mm/slab_common: kmalloc_node: pass large requests to page allocator
[linux-2.6-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
5cf909c5 29#include <linux/stackdepot.h>
3ac7fe5a 30#include <linux/debugobjects.h>
81819f0f 31#include <linux/kallsyms.h>
b89fb5ef 32#include <linux/kfence.h>
b9049e23 33#include <linux/memory.h>
f8bd2258 34#include <linux/math64.h>
773ff60e 35#include <linux/fault-inject.h>
bfa71457 36#include <linux/stacktrace.h>
4de900b4 37#include <linux/prefetch.h>
2633d7a0 38#include <linux/memcontrol.h>
2482ddec 39#include <linux/random.h>
1f9f78b1 40#include <kunit/test.h>
553c0369 41#include <linux/sort.h>
81819f0f 42
64dd6849 43#include <linux/debugfs.h>
4a92379b
RK
44#include <trace/events/kmem.h>
45
072bb0aa
MG
46#include "internal.h"
47
81819f0f
CL
48/*
49 * Lock order:
18004c5d 50 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
51 * 2. node->list_lock (Spinlock)
52 * 3. kmem_cache->cpu_slab->lock (Local lock)
c2092c12 53 * 4. slab_lock(slab) (Only on some arches or for debugging)
bd0e7491 54 * 5. object_map_lock (Only for debugging)
81819f0f 55 *
18004c5d 56 * slab_mutex
881db7fb 57 *
18004c5d 58 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 59 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
60 * Also synchronizes memory hotplug callbacks.
61 *
62 * slab_lock
63 *
64 * The slab_lock is a wrapper around the page lock, thus it is a bit
65 * spinlock.
881db7fb
CL
66 *
67 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 68 * have the ability to do a cmpxchg_double. It only protects:
c2092c12
VB
69 * A. slab->freelist -> List of free objects in a slab
70 * B. slab->inuse -> Number of objects in use
71 * C. slab->objects -> Number of objects in slab
72 * D. slab->frozen -> frozen state
881db7fb 73 *
bd0e7491
VB
74 * Frozen slabs
75 *
881db7fb 76 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0 77 * on any list except per cpu partial list. The processor that froze the
c2092c12 78 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
79 * processors may put objects onto the freelist but the processor that
80 * froze the slab is the only one that can retrieve the objects from the
c2092c12 81 * slab's freelist.
81819f0f 82 *
bd0e7491
VB
83 * list_lock
84 *
81819f0f
CL
85 * The list_lock protects the partial and full list on each node and
86 * the partial slab counter. If taken then no new slabs may be added or
87 * removed from the lists nor make the number of partial slabs be modified.
88 * (Note that the total number of slabs is an atomic value that may be
89 * modified without taking the list lock).
90 *
91 * The list_lock is a centralized lock and thus we avoid taking it as
92 * much as possible. As long as SLUB does not have to handle partial
93 * slabs, operations can continue without any centralized lock. F.e.
94 * allocating a long series of objects that fill up slabs does not require
95 * the list lock.
bd0e7491
VB
96 *
97 * cpu_slab->lock local lock
98 *
99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
100 * except the stat counters. This is a percpu structure manipulated only by
101 * the local cpu, so the lock protects against being preempted or interrupted
102 * by an irq. Fast path operations rely on lockless operations instead.
103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
104 * prevent the lockless operations), so fastpath operations also need to take
105 * the lock and are no longer lockless.
106 *
107 * lockless fastpaths
108 *
109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
110 * are fully lockless when satisfied from the percpu slab (and when
111 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
112 * They also don't disable preemption or migration or irqs. They rely on
113 * the transaction id (tid) field to detect being preempted or moved to
114 * another cpu.
115 *
116 * irq, preemption, migration considerations
117 *
118 * Interrupts are disabled as part of list_lock or local_lock operations, or
119 * around the slab_lock operation, in order to make the slab allocator safe
120 * to use in the context of an irq.
121 *
122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
125 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
126 *
127 * SLUB assigns one slab for allocation to each processor.
128 * Allocations only occur from these slabs called cpu slabs.
129 *
672bba3a
CL
130 * Slabs with free elements are kept on a partial list and during regular
131 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 132 * freed then the slab will show up again on the partial lists.
672bba3a
CL
133 * We track full slabs for debugging purposes though because otherwise we
134 * cannot scan all objects.
81819f0f
CL
135 *
136 * Slabs are freed when they become empty. Teardown and setup is
137 * minimal so we rely on the page allocators per cpu caches for
138 * fast frees and allocs.
139 *
c2092c12 140 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
141 * This means that the slab is dedicated to a purpose
142 * such as satisfying allocations for a specific
143 * processor. Objects may be freed in the slab while
144 * it is frozen but slab_free will then skip the usual
145 * list operations. It is up to the processor holding
146 * the slab to integrate the slab into the slab lists
147 * when the slab is no longer needed.
148 *
149 * One use of this flag is to mark slabs that are
150 * used for allocations. Then such a slab becomes a cpu
151 * slab. The cpu slab may be equipped with an additional
dfb4f096 152 * freelist that allows lockless access to
894b8788
CL
153 * free objects in addition to the regular freelist
154 * that requires the slab lock.
81819f0f 155 *
aed68148 156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 157 * options set. This moves slab handling out of
894b8788 158 * the fast path and disables lockless freelists.
81819f0f
CL
159 */
160
25c00c50
VB
161/*
162 * We could simply use migrate_disable()/enable() but as long as it's a
163 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
164 */
165#ifndef CONFIG_PREEMPT_RT
166#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
167#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
168#else
169#define slub_get_cpu_ptr(var) \
170({ \
171 migrate_disable(); \
172 this_cpu_ptr(var); \
173})
174#define slub_put_cpu_ptr(var) \
175do { \
176 (void)(var); \
177 migrate_enable(); \
178} while (0)
179#endif
180
ca0cab65
VB
181#ifdef CONFIG_SLUB_DEBUG
182#ifdef CONFIG_SLUB_DEBUG_ON
183DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
184#else
185DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
186#endif
79270291 187#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 188
59052e89
VB
189static inline bool kmem_cache_debug(struct kmem_cache *s)
190{
191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 192}
5577bd8a 193
117d54df 194void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 195{
59052e89 196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
197 p += s->red_left_pad;
198
199 return p;
200}
201
345c905d
JK
202static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
203{
204#ifdef CONFIG_SLUB_CPU_PARTIAL
205 return !kmem_cache_debug(s);
206#else
207 return false;
208#endif
209}
210
81819f0f
CL
211/*
212 * Issues still to be resolved:
213 *
81819f0f
CL
214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
215 *
81819f0f
CL
216 * - Variable sizing of the per node arrays
217 */
218
b789ef51
CL
219/* Enable to log cmpxchg failures */
220#undef SLUB_DEBUG_CMPXCHG
221
2086d26a 222/*
dc84207d 223 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
224 * lists even if they are empty. kmem_cache_shrink may reclaim them.
225 */
76be8950 226#define MIN_PARTIAL 5
e95eed57 227
2086d26a
CL
228/*
229 * Maximum number of desirable partial slabs.
230 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 231 * sort the partial list by the number of objects in use.
2086d26a
CL
232 */
233#define MAX_PARTIAL 10
234
becfda68 235#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 236 SLAB_POISON | SLAB_STORE_USER)
672bba3a 237
149daaf3
LA
238/*
239 * These debug flags cannot use CMPXCHG because there might be consistency
240 * issues when checking or reading debug information
241 */
242#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
243 SLAB_TRACE)
244
245
fa5ec8a1 246/*
3de47213
DR
247 * Debugging flags that require metadata to be stored in the slab. These get
248 * disabled when slub_debug=O is used and a cache's min order increases with
249 * metadata.
fa5ec8a1 250 */
3de47213 251#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 252
210b5c06
CG
253#define OO_SHIFT 16
254#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 255#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 256
81819f0f 257/* Internal SLUB flags */
d50112ed 258/* Poison object */
4fd0b46e 259#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 260/* Use cmpxchg_double */
4fd0b46e 261#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 262
02cbc874
CL
263/*
264 * Tracking user of a slab.
265 */
d6543e39 266#define TRACK_ADDRS_COUNT 16
02cbc874 267struct track {
ce71e27c 268 unsigned long addr; /* Called from address */
5cf909c5
OG
269#ifdef CONFIG_STACKDEPOT
270 depot_stack_handle_t handle;
d6543e39 271#endif
02cbc874
CL
272 int cpu; /* Was running on cpu */
273 int pid; /* Pid context */
274 unsigned long when; /* When did the operation occur */
275};
276
277enum track_item { TRACK_ALLOC, TRACK_FREE };
278
ab4d5ed5 279#ifdef CONFIG_SYSFS
81819f0f
CL
280static int sysfs_slab_add(struct kmem_cache *);
281static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 282#else
0c710013
CL
283static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
284static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
285 { return 0; }
81819f0f
CL
286#endif
287
64dd6849
FM
288#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
289static void debugfs_slab_add(struct kmem_cache *);
290#else
291static inline void debugfs_slab_add(struct kmem_cache *s) { }
292#endif
293
4fdccdfb 294static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
295{
296#ifdef CONFIG_SLUB_STATS
88da03a6
CL
297 /*
298 * The rmw is racy on a preemptible kernel but this is acceptable, so
299 * avoid this_cpu_add()'s irq-disable overhead.
300 */
301 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
302#endif
303}
304
7e1fa93d
VB
305/*
306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
308 * differ during memory hotplug/hotremove operations.
309 * Protected by slab_mutex.
310 */
311static nodemask_t slab_nodes;
312
81819f0f
CL
313/********************************************************************
314 * Core slab cache functions
315 *******************************************************************/
316
2482ddec
KC
317/*
318 * Returns freelist pointer (ptr). With hardening, this is obfuscated
319 * with an XOR of the address where the pointer is held and a per-cache
320 * random number.
321 */
322static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
323 unsigned long ptr_addr)
324{
325#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 326 /*
aa1ef4d7 327 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
328 * Normally, this doesn't cause any issues, as both set_freepointer()
329 * and get_freepointer() are called with a pointer with the same tag.
330 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
331 * example, when __free_slub() iterates over objects in a cache, it
332 * passes untagged pointers to check_object(). check_object() in turns
333 * calls get_freepointer() with an untagged pointer, which causes the
334 * freepointer to be restored incorrectly.
335 */
336 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 337 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
338#else
339 return ptr;
340#endif
341}
342
343/* Returns the freelist pointer recorded at location ptr_addr. */
344static inline void *freelist_dereference(const struct kmem_cache *s,
345 void *ptr_addr)
346{
347 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
348 (unsigned long)ptr_addr);
349}
350
7656c72b
CL
351static inline void *get_freepointer(struct kmem_cache *s, void *object)
352{
aa1ef4d7 353 object = kasan_reset_tag(object);
2482ddec 354 return freelist_dereference(s, object + s->offset);
7656c72b
CL
355}
356
0ad9500e
ED
357static void prefetch_freepointer(const struct kmem_cache *s, void *object)
358{
04b4b006 359 prefetchw(object + s->offset);
0ad9500e
ED
360}
361
1393d9a1
CL
362static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
363{
2482ddec 364 unsigned long freepointer_addr;
1393d9a1
CL
365 void *p;
366
8e57f8ac 367 if (!debug_pagealloc_enabled_static())
922d566c
JK
368 return get_freepointer(s, object);
369
f70b0049 370 object = kasan_reset_tag(object);
2482ddec 371 freepointer_addr = (unsigned long)object + s->offset;
fe557319 372 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 373 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
374}
375
7656c72b
CL
376static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
377{
2482ddec
KC
378 unsigned long freeptr_addr = (unsigned long)object + s->offset;
379
ce6fa91b
AP
380#ifdef CONFIG_SLAB_FREELIST_HARDENED
381 BUG_ON(object == fp); /* naive detection of double free or corruption */
382#endif
383
aa1ef4d7 384 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 385 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
386}
387
388/* Loop over all objects in a slab */
224a88be 389#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
390 for (__p = fixup_red_left(__s, __addr); \
391 __p < (__addr) + (__objects) * (__s)->size; \
392 __p += (__s)->size)
7656c72b 393
9736d2a9 394static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 395{
9736d2a9 396 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
397}
398
19af27af 399static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 400 unsigned int size)
834f3d11
CL
401{
402 struct kmem_cache_order_objects x = {
9736d2a9 403 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
404 };
405
406 return x;
407}
408
19af27af 409static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 410{
210b5c06 411 return x.x >> OO_SHIFT;
834f3d11
CL
412}
413
19af27af 414static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 415{
210b5c06 416 return x.x & OO_MASK;
834f3d11
CL
417}
418
b47291ef
VB
419#ifdef CONFIG_SLUB_CPU_PARTIAL
420static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
421{
bb192ed9 422 unsigned int nr_slabs;
b47291ef
VB
423
424 s->cpu_partial = nr_objects;
425
426 /*
427 * We take the number of objects but actually limit the number of
c2092c12
VB
428 * slabs on the per cpu partial list, in order to limit excessive
429 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
430 * be half-full.
431 */
bb192ed9
VB
432 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
433 s->cpu_partial_slabs = nr_slabs;
b47291ef
VB
434}
435#else
436static inline void
437slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
438{
439}
440#endif /* CONFIG_SLUB_CPU_PARTIAL */
441
881db7fb
CL
442/*
443 * Per slab locking using the pagelock
444 */
0393895b 445static __always_inline void __slab_lock(struct slab *slab)
881db7fb 446{
0393895b
VB
447 struct page *page = slab_page(slab);
448
48c935ad 449 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
450 bit_spin_lock(PG_locked, &page->flags);
451}
452
0393895b 453static __always_inline void __slab_unlock(struct slab *slab)
881db7fb 454{
0393895b
VB
455 struct page *page = slab_page(slab);
456
48c935ad 457 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
458 __bit_spin_unlock(PG_locked, &page->flags);
459}
460
bb192ed9 461static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
a2b4ae8b
VB
462{
463 if (IS_ENABLED(CONFIG_PREEMPT_RT))
464 local_irq_save(*flags);
bb192ed9 465 __slab_lock(slab);
a2b4ae8b
VB
466}
467
bb192ed9 468static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
a2b4ae8b 469{
bb192ed9 470 __slab_unlock(slab);
a2b4ae8b
VB
471 if (IS_ENABLED(CONFIG_PREEMPT_RT))
472 local_irq_restore(*flags);
473}
474
475/*
476 * Interrupts must be disabled (for the fallback code to work right), typically
477 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
478 * so we disable interrupts as part of slab_[un]lock().
479 */
bb192ed9 480static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
481 void *freelist_old, unsigned long counters_old,
482 void *freelist_new, unsigned long counters_new,
483 const char *n)
484{
a2b4ae8b
VB
485 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
486 lockdep_assert_irqs_disabled();
2565409f
HC
487#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
488 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 489 if (s->flags & __CMPXCHG_DOUBLE) {
bb192ed9 490 if (cmpxchg_double(&slab->freelist, &slab->counters,
0aa9a13d
DC
491 freelist_old, counters_old,
492 freelist_new, counters_new))
6f6528a1 493 return true;
1d07171c
CL
494 } else
495#endif
496 {
a2b4ae8b
VB
497 /* init to 0 to prevent spurious warnings */
498 unsigned long flags = 0;
499
bb192ed9
VB
500 slab_lock(slab, &flags);
501 if (slab->freelist == freelist_old &&
502 slab->counters == counters_old) {
503 slab->freelist = freelist_new;
504 slab->counters = counters_new;
505 slab_unlock(slab, &flags);
6f6528a1 506 return true;
1d07171c 507 }
bb192ed9 508 slab_unlock(slab, &flags);
1d07171c
CL
509 }
510
511 cpu_relax();
512 stat(s, CMPXCHG_DOUBLE_FAIL);
513
514#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 515 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
516#endif
517
6f6528a1 518 return false;
1d07171c
CL
519}
520
bb192ed9 521static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
522 void *freelist_old, unsigned long counters_old,
523 void *freelist_new, unsigned long counters_new,
524 const char *n)
525{
2565409f
HC
526#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
527 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 528 if (s->flags & __CMPXCHG_DOUBLE) {
bb192ed9 529 if (cmpxchg_double(&slab->freelist, &slab->counters,
0aa9a13d
DC
530 freelist_old, counters_old,
531 freelist_new, counters_new))
6f6528a1 532 return true;
b789ef51
CL
533 } else
534#endif
535 {
1d07171c
CL
536 unsigned long flags;
537
538 local_irq_save(flags);
bb192ed9
VB
539 __slab_lock(slab);
540 if (slab->freelist == freelist_old &&
541 slab->counters == counters_old) {
542 slab->freelist = freelist_new;
543 slab->counters = counters_new;
544 __slab_unlock(slab);
1d07171c 545 local_irq_restore(flags);
6f6528a1 546 return true;
b789ef51 547 }
bb192ed9 548 __slab_unlock(slab);
1d07171c 549 local_irq_restore(flags);
b789ef51
CL
550 }
551
552 cpu_relax();
553 stat(s, CMPXCHG_DOUBLE_FAIL);
554
555#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 556 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
557#endif
558
6f6528a1 559 return false;
b789ef51
CL
560}
561
41ecc55b 562#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 563static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
94ef0304 564static DEFINE_RAW_SPINLOCK(object_map_lock);
90e9f6a6 565
b3fd64e1 566static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 567 struct slab *slab)
b3fd64e1 568{
bb192ed9 569 void *addr = slab_address(slab);
b3fd64e1
VB
570 void *p;
571
bb192ed9 572 bitmap_zero(obj_map, slab->objects);
b3fd64e1 573
bb192ed9 574 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
575 set_bit(__obj_to_index(s, addr, p), obj_map);
576}
577
1f9f78b1
OG
578#if IS_ENABLED(CONFIG_KUNIT)
579static bool slab_add_kunit_errors(void)
580{
581 struct kunit_resource *resource;
582
583 if (likely(!current->kunit_test))
584 return false;
585
586 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
587 if (!resource)
588 return false;
589
590 (*(int *)resource->data)++;
591 kunit_put_resource(resource);
592 return true;
593}
594#else
595static inline bool slab_add_kunit_errors(void) { return false; }
596#endif
597
5f80b13a 598/*
c2092c12 599 * Determine a map of objects in use in a slab.
5f80b13a 600 *
c2092c12 601 * Node listlock must be held to guarantee that the slab does
5f80b13a
CL
602 * not vanish from under us.
603 */
bb192ed9 604static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
31364c2e 605 __acquires(&object_map_lock)
5f80b13a 606{
90e9f6a6
YZ
607 VM_BUG_ON(!irqs_disabled());
608
94ef0304 609 raw_spin_lock(&object_map_lock);
90e9f6a6 610
bb192ed9 611 __fill_map(object_map, s, slab);
90e9f6a6
YZ
612
613 return object_map;
614}
615
81aba9e0 616static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
617{
618 VM_BUG_ON(map != object_map);
94ef0304 619 raw_spin_unlock(&object_map_lock);
5f80b13a
CL
620}
621
870b1fbb 622static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
623{
624 if (s->flags & SLAB_RED_ZONE)
625 return s->size - s->red_left_pad;
626
627 return s->size;
628}
629
630static inline void *restore_red_left(struct kmem_cache *s, void *p)
631{
632 if (s->flags & SLAB_RED_ZONE)
633 p -= s->red_left_pad;
634
635 return p;
636}
637
41ecc55b
CL
638/*
639 * Debug settings:
640 */
89d3c87e 641#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 642static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 643#else
d50112ed 644static slab_flags_t slub_debug;
f0630fff 645#endif
41ecc55b 646
e17f1dfb 647static char *slub_debug_string;
fa5ec8a1 648static int disable_higher_order_debug;
41ecc55b 649
a79316c6
AR
650/*
651 * slub is about to manipulate internal object metadata. This memory lies
652 * outside the range of the allocated object, so accessing it would normally
653 * be reported by kasan as a bounds error. metadata_access_enable() is used
654 * to tell kasan that these accesses are OK.
655 */
656static inline void metadata_access_enable(void)
657{
658 kasan_disable_current();
659}
660
661static inline void metadata_access_disable(void)
662{
663 kasan_enable_current();
664}
665
81819f0f
CL
666/*
667 * Object debugging
668 */
d86bd1be
JK
669
670/* Verify that a pointer has an address that is valid within a slab page */
671static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 672 struct slab *slab, void *object)
d86bd1be
JK
673{
674 void *base;
675
676 if (!object)
677 return 1;
678
bb192ed9 679 base = slab_address(slab);
338cfaad 680 object = kasan_reset_tag(object);
d86bd1be 681 object = restore_red_left(s, object);
bb192ed9 682 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
683 (object - base) % s->size) {
684 return 0;
685 }
686
687 return 1;
688}
689
aa2efd5e
DT
690static void print_section(char *level, char *text, u8 *addr,
691 unsigned int length)
81819f0f 692{
a79316c6 693 metadata_access_enable();
340caf17
KYL
694 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
695 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 696 metadata_access_disable();
81819f0f
CL
697}
698
cbfc35a4
WL
699/*
700 * See comment in calculate_sizes().
701 */
702static inline bool freeptr_outside_object(struct kmem_cache *s)
703{
704 return s->offset >= s->inuse;
705}
706
707/*
708 * Return offset of the end of info block which is inuse + free pointer if
709 * not overlapping with object.
710 */
711static inline unsigned int get_info_end(struct kmem_cache *s)
712{
713 if (freeptr_outside_object(s))
714 return s->inuse + sizeof(void *);
715 else
716 return s->inuse;
717}
718
81819f0f
CL
719static struct track *get_track(struct kmem_cache *s, void *object,
720 enum track_item alloc)
721{
722 struct track *p;
723
cbfc35a4 724 p = object + get_info_end(s);
81819f0f 725
aa1ef4d7 726 return kasan_reset_tag(p + alloc);
81819f0f
CL
727}
728
5cf909c5 729#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
730static noinline depot_stack_handle_t set_track_prepare(void)
731{
732 depot_stack_handle_t handle;
5cf909c5 733 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 734 unsigned int nr_entries;
ae14c63a 735
5cf909c5 736 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
737 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
738
739 return handle;
740}
741#else
742static inline depot_stack_handle_t set_track_prepare(void)
743{
744 return 0;
745}
d6543e39 746#endif
5cf909c5 747
c4cf6785
SAS
748static void set_track_update(struct kmem_cache *s, void *object,
749 enum track_item alloc, unsigned long addr,
750 depot_stack_handle_t handle)
751{
752 struct track *p = get_track(s, object, alloc);
753
754#ifdef CONFIG_STACKDEPOT
755 p->handle = handle;
756#endif
0cd1a029
VB
757 p->addr = addr;
758 p->cpu = smp_processor_id();
759 p->pid = current->pid;
760 p->when = jiffies;
81819f0f
CL
761}
762
c4cf6785
SAS
763static __always_inline void set_track(struct kmem_cache *s, void *object,
764 enum track_item alloc, unsigned long addr)
765{
766 depot_stack_handle_t handle = set_track_prepare();
767
768 set_track_update(s, object, alloc, addr, handle);
769}
770
81819f0f
CL
771static void init_tracking(struct kmem_cache *s, void *object)
772{
0cd1a029
VB
773 struct track *p;
774
24922684
CL
775 if (!(s->flags & SLAB_STORE_USER))
776 return;
777
0cd1a029
VB
778 p = get_track(s, object, TRACK_ALLOC);
779 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
780}
781
86609d33 782static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 783{
5cf909c5
OG
784 depot_stack_handle_t handle __maybe_unused;
785
81819f0f
CL
786 if (!t->addr)
787 return;
788
96b94abc 789 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 790 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
791#ifdef CONFIG_STACKDEPOT
792 handle = READ_ONCE(t->handle);
793 if (handle)
794 stack_depot_print(handle);
795 else
796 pr_err("object allocation/free stack trace missing\n");
d6543e39 797#endif
24922684
CL
798}
799
e42f174e 800void print_tracking(struct kmem_cache *s, void *object)
24922684 801{
86609d33 802 unsigned long pr_time = jiffies;
24922684
CL
803 if (!(s->flags & SLAB_STORE_USER))
804 return;
805
86609d33
CP
806 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
807 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
808}
809
fb012e27 810static void print_slab_info(const struct slab *slab)
24922684 811{
fb012e27 812 struct folio *folio = (struct folio *)slab_folio(slab);
24922684 813
fb012e27
MWO
814 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
815 slab, slab->objects, slab->inuse, slab->freelist,
816 folio_flags(folio, 0));
24922684
CL
817}
818
819static void slab_bug(struct kmem_cache *s, char *fmt, ...)
820{
ecc42fbe 821 struct va_format vaf;
24922684 822 va_list args;
24922684
CL
823
824 va_start(args, fmt);
ecc42fbe
FF
825 vaf.fmt = fmt;
826 vaf.va = &args;
f9f58285 827 pr_err("=============================================================================\n");
ecc42fbe 828 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 829 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 830 va_end(args);
81819f0f
CL
831}
832
582d1212 833__printf(2, 3)
24922684
CL
834static void slab_fix(struct kmem_cache *s, char *fmt, ...)
