exec: fix stack excutability without PT_GNU_STACK
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
3ac7fe5a 22#include <linux/debugobjects.h>
81819f0f 23#include <linux/kallsyms.h>
b9049e23 24#include <linux/memory.h>
f8bd2258 25#include <linux/math64.h>
81819f0f
CL
26
27/*
28 * Lock order:
29 * 1. slab_lock(page)
30 * 2. slab->list_lock
31 *
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
38 *
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
44 *
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
49 * the list lock.
50 *
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
63 *
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
672bba3a
CL
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 74 * freed then the slab will show up again on the partial lists.
672bba3a
CL
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
81819f0f
CL
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
4b6f0750
CL
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
92 *
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
dfb4f096 96 * freelist that allows lockless access to
894b8788
CL
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
81819f0f
CL
99 *
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
894b8788 102 * the fast path and disables lockless freelists.
81819f0f
CL
103 */
104
5577bd8a
CL
105#define FROZEN (1 << PG_active)
106
107#ifdef CONFIG_SLUB_DEBUG
108#define SLABDEBUG (1 << PG_error)
109#else
110#define SLABDEBUG 0
111#endif
112
4b6f0750
CL
113static inline int SlabFrozen(struct page *page)
114{
5577bd8a 115 return page->flags & FROZEN;
4b6f0750
CL
116}
117
118static inline void SetSlabFrozen(struct page *page)
119{
5577bd8a 120 page->flags |= FROZEN;
4b6f0750
CL
121}
122
123static inline void ClearSlabFrozen(struct page *page)
124{
5577bd8a 125 page->flags &= ~FROZEN;
4b6f0750
CL
126}
127
35e5d7ee
CL
128static inline int SlabDebug(struct page *page)
129{
5577bd8a 130 return page->flags & SLABDEBUG;
35e5d7ee
CL
131}
132
133static inline void SetSlabDebug(struct page *page)
134{
5577bd8a 135 page->flags |= SLABDEBUG;
35e5d7ee
CL
136}
137
138static inline void ClearSlabDebug(struct page *page)
139{
5577bd8a 140 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
141}
142
81819f0f
CL
143/*
144 * Issues still to be resolved:
145 *
81819f0f
CL
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
81819f0f
CL
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
2086d26a
CL
154/*
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
157 */
76be8950 158#define MIN_PARTIAL 5
e95eed57 159
2086d26a
CL
160/*
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
164 */
165#define MAX_PARTIAL 10
166
81819f0f
CL
167#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_STORE_USER)
672bba3a 169
81819f0f
CL
170/*
171 * Set of flags that will prevent slab merging
172 */
173#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175
176#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 SLAB_CACHE_DMA)
178
179#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 180#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
181#endif
182
183#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 184#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
185#endif
186
187/* Internal SLUB flags */
1ceef402
CL
188#define __OBJECT_POISON 0x80000000 /* Poison object */
189#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
190
191static int kmem_size = sizeof(struct kmem_cache);
192
193#ifdef CONFIG_SMP
194static struct notifier_block slab_notifier;
195#endif
196
197static enum {
198 DOWN, /* No slab functionality available */
199 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 200 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
201 SYSFS /* Sysfs up */
202} slab_state = DOWN;
203
204/* A list of all slab caches on the system */
205static DECLARE_RWSEM(slub_lock);
5af328a5 206static LIST_HEAD(slab_caches);
81819f0f 207
02cbc874
CL
208/*
209 * Tracking user of a slab.
