
0c710013
CL
281static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
282static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
283 { return 0; }
81819f0f
CL
284#endif
285
64dd6849
FM
286#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
287static void debugfs_slab_add(struct kmem_cache *);
288#else
289static inline void debugfs_slab_add(struct kmem_cache *s) { }
290#endif
291
4fdccdfb 292static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
293{
294#ifdef CONFIG_SLUB_STATS
88da03a6
CL
295 /*
296 * The rmw is racy on a preemptible kernel but this is acceptable, so
297 * avoid this_cpu_add()'s irq-disable overhead.
298 */
299 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
300#endif
301}
302
7e1fa93d
VB
303/*
304 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
305 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
306 * differ during memory hotplug/hotremove operations.
307 * Protected by slab_mutex.
308 */
309static nodemask_t slab_nodes;
310
81819f0f
CL
311/********************************************************************
312 * Core slab cache functions
313 *******************************************************************/
314
2482ddec
KC
315/*
316 * Returns freelist pointer (ptr). With hardening, this is obfuscated
317 * with an XOR of the address where the pointer is held and a per-cache
318 * random number.
319 */
320static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
321 unsigned long ptr_addr)
322{
323#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 324 /*
aa1ef4d7 325 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
326 * Normally, this doesn't cause any issues, as both set_freepointer()
327 * and get_freepointer() are called with a pointer with the same tag.
328 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
329 * example, when __free_slub() iterates over objects in a cache, it
330 * passes untagged pointers to check_object(). check_object() in turns
331 * calls get_freepointer() with an untagged pointer, which causes the
332 * freepointer to be restored incorrectly.
333 */
334 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 335 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
336#else
337 return ptr;
338#endif
339}
340
341/* Returns the freelist pointer recorded at location ptr_addr. */
342static inline void *freelist_dereference(const struct kmem_cache *s,
343 void *ptr_addr)
344{
345 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
346 (unsigned long)ptr_addr);
347}
348
7656c72b
CL
349static inline void *get_freepointer(struct kmem_cache *s, void *object)
350{
aa1ef4d7 351 object = kasan_reset_tag(object);
2482ddec 352 return freelist_dereference(s, object + s->offset);
7656c72b
CL
353}
354
0ad9500e
ED
355static void prefetch_freepointer(const struct kmem_cache *s, void *object)
356{
04b4b006 357 prefetchw(object + s->offset);
0ad9500e
ED
358}
359
1393d9a1
CL
360static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
361{
2482ddec 362 unsigned long freepointer_addr;
1393d9a1
CL
363 void *p;
364
8e57f8ac 365 if (!debug_pagealloc_enabled_static())
922d566c
JK
366 return get_freepointer(s, object);
367
f70b0049 368 object = kasan_reset_tag(object);
2482ddec 369 freepointer_addr = (unsigned long)object + s->offset;
fe557319 370 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 371 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
372}
373
7656c72b
CL
374static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
375{
2482ddec
KC
376 unsigned long freeptr_addr = (unsigned long)object + s->offset;
377
ce6fa91b
AP
378#ifdef CONFIG_SLAB_FREELIST_HARDENED
379 BUG_ON(object == fp); /* naive detection of double free or corruption */
380#endif
381
aa1ef4d7 382 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 383 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
384}
385
386/* Loop over all objects in a slab */
224a88be 387#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
388 for (__p = fixup_red_left(__s, __addr); \
389 __p < (__addr) + (__objects) * (__s)->size; \
390 __p += (__s)->size)
7656c72b 391
9736d2a9 392static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 393{
9736d2a9 394 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
395}
396
19af27af 397static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 398 unsigned int size)
834f3d11
CL
399{
400 struct kmem_cache_order_objects x = {
9736d2a9 401 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
402 };
403
404 return x;
405}
406
19af27af 407static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 408{
210b5c06 409 return x.x >> OO_SHIFT;
834f3d11
CL
410}
411
19af27af 412static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 413{
210b5c06 414 return x.x & OO_MASK;
834f3d11
CL
415}
416
b47291ef
VB
417#ifdef CONFIG_SLUB_CPU_PARTIAL
418static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
419{
420 unsigned int nr_pages;
421
422 s->cpu_partial = nr_objects;
423
424 /*
425 * We take the number of objects but actually limit the number of
426 * pages on the per cpu partial list, in order to limit excessive
427 * growth of the list. For simplicity we assume that the pages will
428 * be half-full.
429 */
430 nr_pages = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
431 s->cpu_partial_pages = nr_pages;
432}
433#else
434static inline void
435slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
436{
437}
438#endif /* CONFIG_SLUB_CPU_PARTIAL */
439
881db7fb
CL
440/*
441 * Per slab locking using the pagelock
442 */
0393895b 443static __always_inline void __slab_lock(struct slab *slab)
881db7fb 444{
0393895b
VB
445 struct page *page = slab_page(slab);
446
48c935ad 447 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
448 bit_spin_lock(PG_locked, &page->flags);
449}
450
0393895b 451static __always_inline void __slab_unlock(struct slab *slab)
881db7fb 452{
0393895b
VB
453 struct page *page = slab_page(slab);
454
48c935ad 455 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
456 __bit_spin_unlock(PG_locked, &page->flags);
457}
458
a2b4ae8b
VB
459static __always_inline void slab_lock(struct page *page, unsigned long *flags)
460{
461 if (IS_ENABLED(CONFIG_PREEMPT_RT))
462 local_irq_save(*flags);
0393895b 463 __slab_lock(page_slab(page));
a2b4ae8b
VB
464}
465
466static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
467{
0393895b 468 __slab_unlock(page_slab(page));
a2b4ae8b
VB
469 if (IS_ENABLED(CONFIG_PREEMPT_RT))
470 local_irq_restore(*flags);
471}
472
473/*
474 * Interrupts must be disabled (for the fallback code to work right), typically
475 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
476 * so we disable interrupts as part of slab_[un]lock().
477 */
1d07171c
CL
478static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
479 void *freelist_old, unsigned long counters_old,
480 void *freelist_new, unsigned long counters_new,
481 const char *n)
482{
a2b4ae8b
VB
483 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
484 lockdep_assert_irqs_disabled();
2565409f
HC
485#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
486 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 487 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 488 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
489 freelist_old, counters_old,
490 freelist_new, counters_new))
6f6528a1 491 return true;
1d07171c
CL
492 } else
493#endif
494 {
a2b4ae8b
VB
495 /* init to 0 to prevent spurious warnings */
496 unsigned long flags = 0;
497
498 slab_lock(page, &flags);
d0e0ac97
CG
499 if (page->freelist == freelist_old &&
500 page->counters == counters_old) {
1d07171c 501 page->freelist = freelist_new;
7d27a04b 502 page->counters = counters_new;
a2b4ae8b 503 slab_unlock(page, &flags);
6f6528a1 504 return true;
1d07171c 505 }
a2b4ae8b 506 slab_unlock(page, &flags);
1d07171c
CL
507 }
508
509 cpu_relax();
510 stat(s, CMPXCHG_DOUBLE_FAIL);
511
512#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 513 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
514#endif
515
6f6528a1 516 return false;
1d07171c
CL
517}
518
b789ef51
CL
519static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
520 void *freelist_old, unsigned long counters_old,
521 void *freelist_new, unsigned long counters_new,
522 const char *n)
523{
2565409f
HC
524#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
525 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 526 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 527 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
528 freelist_old, counters_old,
529 freelist_new, counters_new))
6f6528a1 530 return true;
b789ef51
CL
531 } else
532#endif
533 {
1d07171c
CL
534 unsigned long flags;
535
536 local_irq_save(flags);
0393895b 537 __slab_lock(page_slab(page));
d0e0ac97
CG
538 if (page->freelist == freelist_old &&
539 page->counters == counters_old) {
b789ef51 540 page->freelist = freelist_new;
7d27a04b 541 page->counters = counters_new;
0393895b 542 __slab_unlock(page_slab(page));
1d07171c 543 local_irq_restore(flags);
6f6528a1 544 return true;
b789ef51 545 }
0393895b 546 __slab_unlock(page_slab(page));
1d07171c 547 local_irq_restore(flags);
b789ef51
CL
548 }
549
550 cpu_relax();
551 stat(s, CMPXCHG_DOUBLE_FAIL);
552
553#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 554 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
555#endif
556
6f6528a1 557 return false;
b789ef51
CL
558}
559
41ecc55b 560#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 561static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
94ef0304 562static DEFINE_RAW_SPINLOCK(object_map_lock);
90e9f6a6 563
b3fd64e1
VB
564static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
565 struct page *page)
566{
567 void *addr = page_address(page);
568 void *p;
569
570 bitmap_zero(obj_map, page->objects);
571
572 for (p = page->freelist; p; p = get_freepointer(s, p))
573 set_bit(__obj_to_index(s, addr, p), obj_map);
574}
575
1f9f78b1
OG
576#if IS_ENABLED(CONFIG_KUNIT)
577static bool slab_add_kunit_errors(void)
578{
579 struct kunit_resource *resource;
580
581 if (likely(!current->kunit_test))
582 return false;
583
584 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
585 if (!resource)
586 return false;
587
588 (*(int *)resource->data)++;
589 kunit_put_resource(resource);
590 return true;
591}
592#else
593static inline bool slab_add_kunit_errors(void) { return false; }
594#endif
595
5f80b13a
CL
596/*
597 * Determine a map of object in use on a page.
598 *
881db7fb 599 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
600 * not vanish from under us.
601 */
90e9f6a6 602static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 603 __acquires(&object_map_lock)
5f80b13a 604{
90e9f6a6
YZ
605 VM_BUG_ON(!irqs_disabled());
606
94ef0304 607 raw_spin_lock(&object_map_lock);
90e9f6a6 608
b3fd64e1 609 __fill_map(object_map, s, page);
90e9f6a6
YZ
610
611 return object_map;
612}
613
81aba9e0 614static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
615{
616 VM_BUG_ON(map != object_map);
94ef0304 617 raw_spin_unlock(&object_map_lock);
5f80b13a
CL
618}
619
870b1fbb 620static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
621{
622 if (s->flags & SLAB_RED_ZONE)
623 return s->size - s->red_left_pad;
624
625 return s->size;
626}
627
628static inline void *restore_red_left(struct kmem_cache *s, void *p)
629{
630 if (s->flags & SLAB_RED_ZONE)
631 p -= s->red_left_pad;
632
633 return p;
634}
635
41ecc55b
CL
636/*
637 * Debug settings:
638 */
89d3c87e 639#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 640static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 641#else
d50112ed 642static slab_flags_t slub_debug;
f0630fff 643#endif
41ecc55b 644
e17f1dfb 645static char *slub_debug_string;
fa5ec8a1 646static int disable_higher_order_debug;
41ecc55b 647
a79316c6
AR
648/*
649 * slub is about to manipulate internal object metadata. This memory lies
650 * outside the range of the allocated object, so accessing it would normally
651 * be reported by kasan as a bounds error. metadata_access_enable() is used
652 * to tell kasan that these accesses are OK.
653 */
654static inline void metadata_access_enable(void)
655{
656 kasan_disable_current();
657}
658
659static inline void metadata_access_disable(void)
660{
661 kasan_enable_current();
662}
663
81819f0f
CL
664/*
665 * Object debugging
666 */
d86bd1be
JK
667
668/* Verify that a pointer has an address that is valid within a slab page */
669static inline int check_valid_pointer(struct kmem_cache *s,
670 struct page *page, void *object)
671{
672 void *base;
673
674 if (!object)
675 return 1;
676
677 base = page_address(page);
338cfaad 678 object = kasan_reset_tag(object);
d86bd1be
JK
679 object = restore_red_left(s, object);
680 if (object < base || object >= base + page->objects * s->size ||
681 (object - base) % s->size) {
682 return 0;
683 }
684
685 return 1;
686}
687
aa2efd5e
DT
688static void print_section(char *level, char *text, u8 *addr,
689 unsigned int length)
81819f0f 690{
a79316c6 691 metadata_access_enable();
340caf17
KYL
692 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
693 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 694 metadata_access_disable();
81819f0f
CL
695}
696
cbfc35a4
WL
697/*
698 * See comment in calculate_sizes().
699 */
700static inline bool freeptr_outside_object(struct kmem_cache *s)
701{
702 return s->offset >= s->inuse;
703}
704
705/*
706 * Return offset of the end of info block which is inuse + free pointer if
707 * not overlapping with object.
708 */
709static inline unsigned int get_info_end(struct kmem_cache *s)
710{
711 if (freeptr_outside_object(s))
712 return s->inuse + sizeof(void *);
713 else
714 return s->inuse;
715}
716
81819f0f
CL
717static struct track *get_track(struct kmem_cache *s, void *object,
718 enum track_item alloc)
719{
720 struct track *p;
721
cbfc35a4 722 p = object + get_info_end(s);
81819f0f 723
aa1ef4d7 724 return kasan_reset_tag(p + alloc);
81819f0f
CL
725}
726
727static void set_track(struct kmem_cache *s, void *object,
ce71e27c 728 enum track_item alloc, unsigned long addr)
81819f0f 729{
1a00df4a 730 struct track *p = get_track(s, object, alloc);
81819f0f 731
81819f0f 732 if (addr) {
ae14c63a
LT
733#ifdef CONFIG_STACKTRACE
734 unsigned int nr_entries;
735
736 metadata_access_enable();
737 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
738 TRACK_ADDRS_COUNT, 3);
739 metadata_access_disable();
740
741 if (nr_entries < TRACK_ADDRS_COUNT)
742 p->addrs[nr_entries] = 0;
d6543e39 743#endif
81819f0f
CL
744 p->addr = addr;
745 p->cpu = smp_processor_id();
88e4ccf2 746 p->pid = current->pid;
81819f0f 747 p->when = jiffies;
b8ca7ff7 748 } else {
81819f0f 749 memset(p, 0, sizeof(struct track));
b8ca7ff7 750 }
81819f0f
CL
751}
752
81819f0f
CL
753static void init_tracking(struct kmem_cache *s, void *object)
754{
24922684
CL
755 if (!(s->flags & SLAB_STORE_USER))
756 return;
757
ce71e27c
EGM
758 set_track(s, object, TRACK_FREE, 0UL);
759 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
760}
761
86609d33 762static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
763{
764 if (!t->addr)
765 return;
766
96b94abc 767 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 768 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
ae14c63a 769#ifdef CONFIG_STACKTRACE
d6543e39 770 {
ae14c63a
LT
771 int i;
772 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
773 if (t->addrs[i])
774 pr_err("\t%pS\n", (void *)t->addrs[i]);
775 else
776 break;
d6543e39
BG
777 }
778#endif
24922684
CL
779}
780
e42f174e 781void print_tracking(struct kmem_cache *s, void *object)
24922684 782{
86609d33 783 unsigned long pr_time = jiffies;
24922684
CL
784 if (!(s->flags & SLAB_STORE_USER))
785 return;
786
86609d33
CP
787 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
788 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
789}
790
fb012e27 791static void print_slab_info(const struct slab *slab)
24922684 792{
fb012e27 793 struct folio *folio = (struct folio *)slab_folio(slab);
24922684 794
fb012e27
MWO
795 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
796 slab, slab->objects, slab->inuse, slab->freelist,
797 folio_flags(folio, 0));
24922684
CL
798}
799
800static void slab_bug(struct kmem_cache *s, char *fmt, ...)
801{
ecc42fbe 802 struct va_format vaf;
24922684 803 va_list args;
24922684
CL
804
805 va_start(args, fmt);
ecc42fbe
FF
806 vaf.fmt = fmt;
807 vaf.va = &args;
f9f58285 808 pr_err("=============================================================================\n");
ecc42fbe 809 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 810 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 811 va_end(args);
81819f0f
CL
812}
813
582d1212 814__printf(2, 3)
24922684
CL
815static void slab_fix(struct kmem_cache *s, char *fmt, ...)
816{
ecc42fbe 817 struct va_format vaf;
24922684 818 va_list args;
24922684 819
1f9f78b1
OG
820 if (slab_add_kunit_errors())
821 return;
822
24922684 823 va_start(args, fmt);
ecc42fbe
FF
824 vaf.fmt = fmt;
825 vaf.va = &args;
826 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 827 va_end(args);
24922684
CL
828}
829
830static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
831{
832 unsigned int off; /* Offset of last byte */
a973e9dd 833 u8 *addr = page_address(page);
24922684
CL
834
835 print_tracking(s, p);
836
fb012e27 837 print_slab_info(page_slab(page));
24922684 838
96b94abc 839 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 840 p, p - addr, get_freepointer(s, p));
24922684 841
d86bd1be 842 if (s->flags & SLAB_RED_ZONE)
8669dbab 843 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 844 s->red_left_pad);
d86bd1be 845 else if (p > addr + 16)
aa2efd5e 846 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 847
8669dbab 848 print_section(KERN_ERR, "Object ", p,
1b473f29 849 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 850 if (s->flags & SLAB_RED_ZONE)
8669dbab 851 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 852 s->inuse - s->object_size);
81819f0f 853
cbfc35a4 854 off = get_info_end(s);
81819f0f 855
24922684 856 if (s->flags & SLAB_STORE_USER)
81819f0f 857 off += 2 * sizeof(struct track);
81819f0f 858
80a9201a
AP
859 off += kasan_metadata_size(s);
860
d86bd1be 861 if (off != size_from_object(s))
81819f0f 862 /* Beginning of the filler is the free pointer */
8669dbab 863 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 864 size_from_object(s) - off);
24922684
CL
865
866 dump_stack();
81819f0f
CL
867}
868
ae16d059 869static void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
870 u8 *object, char *reason)
871{
1f9f78b1
OG
872 if (slab_add_kunit_errors())
873 return;
874
3dc50637 875 slab_bug(s, "%s", reason);
24922684 876 print_trailer(s, page, object);
65ebdeef 877 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
878}
879
ae16d059
VB
880static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
881 void **freelist, void *nextfree)
882{
883 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
884 !check_valid_pointer(s, page, nextfree) && freelist) {
885 object_err(s, page, *freelist, "Freechain corrupt");
886 *freelist = NULL;
887 slab_fix(s, "Isolate corrupted freechain");
888 return true;
889 }
890
891 return false;
892}
893
a38965bf 894static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 895 const char *fmt, ...)
81819f0f
CL
896{
897 va_list args;
898 char buf[100];
899
1f9f78b1
OG
900 if (slab_add_kunit_errors())
901 return;
902
24922684
CL
903 va_start(args, fmt);
904 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 905 va_end(args);
3dc50637 906 slab_bug(s, "%s", buf);
fb012e27 907 print_slab_info(page_slab(page));
81819f0f 908 dump_stack();
65ebdeef 909 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
910}
911
f7cb1933 912static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 913{
aa1ef4d7 914 u8 *p = kasan_reset_tag(object);
81819f0f 915
d86bd1be
JK
916 if (s->flags & SLAB_RED_ZONE)
917 memset(p - s->red_left_pad, val, s->red_left_pad);
918
81819f0f 919 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
920 memset(p, POISON_FREE, s->object_size - 1);
921 p[s->object_size - 1] = POISON_END;
81819f0f
CL
922 }
923
924 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 925 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
926}
927
24922684
CL
928static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
929 void *from, void *to)
930{
582d1212 931 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
932 memset(from, data, to - from);
933}
934
935static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
936 u8 *object, char *what,
06428780 937 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
938{
939 u8 *fault;
940 u8 *end;
e1b70dd1 941 u8 *addr = page_address(page);
24922684 942
a79316c6 943 metadata_access_enable();
aa1ef4d7 944 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 945 metadata_access_disable();
24922684
CL
946 if (!fault)
947 return 1;
948
949 end = start + bytes;
950 while (end > fault && end[-1] == value)
951 end--;
952
1f9f78b1
OG
953 if (slab_add_kunit_errors())
954 goto skip_bug_print;
955
24922684 956 slab_bug(s, "%s overwritten", what);
96b94abc 957 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
958 fault, end - 1, fault - addr,
959 fault[0], value);
24922684 960 print_trailer(s, page, object);
65ebdeef 961 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 962
1f9f78b1 963skip_bug_print:
24922684
CL
964 restore_bytes(s, what, value, fault, end);
965 return 0;
81819f0f
CL
966}
967
81819f0f
CL
968/*
969 * Object layout:
970 *
971 * object address
972 * Bytes of the object to be managed.
973 * If the freepointer may overlay the object then the free
cbfc35a4 974 * pointer is at the middle of the object.
672bba3a 975 *
81819f0f
CL
976 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
977 * 0xa5 (POISON_END)
978 *
3b0efdfa 979 * object + s->object_size
81819f0f 980 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 981 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 982 * object_size == inuse.
672bba3a 983 *
81819f0f
CL
984 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
985 * 0xcc (RED_ACTIVE) for objects in use.
986 *
987 * object + s->inuse
672bba3a
CL
988 * Meta data starts here.
989 *
81819f0f
CL
990 * A. Free pointer (if we cannot overwrite object on free)
991 * B. Tracking data for SLAB_STORE_USER
dc84207d 992 * C. Padding to reach required alignment boundary or at minimum
6446faa2 993 * one word if debugging is on to be able to detect writes
672bba3a
CL
994 * before the word boundary.
995 *
996 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
997 *
998 * object + s->size
672bba3a 999 * Nothing is used beyond s->size.
81819f0f 1000 *
3b0efdfa 1001 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1002 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1003 * may be used with merged slabcaches.
1004 */
1005
81819f0f
CL
1006static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
1007{
cbfc35a4 1008 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
1009
1010 if (s->flags & SLAB_STORE_USER)
1011 /* We also have user information there */
1012 off += 2 * sizeof(struct track);
1013
80a9201a
AP
1014 off += kasan_metadata_size(s);
1015
d86bd1be 1016 if (size_from_object(s) == off)
81819f0f
CL
1017 return 1;
1018
24922684 1019 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 1020 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1021}
1022
39b26464 1023/* Check the pad bytes at the end of a slab page */
81819f0f
CL
1024static int slab_pad_check(struct kmem_cache *s, struct page *page)
1025{
24922684
CL
1026 u8 *start;
1027 u8 *fault;
1028 u8 *end;
5d682681 1029 u8 *pad;
24922684
CL
1030 int length;
1031 int remainder;
81819f0f
CL
1032
1033 if (!(s->flags & SLAB_POISON))
1034 return 1;
1035
a973e9dd 1036 start = page_address(page);
a50b854e 1037 length = page_size(page);
39b26464
CL
1038 end = start + length;
1039 remainder = length % s->size;
81819f0f
CL
1040 if (!remainder)
1041 return 1;
1042
5d682681 1043 pad = end - remainder;
a79316c6 1044 metadata_access_enable();
aa1ef4d7 1045 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1046 metadata_access_disable();
24922684
CL
1047 if (!fault)
1048 return 1;
1049 while (end > fault && end[-1] == POISON_INUSE)
1050 end--;
1051
e1b70dd1
MC
1052 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1053 fault, end - 1, fault - start);
5d682681 1054 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1055
5d682681 1056 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 1057 return 0;
81819f0f
CL
1058}
1059
1060static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1061 void *object, u8 val)
81819f0f
CL
1062{
1063 u8 *p = object;
3b0efdfa 1064 u8 *endobject = object + s->object_size;
81819f0f
CL
1065
1066 if (s->flags & SLAB_RED_ZONE) {
8669dbab 1067 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
1068 object - s->red_left_pad, val, s->red_left_pad))
1069 return 0;
1070
8669dbab 1071 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 1072 endobject, val, s->inuse - s->object_size))
81819f0f 1073 return 0;
81819f0f 1074 } else {
3b0efdfa 1075 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 1076 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
1077 endobject, POISON_INUSE,
1078 s->inuse - s->object_size);
3adbefee 1079 }
81819f0f
CL
1080 }
1081
1082 if (s->flags & SLAB_POISON) {
f7cb1933 1083 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 1084 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 1085 POISON_FREE, s->object_size - 1) ||
8669dbab 1086 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 1087 p + s->object_size - 1, POISON_END, 1)))
81819f0f 1088 return 0;
81819f0f
CL
1089 /*
1090 * check_pad_bytes cleans up on its own.
1091 */
1092 check_pad_bytes(s, page, p);
1093 }
1094
cbfc35a4 1095 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1096 /*
1097 * Object and freepointer overlap. Cannot check
1098 * freepointer while object is allocated.