835{
ecc42fbe 836 struct va_format vaf;
24922684 837 va_list args;
24922684 838
1f9f78b1
OG
839 if (slab_add_kunit_errors())
840 return;
841
24922684 842 va_start(args, fmt);
ecc42fbe
FF
843 vaf.fmt = fmt;
844 vaf.va = &args;
845 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 846 va_end(args);
24922684
CL
847}
848
bb192ed9 849static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
850{
851 unsigned int off; /* Offset of last byte */
bb192ed9 852 u8 *addr = slab_address(slab);
24922684
CL
853
854 print_tracking(s, p);
855
bb192ed9 856 print_slab_info(slab);
24922684 857
96b94abc 858 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 859 p, p - addr, get_freepointer(s, p));
24922684 860
d86bd1be 861 if (s->flags & SLAB_RED_ZONE)
8669dbab 862 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 863 s->red_left_pad);
d86bd1be 864 else if (p > addr + 16)
aa2efd5e 865 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 866
8669dbab 867 print_section(KERN_ERR, "Object ", p,
1b473f29 868 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 869 if (s->flags & SLAB_RED_ZONE)
8669dbab 870 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 871 s->inuse - s->object_size);
81819f0f 872
cbfc35a4 873 off = get_info_end(s);
81819f0f 874
24922684 875 if (s->flags & SLAB_STORE_USER)
81819f0f 876 off += 2 * sizeof(struct track);
81819f0f 877
80a9201a
AP
878 off += kasan_metadata_size(s);
879
d86bd1be 880 if (off != size_from_object(s))
81819f0f 881 /* Beginning of the filler is the free pointer */
8669dbab 882 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 883 size_from_object(s) - off);
24922684
CL
884
885 dump_stack();
81819f0f
CL
886}
887
bb192ed9 888static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
889 u8 *object, char *reason)
890{
1f9f78b1
OG
891 if (slab_add_kunit_errors())
892 return;
893
3dc50637 894 slab_bug(s, "%s", reason);
bb192ed9 895 print_trailer(s, slab, object);
65ebdeef 896 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
897}
898
bb192ed9 899static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
900 void **freelist, void *nextfree)
901{
902 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
903 !check_valid_pointer(s, slab, nextfree) && freelist) {
904 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
905 *freelist = NULL;
906 slab_fix(s, "Isolate corrupted freechain");
907 return true;
908 }
909
910 return false;
911}
912
bb192ed9 913static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 914 const char *fmt, ...)
81819f0f
CL
915{
916 va_list args;
917 char buf[100];
918
1f9f78b1
OG
919 if (slab_add_kunit_errors())
920 return;
921
24922684
CL
922 va_start(args, fmt);
923 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 924 va_end(args);
3dc50637 925 slab_bug(s, "%s", buf);
bb192ed9 926 print_slab_info(slab);
81819f0f 927 dump_stack();
65ebdeef 928 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
929}
930
f7cb1933 931static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 932{
aa1ef4d7 933 u8 *p = kasan_reset_tag(object);
81819f0f 934
d86bd1be
JK
935 if (s->flags & SLAB_RED_ZONE)
936 memset(p - s->red_left_pad, val, s->red_left_pad);
937
81819f0f 938 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
939 memset(p, POISON_FREE, s->object_size - 1);
940 p[s->object_size - 1] = POISON_END;
81819f0f
CL
941 }
942
943 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 944 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
945}
946
24922684
CL
947static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
948 void *from, void *to)
949{
582d1212 950 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
951 memset(from, data, to - from);
952}
953
bb192ed9 954static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
24922684 955 u8 *object, char *what,
06428780 956 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
957{
958 u8 *fault;
959 u8 *end;
bb192ed9 960 u8 *addr = slab_address(slab);
24922684 961
a79316c6 962 metadata_access_enable();
aa1ef4d7 963 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 964 metadata_access_disable();
24922684
CL
965 if (!fault)
966 return 1;
967
968 end = start + bytes;
969 while (end > fault && end[-1] == value)
970 end--;
971
1f9f78b1
OG
972 if (slab_add_kunit_errors())
973 goto skip_bug_print;
974
24922684 975 slab_bug(s, "%s overwritten", what);
96b94abc 976 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
977 fault, end - 1, fault - addr,
978 fault[0], value);
bb192ed9 979 print_trailer(s, slab, object);
65ebdeef 980 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 981
1f9f78b1 982skip_bug_print:
24922684
CL
983 restore_bytes(s, what, value, fault, end);
984 return 0;
81819f0f
CL
985}
986
81819f0f
CL
987/*
988 * Object layout:
989 *
990 * object address
991 * Bytes of the object to be managed.
992 * If the freepointer may overlay the object then the free
cbfc35a4 993 * pointer is at the middle of the object.
672bba3a 994 *
81819f0f
CL
995 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
996 * 0xa5 (POISON_END)
997 *
3b0efdfa 998 * object + s->object_size
81819f0f 999 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1000 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1001 * object_size == inuse.
672bba3a 1002 *
81819f0f
CL
1003 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1004 * 0xcc (RED_ACTIVE) for objects in use.
1005 *
1006 * object + s->inuse
672bba3a
CL
1007 * Meta data starts here.
1008 *
81819f0f
CL
1009 * A. Free pointer (if we cannot overwrite object on free)
1010 * B. Tracking data for SLAB_STORE_USER
dc84207d 1011 * C. Padding to reach required alignment boundary or at minimum
6446faa2 1012 * one word if debugging is on to be able to detect writes
672bba3a
CL
1013 * before the word boundary.
1014 *
1015 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1016 *
1017 * object + s->size
672bba3a 1018 * Nothing is used beyond s->size.
81819f0f 1019 *
3b0efdfa 1020 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1021 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1022 * may be used with merged slabcaches.
1023 */
1024
bb192ed9 1025static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1026{
cbfc35a4 1027 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
1028
1029 if (s->flags & SLAB_STORE_USER)
1030 /* We also have user information there */
1031 off += 2 * sizeof(struct track);
1032
80a9201a
AP
1033 off += kasan_metadata_size(s);
1034
d86bd1be 1035 if (size_from_object(s) == off)
81819f0f
CL
1036 return 1;
1037
bb192ed9 1038 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1039 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1040}
1041
39b26464 1042/* Check the pad bytes at the end of a slab page */
a204e6d6 1043static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1044{
24922684
CL
1045 u8 *start;
1046 u8 *fault;
1047 u8 *end;
5d682681 1048 u8 *pad;
24922684
CL
1049 int length;
1050 int remainder;
81819f0f
CL
1051
1052 if (!(s->flags & SLAB_POISON))
a204e6d6 1053 return;
81819f0f 1054
bb192ed9
VB
1055 start = slab_address(slab);
1056 length = slab_size(slab);
39b26464
CL
1057 end = start + length;
1058 remainder = length % s->size;
81819f0f 1059 if (!remainder)
a204e6d6 1060 return;
81819f0f 1061
5d682681 1062 pad = end - remainder;
a79316c6 1063 metadata_access_enable();
aa1ef4d7 1064 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1065 metadata_access_disable();
24922684 1066 if (!fault)
a204e6d6 1067 return;
24922684
CL
1068 while (end > fault && end[-1] == POISON_INUSE)
1069 end--;
1070
bb192ed9 1071 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1072 fault, end - 1, fault - start);
5d682681 1073 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1074
5d682681 1075 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1076}
1077
bb192ed9 1078static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1079 void *object, u8 val)
81819f0f
CL
1080{
1081 u8 *p = object;
3b0efdfa 1082 u8 *endobject = object + s->object_size;
81819f0f
CL
1083
1084 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1085 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be
JK
1086 object - s->red_left_pad, val, s->red_left_pad))
1087 return 0;
1088
bb192ed9 1089 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1090 endobject, val, s->inuse - s->object_size))
81819f0f 1091 return 0;
81819f0f 1092 } else {
3b0efdfa 1093 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
bb192ed9 1094 check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97
CG
1095 endobject, POISON_INUSE,
1096 s->inuse - s->object_size);
3adbefee 1097 }
81819f0f
CL
1098 }
1099
1100 if (s->flags & SLAB_POISON) {
f7cb1933 1101 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
bb192ed9 1102 (!check_bytes_and_report(s, slab, p, "Poison", p,
3b0efdfa 1103 POISON_FREE, s->object_size - 1) ||
bb192ed9 1104 !check_bytes_and_report(s, slab, p, "End Poison",
3b0efdfa 1105 p + s->object_size - 1, POISON_END, 1)))
81819f0f 1106 return 0;
81819f0f
CL
1107 /*
1108 * check_pad_bytes cleans up on its own.
1109 */
bb192ed9 1110 check_pad_bytes(s, slab, p);
81819f0f
CL
1111 }
1112
cbfc35a4 1113 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1114 /*
1115 * Object and freepointer overlap. Cannot check
1116 * freepointer while object is allocated.
1117 */
1118 return 1;
1119
1120 /* Check free pointer validity */
bb192ed9
VB
1121 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1122 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1123 /*
9f6c708e 1124 * No choice but to zap it and thus lose the remainder
81819f0f 1125 * of the free objects in this slab. May cause
672bba3a 1126 * another error because the object count is now wrong.
81819f0f 1127 */
a973e9dd 1128 set_freepointer(s, p, NULL);
81819f0f
CL
1129 return 0;
1130 }
1131 return 1;
1132}
1133
bb192ed9 1134static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1135{
39b26464
CL
1136 int maxobj;
1137
bb192ed9
VB
1138 if (!folio_test_slab(slab_folio(slab))) {
1139 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1140 return 0;
1141 }
39b26464 1142
bb192ed9
VB
1143 maxobj = order_objects(slab_order(slab), s->size);
1144 if (slab->objects > maxobj) {
1145 slab_err(s, slab, "objects %u > max %u",
1146 slab->objects, maxobj);
39b26464
CL
1147 return 0;
1148 }
bb192ed9
VB
1149 if (slab->inuse > slab->objects) {
1150 slab_err(s, slab, "inuse %u > max %u",
1151 slab->inuse, slab->objects);
81819f0f
CL
1152 return 0;
1153 }
1154 /* Slab_pad_check fixes things up after itself */
bb192ed9 1155 slab_pad_check(s, slab);
81819f0f
CL
1156 return 1;
1157}
1158
1159/*
c2092c12 1160 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1161 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1162 */
bb192ed9 1163static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1164{
1165 int nr = 0;
881db7fb 1166 void *fp;
81819f0f 1167 void *object = NULL;
f6edde9c 1168 int max_objects;
81819f0f 1169
bb192ed9
VB
1170 fp = slab->freelist;
1171 while (fp && nr <= slab->objects) {
81819f0f
CL
1172 if (fp == search)
1173 return 1;
bb192ed9 1174 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1175 if (object) {
bb192ed9 1176 object_err(s, slab, object,
81819f0f 1177 "Freechain corrupt");
a973e9dd 1178 set_freepointer(s, object, NULL);
81819f0f 1179 } else {
bb192ed9
VB
1180 slab_err(s, slab, "Freepointer corrupt");
1181 slab->freelist = NULL;
1182 slab->inuse = slab->objects;
24922684 1183 slab_fix(s, "Freelist cleared");
81819f0f
CL
1184 return 0;
1185 }
1186 break;
1187 }
1188 object = fp;
1189 fp = get_freepointer(s, object);
1190 nr++;
1191 }
1192
bb192ed9 1193 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1194 if (max_objects > MAX_OBJS_PER_PAGE)
1195 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1196
bb192ed9
VB
1197 if (slab->objects != max_objects) {
1198 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1199 slab->objects, max_objects);
1200 slab->objects = max_objects;
582d1212 1201 slab_fix(s, "Number of objects adjusted");
224a88be 1202 }
bb192ed9
VB
1203 if (slab->inuse != slab->objects - nr) {
1204 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1205 slab->inuse, slab->objects - nr);
1206 slab->inuse = slab->objects - nr;
582d1212 1207 slab_fix(s, "Object count adjusted");
81819f0f
CL
1208 }
1209 return search == NULL;
1210}
1211
bb192ed9 1212static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1213 int alloc)
3ec09742
CL
1214{
1215 if (s->flags & SLAB_TRACE) {
f9f58285 1216 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1217 s->name,
1218 alloc ? "alloc" : "free",
bb192ed9
VB
1219 object, slab->inuse,
1220 slab->freelist);
3ec09742
CL
1221
1222 if (!alloc)
aa2efd5e 1223 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1224 s->object_size);
3ec09742
CL
1225
1226 dump_stack();
1227 }
1228}
1229
643b1138 1230/*
672bba3a 1231 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1232 */
5cc6eee8 1233static void add_full(struct kmem_cache *s,
bb192ed9 1234 struct kmem_cache_node *n, struct slab *slab)
643b1138 1235{
5cc6eee8
CL
1236 if (!(s->flags & SLAB_STORE_USER))
1237 return;
1238
255d0884 1239 lockdep_assert_held(&n->list_lock);
bb192ed9 1240 list_add(&slab->slab_list, &n->full);
643b1138
CL
1241}
1242
bb192ed9 1243static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1244{
643b1138
CL
1245 if (!(s->flags & SLAB_STORE_USER))
1246 return;
1247
255d0884 1248 lockdep_assert_held(&n->list_lock);
bb192ed9 1249 list_del(&slab->slab_list);
643b1138
CL
1250}
1251
0f389ec6
CL
1252/* Tracking of the number of slabs for debugging purposes */
1253static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1254{
1255 struct kmem_cache_node *n = get_node(s, node);
1256
1257 return atomic_long_read(&n->nr_slabs);
1258}
1259
26c02cf0
AB
1260static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1261{
1262 return atomic_long_read(&n->nr_slabs);
1263}
1264
205ab99d 1265static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1266{
1267 struct kmem_cache_node *n = get_node(s, node);
1268
1269 /*
1270 * May be called early in order to allocate a slab for the
1271 * kmem_cache_node structure. Solve the chicken-egg
1272 * dilemma by deferring the increment of the count during
1273 * bootstrap (see early_kmem_cache_node_alloc).
1274 */
338b2642 1275 if (likely(n)) {
0f389ec6 1276 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1277 atomic_long_add(objects, &n->total_objects);
1278 }
0f389ec6 1279}
205ab99d 1280static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1281{
1282 struct kmem_cache_node *n = get_node(s, node);
1283
1284 atomic_long_dec(&n->nr_slabs);
205ab99d 1285 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1286}
1287
1288/* Object debug checks for alloc/free paths */
c0f81a94 1289static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1290{
8fc8d666 1291 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1292 return;
1293
f7cb1933 1294 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1295 init_tracking(s, object);
1296}
1297
a50b854e 1298static
bb192ed9 1299void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1300{
8fc8d666 1301 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1302 return;
1303
1304 metadata_access_enable();
bb192ed9 1305 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1306 metadata_access_disable();
1307}
1308
becfda68 1309static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1310 struct slab *slab, void *object)
81819f0f 1311{
bb192ed9 1312 if (!check_slab(s, slab))
becfda68 1313 return 0;
81819f0f 1314
bb192ed9
VB
1315 if (!check_valid_pointer(s, slab, object)) {
1316 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1317 return 0;
81819f0f
CL
1318 }
1319
bb192ed9 1320 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1321 return 0;
1322
1323 return 1;
1324}
1325
1326static noinline int alloc_debug_processing(struct kmem_cache *s,
bb192ed9 1327 struct slab *slab,
becfda68
LA
1328 void *object, unsigned long addr)
1329{
1330 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1331 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1332 goto bad;
1333 }
81819f0f 1334
3ec09742
CL
1335 /* Success perform special debug activities for allocs */
1336 if (s->flags & SLAB_STORE_USER)
1337 set_track(s, object, TRACK_ALLOC, addr);
bb192ed9 1338 trace(s, slab, object, 1);
f7cb1933 1339 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1340 return 1;
3ec09742 1341
81819f0f 1342bad:
bb192ed9 1343 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1344 /*
1345 * If this is a slab page then lets do the best we can
1346 * to avoid issues in the future. Marking all objects
672bba3a 1347 * as used avoids touching the remaining objects.
81819f0f 1348 */
24922684 1349 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1350 slab->inuse = slab->objects;
1351 slab->freelist = NULL;
81819f0f
CL
1352 }
1353 return 0;
1354}
1355
becfda68 1356static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1357 struct slab *slab, void *object, unsigned long addr)
81819f0f 1358{
bb192ed9
VB
1359 if (!check_valid_pointer(s, slab, object)) {
1360 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1361 return 0;
81819f0f
CL
1362 }
1363
bb192ed9
VB
1364 if (on_freelist(s, slab, object)) {
1365 object_err(s, slab, object, "Object already free");
becfda68 1366 return 0;
81819f0f
CL
1367 }
1368
bb192ed9 1369 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1370 return 0;
81819f0f 1371
bb192ed9
VB
1372 if (unlikely(s != slab->slab_cache)) {
1373 if (!folio_test_slab(slab_folio(slab))) {
1374 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1375 object);
bb192ed9 1376 } else if (!slab->slab_cache) {
f9f58285
FF
1377 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1378 object);
70d71228 1379 dump_stack();
06428780 1380 } else
bb192ed9 1381 object_err(s, slab, object,
24922684 1382 "page slab pointer corrupt.");
becfda68
LA
1383 return 0;
1384 }
1385 return 1;
1386}
1387
1388/* Supports checking bulk free of a constructed freelist */
1389static noinline int free_debug_processing(
bb192ed9 1390 struct kmem_cache *s, struct slab *slab,
becfda68
LA
1391 void *head, void *tail, int bulk_cnt,
1392 unsigned long addr)
1393{
bb192ed9 1394 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
becfda68
LA
1395 void *object = head;
1396 int cnt = 0;
a2b4ae8b 1397 unsigned long flags, flags2;
becfda68 1398 int ret = 0;
c4cf6785
SAS
1399 depot_stack_handle_t handle = 0;
1400
1401 if (s->flags & SLAB_STORE_USER)
1402 handle = set_track_prepare();
becfda68
LA
1403
1404 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 1405 slab_lock(slab, &flags2);
becfda68
LA
1406
1407 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1408 if (!check_slab(s, slab))
becfda68
LA
1409 goto out;
1410 }
1411
1412next_object:
1413 cnt++;
1414
1415 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1416 if (!free_consistency_checks(s, slab, object, addr))
becfda68 1417 goto out;
81819f0f 1418 }
3ec09742 1419
3ec09742 1420 if (s->flags & SLAB_STORE_USER)
c4cf6785 1421 set_track_update(s, object, TRACK_FREE, addr, handle);
bb192ed9 1422 trace(s, slab, object, 0);
81084651 1423 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1424 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1425
1426 /* Reached end of constructed freelist yet? */
1427 if (object != tail) {
1428 object = get_freepointer(s, object);
1429 goto next_object;
1430 }
804aa132
LA
1431 ret = 1;
1432
5c2e4bbb 1433out:
81084651 1434 if (cnt != bulk_cnt)
bb192ed9 1435 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
81084651
JDB
1436 bulk_cnt, cnt);
1437
bb192ed9 1438 slab_unlock(slab, &flags2);
282acb43 1439 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1440 if (!ret)
1441 slab_fix(s, "Object at 0x%p not freed", object);
1442 return ret;
81819f0f
CL
1443}
1444
e17f1dfb
VB
1445/*
1446 * Parse a block of slub_debug options. Blocks are delimited by ';'
1447 *
1448 * @str: start of block
1449 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1450 * @slabs: return start of list of slabs, or NULL when there's no list
1451 * @init: assume this is initial parsing and not per-kmem-create parsing
1452 *
1453 * returns the start of next block if there's any, or NULL
1454 */
1455static char *
1456parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1457{
e17f1dfb 1458 bool higher_order_disable = false;
f0630fff 1459
e17f1dfb
VB
1460 /* Skip any completely empty blocks */
1461 while (*str && *str == ';')
1462 str++;
1463
1464 if (*str == ',') {
f0630fff
CL
1465 /*
1466 * No options but restriction on slabs. This means full
1467 * debugging for slabs matching a pattern.
1468 */
e17f1dfb 1469 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1470 goto check_slabs;
e17f1dfb
VB
1471 }
1472 *flags = 0;
f0630fff 1473
e17f1dfb
VB
1474 /* Determine which debug features should be switched on */
1475 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1476 switch (tolower(*str)) {
e17f1dfb
VB
1477 case '-':
1478 *flags = 0;
1479 break;
f0630fff 1480 case 'f':
e17f1dfb 1481 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1482 break;
1483 case 'z':
e17f1dfb 1484 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1485 break;
1486 case 'p':
e17f1dfb 1487 *flags |= SLAB_POISON;
f0630fff
CL
1488 break;
1489 case 'u':
e17f1dfb 1490 *flags |= SLAB_STORE_USER;
f0630fff
CL
1491 break;
1492 case 't':
e17f1dfb 1493 *flags |= SLAB_TRACE;
f0630fff 1494 break;
4c13dd3b 1495 case 'a':
e17f1dfb 1496 *flags |= SLAB_FAILSLAB;
4c13dd3b 1497 break;
08303a73
CA
1498 case 'o':
1499 /*
1500 * Avoid enabling debugging on caches if its minimum
1501 * order would increase as a result.
1502 */
e17f1dfb 1503 higher_order_disable = true;
08303a73 1504 break;
f0630fff 1505 default:
e17f1dfb
VB
1506 if (init)
1507 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1508 }
41ecc55b 1509 }
f0630fff 1510check_slabs:
41ecc55b 1511 if (*str == ',')
e17f1dfb
VB
1512 *slabs = ++str;
1513 else
1514 *slabs = NULL;
1515
1516 /* Skip over the slab list */
1517 while (*str && *str != ';')
1518 str++;
1519
1520 /* Skip any completely empty blocks */
1521 while (*str && *str == ';')
1522 str++;
1523
1524 if (init && higher_order_disable)
1525 disable_higher_order_debug = 1;
1526
1527 if (*str)
1528 return str;
1529 else
1530 return NULL;
1531}
1532
1533static int __init setup_slub_debug(char *str)
1534{
1535 slab_flags_t flags;
a7f1d485 1536 slab_flags_t global_flags;
e17f1dfb
VB
1537 char *saved_str;
1538 char *slab_list;
1539 bool global_slub_debug_changed = false;
1540 bool slab_list_specified = false;
1541
a7f1d485 1542 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1543 if (*str++ != '=' || !*str)
1544 /*
1545 * No options specified. Switch on full debugging.
1546 */
1547 goto out;
1548
1549 saved_str = str;
1550 while (str) {
1551 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1552
1553 if (!slab_list) {
a7f1d485 1554 global_flags = flags;
e17f1dfb
VB
1555 global_slub_debug_changed = true;
1556 } else {
1557 slab_list_specified = true;
5cf909c5
OG
1558 if (flags & SLAB_STORE_USER)
1559 stack_depot_want_early_init();
e17f1dfb
VB
1560 }
1561 }
1562
1563 /*
1564 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1565 * slabs means debugging is only changed for those slabs, so the global
1566 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1567 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1568 * long as there is no option specifying flags without a slab list.
1569 */
1570 if (slab_list_specified) {
1571 if (!global_slub_debug_changed)
a7f1d485 1572 global_flags = slub_debug;
e17f1dfb
VB
1573 slub_debug_string = saved_str;
1574 }
f0630fff 1575out:
a7f1d485 1576 slub_debug = global_flags;
5cf909c5
OG
1577 if (slub_debug & SLAB_STORE_USER)
1578 stack_depot_want_early_init();
ca0cab65
VB
1579 if (slub_debug != 0 || slub_debug_string)
1580 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1581 else
1582 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1583 if ((static_branch_unlikely(&init_on_alloc) ||
1584 static_branch_unlikely(&init_on_free)) &&
1585 (slub_debug & SLAB_POISON))
1586 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1587 return 1;
1588}
1589
1590__setup("slub_debug", setup_slub_debug);
1591
c5fd3ca0
AT
1592/*
1593 * kmem_cache_flags - apply debugging options to the cache
1594 * @object_size: the size of an object without meta data
1595 * @flags: flags to set
1596 * @name: name of the cache
c5fd3ca0
AT
1597 *
1598 * Debug option(s) are applied to @flags. In addition to the debug
1599 * option(s), if a slab name (or multiple) is specified i.e.
1600 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1601 * then only the select slabs will receive the debug option(s).
1602 */
0293d1fd 1603slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1604 slab_flags_t flags, const char *name)
41ecc55b 1605{
c5fd3ca0
AT
1606 char *iter;
1607 size_t len;
e17f1dfb
VB
1608 char *next_block;
1609 slab_flags_t block_flags;
ca220593
JB
1610 slab_flags_t slub_debug_local = slub_debug;
1611
a285909f
HY
1612 if (flags & SLAB_NO_USER_FLAGS)
1613 return flags;
1614
ca220593
JB
1615 /*
1616 * If the slab cache is for debugging (e.g. kmemleak) then
1617 * don't store user (stack trace) information by default,
1618 * but let the user enable it via the command line below.
