SLUB: do proper locking during dma slab creation
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
672bba3a
CL
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 71 * freed then the slab will show up again on the partial lists.
672bba3a
CL
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
81819f0f
CL
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
4b6f0750
CL
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
89 *
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
894b8788
CL
93 * lockless_freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
81819f0f
CL
96 *
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
894b8788 99 * the fast path and disables lockless freelists.
81819f0f
CL
100 */
101
5577bd8a
CL
102#define FROZEN (1 << PG_active)
103
104#ifdef CONFIG_SLUB_DEBUG
105#define SLABDEBUG (1 << PG_error)
106#else
107#define SLABDEBUG 0
108#endif
109
4b6f0750
CL
110static inline int SlabFrozen(struct page *page)
111{
5577bd8a 112 return page->flags & FROZEN;
4b6f0750
CL
113}
114
115static inline void SetSlabFrozen(struct page *page)
116{
5577bd8a 117 page->flags |= FROZEN;
4b6f0750
CL
118}
119
120static inline void ClearSlabFrozen(struct page *page)
121{
5577bd8a 122 page->flags &= ~FROZEN;
4b6f0750
CL
123}
124
35e5d7ee
CL
125static inline int SlabDebug(struct page *page)
126{
5577bd8a 127 return page->flags & SLABDEBUG;
35e5d7ee
CL
128}
129
130static inline void SetSlabDebug(struct page *page)
131{
5577bd8a 132 page->flags |= SLABDEBUG;
35e5d7ee
CL
133}
134
135static inline void ClearSlabDebug(struct page *page)
136{
5577bd8a 137 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
138}
139
81819f0f
CL
140/*
141 * Issues still to be resolved:
142 *
143 * - The per cpu array is updated for each new slab and and is a remote
144 * cacheline for most nodes. This could become a bouncing cacheline given
672bba3a
CL
145 * enough frequent updates. There are 16 pointers in a cacheline, so at
146 * max 16 cpus could compete for the cacheline which may be okay.
81819f0f
CL
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
156#if PAGE_SHIFT <= 12
157
158/*
159 * Small page size. Make sure that we do not fragment memory
160 */
161#define DEFAULT_MAX_ORDER 1
162#define DEFAULT_MIN_OBJECTS 4
163
164#else
165
166/*
167 * Large page machines are customarily able to handle larger
168 * page orders.
169 */
170#define DEFAULT_MAX_ORDER 2
171#define DEFAULT_MIN_OBJECTS 8
172
173#endif
174
2086d26a
CL
175/*
176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
178 */
e95eed57
CL
179#define MIN_PARTIAL 2
180
2086d26a
CL
181/*
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
185 */
186#define MAX_PARTIAL 10
187
81819f0f
CL
188#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 SLAB_POISON | SLAB_STORE_USER)
672bba3a 190
81819f0f
CL
191/*
192 * Set of flags that will prevent slab merging
193 */
194#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196
197#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 SLAB_CACHE_DMA)
199
200#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 201#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 205#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
206#endif
207
6300ea75
CL
208/*
209 * The page->inuse field is 16 bit thus we have this limitation
210 */
211#define MAX_OBJECTS_PER_SLAB 65535
212
81819f0f
CL
213/* Internal SLUB flags */
214#define __OBJECT_POISON 0x80000000 /* Poison object */
215
65c02d4c
CL
216/* Not all arches define cache_line_size */
217#ifndef cache_line_size
218#define cache_line_size() L1_CACHE_BYTES
219#endif
220
81819f0f
CL
221static int kmem_size = sizeof(struct kmem_cache);
222
223#ifdef CONFIG_SMP
224static struct notifier_block slab_notifier;
225#endif
226
227static enum {
228 DOWN, /* No slab functionality available */
229 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 230 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
231 SYSFS /* Sysfs up */
232} slab_state = DOWN;
233
234/* A list of all slab caches on the system */
235static DECLARE_RWSEM(slub_lock);
236LIST_HEAD(slab_caches);
237
02cbc874
CL
238/*
239 * Tracking user of a slab.
240 */
241struct track {
242 void *addr; /* Called from address */
243 int cpu; /* Was running on cpu */
244 int pid; /* Pid context */
245 unsigned long when; /* When did the operation occur */
246};
247
248enum track_item { TRACK_ALLOC, TRACK_FREE };
249
41ecc55b 250#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
251static int sysfs_slab_add(struct kmem_cache *);
252static int sysfs_slab_alias(struct kmem_cache *, const char *);
253static void sysfs_slab_remove(struct kmem_cache *);
254#else
0c710013
CL
255static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
256static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
257 { return 0; }
258static inline void sysfs_slab_remove(struct kmem_cache *s) {}
81819f0f
CL
259#endif
260
261/********************************************************************
262 * Core slab cache functions
263 *******************************************************************/
264
265int slab_is_available(void)
266{
267 return slab_state >= UP;
268}
269
270static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
271{
272#ifdef CONFIG_NUMA
273 return s->node[node];
274#else
275 return &s->local_node;
276#endif
277}
278
02cbc874
CL
279static inline int check_valid_pointer(struct kmem_cache *s,
280 struct page *page, const void *object)
281{
282 void *base;
283
284 if (!object)
285 return 1;
286
287 base = page_address(page);
288 if (object < base || object >= base + s->objects * s->size ||
289 (object - base) % s->size) {
290 return 0;
291 }
292
293 return 1;
294}
295
7656c72b
CL
296/*
297 * Slow version of get and set free pointer.
298 *
299 * This version requires touching the cache lines of kmem_cache which
300 * we avoid to do in the fast alloc free paths. There we obtain the offset
301 * from the page struct.
302 */
303static inline void *get_freepointer(struct kmem_cache *s, void *object)
304{
305 return *(void **)(object + s->offset);
306}
307
308static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
309{
310 *(void **)(object + s->offset) = fp;
311}
312
313/* Loop over all objects in a slab */
314#define for_each_object(__p, __s, __addr) \
315 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
316 __p += (__s)->size)
317
318/* Scan freelist */
319#define for_each_free_object(__p, __s, __free) \
320 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
321
322/* Determine object index from a given position */
323static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
324{
325 return (p - addr) / s->size;
326}
327
41ecc55b
CL
328#ifdef CONFIG_SLUB_DEBUG
329/*
330 * Debug settings:
331 */
f0630fff
CL
332#ifdef CONFIG_SLUB_DEBUG_ON
333static int slub_debug = DEBUG_DEFAULT_FLAGS;
334#else
41ecc55b 335static int slub_debug;
f0630fff 336#endif
41ecc55b
CL
337
338static char *slub_debug_slabs;
339
81819f0f
CL
340/*
341 * Object debugging
342 */
343static void print_section(char *text, u8 *addr, unsigned int length)
344{
345 int i, offset;
346 int newline = 1;
347 char ascii[17];
348
349 ascii[16] = 0;
350
351 for (i = 0; i < length; i++) {
352 if (newline) {
24922684 353 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
354 newline = 0;
355 }
356 printk(" %02x", addr[i]);
357 offset = i % 16;
358 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
359 if (offset == 15) {
360 printk(" %s\n",ascii);
361 newline = 1;
362 }
363 }
364 if (!newline) {
365 i %= 16;
366 while (i < 16) {
367 printk(" ");
368 ascii[i] = ' ';
369 i++;
370 }
371 printk(" %s\n", ascii);
372 }
373}
374
81819f0f
CL
375static struct track *get_track(struct kmem_cache *s, void *object,
376 enum track_item alloc)
377{
378 struct track *p;
379
380 if (s->offset)
381 p = object + s->offset + sizeof(void *);
382 else
383 p = object + s->inuse;
384
385 return p + alloc;
386}
387
388static void set_track(struct kmem_cache *s, void *object,
389 enum track_item alloc, void *addr)
390{
391 struct track *p;
392
393 if (s->offset)
394 p = object + s->offset + sizeof(void *);
395 else
396 p = object + s->inuse;
397
398 p += alloc;
399 if (addr) {
400 p->addr = addr;
401 p->cpu = smp_processor_id();
402 p->pid = current ? current->pid : -1;
403 p->when = jiffies;
404 } else
405 memset(p, 0, sizeof(struct track));
406}
407
81819f0f
CL
408static void init_tracking(struct kmem_cache *s, void *object)
409{
24922684
CL
410 if (!(s->flags & SLAB_STORE_USER))
411 return;
412
413 set_track(s, object, TRACK_FREE, NULL);
414 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
415}
416
417static void print_track(const char *s, struct track *t)
418{
419 if (!t->addr)
420 return;
421
24922684 422 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 423 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
424 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
425}
426
427static void print_tracking(struct kmem_cache *s, void *object)
428{
429 if (!(s->flags & SLAB_STORE_USER))
430 return;
431
432 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
433 print_track("Freed", get_track(s, object, TRACK_FREE));
434}
435
436static void print_page_info(struct page *page)
437{
438 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
439 page, page->inuse, page->freelist, page->flags);
440
441}
442
443static void slab_bug(struct kmem_cache *s, char *fmt, ...)
444{
445 va_list args;
446 char buf[100];
447
448 va_start(args, fmt);
449 vsnprintf(buf, sizeof(buf), fmt, args);
450 va_end(args);
451 printk(KERN_ERR "========================================"
452 "=====================================\n");
453 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
454 printk(KERN_ERR "----------------------------------------"
455 "-------------------------------------\n\n");
81819f0f
CL
456}
457
24922684
CL
458static void slab_fix(struct kmem_cache *s, char *fmt, ...)
459{
460 va_list args;
461 char buf[100];
462
463 va_start(args, fmt);
464 vsnprintf(buf, sizeof(buf), fmt, args);
465 va_end(args);
466 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
467}
468
469static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
470{
471 unsigned int off; /* Offset of last byte */
24922684
CL
472 u8 *addr = page_address(page);
473
474 print_tracking(s, p);
475
476 print_page_info(page);
477
478 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
479 p, p - addr, get_freepointer(s, p));
480
481 if (p > addr + 16)
482 print_section("Bytes b4", p - 16, 16);
483
484 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
485
486 if (s->flags & SLAB_RED_ZONE)
487 print_section("Redzone", p + s->objsize,
488 s->inuse - s->objsize);
489
81819f0f
CL
490 if (s->offset)
491 off = s->offset + sizeof(void *);
492 else
493 off = s->inuse;
494
24922684 495 if (s->flags & SLAB_STORE_USER)
81819f0f 496 off += 2 * sizeof(struct track);
81819f0f
CL
497
498 if (off != s->size)
499 /* Beginning of the filler is the free pointer */
24922684
CL
500 print_section("Padding", p + off, s->size - off);
501
502 dump_stack();
81819f0f
CL
503}
504
505static void object_err(struct kmem_cache *s, struct page *page,
506 u8 *object, char *reason)
507{
24922684
CL
508 slab_bug(s, reason);
509 print_trailer(s, page, object);
81819f0f
CL
510}
511
24922684 512static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
513{
514 va_list args;
515 char buf[100];
516
24922684
CL
517 va_start(args, fmt);
518 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 519 va_end(args);
24922684
CL
520 slab_bug(s, fmt);
521 print_page_info(page);
81819f0f
CL
522 dump_stack();
523}
524
525static void init_object(struct kmem_cache *s, void *object, int active)
526{
527 u8 *p = object;
528
529 if (s->flags & __OBJECT_POISON) {
530 memset(p, POISON_FREE, s->objsize - 1);
531 p[s->objsize -1] = POISON_END;
532 }
533
534 if (s->flags & SLAB_RED_ZONE)
535 memset(p + s->objsize,
536 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
537 s->inuse - s->objsize);
538}
539
24922684 540static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
541{
542 while (bytes) {
543 if (*start != (u8)value)
24922684 544 return start;
81819f0f
CL
545 start++;
546 bytes--;
547 }
24922684
CL
548 return NULL;
549}
550
551static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
552 void *from, void *to)
553{
554 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
555 memset(from, data, to - from);
556}
557
558static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
559 u8 *object, char *what,
560 u8* start, unsigned int value, unsigned int bytes)
561{
562 u8 *fault;
563 u8 *end;
564
565 fault = check_bytes(start, value, bytes);
566 if (!fault)
567 return 1;
568
569 end = start + bytes;
570 while (end > fault && end[-1] == value)
571 end--;
572
573 slab_bug(s, "%s overwritten", what);
574 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
575 fault, end - 1, fault[0], value);
576 print_trailer(s, page, object);
577
578 restore_bytes(s, what, value, fault, end);
579 return 0;
81819f0f
CL
580}
581
81819f0f
CL
582/*
583 * Object layout:
584 *
585 * object address
586 * Bytes of the object to be managed.
587 * If the freepointer may overlay the object then the free
588 * pointer is the first word of the object.
672bba3a 589 *
81819f0f
CL
590 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
591 * 0xa5 (POISON_END)
592 *
593 * object + s->objsize
594 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
595 * Padding is extended by another word if Redzoning is enabled and
596 * objsize == inuse.
597 *
81819f0f
CL
598 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
599 * 0xcc (RED_ACTIVE) for objects in use.
600 *
601 * object + s->inuse
672bba3a
CL
602 * Meta data starts here.
603 *
81819f0f
CL
604 * A. Free pointer (if we cannot overwrite object on free)
605 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
606 * C. Padding to reach required alignment boundary or at mininum
607 * one word if debuggin is on to be able to detect writes
608 * before the word boundary.
609 *
610 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
611 *
612 * object + s->size
672bba3a 613 * Nothing is used beyond s->size.