1099 */
1100 return 1;
1101
1102 /* Check free pointer validity */
1103 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1104 object_err(s, page, p, "Freepointer corrupt");
1105 /*
9f6c708e 1106 * No choice but to zap it and thus lose the remainder
81819f0f 1107 * of the free objects in this slab. May cause
672bba3a 1108 * another error because the object count is now wrong.
81819f0f 1109 */
a973e9dd 1110 set_freepointer(s, p, NULL);
81819f0f
CL
1111 return 0;
1112 }
1113 return 1;
1114}
1115
1116static int check_slab(struct kmem_cache *s, struct page *page)
1117{
39b26464
CL
1118 int maxobj;
1119
81819f0f 1120 if (!PageSlab(page)) {
24922684 1121 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
1122 return 0;
1123 }
39b26464 1124
9736d2a9 1125 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
1126 if (page->objects > maxobj) {
1127 slab_err(s, page, "objects %u > max %u",
f6edde9c 1128 page->objects, maxobj);
39b26464
CL
1129 return 0;
1130 }
1131 if (page->inuse > page->objects) {
24922684 1132 slab_err(s, page, "inuse %u > max %u",
f6edde9c 1133 page->inuse, page->objects);
81819f0f
CL
1134 return 0;
1135 }
1136 /* Slab_pad_check fixes things up after itself */
1137 slab_pad_check(s, page);
1138 return 1;
1139}
1140
1141/*
672bba3a
CL
1142 * Determine if a certain object on a page is on the freelist. Must hold the
1143 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
1144 */
1145static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1146{
1147 int nr = 0;
881db7fb 1148 void *fp;
81819f0f 1149 void *object = NULL;
f6edde9c 1150 int max_objects;
81819f0f 1151
881db7fb 1152 fp = page->freelist;
39b26464 1153 while (fp && nr <= page->objects) {
81819f0f
CL
1154 if (fp == search)
1155 return 1;
1156 if (!check_valid_pointer(s, page, fp)) {
1157 if (object) {
1158 object_err(s, page, object,
1159 "Freechain corrupt");
a973e9dd 1160 set_freepointer(s, object, NULL);
81819f0f 1161 } else {
24922684 1162 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1163 page->freelist = NULL;
39b26464 1164 page->inuse = page->objects;
24922684 1165 slab_fix(s, "Freelist cleared");
81819f0f
CL
1166 return 0;
1167 }
1168 break;
1169 }
1170 object = fp;
1171 fp = get_freepointer(s, object);
1172 nr++;
1173 }
1174
9736d2a9 1175 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1176 if (max_objects > MAX_OBJS_PER_PAGE)
1177 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1178
1179 if (page->objects != max_objects) {
756a025f
JP
1180 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1181 page->objects, max_objects);
224a88be 1182 page->objects = max_objects;
582d1212 1183 slab_fix(s, "Number of objects adjusted");
224a88be 1184 }
39b26464 1185 if (page->inuse != page->objects - nr) {
756a025f
JP
1186 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1187 page->inuse, page->objects - nr);
39b26464 1188 page->inuse = page->objects - nr;
582d1212 1189 slab_fix(s, "Object count adjusted");
81819f0f
CL
1190 }
1191 return search == NULL;
1192}
1193
0121c619
CL
1194static void trace(struct kmem_cache *s, struct page *page, void *object,
1195 int alloc)
3ec09742
CL
1196{
1197 if (s->flags & SLAB_TRACE) {
f9f58285 1198 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1199 s->name,
1200 alloc ? "alloc" : "free",
1201 object, page->inuse,
1202 page->freelist);
1203
1204 if (!alloc)
aa2efd5e 1205 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1206 s->object_size);
3ec09742
CL
1207
1208 dump_stack();
1209 }
1210}
1211
643b1138 1212/*
672bba3a 1213 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1214 */
5cc6eee8
CL
1215static void add_full(struct kmem_cache *s,
1216 struct kmem_cache_node *n, struct page *page)
643b1138 1217{
5cc6eee8
CL
1218 if (!(s->flags & SLAB_STORE_USER))
1219 return;
1220
255d0884 1221 lockdep_assert_held(&n->list_lock);
916ac052 1222 list_add(&page->slab_list, &n->full);
643b1138
CL
1223}
1224
c65c1877 1225static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1226{
643b1138
CL
1227 if (!(s->flags & SLAB_STORE_USER))
1228 return;
1229
255d0884 1230 lockdep_assert_held(&n->list_lock);
916ac052 1231 list_del(&page->slab_list);
643b1138
CL
1232}
1233
0f389ec6
CL
1234/* Tracking of the number of slabs for debugging purposes */
1235static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1236{
1237 struct kmem_cache_node *n = get_node(s, node);
1238
1239 return atomic_long_read(&n->nr_slabs);
1240}
1241
26c02cf0
AB
1242static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1243{
1244 return atomic_long_read(&n->nr_slabs);
1245}
1246
205ab99d 1247static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1248{
1249 struct kmem_cache_node *n = get_node(s, node);
1250
1251 /*
1252 * May be called early in order to allocate a slab for the
1253 * kmem_cache_node structure. Solve the chicken-egg
1254 * dilemma by deferring the increment of the count during
1255 * bootstrap (see early_kmem_cache_node_alloc).
1256 */
338b2642 1257 if (likely(n)) {
0f389ec6 1258 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1259 atomic_long_add(objects, &n->total_objects);
1260 }
0f389ec6 1261}
205ab99d 1262static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1263{
1264 struct kmem_cache_node *n = get_node(s, node);
1265
1266 atomic_long_dec(&n->nr_slabs);
205ab99d 1267 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1268}
1269
1270/* Object debug checks for alloc/free paths */
3ec09742
CL
1271static void setup_object_debug(struct kmem_cache *s, struct page *page,
1272 void *object)
1273{
8fc8d666 1274 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1275 return;
1276
f7cb1933 1277 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1278 init_tracking(s, object);
1279}
1280
a50b854e
MWO
1281static
1282void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1283{
8fc8d666 1284 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1285 return;
1286
1287 metadata_access_enable();
aa1ef4d7 1288 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1289 metadata_access_disable();
1290}
1291
becfda68 1292static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1293 struct page *page, void *object)
81819f0f
CL
1294{
1295 if (!check_slab(s, page))
becfda68 1296 return 0;
81819f0f 1297
81819f0f
CL
1298 if (!check_valid_pointer(s, page, object)) {
1299 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1300 return 0;
81819f0f
CL
1301 }
1302
f7cb1933 1303 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1304 return 0;
1305
1306 return 1;
1307}
1308
1309static noinline int alloc_debug_processing(struct kmem_cache *s,
1310 struct page *page,
1311 void *object, unsigned long addr)
1312{
1313 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1314 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1315 goto bad;
1316 }
81819f0f 1317
3ec09742
CL
1318 /* Success perform special debug activities for allocs */
1319 if (s->flags & SLAB_STORE_USER)
1320 set_track(s, object, TRACK_ALLOC, addr);
1321 trace(s, page, object, 1);
f7cb1933 1322 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1323 return 1;
3ec09742 1324
81819f0f
CL
1325bad:
1326 if (PageSlab(page)) {
1327 /*
1328 * If this is a slab page then lets do the best we can
1329 * to avoid issues in the future. Marking all objects
672bba3a 1330 * as used avoids touching the remaining objects.
81819f0f 1331 */
24922684 1332 slab_fix(s, "Marking all objects used");
39b26464 1333 page->inuse = page->objects;
a973e9dd 1334 page->freelist = NULL;
81819f0f
CL
1335 }
1336 return 0;
1337}
1338
becfda68
LA
1339static inline int free_consistency_checks(struct kmem_cache *s,
1340 struct page *page, void *object, unsigned long addr)
81819f0f 1341{
81819f0f 1342 if (!check_valid_pointer(s, page, object)) {
70d71228 1343 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1344 return 0;
81819f0f
CL
1345 }
1346
1347 if (on_freelist(s, page, object)) {
24922684 1348 object_err(s, page, object, "Object already free");
becfda68 1349 return 0;
81819f0f
CL
1350 }
1351
f7cb1933 1352 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1353 return 0;
81819f0f 1354
1b4f59e3 1355 if (unlikely(s != page->slab_cache)) {
3adbefee 1356 if (!PageSlab(page)) {
756a025f
JP
1357 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1358 object);
1b4f59e3 1359 } else if (!page->slab_cache) {
f9f58285
FF
1360 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1361 object);
70d71228 1362 dump_stack();
06428780 1363 } else
24922684
CL
1364 object_err(s, page, object,
1365 "page slab pointer corrupt.");
becfda68
LA
1366 return 0;
1367 }
1368 return 1;
1369}
1370
1371/* Supports checking bulk free of a constructed freelist */
1372static noinline int free_debug_processing(
1373 struct kmem_cache *s, struct page *page,
1374 void *head, void *tail, int bulk_cnt,
1375 unsigned long addr)
1376{
1377 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1378 void *object = head;
1379 int cnt = 0;
a2b4ae8b 1380 unsigned long flags, flags2;
becfda68
LA
1381 int ret = 0;
1382
1383 spin_lock_irqsave(&n->list_lock, flags);
a2b4ae8b 1384 slab_lock(page, &flags2);
becfda68
LA
1385
1386 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1387 if (!check_slab(s, page))
1388 goto out;
1389 }
1390
1391next_object:
1392 cnt++;
1393
1394 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1395 if (!free_consistency_checks(s, page, object, addr))
1396 goto out;
81819f0f 1397 }
3ec09742 1398
3ec09742
CL
1399 if (s->flags & SLAB_STORE_USER)
1400 set_track(s, object, TRACK_FREE, addr);
1401 trace(s, page, object, 0);
81084651 1402 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1403 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1404
1405 /* Reached end of constructed freelist yet? */
1406 if (object != tail) {
1407 object = get_freepointer(s, object);
1408 goto next_object;
1409 }
804aa132
LA
1410 ret = 1;
1411
5c2e4bbb 1412out:
81084651
JDB
1413 if (cnt != bulk_cnt)
1414 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1415 bulk_cnt, cnt);
1416
a2b4ae8b 1417 slab_unlock(page, &flags2);
282acb43 1418 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1419 if (!ret)
1420 slab_fix(s, "Object at 0x%p not freed", object);
1421 return ret;
81819f0f
CL
1422}
1423
e17f1dfb
VB
1424/*
1425 * Parse a block of slub_debug options. Blocks are delimited by ';'
1426 *
1427 * @str: start of block
1428 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1429 * @slabs: return start of list of slabs, or NULL when there's no list
1430 * @init: assume this is initial parsing and not per-kmem-create parsing
1431 *
1432 * returns the start of next block if there's any, or NULL
1433 */
1434static char *
1435parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1436{
e17f1dfb 1437 bool higher_order_disable = false;
f0630fff 1438
e17f1dfb
VB
1439 /* Skip any completely empty blocks */
1440 while (*str && *str == ';')
1441 str++;
1442
1443 if (*str == ',') {
f0630fff
CL
1444 /*
1445 * No options but restriction on slabs. This means full
1446 * debugging for slabs matching a pattern.
1447 */
e17f1dfb 1448 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1449 goto check_slabs;
e17f1dfb
VB
1450 }
1451 *flags = 0;
f0630fff 1452
e17f1dfb
VB
1453 /* Determine which debug features should be switched on */
1454 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1455 switch (tolower(*str)) {
e17f1dfb
VB
1456 case '-':
1457 *flags = 0;
1458 break;
f0630fff 1459 case 'f':
e17f1dfb 1460 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1461 break;
1462 case 'z':
e17f1dfb 1463 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1464 break;
1465 case 'p':
e17f1dfb 1466 *flags |= SLAB_POISON;
f0630fff
CL
1467 break;
1468 case 'u':
e17f1dfb 1469 *flags |= SLAB_STORE_USER;
f0630fff
CL
1470 break;
1471 case 't':
e17f1dfb 1472 *flags |= SLAB_TRACE;
f0630fff 1473 break;
4c13dd3b 1474 case 'a':
e17f1dfb 1475 *flags |= SLAB_FAILSLAB;
4c13dd3b 1476 break;
08303a73
CA
1477 case 'o':
1478 /*
1479 * Avoid enabling debugging on caches if its minimum
1480 * order would increase as a result.
1481 */
e17f1dfb 1482 higher_order_disable = true;
08303a73 1483 break;
f0630fff 1484 default:
e17f1dfb
VB
1485 if (init)
1486 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1487 }
41ecc55b 1488 }
f0630fff 1489check_slabs:
41ecc55b 1490 if (*str == ',')
e17f1dfb
VB
1491 *slabs = ++str;
1492 else
1493 *slabs = NULL;
1494
1495 /* Skip over the slab list */
1496 while (*str && *str != ';')
1497 str++;
1498
1499 /* Skip any completely empty blocks */
1500 while (*str && *str == ';')
1501 str++;
1502
1503 if (init && higher_order_disable)
1504 disable_higher_order_debug = 1;
1505
1506 if (*str)
1507 return str;
1508 else
1509 return NULL;
1510}
1511
1512static int __init setup_slub_debug(char *str)
1513{
1514 slab_flags_t flags;
a7f1d485 1515 slab_flags_t global_flags;
e17f1dfb
VB
1516 char *saved_str;
1517 char *slab_list;
1518 bool global_slub_debug_changed = false;
1519 bool slab_list_specified = false;
1520
a7f1d485 1521 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1522 if (*str++ != '=' || !*str)
1523 /*
1524 * No options specified. Switch on full debugging.
1525 */
1526 goto out;
1527
1528 saved_str = str;
1529 while (str) {
1530 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1531
1532 if (!slab_list) {
a7f1d485 1533 global_flags = flags;
e17f1dfb
VB
1534 global_slub_debug_changed = true;
1535 } else {
1536 slab_list_specified = true;
1537 }
1538 }
1539
1540 /*
1541 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1542 * slabs means debugging is only changed for those slabs, so the global
1543 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1544 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1545 * long as there is no option specifying flags without a slab list.
1546 */
1547 if (slab_list_specified) {
1548 if (!global_slub_debug_changed)
a7f1d485 1549 global_flags = slub_debug;
e17f1dfb
VB
1550 slub_debug_string = saved_str;
1551 }
f0630fff 1552out:
a7f1d485 1553 slub_debug = global_flags;
ca0cab65
VB
1554 if (slub_debug != 0 || slub_debug_string)
1555 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1556 else
1557 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1558 if ((static_branch_unlikely(&init_on_alloc) ||
1559 static_branch_unlikely(&init_on_free)) &&
1560 (slub_debug & SLAB_POISON))
1561 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1562 return 1;
1563}
1564
1565__setup("slub_debug", setup_slub_debug);
1566
c5fd3ca0
AT
1567/*
1568 * kmem_cache_flags - apply debugging options to the cache
1569 * @object_size: the size of an object without meta data
1570 * @flags: flags to set
1571 * @name: name of the cache
c5fd3ca0
AT
1572 *
1573 * Debug option(s) are applied to @flags. In addition to the debug
1574 * option(s), if a slab name (or multiple) is specified i.e.
1575 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1576 * then only the select slabs will receive the debug option(s).
1577 */
0293d1fd 1578slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1579 slab_flags_t flags, const char *name)
41ecc55b 1580{
c5fd3ca0
AT
1581 char *iter;
1582 size_t len;
e17f1dfb
VB
1583 char *next_block;
1584 slab_flags_t block_flags;
ca220593
JB
1585 slab_flags_t slub_debug_local = slub_debug;
1586
1587 /*
1588 * If the slab cache is for debugging (e.g. kmemleak) then
1589 * don't store user (stack trace) information by default,
1590 * but let the user enable it via the command line below.
1591 */
1592 if (flags & SLAB_NOLEAKTRACE)
1593 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1594
c5fd3ca0 1595 len = strlen(name);
e17f1dfb
VB
1596 next_block = slub_debug_string;
1597 /* Go through all blocks of debug options, see if any matches our slab's name */
1598 while (next_block) {
1599 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1600 if (!iter)
1601 continue;
1602 /* Found a block that has a slab list, search it */
1603 while (*iter) {
1604 char *end, *glob;
1605 size_t cmplen;
1606
1607 end = strchrnul(iter, ',');
1608 if (next_block && next_block < end)
1609 end = next_block - 1;
1610
1611 glob = strnchr(iter, end - iter, '*');
1612 if (glob)
1613 cmplen = glob - iter;
1614 else
1615 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1616
e17f1dfb
VB
1617 if (!strncmp(name, iter, cmplen)) {
1618 flags |= block_flags;
1619 return flags;
1620 }
c5fd3ca0 1621
e17f1dfb
VB
1622 if (!*end || *end == ';')
1623 break;
1624 iter = end + 1;
c5fd3ca0 1625 }
c5fd3ca0 1626 }
ba0268a8 1627
ca220593 1628 return flags | slub_debug_local;
41ecc55b 1629}
b4a64718 1630#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1631static inline void setup_object_debug(struct kmem_cache *s,
1632 struct page *page, void *object) {}
a50b854e
MWO
1633static inline
1634void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1635
3ec09742 1636static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1637 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1638
282acb43 1639static inline int free_debug_processing(
81084651
JDB
1640 struct kmem_cache *s, struct page *page,
1641 void *head, void *tail, int bulk_cnt,
282acb43 1642 unsigned long addr) { return 0; }
41ecc55b 1643
41ecc55b
CL
1644static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1645 { return 1; }
1646static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1647 void *object, u8 val) { return 1; }
5cc6eee8
CL
1648static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1649 struct page *page) {}
c65c1877
PZ
1650static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1651 struct page *page) {}
0293d1fd 1652slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1653 slab_flags_t flags, const char *name)
ba0268a8
CL
1654{
1655 return flags;
1656}
41ecc55b 1657#define slub_debug 0
0f389ec6 1658
fdaa45e9
IM
1659#define disable_higher_order_debug 0
1660
0f389ec6
CL
1661static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1662 { return 0; }
26c02cf0
AB
1663static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1664 { return 0; }
205ab99d
CL
1665static inline void inc_slabs_node(struct kmem_cache *s, int node,
1666 int objects) {}
1667static inline void dec_slabs_node(struct kmem_cache *s, int node,
1668 int objects) {}
7d550c56 1669
52f23478 1670static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1671 void **freelist, void *nextfree)
52f23478
DZ
1672{
1673 return false;
1674}
02e72cc6
AR
1675#endif /* CONFIG_SLUB_DEBUG */
1676
1677/*
1678 * Hooks for other subsystems that check memory allocations. In a typical
1679 * production configuration these hooks all should produce no code at all.
1680 */
0116523c 1681static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1682{
53128245 1683 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1684 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1685 kmemleak_alloc(ptr, size, 1, flags);
53128245 1686 return ptr;
d56791b3
RB
1687}
1688
ee3ce779 1689static __always_inline void kfree_hook(void *x)
d56791b3
RB
1690{
1691 kmemleak_free(x);
027b37b5 1692 kasan_kfree_large(x);
d56791b3
RB
1693}
1694
d57a964e
AK
1695static __always_inline bool slab_free_hook(struct kmem_cache *s,
1696 void *x, bool init)
d56791b3
RB
1697{
1698 kmemleak_free_recursive(x, s->flags);
7d550c56 1699
84048039 1700 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1701
02e72cc6
AR
1702 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1703 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1704
cfbe1636
ME
1705 /* Use KCSAN to help debug racy use-after-free. */
1706 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1707 __kcsan_check_access(x, s->object_size,
1708 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1709
d57a964e
AK
1710 /*
1711 * As memory initialization might be integrated into KASAN,
1712 * kasan_slab_free and initialization memset's must be
1713 * kept together to avoid discrepancies in behavior.
1714 *
1715 * The initialization memset's clear the object and the metadata,
1716 * but don't touch the SLAB redzone.
1717 */
1718 if (init) {
1719 int rsize;
1720
1721 if (!kasan_has_integrated_init())
1722 memset(kasan_reset_tag(x), 0, s->object_size);
1723 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1724 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1725 s->size - s->inuse - rsize);
1726 }
1727 /* KASAN might put x into memory quarantine, delaying its reuse. */
1728 return kasan_slab_free(s, x, init);
02e72cc6 1729}
205ab99d 1730
c3895391 1731static inline bool slab_free_freelist_hook(struct kmem_cache *s,
899447f6
ML
1732 void **head, void **tail,
1733 int *cnt)
81084651 1734{
6471384a
AP
1735
1736 void *object;
1737 void *next = *head;
1738 void *old_tail = *tail ? *tail : *head;
6471384a 1739
b89fb5ef 1740 if (is_kfence_address(next)) {
d57a964e 1741 slab_free_hook(s, next, false);
b89fb5ef
AP
1742 return true;
1743 }
1744
aea4df4c
LA
1745 /* Head and tail of the reconstructed freelist */
1746 *head = NULL;
1747 *tail = NULL;
1b7e816f 1748
aea4df4c
LA
1749 do {
1750 object = next;
1751 next = get_freepointer(s, object);
1752
c3895391 1753 /* If object's reuse doesn't have to be delayed */
d57a964e 1754 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1755 /* Move object to the new freelist */
1756 set_freepointer(s, object, *head);
1757 *head = object;
1758 if (!*tail)
1759 *tail = object;
899447f6
ML
1760 } else {
1761 /*
1762 * Adjust the reconstructed freelist depth
1763 * accordingly if object's reuse is delayed.
1764 */
1765 --(*cnt);
c3895391
AK
1766 }
1767 } while (object != old_tail);
1768
1769 if (*head == *tail)
1770 *tail = NULL;
1771
1772 return *head != NULL;
81084651
JDB
1773}
1774
4d176711 1775static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1776 void *object)
1777{
1778 setup_object_debug(s, page, object);
4d176711 1779 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1780 if (unlikely(s->ctor)) {
1781 kasan_unpoison_object_data(s, object);
1782 s->ctor(object);
1783 kasan_poison_object_data(s, object);
1784 }
4d176711 1785 return object;
588f8ba9
TG
1786}
1787
81819f0f
CL
1788/*
1789 * Slab allocation and freeing
1790 */
5dfb4175
VD
1791static inline struct page *alloc_slab_page(struct kmem_cache *s,
1792 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1793{
5dfb4175 1794 struct page *page;
19af27af 1795 unsigned int order = oo_order(oo);
65c3376a 1796
2154a336 1797 if (node == NUMA_NO_NODE)
5dfb4175 1798 page = alloc_pages(flags, order);
65c3376a 1799 else
96db800f 1800 page = __alloc_pages_node(node, flags, order);
5dfb4175 1801
5dfb4175 1802 return page;
65c3376a
CL
1803}
1804
210e7a43
TG
1805#ifdef CONFIG_SLAB_FREELIST_RANDOM
1806/* Pre-initialize the random sequence cache */
1807static int init_cache_random_seq(struct kmem_cache *s)
1808{
19af27af 1809 unsigned int count = oo_objects(s->oo);
210e7a43 1810 int err;
210e7a43 1811
a810007a
SR
1812 /* Bailout if already initialised */
1813 if (s->random_seq)
1814 return 0;
1815
210e7a43
TG
1816 err = cache_random_seq_create(s, count, GFP_KERNEL);
1817 if (err) {
1818 pr_err("SLUB: Unable to initialize free list for %s\n",
1819 s->name);
1820 return err;
1821 }
1822
1823 /* Transform to an offset on the set of pages */
1824 if (s->random_seq) {
19af27af
AD
1825 unsigned int i;
1826
210e7a43
TG
1827 for (i = 0; i < count; i++)
1828 s->random_seq[i] *= s->size;
1829 }
1830 return 0;
1831}
1832
1833/* Initialize each random sequence freelist per cache */
1834static void __init init_freelist_randomization(void)
1835{
1836 struct kmem_cache *s;
1837
1838 mutex_lock(&slab_mutex);
1839
1840 list_for_each_entry(s, &slab_caches, list)
1841 init_cache_random_seq(s);
1842
1843 mutex_unlock(&slab_mutex);
1844}
1845
1846/* Get the next entry on the pre-computed freelist randomized */
1847static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1848 unsigned long *pos, void *start,
1849 unsigned long page_limit,
1850 unsigned long freelist_count)
1851{
1852 unsigned int idx;
1853
1854 /*
1855 * If the target page allocation failed, the number of objects on the
1856 * page might be smaller than the usual size defined by the cache.