1619 */
1620 if (flags & SLAB_NOLEAKTRACE)
1621 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1622
c5fd3ca0 1623 len = strlen(name);
e17f1dfb
VB
1624 next_block = slub_debug_string;
1625 /* Go through all blocks of debug options, see if any matches our slab's name */
1626 while (next_block) {
1627 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1628 if (!iter)
1629 continue;
1630 /* Found a block that has a slab list, search it */
1631 while (*iter) {
1632 char *end, *glob;
1633 size_t cmplen;
1634
1635 end = strchrnul(iter, ',');
1636 if (next_block && next_block < end)
1637 end = next_block - 1;
1638
1639 glob = strnchr(iter, end - iter, '*');
1640 if (glob)
1641 cmplen = glob - iter;
1642 else
1643 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1644
e17f1dfb
VB
1645 if (!strncmp(name, iter, cmplen)) {
1646 flags |= block_flags;
1647 return flags;
1648 }
c5fd3ca0 1649
e17f1dfb
VB
1650 if (!*end || *end == ';')
1651 break;
1652 iter = end + 1;
c5fd3ca0 1653 }
c5fd3ca0 1654 }
ba0268a8 1655
ca220593 1656 return flags | slub_debug_local;
41ecc55b 1657}
b4a64718 1658#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1659static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1660static inline
bb192ed9 1661void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1662
3ec09742 1663static inline int alloc_debug_processing(struct kmem_cache *s,
bb192ed9 1664 struct slab *slab, void *object, unsigned long addr) { return 0; }
41ecc55b 1665
282acb43 1666static inline int free_debug_processing(
bb192ed9 1667 struct kmem_cache *s, struct slab *slab,
81084651 1668 void *head, void *tail, int bulk_cnt,
282acb43 1669 unsigned long addr) { return 0; }
41ecc55b 1670
a204e6d6 1671static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1672static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1673 void *object, u8 val) { return 1; }
5cc6eee8 1674static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1675 struct slab *slab) {}
c65c1877 1676static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1677 struct slab *slab) {}
0293d1fd 1678slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1679 slab_flags_t flags, const char *name)
ba0268a8
CL
1680{
1681 return flags;
1682}
41ecc55b 1683#define slub_debug 0
0f389ec6 1684
fdaa45e9
IM
1685#define disable_higher_order_debug 0
1686
0f389ec6
CL
1687static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1688 { return 0; }
26c02cf0
AB
1689static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1690 { return 0; }
205ab99d
CL
1691static inline void inc_slabs_node(struct kmem_cache *s, int node,
1692 int objects) {}
1693static inline void dec_slabs_node(struct kmem_cache *s, int node,
1694 int objects) {}
7d550c56 1695
bb192ed9 1696static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1697 void **freelist, void *nextfree)
52f23478
DZ
1698{
1699 return false;
1700}
02e72cc6
AR
1701#endif /* CONFIG_SLUB_DEBUG */
1702
1703/*
1704 * Hooks for other subsystems that check memory allocations. In a typical
1705 * production configuration these hooks all should produce no code at all.
1706 */
ee3ce779 1707static __always_inline void kfree_hook(void *x)
d56791b3
RB
1708{
1709 kmemleak_free(x);
027b37b5 1710 kasan_kfree_large(x);
d56791b3
RB
1711}
1712
d57a964e
AK
1713static __always_inline bool slab_free_hook(struct kmem_cache *s,
1714 void *x, bool init)
d56791b3
RB
1715{
1716 kmemleak_free_recursive(x, s->flags);
7d550c56 1717
84048039 1718 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1719
02e72cc6
AR
1720 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1721 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1722
cfbe1636
ME
1723 /* Use KCSAN to help debug racy use-after-free. */
1724 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1725 __kcsan_check_access(x, s->object_size,
1726 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1727
d57a964e
AK
1728 /*
1729 * As memory initialization might be integrated into KASAN,
1730 * kasan_slab_free and initialization memset's must be
1731 * kept together to avoid discrepancies in behavior.
1732 *
1733 * The initialization memset's clear the object and the metadata,
1734 * but don't touch the SLAB redzone.
1735 */
1736 if (init) {
1737 int rsize;
1738
1739 if (!kasan_has_integrated_init())
1740 memset(kasan_reset_tag(x), 0, s->object_size);
1741 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1742 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1743 s->size - s->inuse - rsize);
1744 }
1745 /* KASAN might put x into memory quarantine, delaying its reuse. */
1746 return kasan_slab_free(s, x, init);
02e72cc6 1747}
205ab99d 1748
c3895391 1749static inline bool slab_free_freelist_hook(struct kmem_cache *s,
899447f6
ML
1750 void **head, void **tail,
1751 int *cnt)
81084651 1752{
6471384a
AP
1753
1754 void *object;
1755 void *next = *head;
1756 void *old_tail = *tail ? *tail : *head;
6471384a 1757
b89fb5ef 1758 if (is_kfence_address(next)) {
d57a964e 1759 slab_free_hook(s, next, false);
b89fb5ef
AP
1760 return true;
1761 }
1762
aea4df4c
LA
1763 /* Head and tail of the reconstructed freelist */
1764 *head = NULL;
1765 *tail = NULL;
1b7e816f 1766
aea4df4c
LA
1767 do {
1768 object = next;
1769 next = get_freepointer(s, object);
1770
c3895391 1771 /* If object's reuse doesn't have to be delayed */
d57a964e 1772 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1773 /* Move object to the new freelist */
1774 set_freepointer(s, object, *head);
1775 *head = object;
1776 if (!*tail)
1777 *tail = object;
899447f6
ML
1778 } else {
1779 /*
1780 * Adjust the reconstructed freelist depth
1781 * accordingly if object's reuse is delayed.
1782 */
1783 --(*cnt);
c3895391
AK
1784 }
1785 } while (object != old_tail);
1786
1787 if (*head == *tail)
1788 *tail = NULL;
1789
1790 return *head != NULL;
81084651
JDB
1791}
1792
c0f81a94 1793static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 1794{
c0f81a94 1795 setup_object_debug(s, object);
4d176711 1796 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1797 if (unlikely(s->ctor)) {
1798 kasan_unpoison_object_data(s, object);
1799 s->ctor(object);
1800 kasan_poison_object_data(s, object);
1801 }
4d176711 1802 return object;
588f8ba9
TG
1803}
1804
81819f0f
CL
1805/*
1806 * Slab allocation and freeing
1807 */
a485e1da
XS
1808static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1809 struct kmem_cache_order_objects oo)
65c3376a 1810{
45387b8c
VB
1811 struct folio *folio;
1812 struct slab *slab;
19af27af 1813 unsigned int order = oo_order(oo);
65c3376a 1814
2154a336 1815 if (node == NUMA_NO_NODE)
45387b8c 1816 folio = (struct folio *)alloc_pages(flags, order);
65c3376a 1817 else
45387b8c 1818 folio = (struct folio *)__alloc_pages_node(node, flags, order);
5dfb4175 1819
45387b8c
VB
1820 if (!folio)
1821 return NULL;
1822
1823 slab = folio_slab(folio);
1824 __folio_set_slab(folio);
1825 if (page_is_pfmemalloc(folio_page(folio, 0)))
1826 slab_set_pfmemalloc(slab);
1827
1828 return slab;
65c3376a
CL
1829}
1830
210e7a43
TG
1831#ifdef CONFIG_SLAB_FREELIST_RANDOM
1832/* Pre-initialize the random sequence cache */
1833static int init_cache_random_seq(struct kmem_cache *s)
1834{
19af27af 1835 unsigned int count = oo_objects(s->oo);
210e7a43 1836 int err;
210e7a43 1837
a810007a
SR
1838 /* Bailout if already initialised */
1839 if (s->random_seq)
1840 return 0;
1841
210e7a43
TG
1842 err = cache_random_seq_create(s, count, GFP_KERNEL);
1843 if (err) {
1844 pr_err("SLUB: Unable to initialize free list for %s\n",
1845 s->name);
1846 return err;
1847 }
1848
1849 /* Transform to an offset on the set of pages */
1850 if (s->random_seq) {
19af27af
AD
1851 unsigned int i;
1852
210e7a43
TG
1853 for (i = 0; i < count; i++)
1854 s->random_seq[i] *= s->size;
1855 }
1856 return 0;
1857}
1858
1859/* Initialize each random sequence freelist per cache */
1860static void __init init_freelist_randomization(void)
1861{
1862 struct kmem_cache *s;
1863
1864 mutex_lock(&slab_mutex);
1865
1866 list_for_each_entry(s, &slab_caches, list)
1867 init_cache_random_seq(s);
1868
1869 mutex_unlock(&slab_mutex);
1870}
1871
1872/* Get the next entry on the pre-computed freelist randomized */
bb192ed9 1873static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
210e7a43
TG
1874 unsigned long *pos, void *start,
1875 unsigned long page_limit,
1876 unsigned long freelist_count)
1877{
1878 unsigned int idx;
1879
1880 /*
1881 * If the target page allocation failed, the number of objects on the
1882 * page might be smaller than the usual size defined by the cache.
1883 */
1884 do {
1885 idx = s->random_seq[*pos];
1886 *pos += 1;
1887 if (*pos >= freelist_count)
1888 *pos = 0;
1889 } while (unlikely(idx >= page_limit));
1890
1891 return (char *)start + idx;
1892}
1893
1894/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 1895static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1896{
1897 void *start;
1898 void *cur;
1899 void *next;
1900 unsigned long idx, pos, page_limit, freelist_count;
1901
bb192ed9 1902 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
1903 return false;
1904
1905 freelist_count = oo_objects(s->oo);
1906 pos = get_random_int() % freelist_count;
1907
bb192ed9
VB
1908 page_limit = slab->objects * s->size;
1909 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
1910
1911 /* First entry is used as the base of the freelist */
bb192ed9 1912 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1913 freelist_count);
c0f81a94 1914 cur = setup_object(s, cur);
bb192ed9 1915 slab->freelist = cur;
210e7a43 1916
bb192ed9
VB
1917 for (idx = 1; idx < slab->objects; idx++) {
1918 next = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1919 freelist_count);
c0f81a94 1920 next = setup_object(s, next);
210e7a43
TG
1921 set_freepointer(s, cur, next);
1922 cur = next;
1923 }
210e7a43
TG
1924 set_freepointer(s, cur, NULL);
1925
1926 return true;
1927}
1928#else
1929static inline int init_cache_random_seq(struct kmem_cache *s)
1930{
1931 return 0;
1932}
1933static inline void init_freelist_randomization(void) { }
bb192ed9 1934static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1935{
1936 return false;
1937}
1938#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1939
bb192ed9 1940static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 1941{
bb192ed9 1942 struct slab *slab;
834f3d11 1943 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1944 gfp_t alloc_gfp;
4d176711 1945 void *start, *p, *next;
a50b854e 1946 int idx;
210e7a43 1947 bool shuffle;
81819f0f 1948
7e0528da
CL
1949 flags &= gfp_allowed_mask;
1950
b7a49f0d 1951 flags |= s->allocflags;
e12ba74d 1952
ba52270d
PE
1953 /*
1954 * Let the initial higher-order allocation fail under memory pressure
1955 * so we fall-back to the minimum order allocation.
1956 */
1957 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1958 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 1959 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 1960
a485e1da 1961 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 1962 if (unlikely(!slab)) {
65c3376a 1963 oo = s->min;
80c3a998 1964 alloc_gfp = flags;
65c3376a
CL
1965 /*
1966 * Allocation may have failed due to fragmentation.
1967 * Try a lower order alloc if possible
1968 */
a485e1da 1969 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 1970 if (unlikely(!slab))
588f8ba9
TG
1971 goto out;
1972 stat(s, ORDER_FALLBACK);
65c3376a 1973 }
5a896d9e 1974
bb192ed9 1975 slab->objects = oo_objects(oo);
81819f0f 1976
bb192ed9 1977 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 1978
bb192ed9 1979 slab->slab_cache = s;
81819f0f 1980
6e48a966 1981 kasan_poison_slab(slab);
81819f0f 1982
bb192ed9 1983 start = slab_address(slab);
81819f0f 1984
bb192ed9 1985 setup_slab_debug(s, slab, start);
0316bec2 1986
bb192ed9 1987 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
1988
1989 if (!shuffle) {
4d176711 1990 start = fixup_red_left(s, start);
c0f81a94 1991 start = setup_object(s, start);
bb192ed9
VB
1992 slab->freelist = start;
1993 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 1994 next = p + s->size;
c0f81a94 1995 next = setup_object(s, next);
18e50661
AK
1996 set_freepointer(s, p, next);
1997 p = next;
1998 }
1999 set_freepointer(s, p, NULL);
81819f0f 2000 }
81819f0f 2001
bb192ed9
VB
2002 slab->inuse = slab->objects;
2003 slab->frozen = 1;
588f8ba9 2004
81819f0f 2005out:
bb192ed9 2006 if (!slab)
588f8ba9
TG
2007 return NULL;
2008
bb192ed9 2009 inc_slabs_node(s, slab_nid(slab), slab->objects);
588f8ba9 2010
bb192ed9 2011 return slab;
81819f0f
CL
2012}
2013
bb192ed9 2014static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2015{
44405099
LL
2016 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2017 flags = kmalloc_fix_flags(flags);
588f8ba9 2018
53a0de06
VB
2019 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2020
588f8ba9
TG
2021 return allocate_slab(s,
2022 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2023}
2024
4020b4a2 2025static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2026{
4020b4a2
VB
2027 struct folio *folio = slab_folio(slab);
2028 int order = folio_order(folio);
834f3d11 2029 int pages = 1 << order;
81819f0f 2030
8fc8d666 2031 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
2032 void *p;
2033
bb192ed9 2034 slab_pad_check(s, slab);
4020b4a2 2035 for_each_object(p, s, slab_address(slab), slab->objects)
bb192ed9 2036 check_object(s, slab, p, SLUB_RED_INACTIVE);
81819f0f
CL
2037 }
2038
4020b4a2
VB
2039 __slab_clear_pfmemalloc(slab);
2040 __folio_clear_slab(folio);
2041 folio->mapping = NULL;
1eb5ac64
NP
2042 if (current->reclaim_state)
2043 current->reclaim_state->reclaimed_slab += pages;
4020b4a2
VB
2044 unaccount_slab(slab, order, s);
2045 __free_pages(folio_page(folio, 0), order);
81819f0f
CL
2046}
2047
2048static void rcu_free_slab(struct rcu_head *h)
2049{
bb192ed9 2050 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2051
bb192ed9 2052 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2053}
2054
bb192ed9 2055static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2056{
5f0d5a3a 2057 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bb192ed9 2058 call_rcu(&slab->rcu_head, rcu_free_slab);
81819f0f 2059 } else
bb192ed9 2060 __free_slab(s, slab);
81819f0f
CL
2061}
2062
bb192ed9 2063static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2064{
bb192ed9
VB
2065 dec_slabs_node(s, slab_nid(slab), slab->objects);
2066 free_slab(s, slab);
81819f0f
CL
2067}
2068
2069/*
5cc6eee8 2070 * Management of partially allocated slabs.
81819f0f 2071 */
1e4dd946 2072static inline void
bb192ed9 2073__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2074{
e95eed57 2075 n->nr_partial++;
136333d1 2076 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2077 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2078 else
bb192ed9 2079 list_add(&slab->slab_list, &n->partial);
81819f0f
CL
2080}
2081
1e4dd946 2082static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2083 struct slab *slab, int tail)
62e346a8 2084{
c65c1877 2085 lockdep_assert_held(&n->list_lock);
bb192ed9 2086 __add_partial(n, slab, tail);
1e4dd946 2087}
c65c1877 2088
1e4dd946 2089static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2090 struct slab *slab)
1e4dd946
SR
2091{
2092 lockdep_assert_held(&n->list_lock);
bb192ed9 2093 list_del(&slab->slab_list);
52b4b950 2094 n->nr_partial--;
1e4dd946
SR
2095}
2096
81819f0f 2097/*
7ced3719
CL
2098 * Remove slab from the partial list, freeze it and
2099 * return the pointer to the freelist.
81819f0f 2100 *
497b66f2 2101 * Returns a list of objects or NULL if it fails.
81819f0f 2102 */
497b66f2 2103static inline void *acquire_slab(struct kmem_cache *s,
bb192ed9 2104 struct kmem_cache_node *n, struct slab *slab,
b47291ef 2105 int mode)
81819f0f 2106{
2cfb7455
CL
2107 void *freelist;
2108 unsigned long counters;
bb192ed9 2109 struct slab new;
2cfb7455 2110
c65c1877
PZ
2111 lockdep_assert_held(&n->list_lock);
2112
2cfb7455
CL
2113 /*
2114 * Zap the freelist and set the frozen bit.
2115 * The old freelist is the list of objects for the
2116 * per cpu allocation list.
2117 */
bb192ed9
VB
2118 freelist = slab->freelist;
2119 counters = slab->counters;
7ced3719 2120 new.counters = counters;
23910c50 2121 if (mode) {
bb192ed9 2122 new.inuse = slab->objects;
23910c50
PE
2123 new.freelist = NULL;
2124 } else {
2125 new.freelist = freelist;
2126 }
2cfb7455 2127
a0132ac0 2128 VM_BUG_ON(new.frozen);
7ced3719 2129 new.frozen = 1;
2cfb7455 2130
bb192ed9 2131 if (!__cmpxchg_double_slab(s, slab,
2cfb7455 2132 freelist, counters,
02d7633f 2133 new.freelist, new.counters,
7ced3719 2134 "acquire_slab"))
7ced3719 2135 return NULL;
2cfb7455 2136
bb192ed9 2137 remove_partial(n, slab);
7ced3719 2138 WARN_ON(!freelist);
49e22585 2139 return freelist;
81819f0f
CL
2140}
2141
e0a043aa 2142#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2143static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2144#else
bb192ed9 2145static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2146 int drain) { }
2147#endif
01b34d16 2148static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2149
81819f0f 2150/*
672bba3a 2151 * Try to allocate a partial slab from a specific node.
81819f0f 2152 */
8ba00bb6 2153static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 2154 struct slab **ret_slab, gfp_t gfpflags)
81819f0f 2155{
bb192ed9 2156 struct slab *slab, *slab2;
49e22585 2157 void *object = NULL;
4b1f449d 2158 unsigned long flags;
bb192ed9 2159 unsigned int partial_slabs = 0;
81819f0f
CL
2160
2161 /*
2162 * Racy check. If we mistakenly see no partial slabs then we
2163 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2164 * partial slab and there is none available then get_partial()
672bba3a 2165 * will return NULL.
81819f0f
CL
2166 */
2167 if (!n || !n->nr_partial)
2168 return NULL;
2169
4b1f449d 2170 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2171 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
8ba00bb6 2172 void *t;
49e22585 2173
bb192ed9 2174 if (!pfmemalloc_match(slab, gfpflags))
8ba00bb6
JK
2175 continue;
2176
bb192ed9 2177 t = acquire_slab(s, n, slab, object == NULL);
49e22585 2178 if (!t)
9b1ea29b 2179 break;
49e22585 2180
12d79634 2181 if (!object) {
bb192ed9 2182 *ret_slab = slab;
49e22585 2183 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2184 object = t;
49e22585 2185 } else {
bb192ed9 2186 put_cpu_partial(s, slab, 0);
8028dcea 2187 stat(s, CPU_PARTIAL_NODE);
bb192ed9 2188 partial_slabs++;
49e22585 2189 }
b47291ef 2190#ifdef CONFIG_SLUB_CPU_PARTIAL
345c905d 2191 if (!kmem_cache_has_cpu_partial(s)
bb192ed9 2192 || partial_slabs > s->cpu_partial_slabs / 2)
49e22585 2193 break;
b47291ef
VB
2194#else
2195 break;
2196#endif
49e22585 2197
497b66f2 2198 }
4b1f449d 2199 spin_unlock_irqrestore(&n->list_lock, flags);
497b66f2 2200 return object;
81819f0f
CL
2201}
2202
2203/*
c2092c12 2204 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2205 */
de3ec035 2206static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
bb192ed9 2207 struct slab **ret_slab)
81819f0f
CL
2208{
2209#ifdef CONFIG_NUMA
2210 struct zonelist *zonelist;
dd1a239f 2211 struct zoneref *z;
54a6eb5c 2212 struct zone *zone;
97a225e6 2213 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2214 void *object;
cc9a6c87 2215 unsigned int cpuset_mems_cookie;
81819f0f
CL
2216
2217 /*
672bba3a
CL
2218 * The defrag ratio allows a configuration of the tradeoffs between
2219 * inter node defragmentation and node local allocations. A lower
2220 * defrag_ratio increases the tendency to do local allocations
2221 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2222 *
672bba3a
CL
2223 * If the defrag_ratio is set to 0 then kmalloc() always
2224 * returns node local objects. If the ratio is higher then kmalloc()
2225 * may return off node objects because partial slabs are obtained
2226 * from other nodes and filled up.
81819f0f 2227 *
43efd3ea
LP
2228 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2229 * (which makes defrag_ratio = 1000) then every (well almost)
2230 * allocation will first attempt to defrag slab caches on other nodes.
2231 * This means scanning over all nodes to look for partial slabs which
2232 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2233 * with available objects.
81819f0f 2234 */
9824601e
CL
2235 if (!s->remote_node_defrag_ratio ||
2236 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2237 return NULL;
2238
cc9a6c87 2239 do {
d26914d1 2240 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2241 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2242 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2243 struct kmem_cache_node *n;
2244
2245 n = get_node(s, zone_to_nid(zone));
2246
dee2f8aa 2247 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2248 n->nr_partial > s->min_partial) {
bb192ed9 2249 object = get_partial_node(s, n, ret_slab, flags);
cc9a6c87
MG
2250 if (object) {
2251 /*
d26914d1
MG
2252 * Don't check read_mems_allowed_retry()
2253 * here - if mems_allowed was updated in
2254 * parallel, that was a harmless race
2255 * between allocation and the cpuset
2256 * update
cc9a6c87 2257 */
cc9a6c87
MG
2258 return object;
2259 }
c0ff7453 2260 }
81819f0f 2261 }
d26914d1 2262 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2263#endif /* CONFIG_NUMA */
81819f0f
CL
2264 return NULL;
2265}
2266
2267/*
c2092c12 2268 * Get a partial slab, lock it and return it.
81819f0f 2269 */
497b66f2 2270static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
bb192ed9 2271 struct slab **ret_slab)
81819f0f 2272{
497b66f2 2273 void *object;
a561ce00
JK
2274 int searchnode = node;
2275
2276 if (node == NUMA_NO_NODE)
2277 searchnode = numa_mem_id();
81819f0f 2278
bb192ed9 2279 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
497b66f2
CL
2280 if (object || node != NUMA_NO_NODE)
2281 return object;
81819f0f 2282
bb192ed9 2283 return get_any_partial(s, flags, ret_slab);
81819f0f
CL
2284}
2285
923717cb 2286#ifdef CONFIG_PREEMPTION
8a5ec0ba 2287/*
0d645ed1 2288 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2289 * during cmpxchg. The transactions start with the cpu number and are then
2290 * incremented by CONFIG_NR_CPUS.
2291 */
2292#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2293#else
2294/*
2295 * No preemption supported therefore also no need to check for
2296 * different cpus.
2297 */
2298#define TID_STEP 1
2299#endif
2300
2301static inline unsigned long next_tid(unsigned long tid)
2302{
2303 return tid + TID_STEP;
2304}
2305
9d5f0be0 2306#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2307static inline unsigned int tid_to_cpu(unsigned long tid)
2308{
2309 return tid % TID_STEP;
2310}
2311
2312static inline unsigned long tid_to_event(unsigned long tid)
2313{
2314 return tid / TID_STEP;
2315}
9d5f0be0 2316#endif
8a5ec0ba
CL
2317
2318static inline unsigned int init_tid(int cpu)
2319{
2320 return cpu;
2321}
2322
2323static inline void note_cmpxchg_failure(const char *n,
2324 const struct kmem_cache *s, unsigned long tid)
2325{
2326#ifdef SLUB_DEBUG_CMPXCHG
2327 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2328
f9f58285 2329 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2330
923717cb 2331#ifdef CONFIG_PREEMPTION
8a5ec0ba 2332 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2333 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2334 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2335 else
2336#endif
2337 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2338 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2339 tid_to_event(tid), tid_to_event(actual_tid));
2340 else
f9f58285 2341 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2342 actual_tid, tid, next_tid(tid));
2343#endif
4fdccdfb 2344 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2345}
2346
788e1aad 2347static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2348{
8a5ec0ba 2349 int cpu;
bd0e7491 2350 struct kmem_cache_cpu *c;
8a5ec0ba 2351
bd0e7491
VB
2352 for_each_possible_cpu(cpu) {
2353 c = per_cpu_ptr(s->cpu_slab, cpu);
2354 local_lock_init(&c->lock);
2355 c->tid = init_tid(cpu);
2356 }
8a5ec0ba 2357}
2cfb7455 2358
81819f0f 2359/*
c2092c12 2360 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2361 * unfreezes the slabs and puts it on the proper list.
2362 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2363 * by the caller.
81819f0f 2364 */
bb192ed9 2365static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2366 void *freelist)
81819f0f 2367{
6d3a16d0 2368 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
bb192ed9 2369 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0
HY
2370 int free_delta = 0;
2371 enum slab_modes mode = M_NONE;
d930ff03 2372 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2373 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2374 unsigned long flags = 0;
bb192ed9
VB
2375 struct slab new;
2376 struct slab old;
2cfb7455 2377
bb192ed9 2378 if (slab->freelist) {
84e554e6 2379 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2380 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2381 }
2382
894b8788 2383 /*
d930ff03
VB
2384 * Stage one: Count the objects on cpu's freelist as free_delta and
2385 * remember the last object in freelist_tail for later splicing.
2cfb7455 2386 */
d930ff03
VB
2387 freelist_tail = NULL;
2388 freelist_iter = freelist;
2389 while (freelist_iter) {
2390 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2391
52f23478
DZ
2392 /*
2393 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2394 * 'freelist_iter' is already corrupted. So isolate all objects
2395 * starting at 'freelist_iter' by skipping them.
52f23478 2396 */
bb192ed9 2397 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2398 break;
2399
d930ff03
VB
2400 freelist_tail = freelist_iter;
2401 free_delta++;
2cfb7455 2402
d930ff03 2403 freelist_iter = nextfree;
2cfb7455
CL
2404 }
2405
894b8788 2406 /*
c2092c12
VB
2407 * Stage two: Unfreeze the slab while splicing the per-cpu
2408 * freelist to the head of slab's freelist.
d930ff03 2409 *
c2092c12 2410 * Ensure that the slab is unfrozen while the list presence
d930ff03 2411 * reflects the actual number of objects during unfreeze.