81819f0f 614 *
672bba3a
CL
615 * If slabcaches are merged then the objsize and inuse boundaries are mostly
616 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
617 * may be used with merged slabcaches.
618 */
619
81819f0f
CL
620static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
621{
622 unsigned long off = s->inuse; /* The end of info */
623
624 if (s->offset)
625 /* Freepointer is placed after the object. */
626 off += sizeof(void *);
627
628 if (s->flags & SLAB_STORE_USER)
629 /* We also have user information there */
630 off += 2 * sizeof(struct track);
631
632 if (s->size == off)
633 return 1;
634
24922684
CL
635 return check_bytes_and_report(s, page, p, "Object padding",
636 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
637}
638
639static int slab_pad_check(struct kmem_cache *s, struct page *page)
640{
24922684
CL
641 u8 *start;
642 u8 *fault;
643 u8 *end;
644 int length;
645 int remainder;
81819f0f
CL
646
647 if (!(s->flags & SLAB_POISON))
648 return 1;
649
24922684
CL
650 start = page_address(page);
651 end = start + (PAGE_SIZE << s->order);
81819f0f 652 length = s->objects * s->size;
24922684 653 remainder = end - (start + length);
81819f0f
CL
654 if (!remainder)
655 return 1;
656
24922684
CL
657 fault = check_bytes(start + length, POISON_INUSE, remainder);
658 if (!fault)
659 return 1;
660 while (end > fault && end[-1] == POISON_INUSE)
661 end--;
662
663 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
664 print_section("Padding", start, length);
665
666 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
667 return 0;
81819f0f
CL
668}
669
670static int check_object(struct kmem_cache *s, struct page *page,
671 void *object, int active)
672{
673 u8 *p = object;
674 u8 *endobject = object + s->objsize;
675
676 if (s->flags & SLAB_RED_ZONE) {
677 unsigned int red =
678 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
679
24922684
CL
680 if (!check_bytes_and_report(s, page, object, "Redzone",
681 endobject, red, s->inuse - s->objsize))
81819f0f 682 return 0;
81819f0f 683 } else {
24922684
CL
684 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
685 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
686 POISON_INUSE, s->inuse - s->objsize);
81819f0f
CL
687 }
688
689 if (s->flags & SLAB_POISON) {
690 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
691 (!check_bytes_and_report(s, page, p, "Poison", p,
692 POISON_FREE, s->objsize - 1) ||
693 !check_bytes_and_report(s, page, p, "Poison",
694 p + s->objsize -1, POISON_END, 1)))
81819f0f 695 return 0;
81819f0f
CL
696 /*
697 * check_pad_bytes cleans up on its own.
698 */
699 check_pad_bytes(s, page, p);
700 }
701
702 if (!s->offset && active)
703 /*
704 * Object and freepointer overlap. Cannot check
705 * freepointer while object is allocated.
706 */
707 return 1;
708
709 /* Check free pointer validity */
710 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
711 object_err(s, page, p, "Freepointer corrupt");
712 /*
713 * No choice but to zap it and thus loose the remainder
714 * of the free objects in this slab. May cause
672bba3a 715 * another error because the object count is now wrong.
81819f0f
CL
716 */
717 set_freepointer(s, p, NULL);
718 return 0;
719 }
720 return 1;
721}
722
723static int check_slab(struct kmem_cache *s, struct page *page)
724{
725 VM_BUG_ON(!irqs_disabled());
726
727 if (!PageSlab(page)) {
24922684 728 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
729 return 0;
730 }
731 if (page->offset * sizeof(void *) != s->offset) {
24922684
CL
732 slab_err(s, page, "Corrupted offset %lu",
733 (unsigned long)(page->offset * sizeof(void *)));
81819f0f
CL
734 return 0;
735 }
736 if (page->inuse > s->objects) {
24922684
CL
737 slab_err(s, page, "inuse %u > max %u",
738 s->name, page->inuse, s->objects);
81819f0f
CL
739 return 0;
740 }
741 /* Slab_pad_check fixes things up after itself */
742 slab_pad_check(s, page);
743 return 1;
744}
745
746/*
672bba3a
CL
747 * Determine if a certain object on a page is on the freelist. Must hold the
748 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
749 */
750static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
751{
752 int nr = 0;
753 void *fp = page->freelist;
754 void *object = NULL;
755
756 while (fp && nr <= s->objects) {
757 if (fp == search)
758 return 1;
759 if (!check_valid_pointer(s, page, fp)) {
760 if (object) {
761 object_err(s, page, object,
762 "Freechain corrupt");
763 set_freepointer(s, object, NULL);
764 break;
765 } else {
24922684 766 slab_err(s, page, "Freepointer corrupt");
81819f0f
CL
767 page->freelist = NULL;
768 page->inuse = s->objects;
24922684 769 slab_fix(s, "Freelist cleared");
81819f0f
CL
770 return 0;
771 }
772 break;
773 }
774 object = fp;
775 fp = get_freepointer(s, object);
776 nr++;
777 }
778
779 if (page->inuse != s->objects - nr) {
70d71228 780 slab_err(s, page, "Wrong object count. Counter is %d but "
24922684 781 "counted were %d", page->inuse, s->objects - nr);
81819f0f 782 page->inuse = s->objects - nr;
24922684 783 slab_fix(s, "Object count adjusted.");
81819f0f
CL
784 }
785 return search == NULL;
786}
787
3ec09742
CL
788static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
789{
790 if (s->flags & SLAB_TRACE) {
791 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
792 s->name,
793 alloc ? "alloc" : "free",
794 object, page->inuse,
795 page->freelist);
796
797 if (!alloc)
798 print_section("Object", (void *)object, s->objsize);
799
800 dump_stack();
801 }
802}
803
643b1138 804/*
672bba3a 805 * Tracking of fully allocated slabs for debugging purposes.
643b1138 806 */
e95eed57 807static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 808{
643b1138
CL
809 spin_lock(&n->list_lock);
810 list_add(&page->lru, &n->full);
811 spin_unlock(&n->list_lock);
812}
813
814static void remove_full(struct kmem_cache *s, struct page *page)
815{
816 struct kmem_cache_node *n;
817
818 if (!(s->flags & SLAB_STORE_USER))
819 return;
820
821 n = get_node(s, page_to_nid(page));
822
823 spin_lock(&n->list_lock);
824 list_del(&page->lru);
825 spin_unlock(&n->list_lock);
826}
827
3ec09742
CL
828static void setup_object_debug(struct kmem_cache *s, struct page *page,
829 void *object)
830{
831 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
832 return;
833
834 init_object(s, object, 0);
835 init_tracking(s, object);
836}
837
838static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
839 void *object, void *addr)
81819f0f
CL
840{
841 if (!check_slab(s, page))
842 goto bad;
843
844 if (object && !on_freelist(s, page, object)) {
24922684 845 object_err(s, page, object, "Object already allocated");
70d71228 846 goto bad;
81819f0f
CL
847 }
848
849 if (!check_valid_pointer(s, page, object)) {
850 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 851 goto bad;
81819f0f
CL
852 }
853
3ec09742 854 if (object && !check_object(s, page, object, 0))
81819f0f 855 goto bad;
81819f0f 856
3ec09742
CL
857 /* Success perform special debug activities for allocs */
858 if (s->flags & SLAB_STORE_USER)
859 set_track(s, object, TRACK_ALLOC, addr);
860 trace(s, page, object, 1);
861 init_object(s, object, 1);
81819f0f 862 return 1;
3ec09742 863
81819f0f
CL
864bad:
865 if (PageSlab(page)) {
866 /*
867 * If this is a slab page then lets do the best we can
868 * to avoid issues in the future. Marking all objects
672bba3a 869 * as used avoids touching the remaining objects.
81819f0f 870 */
24922684 871 slab_fix(s, "Marking all objects used");
81819f0f
CL
872 page->inuse = s->objects;
873 page->freelist = NULL;
874 /* Fix up fields that may be corrupted */
875 page->offset = s->offset / sizeof(void *);
876 }
877 return 0;
878}
879
3ec09742
CL
880static int free_debug_processing(struct kmem_cache *s, struct page *page,
881 void *object, void *addr)
81819f0f
CL
882{
883 if (!check_slab(s, page))
884 goto fail;
885
886 if (!check_valid_pointer(s, page, object)) {
70d71228 887 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
888 goto fail;
889 }
890
891 if (on_freelist(s, page, object)) {
24922684 892 object_err(s, page, object, "Object already free");
81819f0f
CL
893 goto fail;
894 }
895
896 if (!check_object(s, page, object, 1))
897 return 0;
898
899 if (unlikely(s != page->slab)) {
900 if (!PageSlab(page))
70d71228
CL
901 slab_err(s, page, "Attempt to free object(0x%p) "
902 "outside of slab", object);
81819f0f 903 else
70d71228 904 if (!page->slab) {
81819f0f 905 printk(KERN_ERR
70d71228 906 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 907 object);
70d71228
CL
908 dump_stack();
909 }
81819f0f 910 else
24922684
CL
911 object_err(s, page, object,
912 "page slab pointer corrupt.");
81819f0f
CL
913 goto fail;
914 }
3ec09742
CL
915
916 /* Special debug activities for freeing objects */
917 if (!SlabFrozen(page) && !page->freelist)
918 remove_full(s, page);
919 if (s->flags & SLAB_STORE_USER)
920 set_track(s, object, TRACK_FREE, addr);
921 trace(s, page, object, 0);
922 init_object(s, object, 0);
81819f0f 923 return 1;
3ec09742 924
81819f0f 925fail:
24922684 926 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
927 return 0;
928}
929
41ecc55b
CL
930static int __init setup_slub_debug(char *str)
931{
f0630fff
CL
932 slub_debug = DEBUG_DEFAULT_FLAGS;
933 if (*str++ != '=' || !*str)
934 /*
935 * No options specified. Switch on full debugging.
936 */
937 goto out;
938
939 if (*str == ',')
940 /*
941 * No options but restriction on slabs. This means full
942 * debugging for slabs matching a pattern.
943 */
944 goto check_slabs;
945
946 slub_debug = 0;
947 if (*str == '-')
948 /*
949 * Switch off all debugging measures.
950 */
951 goto out;
952
953 /*
954 * Determine which debug features should be switched on
955 */
956 for ( ;*str && *str != ','; str++) {
957 switch (tolower(*str)) {
958 case 'f':
959 slub_debug |= SLAB_DEBUG_FREE;
960 break;
961 case 'z':
962 slub_debug |= SLAB_RED_ZONE;
963 break;
964 case 'p':
965 slub_debug |= SLAB_POISON;
966 break;
967 case 'u':
968 slub_debug |= SLAB_STORE_USER;
969 break;
970 case 't':
971 slub_debug |= SLAB_TRACE;
972 break;
973 default:
974 printk(KERN_ERR "slub_debug option '%c' "
975 "unknown. skipped\n",*str);
976 }
41ecc55b
CL
977 }
978
f0630fff 979check_slabs:
41ecc55b
CL
980 if (*str == ',')
981 slub_debug_slabs = str + 1;
f0630fff 982out:
41ecc55b
CL
983 return 1;
984}
985
986__setup("slub_debug", setup_slub_debug);
987
988static void kmem_cache_open_debug_check(struct kmem_cache *s)
989{
990 /*
991 * The page->offset field is only 16 bit wide. This is an offset
992 * in units of words from the beginning of an object. If the slab
993 * size is bigger then we cannot move the free pointer behind the
994 * object anymore.
995 *
996 * On 32 bit platforms the limit is 256k. On 64bit platforms
997 * the limit is 512k.
998 *
c59def9f 999 * Debugging or ctor may create a need to move the free
41ecc55b
CL
1000 * pointer. Fail if this happens.
1001 */
33e9e241 1002 if (s->objsize >= 65535 * sizeof(void *)) {
41ecc55b
CL
1003 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
1004 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
c59def9f 1005 BUG_ON(s->ctor);
41ecc55b
CL
1006 }
1007 else
1008 /*
1009 * Enable debugging if selected on the kernel commandline.