1857 */
1858 do {
1859 idx = s->random_seq[*pos];
1860 *pos += 1;
1861 if (*pos >= freelist_count)
1862 *pos = 0;
1863 } while (unlikely(idx >= page_limit));
1864
1865 return (char *)start + idx;
1866}
1867
1868/* Shuffle the single linked freelist based on a random pre-computed sequence */
1869static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1870{
1871 void *start;
1872 void *cur;
1873 void *next;
1874 unsigned long idx, pos, page_limit, freelist_count;
1875
1876 if (page->objects < 2 || !s->random_seq)
1877 return false;
1878
1879 freelist_count = oo_objects(s->oo);
1880 pos = get_random_int() % freelist_count;
1881
1882 page_limit = page->objects * s->size;
1883 start = fixup_red_left(s, page_address(page));
1884
1885 /* First entry is used as the base of the freelist */
1886 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1887 freelist_count);
4d176711 1888 cur = setup_object(s, page, cur);
210e7a43
TG
1889 page->freelist = cur;
1890
1891 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1892 next = next_freelist_entry(s, page, &pos, start, page_limit,
1893 freelist_count);
4d176711 1894 next = setup_object(s, page, next);
210e7a43
TG
1895 set_freepointer(s, cur, next);
1896 cur = next;
1897 }
210e7a43
TG
1898 set_freepointer(s, cur, NULL);
1899
1900 return true;
1901}
1902#else
1903static inline int init_cache_random_seq(struct kmem_cache *s)
1904{
1905 return 0;
1906}
1907static inline void init_freelist_randomization(void) { }
1908static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1909{
1910 return false;
1911}
1912#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1913
81819f0f
CL
1914static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1915{
06428780 1916 struct page *page;
834f3d11 1917 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1918 gfp_t alloc_gfp;
4d176711 1919 void *start, *p, *next;
a50b854e 1920 int idx;
210e7a43 1921 bool shuffle;
81819f0f 1922
7e0528da
CL
1923 flags &= gfp_allowed_mask;
1924
b7a49f0d 1925 flags |= s->allocflags;
e12ba74d 1926
ba52270d
PE
1927 /*
1928 * Let the initial higher-order allocation fail under memory pressure
1929 * so we fall-back to the minimum order allocation.
1930 */
1931 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1932 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1933 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1934
5dfb4175 1935 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1936 if (unlikely(!page)) {
1937 oo = s->min;
80c3a998 1938 alloc_gfp = flags;
65c3376a
CL
1939 /*
1940 * Allocation may have failed due to fragmentation.
1941 * Try a lower order alloc if possible
1942 */
5dfb4175 1943 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1944 if (unlikely(!page))
1945 goto out;
1946 stat(s, ORDER_FALLBACK);
65c3376a 1947 }
5a896d9e 1948
834f3d11 1949 page->objects = oo_objects(oo);
81819f0f 1950
b918653b 1951 account_slab(page_slab(page), oo_order(oo), s, flags);
1f3147b4 1952
1b4f59e3 1953 page->slab_cache = s;
c03f94cc 1954 __SetPageSlab(page);
2f064f34 1955 if (page_is_pfmemalloc(page))
072bb0aa 1956 SetPageSlabPfmemalloc(page);
81819f0f 1957
a7101224 1958 kasan_poison_slab(page);
81819f0f 1959
a7101224 1960 start = page_address(page);
81819f0f 1961
a50b854e 1962 setup_page_debug(s, page, start);
0316bec2 1963
210e7a43
TG
1964 shuffle = shuffle_freelist(s, page);
1965
1966 if (!shuffle) {
4d176711
AK
1967 start = fixup_red_left(s, start);
1968 start = setup_object(s, page, start);
1969 page->freelist = start;
18e50661
AK
1970 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1971 next = p + s->size;
1972 next = setup_object(s, page, next);
1973 set_freepointer(s, p, next);
1974 p = next;
1975 }
1976 set_freepointer(s, p, NULL);
81819f0f 1977 }
81819f0f 1978
e6e82ea1 1979 page->inuse = page->objects;
8cb0a506 1980 page->frozen = 1;
588f8ba9 1981
81819f0f 1982out:
588f8ba9
TG
1983 if (!page)
1984 return NULL;
1985
588f8ba9
TG
1986 inc_slabs_node(s, page_to_nid(page), page->objects);
1987
81819f0f
CL
1988 return page;
1989}
1990
588f8ba9
TG
1991static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1992{
44405099
LL
1993 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1994 flags = kmalloc_fix_flags(flags);
588f8ba9 1995
53a0de06
VB
1996 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1997
588f8ba9
TG
1998 return allocate_slab(s,
1999 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2000}
2001
81819f0f
CL
2002static void __free_slab(struct kmem_cache *s, struct page *page)
2003{
834f3d11
CL
2004 int order = compound_order(page);
2005 int pages = 1 << order;
81819f0f 2006
8fc8d666 2007 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
2008 void *p;
2009
2010 slab_pad_check(s, page);
224a88be
CL
2011 for_each_object(p, s, page_address(page),
2012 page->objects)
f7cb1933 2013 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
2014 }
2015
072bb0aa 2016 __ClearPageSlabPfmemalloc(page);
49bd5221 2017 __ClearPageSlab(page);
0c06dd75
VB
2018 /* In union with page->mapping where page allocator expects NULL */
2019 page->slab_cache = NULL;
1eb5ac64
NP
2020 if (current->reclaim_state)
2021 current->reclaim_state->reclaimed_slab += pages;
b918653b 2022 unaccount_slab(page_slab(page), order, s);
27ee57c9 2023 __free_pages(page, order);
81819f0f
CL
2024}
2025
2026static void rcu_free_slab(struct rcu_head *h)
2027{
bf68c214 2028 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 2029
1b4f59e3 2030 __free_slab(page->slab_cache, page);
81819f0f
CL
2031}
2032
2033static void free_slab(struct kmem_cache *s, struct page *page)
2034{
5f0d5a3a 2035 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 2036 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
2037 } else
2038 __free_slab(s, page);
2039}
2040
2041static void discard_slab(struct kmem_cache *s, struct page *page)
2042{
205ab99d 2043 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
2044 free_slab(s, page);
2045}
2046
2047/*
5cc6eee8 2048 * Management of partially allocated slabs.
81819f0f 2049 */
1e4dd946
SR
2050static inline void
2051__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 2052{
e95eed57 2053 n->nr_partial++;
136333d1 2054 if (tail == DEACTIVATE_TO_TAIL)
916ac052 2055 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 2056 else
916ac052 2057 list_add(&page->slab_list, &n->partial);
81819f0f
CL
2058}
2059
1e4dd946
SR
2060static inline void add_partial(struct kmem_cache_node *n,
2061 struct page *page, int tail)
62e346a8 2062{
c65c1877 2063 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
2064 __add_partial(n, page, tail);
2065}
c65c1877 2066
1e4dd946
SR
2067static inline void remove_partial(struct kmem_cache_node *n,
2068 struct page *page)
2069{
2070 lockdep_assert_held(&n->list_lock);
916ac052 2071 list_del(&page->slab_list);
52b4b950 2072 n->nr_partial--;
1e4dd946
SR
2073}
2074
81819f0f 2075/*
7ced3719
CL
2076 * Remove slab from the partial list, freeze it and
2077 * return the pointer to the freelist.
81819f0f 2078 *
497b66f2 2079 * Returns a list of objects or NULL if it fails.
81819f0f 2080 */
497b66f2 2081static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 2082 struct kmem_cache_node *n, struct page *page,
b47291ef 2083 int mode)
81819f0f 2084{
2cfb7455
CL
2085 void *freelist;
2086 unsigned long counters;
2087 struct page new;
2088
c65c1877
PZ
2089 lockdep_assert_held(&n->list_lock);
2090
2cfb7455
CL
2091 /*
2092 * Zap the freelist and set the frozen bit.
2093 * The old freelist is the list of objects for the
2094 * per cpu allocation list.
2095 */
7ced3719
CL
2096 freelist = page->freelist;
2097 counters = page->counters;
2098 new.counters = counters;
23910c50 2099 if (mode) {
7ced3719 2100 new.inuse = page->objects;
23910c50
PE
2101 new.freelist = NULL;
2102 } else {
2103 new.freelist = freelist;
2104 }
2cfb7455 2105
a0132ac0 2106 VM_BUG_ON(new.frozen);
7ced3719 2107 new.frozen = 1;
2cfb7455 2108
7ced3719 2109 if (!__cmpxchg_double_slab(s, page,
2cfb7455 2110 freelist, counters,
02d7633f 2111 new.freelist, new.counters,
7ced3719 2112 "acquire_slab"))
7ced3719 2113 return NULL;
2cfb7455
CL
2114
2115 remove_partial(n, page);
7ced3719 2116 WARN_ON(!freelist);
49e22585 2117 return freelist;
81819f0f
CL
2118}
2119
e0a043aa 2120#ifdef CONFIG_SLUB_CPU_PARTIAL
633b0764 2121static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
e0a043aa
VB
2122#else
2123static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
2124 int drain) { }
2125#endif
8ba00bb6 2126static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 2127
81819f0f 2128/*
672bba3a 2129 * Try to allocate a partial slab from a specific node.
81819f0f 2130 */
8ba00bb6 2131static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
4b1f449d 2132 struct page **ret_page, gfp_t gfpflags)
81819f0f 2133{
49e22585
CL
2134 struct page *page, *page2;
2135 void *object = NULL;
4b1f449d 2136 unsigned long flags;
b47291ef 2137 unsigned int partial_pages = 0;
81819f0f
CL
2138
2139 /*
2140 * Racy check. If we mistakenly see no partial slabs then we
2141 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2142 * partial slab and there is none available then get_partial()
672bba3a 2143 * will return NULL.
81819f0f
CL
2144 */
2145 if (!n || !n->nr_partial)
2146 return NULL;
2147
4b1f449d 2148 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2149 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 2150 void *t;
49e22585 2151
4b1f449d 2152 if (!pfmemalloc_match(page, gfpflags))
8ba00bb6
JK
2153 continue;
2154
b47291ef 2155 t = acquire_slab(s, n, page, object == NULL);
49e22585 2156 if (!t)
9b1ea29b 2157 break;
49e22585 2158
12d79634 2159 if (!object) {
75c8ff28 2160 *ret_page = page;
49e22585 2161 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2162 object = t;
49e22585 2163 } else {
633b0764 2164 put_cpu_partial(s, page, 0);
8028dcea 2165 stat(s, CPU_PARTIAL_NODE);
b47291ef 2166 partial_pages++;
49e22585 2167 }
b47291ef 2168#ifdef CONFIG_SLUB_CPU_PARTIAL
345c905d 2169 if (!kmem_cache_has_cpu_partial(s)
b47291ef 2170 || partial_pages > s->cpu_partial_pages / 2)
49e22585 2171 break;
b47291ef
VB
2172#else
2173 break;
2174#endif
49e22585 2175
497b66f2 2176 }
4b1f449d 2177 spin_unlock_irqrestore(&n->list_lock, flags);
497b66f2 2178 return object;
81819f0f
CL
2179}
2180
2181/*
672bba3a 2182 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2183 */
de3ec035 2184static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
75c8ff28 2185 struct page **ret_page)
81819f0f
CL
2186{
2187#ifdef CONFIG_NUMA
2188 struct zonelist *zonelist;
dd1a239f 2189 struct zoneref *z;
54a6eb5c 2190 struct zone *zone;
97a225e6 2191 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2192 void *object;
cc9a6c87 2193 unsigned int cpuset_mems_cookie;
81819f0f
CL
2194
2195 /*
672bba3a
CL
2196 * The defrag ratio allows a configuration of the tradeoffs between
2197 * inter node defragmentation and node local allocations. A lower
2198 * defrag_ratio increases the tendency to do local allocations
2199 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2200 *
672bba3a
CL
2201 * If the defrag_ratio is set to 0 then kmalloc() always
2202 * returns node local objects. If the ratio is higher then kmalloc()
2203 * may return off node objects because partial slabs are obtained
2204 * from other nodes and filled up.
81819f0f 2205 *
43efd3ea
LP
2206 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2207 * (which makes defrag_ratio = 1000) then every (well almost)
2208 * allocation will first attempt to defrag slab caches on other nodes.
2209 * This means scanning over all nodes to look for partial slabs which
2210 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2211 * with available objects.
81819f0f 2212 */
9824601e
CL
2213 if (!s->remote_node_defrag_ratio ||
2214 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2215 return NULL;
2216
cc9a6c87 2217 do {
d26914d1 2218 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2219 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2220 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2221 struct kmem_cache_node *n;
2222
2223 n = get_node(s, zone_to_nid(zone));
2224
dee2f8aa 2225 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2226 n->nr_partial > s->min_partial) {
75c8ff28 2227 object = get_partial_node(s, n, ret_page, flags);
cc9a6c87
MG
2228 if (object) {
2229 /*
d26914d1
MG
2230 * Don't check read_mems_allowed_retry()
2231 * here - if mems_allowed was updated in
2232 * parallel, that was a harmless race
2233 * between allocation and the cpuset
2234 * update
cc9a6c87 2235 */
cc9a6c87
MG
2236 return object;
2237 }
c0ff7453 2238 }
81819f0f 2239 }
d26914d1 2240 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2241#endif /* CONFIG_NUMA */
81819f0f
CL
2242 return NULL;
2243}
2244
2245/*
2246 * Get a partial page, lock it and return it.
2247 */
497b66f2 2248static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
75c8ff28 2249 struct page **ret_page)
81819f0f 2250{
497b66f2 2251 void *object;
a561ce00
JK
2252 int searchnode = node;
2253
2254 if (node == NUMA_NO_NODE)
2255 searchnode = numa_mem_id();
81819f0f 2256
75c8ff28 2257 object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
497b66f2
CL
2258 if (object || node != NUMA_NO_NODE)
2259 return object;
81819f0f 2260
75c8ff28 2261 return get_any_partial(s, flags, ret_page);
81819f0f
CL
2262}
2263
923717cb 2264#ifdef CONFIG_PREEMPTION
8a5ec0ba 2265/*
0d645ed1 2266 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2267 * during cmpxchg. The transactions start with the cpu number and are then
2268 * incremented by CONFIG_NR_CPUS.
2269 */
2270#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2271#else
2272/*
2273 * No preemption supported therefore also no need to check for
2274 * different cpus.
2275 */
2276#define TID_STEP 1
2277#endif
2278
2279static inline unsigned long next_tid(unsigned long tid)
2280{
2281 return tid + TID_STEP;
2282}
2283
9d5f0be0 2284#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2285static inline unsigned int tid_to_cpu(unsigned long tid)
2286{
2287 return tid % TID_STEP;
2288}
2289
2290static inline unsigned long tid_to_event(unsigned long tid)
2291{
2292 return tid / TID_STEP;
2293}
9d5f0be0 2294#endif
8a5ec0ba
CL
2295
2296static inline unsigned int init_tid(int cpu)
2297{
2298 return cpu;
2299}
2300
2301static inline void note_cmpxchg_failure(const char *n,
2302 const struct kmem_cache *s, unsigned long tid)
2303{
2304#ifdef SLUB_DEBUG_CMPXCHG
2305 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2306
f9f58285 2307 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2308
923717cb 2309#ifdef CONFIG_PREEMPTION
8a5ec0ba 2310 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2311 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2312 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2313 else
2314#endif
2315 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2316 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2317 tid_to_event(tid), tid_to_event(actual_tid));
2318 else
f9f58285 2319 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2320 actual_tid, tid, next_tid(tid));
2321#endif
4fdccdfb 2322 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2323}
2324
788e1aad 2325static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2326{
8a5ec0ba 2327 int cpu;
bd0e7491 2328 struct kmem_cache_cpu *c;
8a5ec0ba 2329
bd0e7491
VB
2330 for_each_possible_cpu(cpu) {
2331 c = per_cpu_ptr(s->cpu_slab, cpu);
2332 local_lock_init(&c->lock);
2333 c->tid = init_tid(cpu);
2334 }
8a5ec0ba 2335}
2cfb7455 2336
81819f0f 2337/*
a019d201
VB
2338 * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2339 * unfreezes the slabs and puts it on the proper list.
2340 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2341 * by the caller.
81819f0f 2342 */
d0e0ac97 2343static void deactivate_slab(struct kmem_cache *s, struct page *page,
a019d201 2344 void *freelist)
81819f0f 2345{
2cfb7455 2346 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2347 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2348 int lock = 0, free_delta = 0;
2cfb7455 2349 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2350 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2351 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2352 unsigned long flags = 0;
2cfb7455
CL
2353 struct page new;
2354 struct page old;
2355
2356 if (page->freelist) {
84e554e6 2357 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2358 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2359 }
2360
894b8788 2361 /*
d930ff03
VB
2362 * Stage one: Count the objects on cpu's freelist as free_delta and
2363 * remember the last object in freelist_tail for later splicing.
2cfb7455 2364 */
d930ff03
VB
2365 freelist_tail = NULL;
2366 freelist_iter = freelist;
2367 while (freelist_iter) {
2368 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2369
52f23478
DZ
2370 /*
2371 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2372 * 'freelist_iter' is already corrupted. So isolate all objects
2373 * starting at 'freelist_iter' by skipping them.
52f23478 2374 */
d930ff03 2375 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2376 break;
2377
d930ff03
VB
2378 freelist_tail = freelist_iter;
2379 free_delta++;
2cfb7455 2380
d930ff03 2381 freelist_iter = nextfree;
2cfb7455
CL
2382 }
2383
894b8788 2384 /*
d930ff03
VB
2385 * Stage two: Unfreeze the page while splicing the per-cpu
2386 * freelist to the head of page's freelist.
2387 *
2388 * Ensure that the page is unfrozen while the list presence
2389 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2390 *
2391 * We setup the list membership and then perform a cmpxchg
2392 * with the count. If there is a mismatch then the page
2393 * is not unfrozen but the page is on the wrong list.
2394 *
2395 * Then we restart the process which may have to remove
2396 * the page from the list that we just put it on again
2397 * because the number of objects in the slab may have
2398 * changed.
894b8788 2399 */
2cfb7455 2400redo:
894b8788 2401
d930ff03
VB
2402 old.freelist = READ_ONCE(page->freelist);
2403 old.counters = READ_ONCE(page->counters);
a0132ac0 2404 VM_BUG_ON(!old.frozen);
7c2e132c 2405
2cfb7455
CL
2406 /* Determine target state of the slab */
2407 new.counters = old.counters;
d930ff03
VB
2408 if (freelist_tail) {
2409 new.inuse -= free_delta;
2410 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2411 new.freelist = freelist;
2412 } else
2413 new.freelist = old.freelist;
2414
2415 new.frozen = 0;
2416
8a5b20ae 2417 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2418 m = M_FREE;
2419 else if (new.freelist) {
2420 m = M_PARTIAL;
2421 if (!lock) {
2422 lock = 1;
2423 /*
8bb4e7a2 2424 * Taking the spinlock removes the possibility
2cfb7455
CL
2425 * that acquire_slab() will see a slab page that
2426 * is frozen
2427 */
3406e91b 2428 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2429 }
2430 } else {
2431 m = M_FULL;
965c4848 2432 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2433 lock = 1;
2434 /*
2435 * This also ensures that the scanning of full
2436 * slabs from diagnostic functions will not see
2437 * any frozen slabs.
2438 */
3406e91b 2439 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2440 }
2441 }
2442
2443 if (l != m) {
2cfb7455 2444 if (l == M_PARTIAL)
2cfb7455 2445 remove_partial(n, page);
2cfb7455 2446 else if (l == M_FULL)
c65c1877 2447 remove_full(s, n, page);
2cfb7455 2448
88349a28 2449 if (m == M_PARTIAL)
2cfb7455 2450 add_partial(n, page, tail);
88349a28 2451 else if (m == M_FULL)
2cfb7455 2452 add_full(s, n, page);
2cfb7455
CL
2453 }
2454
2455 l = m;
3406e91b 2456 if (!cmpxchg_double_slab(s, page,
2cfb7455
CL
2457 old.freelist, old.counters,
2458 new.freelist, new.counters,
2459 "unfreezing slab"))
2460 goto redo;
2461
2cfb7455 2462 if (lock)
3406e91b 2463 spin_unlock_irqrestore(&n->list_lock, flags);
2cfb7455 2464
88349a28
WY
2465 if (m == M_PARTIAL)
2466 stat(s, tail);
2467 else if (m == M_FULL)
2468 stat(s, DEACTIVATE_FULL);
2469 else if (m == M_FREE) {
2cfb7455
CL
2470 stat(s, DEACTIVATE_EMPTY);
2471 discard_slab(s, page);
2472 stat(s, FREE_SLAB);
894b8788 2473 }
81819f0f
CL
2474}
2475
345c905d 2476#ifdef CONFIG_SLUB_CPU_PARTIAL
fc1455f4
VB
2477static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2478{
43d77867 2479 struct kmem_cache_node *n = NULL, *n2 = NULL;
fc1455f4 2480 struct page *page, *discard_page = NULL;
7cf9f3ba 2481 unsigned long flags = 0;
49e22585 2482
c2f973ba 2483 while (partial_page) {
49e22585
CL
2484 struct page new;
2485 struct page old;
2486
c2f973ba
VB
2487 page = partial_page;
2488 partial_page = page->next;
43d77867
JK
2489
2490 n2 = get_node(s, page_to_nid(page));
2491 if (n != n2) {
2492 if (n)
7cf9f3ba 2493 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2494
2495 n = n2;
7cf9f3ba 2496 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2497 }
49e22585
CL
2498
2499 do {
2500
2501 old.freelist = page->freelist;
2502 old.counters = page->counters;
a0132ac0 2503 VM_BUG_ON(!old.frozen);
49e22585
CL
2504
2505 new.counters = old.counters;
2506 new.freelist = old.freelist;
2507
2508 new.frozen = 0;
2509
d24ac77f 2510 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2511 old.freelist, old.counters,
2512 new.freelist, new.counters,
2513 "unfreezing slab"));
2514
8a5b20ae 2515 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2516 page->next = discard_page;
2517 discard_page = page;
43d77867
JK
2518 } else {
2519 add_partial(n, page, DEACTIVATE_TO_TAIL);
2520 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2521 }
2522 }
2523
2524 if (n)
7cf9f3ba 2525 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2526
9ada1934
SL
2527 while (discard_page) {
2528 page = discard_page;
2529 discard_page = discard_page->next;
2530
2531 stat(s, DEACTIVATE_EMPTY);
2532 discard_slab(s, page);
2533 stat(s, FREE_SLAB);
2534 }
fc1455f4 2535}
f3ab8b6b 2536
fc1455f4
VB
2537/*
2538 * Unfreeze all the cpu partial slabs.
2539 */
2540static void unfreeze_partials(struct kmem_cache *s)
2541{
2542 struct page *partial_page;
2543 unsigned long flags;
2544
bd0e7491 2545 local_lock_irqsave(&s->cpu_slab->lock, flags);
fc1455f4
VB
2546 partial_page = this_cpu_read(s->cpu_slab->partial);
2547 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 2548 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4
VB
2549
2550 if (partial_page)
2551 __unfreeze_partials(s, partial_page);
2552}
2553
2554static void unfreeze_partials_cpu(struct kmem_cache *s,
2555 struct kmem_cache_cpu *c)
2556{
2557 struct page *partial_page;
2558
2559 partial_page = slub_percpu_partial(c);
2560 c->partial = NULL;
2561
2562 if (partial_page)
2563 __unfreeze_partials(s, partial_page);
49e22585
CL
2564}
2565
2566/*
9234bae9
WY
2567 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2568 * partial page slot if available.
49e22585
CL
2569 *
2570 * If we did not find a slot then simply move all the partials to the
2571 * per node partial list.
2572 */
633b0764 2573static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585
CL
2574{
2575 struct page *oldpage;
e0a043aa
VB
2576 struct page *page_to_unfreeze = NULL;
2577 unsigned long flags;
2578 int pages = 0;
49e22585 2579
bd0e7491 2580 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 2581
e0a043aa
VB
2582 oldpage = this_cpu_read(s->cpu_slab->partial);
2583
2584 if (oldpage) {
b47291ef 2585 if (drain && oldpage->pages >= s->cpu_partial_pages) {
e0a043aa
VB
2586 /*
2587 * Partial array is full. Move the existing set to the
2588 * per node partial list. Postpone the actual unfreezing
2589 * outside of the critical section.