2cfb7455 2412 *
6d3a16d0
HY
2413 * We first perform cmpxchg holding lock and insert to list
2414 * when it succeed. If there is mismatch then the slab is not
2415 * unfrozen and number of objects in the slab may have changed.
2416 * Then release lock and retry cmpxchg again.
894b8788 2417 */
2cfb7455 2418redo:
894b8788 2419
bb192ed9
VB
2420 old.freelist = READ_ONCE(slab->freelist);
2421 old.counters = READ_ONCE(slab->counters);
a0132ac0 2422 VM_BUG_ON(!old.frozen);
7c2e132c 2423
2cfb7455
CL
2424 /* Determine target state of the slab */
2425 new.counters = old.counters;
d930ff03
VB
2426 if (freelist_tail) {
2427 new.inuse -= free_delta;
2428 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2429 new.freelist = freelist;
2430 } else
2431 new.freelist = old.freelist;
2432
2433 new.frozen = 0;
2434
6d3a16d0
HY
2435 if (!new.inuse && n->nr_partial >= s->min_partial) {
2436 mode = M_FREE;
2437 } else if (new.freelist) {
2438 mode = M_PARTIAL;
2439 /*
2440 * Taking the spinlock removes the possibility that
2441 * acquire_slab() will see a slab that is frozen
2442 */
2443 spin_lock_irqsave(&n->list_lock, flags);
2444 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2445 mode = M_FULL;
2446 /*
2447 * This also ensures that the scanning of full
2448 * slabs from diagnostic functions will not see
2449 * any frozen slabs.
2450 */
2451 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455 2452 } else {
6d3a16d0 2453 mode = M_FULL_NOLIST;
2cfb7455
CL
2454 }
2455
2cfb7455 2456
bb192ed9 2457 if (!cmpxchg_double_slab(s, slab,
2cfb7455
CL
2458 old.freelist, old.counters,
2459 new.freelist, new.counters,
6d3a16d0
HY
2460 "unfreezing slab")) {
2461 if (mode == M_PARTIAL || mode == M_FULL)
2462 spin_unlock_irqrestore(&n->list_lock, flags);
2cfb7455 2463 goto redo;
6d3a16d0 2464 }
2cfb7455 2465
2cfb7455 2466
6d3a16d0
HY
2467 if (mode == M_PARTIAL) {
2468 add_partial(n, slab, tail);
2469 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 2470 stat(s, tail);
6d3a16d0 2471 } else if (mode == M_FREE) {
2cfb7455 2472 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2473 discard_slab(s, slab);
2cfb7455 2474 stat(s, FREE_SLAB);
6d3a16d0
HY
2475 } else if (mode == M_FULL) {
2476 add_full(s, n, slab);
2477 spin_unlock_irqrestore(&n->list_lock, flags);
2478 stat(s, DEACTIVATE_FULL);
2479 } else if (mode == M_FULL_NOLIST) {
2480 stat(s, DEACTIVATE_FULL);
894b8788 2481 }
81819f0f
CL
2482}
2483
345c905d 2484#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2485static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 2486{
43d77867 2487 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 2488 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 2489 unsigned long flags = 0;
49e22585 2490
bb192ed9
VB
2491 while (partial_slab) {
2492 struct slab new;
2493 struct slab old;
49e22585 2494
bb192ed9
VB
2495 slab = partial_slab;
2496 partial_slab = slab->next;
43d77867 2497
bb192ed9 2498 n2 = get_node(s, slab_nid(slab));
43d77867
JK
2499 if (n != n2) {
2500 if (n)
7cf9f3ba 2501 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2502
2503 n = n2;
7cf9f3ba 2504 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2505 }
49e22585
CL
2506
2507 do {
2508
bb192ed9
VB
2509 old.freelist = slab->freelist;
2510 old.counters = slab->counters;
a0132ac0 2511 VM_BUG_ON(!old.frozen);
49e22585
CL
2512
2513 new.counters = old.counters;
2514 new.freelist = old.freelist;
2515
2516 new.frozen = 0;
2517
bb192ed9 2518 } while (!__cmpxchg_double_slab(s, slab,
49e22585
CL
2519 old.freelist, old.counters,
2520 new.freelist, new.counters,
2521 "unfreezing slab"));
2522
8a5b20ae 2523 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
2524 slab->next = slab_to_discard;
2525 slab_to_discard = slab;
43d77867 2526 } else {
bb192ed9 2527 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 2528 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2529 }
2530 }
2531
2532 if (n)
7cf9f3ba 2533 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2534
bb192ed9
VB
2535 while (slab_to_discard) {
2536 slab = slab_to_discard;
2537 slab_to_discard = slab_to_discard->next;
9ada1934
SL
2538
2539 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2540 discard_slab(s, slab);
9ada1934
SL
2541 stat(s, FREE_SLAB);
2542 }
fc1455f4 2543}
f3ab8b6b 2544
fc1455f4
VB
2545/*
2546 * Unfreeze all the cpu partial slabs.
2547 */
2548static void unfreeze_partials(struct kmem_cache *s)
2549{
bb192ed9 2550 struct slab *partial_slab;
fc1455f4
VB
2551 unsigned long flags;
2552
bd0e7491 2553 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2554 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 2555 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 2556 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 2557
bb192ed9
VB
2558 if (partial_slab)
2559 __unfreeze_partials(s, partial_slab);
fc1455f4
VB
2560}
2561
2562static void unfreeze_partials_cpu(struct kmem_cache *s,
2563 struct kmem_cache_cpu *c)
2564{
bb192ed9 2565 struct slab *partial_slab;
fc1455f4 2566
bb192ed9 2567 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
2568 c->partial = NULL;
2569
bb192ed9
VB
2570 if (partial_slab)
2571 __unfreeze_partials(s, partial_slab);
49e22585
CL
2572}
2573
2574/*
c2092c12
VB
2575 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2576 * partial slab slot if available.
49e22585
CL
2577 *
2578 * If we did not find a slot then simply move all the partials to the
2579 * per node partial list.
2580 */
bb192ed9 2581static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 2582{
bb192ed9
VB
2583 struct slab *oldslab;
2584 struct slab *slab_to_unfreeze = NULL;
e0a043aa 2585 unsigned long flags;
bb192ed9 2586 int slabs = 0;
49e22585 2587
bd0e7491 2588 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 2589
bb192ed9 2590 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 2591
bb192ed9
VB
2592 if (oldslab) {
2593 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
2594 /*
2595 * Partial array is full. Move the existing set to the
2596 * per node partial list. Postpone the actual unfreezing
2597 * outside of the critical section.
2598 */
bb192ed9
VB
2599 slab_to_unfreeze = oldslab;
2600 oldslab = NULL;
e0a043aa 2601 } else {
bb192ed9 2602 slabs = oldslab->slabs;
49e22585 2603 }
e0a043aa 2604 }
49e22585 2605
bb192ed9 2606 slabs++;
49e22585 2607
bb192ed9
VB
2608 slab->slabs = slabs;
2609 slab->next = oldslab;
49e22585 2610
bb192ed9 2611 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 2612
bd0e7491 2613 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 2614
bb192ed9
VB
2615 if (slab_to_unfreeze) {
2616 __unfreeze_partials(s, slab_to_unfreeze);
e0a043aa
VB
2617 stat(s, CPU_PARTIAL_DRAIN);
2618 }
49e22585
CL
2619}
2620
e0a043aa
VB
2621#else /* CONFIG_SLUB_CPU_PARTIAL */
2622
2623static inline void unfreeze_partials(struct kmem_cache *s) { }
2624static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2625 struct kmem_cache_cpu *c) { }
2626
2627#endif /* CONFIG_SLUB_CPU_PARTIAL */
2628
dfb4f096 2629static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2630{
5a836bf6 2631 unsigned long flags;
bb192ed9 2632 struct slab *slab;
5a836bf6
SAS
2633 void *freelist;
2634
bd0e7491 2635 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 2636
bb192ed9 2637 slab = c->slab;
5a836bf6 2638 freelist = c->freelist;
c17dda40 2639
bb192ed9 2640 c->slab = NULL;
a019d201 2641 c->freelist = NULL;
c17dda40 2642 c->tid = next_tid(c->tid);
a019d201 2643
bd0e7491 2644 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 2645
bb192ed9
VB
2646 if (slab) {
2647 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
2648 stat(s, CPUSLAB_FLUSH);
2649 }
81819f0f
CL
2650}
2651
0c710013 2652static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2653{
9dfc6e68 2654 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 2655 void *freelist = c->freelist;
bb192ed9 2656 struct slab *slab = c->slab;
81819f0f 2657
bb192ed9 2658 c->slab = NULL;
08beb547
VB
2659 c->freelist = NULL;
2660 c->tid = next_tid(c->tid);
2661
bb192ed9
VB
2662 if (slab) {
2663 deactivate_slab(s, slab, freelist);
08beb547
VB
2664 stat(s, CPUSLAB_FLUSH);
2665 }
49e22585 2666
fc1455f4 2667 unfreeze_partials_cpu(s, c);
81819f0f
CL
2668}
2669
5a836bf6
SAS
2670struct slub_flush_work {
2671 struct work_struct work;
2672 struct kmem_cache *s;
2673 bool skip;
2674};
2675
fc1455f4
VB
2676/*
2677 * Flush cpu slab.
2678 *
5a836bf6 2679 * Called from CPU work handler with migration disabled.
fc1455f4 2680 */
5a836bf6 2681static void flush_cpu_slab(struct work_struct *w)
81819f0f 2682{
5a836bf6
SAS
2683 struct kmem_cache *s;
2684 struct kmem_cache_cpu *c;
2685 struct slub_flush_work *sfw;
2686
2687 sfw = container_of(w, struct slub_flush_work, work);
2688
2689 s = sfw->s;
2690 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 2691
bb192ed9 2692 if (c->slab)
fc1455f4 2693 flush_slab(s, c);
81819f0f 2694
fc1455f4 2695 unfreeze_partials(s);
81819f0f
CL
2696}
2697
5a836bf6 2698static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 2699{
a8364d55
GBY
2700 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2701
bb192ed9 2702 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
2703}
2704
5a836bf6
SAS
2705static DEFINE_MUTEX(flush_lock);
2706static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2707
2708static void flush_all_cpus_locked(struct kmem_cache *s)
2709{
2710 struct slub_flush_work *sfw;
2711 unsigned int cpu;
2712
2713 lockdep_assert_cpus_held();
2714 mutex_lock(&flush_lock);
2715
2716 for_each_online_cpu(cpu) {
2717 sfw = &per_cpu(slub_flush, cpu);
2718 if (!has_cpu_slab(cpu, s)) {
2719 sfw->skip = true;
2720 continue;
2721 }
2722 INIT_WORK(&sfw->work, flush_cpu_slab);
2723 sfw->skip = false;
2724 sfw->s = s;
2725 schedule_work_on(cpu, &sfw->work);
2726 }
2727
2728 for_each_online_cpu(cpu) {
2729 sfw = &per_cpu(slub_flush, cpu);
2730 if (sfw->skip)
2731 continue;
2732 flush_work(&sfw->work);
2733 }
2734
2735 mutex_unlock(&flush_lock);
2736}
2737
81819f0f
CL
2738static void flush_all(struct kmem_cache *s)
2739{
5a836bf6
SAS
2740 cpus_read_lock();
2741 flush_all_cpus_locked(s);
2742 cpus_read_unlock();
81819f0f
CL
2743}
2744
a96a87bf
SAS
2745/*
2746 * Use the cpu notifier to insure that the cpu slabs are flushed when
2747 * necessary.
2748 */
2749static int slub_cpu_dead(unsigned int cpu)
2750{
2751 struct kmem_cache *s;
a96a87bf
SAS
2752
2753 mutex_lock(&slab_mutex);
0e7ac738 2754 list_for_each_entry(s, &slab_caches, list)
a96a87bf 2755 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
2756 mutex_unlock(&slab_mutex);
2757 return 0;
2758}
2759
dfb4f096
CL
2760/*
2761 * Check if the objects in a per cpu structure fit numa
2762 * locality expectations.
2763 */
bb192ed9 2764static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
2765{
2766#ifdef CONFIG_NUMA
bb192ed9 2767 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
2768 return 0;
2769#endif
2770 return 1;
2771}
2772
9a02d699 2773#ifdef CONFIG_SLUB_DEBUG
bb192ed9 2774static int count_free(struct slab *slab)
781b2ba6 2775{
bb192ed9 2776 return slab->objects - slab->inuse;
781b2ba6
PE
2777}
2778
9a02d699
DR
2779static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2780{
2781 return atomic_long_read(&n->total_objects);
2782}
2783#endif /* CONFIG_SLUB_DEBUG */
2784
2785#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6 2786static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 2787 int (*get_count)(struct slab *))
781b2ba6
PE
2788{
2789 unsigned long flags;
2790 unsigned long x = 0;
bb192ed9 2791 struct slab *slab;
781b2ba6
PE
2792
2793 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
2794 list_for_each_entry(slab, &n->partial, slab_list)
2795 x += get_count(slab);
781b2ba6
PE
2796 spin_unlock_irqrestore(&n->list_lock, flags);
2797 return x;
2798}
9a02d699 2799#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2800
781b2ba6
PE
2801static noinline void
2802slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2803{
9a02d699
DR
2804#ifdef CONFIG_SLUB_DEBUG
2805 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2806 DEFAULT_RATELIMIT_BURST);
781b2ba6 2807 int node;
fa45dc25 2808 struct kmem_cache_node *n;
781b2ba6 2809
9a02d699
DR
2810 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2811 return;
2812
5b3810e5
VB
2813 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2814 nid, gfpflags, &gfpflags);
19af27af 2815 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2816 s->name, s->object_size, s->size, oo_order(s->oo),
2817 oo_order(s->min));
781b2ba6 2818
3b0efdfa 2819 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2820 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2821 s->name);
fa5ec8a1 2822
fa45dc25 2823 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2824 unsigned long nr_slabs;
2825 unsigned long nr_objs;
2826 unsigned long nr_free;
2827
26c02cf0
AB
2828 nr_free = count_partial(n, count_free);
2829 nr_slabs = node_nr_slabs(n);
2830 nr_objs = node_nr_objs(n);
781b2ba6 2831
f9f58285 2832 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2833 node, nr_slabs, nr_objs, nr_free);
2834 }
9a02d699 2835#endif
781b2ba6
PE
2836}
2837
01b34d16 2838static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 2839{
01b34d16 2840 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
2841 return gfp_pfmemalloc_allowed(gfpflags);
2842
2843 return true;
2844}
2845
213eeb9f 2846/*
c2092c12
VB
2847 * Check the slab->freelist and either transfer the freelist to the
2848 * per cpu freelist or deactivate the slab.
213eeb9f 2849 *
c2092c12 2850 * The slab is still frozen if the return value is not NULL.
213eeb9f 2851 *
c2092c12 2852 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 2853 */
bb192ed9 2854static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 2855{
bb192ed9 2856 struct slab new;
213eeb9f
CL
2857 unsigned long counters;
2858 void *freelist;
2859
bd0e7491
VB
2860 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2861
213eeb9f 2862 do {
bb192ed9
VB
2863 freelist = slab->freelist;
2864 counters = slab->counters;
6faa6833 2865
213eeb9f 2866 new.counters = counters;
a0132ac0 2867 VM_BUG_ON(!new.frozen);
213eeb9f 2868
bb192ed9 2869 new.inuse = slab->objects;
213eeb9f
CL
2870 new.frozen = freelist != NULL;
2871
bb192ed9 2872 } while (!__cmpxchg_double_slab(s, slab,
213eeb9f
CL
2873 freelist, counters,
2874 NULL, new.counters,
2875 "get_freelist"));
2876
2877 return freelist;
2878}
2879
81819f0f 2880/*
894b8788
CL
2881 * Slow path. The lockless freelist is empty or we need to perform
2882 * debugging duties.
2883 *
894b8788
CL
2884 * Processing is still very fast if new objects have been freed to the
2885 * regular freelist. In that case we simply take over the regular freelist
2886 * as the lockless freelist and zap the regular freelist.
81819f0f 2887 *
894b8788
CL
2888 * If that is not working then we fall back to the partial lists. We take the
2889 * first element of the freelist as the object to allocate now and move the
2890 * rest of the freelist to the lockless freelist.
81819f0f 2891 *
894b8788 2892 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2893 * we need to allocate a new slab. This is the slowest path since it involves
2894 * a call to the page allocator and the setup of a new slab.
a380a3c7 2895 *
e500059b 2896 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 2897 * already disabled (which is the case for bulk allocation).
81819f0f 2898 */
a380a3c7 2899static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2900 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2901{
6faa6833 2902 void *freelist;
bb192ed9 2903 struct slab *slab;
e500059b 2904 unsigned long flags;
81819f0f 2905
9f986d99
AW
2906 stat(s, ALLOC_SLOWPATH);
2907
c2092c12 2908reread_slab:
0b303fb4 2909
bb192ed9
VB
2910 slab = READ_ONCE(c->slab);
2911 if (!slab) {
0715e6c5
VB
2912 /*
2913 * if the node is not online or has no normal memory, just
2914 * ignore the node constraint
2915 */
2916 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2917 !node_isset(node, slab_nodes)))
0715e6c5 2918 node = NUMA_NO_NODE;
81819f0f 2919 goto new_slab;
0715e6c5 2920 }
49e22585 2921redo:
6faa6833 2922
bb192ed9 2923 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
2924 /*
2925 * same as above but node_match() being false already
2926 * implies node != NUMA_NO_NODE
2927 */
7e1fa93d 2928 if (!node_isset(node, slab_nodes)) {
0715e6c5 2929 node = NUMA_NO_NODE;
0715e6c5 2930 } else {
a561ce00 2931 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 2932 goto deactivate_slab;
a561ce00 2933 }
fc59c053 2934 }
6446faa2 2935
072bb0aa
MG
2936 /*
2937 * By rights, we should be searching for a slab page that was
2938 * PFMEMALLOC but right now, we are losing the pfmemalloc
2939 * information when the page leaves the per-cpu allocator
2940 */
bb192ed9 2941 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 2942 goto deactivate_slab;
072bb0aa 2943
c2092c12 2944 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 2945 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2946 if (unlikely(slab != c->slab)) {
bd0e7491 2947 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 2948 goto reread_slab;
0b303fb4 2949 }
6faa6833
CL
2950 freelist = c->freelist;
2951 if (freelist)
73736e03 2952 goto load_freelist;
03e404af 2953
bb192ed9 2954 freelist = get_freelist(s, slab);
6446faa2 2955
6faa6833 2956 if (!freelist) {
bb192ed9 2957 c->slab = NULL;
eeaa345e 2958 c->tid = next_tid(c->tid);
bd0e7491 2959 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 2960 stat(s, DEACTIVATE_BYPASS);
fc59c053 2961 goto new_slab;
03e404af 2962 }
6446faa2 2963
84e554e6 2964 stat(s, ALLOC_REFILL);
6446faa2 2965
894b8788 2966load_freelist:
0b303fb4 2967
bd0e7491 2968 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 2969
507effea
CL
2970 /*
2971 * freelist is pointing to the list of objects to be used.
c2092c12
VB
2972 * slab is pointing to the slab from which the objects are obtained.
2973 * That slab must be frozen for per cpu allocations to work.
507effea 2974 */
bb192ed9 2975 VM_BUG_ON(!c->slab->frozen);
6faa6833 2976 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2977 c->tid = next_tid(c->tid);
bd0e7491 2978 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 2979 return freelist;
81819f0f 2980
0b303fb4
VB
2981deactivate_slab:
2982
bd0e7491 2983 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2984 if (slab != c->slab) {
bd0e7491 2985 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 2986 goto reread_slab;
0b303fb4 2987 }
a019d201 2988 freelist = c->freelist;
bb192ed9 2989 c->slab = NULL;
a019d201 2990 c->freelist = NULL;
eeaa345e 2991 c->tid = next_tid(c->tid);
bd0e7491 2992 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 2993 deactivate_slab(s, slab, freelist);
0b303fb4 2994
81819f0f 2995new_slab:
2cfb7455 2996
a93cf07b 2997 if (slub_percpu_partial(c)) {
bd0e7491 2998 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2999 if (unlikely(c->slab)) {
bd0e7491 3000 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3001 goto reread_slab;
fa417ab7 3002 }
4b1f449d 3003 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3004 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3005 /* we were preempted and partial list got empty */
3006 goto new_objects;
4b1f449d 3007 }
fa417ab7 3008
bb192ed9
VB
3009 slab = c->slab = slub_percpu_partial(c);
3010 slub_set_percpu_partial(c, slab);
bd0e7491 3011 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
49e22585 3012 stat(s, CPU_PARTIAL_ALLOC);
49e22585 3013 goto redo;
81819f0f
CL
3014 }
3015
fa417ab7
VB
3016new_objects:
3017
bb192ed9 3018 freelist = get_partial(s, gfpflags, node, &slab);
3f2b77e3 3019 if (freelist)
c2092c12 3020 goto check_new_slab;
2a904905 3021
25c00c50 3022 slub_put_cpu_ptr(s->cpu_slab);
bb192ed9 3023 slab = new_slab(s, gfpflags, node);
25c00c50 3024 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3025
bb192ed9 3026 if (unlikely(!slab)) {
9a02d699 3027 slab_out_of_memory(s, gfpflags, node);
f4697436 3028 return NULL;
81819f0f 3029 }
2cfb7455 3030
53a0de06 3031 /*
c2092c12 3032 * No other reference to the slab yet so we can
53a0de06
VB
3033 * muck around with it freely without cmpxchg
3034 */
bb192ed9
VB
3035 freelist = slab->freelist;
3036 slab->freelist = NULL;
53a0de06
VB
3037
3038 stat(s, ALLOC_SLAB);
53a0de06 3039
c2092c12 3040check_new_slab:
2cfb7455 3041
1572df7c 3042 if (kmem_cache_debug(s)) {
bb192ed9 3043 if (!alloc_debug_processing(s, slab, freelist, addr)) {
1572df7c
VB
3044 /* Slab failed checks. Next slab needed */
3045 goto new_slab;
fa417ab7 3046 } else {
1572df7c
VB
3047 /*
3048 * For debug case, we don't load freelist so that all
3049 * allocations go through alloc_debug_processing()
3050 */
3051 goto return_single;
fa417ab7 3052 }
1572df7c
VB
3053 }
3054
bb192ed9 3055 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
1572df7c
VB
3056 /*
3057 * For !pfmemalloc_match() case we don't load freelist so that
3058 * we don't make further mismatched allocations easier.
3059 */
3060 goto return_single;
3061
c2092c12 3062retry_load_slab:
cfdf836e 3063
bd0e7491 3064 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3065 if (unlikely(c->slab)) {
cfdf836e 3066 void *flush_freelist = c->freelist;
bb192ed9 3067 struct slab *flush_slab = c->slab;
cfdf836e 3068
bb192ed9 3069 c->slab = NULL;
cfdf836e
VB
3070 c->freelist = NULL;
3071 c->tid = next_tid(c->tid);
3072
bd0e7491 3073 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3074
bb192ed9 3075 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3076
3077 stat(s, CPUSLAB_FLUSH);
3078
c2092c12 3079 goto retry_load_slab;
cfdf836e 3080 }
bb192ed9 3081 c->slab = slab;
3f2b77e3 3082
1572df7c
VB
3083 goto load_freelist;
3084
3085return_single:
894b8788 3086
bb192ed9 3087 deactivate_slab(s, slab, get_freepointer(s, freelist));
6faa6833 3088 return freelist;
894b8788
CL
3089}
3090
a380a3c7 3091/*
e500059b
VB
3092 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3093 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3094 * pointer.
a380a3c7
CL
3095 */
3096static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3097 unsigned long addr, struct kmem_cache_cpu *c)
3098{
3099 void *p;
a380a3c7 3100
e500059b 3101#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3102 /*
3103 * We may have been preempted and rescheduled on a different
e500059b 3104 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3105 * pointer.
3106 */
25c00c50 3107 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3108#endif
3109
3110 p = ___slab_alloc(s, gfpflags, node, addr, c);
e500059b 3111#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3112 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3113#endif
a380a3c7
CL
3114 return p;
3115}
3116
0f181f9f
AP
3117/*
3118 * If the object has been wiped upon free, make sure it's fully initialized by
3119 * zeroing out freelist pointer.
3120 */
3121static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3122 void *obj)
3123{
3124 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
3125 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3126 0, sizeof(void *));
0f181f9f
AP
3127}
3128
894b8788
CL
3129/*
3130 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3131 * have the fastpath folded into their functions. So no function call
3132 * overhead for requests that can be satisfied on the fastpath.
3133 *
3134 * The fastpath works by first checking if the lockless freelist can be used.
3135 * If not then __slab_alloc is called for slow processing.
3136 *
3137 * Otherwise we can simply pick the next object from the lockless free list.