1010 */
1011 if (slub_debug && (!slub_debug_slabs ||
1012 strncmp(slub_debug_slabs, s->name,
1013 strlen(slub_debug_slabs)) == 0))
1014 s->flags |= slub_debug;
1015}
1016#else
3ec09742
CL
1017static inline void setup_object_debug(struct kmem_cache *s,
1018 struct page *page, void *object) {}
41ecc55b 1019
3ec09742
CL
1020static inline int alloc_debug_processing(struct kmem_cache *s,
1021 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1022
3ec09742
CL
1023static inline int free_debug_processing(struct kmem_cache *s,
1024 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1025
41ecc55b
CL
1026static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1027 { return 1; }
1028static inline int check_object(struct kmem_cache *s, struct page *page,
1029 void *object, int active) { return 1; }
3ec09742 1030static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
41ecc55b
CL
1031static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
1032#define slub_debug 0
1033#endif
81819f0f
CL
1034/*
1035 * Slab allocation and freeing
1036 */
1037static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1038{
1039 struct page * page;
1040 int pages = 1 << s->order;
1041
1042 if (s->order)
1043 flags |= __GFP_COMP;
1044
1045 if (s->flags & SLAB_CACHE_DMA)
1046 flags |= SLUB_DMA;
1047
1048 if (node == -1)
1049 page = alloc_pages(flags, s->order);
1050 else
1051 page = alloc_pages_node(node, flags, s->order);
1052
1053 if (!page)
1054 return NULL;
1055
1056 mod_zone_page_state(page_zone(page),
1057 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1058 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1059 pages);
1060
1061 return page;
1062}
1063
1064static void setup_object(struct kmem_cache *s, struct page *page,
1065 void *object)
1066{
3ec09742 1067 setup_object_debug(s, page, object);
4f104934 1068 if (unlikely(s->ctor))
a35afb83 1069 s->ctor(object, s, 0);
81819f0f
CL
1070}
1071
1072static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1073{
1074 struct page *page;
1075 struct kmem_cache_node *n;
1076 void *start;
1077 void *end;
1078 void *last;
1079 void *p;
1080
d07dbea4 1081 BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
81819f0f
CL
1082
1083 if (flags & __GFP_WAIT)
1084 local_irq_enable();
1085
1086 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1087 if (!page)
1088 goto out;
1089
1090 n = get_node(s, page_to_nid(page));
1091 if (n)
1092 atomic_long_inc(&n->nr_slabs);
1093 page->offset = s->offset / sizeof(void *);
1094 page->slab = s;
1095 page->flags |= 1 << PG_slab;
1096 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1097 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1098 SetSlabDebug(page);
81819f0f
CL
1099
1100 start = page_address(page);
1101 end = start + s->objects * s->size;
1102
1103 if (unlikely(s->flags & SLAB_POISON))
1104 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1105
1106 last = start;
7656c72b 1107 for_each_object(p, s, start) {
81819f0f
CL
1108 setup_object(s, page, last);
1109 set_freepointer(s, last, p);
1110 last = p;
1111 }
1112 setup_object(s, page, last);
1113 set_freepointer(s, last, NULL);
1114
1115 page->freelist = start;
894b8788 1116 page->lockless_freelist = NULL;
81819f0f
CL
1117 page->inuse = 0;
1118out:
1119 if (flags & __GFP_WAIT)
1120 local_irq_disable();
1121 return page;
1122}
1123
1124static void __free_slab(struct kmem_cache *s, struct page *page)
1125{
1126 int pages = 1 << s->order;
1127
c59def9f 1128 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1129 void *p;
1130
1131 slab_pad_check(s, page);
c59def9f 1132 for_each_object(p, s, page_address(page))
81819f0f 1133 check_object(s, page, p, 0);
81819f0f
CL
1134 }
1135
1136 mod_zone_page_state(page_zone(page),
1137 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1138 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1139 - pages);
1140
1141 page->mapping = NULL;
1142 __free_pages(page, s->order);
1143}
1144
1145static void rcu_free_slab(struct rcu_head *h)
1146{
1147 struct page *page;
1148
1149 page = container_of((struct list_head *)h, struct page, lru);
1150 __free_slab(page->slab, page);
1151}
1152
1153static void free_slab(struct kmem_cache *s, struct page *page)
1154{
1155 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1156 /*
1157 * RCU free overloads the RCU head over the LRU
1158 */
1159 struct rcu_head *head = (void *)&page->lru;
1160
1161 call_rcu(head, rcu_free_slab);
1162 } else
1163 __free_slab(s, page);
1164}
1165
1166static void discard_slab(struct kmem_cache *s, struct page *page)
1167{
1168 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1169
1170 atomic_long_dec(&n->nr_slabs);
1171 reset_page_mapcount(page);
35e5d7ee
CL
1172 ClearSlabDebug(page);
1173 __ClearPageSlab(page);
81819f0f
CL
1174 free_slab(s, page);
1175}
1176
1177/*
1178 * Per slab locking using the pagelock
1179 */
1180static __always_inline void slab_lock(struct page *page)
1181{
1182 bit_spin_lock(PG_locked, &page->flags);
1183}
1184
1185static __always_inline void slab_unlock(struct page *page)
1186{
1187 bit_spin_unlock(PG_locked, &page->flags);
1188}
1189
1190static __always_inline int slab_trylock(struct page *page)
1191{
1192 int rc = 1;
1193
1194 rc = bit_spin_trylock(PG_locked, &page->flags);
1195 return rc;
1196}
1197
1198/*
1199 * Management of partially allocated slabs
1200 */
e95eed57 1201static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 1202{
e95eed57
CL
1203 spin_lock(&n->list_lock);
1204 n->nr_partial++;
1205 list_add_tail(&page->lru, &n->partial);
1206 spin_unlock(&n->list_lock);
1207}
81819f0f 1208
e95eed57
CL
1209static void add_partial(struct kmem_cache_node *n, struct page *page)
1210{
81819f0f
CL
1211 spin_lock(&n->list_lock);
1212 n->nr_partial++;
1213 list_add(&page->lru, &n->partial);
1214 spin_unlock(&n->list_lock);
1215}
1216
1217static void remove_partial(struct kmem_cache *s,
1218 struct page *page)
1219{
1220 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1221
1222 spin_lock(&n->list_lock);
1223 list_del(&page->lru);
1224 n->nr_partial--;
1225 spin_unlock(&n->list_lock);
1226}
1227
1228/*
672bba3a 1229 * Lock slab and remove from the partial list.
81819f0f 1230 *
672bba3a 1231 * Must hold list_lock.
81819f0f 1232 */
4b6f0750 1233static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1234{
1235 if (slab_trylock(page)) {
1236 list_del(&page->lru);
1237 n->nr_partial--;
4b6f0750 1238 SetSlabFrozen(page);
81819f0f
CL
1239 return 1;
1240 }
1241 return 0;
1242}
1243
1244/*
672bba3a 1245 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1246 */
1247static struct page *get_partial_node(struct kmem_cache_node *n)
1248{
1249 struct page *page;
1250
1251 /*
1252 * Racy check. If we mistakenly see no partial slabs then we
1253 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1254 * partial slab and there is none available then get_partials()
1255 * will return NULL.
81819f0f
CL
1256 */
1257 if (!n || !n->nr_partial)
1258 return NULL;
1259
1260 spin_lock(&n->list_lock);
1261 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1262 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1263 goto out;
1264 page = NULL;
1265out:
1266 spin_unlock(&n->list_lock);
1267 return page;
1268}
1269
1270/*
672bba3a 1271 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1272 */
1273static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1274{
1275#ifdef CONFIG_NUMA
1276 struct zonelist *zonelist;
1277 struct zone **z;
1278 struct page *page;
1279
1280 /*
672bba3a
CL
1281 * The defrag ratio allows a configuration of the tradeoffs between
1282 * inter node defragmentation and node local allocations. A lower
1283 * defrag_ratio increases the tendency to do local allocations
1284 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1285 *
672bba3a
CL
1286 * If the defrag_ratio is set to 0 then kmalloc() always
1287 * returns node local objects. If the ratio is higher then kmalloc()
1288 * may return off node objects because partial slabs are obtained
1289 * from other nodes and filled up.
81819f0f
CL
1290 *
1291 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1292 * defrag_ratio = 1000) then every (well almost) allocation will
1293 * first attempt to defrag slab caches on other nodes. This means
1294 * scanning over all nodes to look for partial slabs which may be
1295 * expensive if we do it every time we are trying to find a slab
1296 * with available objects.
81819f0f
CL
1297 */
1298 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1299 return NULL;
1300
1301 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1302 ->node_zonelists[gfp_zone(flags)];
1303 for (z = zonelist->zones; *z; z++) {
1304 struct kmem_cache_node *n;
1305
1306 n = get_node(s, zone_to_nid(*z));
1307
1308 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1309 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1310 page = get_partial_node(n);
1311 if (page)
1312 return page;
1313 }
1314 }
1315#endif
1316 return NULL;
1317}
1318
1319/*
1320 * Get a partial page, lock it and return it.
1321 */
1322static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1323{
1324 struct page *page;
1325 int searchnode = (node == -1) ? numa_node_id() : node;
1326
1327 page = get_partial_node(get_node(s, searchnode));
1328 if (page || (flags & __GFP_THISNODE))
1329 return page;
1330
1331 return get_any_partial(s, flags);
1332}
1333
1334/*
1335 * Move a page back to the lists.
1336 *
1337 * Must be called with the slab lock held.
1338 *
1339 * On exit the slab lock will have been dropped.
1340 */
4b6f0750 1341static void unfreeze_slab(struct kmem_cache *s, struct page *page)
81819f0f 1342{
e95eed57
CL
1343 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1344
4b6f0750 1345 ClearSlabFrozen(page);
81819f0f 1346 if (page->inuse) {
e95eed57 1347
81819f0f 1348 if (page->freelist)
e95eed57 1349 add_partial(n, page);
35e5d7ee 1350 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
e95eed57 1351 add_full(n, page);
81819f0f 1352 slab_unlock(page);
e95eed57 1353
81819f0f 1354 } else {
e95eed57
CL
1355 if (n->nr_partial < MIN_PARTIAL) {
1356 /*
672bba3a
CL
1357 * Adding an empty slab to the partial slabs in order
1358 * to avoid page allocator overhead. This slab needs
1359 * to come after the other slabs with objects in
1360 * order to fill them up. That way the size of the
1361 * partial list stays small. kmem_cache_shrink can
1362 * reclaim empty slabs from the partial list.
e95eed57
CL
1363 */
1364 add_partial_tail(n, page);
1365 slab_unlock(page);
1366 } else {
1367 slab_unlock(page);
1368 discard_slab(s, page);
1369 }
81819f0f
CL
1370 }
1371}
1372
1373/*
1374 * Remove the cpu slab
1375 */
1376static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1377{
894b8788
CL
1378 /*
1379 * Merge cpu freelist into freelist. Typically we get here
1380 * because both freelists are empty. So this is unlikely
1381 * to occur.
1382 */
1383 while (unlikely(page->lockless_freelist)) {
1384 void **object;
1385
1386 /* Retrieve object from cpu_freelist */
1387 object = page->lockless_freelist;
1388 page->lockless_freelist = page->lockless_freelist[page->offset];
1389
1390 /* And put onto the regular freelist */
1391 object[page->offset] = page->freelist;
1392 page->freelist = object;
1393 page->inuse--;
1394 }
81819f0f 1395 s->cpu_slab[cpu] = NULL;
4b6f0750 1396 unfreeze_slab(s, page);
81819f0f
CL
1397}
1398
0c710013 1399static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
81819f0f
CL
1400{
1401 slab_lock(page);
1402 deactivate_slab(s, page, cpu);
1403}
1404
1405/*
1406 * Flush cpu slab.
1407 * Called from IPI handler with interrupts disabled.
1408 */
0c710013 1409static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f
CL
1410{
1411 struct page *page = s->cpu_slab[cpu];
1412
1413 if (likely(page))
1414 flush_slab(s, page, cpu);
1415}
1416
1417static void flush_cpu_slab(void *d)
1418{
1419 struct kmem_cache *s = d;
1420 int cpu = smp_processor_id();
1421
1422 __flush_cpu_slab(s, cpu);
1423}
1424
1425static void flush_all(struct kmem_cache *s)
1426{
1427#ifdef CONFIG_SMP
1428 on_each_cpu(flush_cpu_slab, s, 1, 1);
1429#else
1430 unsigned long flags;
1431
1432 local_irq_save(flags);
1433 flush_cpu_slab(s);
1434 local_irq_restore(flags);
1435#endif
1436}
1437
1438/*
894b8788
CL
1439 * Slow path. The lockless freelist is empty or we need to perform
1440 * debugging duties.
1441 *
1442 * Interrupts are disabled.
81819f0f 1443 *
894b8788
CL
1444 * Processing is still very fast if new objects have been freed to the
1445 * regular freelist. In that case we simply take over the regular freelist
1446 * as the lockless freelist and zap the regular freelist.
81819f0f 1447 *
894b8788
CL
1448 * If that is not working then we fall back to the partial lists. We take the
1449 * first element of the freelist as the object to allocate now and move the
1450 * rest of the freelist to the lockless freelist.
81819f0f 1451 *
894b8788
CL
1452 * And if we were unable to get a new slab from the partial slab lists then
1453 * we need to allocate a new slab. This is slowest path since we may sleep.
81819f0f 1454 */
894b8788
CL
1455static void *__slab_alloc(struct kmem_cache *s,
1456 gfp_t gfpflags, int node, void *addr, struct page *page)
81819f0f 1457{
81819f0f 1458 void **object;
894b8788 1459 int cpu = smp_processor_id();
81819f0f 1460
81819f0f
CL
1461 if (!page)
1462 goto new_slab;
1463
1464 slab_lock(page);
1465 if (unlikely(node != -1 && page_to_nid(page) != node))
1466 goto another_slab;
894b8788 1467load_freelist:
81819f0f
CL
1468 object = page->freelist;
1469 if (unlikely(!object))
1470 goto another_slab;
35e5d7ee 1471 if (unlikely(SlabDebug(page)))
81819f0f
CL
1472 goto debug;
1473
894b8788
CL
1474 object = page->freelist;
1475 page->lockless_freelist = object[page->offset];
1476 page->inuse = s->objects;
1477 page->freelist = NULL;
81819f0f 1478 slab_unlock(page);
81819f0f
CL
1479 return object;
1480
1481another_slab:
1482 deactivate_slab(s, page, cpu);
1483
1484new_slab:
1485 page = get_partial(s, gfpflags, node);
894b8788 1486 if (page) {
81819f0f 1487 s->cpu_slab[cpu] = page;
894b8788 1488 goto load_freelist;
81819f0f
CL
1489 }
1490
1491 page = new_slab(s, gfpflags, node);
1492 if (page) {
1493 cpu = smp_processor_id();
1494 if (s->cpu_slab[cpu]) {
1495 /*
672bba3a
CL
1496 * Someone else populated the cpu_slab while we
1497 * enabled interrupts, or we have gotten scheduled
1498 * on another cpu. The page may not be on the
1499 * requested node even if __GFP_THISNODE was
1500 * specified. So we need to recheck.