2590 */
2591 page_to_unfreeze = oldpage;
2592 oldpage = NULL;
2593 } else {
49e22585 2594 pages = oldpage->pages;
49e22585 2595 }
e0a043aa 2596 }
49e22585 2597
e0a043aa 2598 pages++;
49e22585 2599
e0a043aa 2600 page->pages = pages;
e0a043aa 2601 page->next = oldpage;
49e22585 2602
e0a043aa
VB
2603 this_cpu_write(s->cpu_slab->partial, page);
2604
bd0e7491 2605 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa
VB
2606
2607 if (page_to_unfreeze) {
2608 __unfreeze_partials(s, page_to_unfreeze);
2609 stat(s, CPU_PARTIAL_DRAIN);
2610 }
49e22585
CL
2611}
2612
e0a043aa
VB
2613#else /* CONFIG_SLUB_CPU_PARTIAL */
2614
2615static inline void unfreeze_partials(struct kmem_cache *s) { }
2616static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2617 struct kmem_cache_cpu *c) { }
2618
2619#endif /* CONFIG_SLUB_CPU_PARTIAL */
2620
dfb4f096 2621static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2622{
5a836bf6
SAS
2623 unsigned long flags;
2624 struct page *page;
2625 void *freelist;
2626
bd0e7491 2627 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6
SAS
2628
2629 page = c->page;
2630 freelist = c->freelist;
c17dda40 2631
a019d201
VB
2632 c->page = NULL;
2633 c->freelist = NULL;
c17dda40 2634 c->tid = next_tid(c->tid);
a019d201 2635
bd0e7491 2636 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 2637
5a836bf6
SAS
2638 if (page) {
2639 deactivate_slab(s, page, freelist);
2640 stat(s, CPUSLAB_FLUSH);
2641 }
81819f0f
CL
2642}
2643
0c710013 2644static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2645{
9dfc6e68 2646 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547
VB
2647 void *freelist = c->freelist;
2648 struct page *page = c->page;
81819f0f 2649
08beb547
VB
2650 c->page = NULL;
2651 c->freelist = NULL;
2652 c->tid = next_tid(c->tid);
2653
2654 if (page) {
2655 deactivate_slab(s, page, freelist);
2656 stat(s, CPUSLAB_FLUSH);
2657 }
49e22585 2658
fc1455f4 2659 unfreeze_partials_cpu(s, c);
81819f0f
CL
2660}
2661
5a836bf6
SAS
2662struct slub_flush_work {
2663 struct work_struct work;
2664 struct kmem_cache *s;
2665 bool skip;
2666};
2667
fc1455f4
VB
2668/*
2669 * Flush cpu slab.
2670 *
5a836bf6 2671 * Called from CPU work handler with migration disabled.
fc1455f4 2672 */
5a836bf6 2673static void flush_cpu_slab(struct work_struct *w)
81819f0f 2674{
5a836bf6
SAS
2675 struct kmem_cache *s;
2676 struct kmem_cache_cpu *c;
2677 struct slub_flush_work *sfw;
2678
2679 sfw = container_of(w, struct slub_flush_work, work);
2680
2681 s = sfw->s;
2682 c = this_cpu_ptr(s->cpu_slab);
fc1455f4
VB
2683
2684 if (c->page)
2685 flush_slab(s, c);
81819f0f 2686
fc1455f4 2687 unfreeze_partials(s);
81819f0f
CL
2688}
2689
5a836bf6 2690static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 2691{
a8364d55
GBY
2692 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2693
a93cf07b 2694 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2695}
2696
5a836bf6
SAS
2697static DEFINE_MUTEX(flush_lock);
2698static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2699
2700static void flush_all_cpus_locked(struct kmem_cache *s)
2701{
2702 struct slub_flush_work *sfw;
2703 unsigned int cpu;
2704
2705 lockdep_assert_cpus_held();
2706 mutex_lock(&flush_lock);
2707
2708 for_each_online_cpu(cpu) {
2709 sfw = &per_cpu(slub_flush, cpu);
2710 if (!has_cpu_slab(cpu, s)) {
2711 sfw->skip = true;
2712 continue;
2713 }
2714 INIT_WORK(&sfw->work, flush_cpu_slab);
2715 sfw->skip = false;
2716 sfw->s = s;
2717 schedule_work_on(cpu, &sfw->work);
2718 }
2719
2720 for_each_online_cpu(cpu) {
2721 sfw = &per_cpu(slub_flush, cpu);
2722 if (sfw->skip)
2723 continue;
2724 flush_work(&sfw->work);
2725 }
2726
2727 mutex_unlock(&flush_lock);
2728}
2729
81819f0f
CL
2730static void flush_all(struct kmem_cache *s)
2731{
5a836bf6
SAS
2732 cpus_read_lock();
2733 flush_all_cpus_locked(s);
2734 cpus_read_unlock();
81819f0f
CL
2735}
2736
a96a87bf
SAS
2737/*
2738 * Use the cpu notifier to insure that the cpu slabs are flushed when
2739 * necessary.
2740 */
2741static int slub_cpu_dead(unsigned int cpu)
2742{
2743 struct kmem_cache *s;
a96a87bf
SAS
2744
2745 mutex_lock(&slab_mutex);
0e7ac738 2746 list_for_each_entry(s, &slab_caches, list)
a96a87bf 2747 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
2748 mutex_unlock(&slab_mutex);
2749 return 0;
2750}
2751
dfb4f096
CL
2752/*
2753 * Check if the objects in a per cpu structure fit numa
2754 * locality expectations.
2755 */
57d437d2 2756static inline int node_match(struct page *page, int node)
dfb4f096
CL
2757{
2758#ifdef CONFIG_NUMA
6159d0f5 2759 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2760 return 0;
2761#endif
2762 return 1;
2763}
2764
9a02d699 2765#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2766static int count_free(struct page *page)
2767{
2768 return page->objects - page->inuse;
2769}
2770
9a02d699
DR
2771static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2772{
2773 return atomic_long_read(&n->total_objects);
2774}
2775#endif /* CONFIG_SLUB_DEBUG */
2776
2777#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2778static unsigned long count_partial(struct kmem_cache_node *n,
2779 int (*get_count)(struct page *))
2780{
2781 unsigned long flags;
2782 unsigned long x = 0;
2783 struct page *page;
2784
2785 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2786 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2787 x += get_count(page);
2788 spin_unlock_irqrestore(&n->list_lock, flags);
2789 return x;
2790}
9a02d699 2791#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2792
781b2ba6
PE
2793static noinline void
2794slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2795{
9a02d699
DR
2796#ifdef CONFIG_SLUB_DEBUG
2797 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2798 DEFAULT_RATELIMIT_BURST);
781b2ba6 2799 int node;
fa45dc25 2800 struct kmem_cache_node *n;
781b2ba6 2801
9a02d699
DR
2802 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2803 return;
2804
5b3810e5
VB
2805 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2806 nid, gfpflags, &gfpflags);
19af27af 2807 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2808 s->name, s->object_size, s->size, oo_order(s->oo),
2809 oo_order(s->min));
781b2ba6 2810
3b0efdfa 2811 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2812 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2813 s->name);
fa5ec8a1 2814
fa45dc25 2815 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2816 unsigned long nr_slabs;
2817 unsigned long nr_objs;
2818 unsigned long nr_free;
2819
26c02cf0
AB
2820 nr_free = count_partial(n, count_free);
2821 nr_slabs = node_nr_slabs(n);
2822 nr_objs = node_nr_objs(n);
781b2ba6 2823
f9f58285 2824 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2825 node, nr_slabs, nr_objs, nr_free);
2826 }
9a02d699 2827#endif
781b2ba6
PE
2828}
2829
072bb0aa
MG
2830static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2831{
2832 if (unlikely(PageSlabPfmemalloc(page)))
2833 return gfp_pfmemalloc_allowed(gfpflags);
2834
2835 return true;
2836}
2837
0b303fb4
VB
2838/*
2839 * A variant of pfmemalloc_match() that tests page flags without asserting
2840 * PageSlab. Intended for opportunistic checks before taking a lock and
2841 * rechecking that nobody else freed the page under us.
2842 */
2843static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2844{
2845 if (unlikely(__PageSlabPfmemalloc(page)))
2846 return gfp_pfmemalloc_allowed(gfpflags);
2847
2848 return true;
2849}
2850
213eeb9f 2851/*
d0e0ac97
CG
2852 * Check the page->freelist of a page and either transfer the freelist to the
2853 * per cpu freelist or deactivate the page.
213eeb9f
CL
2854 *
2855 * The page is still frozen if the return value is not NULL.
2856 *
2857 * If this function returns NULL then the page has been unfrozen.
2858 */
2859static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2860{
2861 struct page new;
2862 unsigned long counters;
2863 void *freelist;
2864
bd0e7491
VB
2865 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2866
213eeb9f
CL
2867 do {
2868 freelist = page->freelist;
2869 counters = page->counters;
6faa6833 2870
213eeb9f 2871 new.counters = counters;
a0132ac0 2872 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2873
2874 new.inuse = page->objects;
2875 new.frozen = freelist != NULL;
2876
d24ac77f 2877 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2878 freelist, counters,
2879 NULL, new.counters,
2880 "get_freelist"));
2881
2882 return freelist;
2883}
2884
81819f0f 2885/*
894b8788
CL
2886 * Slow path. The lockless freelist is empty or we need to perform
2887 * debugging duties.
2888 *
894b8788
CL
2889 * Processing is still very fast if new objects have been freed to the
2890 * regular freelist. In that case we simply take over the regular freelist
2891 * as the lockless freelist and zap the regular freelist.
81819f0f 2892 *
894b8788
CL
2893 * If that is not working then we fall back to the partial lists. We take the
2894 * first element of the freelist as the object to allocate now and move the
2895 * rest of the freelist to the lockless freelist.
81819f0f 2896 *
894b8788 2897 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2898 * we need to allocate a new slab. This is the slowest path since it involves
2899 * a call to the page allocator and the setup of a new slab.
a380a3c7 2900 *
e500059b 2901 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 2902 * already disabled (which is the case for bulk allocation).
81819f0f 2903 */
a380a3c7 2904static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2905 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2906{
6faa6833 2907 void *freelist;
f6e7def7 2908 struct page *page;
e500059b 2909 unsigned long flags;
81819f0f 2910
9f986d99
AW
2911 stat(s, ALLOC_SLOWPATH);
2912
0b303fb4
VB
2913reread_page:
2914
2915 page = READ_ONCE(c->page);
0715e6c5
VB
2916 if (!page) {
2917 /*
2918 * if the node is not online or has no normal memory, just
2919 * ignore the node constraint
2920 */
2921 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2922 !node_isset(node, slab_nodes)))
0715e6c5 2923 node = NUMA_NO_NODE;
81819f0f 2924 goto new_slab;
0715e6c5 2925 }
49e22585 2926redo:
6faa6833 2927
57d437d2 2928 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2929 /*
2930 * same as above but node_match() being false already
2931 * implies node != NUMA_NO_NODE
2932 */
7e1fa93d 2933 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2934 node = NUMA_NO_NODE;
2935 goto redo;
2936 } else {
a561ce00 2937 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 2938 goto deactivate_slab;
a561ce00 2939 }
fc59c053 2940 }
6446faa2 2941
072bb0aa
MG
2942 /*
2943 * By rights, we should be searching for a slab page that was
2944 * PFMEMALLOC but right now, we are losing the pfmemalloc
2945 * information when the page leaves the per-cpu allocator
2946 */
0b303fb4
VB
2947 if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2948 goto deactivate_slab;
072bb0aa 2949
25c00c50 2950 /* must check again c->page in case we got preempted and it changed */
bd0e7491 2951 local_lock_irqsave(&s->cpu_slab->lock, flags);
0b303fb4 2952 if (unlikely(page != c->page)) {
bd0e7491 2953 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
0b303fb4
VB
2954 goto reread_page;
2955 }
6faa6833
CL
2956 freelist = c->freelist;
2957 if (freelist)
73736e03 2958 goto load_freelist;
03e404af 2959
f6e7def7 2960 freelist = get_freelist(s, page);
6446faa2 2961
6faa6833 2962 if (!freelist) {
03e404af 2963 c->page = NULL;
bd0e7491 2964 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 2965 stat(s, DEACTIVATE_BYPASS);
fc59c053 2966 goto new_slab;
03e404af 2967 }
6446faa2 2968
84e554e6 2969 stat(s, ALLOC_REFILL);
6446faa2 2970
894b8788 2971load_freelist:
0b303fb4 2972
bd0e7491 2973 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 2974
507effea
CL
2975 /*
2976 * freelist is pointing to the list of objects to be used.
2977 * page is pointing to the page from which the objects are obtained.
2978 * That page must be frozen for per cpu allocations to work.
2979 */
a0132ac0 2980 VM_BUG_ON(!c->page->frozen);
6faa6833 2981 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2982 c->tid = next_tid(c->tid);
bd0e7491 2983 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 2984 return freelist;
81819f0f 2985
0b303fb4
VB
2986deactivate_slab:
2987
bd0e7491 2988 local_lock_irqsave(&s->cpu_slab->lock, flags);
0b303fb4 2989 if (page != c->page) {
bd0e7491 2990 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
0b303fb4
VB
2991 goto reread_page;
2992 }
a019d201
VB
2993 freelist = c->freelist;
2994 c->page = NULL;
2995 c->freelist = NULL;
bd0e7491 2996 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 2997 deactivate_slab(s, page, freelist);
0b303fb4 2998
81819f0f 2999new_slab:
2cfb7455 3000
a93cf07b 3001 if (slub_percpu_partial(c)) {
bd0e7491 3002 local_lock_irqsave(&s->cpu_slab->lock, flags);
fa417ab7 3003 if (unlikely(c->page)) {
bd0e7491 3004 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fa417ab7
VB
3005 goto reread_page;
3006 }
4b1f449d 3007 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3008 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3009 /* we were preempted and partial list got empty */
3010 goto new_objects;
4b1f449d 3011 }
fa417ab7 3012
a93cf07b
WY
3013 page = c->page = slub_percpu_partial(c);
3014 slub_set_percpu_partial(c, page);
bd0e7491 3015 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
49e22585 3016 stat(s, CPU_PARTIAL_ALLOC);
49e22585 3017 goto redo;
81819f0f
CL
3018 }
3019
fa417ab7
VB
3020new_objects:
3021
75c8ff28 3022 freelist = get_partial(s, gfpflags, node, &page);
3f2b77e3 3023 if (freelist)
2a904905
VB
3024 goto check_new_page;
3025
25c00c50 3026 slub_put_cpu_ptr(s->cpu_slab);
53a0de06 3027 page = new_slab(s, gfpflags, node);
25c00c50 3028 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3029
53a0de06 3030 if (unlikely(!page)) {
9a02d699 3031 slab_out_of_memory(s, gfpflags, node);
f4697436 3032 return NULL;
81819f0f 3033 }
2cfb7455 3034
53a0de06
VB
3035 /*
3036 * No other reference to the page yet so we can
3037 * muck around with it freely without cmpxchg
3038 */
3039 freelist = page->freelist;
3040 page->freelist = NULL;
3041
3042 stat(s, ALLOC_SLAB);
53a0de06 3043
2a904905 3044check_new_page:
2cfb7455 3045
1572df7c 3046 if (kmem_cache_debug(s)) {
fa417ab7 3047 if (!alloc_debug_processing(s, page, freelist, addr)) {
1572df7c
VB
3048 /* Slab failed checks. Next slab needed */
3049 goto new_slab;
fa417ab7 3050 } else {
1572df7c
VB
3051 /*
3052 * For debug case, we don't load freelist so that all
3053 * allocations go through alloc_debug_processing()
3054 */
3055 goto return_single;
fa417ab7 3056 }
1572df7c
VB
3057 }
3058
3059 if (unlikely(!pfmemalloc_match(page, gfpflags)))
3060 /*
3061 * For !pfmemalloc_match() case we don't load freelist so that
3062 * we don't make further mismatched allocations easier.
3063 */
3064 goto return_single;
3065
cfdf836e
VB
3066retry_load_page:
3067
bd0e7491 3068 local_lock_irqsave(&s->cpu_slab->lock, flags);
cfdf836e
VB
3069 if (unlikely(c->page)) {
3070 void *flush_freelist = c->freelist;
3071 struct page *flush_page = c->page;
3072
3073 c->page = NULL;
3074 c->freelist = NULL;
3075 c->tid = next_tid(c->tid);
3076
bd0e7491 3077 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e
VB
3078
3079 deactivate_slab(s, flush_page, flush_freelist);
3080
3081 stat(s, CPUSLAB_FLUSH);
3082
3083 goto retry_load_page;
3084 }
3f2b77e3
VB
3085 c->page = page;
3086
1572df7c
VB
3087 goto load_freelist;
3088
3089return_single:
894b8788 3090
a019d201 3091 deactivate_slab(s, page, get_freepointer(s, freelist));
6faa6833 3092 return freelist;
894b8788
CL
3093}
3094
a380a3c7 3095/*
e500059b
VB
3096 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3097 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3098 * pointer.
a380a3c7
CL
3099 */
3100static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3101 unsigned long addr, struct kmem_cache_cpu *c)
3102{
3103 void *p;
a380a3c7 3104
e500059b 3105#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3106 /*
3107 * We may have been preempted and rescheduled on a different
e500059b 3108 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3109 * pointer.
3110 */
25c00c50 3111 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3112#endif
3113
3114 p = ___slab_alloc(s, gfpflags, node, addr, c);
e500059b 3115#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3116 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3117#endif
a380a3c7
CL
3118 return p;
3119}
3120
0f181f9f
AP
3121/*
3122 * If the object has been wiped upon free, make sure it's fully initialized by
3123 * zeroing out freelist pointer.
3124 */
3125static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3126 void *obj)
3127{
3128 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
3129 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3130 0, sizeof(void *));
0f181f9f
AP
3131}
3132
894b8788
CL
3133/*
3134 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3135 * have the fastpath folded into their functions. So no function call
3136 * overhead for requests that can be satisfied on the fastpath.
3137 *
3138 * The fastpath works by first checking if the lockless freelist can be used.
3139 * If not then __slab_alloc is called for slow processing.
3140 *
3141 * Otherwise we can simply pick the next object from the lockless free list.
3142 */
2b847c3c 3143static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3144 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3145{
03ec0ed5 3146 void *object;
dfb4f096 3147 struct kmem_cache_cpu *c;
57d437d2 3148 struct page *page;
8a5ec0ba 3149 unsigned long tid;
964d4bd3 3150 struct obj_cgroup *objcg = NULL;
da844b78 3151 bool init = false;
1f84260c 3152
964d4bd3 3153 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 3154 if (!s)
773ff60e 3155 return NULL;
b89fb5ef
AP
3156
3157 object = kfence_alloc(s, orig_size, gfpflags);
3158 if (unlikely(object))
3159 goto out;
3160
8a5ec0ba 3161redo:
8a5ec0ba
CL
3162 /*
3163 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3164 * enabled. We may switch back and forth between cpus while
3165 * reading from one cpu area. That does not matter as long
3166 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3167 *
9b4bc85a
VB
3168 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3169 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3170 * the tid. If we are preempted and switched to another cpu between the
3171 * two reads, it's OK as the two are still associated with the same cpu
3172 * and cmpxchg later will validate the cpu.
8a5ec0ba 3173 */
9b4bc85a
VB
3174 c = raw_cpu_ptr(s->cpu_slab);
3175 tid = READ_ONCE(c->tid);
9aabf810
JK
3176
3177 /*
3178 * Irqless object alloc/free algorithm used here depends on sequence
3179 * of fetching cpu_slab's data. tid should be fetched before anything
3180 * on c to guarantee that object and page associated with previous tid
3181 * won't be used with current tid. If we fetch tid first, object and
3182 * page could be one associated with next tid and our alloc/free
3183 * request will be failed. In this case, we will retry. So, no problem.
3184 */
3185 barrier();
8a5ec0ba 3186
8a5ec0ba
CL
3187 /*
3188 * The transaction ids are globally unique per cpu and per operation on
3189 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3190 * occurs on the right processor and that there was no operation on the
3191 * linked list in between.
3192 */
8a5ec0ba 3193
9dfc6e68 3194 object = c->freelist;
57d437d2 3195 page = c->page;
bd0e7491
VB
3196 /*
3197 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3198 * slowpath has taken the local_lock_irqsave(), it is not protected
3199 * against a fast path operation in an irq handler. So we need to take
3200 * the slow path which uses local_lock. It is still relatively fast if
3201 * there is a suitable cpu freelist.
3202 */
3203 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3204 unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 3205 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 3206 } else {
0ad9500e
ED
3207 void *next_object = get_freepointer_safe(s, object);
3208
8a5ec0ba 3209 /*
25985edc 3210 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3211 * operation and if we are on the right processor.
3212 *
d0e0ac97
CG
3213 * The cmpxchg does the following atomically (without lock
3214 * semantics!)
8a5ec0ba
CL
3215 * 1. Relocate first pointer to the current per cpu area.
3216 * 2. Verify that tid and freelist have not been changed
3217 * 3. If they were not changed replace tid and freelist
3218 *
d0e0ac97
CG
3219 * Since this is without lock semantics the protection is only
3220 * against code executing on this cpu *not* from access by
3221 * other cpus.
8a5ec0ba 3222 */
933393f5 3223 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
3224 s->cpu_slab->freelist, s->cpu_slab->tid,
3225 object, tid,
0ad9500e 3226 next_object, next_tid(tid)))) {
8a5ec0ba
CL
3227
3228 note_cmpxchg_failure("slab_alloc", s, tid);
3229 goto redo;
3230 }
0ad9500e 3231 prefetch_freepointer(s, next_object);
84e554e6 3232 stat(s, ALLOC_FASTPATH);
894b8788 3233 }
0f181f9f 3234
ce5716c6 3235 maybe_wipe_obj_freeptr(s, object);
da844b78 3236 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3237
b89fb5ef 3238out:
da844b78 3239 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 3240
894b8788 3241 return object;
81819f0f
CL
3242}
3243
2b847c3c 3244static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 3245 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 3246{
b89fb5ef 3247 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
3248}
3249
81819f0f
CL
3250void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3251{
b89fb5ef 3252 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 3253
d0e0ac97
CG
3254 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3255 s->size, gfpflags);
5b882be4
EGM
3256
3257 return ret;
81819f0f
CL
3258}
3259EXPORT_SYMBOL(kmem_cache_alloc);
3260
0f24f128 3261#ifdef CONFIG_TRACING
4a92379b
RK
3262void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3263{
b89fb5ef 3264 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 3265 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 3266 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
3267 return ret;
3268}
3269EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
3270#endif
3271
81819f0f
CL
3272#ifdef CONFIG_NUMA
3273void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3274{
b89fb5ef 3275 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3276
ca2b84cb 3277 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 3278 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
3279
3280 return ret;
81819f0f
CL
3281}
3282EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3283
0f24f128 3284#ifdef CONFIG_TRACING
4a92379b 3285void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 3286 gfp_t gfpflags,
4a92379b 3287 int node, size_t size)
5b882be4 3288{
b89fb5ef 3289 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
3290
3291 trace_kmalloc_node(_RET_IP_, ret,
3292 size, s->size, gfpflags, node);
0316bec2 3293
0116523c 3294 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3295 return ret;
5b882be4 3296}
4a92379b 3297EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 3298#endif
6dfd1b65 3299#endif /* CONFIG_NUMA */
5b882be4 3300
81819f0f 3301/*
94e4d712 3302 * Slow path handling. This may still be called frequently since objects
894b8788 3303 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3304 *
894b8788
CL
3305 * So we still attempt to reduce cache line usage. Just take the slab
3306 * lock and free the item. If there is no additional partial page
3307 * handling required then we can return immediately.