210 */
211struct track {
212 void *addr; /* Called from address */
213 int cpu; /* Was running on cpu */
214 int pid; /* Pid context */
215 unsigned long when; /* When did the operation occur */
216};
217
218enum track_item { TRACK_ALLOC, TRACK_FREE };
219
f6acb635 220#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
221static int sysfs_slab_add(struct kmem_cache *);
222static int sysfs_slab_alias(struct kmem_cache *, const char *);
223static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 224
81819f0f 225#else
0c710013
CL
226static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228 { return 0; }
151c602f
CL
229static inline void sysfs_slab_remove(struct kmem_cache *s)
230{
231 kfree(s);
232}
8ff12cfc 233
81819f0f
CL
234#endif
235
8ff12cfc
CL
236static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
237{
238#ifdef CONFIG_SLUB_STATS
239 c->stat[si]++;
240#endif
241}
242
81819f0f
CL
243/********************************************************************
244 * Core slab cache functions
245 *******************************************************************/
246
247int slab_is_available(void)
248{
249 return slab_state >= UP;
250}
251
252static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
253{
254#ifdef CONFIG_NUMA
255 return s->node[node];
256#else
257 return &s->local_node;
258#endif
259}
260
dfb4f096
CL
261static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
262{
4c93c355
CL
263#ifdef CONFIG_SMP
264 return s->cpu_slab[cpu];
265#else
266 return &s->cpu_slab;
267#endif
dfb4f096
CL
268}
269
6446faa2 270/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
271static inline int check_valid_pointer(struct kmem_cache *s,
272 struct page *page, const void *object)
273{
274 void *base;
275
a973e9dd 276 if (!object)
02cbc874
CL
277 return 1;
278
a973e9dd 279 base = page_address(page);
39b26464 280 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
281 (object - base) % s->size) {
282 return 0;
283 }
284
285 return 1;
286}
287
7656c72b
CL
288/*
289 * Slow version of get and set free pointer.
290 *
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
294 */
295static inline void *get_freepointer(struct kmem_cache *s, void *object)
296{
297 return *(void **)(object + s->offset);
298}
299
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
302 *(void **)(object + s->offset) = fp;
303}
304
305/* Loop over all objects in a slab */
224a88be
CL
306#define for_each_object(__p, __s, __addr, __objects) \
307 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
308 __p += (__s)->size)
309
310/* Scan freelist */
311#define for_each_free_object(__p, __s, __free) \
a973e9dd 312 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
313
314/* Determine object index from a given position */
315static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316{
317 return (p - addr) / s->size;
318}
319
834f3d11
CL
320static inline struct kmem_cache_order_objects oo_make(int order,
321 unsigned long size)
322{
323 struct kmem_cache_order_objects x = {
324 (order << 16) + (PAGE_SIZE << order) / size
325 };
326
327 return x;
328}
329
330static inline int oo_order(struct kmem_cache_order_objects x)
331{
332 return x.x >> 16;
333}
334
335static inline int oo_objects(struct kmem_cache_order_objects x)
336{
337 return x.x & ((1 << 16) - 1);
338}
339
41ecc55b
CL
340#ifdef CONFIG_SLUB_DEBUG
341/*
342 * Debug settings:
343 */
f0630fff
CL
344#ifdef CONFIG_SLUB_DEBUG_ON
345static int slub_debug = DEBUG_DEFAULT_FLAGS;
346#else
41ecc55b 347static int slub_debug;
f0630fff 348#endif
41ecc55b
CL
349
350static char *slub_debug_slabs;
351
81819f0f
CL
352/*
353 * Object debugging
354 */
355static void print_section(char *text, u8 *addr, unsigned int length)
356{
357 int i, offset;
358 int newline = 1;
359 char ascii[17];
360
361 ascii[16] = 0;
362
363 for (i = 0; i < length; i++) {
364 if (newline) {
24922684 365 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
366 newline = 0;
367 }
06428780 368 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
369 offset = i % 16;
370 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371 if (offset == 15) {
06428780 372 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
373 newline = 1;
374 }
375 }
376 if (!newline) {
377 i %= 16;
378 while (i < 16) {
06428780 379 printk(KERN_CONT " ");
81819f0f
CL
380 ascii[i] = ' ';
381 i++;
382 }
06428780 383 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
384 }
385}
386
81819f0f
CL
387static struct track *get_track(struct kmem_cache *s, void *object,
388 enum track_item alloc)
389{
390 struct track *p;
391
392 if (s->offset)
393 p = object + s->offset + sizeof(void *);
394 else
395 p = object + s->inuse;
396
397 return p + alloc;
398}
399
400static void set_track(struct kmem_cache *s, void *object,
401 enum track_item alloc, void *addr)
402{
403 struct track *p;
404
405 if (s->offset)
406 p = object + s->offset + sizeof(void *);
407 else
408 p = object + s->inuse;
409
410 p += alloc;
411 if (addr) {
412 p->addr = addr;