81819f0f
CL
1501 */
1502 if (node == -1 ||
1503 page_to_nid(s->cpu_slab[cpu]) == node) {
1504 /*
1505 * Current cpuslab is acceptable and we
1506 * want the current one since its cache hot
1507 */
1508 discard_slab(s, page);
1509 page = s->cpu_slab[cpu];
1510 slab_lock(page);
894b8788 1511 goto load_freelist;
81819f0f 1512 }
672bba3a 1513 /* New slab does not fit our expectations */
81819f0f
CL
1514 flush_slab(s, s->cpu_slab[cpu], cpu);
1515 }
1516 slab_lock(page);
4b6f0750
CL
1517 SetSlabFrozen(page);
1518 s->cpu_slab[cpu] = page;
1519 goto load_freelist;
81819f0f 1520 }
81819f0f
CL
1521 return NULL;
1522debug:
894b8788 1523 object = page->freelist;
3ec09742 1524 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1525 goto another_slab;
894b8788
CL
1526
1527 page->inuse++;
1528 page->freelist = object[page->offset];
1529 slab_unlock(page);
1530 return object;
1531}
1532
1533/*
1534 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1535 * have the fastpath folded into their functions. So no function call
1536 * overhead for requests that can be satisfied on the fastpath.
1537 *
1538 * The fastpath works by first checking if the lockless freelist can be used.
1539 * If not then __slab_alloc is called for slow processing.
1540 *
1541 * Otherwise we can simply pick the next object from the lockless free list.
1542 */
1543static void __always_inline *slab_alloc(struct kmem_cache *s,
d07dbea4 1544 gfp_t gfpflags, int node, void *addr, int length)
894b8788
CL
1545{
1546 struct page *page;
1547 void **object;
1548 unsigned long flags;
1549
1550 local_irq_save(flags);
1551 page = s->cpu_slab[smp_processor_id()];
1552 if (unlikely(!page || !page->lockless_freelist ||
1553 (node != -1 && page_to_nid(page) != node)))
1554
1555 object = __slab_alloc(s, gfpflags, node, addr, page);
1556
1557 else {
1558 object = page->lockless_freelist;
1559 page->lockless_freelist = object[page->offset];
1560 }
1561 local_irq_restore(flags);
d07dbea4
CL
1562
1563 if (unlikely((gfpflags & __GFP_ZERO) && object))
1564 memset(object, 0, length);
1565
894b8788 1566 return object;
81819f0f
CL
1567}
1568
1569void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1570{
d07dbea4
CL
1571 return slab_alloc(s, gfpflags, -1,
1572 __builtin_return_address(0), s->objsize);
81819f0f
CL
1573}
1574EXPORT_SYMBOL(kmem_cache_alloc);
1575
1576#ifdef CONFIG_NUMA
1577void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1578{
d07dbea4
CL
1579 return slab_alloc(s, gfpflags, node,
1580 __builtin_return_address(0), s->objsize);
81819f0f
CL
1581}
1582EXPORT_SYMBOL(kmem_cache_alloc_node);
1583#endif
1584
1585/*
894b8788
CL
1586 * Slow patch handling. This may still be called frequently since objects
1587 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1588 *
894b8788
CL
1589 * So we still attempt to reduce cache line usage. Just take the slab
1590 * lock and free the item. If there is no additional partial page
1591 * handling required then we can return immediately.
81819f0f 1592 */
894b8788 1593static void __slab_free(struct kmem_cache *s, struct page *page,
77c5e2d0 1594 void *x, void *addr)
81819f0f
CL
1595{
1596 void *prior;
1597 void **object = (void *)x;
81819f0f 1598
81819f0f
CL
1599 slab_lock(page);
1600
35e5d7ee 1601 if (unlikely(SlabDebug(page)))
81819f0f
CL
1602 goto debug;
1603checks_ok:
1604 prior = object[page->offset] = page->freelist;
1605 page->freelist = object;
1606 page->inuse--;
1607
4b6f0750 1608 if (unlikely(SlabFrozen(page)))
81819f0f
CL
1609 goto out_unlock;
1610
1611 if (unlikely(!page->inuse))
1612 goto slab_empty;
1613
1614 /*
1615 * Objects left in the slab. If it
1616 * was not on the partial list before
1617 * then add it.
1618 */
1619 if (unlikely(!prior))
e95eed57 1620 add_partial(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1621
1622out_unlock:
1623 slab_unlock(page);
81819f0f
CL
1624 return;
1625
1626slab_empty:
1627 if (prior)
1628 /*
672bba3a 1629 * Slab still on the partial list.
81819f0f
CL
1630 */
1631 remove_partial(s, page);
1632
1633 slab_unlock(page);
1634 discard_slab(s, page);
81819f0f
CL
1635 return;
1636
1637debug:
3ec09742 1638 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1639 goto out_unlock;
77c5e2d0 1640 goto checks_ok;
81819f0f
CL
1641}
1642
894b8788
CL
1643/*
1644 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1645 * can perform fastpath freeing without additional function calls.
1646 *
1647 * The fastpath is only possible if we are freeing to the current cpu slab
1648 * of this processor. This typically the case if we have just allocated
1649 * the item before.
1650 *
1651 * If fastpath is not possible then fall back to __slab_free where we deal
1652 * with all sorts of special processing.
1653 */
1654static void __always_inline slab_free(struct kmem_cache *s,
1655 struct page *page, void *x, void *addr)
1656{
1657 void **object = (void *)x;
1658 unsigned long flags;
1659
1660 local_irq_save(flags);
1661 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1662 !SlabDebug(page))) {
1663 object[page->offset] = page->lockless_freelist;
1664 page->lockless_freelist = object;
1665 } else
1666 __slab_free(s, page, x, addr);
1667
1668 local_irq_restore(flags);
1669}
1670
81819f0f
CL
1671void kmem_cache_free(struct kmem_cache *s, void *x)
1672{
77c5e2d0 1673 struct page *page;
81819f0f 1674
b49af68f 1675 page = virt_to_head_page(x);
81819f0f 1676
77c5e2d0 1677 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1678}
1679EXPORT_SYMBOL(kmem_cache_free);
1680
1681/* Figure out on which slab object the object resides */
1682static struct page *get_object_page(const void *x)
1683{
b49af68f 1684 struct page *page = virt_to_head_page(x);
81819f0f
CL
1685
1686 if (!PageSlab(page))
1687 return NULL;
1688
1689 return page;
1690}
1691
1692/*
672bba3a
CL
1693 * Object placement in a slab is made very easy because we always start at
1694 * offset 0. If we tune the size of the object to the alignment then we can
1695 * get the required alignment by putting one properly sized object after
1696 * another.
81819f0f
CL
1697 *
1698 * Notice that the allocation order determines the sizes of the per cpu
1699 * caches. Each processor has always one slab available for allocations.
1700 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1701 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1702 * locking overhead.
81819f0f
CL
1703 */
1704
1705/*
1706 * Mininum / Maximum order of slab pages. This influences locking overhead
1707 * and slab fragmentation. A higher order reduces the number of partial slabs
1708 * and increases the number of allocations possible without having to
1709 * take the list_lock.
1710 */
1711static int slub_min_order;
1712static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1713static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1714
1715/*
1716 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1717 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1718 */
1719static int slub_nomerge;
1720
81819f0f
CL
1721/*
1722 * Calculate the order of allocation given an slab object size.
1723 *
672bba3a
CL
1724 * The order of allocation has significant impact on performance and other
1725 * system components. Generally order 0 allocations should be preferred since
1726 * order 0 does not cause fragmentation in the page allocator. Larger objects
1727 * be problematic to put into order 0 slabs because there may be too much
1728 * unused space left. We go to a higher order if more than 1/8th of the slab
1729 * would be wasted.
1730 *
1731 * In order to reach satisfactory performance we must ensure that a minimum
1732 * number of objects is in one slab. Otherwise we may generate too much
1733 * activity on the partial lists which requires taking the list_lock. This is
1734 * less a concern for large slabs though which are rarely used.
81819f0f 1735 *
672bba3a
CL
1736 * slub_max_order specifies the order where we begin to stop considering the
1737 * number of objects in a slab as critical. If we reach slub_max_order then
1738 * we try to keep the page order as low as possible. So we accept more waste
1739 * of space in favor of a small page order.
81819f0f 1740 *
672bba3a
CL
1741 * Higher order allocations also allow the placement of more objects in a
1742 * slab and thereby reduce object handling overhead. If the user has
1743 * requested a higher mininum order then we start with that one instead of
1744 * the smallest order which will fit the object.
81819f0f 1745 */
5e6d444e
CL
1746static inline int slab_order(int size, int min_objects,
1747 int max_order, int fract_leftover)
81819f0f
CL
1748{
1749 int order;
1750 int rem;
6300ea75 1751 int min_order = slub_min_order;
81819f0f 1752
6300ea75
CL
1753 /*
1754 * If we would create too many object per slab then reduce
1755 * the slab order even if it goes below slub_min_order.
1756 */
1757 while (min_order > 0 &&
1758 (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1759 min_order--;
1760
1761 for (order = max(min_order,
5e6d444e
CL
1762 fls(min_objects * size - 1) - PAGE_SHIFT);
1763 order <= max_order; order++) {
81819f0f 1764
5e6d444e 1765 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1766
5e6d444e 1767 if (slab_size < min_objects * size)
81819f0f
CL
1768 continue;
1769
1770 rem = slab_size % size;
1771
5e6d444e 1772 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1773 break;
1774
6300ea75
CL
1775 /* If the next size is too high then exit now */
1776 if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1777 break;
81819f0f 1778 }
672bba3a 1779
81819f0f
CL
1780 return order;
1781}
1782
5e6d444e
CL
1783static inline int calculate_order(int size)
1784{
1785 int order;
1786 int min_objects;
1787 int fraction;
1788
1789 /*
1790 * Attempt to find best configuration for a slab. This
1791 * works by first attempting to generate a layout with
1792 * the best configuration and backing off gradually.
1793 *
1794 * First we reduce the acceptable waste in a slab. Then
1795 * we reduce the minimum objects required in a slab.
1796 */
1797 min_objects = slub_min_objects;
1798 while (min_objects > 1) {
1799 fraction = 8;
1800 while (fraction >= 4) {
1801 order = slab_order(size, min_objects,
1802 slub_max_order, fraction);
1803 if (order <= slub_max_order)
1804 return order;
1805 fraction /= 2;
1806 }
1807 min_objects /= 2;
1808 }
1809
1810 /*
1811 * We were unable to place multiple objects in a slab. Now
1812 * lets see if we can place a single object there.
1813 */
1814 order = slab_order(size, 1, slub_max_order, 1);
1815 if (order <= slub_max_order)
1816 return order;
1817
1818 /*
1819 * Doh this slab cannot be placed using slub_max_order.
1820 */
1821 order = slab_order(size, 1, MAX_ORDER, 1);
1822 if (order <= MAX_ORDER)
1823 return order;
1824 return -ENOSYS;
1825}
1826
81819f0f 1827/*
672bba3a 1828 * Figure out what the alignment of the objects will be.
81819f0f
CL
1829 */
1830static unsigned long calculate_alignment(unsigned long flags,
1831 unsigned long align, unsigned long size)
1832{
1833 /*
1834 * If the user wants hardware cache aligned objects then
1835 * follow that suggestion if the object is sufficiently
1836 * large.
1837 *
1838 * The hardware cache alignment cannot override the
1839 * specified alignment though. If that is greater
1840 * then use it.
1841 */
5af60839 1842 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1843 size > cache_line_size() / 2)
1844 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1845
1846 if (align < ARCH_SLAB_MINALIGN)
1847 return ARCH_SLAB_MINALIGN;
1848
1849 return ALIGN(align, sizeof(void *));
1850}
1851
1852static void init_kmem_cache_node(struct kmem_cache_node *n)
1853{
1854 n->nr_partial = 0;
1855 atomic_long_set(&n->nr_slabs, 0);
1856 spin_lock_init(&n->list_lock);
1857 INIT_LIST_HEAD(&n->partial);
643b1138 1858 INIT_LIST_HEAD(&n->full);
81819f0f
CL
1859}
1860
1861#ifdef CONFIG_NUMA
1862/*
1863 * No kmalloc_node yet so do it by hand. We know that this is the first
1864 * slab on the node for this slabcache. There are no concurrent accesses
1865 * possible.
1866 *
1867 * Note that this function only works on the kmalloc_node_cache
1868 * when allocating for the kmalloc_node_cache.
1869 */
1870static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1871 int node)
1872{
1873 struct page *page;
1874 struct kmem_cache_node *n;
1875
1876 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1877
1878 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
81819f0f
CL
1879
1880 BUG_ON(!page);
1881 n = page->freelist;
1882 BUG_ON(!n);
1883 page->freelist = get_freepointer(kmalloc_caches, n);
1884 page->inuse++;
1885 kmalloc_caches->node[node] = n;
d45f39cb
CL
1886 init_object(kmalloc_caches, n, 1);
1887 init_tracking(kmalloc_caches, n);
81819f0f
CL
1888 init_kmem_cache_node(n);
1889 atomic_long_inc(&n->nr_slabs);
e95eed57 1890 add_partial(n, page);
dbc55faa
CL
1891
1892 /*
1893 * new_slab() disables interupts. If we do not reenable interrupts here
1894 * then bootup would continue with interrupts disabled.