81819f0f 3308 */
894b8788 3309static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
3310 void *head, void *tail, int cnt,
3311 unsigned long addr)
3312
81819f0f
CL
3313{
3314 void *prior;
2cfb7455 3315 int was_frozen;
2cfb7455
CL
3316 struct page new;
3317 unsigned long counters;
3318 struct kmem_cache_node *n = NULL;
3f649ab7 3319 unsigned long flags;
81819f0f 3320
8a5ec0ba 3321 stat(s, FREE_SLOWPATH);
81819f0f 3322
b89fb5ef
AP
3323 if (kfence_free(head))
3324 return;
3325
19c7ff9e 3326 if (kmem_cache_debug(s) &&
282acb43 3327 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3328 return;
6446faa2 3329
2cfb7455 3330 do {
837d678d
JK
3331 if (unlikely(n)) {
3332 spin_unlock_irqrestore(&n->list_lock, flags);
3333 n = NULL;
3334 }
2cfb7455
CL
3335 prior = page->freelist;
3336 counters = page->counters;
81084651 3337 set_freepointer(s, tail, prior);
2cfb7455
CL
3338 new.counters = counters;
3339 was_frozen = new.frozen;
81084651 3340 new.inuse -= cnt;
837d678d 3341 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3342
c65c1877 3343 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3344
3345 /*
d0e0ac97
CG
3346 * Slab was on no list before and will be
3347 * partially empty
3348 * We can defer the list move and instead
3349 * freeze it.
49e22585
CL
3350 */
3351 new.frozen = 1;
3352
c65c1877 3353 } else { /* Needs to be taken off a list */
49e22585 3354
b455def2 3355 n = get_node(s, page_to_nid(page));
49e22585
CL
3356 /*
3357 * Speculatively acquire the list_lock.
3358 * If the cmpxchg does not succeed then we may
3359 * drop the list_lock without any processing.
3360 *
3361 * Otherwise the list_lock will synchronize with
3362 * other processors updating the list of slabs.
3363 */
3364 spin_lock_irqsave(&n->list_lock, flags);
3365
3366 }
2cfb7455 3367 }
81819f0f 3368
2cfb7455
CL
3369 } while (!cmpxchg_double_slab(s, page,
3370 prior, counters,
81084651 3371 head, new.counters,
2cfb7455 3372 "__slab_free"));
81819f0f 3373
2cfb7455 3374 if (likely(!n)) {
49e22585 3375
c270cf30
AW
3376 if (likely(was_frozen)) {
3377 /*
3378 * The list lock was not taken therefore no list
3379 * activity can be necessary.
3380 */
3381 stat(s, FREE_FROZEN);
3382 } else if (new.frozen) {
3383 /*
3384 * If we just froze the page then put it onto the
3385 * per cpu partial list.
3386 */
49e22585 3387 put_cpu_partial(s, page, 1);
8028dcea
AS
3388 stat(s, CPU_PARTIAL_FREE);
3389 }
c270cf30 3390
b455def2
L
3391 return;
3392 }
81819f0f 3393
8a5b20ae 3394 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3395 goto slab_empty;
3396
81819f0f 3397 /*
837d678d
JK
3398 * Objects left in the slab. If it was not on the partial list before
3399 * then add it.
81819f0f 3400 */
345c905d 3401 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3402 remove_full(s, n, page);
837d678d
JK
3403 add_partial(n, page, DEACTIVATE_TO_TAIL);
3404 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3405 }
80f08c19 3406 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3407 return;
3408
3409slab_empty:
a973e9dd 3410 if (prior) {
81819f0f 3411 /*
6fbabb20 3412 * Slab on the partial list.
81819f0f 3413 */
5cc6eee8 3414 remove_partial(n, page);
84e554e6 3415 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3416 } else {
6fbabb20 3417 /* Slab must be on the full list */
c65c1877
PZ
3418 remove_full(s, n, page);
3419 }
2cfb7455 3420
80f08c19 3421 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3422 stat(s, FREE_SLAB);
81819f0f 3423 discard_slab(s, page);
81819f0f
CL
3424}
3425
894b8788
CL
3426/*
3427 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3428 * can perform fastpath freeing without additional function calls.
3429 *
3430 * The fastpath is only possible if we are freeing to the current cpu slab
3431 * of this processor. This typically the case if we have just allocated
3432 * the item before.
3433 *
3434 * If fastpath is not possible then fall back to __slab_free where we deal
3435 * with all sorts of special processing.
81084651
JDB
3436 *
3437 * Bulk free of a freelist with several objects (all pointing to the
3438 * same page) possible by specifying head and tail ptr, plus objects
3439 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3440 */
80a9201a
AP
3441static __always_inline void do_slab_free(struct kmem_cache *s,
3442 struct page *page, void *head, void *tail,
3443 int cnt, unsigned long addr)
894b8788 3444{
81084651 3445 void *tail_obj = tail ? : head;
dfb4f096 3446 struct kmem_cache_cpu *c;
8a5ec0ba 3447 unsigned long tid;
964d4bd3 3448
3ddd6026
ML
3449 /* memcg_slab_free_hook() is already called for bulk free. */
3450 if (!tail)
3451 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3452redo:
3453 /*
3454 * Determine the currently cpus per cpu slab.
3455 * The cpu may change afterward. However that does not matter since
3456 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3457 * during the cmpxchg then the free will succeed.
8a5ec0ba 3458 */
9b4bc85a
VB
3459 c = raw_cpu_ptr(s->cpu_slab);
3460 tid = READ_ONCE(c->tid);
c016b0bd 3461
9aabf810
JK
3462 /* Same with comment on barrier() in slab_alloc_node() */
3463 barrier();
c016b0bd 3464
442b06bc 3465 if (likely(page == c->page)) {
bd0e7491 3466#ifndef CONFIG_PREEMPT_RT
5076190d
LT
3467 void **freelist = READ_ONCE(c->freelist);
3468
3469 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3470
933393f5 3471 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3472 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3473 freelist, tid,
81084651 3474 head, next_tid(tid)))) {
8a5ec0ba
CL
3475
3476 note_cmpxchg_failure("slab_free", s, tid);
3477 goto redo;
3478 }
bd0e7491
VB
3479#else /* CONFIG_PREEMPT_RT */
3480 /*
3481 * We cannot use the lockless fastpath on PREEMPT_RT because if
3482 * a slowpath has taken the local_lock_irqsave(), it is not
3483 * protected against a fast path operation in an irq handler. So
3484 * we need to take the local_lock. We shouldn't simply defer to
3485 * __slab_free() as that wouldn't use the cpu freelist at all.
3486 */
3487 void **freelist;
3488
3489 local_lock(&s->cpu_slab->lock);
3490 c = this_cpu_ptr(s->cpu_slab);
3491 if (unlikely(page != c->page)) {
3492 local_unlock(&s->cpu_slab->lock);
3493 goto redo;
3494 }
3495 tid = c->tid;
3496 freelist = c->freelist;
3497
3498 set_freepointer(s, tail_obj, freelist);
3499 c->freelist = head;
3500 c->tid = next_tid(tid);
3501
3502 local_unlock(&s->cpu_slab->lock);
3503#endif
84e554e6 3504 stat(s, FREE_FASTPATH);
894b8788 3505 } else
81084651 3506 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3507
894b8788
CL
3508}
3509
80a9201a
AP
3510static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3511 void *head, void *tail, int cnt,
3512 unsigned long addr)
3513{
80a9201a 3514 /*
c3895391
AK
3515 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3516 * to remove objects, whose reuse must be delayed.
80a9201a 3517 */
899447f6 3518 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
c3895391 3519 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3520}
3521
2bd926b4 3522#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3523void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3524{
d835eef4 3525 do_slab_free(cache, slab_page(virt_to_slab(x)), x, NULL, 1, addr);
80a9201a
AP
3526}
3527#endif
3528
81819f0f
CL
3529void kmem_cache_free(struct kmem_cache *s, void *x)
3530{
b9ce5ef4
GC
3531 s = cache_from_obj(s, x);
3532 if (!s)
79576102 3533 return;
3544de8e 3534 trace_kmem_cache_free(_RET_IP_, x, s->name);
d835eef4 3535 slab_free(s, slab_page(virt_to_slab(x)), x, NULL, 1, _RET_IP_);
81819f0f
CL
3536}
3537EXPORT_SYMBOL(kmem_cache_free);
3538
d0ecd894 3539struct detached_freelist {
cc465c3b 3540 struct slab *slab;
d0ecd894
JDB
3541 void *tail;
3542 void *freelist;
3543 int cnt;
376bf125 3544 struct kmem_cache *s;
d0ecd894 3545};
fbd02630 3546
d835eef4 3547static inline void free_large_kmalloc(struct folio *folio, void *object)
f227f0fa 3548{
d835eef4 3549 unsigned int order = folio_order(folio);
f227f0fa 3550
d835eef4 3551 if (WARN_ON_ONCE(order == 0))
d0fe47c6
KW
3552 pr_warn_once("object pointer: 0x%p\n", object);
3553
1ed7ce57 3554 kfree_hook(object);
d835eef4
MWO
3555 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3556 -(PAGE_SIZE << order));
3557 __free_pages(folio_page(folio, 0), order);
f227f0fa
SB
3558}
3559
d0ecd894
JDB
3560/*
3561 * This function progressively scans the array with free objects (with
3562 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
3563 * slab. It builds a detached freelist directly within the given
3564 * slab/objects. This can happen without any need for
d0ecd894
JDB
3565 * synchronization, because the objects are owned by running process.
3566 * The freelist is build up as a single linked list in the objects.
3567 * The idea is, that this detached freelist can then be bulk
3568 * transferred to the real freelist(s), but only requiring a single
3569 * synchronization primitive. Look ahead in the array is limited due
3570 * to performance reasons.
3571 */
376bf125
JDB
3572static inline
3573int build_detached_freelist(struct kmem_cache *s, size_t size,
3574 void **p, struct detached_freelist *df)
d0ecd894
JDB
3575{
3576 size_t first_skipped_index = 0;
3577 int lookahead = 3;
3578 void *object;
cc465c3b
MWO
3579 struct folio *folio;
3580 struct slab *slab;
fbd02630 3581
d0ecd894 3582 /* Always re-init detached_freelist */
cc465c3b 3583 df->slab = NULL;
fbd02630 3584
d0ecd894
JDB
3585 do {
3586 object = p[--size];
ca257195 3587 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3588 } while (!object && size);
3eed034d 3589
d0ecd894
JDB
3590 if (!object)
3591 return 0;
fbd02630 3592
cc465c3b 3593 folio = virt_to_folio(object);
ca257195
JDB
3594 if (!s) {
3595 /* Handle kalloc'ed objects */
cc465c3b 3596 if (unlikely(!folio_test_slab(folio))) {
d835eef4 3597 free_large_kmalloc(folio, object);
ca257195
JDB
3598 p[size] = NULL; /* mark object processed */
3599 return size;
3600 }
3601 /* Derive kmem_cache from object */
cc465c3b
MWO
3602 slab = folio_slab(folio);
3603 df->s = slab->slab_cache;
ca257195 3604 } else {
cc465c3b 3605 slab = folio_slab(folio);
ca257195
JDB
3606 df->s = cache_from_obj(s, object); /* Support for memcg */
3607 }
376bf125 3608
b89fb5ef 3609 if (is_kfence_address(object)) {
d57a964e 3610 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3611 __kfence_free(object);
3612 p[size] = NULL; /* mark object processed */
3613 return size;
3614 }
3615
d0ecd894 3616 /* Start new detached freelist */
cc465c3b 3617 df->slab = slab;
376bf125 3618 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3619 df->tail = object;
3620 df->freelist = object;
3621 p[size] = NULL; /* mark object processed */
3622 df->cnt = 1;
3623
3624 while (size) {
3625 object = p[--size];
3626 if (!object)
3627 continue; /* Skip processed objects */
3628
cc465c3b
MWO
3629 /* df->slab is always set at this point */
3630 if (df->slab == virt_to_slab(object)) {
d0ecd894 3631 /* Opportunity build freelist */
376bf125 3632 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3633 df->freelist = object;
3634 df->cnt++;
3635 p[size] = NULL; /* mark object processed */
3636
3637 continue;
fbd02630 3638 }
d0ecd894
JDB
3639
3640 /* Limit look ahead search */
3641 if (!--lookahead)
3642 break;
3643
3644 if (!first_skipped_index)
3645 first_skipped_index = size + 1;
fbd02630 3646 }
d0ecd894
JDB
3647
3648 return first_skipped_index;
3649}
3650
d0ecd894 3651/* Note that interrupts must be enabled when calling this function. */
376bf125 3652void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3653{
3654 if (WARN_ON(!size))
3655 return;
3656
d1b2cf6c 3657 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3658 do {
3659 struct detached_freelist df;
3660
3661 size = build_detached_freelist(s, size, p, &df);
cc465c3b 3662 if (!df.slab)
d0ecd894
JDB
3663 continue;
3664
cc465c3b 3665 slab_free(df.s, slab_page(df.slab), df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3666 } while (likely(size));
484748f0
CL
3667}
3668EXPORT_SYMBOL(kmem_cache_free_bulk);
3669
994eb764 3670/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3671int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3672 void **p)
484748f0 3673{
994eb764
JDB
3674 struct kmem_cache_cpu *c;
3675 int i;
964d4bd3 3676 struct obj_cgroup *objcg = NULL;
994eb764 3677
03ec0ed5 3678 /* memcg and kmem_cache debug support */
964d4bd3 3679 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3680 if (unlikely(!s))
3681 return false;
994eb764
JDB
3682 /*
3683 * Drain objects in the per cpu slab, while disabling local
3684 * IRQs, which protects against PREEMPT and interrupts
3685 * handlers invoking normal fastpath.
3686 */
25c00c50 3687 c = slub_get_cpu_ptr(s->cpu_slab);
bd0e7491 3688 local_lock_irq(&s->cpu_slab->lock);
994eb764
JDB
3689
3690 for (i = 0; i < size; i++) {
b89fb5ef 3691 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3692
b89fb5ef
AP
3693 if (unlikely(object)) {
3694 p[i] = object;
3695 continue;
3696 }
3697
3698 object = c->freelist;
ebe909e0 3699 if (unlikely(!object)) {
fd4d9c7d
JH
3700 /*
3701 * We may have removed an object from c->freelist using
3702 * the fastpath in the previous iteration; in that case,
3703 * c->tid has not been bumped yet.
3704 * Since ___slab_alloc() may reenable interrupts while
3705 * allocating memory, we should bump c->tid now.
3706 */
3707 c->tid = next_tid(c->tid);
3708
bd0e7491 3709 local_unlock_irq(&s->cpu_slab->lock);
e500059b 3710
ebe909e0
JDB
3711 /*
3712 * Invoking slow path likely have side-effect
3713 * of re-populating per CPU c->freelist
3714 */
87098373 3715 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3716 _RET_IP_, c);
87098373
CL
3717 if (unlikely(!p[i]))
3718 goto error;
3719
ebe909e0 3720 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3721 maybe_wipe_obj_freeptr(s, p[i]);
3722
bd0e7491 3723 local_lock_irq(&s->cpu_slab->lock);
e500059b 3724
ebe909e0
JDB
3725 continue; /* goto for-loop */
3726 }
994eb764
JDB
3727 c->freelist = get_freepointer(s, object);
3728 p[i] = object;
0f181f9f 3729 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3730 }
3731 c->tid = next_tid(c->tid);
bd0e7491 3732 local_unlock_irq(&s->cpu_slab->lock);
25c00c50 3733 slub_put_cpu_ptr(s->cpu_slab);
994eb764 3734
da844b78
AK
3735 /*
3736 * memcg and kmem_cache debug support and memory initialization.
3737 * Done outside of the IRQ disabled fastpath loop.
3738 */
3739 slab_post_alloc_hook(s, objcg, flags, size, p,
3740 slab_want_init_on_alloc(flags, s));
865762a8 3741 return i;
87098373 3742error:
25c00c50 3743 slub_put_cpu_ptr(s->cpu_slab);
da844b78 3744 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3745 __kmem_cache_free_bulk(s, i, p);
865762a8 3746 return 0;
484748f0
CL
3747}
3748EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3749
3750
81819f0f 3751/*
672bba3a
CL
3752 * Object placement in a slab is made very easy because we always start at
3753 * offset 0. If we tune the size of the object to the alignment then we can
3754 * get the required alignment by putting one properly sized object after
3755 * another.
81819f0f
CL
3756 *
3757 * Notice that the allocation order determines the sizes of the per cpu
3758 * caches. Each processor has always one slab available for allocations.
3759 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3760 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3761 * locking overhead.
81819f0f
CL
3762 */
3763
3764/*
f0953a1b 3765 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3766 * and slab fragmentation. A higher order reduces the number of partial slabs
3767 * and increases the number of allocations possible without having to
3768 * take the list_lock.
3769 */
19af27af
AD
3770static unsigned int slub_min_order;
3771static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3772static unsigned int slub_min_objects;
81819f0f 3773
81819f0f
CL
3774/*
3775 * Calculate the order of allocation given an slab object size.
3776 *
672bba3a
CL
3777 * The order of allocation has significant impact on performance and other
3778 * system components. Generally order 0 allocations should be preferred since
3779 * order 0 does not cause fragmentation in the page allocator. Larger objects
3780 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3781 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3782 * would be wasted.
3783 *
3784 * In order to reach satisfactory performance we must ensure that a minimum
3785 * number of objects is in one slab. Otherwise we may generate too much
3786 * activity on the partial lists which requires taking the list_lock. This is
3787 * less a concern for large slabs though which are rarely used.
81819f0f 3788 *
672bba3a
CL
3789 * slub_max_order specifies the order where we begin to stop considering the
3790 * number of objects in a slab as critical. If we reach slub_max_order then
3791 * we try to keep the page order as low as possible. So we accept more waste
3792 * of space in favor of a small page order.
81819f0f 3793 *
672bba3a
CL
3794 * Higher order allocations also allow the placement of more objects in a
3795 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3796 * requested a higher minimum order then we start with that one instead of
672bba3a 3797 * the smallest order which will fit the object.
81819f0f 3798 */
d122019b 3799static inline unsigned int calc_slab_order(unsigned int size,
19af27af 3800 unsigned int min_objects, unsigned int max_order,
9736d2a9 3801 unsigned int fract_leftover)
81819f0f 3802{
19af27af
AD
3803 unsigned int min_order = slub_min_order;
3804 unsigned int order;
81819f0f 3805
9736d2a9 3806 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3807 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3808
9736d2a9 3809 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3810 order <= max_order; order++) {
81819f0f 3811
19af27af
AD
3812 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3813 unsigned int rem;
81819f0f 3814
9736d2a9 3815 rem = slab_size % size;
81819f0f 3816
5e6d444e 3817 if (rem <= slab_size / fract_leftover)
81819f0f 3818 break;
81819f0f 3819 }
672bba3a 3820
81819f0f
CL
3821 return order;
3822}
3823
9736d2a9 3824static inline int calculate_order(unsigned int size)
5e6d444e 3825{
19af27af
AD
3826 unsigned int order;
3827 unsigned int min_objects;
3828 unsigned int max_objects;
3286222f 3829 unsigned int nr_cpus;
5e6d444e
CL
3830
3831 /*
3832 * Attempt to find best configuration for a slab. This
3833 * works by first attempting to generate a layout with
3834 * the best configuration and backing off gradually.
3835 *
422ff4d7 3836 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3837 * we reduce the minimum objects required in a slab.
3838 */
3839 min_objects = slub_min_objects;
3286222f
VB
3840 if (!min_objects) {
3841 /*
3842 * Some architectures will only update present cpus when
3843 * onlining them, so don't trust the number if it's just 1. But
3844 * we also don't want to use nr_cpu_ids always, as on some other
3845 * architectures, there can be many possible cpus, but never
3846 * onlined. Here we compromise between trying to avoid too high
3847 * order on systems that appear larger than they are, and too
3848 * low order on systems that appear smaller than they are.
3849 */
3850 nr_cpus = num_present_cpus();
3851 if (nr_cpus <= 1)
3852 nr_cpus = nr_cpu_ids;
3853 min_objects = 4 * (fls(nr_cpus) + 1);
3854 }
9736d2a9 3855 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3856 min_objects = min(min_objects, max_objects);
3857
5e6d444e 3858 while (min_objects > 1) {
19af27af
AD
3859 unsigned int fraction;
3860
c124f5b5 3861 fraction = 16;
5e6d444e 3862 while (fraction >= 4) {
d122019b 3863 order = calc_slab_order(size, min_objects,
9736d2a9 3864 slub_max_order, fraction);
5e6d444e
CL
3865 if (order <= slub_max_order)
3866 return order;
3867 fraction /= 2;
3868 }
5086c389 3869 min_objects--;
5e6d444e
CL
3870 }
3871
3872 /*
3873 * We were unable to place multiple objects in a slab. Now
3874 * lets see if we can place a single object there.
3875 */
d122019b 3876 order = calc_slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3877 if (order <= slub_max_order)
3878 return order;
3879
3880 /*
3881 * Doh this slab cannot be placed using slub_max_order.
3882 */
d122019b 3883 order = calc_slab_order(size, 1, MAX_ORDER, 1);
818cf590 3884 if (order < MAX_ORDER)
5e6d444e
CL
3885 return order;
3886 return -ENOSYS;
3887}
3888
5595cffc 3889static void
4053497d 3890init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3891{
3892 n->nr_partial = 0;
81819f0f
CL
3893 spin_lock_init(&n->list_lock);
3894 INIT_LIST_HEAD(&n->partial);
8ab1372f 3895#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3896 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3897 atomic_long_set(&n->total_objects, 0);
643b1138 3898 INIT_LIST_HEAD(&n->full);
8ab1372f 3899#endif
81819f0f
CL
3900}
3901
55136592 3902static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3903{
6c182dc0 3904 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3905 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3906
8a5ec0ba 3907 /*
d4d84fef
CM
3908 * Must align to double word boundary for the double cmpxchg
3909 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3910 */
d4d84fef
CM
3911 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3912 2 * sizeof(void *));
8a5ec0ba
CL
3913
3914 if (!s->cpu_slab)
3915 return 0;
3916
3917 init_kmem_cache_cpus(s);
4c93c355 3918
8a5ec0ba 3919 return 1;
4c93c355 3920}
4c93c355 3921
51df1142
CL
3922static struct kmem_cache *kmem_cache_node;
3923
81819f0f
CL
3924/*
3925 * No kmalloc_node yet so do it by hand. We know that this is the first
3926 * slab on the node for this slabcache. There are no concurrent accesses
3927 * possible.
3928 *
721ae22a
ZYW
3929 * Note that this function only works on the kmem_cache_node
3930 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3931 * memory on a fresh node that has no slab structures yet.
81819f0f 3932 */
55136592 3933static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3934{
3935 struct page *page;
3936 struct kmem_cache_node *n;
3937
51df1142 3938 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3939
51df1142 3940 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3941
3942 BUG_ON(!page);
a2f92ee7 3943 if (page_to_nid(page) != node) {
f9f58285
FF
3944 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3945 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3946 }
3947
81819f0f
CL
3948 n = page->freelist;
3949 BUG_ON(!n);
8ab1372f 3950#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3951 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3952 init_tracking(kmem_cache_node, n);
8ab1372f 3953#endif
da844b78 3954 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3955 page->freelist = get_freepointer(kmem_cache_node, n);
3956 page->inuse = 1;
3957 page->frozen = 0;
3958 kmem_cache_node->node[node] = n;
4053497d 3959 init_kmem_cache_node(n);
51df1142 3960 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3961
67b6c900 3962 /*
1e4dd946
SR
3963 * No locks need to be taken here as it has just been
3964 * initialized and there is no concurrent access.