413 p->cpu = smp_processor_id();
414 p->pid = current ? current->pid : -1;
415 p->when = jiffies;
416 } else
417 memset(p, 0, sizeof(struct track));
418}
419
81819f0f
CL
420static void init_tracking(struct kmem_cache *s, void *object)
421{
24922684
CL
422 if (!(s->flags & SLAB_STORE_USER))
423 return;
424
425 set_track(s, object, TRACK_FREE, NULL);
426 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
427}
428
429static void print_track(const char *s, struct track *t)
430{
431 if (!t->addr)
432 return;
433
24922684 434 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 435 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
436 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
437}
438
439static void print_tracking(struct kmem_cache *s, void *object)
440{
441 if (!(s->flags & SLAB_STORE_USER))
442 return;
443
444 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
445 print_track("Freed", get_track(s, object, TRACK_FREE));
446}
447
448static void print_page_info(struct page *page)
449{
39b26464
CL
450 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
451 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
452
453}
454
455static void slab_bug(struct kmem_cache *s, char *fmt, ...)
456{
457 va_list args;
458 char buf[100];
459
460 va_start(args, fmt);
461 vsnprintf(buf, sizeof(buf), fmt, args);
462 va_end(args);
463 printk(KERN_ERR "========================================"
464 "=====================================\n");
465 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
466 printk(KERN_ERR "----------------------------------------"
467 "-------------------------------------\n\n");
81819f0f
CL
468}
469
24922684
CL
470static void slab_fix(struct kmem_cache *s, char *fmt, ...)
471{
472 va_list args;
473 char buf[100];
474
475 va_start(args, fmt);
476 vsnprintf(buf, sizeof(buf), fmt, args);
477 va_end(args);
478 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
479}
480
481static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
482{
483 unsigned int off; /* Offset of last byte */
a973e9dd 484 u8 *addr = page_address(page);
24922684
CL
485
486 print_tracking(s, p);
487
488 print_page_info(page);
489
490 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
491 p, p - addr, get_freepointer(s, p));
492
493 if (p > addr + 16)
494 print_section("Bytes b4", p - 16, 16);
495
496 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
497
498 if (s->flags & SLAB_RED_ZONE)
499 print_section("Redzone", p + s->objsize,
500 s->inuse - s->objsize);
501
81819f0f
CL
502 if (s->offset)
503 off = s->offset + sizeof(void *);
504 else
505 off = s->inuse;
506
24922684 507 if (s->flags & SLAB_STORE_USER)
81819f0f 508 off += 2 * sizeof(struct track);
81819f0f
CL
509
510 if (off != s->size)
511 /* Beginning of the filler is the free pointer */
24922684
CL
512 print_section("Padding", p + off, s->size - off);
513
514 dump_stack();
81819f0f
CL
515}
516
517static void object_err(struct kmem_cache *s, struct page *page,
518 u8 *object, char *reason)
519{
3dc50637 520 slab_bug(s, "%s", reason);
24922684 521 print_trailer(s, page, object);
81819f0f
CL
522}
523
24922684 524static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
525{
526 va_list args;
527 char buf[100];
528
24922684
CL
529 va_start(args, fmt);
530 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 531 va_end(args);
3dc50637 532 slab_bug(s, "%s", buf);
24922684 533 print_page_info(page);
81819f0f
CL
534 dump_stack();
535}
536
537static void init_object(struct kmem_cache *s, void *object, int active)
538{
539 u8 *p = object;
540
541 if (s->flags & __OBJECT_POISON) {
542 memset(p, POISON_FREE, s->objsize - 1);
06428780 543 p[s->objsize - 1] = POISON_END;
81819f0f
CL
544 }
545
546 if (s->flags & SLAB_RED_ZONE)
547 memset(p + s->objsize,
548 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
549 s->inuse - s->objsize);
550}
551
24922684 552static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
553{
554 while (bytes) {
555 if (*start != (u8)value)
24922684 556 return start;
81819f0f
CL
557 start++;
558 bytes--;
559 }
24922684
CL
560 return NULL;
561}
562
563static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
564 void *from, void *to)
565{
566 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
567 memset(from, data, to - from);
568}
569
570static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
571 u8 *object, char *what,
06428780 572 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
573{
574 u8 *fault;
575 u8 *end;
576
577 fault = check_bytes(start, value, bytes);
578 if (!fault)
579 return 1;
580
581 end = start + bytes;
582 while (end > fault && end[-1] == value)
583 end--;
584
585 slab_bug(s, "%s overwritten", what);
586 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
587 fault, end - 1, fault[0], value);
588 print_trailer(s, page, object);
589
590 restore_bytes(s, what, value, fault, end);
591 return 0;
81819f0f
CL
592}
593
81819f0f
CL
594/*
595 * Object layout:
596 *
597 * object address
598 * Bytes of the object to be managed.