1895 */
1896 local_irq_enable();
81819f0f
CL
1897 return n;
1898}
1899
1900static void free_kmem_cache_nodes(struct kmem_cache *s)
1901{
1902 int node;
1903
1904 for_each_online_node(node) {
1905 struct kmem_cache_node *n = s->node[node];
1906 if (n && n != &s->local_node)
1907 kmem_cache_free(kmalloc_caches, n);
1908 s->node[node] = NULL;
1909 }
1910}
1911
1912static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1913{
1914 int node;
1915 int local_node;
1916
1917 if (slab_state >= UP)
1918 local_node = page_to_nid(virt_to_page(s));
1919 else
1920 local_node = 0;
1921
1922 for_each_online_node(node) {
1923 struct kmem_cache_node *n;
1924
1925 if (local_node == node)
1926 n = &s->local_node;
1927 else {
1928 if (slab_state == DOWN) {
1929 n = early_kmem_cache_node_alloc(gfpflags,
1930 node);
1931 continue;
1932 }
1933 n = kmem_cache_alloc_node(kmalloc_caches,
1934 gfpflags, node);
1935
1936 if (!n) {
1937 free_kmem_cache_nodes(s);
1938 return 0;
1939 }
1940
1941 }
1942 s->node[node] = n;
1943 init_kmem_cache_node(n);
1944 }
1945 return 1;
1946}
1947#else
1948static void free_kmem_cache_nodes(struct kmem_cache *s)
1949{
1950}
1951
1952static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1953{
1954 init_kmem_cache_node(&s->local_node);
1955 return 1;
1956}
1957#endif
1958
1959/*
1960 * calculate_sizes() determines the order and the distribution of data within
1961 * a slab object.
1962 */
1963static int calculate_sizes(struct kmem_cache *s)
1964{
1965 unsigned long flags = s->flags;
1966 unsigned long size = s->objsize;
1967 unsigned long align = s->align;
1968
1969 /*
1970 * Determine if we can poison the object itself. If the user of
1971 * the slab may touch the object after free or before allocation
1972 * then we should never poison the object itself.
1973 */
1974 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 1975 !s->ctor)
81819f0f
CL
1976 s->flags |= __OBJECT_POISON;
1977 else
1978 s->flags &= ~__OBJECT_POISON;
1979
1980 /*
1981 * Round up object size to the next word boundary. We can only
1982 * place the free pointer at word boundaries and this determines
1983 * the possible location of the free pointer.
1984 */
1985 size = ALIGN(size, sizeof(void *));
1986
41ecc55b 1987#ifdef CONFIG_SLUB_DEBUG
81819f0f 1988 /*
672bba3a 1989 * If we are Redzoning then check if there is some space between the
81819f0f 1990 * end of the object and the free pointer. If not then add an
672bba3a 1991 * additional word to have some bytes to store Redzone information.
81819f0f
CL
1992 */
1993 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1994 size += sizeof(void *);
41ecc55b 1995#endif
81819f0f
CL
1996
1997 /*
672bba3a
CL
1998 * With that we have determined the number of bytes in actual use
1999 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2000 */
2001 s->inuse = size;
2002
2003 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2004 s->ctor)) {
81819f0f
CL
2005 /*
2006 * Relocate free pointer after the object if it is not
2007 * permitted to overwrite the first word of the object on
2008 * kmem_cache_free.
2009 *
2010 * This is the case if we do RCU, have a constructor or
2011 * destructor or are poisoning the objects.
2012 */
2013 s->offset = size;
2014 size += sizeof(void *);
2015 }
2016
c12b3c62 2017#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2018 if (flags & SLAB_STORE_USER)
2019 /*
2020 * Need to store information about allocs and frees after
2021 * the object.
2022 */
2023 size += 2 * sizeof(struct track);
2024
be7b3fbc 2025 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2026 /*
2027 * Add some empty padding so that we can catch
2028 * overwrites from earlier objects rather than let
2029 * tracking information or the free pointer be
2030 * corrupted if an user writes before the start
2031 * of the object.
2032 */
2033 size += sizeof(void *);
41ecc55b 2034#endif
672bba3a 2035
81819f0f
CL
2036 /*
2037 * Determine the alignment based on various parameters that the
65c02d4c
CL
2038 * user specified and the dynamic determination of cache line size
2039 * on bootup.
81819f0f
CL
2040 */
2041 align = calculate_alignment(flags, align, s->objsize);
2042
2043 /*
2044 * SLUB stores one object immediately after another beginning from
2045 * offset 0. In order to align the objects we have to simply size
2046 * each object to conform to the alignment.
2047 */
2048 size = ALIGN(size, align);
2049 s->size = size;
2050
2051 s->order = calculate_order(size);
2052 if (s->order < 0)
2053 return 0;
2054
2055 /*
2056 * Determine the number of objects per slab
2057 */
2058 s->objects = (PAGE_SIZE << s->order) / size;
2059
2060 /*
2061 * Verify that the number of objects is within permitted limits.
2062 * The page->inuse field is only 16 bit wide! So we cannot have
2063 * more than 64k objects per slab.
2064 */
6300ea75 2065 if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
81819f0f
CL
2066 return 0;
2067 return 1;
2068
2069}
2070
81819f0f
CL
2071static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2072 const char *name, size_t size,
2073 size_t align, unsigned long flags,
c59def9f 2074 void (*ctor)(void *, struct kmem_cache *, unsigned long))
81819f0f
CL
2075{
2076 memset(s, 0, kmem_size);
2077 s->name = name;
2078 s->ctor = ctor;
81819f0f
CL
2079 s->objsize = size;
2080 s->flags = flags;
2081 s->align = align;
41ecc55b 2082 kmem_cache_open_debug_check(s);
81819f0f
CL
2083
2084 if (!calculate_sizes(s))
2085 goto error;
2086
2087 s->refcount = 1;
2088#ifdef CONFIG_NUMA
2089 s->defrag_ratio = 100;
2090#endif
2091
2092 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2093 return 1;
2094error:
2095 if (flags & SLAB_PANIC)
2096 panic("Cannot create slab %s size=%lu realsize=%u "
2097 "order=%u offset=%u flags=%lx\n",
2098 s->name, (unsigned long)size, s->size, s->order,
2099 s->offset, flags);
2100 return 0;
2101}
81819f0f
CL
2102
2103/*
2104 * Check if a given pointer is valid
2105 */
2106int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2107{
2108 struct page * page;
81819f0f
CL
2109
2110 page = get_object_page(object);
2111
2112 if (!page || s != page->slab)
2113 /* No slab or wrong slab */
2114 return 0;
2115
abcd08a6 2116 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2117 return 0;
2118
2119 /*
2120 * We could also check if the object is on the slabs freelist.
2121 * But this would be too expensive and it seems that the main
2122 * purpose of kmem_ptr_valid is to check if the object belongs
2123 * to a certain slab.
2124 */
2125 return 1;
2126}
2127EXPORT_SYMBOL(kmem_ptr_validate);
2128
2129/*
2130 * Determine the size of a slab object
2131 */
2132unsigned int kmem_cache_size(struct kmem_cache *s)
2133{
2134 return s->objsize;
2135}
2136EXPORT_SYMBOL(kmem_cache_size);
2137
2138const char *kmem_cache_name(struct kmem_cache *s)
2139{
2140 return s->name;
2141}
2142EXPORT_SYMBOL(kmem_cache_name);
2143
2144/*
672bba3a
CL
2145 * Attempt to free all slabs on a node. Return the number of slabs we
2146 * were unable to free.
81819f0f
CL
2147 */
2148static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2149 struct list_head *list)
2150{
2151 int slabs_inuse = 0;
2152 unsigned long flags;
2153 struct page *page, *h;
2154
2155 spin_lock_irqsave(&n->list_lock, flags);
2156 list_for_each_entry_safe(page, h, list, lru)
2157 if (!page->inuse) {
2158 list_del(&page->lru);
2159 discard_slab(s, page);
2160 } else
2161 slabs_inuse++;
2162 spin_unlock_irqrestore(&n->list_lock, flags);
2163 return slabs_inuse;
2164}
2165
2166/*
672bba3a 2167 * Release all resources used by a slab cache.
81819f0f 2168 */
0c710013 2169static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2170{
2171 int node;
2172
2173 flush_all(s);
2174
2175 /* Attempt to free all objects */
2176 for_each_online_node(node) {
2177 struct kmem_cache_node *n = get_node(s, node);
2178
2086d26a 2179 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
2180 if (atomic_long_read(&n->nr_slabs))
2181 return 1;
2182 }
2183 free_kmem_cache_nodes(s);
2184 return 0;
2185}
2186
2187/*
2188 * Close a cache and release the kmem_cache structure
2189 * (must be used for caches created using kmem_cache_create)
2190 */
2191void kmem_cache_destroy(struct kmem_cache *s)
2192{
2193 down_write(&slub_lock);
2194 s->refcount--;
2195 if (!s->refcount) {
2196 list_del(&s->list);
2197 if (kmem_cache_close(s))
2198 WARN_ON(1);
2199 sysfs_slab_remove(s);
2200 kfree(s);
2201 }
2202 up_write(&slub_lock);
2203}
2204EXPORT_SYMBOL(kmem_cache_destroy);
2205
2206/********************************************************************
2207 * Kmalloc subsystem
2208 *******************************************************************/
2209
2210struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2211EXPORT_SYMBOL(kmalloc_caches);
2212
2213#ifdef CONFIG_ZONE_DMA
2214static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2215#endif
2216
2217static int __init setup_slub_min_order(char *str)
2218{
2219 get_option (&str, &slub_min_order);
2220
2221 return 1;
2222}
2223
2224__setup("slub_min_order=", setup_slub_min_order);
2225
2226static int __init setup_slub_max_order(char *str)
2227{
2228 get_option (&str, &slub_max_order);
2229
2230 return 1;
2231}
2232
2233__setup("slub_max_order=", setup_slub_max_order);
2234
2235static int __init setup_slub_min_objects(char *str)
2236{
2237 get_option (&str, &slub_min_objects);
2238
2239 return 1;
2240}
2241
2242__setup("slub_min_objects=", setup_slub_min_objects);
2243
2244static int __init setup_slub_nomerge(char *str)
2245{
2246 slub_nomerge = 1;
2247 return 1;
2248}
2249
2250__setup("slub_nomerge", setup_slub_nomerge);
2251
81819f0f
CL
2252static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2253 const char *name, int size, gfp_t gfp_flags)
2254{
2255 unsigned int flags = 0;
2256
2257 if (gfp_flags & SLUB_DMA)
2258 flags = SLAB_CACHE_DMA;
2259
2260 down_write(&slub_lock);
2261 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
c59def9f 2262 flags, NULL))
81819f0f
CL
2263 goto panic;
2264
2265 list_add(&s->list, &slab_caches);
2266 up_write(&slub_lock);
2267 if (sysfs_slab_add(s))
2268 goto panic;
2269 return s;
2270
2271panic:
2272 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2273}
2274
2e443fd0
CL
2275#ifdef CONFIG_ZONE_DMA
2276static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2277{
2278 struct kmem_cache *s;
2279 struct kmem_cache *x;
2280 char *text;
2281 size_t realsize;
2282
2283 s = kmalloc_caches_dma[index];
2284 if (s)
2285 return s;
2286
2287 /* Dynamically create dma cache */
2288 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2289 if (!x)
2290 panic("Unable to allocate memory for dma cache\n");
2291
2292 if (index <= KMALLOC_SHIFT_HIGH)
2293 realsize = 1 << index;
2294 else {
2295 if (index == 1)
2296 realsize = 96;
2297 else
2298 realsize = 192;
2299 }
2300
2301 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2302 (unsigned int)realsize);
2303 s = create_kmalloc_cache(x, text, realsize, flags);
dfce8648
CL
2304 down_write(&slub_lock);
2305 if (!kmalloc_caches_dma[index]) {
2306 kmalloc_caches_dma[index] = s;
2307 up_write(&slub_lock);
2308 return s;
2309 }
2310 up_write(&slub_lock);
2311 kmem_cache_destroy(s);
2312 return kmalloc_caches_dma[index];
2e443fd0
CL
2313}
2314#endif
2315
81819f0f
CL
2316static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2317{
2318 int index = kmalloc_index(size);
2319
614410d5 2320 if (!index)
6cb8f913 2321 return ZERO_SIZE_PTR;
81819f0f
CL
2322
2323 /* Allocation too large? */
6cb8f913
CL
2324 if (index < 0)
2325 return NULL;
81819f0f
CL
2326
2327#ifdef CONFIG_ZONE_DMA
2e443fd0
CL
2328 if ((flags & SLUB_DMA))
2329 return dma_kmalloc_cache(index, flags);
81819f0f
CL
2330#endif
2331 return &kmalloc_caches[index];
2332}
2333
2334void *__kmalloc(size_t size, gfp_t flags)
2335{
2336 struct kmem_cache *s = get_slab(size, flags);
2337
6cb8f913
CL
2338 if (ZERO_OR_NULL_PTR(s))
2339 return s;
2340
d07dbea4 2341 return slab_alloc(s, flags, -1, __builtin_return_address(0), size);
81819f0f
CL
2342}
2343EXPORT_SYMBOL(__kmalloc);
2344
2345#ifdef CONFIG_NUMA
2346void *__kmalloc_node(size_t size, gfp_t flags, int node)
2347{
2348 struct kmem_cache *s = get_slab(size, flags);
2349
6cb8f913
CL
2350 if (ZERO_OR_NULL_PTR(s))
2351 return s;
2352
d07dbea4 2353 return slab_alloc(s, flags, node, __builtin_return_address(0), size);
81819f0f
CL
2354}
2355EXPORT_SYMBOL(__kmalloc_node);
2356#endif
2357
2358size_t ksize(const void *object)
2359{
272c1d21 2360 struct page *page;
81819f0f
CL
2361 struct kmem_cache *s;
2362
272c1d21
CL
2363 if (object == ZERO_SIZE_PTR)
2364 return 0;
2365
2366 page = get_object_page(object);
81819f0f
CL
2367 BUG_ON(!page);
2368 s = page->slab;
2369 BUG_ON(!s);
2370
2371 /*
2372 * Debugging requires use of the padding between object
2373 * and whatever may come after it.