67b6c900 3965 */
1e4dd946 3966 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3967}
3968
3969static void free_kmem_cache_nodes(struct kmem_cache *s)
3970{
3971 int node;
fa45dc25 3972 struct kmem_cache_node *n;
81819f0f 3973
fa45dc25 3974 for_each_kmem_cache_node(s, node, n) {
81819f0f 3975 s->node[node] = NULL;
ea37df54 3976 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3977 }
3978}
3979
52b4b950
DS
3980void __kmem_cache_release(struct kmem_cache *s)
3981{
210e7a43 3982 cache_random_seq_destroy(s);
52b4b950
DS
3983 free_percpu(s->cpu_slab);
3984 free_kmem_cache_nodes(s);
3985}
3986
55136592 3987static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3988{
3989 int node;
81819f0f 3990
7e1fa93d 3991 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3992 struct kmem_cache_node *n;
3993
73367bd8 3994 if (slab_state == DOWN) {
55136592 3995 early_kmem_cache_node_alloc(node);
73367bd8
AD
3996 continue;
3997 }
51df1142 3998 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3999 GFP_KERNEL, node);
81819f0f 4000
73367bd8
AD
4001 if (!n) {
4002 free_kmem_cache_nodes(s);
4003 return 0;
81819f0f 4004 }
73367bd8 4005
4053497d 4006 init_kmem_cache_node(n);
ea37df54 4007 s->node[node] = n;
81819f0f
CL
4008 }
4009 return 1;
4010}
81819f0f 4011
c0bdb232 4012static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
4013{
4014 if (min < MIN_PARTIAL)
4015 min = MIN_PARTIAL;
4016 else if (min > MAX_PARTIAL)
4017 min = MAX_PARTIAL;
4018 s->min_partial = min;
4019}
4020
e6d0e1dc
WY
4021static void set_cpu_partial(struct kmem_cache *s)
4022{
4023#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
4024 unsigned int nr_objects;
4025
e6d0e1dc
WY
4026 /*
4027 * cpu_partial determined the maximum number of objects kept in the
4028 * per cpu partial lists of a processor.
4029 *
4030 * Per cpu partial lists mainly contain slabs that just have one
4031 * object freed. If they are used for allocation then they can be
4032 * filled up again with minimal effort. The slab will never hit the
4033 * per node partial lists and therefore no locking will be required.
4034 *
b47291ef
VB
4035 * For backwards compatibility reasons, this is determined as number
4036 * of objects, even though we now limit maximum number of pages, see
4037 * slub_set_cpu_partial()
e6d0e1dc
WY
4038 */
4039 if (!kmem_cache_has_cpu_partial(s))
b47291ef 4040 nr_objects = 0;
e6d0e1dc 4041 else if (s->size >= PAGE_SIZE)
b47291ef 4042 nr_objects = 6;
e6d0e1dc 4043 else if (s->size >= 1024)
23e98ad1 4044 nr_objects = 24;
e6d0e1dc 4045 else if (s->size >= 256)
23e98ad1 4046 nr_objects = 52;
e6d0e1dc 4047 else
23e98ad1 4048 nr_objects = 120;
b47291ef
VB
4049
4050 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
4051#endif
4052}
4053
81819f0f
CL
4054/*
4055 * calculate_sizes() determines the order and the distribution of data within
4056 * a slab object.
4057 */
06b285dc 4058static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 4059{
d50112ed 4060 slab_flags_t flags = s->flags;
be4a7988 4061 unsigned int size = s->object_size;
19af27af 4062 unsigned int order;
81819f0f 4063
d8b42bf5
CL
4064 /*
4065 * Round up object size to the next word boundary. We can only
4066 * place the free pointer at word boundaries and this determines
4067 * the possible location of the free pointer.
4068 */
4069 size = ALIGN(size, sizeof(void *));
4070
4071#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4072 /*
4073 * Determine if we can poison the object itself. If the user of
4074 * the slab may touch the object after free or before allocation
4075 * then we should never poison the object itself.
4076 */
5f0d5a3a 4077 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 4078 !s->ctor)
81819f0f
CL
4079 s->flags |= __OBJECT_POISON;
4080 else
4081 s->flags &= ~__OBJECT_POISON;
4082
81819f0f
CL
4083
4084 /*
672bba3a 4085 * If we are Redzoning then check if there is some space between the
81819f0f 4086 * end of the object and the free pointer. If not then add an
672bba3a 4087 * additional word to have some bytes to store Redzone information.
81819f0f 4088 */
3b0efdfa 4089 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 4090 size += sizeof(void *);
41ecc55b 4091#endif
81819f0f
CL
4092
4093 /*
672bba3a 4094 * With that we have determined the number of bytes in actual use
e41a49fa 4095 * by the object and redzoning.
81819f0f
CL
4096 */
4097 s->inuse = size;
4098
74c1d3e0
KC
4099 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4100 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4101 s->ctor) {
81819f0f
CL
4102 /*
4103 * Relocate free pointer after the object if it is not
4104 * permitted to overwrite the first word of the object on
4105 * kmem_cache_free.
4106 *
4107 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
4108 * destructor, are poisoning the objects, or are
4109 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
4110 *
4111 * The assumption that s->offset >= s->inuse means free
4112 * pointer is outside of the object is used in the
4113 * freeptr_outside_object() function. If that is no
4114 * longer true, the function needs to be modified.
81819f0f
CL
4115 */
4116 s->offset = size;
4117 size += sizeof(void *);
e41a49fa 4118 } else {
3202fa62
KC
4119 /*
4120 * Store freelist pointer near middle of object to keep
4121 * it away from the edges of the object to avoid small
4122 * sized over/underflows from neighboring allocations.
4123 */
e41a49fa 4124 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
4125 }
4126
c12b3c62 4127#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4128 if (flags & SLAB_STORE_USER)
4129 /*
4130 * Need to store information about allocs and frees after
4131 * the object.
4132 */
4133 size += 2 * sizeof(struct track);
80a9201a 4134#endif
81819f0f 4135
80a9201a
AP
4136 kasan_cache_create(s, &size, &s->flags);
4137#ifdef CONFIG_SLUB_DEBUG
d86bd1be 4138 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
4139 /*
4140 * Add some empty padding so that we can catch
4141 * overwrites from earlier objects rather than let
4142 * tracking information or the free pointer be
0211a9c8 4143 * corrupted if a user writes before the start
81819f0f
CL
4144 * of the object.
4145 */
4146 size += sizeof(void *);
d86bd1be
JK
4147
4148 s->red_left_pad = sizeof(void *);
4149 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4150 size += s->red_left_pad;
4151 }
41ecc55b 4152#endif
672bba3a 4153
81819f0f
CL
4154 /*
4155 * SLUB stores one object immediately after another beginning from
4156 * offset 0. In order to align the objects we have to simply size
4157 * each object to conform to the alignment.
4158 */
45906855 4159 size = ALIGN(size, s->align);
81819f0f 4160 s->size = size;
4138fdfc 4161 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
4162 if (forced_order >= 0)
4163 order = forced_order;
4164 else
9736d2a9 4165 order = calculate_order(size);
81819f0f 4166
19af27af 4167 if ((int)order < 0)
81819f0f
CL
4168 return 0;
4169
b7a49f0d 4170 s->allocflags = 0;
834f3d11 4171 if (order)
b7a49f0d
CL
4172 s->allocflags |= __GFP_COMP;
4173
4174 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 4175 s->allocflags |= GFP_DMA;
b7a49f0d 4176
6d6ea1e9
NB
4177 if (s->flags & SLAB_CACHE_DMA32)
4178 s->allocflags |= GFP_DMA32;
4179
b7a49f0d
CL
4180 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4181 s->allocflags |= __GFP_RECLAIMABLE;
4182
81819f0f
CL
4183 /*
4184 * Determine the number of objects per slab
4185 */
9736d2a9
MW
4186 s->oo = oo_make(order, size);
4187 s->min = oo_make(get_order(size), size);
205ab99d
CL
4188 if (oo_objects(s->oo) > oo_objects(s->max))
4189 s->max = s->oo;
81819f0f 4190
834f3d11 4191 return !!oo_objects(s->oo);
81819f0f
CL
4192}
4193
d50112ed 4194static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 4195{
37540008 4196 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
4197#ifdef CONFIG_SLAB_FREELIST_HARDENED
4198 s->random = get_random_long();
4199#endif
81819f0f 4200
06b285dc 4201 if (!calculate_sizes(s, -1))
81819f0f 4202 goto error;
3de47213
DR
4203 if (disable_higher_order_debug) {
4204 /*
4205 * Disable debugging flags that store metadata if the min slab
4206 * order increased.
4207 */
3b0efdfa 4208 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
4209 s->flags &= ~DEBUG_METADATA_FLAGS;
4210 s->offset = 0;
4211 if (!calculate_sizes(s, -1))
4212 goto error;
4213 }
4214 }
81819f0f 4215
2565409f
HC
4216#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4217 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 4218 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
4219 /* Enable fast mode */
4220 s->flags |= __CMPXCHG_DOUBLE;
4221#endif
4222
3b89d7d8
DR
4223 /*
4224 * The larger the object size is, the more pages we want on the partial
4225 * list to avoid pounding the page allocator excessively.
4226 */
49e22585
CL
4227 set_min_partial(s, ilog2(s->size) / 2);
4228
e6d0e1dc 4229 set_cpu_partial(s);
49e22585 4230
81819f0f 4231#ifdef CONFIG_NUMA
e2cb96b7 4232 s->remote_node_defrag_ratio = 1000;
81819f0f 4233#endif
210e7a43
TG
4234
4235 /* Initialize the pre-computed randomized freelist if slab is up */
4236 if (slab_state >= UP) {
4237 if (init_cache_random_seq(s))
4238 goto error;
4239 }
4240
55136592 4241 if (!init_kmem_cache_nodes(s))
dfb4f096 4242 goto error;
81819f0f 4243
55136592 4244 if (alloc_kmem_cache_cpus(s))
278b1bb1 4245 return 0;
ff12059e 4246
81819f0f 4247error:
9037c576 4248 __kmem_cache_release(s);
278b1bb1 4249 return -EINVAL;
81819f0f 4250}
81819f0f 4251
33b12c38 4252static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 4253 const char *text)
33b12c38
CL
4254{
4255#ifdef CONFIG_SLUB_DEBUG
4256 void *addr = page_address(page);
a2b4ae8b 4257 unsigned long flags;
55860d96 4258 unsigned long *map;
33b12c38 4259 void *p;
aa456c7a 4260
945cf2b6 4261 slab_err(s, page, text, s->name);
a2b4ae8b 4262 slab_lock(page, &flags);
33b12c38 4263
90e9f6a6 4264 map = get_map(s, page);
33b12c38
CL
4265 for_each_object(p, s, addr, page->objects) {
4266
4138fdfc 4267 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 4268 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
4269 print_tracking(s, p);
4270 }
4271 }
55860d96 4272 put_map(map);
a2b4ae8b 4273 slab_unlock(page, &flags);
33b12c38
CL
4274#endif
4275}
4276
81819f0f 4277/*
599870b1 4278 * Attempt to free all partial slabs on a node.
52b4b950
DS
4279 * This is called from __kmem_cache_shutdown(). We must take list_lock
4280 * because sysfs file might still access partial list after the shutdowning.
81819f0f 4281 */
599870b1 4282static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 4283{
60398923 4284 LIST_HEAD(discard);
81819f0f
CL
4285 struct page *page, *h;
4286
52b4b950
DS
4287 BUG_ON(irqs_disabled());
4288 spin_lock_irq(&n->list_lock);
916ac052 4289 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 4290 if (!page->inuse) {
52b4b950 4291 remove_partial(n, page);
916ac052 4292 list_add(&page->slab_list, &discard);
33b12c38
CL
4293 } else {
4294 list_slab_objects(s, page,
55860d96 4295 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 4296 }
33b12c38 4297 }
52b4b950 4298 spin_unlock_irq(&n->list_lock);
60398923 4299
916ac052 4300 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 4301 discard_slab(s, page);
81819f0f
CL
4302}
4303
f9e13c0a
SB
4304bool __kmem_cache_empty(struct kmem_cache *s)
4305{
4306 int node;
4307 struct kmem_cache_node *n;
4308
4309 for_each_kmem_cache_node(s, node, n)
4310 if (n->nr_partial || slabs_node(s, node))
4311 return false;
4312 return true;
4313}
4314
81819f0f 4315/*
672bba3a 4316 * Release all resources used by a slab cache.
81819f0f 4317 */
52b4b950 4318int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4319{
4320 int node;
fa45dc25 4321 struct kmem_cache_node *n;
81819f0f 4322
5a836bf6 4323 flush_all_cpus_locked(s);
81819f0f 4324 /* Attempt to free all objects */
fa45dc25 4325 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
4326 free_partial(s, n);
4327 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4328 return 1;
4329 }
81819f0f
CL
4330 return 0;
4331}
4332
5bb1bb35 4333#ifdef CONFIG_PRINTK
7213230a 4334void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
4335{
4336 void *base;
4337 int __maybe_unused i;
4338 unsigned int objnr;
4339 void *objp;
4340 void *objp0;
7213230a 4341 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
4342 struct track __maybe_unused *trackp;
4343
4344 kpp->kp_ptr = object;
7213230a 4345 kpp->kp_slab = slab;
8e7f37f2 4346 kpp->kp_slab_cache = s;
7213230a 4347 base = slab_address(slab);
8e7f37f2
PM
4348 objp0 = kasan_reset_tag(object);
4349#ifdef CONFIG_SLUB_DEBUG
4350 objp = restore_red_left(s, objp0);
4351#else
4352 objp = objp0;
4353#endif
7213230a 4354 objnr = obj_to_index(s, slab_page(slab), objp);
8e7f37f2
PM
4355 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4356 objp = base + s->size * objnr;
4357 kpp->kp_objp = objp;
7213230a
MWO
4358 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4359 || (objp - base) % s->size) ||
8e7f37f2
PM
4360 !(s->flags & SLAB_STORE_USER))
4361 return;
4362#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4363 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4364 trackp = get_track(s, objp, TRACK_ALLOC);
4365 kpp->kp_ret = (void *)trackp->addr;
ae14c63a
LT
4366#ifdef CONFIG_STACKTRACE
4367 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4368 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4369 if (!kpp->kp_stack[i])
4370 break;
4371 }
78869146 4372
ae14c63a
LT
4373 trackp = get_track(s, objp, TRACK_FREE);
4374 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4375 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4376 if (!kpp->kp_free_stack[i])
4377 break;
e548eaa1 4378 }
8e7f37f2
PM
4379#endif
4380#endif
4381}
5bb1bb35 4382#endif
8e7f37f2 4383
81819f0f
CL
4384/********************************************************************
4385 * Kmalloc subsystem
4386 *******************************************************************/
4387
81819f0f
CL
4388static int __init setup_slub_min_order(char *str)
4389{
19af27af 4390 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4391
4392 return 1;
4393}
4394
4395__setup("slub_min_order=", setup_slub_min_order);
4396
4397static int __init setup_slub_max_order(char *str)
4398{
19af27af
AD
4399 get_option(&str, (int *)&slub_max_order);
4400 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4401
4402 return 1;
4403}
4404
4405__setup("slub_max_order=", setup_slub_max_order);
4406
4407static int __init setup_slub_min_objects(char *str)
4408{
19af27af 4409 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4410
4411 return 1;
4412}
4413
4414__setup("slub_min_objects=", setup_slub_min_objects);
4415
81819f0f
CL
4416void *__kmalloc(size_t size, gfp_t flags)
4417{
aadb4bc4 4418 struct kmem_cache *s;
5b882be4 4419 void *ret;
81819f0f 4420
95a05b42 4421 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4422 return kmalloc_large(size, flags);
aadb4bc4 4423
2c59dd65 4424 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4425
4426 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4427 return s;
4428
b89fb5ef 4429 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4430
ca2b84cb 4431 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4432
0116523c 4433 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4434
5b882be4 4435 return ret;
81819f0f
CL
4436}
4437EXPORT_SYMBOL(__kmalloc);
4438
5d1f57e4 4439#ifdef CONFIG_NUMA
f619cfe1
CL
4440static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4441{
b1eeab67 4442 struct page *page;
e4f7c0b4 4443 void *ptr = NULL;
6a486c0a 4444 unsigned int order = get_order(size);
f619cfe1 4445
75f296d9 4446 flags |= __GFP_COMP;
6a486c0a
VB
4447 page = alloc_pages_node(node, flags, order);
4448 if (page) {
e4f7c0b4 4449 ptr = page_address(page);
96403bfe
MS
4450 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4451 PAGE_SIZE << order);
6a486c0a 4452 }
e4f7c0b4 4453
0116523c 4454 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4455}
4456
81819f0f
CL
4457void *__kmalloc_node(size_t size, gfp_t flags, int node)
4458{
aadb4bc4 4459 struct kmem_cache *s;
5b882be4 4460 void *ret;
81819f0f 4461
95a05b42 4462 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4463 ret = kmalloc_large_node(size, flags, node);
4464
ca2b84cb
EGM
4465 trace_kmalloc_node(_RET_IP_, ret,
4466 size, PAGE_SIZE << get_order(size),
4467 flags, node);
5b882be4
EGM
4468
4469 return ret;
4470 }
aadb4bc4 4471
2c59dd65 4472 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4473
4474 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4475 return s;
4476
b89fb5ef 4477 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4478
ca2b84cb 4479 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4480
0116523c 4481 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4482
5b882be4 4483 return ret;
81819f0f
CL
4484}
4485EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4486#endif /* CONFIG_NUMA */
81819f0f 4487
ed18adc1
KC
4488#ifdef CONFIG_HARDENED_USERCOPY
4489/*
afcc90f8
KC
4490 * Rejects incorrectly sized objects and objects that are to be copied
4491 * to/from userspace but do not fall entirely within the containing slab
4492 * cache's usercopy region.
ed18adc1
KC
4493 *
4494 * Returns NULL if check passes, otherwise const char * to name of cache
4495 * to indicate an error.
4496 */
0b3eb091
MWO
4497void __check_heap_object(const void *ptr, unsigned long n,
4498 const struct slab *slab, bool to_user)
ed18adc1
KC
4499{
4500 struct kmem_cache *s;
44065b2e 4501 unsigned int offset;
b89fb5ef 4502 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4503
96fedce2
AK
4504 ptr = kasan_reset_tag(ptr);
4505
ed18adc1 4506 /* Find object and usable object size. */
0b3eb091 4507 s = slab->slab_cache;
ed18adc1
KC
4508
4509 /* Reject impossible pointers. */
0b3eb091 4510 if (ptr < slab_address(slab))
f4e6e289
KC
4511 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4512 to_user, 0, n);
ed18adc1
KC
4513
4514 /* Find offset within object. */
b89fb5ef
AP
4515 if (is_kfence)
4516 offset = ptr - kfence_object_start(ptr);
4517 else
0b3eb091 4518 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
4519
4520 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4521 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4522 if (offset < s->red_left_pad)
f4e6e289
KC
4523 usercopy_abort("SLUB object in left red zone",
4524 s->name, to_user, offset, n);
ed18adc1
KC
4525 offset -= s->red_left_pad;
4526 }
4527
afcc90f8
KC
4528 /* Allow address range falling entirely within usercopy region. */
4529 if (offset >= s->useroffset &&
4530 offset - s->useroffset <= s->usersize &&
4531 n <= s->useroffset - offset + s->usersize)
f4e6e289 4532 return;
ed18adc1 4533
f4e6e289 4534 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4535}
4536#endif /* CONFIG_HARDENED_USERCOPY */
4537
10d1f8cb 4538size_t __ksize(const void *object)
81819f0f 4539{
0c24811b 4540 struct folio *folio;
81819f0f 4541
ef8b4520 4542 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4543 return 0;
4544
0c24811b 4545 folio = virt_to_folio(object);
294a80a8 4546
0c24811b
MWO
4547 if (unlikely(!folio_test_slab(folio)))
4548 return folio_size(folio);
81819f0f 4549
0c24811b 4550 return slab_ksize(folio_slab(folio)->slab_cache);
81819f0f 4551}
10d1f8cb 4552EXPORT_SYMBOL(__ksize);
81819f0f
CL
4553
4554void kfree(const void *x)
4555{
d835eef4
MWO
4556 struct folio *folio;
4557 struct slab *slab;
5bb983b0 4558 void *object = (void *)x;
81819f0f 4559
2121db74
PE
4560 trace_kfree(_RET_IP_, x);
4561
2408c550 4562 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4563 return;
4564
d835eef4
MWO
4565 folio = virt_to_folio(x);
4566 if (unlikely(!folio_test_slab(folio))) {
4567 free_large_kmalloc(folio, object);
aadb4bc4
CL
4568 return;
4569 }
d835eef4
MWO
4570 slab = folio_slab(folio);
4571 slab_free(slab->slab_cache, slab_page(slab), object, NULL, 1, _RET_IP_);
81819f0f
CL
4572}
4573EXPORT_SYMBOL(kfree);
4574
832f37f5
VD
4575#define SHRINK_PROMOTE_MAX 32
4576
2086d26a 4577/*
832f37f5
VD
4578 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4579 * up most to the head of the partial lists. New allocations will then
4580 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4581 *
4582 * The slabs with the least items are placed last. This results in them
4583 * being allocated from last increasing the chance that the last objects
4584 * are freed in them.
2086d26a 4585 */
5a836bf6 4586static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
4587{
4588 int node;
4589 int i;
4590 struct kmem_cache_node *n;
4591 struct page *page;
4592 struct page *t;
832f37f5
VD
4593 struct list_head discard;
4594 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4595 unsigned long flags;
ce3712d7 4596 int ret = 0;
2086d26a 4597
fa45dc25 4598 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4599 INIT_LIST_HEAD(&discard);
4600 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4601 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4602
4603 spin_lock_irqsave(&n->list_lock, flags);
4604
4605 /*
832f37f5 4606 * Build lists of slabs to discard or promote.
2086d26a 4607 *
672bba3a
CL
4608 * Note that concurrent frees may occur while we hold the
4609 * list_lock. page->inuse here is the upper limit.
2086d26a 4610 */
916ac052 4611 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4612 int free = page->objects - page->inuse;
4613
4614 /* Do not reread page->inuse */
4615 barrier();
4616
4617 /* We do not keep full slabs on the list */
4618 BUG_ON(free <= 0);
4619
4620 if (free == page->objects) {
916ac052 4621 list_move(&page->slab_list, &discard);
69cb8e6b 4622 n->nr_partial--;
832f37f5 4623 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4624 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4625 }
4626
2086d26a 4627 /*
832f37f5
VD
4628 * Promote the slabs filled up most to the head of the
4629 * partial list.
2086d26a 4630 */
832f37f5
VD
4631 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4632 list_splice(promote + i, &n->partial);
2086d26a 4633
2086d26a 4634 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4635
4636 /* Release empty slabs */
916ac052 4637 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4638 discard_slab(s, page);
ce3712d7
VD
4639
4640 if (slabs_node(s, node))
4641 ret = 1;
2086d26a
CL
4642 }
4643
ce3712d7 4644 return ret;
2086d26a 4645}
2086d26a 4646
5a836bf6
SAS
4647int __kmem_cache_shrink(struct kmem_cache *s)
4648{
4649 flush_all(s);
4650 return __kmem_cache_do_shrink(s);
4651}
4652
b9049e23
YG
4653static int slab_mem_going_offline_callback(void *arg)
4654{
4655 struct kmem_cache *s;
4656
18004c5d 4657 mutex_lock(&slab_mutex);
5a836bf6
SAS
4658 list_for_each_entry(s, &slab_caches, list) {
4659 flush_all_cpus_locked(s);
4660 __kmem_cache_do_shrink(s);
4661 }
18004c5d 4662 mutex_unlock(&slab_mutex);
b9049e23
YG
4663
4664 return 0;
4665}
4666
4667static void slab_mem_offline_callback(void *arg)
4668{
b9049e23
YG
4669 struct memory_notify *marg = arg;
4670 int offline_node;
4671
b9d5ab25 4672 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4673
4674 /*
4675 * If the node still has available memory. we need kmem_cache_node
4676 * for it yet.
4677 */
4678 if (offline_node < 0)
4679 return;
4680
18004c5d 4681 mutex_lock(&slab_mutex);
7e1fa93d 4682 node_clear(offline_node, slab_nodes);
666716fd
VB
4683 /*
4684 * We no longer free kmem_cache_node structures here, as it would be
4685 * racy with all get_node() users, and infeasible to protect them with
4686 * slab_mutex.
4687 */
18004c5d 4688 mutex_unlock(&slab_mutex);
b9049e23
YG
4689}
4690
4691static int slab_mem_going_online_callback(void *arg)
4692{
4693 struct kmem_cache_node *n;
4694 struct kmem_cache *s;
4695 struct memory_notify *marg = arg;
b9d5ab25 4696 int nid = marg->status_change_nid_normal;
b9049e23
YG
4697 int ret = 0;
4698
4699 /*
4700 * If the node's memory is already available, then kmem_cache_node is
4701 * already created. Nothing to do.