599 * If the freepointer may overlay the object then the free
600 * pointer is the first word of the object.
672bba3a 601 *
81819f0f
CL
602 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
603 * 0xa5 (POISON_END)
604 *
605 * object + s->objsize
606 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
607 * Padding is extended by another word if Redzoning is enabled and
608 * objsize == inuse.
609 *
81819f0f
CL
610 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
611 * 0xcc (RED_ACTIVE) for objects in use.
612 *
613 * object + s->inuse
672bba3a
CL
614 * Meta data starts here.
615 *
81819f0f
CL
616 * A. Free pointer (if we cannot overwrite object on free)
617 * B. Tracking data for SLAB_STORE_USER
672bba3a 618 * C. Padding to reach required alignment boundary or at mininum
6446faa2 619 * one word if debugging is on to be able to detect writes
672bba3a
CL
620 * before the word boundary.
621 *
622 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
623 *
624 * object + s->size
672bba3a 625 * Nothing is used beyond s->size.
81819f0f 626 *
672bba3a
CL
627 * If slabcaches are merged then the objsize and inuse boundaries are mostly
628 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
629 * may be used with merged slabcaches.
630 */
631
81819f0f
CL
632static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
633{
634 unsigned long off = s->inuse; /* The end of info */
635
636 if (s->offset)
637 /* Freepointer is placed after the object. */
638 off += sizeof(void *);
639
640 if (s->flags & SLAB_STORE_USER)
641 /* We also have user information there */
642 off += 2 * sizeof(struct track);
643
644 if (s->size == off)
645 return 1;
646
24922684
CL
647 return check_bytes_and_report(s, page, p, "Object padding",
648 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
649}
650
39b26464 651/* Check the pad bytes at the end of a slab page */
81819f0f
CL
652static int slab_pad_check(struct kmem_cache *s, struct page *page)
653{
24922684
CL
654 u8 *start;
655 u8 *fault;
656 u8 *end;
657 int length;
658 int remainder;
81819f0f
CL
659
660 if (!(s->flags & SLAB_POISON))
661 return 1;
662
a973e9dd 663 start = page_address(page);
834f3d11 664 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
665 end = start + length;
666 remainder = length % s->size;
81819f0f
CL
667 if (!remainder)
668 return 1;
669
39b26464 670 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
671 if (!fault)
672 return 1;
673 while (end > fault && end[-1] == POISON_INUSE)
674 end--;
675
676 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 677 print_section("Padding", end - remainder, remainder);
24922684
CL
678
679 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
680 return 0;
81819f0f
CL
681}
682
683static int check_object(struct kmem_cache *s, struct page *page,
684 void *object, int active)
685{
686 u8 *p = object;
687 u8 *endobject = object + s->objsize;
688
689 if (s->flags & SLAB_RED_ZONE) {
690 unsigned int red =
691 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
692
24922684
CL
693 if (!check_bytes_and_report(s, page, object, "Redzone",
694 endobject, red, s->inuse - s->objsize))
81819f0f 695 return 0;
81819f0f 696 } else {
3adbefee
IM
697 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
698 check_bytes_and_report(s, page, p, "Alignment padding",
699 endobject, POISON_INUSE, s->inuse - s->objsize);
700 }
81819f0f
CL
701 }
702
703 if (s->flags & SLAB_POISON) {
704 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
705 (!check_bytes_and_report(s, page, p, "Poison", p,
706 POISON_FREE, s->objsize - 1) ||
707 !check_bytes_and_report(s, page, p, "Poison",
06428780 708 p + s->objsize - 1, POISON_END, 1)))
81819f0f 709 return 0;
81819f0f
CL
710 /*
711 * check_pad_bytes cleans up on its own.