3138 */
88f2ef73 3139static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
b89fb5ef 3140 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3141{
03ec0ed5 3142 void *object;
dfb4f096 3143 struct kmem_cache_cpu *c;
bb192ed9 3144 struct slab *slab;
8a5ec0ba 3145 unsigned long tid;
964d4bd3 3146 struct obj_cgroup *objcg = NULL;
da844b78 3147 bool init = false;
1f84260c 3148
88f2ef73 3149 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
8135be5a 3150 if (!s)
773ff60e 3151 return NULL;
b89fb5ef
AP
3152
3153 object = kfence_alloc(s, orig_size, gfpflags);
3154 if (unlikely(object))
3155 goto out;
3156
8a5ec0ba 3157redo:
8a5ec0ba
CL
3158 /*
3159 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3160 * enabled. We may switch back and forth between cpus while
3161 * reading from one cpu area. That does not matter as long
3162 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3163 *
9b4bc85a
VB
3164 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3165 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3166 * the tid. If we are preempted and switched to another cpu between the
3167 * two reads, it's OK as the two are still associated with the same cpu
3168 * and cmpxchg later will validate the cpu.
8a5ec0ba 3169 */
9b4bc85a
VB
3170 c = raw_cpu_ptr(s->cpu_slab);
3171 tid = READ_ONCE(c->tid);
9aabf810
JK
3172
3173 /*
3174 * Irqless object alloc/free algorithm used here depends on sequence
3175 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3176 * on c to guarantee that object and slab associated with previous tid
9aabf810 3177 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3178 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3179 * request will be failed. In this case, we will retry. So, no problem.
3180 */
3181 barrier();
8a5ec0ba 3182
8a5ec0ba
CL
3183 /*
3184 * The transaction ids are globally unique per cpu and per operation on
3185 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3186 * occurs on the right processor and that there was no operation on the
3187 * linked list in between.
3188 */
8a5ec0ba 3189
9dfc6e68 3190 object = c->freelist;
bb192ed9 3191 slab = c->slab;
bd0e7491
VB
3192 /*
3193 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3194 * slowpath has taken the local_lock_irqsave(), it is not protected
3195 * against a fast path operation in an irq handler. So we need to take
3196 * the slow path which uses local_lock. It is still relatively fast if
3197 * there is a suitable cpu freelist.
3198 */
3199 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
bb192ed9 3200 unlikely(!object || !slab || !node_match(slab, node))) {
dfb4f096 3201 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 3202 } else {
0ad9500e
ED
3203 void *next_object = get_freepointer_safe(s, object);
3204
8a5ec0ba 3205 /*
25985edc 3206 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3207 * operation and if we are on the right processor.
3208 *
d0e0ac97
CG
3209 * The cmpxchg does the following atomically (without lock
3210 * semantics!)
8a5ec0ba
CL
3211 * 1. Relocate first pointer to the current per cpu area.
3212 * 2. Verify that tid and freelist have not been changed
3213 * 3. If they were not changed replace tid and freelist
3214 *
d0e0ac97
CG
3215 * Since this is without lock semantics the protection is only
3216 * against code executing on this cpu *not* from access by
3217 * other cpus.
8a5ec0ba 3218 */
933393f5 3219 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
3220 s->cpu_slab->freelist, s->cpu_slab->tid,
3221 object, tid,
0ad9500e 3222 next_object, next_tid(tid)))) {
8a5ec0ba
CL
3223
3224 note_cmpxchg_failure("slab_alloc", s, tid);
3225 goto redo;
3226 }
0ad9500e 3227 prefetch_freepointer(s, next_object);
84e554e6 3228 stat(s, ALLOC_FASTPATH);
894b8788 3229 }
0f181f9f 3230
ce5716c6 3231 maybe_wipe_obj_freeptr(s, object);
da844b78 3232 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3233
b89fb5ef 3234out:
da844b78 3235 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 3236
894b8788 3237 return object;
81819f0f
CL
3238}
3239
88f2ef73 3240static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
b89fb5ef 3241 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 3242{
88f2ef73 3243 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
3244}
3245
88f2ef73
MS
3246static __always_inline
3247void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3248 gfp_t gfpflags)
81819f0f 3249{
88f2ef73 3250 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
5b882be4 3251
b347aa7b 3252 trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size,
d0e0ac97 3253 s->size, gfpflags);
5b882be4
EGM
3254
3255 return ret;
81819f0f 3256}
88f2ef73
MS
3257
3258void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3259{
3260 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3261}
81819f0f
CL
3262EXPORT_SYMBOL(kmem_cache_alloc);
3263
88f2ef73
MS
3264void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3265 gfp_t gfpflags)
3266{
3267 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3268}
3269EXPORT_SYMBOL(kmem_cache_alloc_lru);
3270
0f24f128 3271#ifdef CONFIG_TRACING
4a92379b
RK
3272void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3273{
88f2ef73 3274 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size);
b347aa7b 3275 trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags);
0116523c 3276 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
3277 return ret;
3278}
3279EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
3280#endif
3281
81819f0f
CL
3282void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3283{
88f2ef73 3284 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3285
b347aa7b 3286 trace_kmem_cache_alloc_node(_RET_IP_, ret, s,
3b0efdfa 3287 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
3288
3289 return ret;
81819f0f
CL
3290}
3291EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3292
0f24f128 3293#ifdef CONFIG_TRACING
4a92379b 3294void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 3295 gfp_t gfpflags,
4a92379b 3296 int node, size_t size)
5b882be4 3297{
88f2ef73 3298 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4a92379b 3299
b347aa7b 3300 trace_kmalloc_node(_RET_IP_, ret, s,
4a92379b 3301 size, s->size, gfpflags, node);
0316bec2 3302
0116523c 3303 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3304 return ret;
5b882be4 3305}
4a92379b 3306EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4
EGM
3307#endif
3308
81819f0f 3309/*
94e4d712 3310 * Slow path handling. This may still be called frequently since objects
894b8788 3311 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3312 *
894b8788 3313 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 3314 * lock and free the item. If there is no additional partial slab
894b8788 3315 * handling required then we can return immediately.
81819f0f 3316 */
bb192ed9 3317static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
3318 void *head, void *tail, int cnt,
3319 unsigned long addr)
3320
81819f0f
CL
3321{
3322 void *prior;
2cfb7455 3323 int was_frozen;
bb192ed9 3324 struct slab new;
2cfb7455
CL
3325 unsigned long counters;
3326 struct kmem_cache_node *n = NULL;
3f649ab7 3327 unsigned long flags;
81819f0f 3328
8a5ec0ba 3329 stat(s, FREE_SLOWPATH);
81819f0f 3330
b89fb5ef
AP
3331 if (kfence_free(head))
3332 return;
3333
19c7ff9e 3334 if (kmem_cache_debug(s) &&
bb192ed9 3335 !free_debug_processing(s, slab, head, tail, cnt, addr))
80f08c19 3336 return;
6446faa2 3337
2cfb7455 3338 do {
837d678d
JK
3339 if (unlikely(n)) {
3340 spin_unlock_irqrestore(&n->list_lock, flags);
3341 n = NULL;
3342 }
bb192ed9
VB
3343 prior = slab->freelist;
3344 counters = slab->counters;
81084651 3345 set_freepointer(s, tail, prior);
2cfb7455
CL
3346 new.counters = counters;
3347 was_frozen = new.frozen;
81084651 3348 new.inuse -= cnt;
837d678d 3349 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3350
c65c1877 3351 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3352
3353 /*
d0e0ac97
CG
3354 * Slab was on no list before and will be
3355 * partially empty
3356 * We can defer the list move and instead
3357 * freeze it.
49e22585
CL
3358 */
3359 new.frozen = 1;
3360
c65c1877 3361 } else { /* Needs to be taken off a list */
49e22585 3362
bb192ed9 3363 n = get_node(s, slab_nid(slab));
49e22585
CL
3364 /*
3365 * Speculatively acquire the list_lock.
3366 * If the cmpxchg does not succeed then we may
3367 * drop the list_lock without any processing.
3368 *
3369 * Otherwise the list_lock will synchronize with
3370 * other processors updating the list of slabs.
3371 */
3372 spin_lock_irqsave(&n->list_lock, flags);
3373
3374 }
2cfb7455 3375 }
81819f0f 3376
bb192ed9 3377 } while (!cmpxchg_double_slab(s, slab,
2cfb7455 3378 prior, counters,
81084651 3379 head, new.counters,
2cfb7455 3380 "__slab_free"));
81819f0f 3381
2cfb7455 3382 if (likely(!n)) {
49e22585 3383
c270cf30
AW
3384 if (likely(was_frozen)) {
3385 /*
3386 * The list lock was not taken therefore no list
3387 * activity can be necessary.
3388 */
3389 stat(s, FREE_FROZEN);
3390 } else if (new.frozen) {
3391 /*
c2092c12 3392 * If we just froze the slab then put it onto the
c270cf30
AW
3393 * per cpu partial list.
3394 */
bb192ed9 3395 put_cpu_partial(s, slab, 1);
8028dcea
AS
3396 stat(s, CPU_PARTIAL_FREE);
3397 }
c270cf30 3398
b455def2
L
3399 return;
3400 }
81819f0f 3401
8a5b20ae 3402 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3403 goto slab_empty;
3404
81819f0f 3405 /*
837d678d
JK
3406 * Objects left in the slab. If it was not on the partial list before
3407 * then add it.
81819f0f 3408 */
345c905d 3409 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9
VB
3410 remove_full(s, n, slab);
3411 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 3412 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3413 }
80f08c19 3414 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3415 return;
3416
3417slab_empty:
a973e9dd 3418 if (prior) {
81819f0f 3419 /*
6fbabb20 3420 * Slab on the partial list.
81819f0f 3421 */
bb192ed9 3422 remove_partial(n, slab);
84e554e6 3423 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3424 } else {
6fbabb20 3425 /* Slab must be on the full list */
bb192ed9 3426 remove_full(s, n, slab);
c65c1877 3427 }
2cfb7455 3428
80f08c19 3429 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3430 stat(s, FREE_SLAB);
bb192ed9 3431 discard_slab(s, slab);
81819f0f
CL
3432}
3433
894b8788
CL
3434/*
3435 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3436 * can perform fastpath freeing without additional function calls.
3437 *
3438 * The fastpath is only possible if we are freeing to the current cpu slab
3439 * of this processor. This typically the case if we have just allocated
3440 * the item before.
3441 *
3442 * If fastpath is not possible then fall back to __slab_free where we deal
3443 * with all sorts of special processing.
81084651
JDB
3444 *
3445 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 3446 * same slab) possible by specifying head and tail ptr, plus objects
81084651 3447 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3448 */
80a9201a 3449static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 3450 struct slab *slab, void *head, void *tail,
80a9201a 3451 int cnt, unsigned long addr)
894b8788 3452{
81084651 3453 void *tail_obj = tail ? : head;
dfb4f096 3454 struct kmem_cache_cpu *c;
8a5ec0ba 3455 unsigned long tid;
964d4bd3 3456
8a5ec0ba
CL
3457redo:
3458 /*
3459 * Determine the currently cpus per cpu slab.
3460 * The cpu may change afterward. However that does not matter since
3461 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3462 * during the cmpxchg then the free will succeed.
8a5ec0ba 3463 */
9b4bc85a
VB
3464 c = raw_cpu_ptr(s->cpu_slab);
3465 tid = READ_ONCE(c->tid);
c016b0bd 3466
9aabf810
JK
3467 /* Same with comment on barrier() in slab_alloc_node() */
3468 barrier();
c016b0bd 3469
bb192ed9 3470 if (likely(slab == c->slab)) {
bd0e7491 3471#ifndef CONFIG_PREEMPT_RT
5076190d
LT
3472 void **freelist = READ_ONCE(c->freelist);
3473
3474 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3475
933393f5 3476 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3477 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3478 freelist, tid,
81084651 3479 head, next_tid(tid)))) {
8a5ec0ba
CL
3480
3481 note_cmpxchg_failure("slab_free", s, tid);
3482 goto redo;
3483 }
bd0e7491
VB
3484#else /* CONFIG_PREEMPT_RT */
3485 /*
3486 * We cannot use the lockless fastpath on PREEMPT_RT because if
3487 * a slowpath has taken the local_lock_irqsave(), it is not
3488 * protected against a fast path operation in an irq handler. So
3489 * we need to take the local_lock. We shouldn't simply defer to
3490 * __slab_free() as that wouldn't use the cpu freelist at all.
3491 */
3492 void **freelist;
3493
3494 local_lock(&s->cpu_slab->lock);
3495 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 3496 if (unlikely(slab != c->slab)) {
bd0e7491
VB
3497 local_unlock(&s->cpu_slab->lock);
3498 goto redo;
3499 }
3500 tid = c->tid;
3501 freelist = c->freelist;
3502
3503 set_freepointer(s, tail_obj, freelist);
3504 c->freelist = head;
3505 c->tid = next_tid(tid);
3506
3507 local_unlock(&s->cpu_slab->lock);
3508#endif
84e554e6 3509 stat(s, FREE_FASTPATH);
894b8788 3510 } else
bb192ed9 3511 __slab_free(s, slab, head, tail_obj, cnt, addr);
894b8788 3512
894b8788
CL
3513}
3514
bb192ed9 3515static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
b77d5b1b 3516 void *head, void *tail, void **p, int cnt,
80a9201a
AP
3517 unsigned long addr)
3518{
b77d5b1b 3519 memcg_slab_free_hook(s, slab, p, cnt);
80a9201a 3520 /*
c3895391
AK
3521 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3522 * to remove objects, whose reuse must be delayed.
80a9201a 3523 */
899447f6 3524 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
bb192ed9 3525 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
3526}
3527
2bd926b4 3528#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3529void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3530{
bb192ed9 3531 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
80a9201a
AP
3532}
3533#endif
3534
81819f0f
CL
3535void kmem_cache_free(struct kmem_cache *s, void *x)
3536{
b9ce5ef4
GC
3537 s = cache_from_obj(s, x);
3538 if (!s)
79576102 3539 return;
3544de8e 3540 trace_kmem_cache_free(_RET_IP_, x, s->name);
b77d5b1b 3541 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
81819f0f
CL
3542}
3543EXPORT_SYMBOL(kmem_cache_free);
3544
d0ecd894 3545struct detached_freelist {
cc465c3b 3546 struct slab *slab;
d0ecd894
JDB
3547 void *tail;
3548 void *freelist;
3549 int cnt;
376bf125 3550 struct kmem_cache *s;
d0ecd894 3551};
fbd02630 3552
d835eef4 3553static inline void free_large_kmalloc(struct folio *folio, void *object)
f227f0fa 3554{
d835eef4 3555 unsigned int order = folio_order(folio);
f227f0fa 3556
d835eef4 3557 if (WARN_ON_ONCE(order == 0))
d0fe47c6
KW
3558 pr_warn_once("object pointer: 0x%p\n", object);
3559
1ed7ce57 3560 kfree_hook(object);
d835eef4
MWO
3561 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3562 -(PAGE_SIZE << order));
3563 __free_pages(folio_page(folio, 0), order);
f227f0fa
SB
3564}
3565
d0ecd894
JDB
3566/*
3567 * This function progressively scans the array with free objects (with
3568 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
3569 * slab. It builds a detached freelist directly within the given
3570 * slab/objects. This can happen without any need for
d0ecd894
JDB
3571 * synchronization, because the objects are owned by running process.
3572 * The freelist is build up as a single linked list in the objects.
3573 * The idea is, that this detached freelist can then be bulk
3574 * transferred to the real freelist(s), but only requiring a single
3575 * synchronization primitive. Look ahead in the array is limited due
3576 * to performance reasons.
3577 */
376bf125
JDB
3578static inline
3579int build_detached_freelist(struct kmem_cache *s, size_t size,
3580 void **p, struct detached_freelist *df)
d0ecd894 3581{
d0ecd894
JDB
3582 int lookahead = 3;
3583 void *object;
cc465c3b 3584 struct folio *folio;
b77d5b1b 3585 size_t same;
fbd02630 3586
b77d5b1b 3587 object = p[--size];
cc465c3b 3588 folio = virt_to_folio(object);
ca257195
JDB
3589 if (!s) {
3590 /* Handle kalloc'ed objects */
cc465c3b 3591 if (unlikely(!folio_test_slab(folio))) {
d835eef4 3592 free_large_kmalloc(folio, object);
b77d5b1b 3593 df->slab = NULL;
ca257195
JDB
3594 return size;
3595 }
3596 /* Derive kmem_cache from object */
b77d5b1b
MS
3597 df->slab = folio_slab(folio);
3598 df->s = df->slab->slab_cache;
ca257195 3599 } else {
b77d5b1b 3600 df->slab = folio_slab(folio);
ca257195
JDB
3601 df->s = cache_from_obj(s, object); /* Support for memcg */
3602 }
376bf125 3603
d0ecd894 3604 /* Start new detached freelist */
d0ecd894
JDB
3605 df->tail = object;
3606 df->freelist = object;
d0ecd894
JDB
3607 df->cnt = 1;
3608
b77d5b1b
MS
3609 if (is_kfence_address(object))
3610 return size;
3611
3612 set_freepointer(df->s, object, NULL);
3613
3614 same = size;
d0ecd894
JDB
3615 while (size) {
3616 object = p[--size];
cc465c3b
MWO
3617 /* df->slab is always set at this point */
3618 if (df->slab == virt_to_slab(object)) {
d0ecd894 3619 /* Opportunity build freelist */
376bf125 3620 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3621 df->freelist = object;
3622 df->cnt++;
b77d5b1b
MS
3623 same--;
3624 if (size != same)
3625 swap(p[size], p[same]);
d0ecd894 3626 continue;
fbd02630 3627 }
d0ecd894
JDB
3628
3629 /* Limit look ahead search */
3630 if (!--lookahead)
3631 break;
fbd02630 3632 }
d0ecd894 3633
b77d5b1b 3634 return same;
d0ecd894
JDB
3635}
3636
d0ecd894 3637/* Note that interrupts must be enabled when calling this function. */
376bf125 3638void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 3639{
2055e67b 3640 if (!size)
d0ecd894
JDB
3641 return;
3642
3643 do {
3644 struct detached_freelist df;
3645
3646 size = build_detached_freelist(s, size, p, &df);
cc465c3b 3647 if (!df.slab)
d0ecd894
JDB
3648 continue;
3649
b77d5b1b
MS
3650 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3651 _RET_IP_);
d0ecd894 3652 } while (likely(size));
484748f0
CL
3653}
3654EXPORT_SYMBOL(kmem_cache_free_bulk);
3655
994eb764 3656/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3657int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3658 void **p)
484748f0 3659{
994eb764
JDB
3660 struct kmem_cache_cpu *c;
3661 int i;
964d4bd3 3662 struct obj_cgroup *objcg = NULL;
994eb764 3663
03ec0ed5 3664 /* memcg and kmem_cache debug support */
88f2ef73 3665 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
03ec0ed5
JDB
3666 if (unlikely(!s))
3667 return false;
994eb764
JDB
3668 /*
3669 * Drain objects in the per cpu slab, while disabling local
3670 * IRQs, which protects against PREEMPT and interrupts
3671 * handlers invoking normal fastpath.
3672 */
25c00c50 3673 c = slub_get_cpu_ptr(s->cpu_slab);
bd0e7491 3674 local_lock_irq(&s->cpu_slab->lock);
994eb764
JDB
3675
3676 for (i = 0; i < size; i++) {
b89fb5ef 3677 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3678
b89fb5ef
AP
3679 if (unlikely(object)) {
3680 p[i] = object;
3681 continue;
3682 }
3683
3684 object = c->freelist;
ebe909e0 3685 if (unlikely(!object)) {
fd4d9c7d
JH
3686 /*
3687 * We may have removed an object from c->freelist using
3688 * the fastpath in the previous iteration; in that case,
3689 * c->tid has not been bumped yet.
3690 * Since ___slab_alloc() may reenable interrupts while
3691 * allocating memory, we should bump c->tid now.
3692 */
3693 c->tid = next_tid(c->tid);
3694
bd0e7491 3695 local_unlock_irq(&s->cpu_slab->lock);
e500059b 3696
ebe909e0
JDB
3697 /*
3698 * Invoking slow path likely have side-effect
3699 * of re-populating per CPU c->freelist
3700 */
87098373 3701 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3702 _RET_IP_, c);
87098373
CL
3703 if (unlikely(!p[i]))
3704 goto error;
3705
ebe909e0 3706 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3707 maybe_wipe_obj_freeptr(s, p[i]);
3708
bd0e7491 3709 local_lock_irq(&s->cpu_slab->lock);
e500059b 3710
ebe909e0
JDB
3711 continue; /* goto for-loop */
3712 }
994eb764
JDB
3713 c->freelist = get_freepointer(s, object);
3714 p[i] = object;
0f181f9f 3715 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3716 }
3717 c->tid = next_tid(c->tid);
bd0e7491 3718 local_unlock_irq(&s->cpu_slab->lock);
25c00c50 3719 slub_put_cpu_ptr(s->cpu_slab);
994eb764 3720
da844b78
AK
3721 /*
3722 * memcg and kmem_cache debug support and memory initialization.
3723 * Done outside of the IRQ disabled fastpath loop.
3724 */
3725 slab_post_alloc_hook(s, objcg, flags, size, p,
3726 slab_want_init_on_alloc(flags, s));
865762a8 3727 return i;
87098373 3728error:
25c00c50 3729 slub_put_cpu_ptr(s->cpu_slab);
da844b78 3730 slab_post_alloc_hook(s, objcg, flags, i, p, false);
2055e67b 3731 kmem_cache_free_bulk(s, i, p);
865762a8 3732 return 0;
484748f0
CL
3733}
3734EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3735
3736
81819f0f 3737/*
672bba3a
CL
3738 * Object placement in a slab is made very easy because we always start at
3739 * offset 0. If we tune the size of the object to the alignment then we can
3740 * get the required alignment by putting one properly sized object after
3741 * another.
81819f0f
CL
3742 *
3743 * Notice that the allocation order determines the sizes of the per cpu
3744 * caches. Each processor has always one slab available for allocations.
3745 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3746 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3747 * locking overhead.
81819f0f
CL
3748 */
3749
3750/*
f0953a1b 3751 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3752 * and slab fragmentation. A higher order reduces the number of partial slabs
3753 * and increases the number of allocations possible without having to
3754 * take the list_lock.
3755 */
19af27af
AD
3756static unsigned int slub_min_order;
3757static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3758static unsigned int slub_min_objects;
81819f0f 3759
81819f0f
CL
3760/*
3761 * Calculate the order of allocation given an slab object size.
3762 *
672bba3a
CL
3763 * The order of allocation has significant impact on performance and other
3764 * system components. Generally order 0 allocations should be preferred since
3765 * order 0 does not cause fragmentation in the page allocator. Larger objects
3766 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3767 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3768 * would be wasted.
3769 *
3770 * In order to reach satisfactory performance we must ensure that a minimum
3771 * number of objects is in one slab. Otherwise we may generate too much
3772 * activity on the partial lists which requires taking the list_lock. This is
3773 * less a concern for large slabs though which are rarely used.
81819f0f 3774 *
672bba3a
CL
3775 * slub_max_order specifies the order where we begin to stop considering the
3776 * number of objects in a slab as critical. If we reach slub_max_order then
3777 * we try to keep the page order as low as possible. So we accept more waste
3778 * of space in favor of a small page order.
81819f0f 3779 *
672bba3a
CL
3780 * Higher order allocations also allow the placement of more objects in a
3781 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3782 * requested a higher minimum order then we start with that one instead of
672bba3a 3783 * the smallest order which will fit the object.
81819f0f 3784 */
d122019b 3785static inline unsigned int calc_slab_order(unsigned int size,
19af27af 3786 unsigned int min_objects, unsigned int max_order,
9736d2a9 3787 unsigned int fract_leftover)
81819f0f 3788{
19af27af
AD
3789 unsigned int min_order = slub_min_order;
3790 unsigned int order;
81819f0f 3791
9736d2a9 3792 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3793 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3794
9736d2a9 3795 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3796 order <= max_order; order++) {
81819f0f 3797
19af27af
AD
3798 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3799 unsigned int rem;
81819f0f 3800
9736d2a9 3801 rem = slab_size % size;
81819f0f 3802
5e6d444e 3803 if (rem <= slab_size / fract_leftover)
81819f0f 3804 break;
81819f0f 3805 }
672bba3a 3806
81819f0f
CL
3807 return order;
3808}
3809
9736d2a9 3810static inline int calculate_order(unsigned int size)
5e6d444e 3811{
19af27af
AD
3812 unsigned int order;
3813 unsigned int min_objects;
3814 unsigned int max_objects;
3286222f 3815 unsigned int nr_cpus;
5e6d444e
CL
3816
3817 /*
3818 * Attempt to find best configuration for a slab. This
3819 * works by first attempting to generate a layout with
3820 * the best configuration and backing off gradually.
3821 *
422ff4d7 3822 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3823 * we reduce the minimum objects required in a slab.
3824 */
3825 min_objects = slub_min_objects;
3286222f
VB
3826 if (!min_objects) {
3827 /*
3828 * Some architectures will only update present cpus when
3829 * onlining them, so don't trust the number if it's just 1. But
3830 * we also don't want to use nr_cpu_ids always, as on some other
3831 * architectures, there can be many possible cpus, but never
3832 * onlined. Here we compromise between trying to avoid too high
3833 * order on systems that appear larger than they are, and too
3834 * low order on systems that appear smaller than they are.
3835 */
3836 nr_cpus = num_present_cpus();
3837 if (nr_cpus <= 1)
3838 nr_cpus = nr_cpu_ids;
3839 min_objects = 4 * (fls(nr_cpus) + 1);
3840 }
9736d2a9 3841 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3842 min_objects = min(min_objects, max_objects);
3843
5e6d444e 3844 while (min_objects > 1) {
19af27af
AD
3845 unsigned int fraction;
3846
c124f5b5 3847 fraction = 16;
5e6d444e 3848 while (fraction >= 4) {
d122019b 3849 order = calc_slab_order(size, min_objects,
9736d2a9 3850 slub_max_order, fraction);
5e6d444e
CL
3851 if (order <= slub_max_order)
3852 return order;
3853 fraction /= 2;
3854 }
5086c389 3855 min_objects--;
5e6d444e
CL
3856 }
3857
3858 /*
3859 * We were unable to place multiple objects in a slab. Now
3860 * lets see if we can place a single object there.