4702 */
4703 if (nid < 0)
4704 return 0;
4705
4706 /*
0121c619 4707 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4708 * allocate a kmem_cache_node structure in order to bring the node
4709 * online.
4710 */
18004c5d 4711 mutex_lock(&slab_mutex);
b9049e23 4712 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4713 /*
4714 * The structure may already exist if the node was previously
4715 * onlined and offlined.
4716 */
4717 if (get_node(s, nid))
4718 continue;
b9049e23
YG
4719 /*
4720 * XXX: kmem_cache_alloc_node will fallback to other nodes
4721 * since memory is not yet available from the node that
4722 * is brought up.
4723 */
8de66a0c 4724 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4725 if (!n) {
4726 ret = -ENOMEM;
4727 goto out;
4728 }
4053497d 4729 init_kmem_cache_node(n);
b9049e23
YG
4730 s->node[nid] = n;
4731 }
7e1fa93d
VB
4732 /*
4733 * Any cache created after this point will also have kmem_cache_node
4734 * initialized for the new node.
4735 */
4736 node_set(nid, slab_nodes);
b9049e23 4737out:
18004c5d 4738 mutex_unlock(&slab_mutex);
b9049e23
YG
4739 return ret;
4740}
4741
4742static int slab_memory_callback(struct notifier_block *self,
4743 unsigned long action, void *arg)
4744{
4745 int ret = 0;
4746
4747 switch (action) {
4748 case MEM_GOING_ONLINE:
4749 ret = slab_mem_going_online_callback(arg);
4750 break;
4751 case MEM_GOING_OFFLINE:
4752 ret = slab_mem_going_offline_callback(arg);
4753 break;
4754 case MEM_OFFLINE:
4755 case MEM_CANCEL_ONLINE:
4756 slab_mem_offline_callback(arg);
4757 break;
4758 case MEM_ONLINE:
4759 case MEM_CANCEL_OFFLINE:
4760 break;
4761 }
dc19f9db
KH
4762 if (ret)
4763 ret = notifier_from_errno(ret);
4764 else
4765 ret = NOTIFY_OK;
b9049e23
YG
4766 return ret;
4767}
4768
3ac38faa
AM
4769static struct notifier_block slab_memory_callback_nb = {
4770 .notifier_call = slab_memory_callback,
4771 .priority = SLAB_CALLBACK_PRI,
4772};
b9049e23 4773
81819f0f
CL
4774/********************************************************************
4775 * Basic setup of slabs
4776 *******************************************************************/
4777
51df1142
CL
4778/*
4779 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4780 * the page allocator. Allocate them properly then fix up the pointers
4781 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4782 */
4783
dffb4d60 4784static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4785{
4786 int node;
dffb4d60 4787 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4788 struct kmem_cache_node *n;
51df1142 4789
dffb4d60 4790 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4791
7d557b3c
GC
4792 /*
4793 * This runs very early, and only the boot processor is supposed to be
4794 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4795 * IPIs around.
4796 */
4797 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4798 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4799 struct page *p;
4800
916ac052 4801 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4802 p->slab_cache = s;
51df1142 4803
607bf324 4804#ifdef CONFIG_SLUB_DEBUG
916ac052 4805 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4806 p->slab_cache = s;
51df1142 4807#endif
51df1142 4808 }
dffb4d60
CL
4809 list_add(&s->list, &slab_caches);
4810 return s;
51df1142
CL
4811}
4812
81819f0f
CL
4813void __init kmem_cache_init(void)
4814{
dffb4d60
CL
4815 static __initdata struct kmem_cache boot_kmem_cache,
4816 boot_kmem_cache_node;
7e1fa93d 4817 int node;
51df1142 4818
fc8d8620
SG
4819 if (debug_guardpage_minorder())
4820 slub_max_order = 0;
4821
79270291
SB
4822 /* Print slub debugging pointers without hashing */
4823 if (__slub_debug_enabled())
4824 no_hash_pointers_enable(NULL);
4825
dffb4d60
CL
4826 kmem_cache_node = &boot_kmem_cache_node;
4827 kmem_cache = &boot_kmem_cache;
51df1142 4828
7e1fa93d
VB
4829 /*
4830 * Initialize the nodemask for which we will allocate per node
4831 * structures. Here we don't need taking slab_mutex yet.
4832 */
4833 for_each_node_state(node, N_NORMAL_MEMORY)
4834 node_set(node, slab_nodes);
4835
dffb4d60 4836 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4837 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4838
3ac38faa 4839 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4840
4841 /* Able to allocate the per node structures */
4842 slab_state = PARTIAL;
4843
dffb4d60
CL
4844 create_boot_cache(kmem_cache, "kmem_cache",
4845 offsetof(struct kmem_cache, node) +
4846 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4847 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4848
dffb4d60 4849 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4850 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4851
4852 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4853 setup_kmalloc_cache_index_table();
f97d5f63 4854 create_kmalloc_caches(0);
81819f0f 4855
210e7a43
TG
4856 /* Setup random freelists for each cache */
4857 init_freelist_randomization();
4858
a96a87bf
SAS
4859 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4860 slub_cpu_dead);
81819f0f 4861
b9726c26 4862 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4863 cache_line_size(),
81819f0f
CL
4864 slub_min_order, slub_max_order, slub_min_objects,
4865 nr_cpu_ids, nr_node_ids);
4866}
4867
7e85ee0c
PE
4868void __init kmem_cache_init_late(void)
4869{
7e85ee0c
PE
4870}
4871
2633d7a0 4872struct kmem_cache *
f4957d5b 4873__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4874 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4875{
10befea9 4876 struct kmem_cache *s;
81819f0f 4877
a44cb944 4878 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4879 if (s) {
4880 s->refcount++;
84d0ddd6 4881
81819f0f
CL
4882 /*
4883 * Adjust the object sizes so that we clear
4884 * the complete object on kzalloc.
4885 */
1b473f29 4886 s->object_size = max(s->object_size, size);
52ee6d74 4887 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4888
7b8f3b66 4889 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4890 s->refcount--;
cbb79694 4891 s = NULL;
7b8f3b66 4892 }
a0e1d1be 4893 }
6446faa2 4894
cbb79694
CL
4895 return s;
4896}
84c1cf62 4897
d50112ed 4898int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4899{
aac3a166
PE
4900 int err;
4901
4902 err = kmem_cache_open(s, flags);
4903 if (err)
4904 return err;
20cea968 4905
45530c44
CL
4906 /* Mutex is not taken during early boot */
4907 if (slab_state <= UP)
4908 return 0;
4909
aac3a166 4910 err = sysfs_slab_add(s);
67823a54 4911 if (err) {
52b4b950 4912 __kmem_cache_release(s);
67823a54
ML
4913 return err;
4914 }
20cea968 4915
64dd6849
FM
4916 if (s->flags & SLAB_STORE_USER)
4917 debugfs_slab_add(s);
4918
67823a54 4919 return 0;
81819f0f 4920}
81819f0f 4921
ce71e27c 4922void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4923{
aadb4bc4 4924 struct kmem_cache *s;
94b528d0 4925 void *ret;
aadb4bc4 4926
95a05b42 4927 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4928 return kmalloc_large(size, gfpflags);
4929
2c59dd65 4930 s = kmalloc_slab(size, gfpflags);
81819f0f 4931
2408c550 4932 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4933 return s;
81819f0f 4934
b89fb5ef 4935 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4936
25985edc 4937 /* Honor the call site pointer we received. */
ca2b84cb 4938 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4939
4940 return ret;
81819f0f 4941}
fd7cb575 4942EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4943
5d1f57e4 4944#ifdef CONFIG_NUMA
81819f0f 4945void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4946 int node, unsigned long caller)
81819f0f 4947{
aadb4bc4 4948 struct kmem_cache *s;
94b528d0 4949 void *ret;
aadb4bc4 4950
95a05b42 4951 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4952 ret = kmalloc_large_node(size, gfpflags, node);
4953
4954 trace_kmalloc_node(caller, ret,
4955 size, PAGE_SIZE << get_order(size),
4956 gfpflags, node);
4957
4958 return ret;
4959 }
eada35ef 4960
2c59dd65 4961 s = kmalloc_slab(size, gfpflags);
81819f0f 4962
2408c550 4963 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4964 return s;
81819f0f 4965
b89fb5ef 4966 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4967
25985edc 4968 /* Honor the call site pointer we received. */
ca2b84cb 4969 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4970
4971 return ret;
81819f0f 4972}
fd7cb575 4973EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4974#endif
81819f0f 4975
ab4d5ed5 4976#ifdef CONFIG_SYSFS
205ab99d
CL
4977static int count_inuse(struct page *page)
4978{
4979 return page->inuse;
4980}
4981
4982static int count_total(struct page *page)
4983{
4984 return page->objects;
4985}
ab4d5ed5 4986#endif
205ab99d 4987
ab4d5ed5 4988#ifdef CONFIG_SLUB_DEBUG
0a19e7dd
VB
4989static void validate_slab(struct kmem_cache *s, struct page *page,
4990 unsigned long *obj_map)
53e15af0
CL
4991{
4992 void *p;
a973e9dd 4993 void *addr = page_address(page);
a2b4ae8b 4994 unsigned long flags;
90e9f6a6 4995
a2b4ae8b 4996 slab_lock(page, &flags);
53e15af0 4997
dd98afd4 4998 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4999 goto unlock;
53e15af0
CL
5000
5001 /* Now we know that a valid freelist exists */
0a19e7dd 5002 __fill_map(obj_map, s, page);
5f80b13a 5003 for_each_object(p, s, addr, page->objects) {
0a19e7dd 5004 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 5005 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 5006
dd98afd4
YZ
5007 if (!check_object(s, page, p, val))
5008 break;
5009 }
90e9f6a6 5010unlock:
a2b4ae8b 5011 slab_unlock(page, &flags);
53e15af0
CL
5012}
5013
434e245d 5014static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5015 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5016{
5017 unsigned long count = 0;
5018 struct page *page;
5019 unsigned long flags;
5020
5021 spin_lock_irqsave(&n->list_lock, flags);
5022
916ac052 5023 list_for_each_entry(page, &n->partial, slab_list) {
0a19e7dd 5024 validate_slab(s, page, obj_map);
53e15af0
CL
5025 count++;
5026 }
1f9f78b1 5027 if (count != n->nr_partial) {
f9f58285
FF
5028 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5029 s->name, count, n->nr_partial);
1f9f78b1
OG
5030 slab_add_kunit_errors();
5031 }
53e15af0
CL
5032
5033 if (!(s->flags & SLAB_STORE_USER))
5034 goto out;
5035
916ac052 5036 list_for_each_entry(page, &n->full, slab_list) {
0a19e7dd 5037 validate_slab(s, page, obj_map);
53e15af0
CL
5038 count++;
5039 }
1f9f78b1 5040 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
5041 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5042 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
5043 slab_add_kunit_errors();
5044 }
53e15af0
CL
5045
5046out:
5047 spin_unlock_irqrestore(&n->list_lock, flags);
5048 return count;
5049}
5050
1f9f78b1 5051long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5052{
5053 int node;
5054 unsigned long count = 0;
fa45dc25 5055 struct kmem_cache_node *n;
0a19e7dd
VB
5056 unsigned long *obj_map;
5057
5058 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5059 if (!obj_map)
5060 return -ENOMEM;
53e15af0
CL
5061
5062 flush_all(s);
fa45dc25 5063 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
5064 count += validate_slab_node(s, n, obj_map);
5065
5066 bitmap_free(obj_map);
90e9f6a6 5067
53e15af0
CL
5068 return count;
5069}
1f9f78b1
OG
5070EXPORT_SYMBOL(validate_slab_cache);
5071
64dd6849 5072#ifdef CONFIG_DEBUG_FS
88a420e4 5073/*
672bba3a 5074 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
5075 * and freed.
5076 */
5077
5078struct location {
5079 unsigned long count;
ce71e27c 5080 unsigned long addr;
45edfa58
CL
5081 long long sum_time;
5082 long min_time;
5083 long max_time;
5084 long min_pid;
5085 long max_pid;
174596a0 5086 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 5087 nodemask_t nodes;
88a420e4
CL
5088};
5089
5090struct loc_track {
5091 unsigned long max;
5092 unsigned long count;
5093 struct location *loc;
005a79e5 5094 loff_t idx;
88a420e4
CL
5095};
5096
64dd6849
FM
5097static struct dentry *slab_debugfs_root;
5098
88a420e4
CL
5099static void free_loc_track(struct loc_track *t)
5100{
5101 if (t->max)
5102 free_pages((unsigned long)t->loc,
5103 get_order(sizeof(struct location) * t->max));
5104}
5105
68dff6a9 5106static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
5107{
5108 struct location *l;
5109 int order;
5110
88a420e4
CL
5111 order = get_order(sizeof(struct location) * max);
5112
68dff6a9 5113 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
5114 if (!l)
5115 return 0;
5116
5117 if (t->count) {
5118 memcpy(l, t->loc, sizeof(struct location) * t->count);
5119 free_loc_track(t);
5120 }
5121 t->max = max;
5122 t->loc = l;
5123 return 1;
5124}
5125
5126static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 5127 const struct track *track)
88a420e4
CL
5128{
5129 long start, end, pos;
5130 struct location *l;
ce71e27c 5131 unsigned long caddr;
45edfa58 5132 unsigned long age = jiffies - track->when;
88a420e4
CL
5133
5134 start = -1;
5135 end = t->count;
5136
5137 for ( ; ; ) {
5138 pos = start + (end - start + 1) / 2;
5139
5140 /*
5141 * There is nothing at "end". If we end up there
5142 * we need to add something to before end.
5143 */
5144 if (pos == end)
5145 break;
5146
5147 caddr = t->loc[pos].addr;
45edfa58
CL
5148 if (track->addr == caddr) {
5149
5150 l = &t->loc[pos];
5151 l->count++;
5152 if (track->when) {
5153 l->sum_time += age;
5154 if (age < l->min_time)
5155 l->min_time = age;
5156 if (age > l->max_time)
5157 l->max_time = age;
5158
5159 if (track->pid < l->min_pid)
5160 l->min_pid = track->pid;
5161 if (track->pid > l->max_pid)
5162 l->max_pid = track->pid;
5163
174596a0
RR
5164 cpumask_set_cpu(track->cpu,
5165 to_cpumask(l->cpus));
45edfa58
CL
5166 }
5167 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5168 return 1;
5169 }
5170
45edfa58 5171 if (track->addr < caddr)
88a420e4
CL
5172 end = pos;
5173 else
5174 start = pos;
5175 }
5176
5177 /*
672bba3a 5178 * Not found. Insert new tracking element.
88a420e4 5179 */
68dff6a9 5180 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
5181 return 0;
5182
5183 l = t->loc + pos;
5184 if (pos < t->count)
5185 memmove(l + 1, l,
5186 (t->count - pos) * sizeof(struct location));
5187 t->count++;
5188 l->count = 1;
45edfa58
CL
5189 l->addr = track->addr;
5190 l->sum_time = age;
5191 l->min_time = age;
5192 l->max_time = age;
5193 l->min_pid = track->pid;
5194 l->max_pid = track->pid;
174596a0
RR
5195 cpumask_clear(to_cpumask(l->cpus));
5196 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
5197 nodes_clear(l->nodes);
5198 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5199 return 1;
5200}
5201
5202static void process_slab(struct loc_track *t, struct kmem_cache *s,
b3fd64e1
VB
5203 struct page *page, enum track_item alloc,
5204 unsigned long *obj_map)
88a420e4 5205{
a973e9dd 5206 void *addr = page_address(page);
88a420e4
CL
5207 void *p;
5208
b3fd64e1
VB
5209 __fill_map(obj_map, s, page);
5210
224a88be 5211 for_each_object(p, s, addr, page->objects)
b3fd64e1 5212 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
45edfa58 5213 add_location(t, s, get_track(s, p, alloc));
88a420e4 5214}
64dd6849 5215#endif /* CONFIG_DEBUG_FS */
6dfd1b65 5216#endif /* CONFIG_SLUB_DEBUG */
88a420e4 5217
ab4d5ed5 5218#ifdef CONFIG_SYSFS
81819f0f 5219enum slab_stat_type {
205ab99d
CL
5220 SL_ALL, /* All slabs */
5221 SL_PARTIAL, /* Only partially allocated slabs */
5222 SL_CPU, /* Only slabs used for cpu caches */
5223 SL_OBJECTS, /* Determine allocated objects not slabs */
5224 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
5225};
5226
205ab99d 5227#define SO_ALL (1 << SL_ALL)
81819f0f
CL
5228#define SO_PARTIAL (1 << SL_PARTIAL)
5229#define SO_CPU (1 << SL_CPU)
5230#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 5231#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 5232
62e5c4b4 5233static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 5234 char *buf, unsigned long flags)
81819f0f
CL
5235{
5236 unsigned long total = 0;
81819f0f
CL
5237 int node;
5238 int x;
5239 unsigned long *nodes;
bf16d19a 5240 int len = 0;
81819f0f 5241
6396bb22 5242 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5243 if (!nodes)
5244 return -ENOMEM;
81819f0f 5245
205ab99d
CL
5246 if (flags & SO_CPU) {
5247 int cpu;
81819f0f 5248
205ab99d 5249 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5250 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5251 cpu);
ec3ab083 5252 int node;
49e22585 5253 struct page *page;
dfb4f096 5254
4db0c3c2 5255 page = READ_ONCE(c->page);
ec3ab083
CL
5256 if (!page)
5257 continue;
205ab99d 5258
ec3ab083
CL
5259 node = page_to_nid(page);
5260 if (flags & SO_TOTAL)
5261 x = page->objects;
5262 else if (flags & SO_OBJECTS)
5263 x = page->inuse;
5264 else
5265 x = 1;
49e22585 5266
ec3ab083
CL
5267 total += x;
5268 nodes[node] += x;
5269
a93cf07b 5270 page = slub_percpu_partial_read_once(c);
49e22585 5271 if (page) {
8afb1474
LZ
5272 node = page_to_nid(page);
5273 if (flags & SO_TOTAL)
5274 WARN_ON_ONCE(1);
5275 else if (flags & SO_OBJECTS)
5276 WARN_ON_ONCE(1);
5277 else
5278 x = page->pages;
bc6697d8
ED
5279 total += x;
5280 nodes[node] += x;
49e22585 5281 }
81819f0f
CL
5282 }
5283 }
5284
e4f8e513
QC
5285 /*
5286 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5287 * already held which will conflict with an existing lock order:
5288 *
5289 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5290 *
5291 * We don't really need mem_hotplug_lock (to hold off
5292 * slab_mem_going_offline_callback) here because slab's memory hot
5293 * unplug code doesn't destroy the kmem_cache->node[] data.