2374 */
2375 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2376 return s->objsize;
2377
2378 /*
2379 * If we have the need to store the freelist pointer
2380 * back there or track user information then we can
2381 * only use the space before that information.
2382 */
2383 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2384 return s->inuse;
2385
2386 /*
2387 * Else we can use all the padding etc for the allocation
2388 */
2389 return s->size;
2390}
2391EXPORT_SYMBOL(ksize);
2392
2393void kfree(const void *x)
2394{
2395 struct kmem_cache *s;
2396 struct page *page;
2397
272c1d21
CL
2398 /*
2399 * This has to be an unsigned comparison. According to Linus
2400 * some gcc version treat a pointer as a signed entity. Then
2401 * this comparison would be true for all "negative" pointers
2402 * (which would cover the whole upper half of the address space).
2403 */
6cb8f913 2404 if (ZERO_OR_NULL_PTR(x))
81819f0f
CL
2405 return;
2406
b49af68f 2407 page = virt_to_head_page(x);
81819f0f
CL
2408 s = page->slab;
2409
77c5e2d0 2410 slab_free(s, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2411}
2412EXPORT_SYMBOL(kfree);
2413
2086d26a 2414/*
672bba3a
CL
2415 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2416 * the remaining slabs by the number of items in use. The slabs with the
2417 * most items in use come first. New allocations will then fill those up
2418 * and thus they can be removed from the partial lists.
2419 *
2420 * The slabs with the least items are placed last. This results in them
2421 * being allocated from last increasing the chance that the last objects
2422 * are freed in them.
2086d26a
CL
2423 */
2424int kmem_cache_shrink(struct kmem_cache *s)
2425{
2426 int node;
2427 int i;
2428 struct kmem_cache_node *n;
2429 struct page *page;
2430 struct page *t;
2431 struct list_head *slabs_by_inuse =
2432 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2433 unsigned long flags;
2434
2435 if (!slabs_by_inuse)
2436 return -ENOMEM;
2437
2438 flush_all(s);
2439 for_each_online_node(node) {
2440 n = get_node(s, node);
2441
2442 if (!n->nr_partial)
2443 continue;
2444
2445 for (i = 0; i < s->objects; i++)
2446 INIT_LIST_HEAD(slabs_by_inuse + i);
2447
2448 spin_lock_irqsave(&n->list_lock, flags);
2449
2450 /*
672bba3a 2451 * Build lists indexed by the items in use in each slab.
2086d26a 2452 *
672bba3a
CL
2453 * Note that concurrent frees may occur while we hold the
2454 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2455 */
2456 list_for_each_entry_safe(page, t, &n->partial, lru) {
2457 if (!page->inuse && slab_trylock(page)) {
2458 /*
2459 * Must hold slab lock here because slab_free
2460 * may have freed the last object and be
2461 * waiting to release the slab.
2462 */
2463 list_del(&page->lru);
2464 n->nr_partial--;
2465 slab_unlock(page);
2466 discard_slab(s, page);
2467 } else {
2468 if (n->nr_partial > MAX_PARTIAL)
2469 list_move(&page->lru,
2470 slabs_by_inuse + page->inuse);
2471 }
2472 }
2473
2474 if (n->nr_partial <= MAX_PARTIAL)
2475 goto out;
2476
2477 /*
672bba3a
CL
2478 * Rebuild the partial list with the slabs filled up most
2479 * first and the least used slabs at the end.
2086d26a
CL
2480 */
2481 for (i = s->objects - 1; i >= 0; i--)
2482 list_splice(slabs_by_inuse + i, n->partial.prev);
2483
2484 out:
2485 spin_unlock_irqrestore(&n->list_lock, flags);
2486 }
2487
2488 kfree(slabs_by_inuse);
2489 return 0;
2490}
2491EXPORT_SYMBOL(kmem_cache_shrink);
2492
81819f0f
CL
2493/********************************************************************
2494 * Basic setup of slabs
2495 *******************************************************************/
2496
2497void __init kmem_cache_init(void)
2498{
2499 int i;
4b356be0 2500 int caches = 0;
81819f0f
CL
2501
2502#ifdef CONFIG_NUMA
2503 /*
2504 * Must first have the slab cache available for the allocations of the
672bba3a 2505 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2506 * kmem_cache_open for slab_state == DOWN.
2507 */
2508 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2509 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2510 kmalloc_caches[0].refcount = -1;
4b356be0 2511 caches++;
81819f0f
CL
2512#endif
2513
2514 /* Able to allocate the per node structures */
2515 slab_state = PARTIAL;
2516
2517 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2518 if (KMALLOC_MIN_SIZE <= 64) {
2519 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2520 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2521 caches++;
2522 }
2523 if (KMALLOC_MIN_SIZE <= 128) {
2524 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2525 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2526 caches++;
2527 }
81819f0f 2528
4b356be0 2529 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
81819f0f
CL
2530 create_kmalloc_cache(&kmalloc_caches[i],
2531 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2532 caches++;
2533 }
81819f0f
CL
2534
2535 slab_state = UP;
2536
2537 /* Provide the correct kmalloc names now that the caches are up */
2538 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2539 kmalloc_caches[i]. name =
2540 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2541
2542#ifdef CONFIG_SMP
2543 register_cpu_notifier(&slab_notifier);
2544#endif
2545
bcf889f9
CL
2546 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2547 nr_cpu_ids * sizeof(struct page *);
81819f0f
CL
2548
2549 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
2550 " CPUs=%d, Nodes=%d\n",
2551 caches, cache_line_size(),
81819f0f
CL
2552 slub_min_order, slub_max_order, slub_min_objects,
2553 nr_cpu_ids, nr_node_ids);
2554}
2555
2556/*
2557 * Find a mergeable slab cache
2558 */
2559static int slab_unmergeable(struct kmem_cache *s)
2560{
2561 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2562 return 1;
2563
c59def9f 2564 if (s->ctor)
81819f0f
CL
2565 return 1;
2566
8ffa6875
CL
2567 /*
2568 * We may have set a slab to be unmergeable during bootstrap.
2569 */
2570 if (s->refcount < 0)
2571 return 1;
2572
81819f0f
CL
2573 return 0;
2574}
2575
2576static struct kmem_cache *find_mergeable(size_t size,
2577 size_t align, unsigned long flags,
c59def9f 2578 void (*ctor)(void *, struct kmem_cache *, unsigned long))
81819f0f 2579{
5b95a4ac 2580 struct kmem_cache *s;
81819f0f
CL
2581
2582 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2583 return NULL;
2584
c59def9f 2585 if (ctor)
81819f0f
CL
2586 return NULL;
2587
2588 size = ALIGN(size, sizeof(void *));
2589 align = calculate_alignment(flags, align, size);
2590 size = ALIGN(size, align);
2591
5b95a4ac 2592 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
2593 if (slab_unmergeable(s))
2594 continue;
2595
2596 if (size > s->size)
2597 continue;
2598
2599 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2600 (s->flags & SLUB_MERGE_SAME))
2601 continue;
2602 /*
2603 * Check if alignment is compatible.
2604 * Courtesy of Adrian Drzewiecki
2605 */
2606 if ((s->size & ~(align -1)) != s->size)
2607 continue;
2608
2609 if (s->size - size >= sizeof(void *))
2610 continue;
2611
2612 return s;
2613 }
2614 return NULL;
2615}
2616
2617struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2618 size_t align, unsigned long flags,
2619 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2620 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2621{
2622 struct kmem_cache *s;
2623
c59def9f 2624 BUG_ON(dtor);
81819f0f 2625 down_write(&slub_lock);
c59def9f 2626 s = find_mergeable(size, align, flags, ctor);
81819f0f
CL
2627 if (s) {
2628 s->refcount++;
2629 /*
2630 * Adjust the object sizes so that we clear
2631 * the complete object on kzalloc.
2632 */
2633 s->objsize = max(s->objsize, (int)size);
2634 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2635 if (sysfs_slab_alias(s, name))
2636 goto err;
2637 } else {
2638 s = kmalloc(kmem_size, GFP_KERNEL);
2639 if (s && kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 2640 size, align, flags, ctor)) {
81819f0f
CL
2641 if (sysfs_slab_add(s)) {
2642 kfree(s);
2643 goto err;
2644 }
2645 list_add(&s->list, &slab_caches);
2646 } else
2647 kfree(s);
2648 }
2649 up_write(&slub_lock);
2650 return s;
2651
2652err:
2653 up_write(&slub_lock);
2654 if (flags & SLAB_PANIC)
2655 panic("Cannot create slabcache %s\n", name);
2656 else
2657 s = NULL;
2658 return s;
2659}
2660EXPORT_SYMBOL(kmem_cache_create);
2661
2662void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2663{
2664 void *x;
2665
d07dbea4 2666 x = slab_alloc(s, flags, -1, __builtin_return_address(0), 0);
81819f0f
CL
2667 if (x)
2668 memset(x, 0, s->objsize);
2669 return x;
2670}
2671EXPORT_SYMBOL(kmem_cache_zalloc);
2672
2673#ifdef CONFIG_SMP
81819f0f 2674/*
672bba3a
CL
2675 * Use the cpu notifier to insure that the cpu slabs are flushed when
2676 * necessary.
81819f0f
CL
2677 */
2678static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2679 unsigned long action, void *hcpu)
2680{
2681 long cpu = (long)hcpu;
5b95a4ac
CL
2682 struct kmem_cache *s;
2683 unsigned long flags;
81819f0f
CL
2684
2685 switch (action) {
2686 case CPU_UP_CANCELED:
8bb78442 2687 case CPU_UP_CANCELED_FROZEN:
81819f0f 2688 case CPU_DEAD:
8bb78442 2689 case CPU_DEAD_FROZEN:
5b95a4ac
CL
2690 down_read(&slub_lock);
2691 list_for_each_entry(s, &slab_caches, list) {
2692 local_irq_save(flags);
2693 __flush_cpu_slab(s, cpu);
2694 local_irq_restore(flags);
2695 }
2696 up_read(&slub_lock);
81819f0f
CL
2697 break;
2698 default:
2699 break;
2700 }
2701 return NOTIFY_OK;
2702}
2703
2704static struct notifier_block __cpuinitdata slab_notifier =
2705 { &slab_cpuup_callback, NULL, 0 };
2706
2707#endif
2708
81819f0f
CL
2709void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2710{
2711 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f 2712
6cb8f913
CL
2713 if (ZERO_OR_NULL_PTR(s))
2714 return s;
81819f0f 2715
d07dbea4 2716 return slab_alloc(s, gfpflags, -1, caller, size);
81819f0f
CL
2717}
2718
2719void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2720 int node, void *caller)
2721{
2722 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f 2723
6cb8f913
CL
2724 if (ZERO_OR_NULL_PTR(s))
2725 return s;
81819f0f 2726
d07dbea4 2727 return slab_alloc(s, gfpflags, node, caller, size);
81819f0f
CL
2728}
2729
41ecc55b 2730#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
53e15af0
CL
2731static int validate_slab(struct kmem_cache *s, struct page *page)
2732{
2733 void *p;
2734 void *addr = page_address(page);
7656c72b 2735 DECLARE_BITMAP(map, s->objects);
53e15af0
CL
2736
2737 if (!check_slab(s, page) ||
2738 !on_freelist(s, page, NULL))
2739 return 0;
2740
2741 /* Now we know that a valid freelist exists */
2742 bitmap_zero(map, s->objects);
2743
7656c72b
CL
2744 for_each_free_object(p, s, page->freelist) {
2745 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
2746 if (!check_object(s, page, p, 0))
2747 return 0;
2748 }
2749
7656c72b
CL
2750 for_each_object(p, s, addr)
2751 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
2752 if (!check_object(s, page, p, 1))
2753 return 0;
2754 return 1;
2755}
2756
2757static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2758{
2759 if (slab_trylock(page)) {
2760 validate_slab(s, page);
2761 slab_unlock(page);
2762 } else
2763 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2764 s->name, page);
2765
2766 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
2767 if (!SlabDebug(page))
2768 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
2769 "on slab 0x%p\n", s->name, page);
2770 } else {
35e5d7ee
CL
2771 if (SlabDebug(page))
2772 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
2773 "slab 0x%p\n", s->name, page);
2774 }
2775}
2776
2777static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2778{
2779 unsigned long count = 0;
2780 struct page *page;
2781 unsigned long flags;
2782
2783 spin_lock_irqsave(&n->list_lock, flags);
2784
2785 list_for_each_entry(page, &n->partial, lru) {
2786 validate_slab_slab(s, page);
2787 count++;
2788 }
2789 if (count != n->nr_partial)
2790 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2791 "counter=%ld\n", s->name, count, n->nr_partial);
2792
2793 if (!(s->flags & SLAB_STORE_USER))
2794 goto out;
2795
2796 list_for_each_entry(page, &n->full, lru) {
2797 validate_slab_slab(s, page);
2798 count++;
2799 }
2800 if (count != atomic_long_read(&n->nr_slabs))
2801 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2802 "counter=%ld\n", s->name, count,
2803 atomic_long_read(&n->nr_slabs));
2804
2805out:
2806 spin_unlock_irqrestore(&n->list_lock, flags);
2807 return count;
2808}
2809
2810static unsigned long validate_slab_cache(struct kmem_cache *s)
2811{
2812 int node;
2813 unsigned long count = 0;
2814
2815 flush_all(s);
2816 for_each_online_node(node) {
2817 struct kmem_cache_node *n = get_node(s, node);
2818
2819 count += validate_slab_node(s, n);
2820 }
2821 return count;
2822}
2823
b3459709
CL
2824#ifdef SLUB_RESILIENCY_TEST
2825static void resiliency_test(void)
2826{
2827 u8 *p;
2828
2829 printk(KERN_ERR "SLUB resiliency testing\n");
2830 printk(KERN_ERR "-----------------------\n");
2831 printk(KERN_ERR "A. Corruption after allocation\n");
2832
2833 p = kzalloc(16, GFP_KERNEL);
2834 p[16] = 0x12;
2835 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2836 " 0x12->0x%p\n\n", p + 16);
2837
2838 validate_slab_cache(kmalloc_caches + 4);
2839
2840 /* Hmmm... The next two are dangerous */
2841 p = kzalloc(32, GFP_KERNEL);
2842 p[32 + sizeof(void *)] = 0x34;
2843 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2844 " 0x34 -> -0x%p\n", p);
2845 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2846
2847 validate_slab_cache(kmalloc_caches + 5);
2848 p = kzalloc(64, GFP_KERNEL);
2849 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2850 *p = 0x56;
2851 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2852 p);
2853 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2854 validate_slab_cache(kmalloc_caches + 6);
2855
2856 printk(KERN_ERR "\nB. Corruption after free\n");
2857 p = kzalloc(128, GFP_KERNEL);
2858 kfree(p);
2859 *p = 0x78;
2860 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2861 validate_slab_cache(kmalloc_caches + 7);
2862
2863 p = kzalloc(256, GFP_KERNEL);
2864 kfree(p);
2865 p[50] = 0x9a;
2866 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2867 validate_slab_cache(kmalloc_caches + 8);
2868
2869 p = kzalloc(512, GFP_KERNEL);
2870 kfree(p);
2871 p[512] = 0xab;
2872 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2873 validate_slab_cache(kmalloc_caches + 9);
2874}
2875#else
2876static void resiliency_test(void) {};
2877#endif
2878
88a420e4 2879/*
672bba3a 2880 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
2881 * and freed.