3861 */
d122019b 3862 order = calc_slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3863 if (order <= slub_max_order)
3864 return order;
3865
3866 /*
3867 * Doh this slab cannot be placed using slub_max_order.
3868 */
d122019b 3869 order = calc_slab_order(size, 1, MAX_ORDER, 1);
818cf590 3870 if (order < MAX_ORDER)
5e6d444e
CL
3871 return order;
3872 return -ENOSYS;
3873}
3874
5595cffc 3875static void
4053497d 3876init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3877{
3878 n->nr_partial = 0;
81819f0f
CL
3879 spin_lock_init(&n->list_lock);
3880 INIT_LIST_HEAD(&n->partial);
8ab1372f 3881#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3882 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3883 atomic_long_set(&n->total_objects, 0);
643b1138 3884 INIT_LIST_HEAD(&n->full);
8ab1372f 3885#endif
81819f0f
CL
3886}
3887
55136592 3888static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3889{
6c182dc0 3890 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3891 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3892
8a5ec0ba 3893 /*
d4d84fef
CM
3894 * Must align to double word boundary for the double cmpxchg
3895 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3896 */
d4d84fef
CM
3897 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3898 2 * sizeof(void *));
8a5ec0ba
CL
3899
3900 if (!s->cpu_slab)
3901 return 0;
3902
3903 init_kmem_cache_cpus(s);
4c93c355 3904
8a5ec0ba 3905 return 1;
4c93c355 3906}
4c93c355 3907
51df1142
CL
3908static struct kmem_cache *kmem_cache_node;
3909
81819f0f
CL
3910/*
3911 * No kmalloc_node yet so do it by hand. We know that this is the first
3912 * slab on the node for this slabcache. There are no concurrent accesses
3913 * possible.
3914 *
721ae22a
ZYW
3915 * Note that this function only works on the kmem_cache_node
3916 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3917 * memory on a fresh node that has no slab structures yet.
81819f0f 3918 */
55136592 3919static void early_kmem_cache_node_alloc(int node)
81819f0f 3920{
bb192ed9 3921 struct slab *slab;
81819f0f
CL
3922 struct kmem_cache_node *n;
3923
51df1142 3924 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3925
bb192ed9 3926 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 3927
bb192ed9
VB
3928 BUG_ON(!slab);
3929 if (slab_nid(slab) != node) {
f9f58285
FF
3930 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3931 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3932 }
3933
bb192ed9 3934 n = slab->freelist;
81819f0f 3935 BUG_ON(!n);
8ab1372f 3936#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3937 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3938 init_tracking(kmem_cache_node, n);
8ab1372f 3939#endif
da844b78 3940 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
3941 slab->freelist = get_freepointer(kmem_cache_node, n);
3942 slab->inuse = 1;
3943 slab->frozen = 0;
12b22386 3944 kmem_cache_node->node[node] = n;
4053497d 3945 init_kmem_cache_node(n);
bb192ed9 3946 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 3947
67b6c900 3948 /*
1e4dd946
SR
3949 * No locks need to be taken here as it has just been
3950 * initialized and there is no concurrent access.
67b6c900 3951 */
bb192ed9 3952 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
3953}
3954
3955static void free_kmem_cache_nodes(struct kmem_cache *s)
3956{
3957 int node;
fa45dc25 3958 struct kmem_cache_node *n;
81819f0f 3959
fa45dc25 3960 for_each_kmem_cache_node(s, node, n) {
81819f0f 3961 s->node[node] = NULL;
ea37df54 3962 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3963 }
3964}
3965
52b4b950
DS
3966void __kmem_cache_release(struct kmem_cache *s)
3967{
210e7a43 3968 cache_random_seq_destroy(s);
52b4b950
DS
3969 free_percpu(s->cpu_slab);
3970 free_kmem_cache_nodes(s);
3971}
3972
55136592 3973static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3974{
3975 int node;
81819f0f 3976
7e1fa93d 3977 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3978 struct kmem_cache_node *n;
3979
73367bd8 3980 if (slab_state == DOWN) {
55136592 3981 early_kmem_cache_node_alloc(node);
73367bd8
AD
3982 continue;
3983 }
51df1142 3984 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3985 GFP_KERNEL, node);
81819f0f 3986
73367bd8
AD
3987 if (!n) {
3988 free_kmem_cache_nodes(s);
3989 return 0;
81819f0f 3990 }
73367bd8 3991
4053497d 3992 init_kmem_cache_node(n);
ea37df54 3993 s->node[node] = n;
81819f0f
CL
3994 }
3995 return 1;
3996}
81819f0f 3997
e6d0e1dc
WY
3998static void set_cpu_partial(struct kmem_cache *s)
3999{
4000#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
4001 unsigned int nr_objects;
4002
e6d0e1dc
WY
4003 /*
4004 * cpu_partial determined the maximum number of objects kept in the
4005 * per cpu partial lists of a processor.
4006 *
4007 * Per cpu partial lists mainly contain slabs that just have one
4008 * object freed. If they are used for allocation then they can be
4009 * filled up again with minimal effort. The slab will never hit the
4010 * per node partial lists and therefore no locking will be required.
4011 *
b47291ef
VB
4012 * For backwards compatibility reasons, this is determined as number
4013 * of objects, even though we now limit maximum number of pages, see
4014 * slub_set_cpu_partial()
e6d0e1dc
WY
4015 */
4016 if (!kmem_cache_has_cpu_partial(s))
b47291ef 4017 nr_objects = 0;
e6d0e1dc 4018 else if (s->size >= PAGE_SIZE)
b47291ef 4019 nr_objects = 6;
e6d0e1dc 4020 else if (s->size >= 1024)
23e98ad1 4021 nr_objects = 24;
e6d0e1dc 4022 else if (s->size >= 256)
23e98ad1 4023 nr_objects = 52;
e6d0e1dc 4024 else
23e98ad1 4025 nr_objects = 120;
b47291ef
VB
4026
4027 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
4028#endif
4029}
4030
81819f0f
CL
4031/*
4032 * calculate_sizes() determines the order and the distribution of data within
4033 * a slab object.
4034 */
ae44d81d 4035static int calculate_sizes(struct kmem_cache *s)
81819f0f 4036{
d50112ed 4037 slab_flags_t flags = s->flags;
be4a7988 4038 unsigned int size = s->object_size;
19af27af 4039 unsigned int order;
81819f0f 4040
d8b42bf5
CL
4041 /*
4042 * Round up object size to the next word boundary. We can only
4043 * place the free pointer at word boundaries and this determines
4044 * the possible location of the free pointer.
4045 */
4046 size = ALIGN(size, sizeof(void *));
4047
4048#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4049 /*
4050 * Determine if we can poison the object itself. If the user of
4051 * the slab may touch the object after free or before allocation
4052 * then we should never poison the object itself.
4053 */
5f0d5a3a 4054 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 4055 !s->ctor)
81819f0f
CL
4056 s->flags |= __OBJECT_POISON;
4057 else
4058 s->flags &= ~__OBJECT_POISON;
4059
81819f0f
CL
4060
4061 /*
672bba3a 4062 * If we are Redzoning then check if there is some space between the
81819f0f 4063 * end of the object and the free pointer. If not then add an
672bba3a 4064 * additional word to have some bytes to store Redzone information.
81819f0f 4065 */
3b0efdfa 4066 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 4067 size += sizeof(void *);
41ecc55b 4068#endif
81819f0f
CL
4069
4070 /*
672bba3a 4071 * With that we have determined the number of bytes in actual use
e41a49fa 4072 * by the object and redzoning.
81819f0f
CL
4073 */
4074 s->inuse = size;
4075
74c1d3e0
KC
4076 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4077 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4078 s->ctor) {
81819f0f
CL
4079 /*
4080 * Relocate free pointer after the object if it is not
4081 * permitted to overwrite the first word of the object on
4082 * kmem_cache_free.
4083 *
4084 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
4085 * destructor, are poisoning the objects, or are
4086 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
4087 *
4088 * The assumption that s->offset >= s->inuse means free
4089 * pointer is outside of the object is used in the
4090 * freeptr_outside_object() function. If that is no
4091 * longer true, the function needs to be modified.
81819f0f
CL
4092 */
4093 s->offset = size;
4094 size += sizeof(void *);
e41a49fa 4095 } else {
3202fa62
KC
4096 /*
4097 * Store freelist pointer near middle of object to keep
4098 * it away from the edges of the object to avoid small
4099 * sized over/underflows from neighboring allocations.
4100 */
e41a49fa 4101 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
4102 }
4103
c12b3c62 4104#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4105 if (flags & SLAB_STORE_USER)
4106 /*
4107 * Need to store information about allocs and frees after
4108 * the object.
4109 */
4110 size += 2 * sizeof(struct track);
80a9201a 4111#endif
81819f0f 4112
80a9201a
AP
4113 kasan_cache_create(s, &size, &s->flags);
4114#ifdef CONFIG_SLUB_DEBUG
d86bd1be 4115 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
4116 /*
4117 * Add some empty padding so that we can catch
4118 * overwrites from earlier objects rather than let
4119 * tracking information or the free pointer be
0211a9c8 4120 * corrupted if a user writes before the start
81819f0f
CL
4121 * of the object.
4122 */
4123 size += sizeof(void *);
d86bd1be
JK
4124
4125 s->red_left_pad = sizeof(void *);
4126 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4127 size += s->red_left_pad;
4128 }
41ecc55b 4129#endif
672bba3a 4130
81819f0f
CL
4131 /*
4132 * SLUB stores one object immediately after another beginning from
4133 * offset 0. In order to align the objects we have to simply size
4134 * each object to conform to the alignment.
4135 */
45906855 4136 size = ALIGN(size, s->align);
81819f0f 4137 s->size = size;
4138fdfc 4138 s->reciprocal_size = reciprocal_value(size);
ae44d81d 4139 order = calculate_order(size);
81819f0f 4140
19af27af 4141 if ((int)order < 0)
81819f0f
CL
4142 return 0;
4143
b7a49f0d 4144 s->allocflags = 0;
834f3d11 4145 if (order)
b7a49f0d
CL
4146 s->allocflags |= __GFP_COMP;
4147
4148 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 4149 s->allocflags |= GFP_DMA;
b7a49f0d 4150
6d6ea1e9
NB
4151 if (s->flags & SLAB_CACHE_DMA32)
4152 s->allocflags |= GFP_DMA32;
4153
b7a49f0d
CL
4154 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4155 s->allocflags |= __GFP_RECLAIMABLE;
4156
81819f0f
CL
4157 /*
4158 * Determine the number of objects per slab
4159 */
9736d2a9
MW
4160 s->oo = oo_make(order, size);
4161 s->min = oo_make(get_order(size), size);
81819f0f 4162
834f3d11 4163 return !!oo_objects(s->oo);
81819f0f
CL
4164}
4165
d50112ed 4166static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 4167{
37540008 4168 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
4169#ifdef CONFIG_SLAB_FREELIST_HARDENED
4170 s->random = get_random_long();
4171#endif
81819f0f 4172
ae44d81d 4173 if (!calculate_sizes(s))
81819f0f 4174 goto error;
3de47213
DR
4175 if (disable_higher_order_debug) {
4176 /*
4177 * Disable debugging flags that store metadata if the min slab
4178 * order increased.
4179 */
3b0efdfa 4180 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
4181 s->flags &= ~DEBUG_METADATA_FLAGS;
4182 s->offset = 0;
ae44d81d 4183 if (!calculate_sizes(s))
3de47213
DR
4184 goto error;
4185 }
4186 }
81819f0f 4187
2565409f
HC
4188#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4189 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 4190 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
4191 /* Enable fast mode */
4192 s->flags |= __CMPXCHG_DOUBLE;
4193#endif
4194
3b89d7d8 4195 /*
c2092c12 4196 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
4197 * list to avoid pounding the page allocator excessively.
4198 */
5182f3c9
HY
4199 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4200 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 4201
e6d0e1dc 4202 set_cpu_partial(s);
49e22585 4203
81819f0f 4204#ifdef CONFIG_NUMA
e2cb96b7 4205 s->remote_node_defrag_ratio = 1000;
81819f0f 4206#endif
210e7a43
TG
4207
4208 /* Initialize the pre-computed randomized freelist if slab is up */
4209 if (slab_state >= UP) {
4210 if (init_cache_random_seq(s))
4211 goto error;
4212 }
4213
55136592 4214 if (!init_kmem_cache_nodes(s))
dfb4f096 4215 goto error;
81819f0f 4216
55136592 4217 if (alloc_kmem_cache_cpus(s))
278b1bb1 4218 return 0;
ff12059e 4219
81819f0f 4220error:
9037c576 4221 __kmem_cache_release(s);
278b1bb1 4222 return -EINVAL;
81819f0f 4223}
81819f0f 4224
bb192ed9 4225static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 4226 const char *text)
33b12c38
CL
4227{
4228#ifdef CONFIG_SLUB_DEBUG
bb192ed9 4229 void *addr = slab_address(slab);
a2b4ae8b 4230 unsigned long flags;
55860d96 4231 unsigned long *map;
33b12c38 4232 void *p;
aa456c7a 4233
bb192ed9
VB
4234 slab_err(s, slab, text, s->name);
4235 slab_lock(slab, &flags);
33b12c38 4236
bb192ed9
VB
4237 map = get_map(s, slab);
4238 for_each_object(p, s, addr, slab->objects) {
33b12c38 4239
4138fdfc 4240 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 4241 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
4242 print_tracking(s, p);
4243 }
4244 }
55860d96 4245 put_map(map);
bb192ed9 4246 slab_unlock(slab, &flags);
33b12c38
CL
4247#endif
4248}
4249
81819f0f 4250/*
599870b1 4251 * Attempt to free all partial slabs on a node.
52b4b950
DS
4252 * This is called from __kmem_cache_shutdown(). We must take list_lock
4253 * because sysfs file might still access partial list after the shutdowning.
81819f0f 4254 */
599870b1 4255static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 4256{
60398923 4257 LIST_HEAD(discard);
bb192ed9 4258 struct slab *slab, *h;
81819f0f 4259
52b4b950
DS
4260 BUG_ON(irqs_disabled());
4261 spin_lock_irq(&n->list_lock);
bb192ed9
VB
4262 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4263 if (!slab->inuse) {
4264 remove_partial(n, slab);
4265 list_add(&slab->slab_list, &discard);
33b12c38 4266 } else {
bb192ed9 4267 list_slab_objects(s, slab,
55860d96 4268 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 4269 }
33b12c38 4270 }
52b4b950 4271 spin_unlock_irq(&n->list_lock);
60398923 4272
bb192ed9
VB
4273 list_for_each_entry_safe(slab, h, &discard, slab_list)
4274 discard_slab(s, slab);
81819f0f
CL
4275}
4276
f9e13c0a
SB
4277bool __kmem_cache_empty(struct kmem_cache *s)
4278{
4279 int node;
4280 struct kmem_cache_node *n;
4281
4282 for_each_kmem_cache_node(s, node, n)
4283 if (n->nr_partial || slabs_node(s, node))
4284 return false;
4285 return true;
4286}
4287
81819f0f 4288/*
672bba3a 4289 * Release all resources used by a slab cache.
81819f0f 4290 */
52b4b950 4291int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4292{
4293 int node;
fa45dc25 4294 struct kmem_cache_node *n;
81819f0f 4295
5a836bf6 4296 flush_all_cpus_locked(s);
81819f0f 4297 /* Attempt to free all objects */
fa45dc25 4298 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
4299 free_partial(s, n);
4300 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4301 return 1;
4302 }
81819f0f
CL
4303 return 0;
4304}
4305
5bb1bb35 4306#ifdef CONFIG_PRINTK
2dfe63e6 4307void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
4308{
4309 void *base;
4310 int __maybe_unused i;
4311 unsigned int objnr;
4312 void *objp;
4313 void *objp0;
7213230a 4314 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
4315 struct track __maybe_unused *trackp;
4316
4317 kpp->kp_ptr = object;
7213230a 4318 kpp->kp_slab = slab;
8e7f37f2 4319 kpp->kp_slab_cache = s;
7213230a 4320 base = slab_address(slab);
8e7f37f2
PM
4321 objp0 = kasan_reset_tag(object);
4322#ifdef CONFIG_SLUB_DEBUG
4323 objp = restore_red_left(s, objp0);
4324#else
4325 objp = objp0;
4326#endif
40f3bf0c 4327 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
4328 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4329 objp = base + s->size * objnr;
4330 kpp->kp_objp = objp;
7213230a
MWO
4331 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4332 || (objp - base) % s->size) ||
8e7f37f2
PM
4333 !(s->flags & SLAB_STORE_USER))
4334 return;
4335#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4336 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4337 trackp = get_track(s, objp, TRACK_ALLOC);
4338 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
4339#ifdef CONFIG_STACKDEPOT
4340 {
4341 depot_stack_handle_t handle;
4342 unsigned long *entries;
4343 unsigned int nr_entries;
78869146 4344
5cf909c5
OG
4345 handle = READ_ONCE(trackp->handle);
4346 if (handle) {
4347 nr_entries = stack_depot_fetch(handle, &entries);
4348 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4349 kpp->kp_stack[i] = (void *)entries[i];
4350 }
78869146 4351
5cf909c5
OG
4352 trackp = get_track(s, objp, TRACK_FREE);
4353 handle = READ_ONCE(trackp->handle);
4354 if (handle) {
4355 nr_entries = stack_depot_fetch(handle, &entries);
4356 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4357 kpp->kp_free_stack[i] = (void *)entries[i];
4358 }
e548eaa1 4359 }
8e7f37f2
PM
4360#endif
4361#endif
4362}
5bb1bb35 4363#endif
8e7f37f2 4364
81819f0f
CL
4365/********************************************************************
4366 * Kmalloc subsystem
4367 *******************************************************************/
4368
81819f0f
CL
4369static int __init setup_slub_min_order(char *str)
4370{
19af27af 4371 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4372
4373 return 1;
4374}
4375
4376__setup("slub_min_order=", setup_slub_min_order);
4377
4378static int __init setup_slub_max_order(char *str)
4379{
19af27af
AD
4380 get_option(&str, (int *)&slub_max_order);
4381 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4382
4383 return 1;
4384}
4385
4386__setup("slub_max_order=", setup_slub_max_order);
4387
4388static int __init setup_slub_min_objects(char *str)
4389{
19af27af 4390 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4391
4392 return 1;
4393}
4394
4395__setup("slub_min_objects=", setup_slub_min_objects);
4396
0f853b2e
HY
4397static __always_inline
4398void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
81819f0f 4399{
aadb4bc4 4400 struct kmem_cache *s;
5b882be4 4401 void *ret;
81819f0f 4402
95a05b42 4403 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
bf37d791 4404 ret = kmalloc_large_node_notrace(size, flags, node);
5b882be4 4405
0f853b2e 4406 trace_kmalloc_node(caller, ret, NULL,
ca2b84cb
EGM
4407 size, PAGE_SIZE << get_order(size),
4408 flags, node);
5b882be4
EGM
4409
4410 return ret;
4411 }
aadb4bc4 4412
2c59dd65 4413 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4414
4415 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4416 return s;
4417
0f853b2e 4418 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
5b882be4 4419
0f853b2e 4420 trace_kmalloc_node(caller, ret, s, size, s->size, flags, node);
5b882be4 4421
0116523c 4422 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4423
5b882be4 4424 return ret;
81819f0f 4425}
0f853b2e
HY
4426
4427void *__kmalloc_node(size_t size, gfp_t flags, int node)
4428{
4429 return __do_kmalloc_node(size, flags, node, _RET_IP_);
4430}
81819f0f 4431EXPORT_SYMBOL(__kmalloc_node);
81819f0f 4432
0f853b2e
HY
4433void *__kmalloc(size_t size, gfp_t flags)
4434{
4435 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
4436}
4437EXPORT_SYMBOL(__kmalloc);
4438
4439
ed18adc1
KC
4440#ifdef CONFIG_HARDENED_USERCOPY
4441/*
afcc90f8
KC
4442 * Rejects incorrectly sized objects and objects that are to be copied
4443 * to/from userspace but do not fall entirely within the containing slab
4444 * cache's usercopy region.
ed18adc1
KC
4445 *
4446 * Returns NULL if check passes, otherwise const char * to name of cache
4447 * to indicate an error.
4448 */
0b3eb091
MWO
4449void __check_heap_object(const void *ptr, unsigned long n,
4450 const struct slab *slab, bool to_user)
ed18adc1
KC
4451{
4452 struct kmem_cache *s;
44065b2e 4453 unsigned int offset;
b89fb5ef 4454 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4455
96fedce2
AK
4456 ptr = kasan_reset_tag(ptr);
4457
ed18adc1 4458 /* Find object and usable object size. */
0b3eb091 4459 s = slab->slab_cache;
ed18adc1
KC
4460
4461 /* Reject impossible pointers. */
0b3eb091 4462 if (ptr < slab_address(slab))
f4e6e289
KC
4463 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4464 to_user, 0, n);
ed18adc1
KC
4465
4466 /* Find offset within object. */
b89fb5ef
AP
4467 if (is_kfence)
4468 offset = ptr - kfence_object_start(ptr);
4469 else
0b3eb091 4470 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
4471
4472 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4473 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4474 if (offset < s->red_left_pad)
f4e6e289
KC
4475 usercopy_abort("SLUB object in left red zone",
4476 s->name, to_user, offset, n);
ed18adc1
KC
4477 offset -= s->red_left_pad;
4478 }
4479
afcc90f8
KC
4480 /* Allow address range falling entirely within usercopy region. */
4481 if (offset >= s->useroffset &&
4482 offset - s->useroffset <= s->usersize &&
4483 n <= s->useroffset - offset + s->usersize)
f4e6e289 4484 return;
ed18adc1 4485
f4e6e289 4486 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4487}
4488#endif /* CONFIG_HARDENED_USERCOPY */
4489
10d1f8cb 4490size_t __ksize(const void *object)
81819f0f 4491{
0c24811b 4492 struct folio *folio;
81819f0f 4493
ef8b4520 4494 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4495 return 0;
4496
0c24811b 4497 folio = virt_to_folio(object);
294a80a8 4498
0c24811b
MWO
4499 if (unlikely(!folio_test_slab(folio)))
4500 return folio_size(folio);
81819f0f 4501
0c24811b 4502 return slab_ksize(folio_slab(folio)->slab_cache);
81819f0f 4503}
10d1f8cb 4504EXPORT_SYMBOL(__ksize);
81819f0f
CL
4505
4506void kfree(const void *x)
4507{
d835eef4
MWO
4508 struct folio *folio;
4509 struct slab *slab;
5bb983b0 4510 void *object = (void *)x;
81819f0f 4511
2121db74
PE
4512 trace_kfree(_RET_IP_, x);
4513
2408c550 4514 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4515 return;
4516
d835eef4
MWO
4517 folio = virt_to_folio(x);
4518 if (unlikely(!folio_test_slab(folio))) {
4519 free_large_kmalloc(folio, object);
aadb4bc4
CL
4520 return;
4521 }
d835eef4 4522 slab = folio_slab(folio);
b77d5b1b 4523 slab_free(slab->slab_cache, slab, object, NULL, &object, 1, _RET_IP_);
81819f0f
CL
4524}
4525EXPORT_SYMBOL(kfree);
4526
832f37f5
VD
4527#define SHRINK_PROMOTE_MAX 32
4528
2086d26a 4529/*
832f37f5
VD
4530 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4531 * up most to the head of the partial lists. New allocations will then
4532 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4533 *
4534 * The slabs with the least items are placed last. This results in them
4535 * being allocated from last increasing the chance that the last objects
4536 * are freed in them.
2086d26a 4537 */
5a836bf6 4538static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
4539{
4540 int node;
4541 int i;
4542 struct kmem_cache_node *n;
bb192ed9
VB
4543 struct slab *slab;
4544 struct slab *t;
832f37f5
VD
4545 struct list_head discard;
4546 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4547 unsigned long flags;
ce3712d7 4548 int ret = 0;
2086d26a 4549
fa45dc25 4550 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4551 INIT_LIST_HEAD(&discard);
4552 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4553 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4554
4555 spin_lock_irqsave(&n->list_lock, flags);
4556
4557 /*
832f37f5 4558 * Build lists of slabs to discard or promote.
2086d26a 4559 *
672bba3a 4560 * Note that concurrent frees may occur while we hold the
c2092c12 4561 * list_lock. slab->inuse here is the upper limit.
2086d26a 4562 */
bb192ed9
VB
4563 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4564 int free = slab->objects - slab->inuse;
832f37f5 4565
c2092c12 4566 /* Do not reread slab->inuse */
832f37f5
VD
4567 barrier();
4568
4569 /* We do not keep full slabs on the list */
4570 BUG_ON(free <= 0);
4571
bb192ed9
VB
4572 if (free == slab->objects) {
4573 list_move(&slab->slab_list, &discard);
69cb8e6b 4574 n->nr_partial--;
832f37f5 4575 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 4576 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
4577 }
4578
2086d26a 4579 /*
832f37f5
VD
4580 * Promote the slabs filled up most to the head of the
4581 * partial list.