5294 */
5295
ab4d5ed5 5296#ifdef CONFIG_SLUB_DEBUG
205ab99d 5297 if (flags & SO_ALL) {
fa45dc25
CL
5298 struct kmem_cache_node *n;
5299
5300 for_each_kmem_cache_node(s, node, n) {
205ab99d 5301
d0e0ac97
CG
5302 if (flags & SO_TOTAL)
5303 x = atomic_long_read(&n->total_objects);
5304 else if (flags & SO_OBJECTS)
5305 x = atomic_long_read(&n->total_objects) -
5306 count_partial(n, count_free);
81819f0f 5307 else
205ab99d 5308 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5309 total += x;
5310 nodes[node] += x;
5311 }
5312
ab4d5ed5
CL
5313 } else
5314#endif
5315 if (flags & SO_PARTIAL) {
fa45dc25 5316 struct kmem_cache_node *n;
81819f0f 5317
fa45dc25 5318 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5319 if (flags & SO_TOTAL)
5320 x = count_partial(n, count_total);
5321 else if (flags & SO_OBJECTS)
5322 x = count_partial(n, count_inuse);
81819f0f 5323 else
205ab99d 5324 x = n->nr_partial;
81819f0f
CL
5325 total += x;
5326 nodes[node] += x;
5327 }
5328 }
bf16d19a
JP
5329
5330 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5331#ifdef CONFIG_NUMA
bf16d19a 5332 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5333 if (nodes[node])
bf16d19a
JP
5334 len += sysfs_emit_at(buf, len, " N%d=%lu",
5335 node, nodes[node]);
5336 }
81819f0f 5337#endif
bf16d19a 5338 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5339 kfree(nodes);
bf16d19a
JP
5340
5341 return len;
81819f0f
CL
5342}
5343
81819f0f 5344#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5345#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5346
5347struct slab_attribute {
5348 struct attribute attr;
5349 ssize_t (*show)(struct kmem_cache *s, char *buf);
5350 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5351};
5352
5353#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5354 static struct slab_attribute _name##_attr = \
5355 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5356
5357#define SLAB_ATTR(_name) \
5358 static struct slab_attribute _name##_attr = \
ab067e99 5359 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5360
81819f0f
CL
5361static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5362{
bf16d19a 5363 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5364}
5365SLAB_ATTR_RO(slab_size);
5366
5367static ssize_t align_show(struct kmem_cache *s, char *buf)
5368{
bf16d19a 5369 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5370}
5371SLAB_ATTR_RO(align);
5372
5373static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5374{
bf16d19a 5375 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5376}
5377SLAB_ATTR_RO(object_size);
5378
5379static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5380{
bf16d19a 5381 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5382}
5383SLAB_ATTR_RO(objs_per_slab);
5384
5385static ssize_t order_show(struct kmem_cache *s, char *buf)
5386{
bf16d19a 5387 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5388}
32a6f409 5389SLAB_ATTR_RO(order);
81819f0f 5390
73d342b1
DR
5391static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5392{
bf16d19a 5393 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5394}
5395
5396static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5397 size_t length)
5398{
5399 unsigned long min;
5400 int err;
5401
3dbb95f7 5402 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5403 if (err)
5404 return err;
5405
c0bdb232 5406 set_min_partial(s, min);
73d342b1
DR
5407 return length;
5408}
5409SLAB_ATTR(min_partial);
5410
49e22585
CL
5411static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5412{
b47291ef
VB
5413 unsigned int nr_partial = 0;
5414#ifdef CONFIG_SLUB_CPU_PARTIAL
5415 nr_partial = s->cpu_partial;
5416#endif
5417
5418 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
5419}
5420
5421static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5422 size_t length)
5423{
e5d9998f 5424 unsigned int objects;
49e22585
CL
5425 int err;
5426
e5d9998f 5427 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5428 if (err)
5429 return err;
345c905d 5430 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5431 return -EINVAL;
49e22585 5432
e6d0e1dc 5433 slub_set_cpu_partial(s, objects);
49e22585
CL
5434 flush_all(s);
5435 return length;
5436}
5437SLAB_ATTR(cpu_partial);
5438
81819f0f
CL
5439static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5440{
62c70bce
JP
5441 if (!s->ctor)
5442 return 0;
bf16d19a 5443 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5444}
5445SLAB_ATTR_RO(ctor);
5446
81819f0f
CL
5447static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5448{
bf16d19a 5449 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5450}
5451SLAB_ATTR_RO(aliases);
5452
81819f0f
CL
5453static ssize_t partial_show(struct kmem_cache *s, char *buf)
5454{
d9acf4b7 5455 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5456}
5457SLAB_ATTR_RO(partial);
5458
5459static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5460{
d9acf4b7 5461 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5462}
5463SLAB_ATTR_RO(cpu_slabs);
5464
5465static ssize_t objects_show(struct kmem_cache *s, char *buf)
5466{
205ab99d 5467 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5468}
5469SLAB_ATTR_RO(objects);
5470
205ab99d
CL
5471static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5472{
5473 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5474}
5475SLAB_ATTR_RO(objects_partial);
5476
49e22585
CL
5477static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5478{
5479 int objects = 0;
5480 int pages = 0;
5481 int cpu;
bf16d19a 5482 int len = 0;
49e22585
CL
5483
5484 for_each_online_cpu(cpu) {
a93cf07b
WY
5485 struct page *page;
5486
5487 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 5488
b47291ef 5489 if (page)
49e22585 5490 pages += page->pages;
49e22585
CL
5491 }
5492
b47291ef
VB
5493 /* Approximate half-full pages , see slub_set_cpu_partial() */
5494 objects = (pages * oo_objects(s->oo)) / 2;
bf16d19a 5495 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5496
5497#ifdef CONFIG_SMP
5498 for_each_online_cpu(cpu) {
a93cf07b
WY
5499 struct page *page;
5500
5501 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
b47291ef
VB
5502 if (page) {
5503 pages = READ_ONCE(page->pages);
5504 objects = (pages * oo_objects(s->oo)) / 2;
bf16d19a 5505 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
b47291ef
VB
5506 cpu, objects, pages);
5507 }
49e22585
CL
5508 }
5509#endif
bf16d19a
JP
5510 len += sysfs_emit_at(buf, len, "\n");
5511
5512 return len;
49e22585
CL
5513}
5514SLAB_ATTR_RO(slabs_cpu_partial);
5515
a5a84755
CL
5516static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5517{
bf16d19a 5518 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5519}
8f58119a 5520SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5521
5522static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5523{
bf16d19a 5524 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5525}
5526SLAB_ATTR_RO(hwcache_align);
5527
5528#ifdef CONFIG_ZONE_DMA
5529static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5530{
bf16d19a 5531 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5532}
5533SLAB_ATTR_RO(cache_dma);
5534#endif
5535
8eb8284b
DW
5536static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5537{
bf16d19a 5538 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5539}
5540SLAB_ATTR_RO(usersize);
5541
a5a84755
CL
5542static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5543{
bf16d19a 5544 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5545}
5546SLAB_ATTR_RO(destroy_by_rcu);
5547
ab4d5ed5 5548#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5549static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5550{
5551 return show_slab_objects(s, buf, SO_ALL);
5552}
5553SLAB_ATTR_RO(slabs);
5554
205ab99d
CL
5555static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5556{
5557 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5558}
5559SLAB_ATTR_RO(total_objects);
5560
81819f0f
CL
5561static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5562{
bf16d19a 5563 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5564}
060807f8 5565SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5566
5567static ssize_t trace_show(struct kmem_cache *s, char *buf)
5568{
bf16d19a 5569 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5570}
060807f8 5571SLAB_ATTR_RO(trace);
81819f0f 5572
81819f0f
CL
5573static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5574{
bf16d19a 5575 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5576}
5577
ad38b5b1 5578SLAB_ATTR_RO(red_zone);
81819f0f
CL
5579
5580static ssize_t poison_show(struct kmem_cache *s, char *buf)
5581{
bf16d19a 5582 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5583}
5584
ad38b5b1 5585SLAB_ATTR_RO(poison);
81819f0f
CL
5586
5587static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5588{
bf16d19a 5589 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5590}
5591
ad38b5b1 5592SLAB_ATTR_RO(store_user);
81819f0f 5593
53e15af0
CL
5594static ssize_t validate_show(struct kmem_cache *s, char *buf)
5595{
5596 return 0;
5597}
5598
5599static ssize_t validate_store(struct kmem_cache *s,
5600 const char *buf, size_t length)
5601{
434e245d
CL
5602 int ret = -EINVAL;
5603
5604 if (buf[0] == '1') {
5605 ret = validate_slab_cache(s);
5606 if (ret >= 0)
5607 ret = length;
5608 }
5609 return ret;
53e15af0
CL
5610}
5611SLAB_ATTR(validate);
a5a84755 5612
a5a84755
CL
5613#endif /* CONFIG_SLUB_DEBUG */
5614
5615#ifdef CONFIG_FAILSLAB
5616static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5617{
bf16d19a 5618 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5619}
060807f8 5620SLAB_ATTR_RO(failslab);
ab4d5ed5 5621#endif
53e15af0 5622
2086d26a
CL
5623static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5624{
5625 return 0;
5626}
5627
5628static ssize_t shrink_store(struct kmem_cache *s,
5629 const char *buf, size_t length)
5630{
832f37f5 5631 if (buf[0] == '1')
10befea9 5632 kmem_cache_shrink(s);
832f37f5 5633 else
2086d26a
CL
5634 return -EINVAL;
5635 return length;
5636}
5637SLAB_ATTR(shrink);
5638
81819f0f 5639#ifdef CONFIG_NUMA
9824601e 5640static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5641{
bf16d19a 5642 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5643}
5644
9824601e 5645static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5646 const char *buf, size_t length)
5647{
eb7235eb 5648 unsigned int ratio;
0121c619
CL
5649 int err;
5650
eb7235eb 5651 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5652 if (err)
5653 return err;
eb7235eb
AD
5654 if (ratio > 100)
5655 return -ERANGE;
0121c619 5656
eb7235eb 5657 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5658
81819f0f
CL
5659 return length;
5660}
9824601e 5661SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5662#endif
5663
8ff12cfc 5664#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5665static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5666{
5667 unsigned long sum = 0;
5668 int cpu;
bf16d19a 5669 int len = 0;
6da2ec56 5670 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5671
5672 if (!data)
5673 return -ENOMEM;
5674
5675 for_each_online_cpu(cpu) {
9dfc6e68 5676 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5677
5678 data[cpu] = x;
5679 sum += x;
5680 }
5681
bf16d19a 5682 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5683
50ef37b9 5684#ifdef CONFIG_SMP
8ff12cfc 5685 for_each_online_cpu(cpu) {
bf16d19a
JP
5686 if (data[cpu])
5687 len += sysfs_emit_at(buf, len, " C%d=%u",
5688 cpu, data[cpu]);
8ff12cfc 5689 }
50ef37b9 5690#endif
8ff12cfc 5691 kfree(data);
bf16d19a
JP
5692 len += sysfs_emit_at(buf, len, "\n");
5693
5694 return len;
8ff12cfc
CL
5695}
5696
78eb00cc
DR
5697static void clear_stat(struct kmem_cache *s, enum stat_item si)
5698{
5699 int cpu;
5700
5701 for_each_online_cpu(cpu)
9dfc6e68 5702 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5703}
5704
8ff12cfc
CL
5705#define STAT_ATTR(si, text) \
5706static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5707{ \
5708 return show_stat(s, buf, si); \
5709} \
78eb00cc
DR
5710static ssize_t text##_store(struct kmem_cache *s, \
5711 const char *buf, size_t length) \
5712{ \
5713 if (buf[0] != '0') \
5714 return -EINVAL; \
5715 clear_stat(s, si); \
5716 return length; \
5717} \
5718SLAB_ATTR(text); \
8ff12cfc
CL
5719
5720STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5721STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5722STAT_ATTR(FREE_FASTPATH, free_fastpath);
5723STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5724STAT_ATTR(FREE_FROZEN, free_frozen);
5725STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5726STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5727STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5728STAT_ATTR(ALLOC_SLAB, alloc_slab);
5729STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5730STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5731STAT_ATTR(FREE_SLAB, free_slab);
5732STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5733STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5734STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5735STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5736STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5737STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5738STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5739STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5740STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5741STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5742STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5743STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5744STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5745STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5746#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5747
06428780 5748static struct attribute *slab_attrs[] = {
81819f0f
CL
5749 &slab_size_attr.attr,
5750 &object_size_attr.attr,
5751 &objs_per_slab_attr.attr,
5752 &order_attr.attr,
73d342b1 5753 &min_partial_attr.attr,
49e22585 5754 &cpu_partial_attr.attr,
81819f0f 5755 &objects_attr.attr,
205ab99d 5756 &objects_partial_attr.attr,
81819f0f
CL
5757 &partial_attr.attr,
5758 &cpu_slabs_attr.attr,
5759 &ctor_attr.attr,
81819f0f
CL
5760 &aliases_attr.attr,
5761 &align_attr.attr,
81819f0f
CL
5762 &hwcache_align_attr.attr,
5763 &reclaim_account_attr.attr,
5764 &destroy_by_rcu_attr.attr,
a5a84755 5765 &shrink_attr.attr,
49e22585 5766 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5767#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5768 &total_objects_attr.attr,
5769 &slabs_attr.attr,
5770 &sanity_checks_attr.attr,
5771 &trace_attr.attr,
81819f0f
CL
5772 &red_zone_attr.attr,
5773 &poison_attr.attr,
5774 &store_user_attr.attr,
53e15af0 5775 &validate_attr.attr,
ab4d5ed5 5776#endif
81819f0f
CL
5777#ifdef CONFIG_ZONE_DMA
5778 &cache_dma_attr.attr,
5779#endif
5780#ifdef CONFIG_NUMA
9824601e 5781 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5782#endif
5783#ifdef CONFIG_SLUB_STATS
5784 &alloc_fastpath_attr.attr,
5785 &alloc_slowpath_attr.attr,
5786 &free_fastpath_attr.attr,
5787 &free_slowpath_attr.attr,
5788 &free_frozen_attr.attr,
5789 &free_add_partial_attr.attr,
5790 &free_remove_partial_attr.attr,
5791 &alloc_from_partial_attr.attr,
5792 &alloc_slab_attr.attr,
5793 &alloc_refill_attr.attr,
e36a2652 5794 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5795 &free_slab_attr.attr,
5796 &cpuslab_flush_attr.attr,
5797 &deactivate_full_attr.attr,
5798 &deactivate_empty_attr.attr,
5799 &deactivate_to_head_attr.attr,
5800 &deactivate_to_tail_attr.attr,
5801 &deactivate_remote_frees_attr.attr,
03e404af 5802 &deactivate_bypass_attr.attr,
65c3376a 5803 &order_fallback_attr.attr,
b789ef51
CL
5804 &cmpxchg_double_fail_attr.attr,
5805 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5806 &cpu_partial_alloc_attr.attr,
5807 &cpu_partial_free_attr.attr,
8028dcea
AS
5808 &cpu_partial_node_attr.attr,
5809 &cpu_partial_drain_attr.attr,
81819f0f 5810#endif
4c13dd3b
DM
5811#ifdef CONFIG_FAILSLAB
5812 &failslab_attr.attr,
5813#endif
8eb8284b 5814 &usersize_attr.attr,
4c13dd3b 5815
81819f0f
CL
5816 NULL
5817};
5818
1fdaaa23 5819static const struct attribute_group slab_attr_group = {
81819f0f
CL
5820 .attrs = slab_attrs,
5821};
5822
5823static ssize_t slab_attr_show(struct kobject *kobj,
5824 struct attribute *attr,
5825 char *buf)
5826{
5827 struct slab_attribute *attribute;
5828 struct kmem_cache *s;
5829 int err;
5830
5831 attribute = to_slab_attr(attr);
5832 s = to_slab(kobj);
5833
5834 if (!attribute->show)
5835 return -EIO;
5836
5837 err = attribute->show(s, buf);
5838
5839 return err;
5840}
5841
5842static ssize_t slab_attr_store(struct kobject *kobj,
5843 struct attribute *attr,
5844 const char *buf, size_t len)
5845{
5846 struct slab_attribute *attribute;
5847 struct kmem_cache *s;
5848 int err;
5849
5850 attribute = to_slab_attr(attr);
5851 s = to_slab(kobj);
5852
5853 if (!attribute->store)
5854 return -EIO;
5855
5856 err = attribute->store(s, buf, len);
81819f0f
CL
5857 return err;
5858}
5859
41a21285
CL
5860static void kmem_cache_release(struct kobject *k)
5861{
5862 slab_kmem_cache_release(to_slab(k));
5863}
5864
52cf25d0 5865static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5866 .show = slab_attr_show,
5867 .store = slab_attr_store,
5868};
5869
5870static struct kobj_type slab_ktype = {
5871 .sysfs_ops = &slab_sysfs_ops,
41a21285 5872 .release = kmem_cache_release,
81819f0f
CL
5873};
5874
27c3a314 5875static struct kset *slab_kset;
81819f0f 5876
9a41707b
VD
5877static inline struct kset *cache_kset(struct kmem_cache *s)
5878{
9a41707b
VD
5879 return slab_kset;
5880}
5881
81819f0f
CL
5882#define ID_STR_LENGTH 64
5883
5884/* Create a unique string id for a slab cache:
6446faa2
CL
5885 *
5886 * Format :[flags-]size
81819f0f
CL
5887 */
5888static char *create_unique_id(struct kmem_cache *s)
5889{
5890 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5891 char *p = name;
5892
5893 BUG_ON(!name);
5894
5895 *p++ = ':';
5896 /*
5897 * First flags affecting slabcache operations. We will only
5898 * get here for aliasable slabs so we do not need to support
5899 * too many flags. The flags here must cover all flags that
5900 * are matched during merging to guarantee that the id is
5901 * unique.
5902 */
5903 if (s->flags & SLAB_CACHE_DMA)
5904 *p++ = 'd';
6d6ea1e9
NB
5905 if (s->flags & SLAB_CACHE_DMA32)
5906 *p++ = 'D';
81819f0f
CL
5907 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5908 *p++ = 'a';
becfda68 5909 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5910 *p++ = 'F';
230e9fc2
VD
5911 if (s->flags & SLAB_ACCOUNT)
5912 *p++ = 'A';
81819f0f
CL
5913 if (p != name + 1)
5914 *p++ = '-';
44065b2e 5915 p += sprintf(p, "%07u", s->size);
2633d7a0 5916
81819f0f
CL
5917 BUG_ON(p > name + ID_STR_LENGTH - 1);
5918 return name;
5919}
5920
5921static int sysfs_slab_add(struct kmem_cache *s)
5922{
5923 int err;
5924 const char *name;
1663f26d 5925 struct kset *kset = cache_kset(s);
45530c44 5926 int unmergeable = slab_unmergeable(s);
81819f0f 5927
1663f26d
TH
5928 if (!kset) {
5929 kobject_init(&s->kobj, &slab_ktype);
5930 return 0;
5931 }
5932
11066386
MC
5933 if (!unmergeable && disable_higher_order_debug &&
5934 (slub_debug & DEBUG_METADATA_FLAGS))
5935 unmergeable = 1;
5936
81819f0f
CL
5937 if (unmergeable) {
5938 /*
5939 * Slabcache can never be merged so we can use the name proper.
5940 * This is typically the case for debug situations. In that
5941 * case we can catch duplicate names easily.
5942 */
27c3a314 5943 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5944 name = s->name;
5945 } else {
5946 /*
5947 * Create a unique name for the slab as a target
5948 * for the symlinks.
5949 */
5950 name = create_unique_id(s);
5951 }
5952
1663f26d 5953 s->kobj.kset = kset;
26e4f205 5954 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5955 if (err)
80da026a 5956 goto out;
81819f0f
CL
5957
5958 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5959 if (err)
5960 goto out_del_kobj;
9a41707b 5961
81819f0f
CL
5962 if (!unmergeable) {
5963 /* Setup first alias */
5964 sysfs_slab_alias(s, s->name);
81819f0f 5965 }
54b6a731
DJ
5966out:
5967 if (!unmergeable)
5968 kfree(name);
5969 return err;
5970out_del_kobj:
5971 kobject_del(&s->kobj);
54b6a731 5972 goto out;
81819f0f
CL
5973}
5974
d50d82fa
MP
5975void sysfs_slab_unlink(struct kmem_cache *s)
5976{
5977 if (slab_state >= FULL)
5978 kobject_del(&s->kobj);
5979}
5980
bf5eb3de
TH
5981void sysfs_slab_release(struct kmem_cache *s)
5982{
5983 if (slab_state >= FULL)
5984 kobject_put(&s->kobj);
81819f0f
CL
5985}
5986
5987/*
5988 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5989 * available lest we lose that information.
81819f0f
CL
5990 */
5991struct saved_alias {
5992 struct kmem_cache *s;
5993 const char *name;
5994 struct saved_alias *next;
5995};
5996
5af328a5 5997static struct saved_alias *alias_list;
81819f0f
CL
5998
5999static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6000{
6001 struct saved_alias *al;
6002
97d06609 6003 if (slab_state == FULL) {
81819f0f
CL
6004 /*
6005 * If we have a leftover link then remove it.
6006 */
27c3a314
GKH
6007 sysfs_remove_link(&slab_kset->kobj, name);
6008 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
6009 }
6010
6011 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6012 if (!al)
6013 return -ENOMEM;
6014
6015 al->s = s;
6016 al->name = name;
6017 al->next = alias_list;
6018 alias_list = al;
6019 return 0;
6020}
6021
6022static int __init slab_sysfs_init(void)
6023{
5b95a4ac 6024 struct kmem_cache *s;
81819f0f
CL
6025 int err;
6026
18004c5d 6027 mutex_lock(&slab_mutex);
2bce6485 6028
d7660ce5 6029 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 6030 if (!slab_kset) {
18004c5d 6031 mutex_unlock(&slab_mutex);
f9f58285 6032 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
6033 return -ENOSYS;
6034 }
6035
97d06609 6036 slab_state = FULL;
26a7bd03 6037
5b95a4ac 6038 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 6039 err = sysfs_slab_add(s);
5d540fb7 6040 if (err)
f9f58285
FF
6041 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6042 s->name);
26a7bd03 6043 }
81819f0f
CL
6044
6045 while (alias_list) {
6046 struct saved_alias *al = alias_list;
6047
6048 alias_list = alias_list->next;
6049 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 6050 if (err)
f9f58285
FF
6051 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6052 al->name);
81819f0f
CL
6053 kfree(al);
6054 }
6055
18004c5d 6056 mutex_unlock(&slab_mutex);
81819f0f
CL
6057 return 0;
6058}
6059
6060__initcall(slab_sysfs_init);
ab4d5ed5 6061#endif /* CONFIG_SYSFS */
57ed3eda 6062
64dd6849
FM
6063#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6064static int slab_debugfs_show(struct seq_file *seq, void *v)
6065{
64dd6849 6066 struct loc_track *t = seq->private;
005a79e5
GS
6067 struct location *l;
6068 unsigned long idx;
64dd6849 6069
005a79e5 6070 idx = (unsigned long) t->idx;
64dd6849
FM
6071 if (idx < t->count) {
6072 l = &t->loc[idx];
6073
6074 seq_printf(seq, "%7ld ", l->count);
6075
6076 if (l->addr)
6077 seq_printf(seq, "%pS", (void *)l->addr);
6078 else
6079 seq_puts(seq, "<not-available>");
6080
6081 if (l->sum_time != l->min_time) {
6082 seq_printf(seq, " age=%ld/%llu/%ld",
6083 l->min_time, div_u64(l->sum_time, l->count),
6084 l->max_time);
6085 } else
6086 seq_printf(seq, " age=%ld", l->min_time);
6087
6088 if (l->min_pid != l->max_pid)
6089 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6090 else
6091 seq_printf(seq, " pid=%ld",
6092 l->min_pid);
6093
6094 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6095 seq_printf(seq, " cpus=%*pbl",
6096 cpumask_pr_args(to_cpumask(l->cpus)));
6097
6098 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6099 seq_printf(seq, " nodes=%*pbl",
6100 nodemask_pr_args(&l->nodes));
6101
6102 seq_puts(seq, "\n");
6103 }
6104
6105 if (!idx && !t->count)
6106 seq_puts(seq, "No data\n");
6107
6108 return 0;
6109}
6110
6111static void slab_debugfs_stop(struct seq_file *seq, void *v)
6112{
6113}
6114
6115static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6116{
6117 struct loc_track *t = seq->private;
6118
005a79e5 6119 t->idx = ++(*ppos);
64dd6849 6120 if (*ppos <= t->count)
005a79e5 6121 return ppos;
64dd6849
FM
6122
6123 return NULL;
6124}
6125
6126static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6127{
005a79e5
GS
6128 struct loc_track *t = seq->private;
6129
6130 t->idx = *ppos;
64dd6849
FM
6131 return ppos;
6132}
6133
6134static const struct seq_operations slab_debugfs_sops = {
6135 .start = slab_debugfs_start,
6136 .next = slab_debugfs_next,
6137 .stop = slab_debugfs_stop,
6138 .show = slab_debugfs_show,
6139};
6140
6141static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6142{
6143
6144 struct kmem_cache_node *n;
6145 enum track_item alloc;
6146 int node;
6147 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6148 sizeof(struct loc_track));
6149 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
6150 unsigned long *obj_map;
6151
2127d225
ML
6152 if (!t)
6153 return -ENOMEM;
6154
b3fd64e1 6155 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
6156 if (!obj_map) {
6157 seq_release_private(inode, filep);
b3fd64e1 6158 return -ENOMEM;
2127d225 6159 }
64dd6849
FM
6160
6161 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6162 alloc = TRACK_ALLOC;
6163 else
6164 alloc = TRACK_FREE;
6165
b3fd64e1
VB
6166 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6167 bitmap_free(obj_map);
2127d225 6168 seq_release_private(inode, filep);
64dd6849 6169 return -ENOMEM;
b3fd64e1 6170 }
64dd6849 6171
64dd6849
FM
6172 for_each_kmem_cache_node(s, node, n) {
6173 unsigned long flags;
6174 struct page *page;
6175
6176 if (!atomic_long_read(&n->nr_slabs))
6177 continue;
6178
6179 spin_lock_irqsave(&n->list_lock, flags);
6180 list_for_each_entry(page, &n->partial, slab_list)
b3fd64e1 6181 process_slab(t, s, page, alloc, obj_map);
64dd6849 6182 list_for_each_entry(page, &n->full, slab_list)
b3fd64e1 6183 process_slab(t, s, page, alloc, obj_map);
64dd6849
FM
6184 spin_unlock_irqrestore(&n->list_lock, flags);
6185 }
6186
b3fd64e1 6187 bitmap_free(obj_map);
64dd6849
FM
6188 return 0;
6189}
6190
6191static int slab_debug_trace_release(struct inode *inode, struct file *file)
6192{
6193 struct seq_file *seq = file->private_data;
6194 struct loc_track *t = seq->private;
6195
6196 free_loc_track(t);
6197 return seq_release_private(inode, file);
6198}
6199
6200static const struct file_operations slab_debugfs_fops = {
6201 .open = slab_debug_trace_open,
6202 .read = seq_read,
6203 .llseek = seq_lseek,
6204 .release = slab_debug_trace_release,
6205};
6206
6207static void debugfs_slab_add(struct kmem_cache *s)
6208{
6209 struct dentry *slab_cache_dir;
6210
6211 if (unlikely(!slab_debugfs_root))
6212 return;
6213
6214 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6215
6216 debugfs_create_file("alloc_traces", 0400,
6217 slab_cache_dir, s, &slab_debugfs_fops);
6218
6219 debugfs_create_file("free_traces", 0400,
6220 slab_cache_dir, s, &slab_debugfs_fops);
6221}
6222
6223void debugfs_slab_release(struct kmem_cache *s)
6224{
6225 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6226}
6227
6228static int __init slab_debugfs_init(void)
6229{
6230 struct kmem_cache *s;
6231
6232 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6233
6234 list_for_each_entry(s, &slab_caches, list)
6235 if (s->flags & SLAB_STORE_USER)
6236 debugfs_slab_add(s);
6237
6238 return 0;
6239
6240}
6241__initcall(slab_debugfs_init);
6242#endif
57ed3eda
PE
6243/*
6244 * The /proc/slabinfo ABI
6245 */
5b365771 6246#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6247void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6248{
57ed3eda 6249 unsigned long nr_slabs = 0;
205ab99d
CL
6250 unsigned long nr_objs = 0;
6251 unsigned long nr_free = 0;
57ed3eda 6252 int node;
fa45dc25 6253 struct kmem_cache_node *n;
57ed3eda 6254
fa45dc25 6255 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6256 nr_slabs += node_nr_slabs(n);
6257 nr_objs += node_nr_objs(n);
205ab99d 6258 nr_free += count_partial(n, count_free);
57ed3eda
PE
6259 }
6260
0d7561c6
GC
6261 sinfo->active_objs = nr_objs - nr_free;
6262 sinfo->num_objs = nr_objs;
6263 sinfo->active_slabs = nr_slabs;
6264 sinfo->num_slabs = nr_slabs;
6265 sinfo->objects_per_slab = oo_objects(s->oo);
6266 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6267}
6268
0d7561c6 6269void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6270{
7b3c3a50
AD
6271}
6272
b7454ad3
GC
6273ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6274 size_t count, loff_t *ppos)
7b3c3a50 6275{
b7454ad3 6276 return -EIO;
7b3c3a50 6277}
5b365771 6278#endif /* CONFIG_SLUB_DEBUG */