2882 */
2883
2884struct location {
2885 unsigned long count;
2886 void *addr;
45edfa58
CL
2887 long long sum_time;
2888 long min_time;
2889 long max_time;
2890 long min_pid;
2891 long max_pid;
2892 cpumask_t cpus;
2893 nodemask_t nodes;
88a420e4
CL
2894};
2895
2896struct loc_track {
2897 unsigned long max;
2898 unsigned long count;
2899 struct location *loc;
2900};
2901
2902static void free_loc_track(struct loc_track *t)
2903{
2904 if (t->max)
2905 free_pages((unsigned long)t->loc,
2906 get_order(sizeof(struct location) * t->max));
2907}
2908
68dff6a9 2909static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
2910{
2911 struct location *l;
2912 int order;
2913
88a420e4
CL
2914 order = get_order(sizeof(struct location) * max);
2915
68dff6a9 2916 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
2917 if (!l)
2918 return 0;
2919
2920 if (t->count) {
2921 memcpy(l, t->loc, sizeof(struct location) * t->count);
2922 free_loc_track(t);
2923 }
2924 t->max = max;
2925 t->loc = l;
2926 return 1;
2927}
2928
2929static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 2930 const struct track *track)
88a420e4
CL
2931{
2932 long start, end, pos;
2933 struct location *l;
2934 void *caddr;
45edfa58 2935 unsigned long age = jiffies - track->when;
88a420e4
CL
2936
2937 start = -1;
2938 end = t->count;
2939
2940 for ( ; ; ) {
2941 pos = start + (end - start + 1) / 2;
2942
2943 /*
2944 * There is nothing at "end". If we end up there
2945 * we need to add something to before end.
2946 */
2947 if (pos == end)
2948 break;
2949
2950 caddr = t->loc[pos].addr;
45edfa58
CL
2951 if (track->addr == caddr) {
2952
2953 l = &t->loc[pos];
2954 l->count++;
2955 if (track->when) {
2956 l->sum_time += age;
2957 if (age < l->min_time)
2958 l->min_time = age;
2959 if (age > l->max_time)
2960 l->max_time = age;
2961
2962 if (track->pid < l->min_pid)
2963 l->min_pid = track->pid;
2964 if (track->pid > l->max_pid)
2965 l->max_pid = track->pid;
2966
2967 cpu_set(track->cpu, l->cpus);
2968 }
2969 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
2970 return 1;
2971 }
2972
45edfa58 2973 if (track->addr < caddr)
88a420e4
CL
2974 end = pos;
2975 else
2976 start = pos;
2977 }
2978
2979 /*
672bba3a 2980 * Not found. Insert new tracking element.
88a420e4 2981 */
68dff6a9 2982 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
2983 return 0;
2984
2985 l = t->loc + pos;
2986 if (pos < t->count)
2987 memmove(l + 1, l,
2988 (t->count - pos) * sizeof(struct location));
2989 t->count++;
2990 l->count = 1;
45edfa58
CL
2991 l->addr = track->addr;
2992 l->sum_time = age;
2993 l->min_time = age;
2994 l->max_time = age;
2995 l->min_pid = track->pid;
2996 l->max_pid = track->pid;
2997 cpus_clear(l->cpus);
2998 cpu_set(track->cpu, l->cpus);
2999 nodes_clear(l->nodes);
3000 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3001 return 1;
3002}
3003
3004static void process_slab(struct loc_track *t, struct kmem_cache *s,
3005 struct page *page, enum track_item alloc)
3006{
3007 void *addr = page_address(page);
7656c72b 3008 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
3009 void *p;
3010
3011 bitmap_zero(map, s->objects);
7656c72b
CL
3012 for_each_free_object(p, s, page->freelist)
3013 set_bit(slab_index(p, s, addr), map);
88a420e4 3014
7656c72b 3015 for_each_object(p, s, addr)
45edfa58
CL
3016 if (!test_bit(slab_index(p, s, addr), map))
3017 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3018}
3019
3020static int list_locations(struct kmem_cache *s, char *buf,
3021 enum track_item alloc)
3022{
3023 int n = 0;
3024 unsigned long i;
68dff6a9 3025 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3026 int node;
3027
68dff6a9
CL
3028 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3029 GFP_KERNEL))
3030 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3031
3032 /* Push back cpu slabs */
3033 flush_all(s);
3034
3035 for_each_online_node(node) {
3036 struct kmem_cache_node *n = get_node(s, node);
3037 unsigned long flags;
3038 struct page *page;
3039
3040 if (!atomic_read(&n->nr_slabs))
3041 continue;
3042
3043 spin_lock_irqsave(&n->list_lock, flags);
3044 list_for_each_entry(page, &n->partial, lru)
3045 process_slab(&t, s, page, alloc);
3046 list_for_each_entry(page, &n->full, lru)
3047 process_slab(&t, s, page, alloc);
3048 spin_unlock_irqrestore(&n->list_lock, flags);
3049 }
3050
3051 for (i = 0; i < t.count; i++) {
45edfa58 3052 struct location *l = &t.loc[i];
88a420e4
CL
3053
3054 if (n > PAGE_SIZE - 100)
3055 break;
45edfa58
CL
3056 n += sprintf(buf + n, "%7ld ", l->count);
3057
3058 if (l->addr)
3059 n += sprint_symbol(buf + n, (unsigned long)l->addr);
88a420e4
CL
3060 else
3061 n += sprintf(buf + n, "<not-available>");
45edfa58
CL
3062
3063 if (l->sum_time != l->min_time) {
3064 unsigned long remainder;
3065
3066 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3067 l->min_time,
3068 div_long_long_rem(l->sum_time, l->count, &remainder),
3069 l->max_time);
3070 } else
3071 n += sprintf(buf + n, " age=%ld",
3072 l->min_time);
3073
3074 if (l->min_pid != l->max_pid)
3075 n += sprintf(buf + n, " pid=%ld-%ld",
3076 l->min_pid, l->max_pid);
3077 else
3078 n += sprintf(buf + n, " pid=%ld",
3079 l->min_pid);
3080
84966343
CL
3081 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3082 n < PAGE_SIZE - 60) {
45edfa58
CL
3083 n += sprintf(buf + n, " cpus=");
3084 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3085 l->cpus);
3086 }
3087
84966343
CL
3088 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3089 n < PAGE_SIZE - 60) {
45edfa58
CL
3090 n += sprintf(buf + n, " nodes=");
3091 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3092 l->nodes);
3093 }
3094
88a420e4
CL
3095 n += sprintf(buf + n, "\n");
3096 }
3097
3098 free_loc_track(&t);
3099 if (!t.count)
3100 n += sprintf(buf, "No data\n");
3101 return n;
3102}
3103
81819f0f
CL
3104static unsigned long count_partial(struct kmem_cache_node *n)
3105{
3106 unsigned long flags;
3107 unsigned long x = 0;
3108 struct page *page;
3109
3110 spin_lock_irqsave(&n->list_lock, flags);
3111 list_for_each_entry(page, &n->partial, lru)
3112 x += page->inuse;
3113 spin_unlock_irqrestore(&n->list_lock, flags);
3114 return x;
3115}
3116
3117enum slab_stat_type {
3118 SL_FULL,
3119 SL_PARTIAL,
3120 SL_CPU,
3121 SL_OBJECTS
3122};
3123
3124#define SO_FULL (1 << SL_FULL)
3125#define SO_PARTIAL (1 << SL_PARTIAL)
3126#define SO_CPU (1 << SL_CPU)
3127#define SO_OBJECTS (1 << SL_OBJECTS)
3128
3129static unsigned long slab_objects(struct kmem_cache *s,
3130 char *buf, unsigned long flags)
3131{
3132 unsigned long total = 0;
3133 int cpu;
3134 int node;
3135 int x;
3136 unsigned long *nodes;
3137 unsigned long *per_cpu;
3138
3139 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3140 per_cpu = nodes + nr_node_ids;
3141
3142 for_each_possible_cpu(cpu) {
3143 struct page *page = s->cpu_slab[cpu];
3144 int node;
3145
3146 if (page) {
3147 node = page_to_nid(page);
3148 if (flags & SO_CPU) {
3149 int x = 0;
3150
3151 if (flags & SO_OBJECTS)
3152 x = page->inuse;
3153 else
3154 x = 1;
3155 total += x;
3156 nodes[node] += x;
3157 }
3158 per_cpu[node]++;
3159 }
3160 }
3161
3162 for_each_online_node(node) {
3163 struct kmem_cache_node *n = get_node(s, node);
3164
3165 if (flags & SO_PARTIAL) {
3166 if (flags & SO_OBJECTS)
3167 x = count_partial(n);
3168 else
3169 x = n->nr_partial;
3170 total += x;
3171 nodes[node] += x;
3172 }
3173
3174 if (flags & SO_FULL) {
3175 int full_slabs = atomic_read(&n->nr_slabs)
3176 - per_cpu[node]
3177 - n->nr_partial;
3178
3179 if (flags & SO_OBJECTS)
3180 x = full_slabs * s->objects;
3181 else
3182 x = full_slabs;
3183 total += x;
3184 nodes[node] += x;
3185 }
3186 }
3187
3188 x = sprintf(buf, "%lu", total);
3189#ifdef CONFIG_NUMA
3190 for_each_online_node(node)
3191 if (nodes[node])
3192 x += sprintf(buf + x, " N%d=%lu",
3193 node, nodes[node]);
3194#endif
3195 kfree(nodes);
3196 return x + sprintf(buf + x, "\n");
3197}
3198
3199static int any_slab_objects(struct kmem_cache *s)
3200{
3201 int node;
3202 int cpu;
3203
3204 for_each_possible_cpu(cpu)
3205 if (s->cpu_slab[cpu])
3206 return 1;
3207
3208 for_each_node(node) {
3209 struct kmem_cache_node *n = get_node(s, node);
3210
3211 if (n->nr_partial || atomic_read(&n->nr_slabs))
3212 return 1;
3213 }
3214 return 0;
3215}
3216
3217#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3218#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3219
3220struct slab_attribute {
3221 struct attribute attr;
3222 ssize_t (*show)(struct kmem_cache *s, char *buf);
3223 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3224};
3225
3226#define SLAB_ATTR_RO(_name) \
3227 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3228
3229#define SLAB_ATTR(_name) \
3230 static struct slab_attribute _name##_attr = \
3231 __ATTR(_name, 0644, _name##_show, _name##_store)
3232
81819f0f
CL
3233static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3234{
3235 return sprintf(buf, "%d\n", s->size);
3236}
3237SLAB_ATTR_RO(slab_size);
3238
3239static ssize_t align_show(struct kmem_cache *s, char *buf)
3240{
3241 return sprintf(buf, "%d\n", s->align);
3242}
3243SLAB_ATTR_RO(align);
3244
3245static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3246{
3247 return sprintf(buf, "%d\n", s->objsize);
3248}
3249SLAB_ATTR_RO(object_size);
3250
3251static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3252{
3253 return sprintf(buf, "%d\n", s->objects);
3254}
3255SLAB_ATTR_RO(objs_per_slab);
3256
3257static ssize_t order_show(struct kmem_cache *s, char *buf)
3258{
3259 return sprintf(buf, "%d\n", s->order);
3260}
3261SLAB_ATTR_RO(order);
3262
3263static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3264{
3265 if (s->ctor) {
3266 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3267
3268 return n + sprintf(buf + n, "\n");
3269 }
3270 return 0;
3271}
3272SLAB_ATTR_RO(ctor);
3273
81819f0f
CL
3274static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3275{
3276 return sprintf(buf, "%d\n", s->refcount - 1);
3277}
3278SLAB_ATTR_RO(aliases);
3279
3280static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3281{
3282 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3283}
3284SLAB_ATTR_RO(slabs);
3285
3286static ssize_t partial_show(struct kmem_cache *s, char *buf)
3287{
3288 return slab_objects(s, buf, SO_PARTIAL);
3289}
3290SLAB_ATTR_RO(partial);
3291
3292static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3293{
3294 return slab_objects(s, buf, SO_CPU);
3295}
3296SLAB_ATTR_RO(cpu_slabs);
3297
3298static ssize_t objects_show(struct kmem_cache *s, char *buf)
3299{
3300 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3301}
3302SLAB_ATTR_RO(objects);
3303
3304static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3305{
3306 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3307}
3308