2086d26a 4582 */
832f37f5
VD
4583 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4584 list_splice(promote + i, &n->partial);
2086d26a 4585
2086d26a 4586 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4587
4588 /* Release empty slabs */
bb192ed9
VB
4589 list_for_each_entry_safe(slab, t, &discard, slab_list)
4590 discard_slab(s, slab);
ce3712d7
VD
4591
4592 if (slabs_node(s, node))
4593 ret = 1;
2086d26a
CL
4594 }
4595
ce3712d7 4596 return ret;
2086d26a 4597}
2086d26a 4598
5a836bf6
SAS
4599int __kmem_cache_shrink(struct kmem_cache *s)
4600{
4601 flush_all(s);
4602 return __kmem_cache_do_shrink(s);
4603}
4604
b9049e23
YG
4605static int slab_mem_going_offline_callback(void *arg)
4606{
4607 struct kmem_cache *s;
4608
18004c5d 4609 mutex_lock(&slab_mutex);
5a836bf6
SAS
4610 list_for_each_entry(s, &slab_caches, list) {
4611 flush_all_cpus_locked(s);
4612 __kmem_cache_do_shrink(s);
4613 }
18004c5d 4614 mutex_unlock(&slab_mutex);
b9049e23
YG
4615
4616 return 0;
4617}
4618
4619static void slab_mem_offline_callback(void *arg)
4620{
b9049e23
YG
4621 struct memory_notify *marg = arg;
4622 int offline_node;
4623
b9d5ab25 4624 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4625
4626 /*
4627 * If the node still has available memory. we need kmem_cache_node
4628 * for it yet.
4629 */
4630 if (offline_node < 0)
4631 return;
4632
18004c5d 4633 mutex_lock(&slab_mutex);
7e1fa93d 4634 node_clear(offline_node, slab_nodes);
666716fd
VB
4635 /*
4636 * We no longer free kmem_cache_node structures here, as it would be
4637 * racy with all get_node() users, and infeasible to protect them with
4638 * slab_mutex.
4639 */
18004c5d 4640 mutex_unlock(&slab_mutex);
b9049e23
YG
4641}
4642
4643static int slab_mem_going_online_callback(void *arg)
4644{
4645 struct kmem_cache_node *n;
4646 struct kmem_cache *s;
4647 struct memory_notify *marg = arg;
b9d5ab25 4648 int nid = marg->status_change_nid_normal;
b9049e23
YG
4649 int ret = 0;
4650
4651 /*
4652 * If the node's memory is already available, then kmem_cache_node is
4653 * already created. Nothing to do.
4654 */
4655 if (nid < 0)
4656 return 0;
4657
4658 /*
0121c619 4659 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4660 * allocate a kmem_cache_node structure in order to bring the node
4661 * online.
4662 */
18004c5d 4663 mutex_lock(&slab_mutex);
b9049e23 4664 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4665 /*
4666 * The structure may already exist if the node was previously
4667 * onlined and offlined.
4668 */
4669 if (get_node(s, nid))
4670 continue;
b9049e23
YG
4671 /*
4672 * XXX: kmem_cache_alloc_node will fallback to other nodes
4673 * since memory is not yet available from the node that
4674 * is brought up.
4675 */
8de66a0c 4676 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4677 if (!n) {
4678 ret = -ENOMEM;
4679 goto out;
4680 }
4053497d 4681 init_kmem_cache_node(n);
b9049e23
YG
4682 s->node[nid] = n;
4683 }
7e1fa93d
VB
4684 /*
4685 * Any cache created after this point will also have kmem_cache_node
4686 * initialized for the new node.
4687 */
4688 node_set(nid, slab_nodes);
b9049e23 4689out:
18004c5d 4690 mutex_unlock(&slab_mutex);
b9049e23
YG
4691 return ret;
4692}
4693
4694static int slab_memory_callback(struct notifier_block *self,
4695 unsigned long action, void *arg)
4696{
4697 int ret = 0;
4698
4699 switch (action) {
4700 case MEM_GOING_ONLINE:
4701 ret = slab_mem_going_online_callback(arg);
4702 break;
4703 case MEM_GOING_OFFLINE:
4704 ret = slab_mem_going_offline_callback(arg);
4705 break;
4706 case MEM_OFFLINE:
4707 case MEM_CANCEL_ONLINE:
4708 slab_mem_offline_callback(arg);
4709 break;
4710 case MEM_ONLINE:
4711 case MEM_CANCEL_OFFLINE:
4712 break;
4713 }
dc19f9db
KH
4714 if (ret)
4715 ret = notifier_from_errno(ret);
4716 else
4717 ret = NOTIFY_OK;
b9049e23
YG
4718 return ret;
4719}
4720
3ac38faa
AM
4721static struct notifier_block slab_memory_callback_nb = {
4722 .notifier_call = slab_memory_callback,
4723 .priority = SLAB_CALLBACK_PRI,
4724};
b9049e23 4725
81819f0f
CL
4726/********************************************************************
4727 * Basic setup of slabs
4728 *******************************************************************/
4729
51df1142
CL
4730/*
4731 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4732 * the page allocator. Allocate them properly then fix up the pointers
4733 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4734 */
4735
dffb4d60 4736static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4737{
4738 int node;
dffb4d60 4739 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4740 struct kmem_cache_node *n;
51df1142 4741
dffb4d60 4742 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4743
7d557b3c
GC
4744 /*
4745 * This runs very early, and only the boot processor is supposed to be
4746 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4747 * IPIs around.
4748 */
4749 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4750 for_each_kmem_cache_node(s, node, n) {
bb192ed9 4751 struct slab *p;
51df1142 4752
916ac052 4753 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4754 p->slab_cache = s;
51df1142 4755
607bf324 4756#ifdef CONFIG_SLUB_DEBUG
916ac052 4757 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4758 p->slab_cache = s;
51df1142 4759#endif
51df1142 4760 }
dffb4d60
CL
4761 list_add(&s->list, &slab_caches);
4762 return s;
51df1142
CL
4763}
4764
81819f0f
CL
4765void __init kmem_cache_init(void)
4766{
dffb4d60
CL
4767 static __initdata struct kmem_cache boot_kmem_cache,
4768 boot_kmem_cache_node;
7e1fa93d 4769 int node;
51df1142 4770
fc8d8620
SG
4771 if (debug_guardpage_minorder())
4772 slub_max_order = 0;
4773
79270291
SB
4774 /* Print slub debugging pointers without hashing */
4775 if (__slub_debug_enabled())
4776 no_hash_pointers_enable(NULL);
4777
dffb4d60
CL
4778 kmem_cache_node = &boot_kmem_cache_node;
4779 kmem_cache = &boot_kmem_cache;
51df1142 4780
7e1fa93d
VB
4781 /*
4782 * Initialize the nodemask for which we will allocate per node
4783 * structures. Here we don't need taking slab_mutex yet.
4784 */
4785 for_each_node_state(node, N_NORMAL_MEMORY)
4786 node_set(node, slab_nodes);
4787
dffb4d60 4788 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4789 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4790
3ac38faa 4791 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4792
4793 /* Able to allocate the per node structures */
4794 slab_state = PARTIAL;
4795
dffb4d60
CL
4796 create_boot_cache(kmem_cache, "kmem_cache",
4797 offsetof(struct kmem_cache, node) +
4798 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4799 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4800
dffb4d60 4801 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4802 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4803
4804 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4805 setup_kmalloc_cache_index_table();
f97d5f63 4806 create_kmalloc_caches(0);
81819f0f 4807
210e7a43
TG
4808 /* Setup random freelists for each cache */
4809 init_freelist_randomization();
4810
a96a87bf
SAS
4811 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4812 slub_cpu_dead);
81819f0f 4813
b9726c26 4814 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4815 cache_line_size(),
81819f0f
CL
4816 slub_min_order, slub_max_order, slub_min_objects,
4817 nr_cpu_ids, nr_node_ids);
4818}
4819
7e85ee0c
PE
4820void __init kmem_cache_init_late(void)
4821{
7e85ee0c
PE
4822}
4823
2633d7a0 4824struct kmem_cache *
f4957d5b 4825__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4826 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4827{
10befea9 4828 struct kmem_cache *s;
81819f0f 4829
a44cb944 4830 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 4831 if (s) {
efb93527
XS
4832 if (sysfs_slab_alias(s, name))
4833 return NULL;
4834
81819f0f 4835 s->refcount++;
84d0ddd6 4836
81819f0f
CL
4837 /*
4838 * Adjust the object sizes so that we clear
4839 * the complete object on kzalloc.
4840 */
1b473f29 4841 s->object_size = max(s->object_size, size);
52ee6d74 4842 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 4843 }
6446faa2 4844
cbb79694
CL
4845 return s;
4846}
84c1cf62 4847
d50112ed 4848int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4849{
aac3a166
PE
4850 int err;
4851
4852 err = kmem_cache_open(s, flags);
4853 if (err)
4854 return err;
20cea968 4855
45530c44
CL
4856 /* Mutex is not taken during early boot */
4857 if (slab_state <= UP)
4858 return 0;
4859
aac3a166 4860 err = sysfs_slab_add(s);
67823a54 4861 if (err) {
52b4b950 4862 __kmem_cache_release(s);
67823a54
ML
4863 return err;
4864 }
20cea968 4865
64dd6849
FM
4866 if (s->flags & SLAB_STORE_USER)
4867 debugfs_slab_add(s);
4868
67823a54 4869 return 0;
81819f0f 4870}
81819f0f 4871
81819f0f 4872void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
0f853b2e 4873 int node, unsigned long caller)
81819f0f 4874{
0f853b2e 4875 return __do_kmalloc_node(size, gfpflags, node, caller);
81819f0f 4876}
fd7cb575 4877EXPORT_SYMBOL(__kmalloc_node_track_caller);
81819f0f 4878
ab4d5ed5 4879#ifdef CONFIG_SYSFS
bb192ed9 4880static int count_inuse(struct slab *slab)
205ab99d 4881{
bb192ed9 4882 return slab->inuse;
205ab99d
CL
4883}
4884
bb192ed9 4885static int count_total(struct slab *slab)
205ab99d 4886{
bb192ed9 4887 return slab->objects;
205ab99d 4888}
ab4d5ed5 4889#endif
205ab99d 4890
ab4d5ed5 4891#ifdef CONFIG_SLUB_DEBUG
bb192ed9 4892static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 4893 unsigned long *obj_map)
53e15af0
CL
4894{
4895 void *p;
bb192ed9 4896 void *addr = slab_address(slab);
a2b4ae8b 4897 unsigned long flags;
90e9f6a6 4898
bb192ed9 4899 slab_lock(slab, &flags);
53e15af0 4900
bb192ed9 4901 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
90e9f6a6 4902 goto unlock;
53e15af0
CL
4903
4904 /* Now we know that a valid freelist exists */
bb192ed9
VB
4905 __fill_map(obj_map, s, slab);
4906 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 4907 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 4908 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4909
bb192ed9 4910 if (!check_object(s, slab, p, val))
dd98afd4
YZ
4911 break;
4912 }
90e9f6a6 4913unlock:
bb192ed9 4914 slab_unlock(slab, &flags);
53e15af0
CL
4915}
4916
434e245d 4917static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 4918 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
4919{
4920 unsigned long count = 0;
bb192ed9 4921 struct slab *slab;
53e15af0
CL
4922 unsigned long flags;
4923
4924 spin_lock_irqsave(&n->list_lock, flags);
4925
bb192ed9
VB
4926 list_for_each_entry(slab, &n->partial, slab_list) {
4927 validate_slab(s, slab, obj_map);
53e15af0
CL
4928 count++;
4929 }
1f9f78b1 4930 if (count != n->nr_partial) {
f9f58285
FF
4931 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4932 s->name, count, n->nr_partial);
1f9f78b1
OG
4933 slab_add_kunit_errors();
4934 }
53e15af0
CL
4935
4936 if (!(s->flags & SLAB_STORE_USER))
4937 goto out;
4938
bb192ed9
VB
4939 list_for_each_entry(slab, &n->full, slab_list) {
4940 validate_slab(s, slab, obj_map);
53e15af0
CL
4941 count++;
4942 }
1f9f78b1 4943 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
4944 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4945 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
4946 slab_add_kunit_errors();
4947 }
53e15af0
CL
4948
4949out:
4950 spin_unlock_irqrestore(&n->list_lock, flags);
4951 return count;
4952}
4953
1f9f78b1 4954long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4955{
4956 int node;
4957 unsigned long count = 0;
fa45dc25 4958 struct kmem_cache_node *n;
0a19e7dd
VB
4959 unsigned long *obj_map;
4960
4961 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
4962 if (!obj_map)
4963 return -ENOMEM;
53e15af0
CL
4964
4965 flush_all(s);
fa45dc25 4966 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
4967 count += validate_slab_node(s, n, obj_map);
4968
4969 bitmap_free(obj_map);
90e9f6a6 4970
53e15af0
CL
4971 return count;
4972}
1f9f78b1
OG
4973EXPORT_SYMBOL(validate_slab_cache);
4974
64dd6849 4975#ifdef CONFIG_DEBUG_FS
88a420e4 4976/*
672bba3a 4977 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4978 * and freed.
4979 */
4980
4981struct location {
8ea9fb92 4982 depot_stack_handle_t handle;
88a420e4 4983 unsigned long count;
ce71e27c 4984 unsigned long addr;
45edfa58
CL
4985 long long sum_time;
4986 long min_time;
4987 long max_time;
4988 long min_pid;
4989 long max_pid;
174596a0 4990 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4991 nodemask_t nodes;
88a420e4
CL
4992};
4993
4994struct loc_track {
4995 unsigned long max;
4996 unsigned long count;
4997 struct location *loc;
005a79e5 4998 loff_t idx;
88a420e4
CL
4999};
5000
64dd6849
FM
5001static struct dentry *slab_debugfs_root;
5002
88a420e4
CL
5003static void free_loc_track(struct loc_track *t)
5004{
5005 if (t->max)
5006 free_pages((unsigned long)t->loc,
5007 get_order(sizeof(struct location) * t->max));
5008}
5009
68dff6a9 5010static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
5011{
5012 struct location *l;
5013 int order;
5014
88a420e4
CL
5015 order = get_order(sizeof(struct location) * max);
5016
68dff6a9 5017 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
5018 if (!l)
5019 return 0;
5020
5021 if (t->count) {
5022 memcpy(l, t->loc, sizeof(struct location) * t->count);
5023 free_loc_track(t);
5024 }
5025 t->max = max;
5026 t->loc = l;
5027 return 1;
5028}
5029
5030static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 5031 const struct track *track)
88a420e4
CL
5032{
5033 long start, end, pos;
5034 struct location *l;
8ea9fb92 5035 unsigned long caddr, chandle;
45edfa58 5036 unsigned long age = jiffies - track->when;
8ea9fb92 5037 depot_stack_handle_t handle = 0;
88a420e4 5038
8ea9fb92
OG
5039#ifdef CONFIG_STACKDEPOT
5040 handle = READ_ONCE(track->handle);
5041#endif
88a420e4
CL
5042 start = -1;
5043 end = t->count;
5044
5045 for ( ; ; ) {
5046 pos = start + (end - start + 1) / 2;
5047
5048 /*
5049 * There is nothing at "end". If we end up there
5050 * we need to add something to before end.
5051 */
5052 if (pos == end)
5053 break;
5054
5055 caddr = t->loc[pos].addr;
8ea9fb92
OG
5056 chandle = t->loc[pos].handle;
5057 if ((track->addr == caddr) && (handle == chandle)) {
45edfa58
CL
5058
5059 l = &t->loc[pos];
5060 l->count++;
5061 if (track->when) {
5062 l->sum_time += age;
5063 if (age < l->min_time)
5064 l->min_time = age;
5065 if (age > l->max_time)
5066 l->max_time = age;
5067
5068 if (track->pid < l->min_pid)
5069 l->min_pid = track->pid;
5070 if (track->pid > l->max_pid)
5071 l->max_pid = track->pid;
5072
174596a0
RR
5073 cpumask_set_cpu(track->cpu,
5074 to_cpumask(l->cpus));
45edfa58
CL
5075 }
5076 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5077 return 1;
5078 }
5079
45edfa58 5080 if (track->addr < caddr)
88a420e4 5081 end = pos;
8ea9fb92
OG
5082 else if (track->addr == caddr && handle < chandle)
5083 end = pos;
88a420e4
CL
5084 else
5085 start = pos;
5086 }
5087
5088 /*
672bba3a 5089 * Not found. Insert new tracking element.
88a420e4 5090 */
68dff6a9 5091 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
5092 return 0;
5093
5094 l = t->loc + pos;
5095 if (pos < t->count)
5096 memmove(l + 1, l,
5097 (t->count - pos) * sizeof(struct location));
5098 t->count++;
5099 l->count = 1;
45edfa58
CL
5100 l->addr = track->addr;
5101 l->sum_time = age;
5102 l->min_time = age;
5103 l->max_time = age;
5104 l->min_pid = track->pid;
5105 l->max_pid = track->pid;
8ea9fb92 5106 l->handle = handle;
174596a0
RR
5107 cpumask_clear(to_cpumask(l->cpus));
5108 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
5109 nodes_clear(l->nodes);
5110 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5111 return 1;
5112}
5113
5114static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 5115 struct slab *slab, enum track_item alloc,
b3fd64e1 5116 unsigned long *obj_map)
88a420e4 5117{
bb192ed9 5118 void *addr = slab_address(slab);
88a420e4
CL
5119 void *p;
5120
bb192ed9 5121 __fill_map(obj_map, s, slab);
b3fd64e1 5122
bb192ed9 5123 for_each_object(p, s, addr, slab->objects)
b3fd64e1 5124 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
45edfa58 5125 add_location(t, s, get_track(s, p, alloc));
88a420e4 5126}
64dd6849 5127#endif /* CONFIG_DEBUG_FS */
6dfd1b65 5128#endif /* CONFIG_SLUB_DEBUG */
88a420e4 5129
ab4d5ed5 5130#ifdef CONFIG_SYSFS
81819f0f 5131enum slab_stat_type {
205ab99d
CL
5132 SL_ALL, /* All slabs */
5133 SL_PARTIAL, /* Only partially allocated slabs */
5134 SL_CPU, /* Only slabs used for cpu caches */
5135 SL_OBJECTS, /* Determine allocated objects not slabs */
5136 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
5137};
5138
205ab99d 5139#define SO_ALL (1 << SL_ALL)
81819f0f
CL
5140#define SO_PARTIAL (1 << SL_PARTIAL)
5141#define SO_CPU (1 << SL_CPU)
5142#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 5143#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 5144
62e5c4b4 5145static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 5146 char *buf, unsigned long flags)
81819f0f
CL
5147{
5148 unsigned long total = 0;
81819f0f
CL
5149 int node;
5150 int x;
5151 unsigned long *nodes;
bf16d19a 5152 int len = 0;
81819f0f 5153
6396bb22 5154 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5155 if (!nodes)
5156 return -ENOMEM;
81819f0f 5157
205ab99d
CL
5158 if (flags & SO_CPU) {
5159 int cpu;
81819f0f 5160
205ab99d 5161 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5162 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5163 cpu);
ec3ab083 5164 int node;
bb192ed9 5165 struct slab *slab;
dfb4f096 5166
bb192ed9
VB
5167 slab = READ_ONCE(c->slab);
5168 if (!slab)
ec3ab083 5169 continue;
205ab99d 5170
bb192ed9 5171 node = slab_nid(slab);
ec3ab083 5172 if (flags & SO_TOTAL)
bb192ed9 5173 x = slab->objects;
ec3ab083 5174 else if (flags & SO_OBJECTS)
bb192ed9 5175 x = slab->inuse;
ec3ab083
CL
5176 else
5177 x = 1;
49e22585 5178
ec3ab083
CL
5179 total += x;
5180 nodes[node] += x;
5181
9c01e9af 5182#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
5183 slab = slub_percpu_partial_read_once(c);
5184 if (slab) {
5185 node = slab_nid(slab);
8afb1474
LZ
5186 if (flags & SO_TOTAL)
5187 WARN_ON_ONCE(1);
5188 else if (flags & SO_OBJECTS)
5189 WARN_ON_ONCE(1);
5190 else
bb192ed9 5191 x = slab->slabs;
bc6697d8
ED
5192 total += x;
5193 nodes[node] += x;
49e22585 5194 }
9c01e9af 5195#endif
81819f0f
CL
5196 }
5197 }
5198
e4f8e513
QC
5199 /*
5200 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5201 * already held which will conflict with an existing lock order:
5202 *
5203 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5204 *
5205 * We don't really need mem_hotplug_lock (to hold off
5206 * slab_mem_going_offline_callback) here because slab's memory hot
5207 * unplug code doesn't destroy the kmem_cache->node[] data.
5208 */
5209
ab4d5ed5 5210#ifdef CONFIG_SLUB_DEBUG
205ab99d 5211 if (flags & SO_ALL) {
fa45dc25
CL
5212 struct kmem_cache_node *n;
5213
5214 for_each_kmem_cache_node(s, node, n) {
205ab99d 5215
d0e0ac97
CG
5216 if (flags & SO_TOTAL)
5217 x = atomic_long_read(&n->total_objects);
5218 else if (flags & SO_OBJECTS)
5219 x = atomic_long_read(&n->total_objects) -
5220 count_partial(n, count_free);
81819f0f 5221 else
205ab99d 5222 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5223 total += x;
5224 nodes[node] += x;
5225 }
5226
ab4d5ed5
CL
5227 } else
5228#endif
5229 if (flags & SO_PARTIAL) {
fa45dc25 5230 struct kmem_cache_node *n;
81819f0f 5231
fa45dc25 5232 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5233 if (flags & SO_TOTAL)
5234 x = count_partial(n, count_total);
5235 else if (flags & SO_OBJECTS)
5236 x = count_partial(n, count_inuse);
81819f0f 5237 else
205ab99d 5238 x = n->nr_partial;
81819f0f
CL
5239 total += x;
5240 nodes[node] += x;
5241 }
5242 }
bf16d19a
JP
5243
5244 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5245#ifdef CONFIG_NUMA
bf16d19a 5246 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5247 if (nodes[node])
bf16d19a
JP
5248 len += sysfs_emit_at(buf, len, " N%d=%lu",
5249 node, nodes[node]);
5250 }
81819f0f 5251#endif
bf16d19a 5252 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5253 kfree(nodes);
bf16d19a
JP
5254
5255 return len;
81819f0f
CL
5256}
5257
81819f0f 5258#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5259#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5260
5261struct slab_attribute {
5262 struct attribute attr;
5263 ssize_t (*show)(struct kmem_cache *s, char *buf);
5264 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5265};
5266
5267#define SLAB_ATTR_RO(_name) \
d1d28bd9 5268 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
5269
5270#define SLAB_ATTR(_name) \
d1d28bd9 5271 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 5272
81819f0f
CL
5273static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5274{
bf16d19a 5275 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5276}
5277SLAB_ATTR_RO(slab_size);
5278
5279static ssize_t align_show(struct kmem_cache *s, char *buf)
5280{
bf16d19a 5281 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5282}
5283SLAB_ATTR_RO(align);
5284
5285static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5286{
bf16d19a 5287 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5288}
5289SLAB_ATTR_RO(object_size);
5290
5291static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5292{
bf16d19a 5293 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5294}
5295SLAB_ATTR_RO(objs_per_slab);
5296
5297static ssize_t order_show(struct kmem_cache *s, char *buf)
5298{
bf16d19a 5299 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5300}
32a6f409 5301SLAB_ATTR_RO(order);
81819f0f 5302
73d342b1
DR
5303static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5304{
bf16d19a 5305 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5306}
5307
5308static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5309 size_t length)
5310{
5311 unsigned long min;
5312 int err;
5313
3dbb95f7 5314 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5315 if (err)
5316 return err;
5317
5182f3c9 5318 s->min_partial = min;
73d342b1
DR
5319 return length;
5320}
5321SLAB_ATTR(min_partial);
5322
49e22585
CL
5323static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5324{
b47291ef
VB
5325 unsigned int nr_partial = 0;
5326#ifdef CONFIG_SLUB_CPU_PARTIAL
5327 nr_partial = s->cpu_partial;
5328#endif
5329
5330 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
5331}
5332
5333static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5334 size_t length)
5335{
e5d9998f 5336 unsigned int objects;
49e22585
CL
5337 int err;
5338
e5d9998f 5339 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5340 if (err)
5341 return err;
345c905d 5342 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5343 return -EINVAL;
49e22585 5344
e6d0e1dc 5345 slub_set_cpu_partial(s, objects);
49e22585
CL
5346 flush_all(s);
5347 return length;
5348}
5349SLAB_ATTR(cpu_partial);
5350
81819f0f
CL
5351static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5352{
62c70bce
JP
5353 if (!s->ctor)
5354 return 0;
bf16d19a 5355 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5356}
5357SLAB_ATTR_RO(ctor);
5358
81819f0f
CL
5359static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5360{
bf16d19a 5361 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5362}
5363SLAB_ATTR_RO(aliases);
5364
81819f0f
CL
5365static ssize_t partial_show(struct kmem_cache *s, char *buf)
5366{
d9acf4b7 5367 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5368}
5369SLAB_ATTR_RO(partial);
5370
5371static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5372{
d9acf4b7 5373 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5374}
5375SLAB_ATTR_RO(cpu_slabs);
5376
5377static ssize_t objects_show(struct kmem_cache *s, char *buf)
5378{
205ab99d 5379 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5380}
5381SLAB_ATTR_RO(objects);
5382
205ab99d
CL
5383static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5384{
5385 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5386}
5387SLAB_ATTR_RO(objects_partial);
5388
49e22585
CL
5389static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5390{
5391 int objects = 0;
bb192ed9 5392 int slabs = 0;
9c01e9af 5393 int cpu __maybe_unused;
bf16d19a 5394 int len = 0;
49e22585 5395
9c01e9af 5396#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 5397 for_each_online_cpu(cpu) {
bb192ed9 5398 struct slab *slab;
a93cf07b 5399
bb192ed9 5400 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 5401
bb192ed9
VB
5402 if (slab)
5403 slabs += slab->slabs;
49e22585 5404 }
9c01e9af 5405#endif
49e22585 5406
c2092c12 5407 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
5408 objects = (slabs * oo_objects(s->oo)) / 2;
5409 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 5410
9c01e9af 5411#if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
49e22585 5412 for_each_online_cpu(cpu) {
bb192ed9 5413 struct slab *slab;
a93cf07b 5414
bb192ed9
VB
5415 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5416 if (slab) {
5417 slabs = READ_ONCE(slab->slabs);
5418 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 5419 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 5420 cpu, objects, slabs);
b47291ef 5421 }
49e22585
CL
5422 }
5423#endif
bf16d19a
JP
5424 len += sysfs_emit_at(buf, len, "\n");
5425
5426 return len;
49e22585
CL
5427}
5428SLAB_ATTR_RO(slabs_cpu_partial);
5429
a5a84755
CL
5430static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5431{
bf16d19a 5432 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5433}
8f58119a 5434SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5435
5436static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5437{
bf16d19a 5438 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5439}
5440SLAB_ATTR_RO(hwcache_align);
5441
5442#ifdef CONFIG_ZONE_DMA
5443static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5444{
bf16d19a 5445 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5446}
5447SLAB_ATTR_RO(cache_dma);
5448#endif
5449
8eb8284b
DW
5450static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5451{
bf16d19a 5452 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5453}
5454SLAB_ATTR_RO(usersize);
5455
a5a84755
CL
5456static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5457{
bf16d19a 5458 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5459}
5460SLAB_ATTR_RO(destroy_by_rcu);
5461
ab4d5ed5 5462#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5463static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5464{
5465 return show_slab_objects(s, buf, SO_ALL);
5466}
5467SLAB_ATTR_RO(slabs);
5468
205ab99d
CL
5469static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5470{
5471 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5472}
5473SLAB_ATTR_RO(total_objects);
5474
81819f0f
CL
5475static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5476{
bf16d19a 5477 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5478}
060807f8 5479SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5480
5481static ssize_t trace_show(struct kmem_cache *s, char *buf)
5482{
bf16d19a 5483 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5484}
060807f8 5485SLAB_ATTR_RO(trace);
81819f0f 5486
81819f0f
CL
5487static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5488{
bf16d19a 5489 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5490}
5491
ad38b5b1 5492SLAB_ATTR_RO(red_zone);
81819f0f
CL
5493
5494static ssize_t poison_show(struct kmem_cache *s, char *buf)
5495{
bf16d19a 5496 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5497}
5498
ad38b5b1 5499SLAB_ATTR_RO(poison);
81819f0f
CL
5500
5501static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5502{
bf16d19a 5503 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5504}
5505
ad38b5b1 5506SLAB_ATTR_RO(store_user);
81819f0f 5507
53e15af0
CL
5508static ssize_t validate_show(struct kmem_cache *s, char *buf)
5509{
5510 return 0;
5511}
5512
5513static ssize_t validate_store(struct kmem_cache *s,
5514 const char *buf, size_t length)
5515{
434e245d
CL
5516 int ret = -EINVAL;
5517
5518 if (buf[0] == '1') {
5519 ret = validate_slab_cache(s);
5520 if (ret >= 0)
5521 ret = length;
5522 }
5523 return ret;
53e15af0
CL
5524}
5525SLAB_ATTR(validate);
a5a84755 5526
a5a84755
CL
5527#endif /* CONFIG_SLUB_DEBUG */
5528
5529#ifdef CONFIG_FAILSLAB
5530static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5531{
bf16d19a 5532 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5533}
060807f8 5534SLAB_ATTR_RO(failslab);
ab4d5ed5 5535#endif
53e15af0 5536
2086d26a
CL
5537static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5538{
5539 return 0;
5540}
5541
5542static ssize_t shrink_store(struct kmem_cache *s,
5543 const char *buf, size_t length)
5544{
832f37f5 5545 if (buf[0] == '1')
10befea9 5546 kmem_cache_shrink(s);
832f37f5 5547 else
2086d26a
CL
5548 return -EINVAL;
5549 return length;
5550}
5551SLAB_ATTR(shrink);
5552
81819f0f 5553#ifdef CONFIG_NUMA
9824601e 5554static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5555{
bf16d19a 5556 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5557}
5558
9824601e 5559static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5560 const char *buf, size_t length)
5561{
eb7235eb 5562 unsigned int ratio;
0121c619
CL
5563 int err;
5564
eb7235eb 5565 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5566 if (err)
5567 return err;
eb7235eb
AD
5568 if (ratio > 100)
5569 return -ERANGE;
0121c619 5570
eb7235eb 5571 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5572
81819f0f
CL
5573 return length;
5574}
9824601e 5575SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5576#endif
5577
8ff12cfc 5578#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5579static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5580{
5581 unsigned long sum = 0;
5582 int cpu;
bf16d19a 5583 int len = 0;
6da2ec56 5584 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5585
5586 if (!data)
5587 return -ENOMEM;
5588
5589 for_each_online_cpu(cpu) {
9dfc6e68 5590 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5591
5592 data[cpu] = x;
5593 sum += x;
5594 }
5595
bf16d19a 5596 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5597
50ef37b9 5598#ifdef CONFIG_SMP
8ff12cfc 5599 for_each_online_cpu(cpu) {
bf16d19a
JP
5600 if (data[cpu])
5601 len += sysfs_emit_at(buf, len, " C%d=%u",
5602 cpu, data[cpu]);
8ff12cfc 5603 }
50ef37b9 5604#endif
8ff12cfc 5605 kfree(data);
bf16d19a
JP
5606 len += sysfs_emit_at(buf, len, "\n");
5607
5608 return len;
8ff12cfc
CL
5609}
5610
78eb00cc
DR
5611static void clear_stat(struct kmem_cache *s, enum stat_item si)
5612{
5613 int cpu;
5614
5615 for_each_online_cpu(cpu)
9dfc6e68 5616 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5617}
5618
8ff12cfc
CL
5619#define STAT_ATTR(si, text) \
5620static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5621{ \
5622 return show_stat(s, buf, si); \
5623} \
78eb00cc
DR
5624static ssize_t text##_store(struct kmem_cache *s, \
5625 const char *buf, size_t length) \
5626{ \
5627 if (buf[0] != '0') \
5628 return -EINVAL; \
5629 clear_stat(s, si); \
5630 return length; \
5631} \
5632SLAB_ATTR(text); \
8ff12cfc
CL
5633
5634STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5635STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5636STAT_ATTR(FREE_FASTPATH, free_fastpath);
5637STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5638STAT_ATTR(FREE_FROZEN, free_frozen);
5639STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5640STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5641STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5642STAT_ATTR(ALLOC_SLAB, alloc_slab);
5643STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5644STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5645STAT_ATTR(FREE_SLAB, free_slab);
5646STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5647STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5648STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5649STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5650STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5651STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5652STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5653STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5654STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5655STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5656STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5657STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5658STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5659STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5660#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5661
06428780 5662static struct attribute *slab_attrs[] = {
81819f0f
CL
5663 &slab_size_attr.attr,
5664 &object_size_attr.attr,
5665 &objs_per_slab_attr.attr,
5666 &order_attr.attr,
73d342b1 5667 &min_partial_attr.attr,
49e22585 5668 &cpu_partial_attr.attr,
81819f0f 5669 &objects_attr.attr,
205ab99d 5670 &objects_partial_attr.attr,
81819f0f
CL
5671 &partial_attr.attr,
5672 &cpu_slabs_attr.attr,
5673 &ctor_attr.attr,
81819f0f
CL
5674 &aliases_attr.attr,
5675 &align_attr.attr,
81819f0f
CL
5676 &hwcache_align_attr.attr,
5677 &reclaim_account_attr.attr,
5678 &destroy_by_rcu_attr.attr,
a5a84755 5679 &shrink_attr.attr,
49e22585 5680 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5681#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5682 &total_objects_attr.attr,
5683 &slabs_attr.attr,
5684 &sanity_checks_attr.attr,
5685 &trace_attr.attr,
81819f0f
CL
5686 &red_zone_attr.attr,
5687 &poison_attr.attr,
5688 &store_user_attr.attr,
53e15af0 5689 &validate_attr.attr,
ab4d5ed5 5690#endif
81819f0f
CL
5691#ifdef CONFIG_ZONE_DMA
5692 &cache_dma_attr.attr,
5693#endif
5694#ifdef CONFIG_NUMA
9824601e 5695 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5696#endif
5697#ifdef CONFIG_SLUB_STATS
5698 &alloc_fastpath_attr.attr,
5699 &alloc_slowpath_attr.attr,
5700 &free_fastpath_attr.attr,
5701 &free_slowpath_attr.attr,
5702 &free_frozen_attr.attr,
5703 &free_add_partial_attr.attr,
5704 &free_remove_partial_attr.attr,
5705 &alloc_from_partial_attr.attr,
5706 &alloc_slab_attr.attr,
5707 &alloc_refill_attr.attr,
e36a2652 5708 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5709 &free_slab_attr.attr,
5710 &cpuslab_flush_attr.attr,
5711 &deactivate_full_attr.attr,
5712 &deactivate_empty_attr.attr,
5713 &deactivate_to_head_attr.attr,
5714 &deactivate_to_tail_attr.attr,
5715 &deactivate_remote_frees_attr.attr,
03e404af 5716 &deactivate_bypass_attr.attr,
65c3376a 5717 &order_fallback_attr.attr,
b789ef51
CL
5718 &cmpxchg_double_fail_attr.attr,
5719 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5720 &cpu_partial_alloc_attr.attr,
5721 &cpu_partial_free_attr.attr,
8028dcea
AS
5722 &cpu_partial_node_attr.attr,
5723 &cpu_partial_drain_attr.attr,
81819f0f 5724#endif
4c13dd3b
DM
5725#ifdef CONFIG_FAILSLAB
5726 &failslab_attr.attr,
5727#endif
8eb8284b 5728 &usersize_attr.attr,
4c13dd3b 5729
81819f0f
CL
5730 NULL
5731};
5732
1fdaaa23 5733static const struct attribute_group slab_attr_group = {
81819f0f
CL
5734 .attrs = slab_attrs,
5735};
5736
5737static ssize_t slab_attr_show(struct kobject *kobj,
5738 struct attribute *attr,
5739 char *buf)
5740{
5741 struct slab_attribute *attribute;
5742 struct kmem_cache *s;
5743 int err;
5744
5745 attribute = to_slab_attr(attr);
5746 s = to_slab(kobj);
5747
5748 if (!attribute->show)
5749 return -EIO;
5750
5751 err = attribute->show(s, buf);
5752
5753 return err;
5754}
5755
5756static ssize_t slab_attr_store(struct kobject *kobj,
5757 struct attribute *attr,
5758 const char *buf, size_t len)
5759{
5760 struct slab_attribute *attribute;
5761 struct kmem_cache *s;
5762 int err;
5763
5764 attribute = to_slab_attr(attr);
5765 s = to_slab(kobj);
5766
5767 if (!attribute->store)
5768 return -EIO;
5769
5770 err = attribute->store(s, buf, len);
81819f0f
CL
5771 return err;
5772}
5773
41a21285
CL
5774static void kmem_cache_release(struct kobject *k)
5775{
5776 slab_kmem_cache_release(to_slab(k));
5777}
5778
52cf25d0 5779static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5780 .show = slab_attr_show,
5781 .store = slab_attr_store,
5782};
5783
5784static struct kobj_type slab_ktype = {
5785 .sysfs_ops = &slab_sysfs_ops,
41a21285 5786 .release = kmem_cache_release,
81819f0f
CL
5787};
5788
27c3a314 5789static struct kset *slab_kset;
81819f0f 5790
9a41707b
VD
5791static inline struct kset *cache_kset(struct kmem_cache *s)
5792{
9a41707b
VD
5793 return slab_kset;
5794}
5795
81819f0f
CL
5796#define ID_STR_LENGTH 64
5797
5798/* Create a unique string id for a slab cache:
6446faa2
CL
5799 *
5800 * Format :[flags-]size
81819f0f
CL
5801 */
5802static char *create_unique_id(struct kmem_cache *s)
5803{
5804 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5805 char *p = name;
5806
5807 BUG_ON(!name);
5808
5809 *p++ = ':';
5810 /*
5811 * First flags affecting slabcache operations. We will only
5812 * get here for aliasable slabs so we do not need to support
5813 * too many flags. The flags here must cover all flags that
5814 * are matched during merging to guarantee that the id is
5815 * unique.
5816 */
5817 if (s->flags & SLAB_CACHE_DMA)
5818 *p++ = 'd';
6d6ea1e9
NB
5819 if (s->flags & SLAB_CACHE_DMA32)
5820 *p++ = 'D';
81819f0f
CL
5821 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5822 *p++ = 'a';
becfda68 5823 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5824 *p++ = 'F';
230e9fc2
VD
5825 if (s->flags & SLAB_ACCOUNT)
5826 *p++ = 'A';
81819f0f
CL
5827 if (p != name + 1)
5828 *p++ = '-';
44065b2e 5829 p += sprintf(p, "%07u", s->size);
2633d7a0 5830
81819f0f
CL
5831 BUG_ON(p > name + ID_STR_LENGTH - 1);
5832 return name;
5833}
5834
5835static int sysfs_slab_add(struct kmem_cache *s)
5836{
5837 int err;
5838 const char *name;
1663f26d 5839 struct kset *kset = cache_kset(s);
45530c44 5840 int unmergeable = slab_unmergeable(s);
81819f0f 5841
1663f26d
TH
5842 if (!kset) {
5843 kobject_init(&s->kobj, &slab_ktype);
5844 return 0;
5845 }
5846
11066386
MC
5847 if (!unmergeable && disable_higher_order_debug &&
5848 (slub_debug & DEBUG_METADATA_FLAGS))
5849 unmergeable = 1;
5850
81819f0f
CL
5851 if (unmergeable) {
5852 /*
5853 * Slabcache can never be merged so we can use the name proper.
5854 * This is typically the case for debug situations. In that
5855 * case we can catch duplicate names easily.
5856 */
27c3a314 5857 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5858 name = s->name;
5859 } else {
5860 /*
5861 * Create a unique name for the slab as a target
5862 * for the symlinks.
5863 */
5864 name = create_unique_id(s);
5865 }
5866
1663f26d 5867 s->kobj.kset = kset;
26e4f205 5868 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5869 if (err)
80da026a 5870 goto out;
81819f0f
CL
5871
5872 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5873 if (err)
5874 goto out_del_kobj;
9a41707b 5875
81819f0f
CL
5876 if (!unmergeable) {
5877 /* Setup first alias */
5878 sysfs_slab_alias(s, s->name);
81819f0f 5879 }
54b6a731
DJ
5880out:
5881 if (!unmergeable)
5882 kfree(name);
5883 return err;
5884out_del_kobj:
5885 kobject_del(&s->kobj);
54b6a731 5886 goto out;
81819f0f
CL
5887}
5888
d50d82fa
MP
5889void sysfs_slab_unlink(struct kmem_cache *s)
5890{
5891 if (slab_state >= FULL)
5892 kobject_del(&s->kobj);
5893}
5894
bf5eb3de
TH
5895void sysfs_slab_release(struct kmem_cache *s)
5896{
5897 if (slab_state >= FULL)
5898 kobject_put(&s->kobj);
81819f0f
CL
5899}
5900
5901/*
5902 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5903 * available lest we lose that information.
81819f0f
CL
5904 */
5905struct saved_alias {
5906 struct kmem_cache *s;
5907 const char *name;
5908 struct saved_alias *next;
5909};
5910
5af328a5 5911static struct saved_alias *alias_list;
81819f0f
CL
5912
5913static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5914{
5915 struct saved_alias *al;
5916
97d06609 5917 if (slab_state == FULL) {
81819f0f
CL
5918 /*
5919 * If we have a leftover link then remove it.
5920 */
27c3a314
GKH
5921 sysfs_remove_link(&slab_kset->kobj, name);
5922 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5923 }
5924
5925 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5926 if (!al)
5927 return -ENOMEM;
5928
5929 al->s = s;
5930 al->name = name;
5931 al->next = alias_list;
5932 alias_list = al;
5933 return 0;
5934}
5935
5936static int __init slab_sysfs_init(void)
5937{
5b95a4ac 5938 struct kmem_cache *s;
81819f0f
CL
5939 int err;
5940
18004c5d 5941 mutex_lock(&slab_mutex);
2bce6485 5942
d7660ce5 5943 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5944 if (!slab_kset) {
18004c5d 5945 mutex_unlock(&slab_mutex);
f9f58285 5946 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5947 return -ENOSYS;
5948 }
5949
97d06609 5950 slab_state = FULL;
26a7bd03 5951
5b95a4ac 5952 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5953 err = sysfs_slab_add(s);
5d540fb7 5954 if (err)
f9f58285
FF
5955 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5956 s->name);
26a7bd03 5957 }
81819f0f
CL
5958
5959 while (alias_list) {
5960 struct saved_alias *al = alias_list;
5961
5962 alias_list = alias_list->next;
5963 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5964 if (err)
f9f58285
FF
5965 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5966 al->name);
81819f0f
CL
5967 kfree(al);
5968 }
5969
18004c5d 5970 mutex_unlock(&slab_mutex);
81819f0f
CL
5971 return 0;
5972}
5973
5974__initcall(slab_sysfs_init);
ab4d5ed5 5975#endif /* CONFIG_SYSFS */
57ed3eda 5976
64dd6849
FM
5977#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5978static int slab_debugfs_show(struct seq_file *seq, void *v)
5979{
64dd6849 5980 struct loc_track *t = seq->private;
005a79e5
GS
5981 struct location *l;
5982 unsigned long idx;
64dd6849 5983
005a79e5 5984 idx = (unsigned long) t->idx;
64dd6849
FM
5985 if (idx < t->count) {
5986 l = &t->loc[idx];
5987
5988 seq_printf(seq, "%7ld ", l->count);
5989
5990 if (l->addr)
5991 seq_printf(seq, "%pS", (void *)l->addr);
5992 else
5993 seq_puts(seq, "<not-available>");
5994
5995 if (l->sum_time != l->min_time) {
5996 seq_printf(seq, " age=%ld/%llu/%ld",
5997 l->min_time, div_u64(l->sum_time, l->count),
5998 l->max_time);
5999 } else
6000 seq_printf(seq, " age=%ld", l->min_time);
6001
6002 if (l->min_pid != l->max_pid)
6003 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6004 else
6005 seq_printf(seq, " pid=%ld",
6006 l->min_pid);
6007
6008 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6009 seq_printf(seq, " cpus=%*pbl",
6010 cpumask_pr_args(to_cpumask(l->cpus)));
6011
6012 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6013 seq_printf(seq, " nodes=%*pbl",
6014 nodemask_pr_args(&l->nodes));
6015
8ea9fb92
OG
6016#ifdef CONFIG_STACKDEPOT
6017 {
6018 depot_stack_handle_t handle;
6019 unsigned long *entries;
6020 unsigned int nr_entries, j;
6021
6022 handle = READ_ONCE(l->handle);
6023 if (handle) {
6024 nr_entries = stack_depot_fetch(handle, &entries);
6025 seq_puts(seq, "\n");
6026 for (j = 0; j < nr_entries; j++)
6027 seq_printf(seq, " %pS\n", (void *)entries[j]);
6028 }
6029 }
6030#endif
64dd6849
FM
6031 seq_puts(seq, "\n");
6032 }
6033
6034 if (!idx && !t->count)
6035 seq_puts(seq, "No data\n");
6036
6037 return 0;
6038}
6039
6040static void slab_debugfs_stop(struct seq_file *seq, void *v)
6041{
6042}
6043
6044static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6045{
6046 struct loc_track *t = seq->private;
6047
005a79e5 6048 t->idx = ++(*ppos);
64dd6849 6049 if (*ppos <= t->count)
005a79e5 6050 return ppos;
64dd6849
FM
6051
6052 return NULL;
6053}
6054
553c0369
OG
6055static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6056{
6057 struct location *loc1 = (struct location *)a;
6058 struct location *loc2 = (struct location *)b;
6059
6060 if (loc1->count > loc2->count)
6061 return -1;
6062 else
6063 return 1;
6064}
6065
64dd6849
FM
6066static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6067{
005a79e5
GS
6068 struct loc_track *t = seq->private;
6069
6070 t->idx = *ppos;
64dd6849
FM
6071 return ppos;
6072}
6073
6074static const struct seq_operations slab_debugfs_sops = {
6075 .start = slab_debugfs_start,
6076 .next = slab_debugfs_next,
6077 .stop = slab_debugfs_stop,
6078 .show = slab_debugfs_show,
6079};
6080
6081static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6082{
6083
6084 struct kmem_cache_node *n;
6085 enum track_item alloc;
6086 int node;
6087 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6088 sizeof(struct loc_track));
6089 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
6090 unsigned long *obj_map;
6091
2127d225
ML
6092 if (!t)
6093 return -ENOMEM;
6094
b3fd64e1 6095 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
6096 if (!obj_map) {
6097 seq_release_private(inode, filep);
b3fd64e1 6098 return -ENOMEM;
2127d225 6099 }
64dd6849
FM
6100
6101 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6102 alloc = TRACK_ALLOC;
6103 else
6104 alloc = TRACK_FREE;
6105
b3fd64e1
VB
6106 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6107 bitmap_free(obj_map);
2127d225 6108 seq_release_private(inode, filep);
64dd6849 6109 return -ENOMEM;
b3fd64e1 6110 }
64dd6849 6111
64dd6849
FM
6112 for_each_kmem_cache_node(s, node, n) {
6113 unsigned long flags;
bb192ed9 6114 struct slab *slab;
64dd6849
FM
6115
6116 if (!atomic_long_read(&n->nr_slabs))
6117 continue;
6118
6119 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
6120 list_for_each_entry(slab, &n->partial, slab_list)
6121 process_slab(t, s, slab, alloc, obj_map);
6122 list_for_each_entry(slab, &n->full, slab_list)
6123 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
6124 spin_unlock_irqrestore(&n->list_lock, flags);
6125 }
6126
553c0369
OG
6127 /* Sort locations by count */
6128 sort_r(t->loc, t->count, sizeof(struct location),
6129 cmp_loc_by_count, NULL, NULL);
6130
b3fd64e1 6131 bitmap_free(obj_map);
64dd6849
FM
6132 return 0;
6133}
6134
6135static int slab_debug_trace_release(struct inode *inode, struct file *file)
6136{
6137 struct seq_file *seq = file->private_data;
6138 struct loc_track *t = seq->private;
6139
6140 free_loc_track(t);
6141 return seq_release_private(inode, file);
6142}
6143
6144static const struct file_operations slab_debugfs_fops = {
6145 .open = slab_debug_trace_open,
6146 .read = seq_read,
6147 .llseek = seq_lseek,
6148 .release = slab_debug_trace_release,
6149};
6150
6151static void debugfs_slab_add(struct kmem_cache *s)
6152{
6153 struct dentry *slab_cache_dir;
6154
6155 if (unlikely(!slab_debugfs_root))
6156 return;
6157
6158 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6159
6160 debugfs_create_file("alloc_traces", 0400,
6161 slab_cache_dir, s, &slab_debugfs_fops);
6162
6163 debugfs_create_file("free_traces", 0400,
6164 slab_cache_dir, s, &slab_debugfs_fops);
6165}
6166
6167void debugfs_slab_release(struct kmem_cache *s)
6168{
6169 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6170}
6171
6172static int __init slab_debugfs_init(void)
6173{
6174 struct kmem_cache *s;
6175
6176 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6177
6178 list_for_each_entry(s, &slab_caches, list)
6179 if (s->flags & SLAB_STORE_USER)
6180 debugfs_slab_add(s);
6181
6182 return 0;
6183
6184}
6185__initcall(slab_debugfs_init);
6186#endif
57ed3eda
PE
6187/*
6188 * The /proc/slabinfo ABI
6189 */
5b365771 6190#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6191void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6192{
57ed3eda 6193 unsigned long nr_slabs = 0;
205ab99d
CL
6194 unsigned long nr_objs = 0;
6195 unsigned long nr_free = 0;
57ed3eda 6196 int node;
fa45dc25 6197 struct kmem_cache_node *n;
57ed3eda 6198
fa45dc25 6199 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6200 nr_slabs += node_nr_slabs(n);
6201 nr_objs += node_nr_objs(n);
205ab99d 6202 nr_free += count_partial(n, count_free);
57ed3eda
PE
6203 }
6204
0d7561c6
GC
6205 sinfo->active_objs = nr_objs - nr_free;
6206 sinfo->num_objs = nr_objs;
6207 sinfo->active_slabs = nr_slabs;
6208 sinfo->num_slabs = nr_slabs;
6209 sinfo->objects_per_slab = oo_objects(s->oo);
6210 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6211}
6212
0d7561c6 6213void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6214{
7b3c3a50
AD
6215}
6216
b7454ad3
GC
6217ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6218 size_t count, loff_t *ppos)
7b3c3a50 6219{
b7454ad3 6220 return -EIO;
7b3c3a50 6221}
5b365771 6222#endif /* CONFIG_SLUB_DEBUG */