3309static ssize_t sanity_checks_store(struct kmem_cache *s,
3310 const char *buf, size_t length)
3311{
3312 s->flags &= ~SLAB_DEBUG_FREE;
3313 if (buf[0] == '1')
3314 s->flags |= SLAB_DEBUG_FREE;
3315 return length;
3316}
3317SLAB_ATTR(sanity_checks);
3318
3319static ssize_t trace_show(struct kmem_cache *s, char *buf)
3320{
3321 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3322}
3323
3324static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3325 size_t length)
3326{
3327 s->flags &= ~SLAB_TRACE;
3328 if (buf[0] == '1')
3329 s->flags |= SLAB_TRACE;
3330 return length;
3331}
3332SLAB_ATTR(trace);
3333
3334static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3335{
3336 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3337}
3338
3339static ssize_t reclaim_account_store(struct kmem_cache *s,
3340 const char *buf, size_t length)
3341{
3342 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3343 if (buf[0] == '1')
3344 s->flags |= SLAB_RECLAIM_ACCOUNT;
3345 return length;
3346}
3347SLAB_ATTR(reclaim_account);
3348
3349static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3350{
5af60839 3351 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3352}
3353SLAB_ATTR_RO(hwcache_align);
3354
3355#ifdef CONFIG_ZONE_DMA
3356static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3357{
3358 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3359}
3360SLAB_ATTR_RO(cache_dma);
3361#endif
3362
3363static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3364{
3365 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3366}
3367SLAB_ATTR_RO(destroy_by_rcu);
3368
3369static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3370{
3371 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3372}
3373
3374static ssize_t red_zone_store(struct kmem_cache *s,
3375 const char *buf, size_t length)
3376{
3377 if (any_slab_objects(s))
3378 return -EBUSY;
3379
3380 s->flags &= ~SLAB_RED_ZONE;
3381 if (buf[0] == '1')
3382 s->flags |= SLAB_RED_ZONE;
3383 calculate_sizes(s);
3384 return length;
3385}
3386SLAB_ATTR(red_zone);
3387
3388static ssize_t poison_show(struct kmem_cache *s, char *buf)
3389{
3390 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3391}
3392
3393static ssize_t poison_store(struct kmem_cache *s,
3394 const char *buf, size_t length)
3395{
3396 if (any_slab_objects(s))
3397 return -EBUSY;
3398
3399 s->flags &= ~SLAB_POISON;
3400 if (buf[0] == '1')
3401 s->flags |= SLAB_POISON;
3402 calculate_sizes(s);
3403 return length;
3404}
3405SLAB_ATTR(poison);
3406
3407static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3408{
3409 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3410}
3411
3412static ssize_t store_user_store(struct kmem_cache *s,
3413 const char *buf, size_t length)
3414{
3415 if (any_slab_objects(s))
3416 return -EBUSY;
3417
3418 s->flags &= ~SLAB_STORE_USER;
3419 if (buf[0] == '1')
3420 s->flags |= SLAB_STORE_USER;
3421 calculate_sizes(s);
3422 return length;
3423}
3424SLAB_ATTR(store_user);
3425
53e15af0
CL
3426static ssize_t validate_show(struct kmem_cache *s, char *buf)
3427{
3428 return 0;
3429}
3430
3431static ssize_t validate_store(struct kmem_cache *s,
3432 const char *buf, size_t length)
3433{
3434 if (buf[0] == '1')
3435 validate_slab_cache(s);
3436 else
3437 return -EINVAL;
3438 return length;
3439}
3440SLAB_ATTR(validate);
3441
2086d26a
CL
3442static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3443{
3444 return 0;
3445}
3446
3447static ssize_t shrink_store(struct kmem_cache *s,
3448 const char *buf, size_t length)
3449{
3450 if (buf[0] == '1') {
3451 int rc = kmem_cache_shrink(s);
3452
3453 if (rc)
3454 return rc;
3455 } else
3456 return -EINVAL;
3457 return length;
3458}
3459SLAB_ATTR(shrink);
3460
88a420e4
CL
3461static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3462{
3463 if (!(s->flags & SLAB_STORE_USER))
3464 return -ENOSYS;
3465 return list_locations(s, buf, TRACK_ALLOC);
3466}
3467SLAB_ATTR_RO(alloc_calls);
3468
3469static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3470{
3471 if (!(s->flags & SLAB_STORE_USER))
3472 return -ENOSYS;
3473 return list_locations(s, buf, TRACK_FREE);
3474}
3475SLAB_ATTR_RO(free_calls);
3476
81819f0f
CL
3477#ifdef CONFIG_NUMA
3478static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3479{
3480 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3481}
3482
3483static ssize_t defrag_ratio_store(struct kmem_cache *s,
3484 const char *buf, size_t length)
3485{
3486 int n = simple_strtoul(buf, NULL, 10);
3487
3488 if (n < 100)
3489 s->defrag_ratio = n * 10;
3490 return length;
3491}
3492SLAB_ATTR(defrag_ratio);
3493#endif
3494
3495static struct attribute * slab_attrs[] = {
3496 &slab_size_attr.attr,
3497 &object_size_attr.attr,
3498 &objs_per_slab_attr.attr,
3499 &order_attr.attr,
3500 &objects_attr.attr,
3501 &slabs_attr.attr,
3502 &partial_attr.attr,
3503 &cpu_slabs_attr.attr,
3504 &ctor_attr.attr,
81819f0f
CL
3505 &aliases_attr.attr,
3506 &align_attr.attr,
3507 &sanity_checks_attr.attr,
3508 &trace_attr.attr,
3509 &hwcache_align_attr.attr,
3510 &reclaim_account_attr.attr,
3511 &destroy_by_rcu_attr.attr,
3512 &red_zone_attr.attr,
3513 &poison_attr.attr,
3514 &store_user_attr.attr,
53e15af0 3515 &validate_attr.attr,
2086d26a 3516 &shrink_attr.attr,
88a420e4
CL
3517 &alloc_calls_attr.attr,
3518 &free_calls_attr.attr,
81819f0f
CL
3519#ifdef CONFIG_ZONE_DMA
3520 &cache_dma_attr.attr,
3521#endif
3522#ifdef CONFIG_NUMA
3523 &defrag_ratio_attr.attr,
3524#endif
3525 NULL
3526};
3527
3528static struct attribute_group slab_attr_group = {
3529 .attrs = slab_attrs,
3530};
3531
3532static ssize_t slab_attr_show(struct kobject *kobj,
3533 struct attribute *attr,
3534 char *buf)
3535{
3536 struct slab_attribute *attribute;
3537 struct kmem_cache *s;
3538 int err;
3539
3540 attribute = to_slab_attr(attr);
3541 s = to_slab(kobj);
3542
3543 if (!attribute->show)
3544 return -EIO;
3545
3546 err = attribute->show(s, buf);
3547
3548 return err;
3549}
3550
3551static ssize_t slab_attr_store(struct kobject *kobj,
3552 struct attribute *attr,
3553 const char *buf, size_t len)
3554{
3555 struct slab_attribute *attribute;
3556 struct kmem_cache *s;
3557 int err;
3558
3559 attribute = to_slab_attr(attr);
3560 s = to_slab(kobj);
3561
3562 if (!attribute->store)
3563 return -EIO;
3564
3565 err = attribute->store(s, buf, len);
3566
3567 return err;
3568}
3569
3570static struct sysfs_ops slab_sysfs_ops = {
3571 .show = slab_attr_show,
3572 .store = slab_attr_store,
3573};
3574
3575static struct kobj_type slab_ktype = {
3576 .sysfs_ops = &slab_sysfs_ops,
3577};
3578
3579static int uevent_filter(struct kset *kset, struct kobject *kobj)
3580{
3581 struct kobj_type *ktype = get_ktype(kobj);
3582
3583 if (ktype == &slab_ktype)
3584 return 1;
3585 return 0;
3586}
3587
3588static struct kset_uevent_ops slab_uevent_ops = {
3589 .filter = uevent_filter,
3590};
3591
3592decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3593
3594#define ID_STR_LENGTH 64
3595
3596/* Create a unique string id for a slab cache:
3597 * format
3598 * :[flags-]size:[memory address of kmemcache]
3599 */
3600static char *create_unique_id(struct kmem_cache *s)
3601{
3602 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3603 char *p = name;
3604
3605 BUG_ON(!name);
3606
3607 *p++ = ':';
3608 /*
3609 * First flags affecting slabcache operations. We will only
3610 * get here for aliasable slabs so we do not need to support
3611 * too many flags. The flags here must cover all flags that
3612 * are matched during merging to guarantee that the id is
3613 * unique.
3614 */
3615 if (s->flags & SLAB_CACHE_DMA)
3616 *p++ = 'd';
3617 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3618 *p++ = 'a';
3619 if (s->flags & SLAB_DEBUG_FREE)
3620 *p++ = 'F';
3621 if (p != name + 1)
3622 *p++ = '-';
3623 p += sprintf(p, "%07d", s->size);
3624 BUG_ON(p > name + ID_STR_LENGTH - 1);
3625 return name;
3626}
3627
3628static int sysfs_slab_add(struct kmem_cache *s)
3629{
3630 int err;
3631 const char *name;
3632 int unmergeable;
3633
3634 if (slab_state < SYSFS)
3635 /* Defer until later */
3636 return 0;
3637
3638 unmergeable = slab_unmergeable(s);
3639 if (unmergeable) {
3640 /*
3641 * Slabcache can never be merged so we can use the name proper.
3642 * This is typically the case for debug situations. In that
3643 * case we can catch duplicate names easily.
3644 */
0f9008ef 3645 sysfs_remove_link(&slab_subsys.kobj, s->name);
81819f0f
CL
3646 name = s->name;
3647 } else {
3648 /*
3649 * Create a unique name for the slab as a target
3650 * for the symlinks.
3651 */
3652 name = create_unique_id(s);
3653 }
3654
3655 kobj_set_kset_s(s, slab_subsys);
3656 kobject_set_name(&s->kobj, name);
3657 kobject_init(&s->kobj);
3658 err = kobject_add(&s->kobj);
3659 if (err)
3660 return err;
3661
3662 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3663 if (err)
3664 return err;
3665 kobject_uevent(&s->kobj, KOBJ_ADD);
3666 if (!unmergeable) {
3667 /* Setup first alias */
3668 sysfs_slab_alias(s, s->name);
3669 kfree(name);
3670 }
3671 return 0;
3672}
3673
3674static void sysfs_slab_remove(struct kmem_cache *s)
3675{
3676 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3677 kobject_del(&s->kobj);
3678}
3679
3680/*
3681 * Need to buffer aliases during bootup until sysfs becomes
3682 * available lest we loose that information.
3683 */
3684struct saved_alias {
3685 struct kmem_cache *s;
3686 const char *name;
3687 struct saved_alias *next;
3688};
3689
3690struct saved_alias *alias_list;
3691
3692static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3693{
3694 struct saved_alias *al;
3695
3696 if (slab_state == SYSFS) {
3697 /*
3698 * If we have a leftover link then remove it.
3699 */
0f9008ef
LT
3700 sysfs_remove_link(&slab_subsys.kobj, name);
3701 return sysfs_create_link(&slab_subsys.kobj,
81819f0f
CL
3702 &s->kobj, name);
3703 }
3704
3705 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3706 if (!al)
3707 return -ENOMEM;
3708
3709 al->s = s;
3710 al->name = name;
3711 al->next = alias_list;
3712 alias_list = al;
3713 return 0;
3714}
3715
3716static int __init slab_sysfs_init(void)
3717{
5b95a4ac 3718 struct kmem_cache *s;
81819f0f
CL
3719 int err;
3720
3721 err = subsystem_register(&slab_subsys);
3722 if (err) {
3723 printk(KERN_ERR "Cannot register slab subsystem.\n");
3724 return -ENOSYS;
3725 }
3726
26a7bd03
CL
3727 slab_state = SYSFS;
3728
5b95a4ac 3729 list_for_each_entry(s, &slab_caches, list) {
26a7bd03
CL
3730 err = sysfs_slab_add(s);
3731 BUG_ON(err);
3732 }
81819f0f
CL
3733
3734 while (alias_list) {
3735 struct saved_alias *al = alias_list;
3736
3737 alias_list = alias_list->next;
3738 err = sysfs_slab_alias(al->s, al->name);
3739 BUG_ON(err);
3740 kfree(al);
3741 }
3742
3743 resiliency_test();
3744 return 0;
3745}
3746
3747__initcall(slab_sysfs_init);
81819f0f 3748#endif