712 */
713 check_pad_bytes(s, page, p);
714 }
715
716 if (!s->offset && active)
717 /*
718 * Object and freepointer overlap. Cannot check
719 * freepointer while object is allocated.
720 */
721 return 1;
722
723 /* Check free pointer validity */
724 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
725 object_err(s, page, p, "Freepointer corrupt");
726 /*
727 * No choice but to zap it and thus loose the remainder
728 * of the free objects in this slab. May cause
672bba3a 729 * another error because the object count is now wrong.
81819f0f 730 */
a973e9dd 731 set_freepointer(s, p, NULL);
81819f0f
CL
732 return 0;
733 }
734 return 1;
735}
736
737static int check_slab(struct kmem_cache *s, struct page *page)
738{
39b26464
CL
739 int maxobj;
740
81819f0f
CL
741 VM_BUG_ON(!irqs_disabled());
742
743 if (!PageSlab(page)) {
24922684 744 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
745 return 0;
746 }
39b26464
CL
747
748 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
749 if (page->objects > maxobj) {
750 slab_err(s, page, "objects %u > max %u",
751 s->name, page->objects, maxobj);
752 return 0;
753 }
754 if (page->inuse > page->objects) {
24922684 755 slab_err(s, page, "inuse %u > max %u",
39b26464 756 s->name, page->inuse, page->objects);
81819f0f
CL
757 return 0;
758 }
759 /* Slab_pad_check fixes things up after itself */
760 slab_pad_check(s, page);
761 return 1;
762}
763
764/*
672bba3a
CL
765 * Determine if a certain object on a page is on the freelist. Must hold the
766 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
767 */
768static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
769{
770 int nr = 0;
771 void *fp = page->freelist;
772 void *object = NULL;
224a88be 773 unsigned long max_objects;
81819f0f 774
39b26464 775 while (fp && nr <= page->objects) {
81819f0f
CL
776 if (fp == search)
777 return 1;
778 if (!check_valid_pointer(s, page, fp)) {
779 if (object) {
780 object_err(s, page, object,
781 "Freechain corrupt");
a973e9dd 782 set_freepointer(s, object, NULL);
81819f0f
CL
783 break;
784 } else {
24922684 785 slab_err(s, page, "Freepointer corrupt");
a973e9dd 786 page->freelist = NULL;
39b26464 787 page->inuse = page->objects;
24922684 788 slab_fix(s, "Freelist cleared");
81819f0f
CL
789 return 0;
790 }
791 break;
792 }
793 object = fp;
794 fp = get_freepointer(s, object);
795 nr++;
796 }
797
224a88be
CL
798 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
799 if (max_objects > 65535)
800 max_objects = 65535;
801
802 if (page->objects != max_objects) {
803 slab_err(s, page, "Wrong number of objects. Found %d but "
804 "should be %d", page->objects, max_objects);
805 page->objects = max_objects;
806 slab_fix(s, "Number of objects adjusted.");
807 }
39b26464 808 if (page->inuse != page->objects - nr) {
70d71228 809 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
810 "counted were %d", page->inuse, page->objects - nr);
811 page->inuse = page->objects - nr;
24922684 812 slab_fix(s, "Object count adjusted.");
81819f0f
CL
813 }
814 return search == NULL;
815}
816
0121c619
CL
817static void trace(struct kmem_cache *s, struct page *page, void *object,
818 int alloc)
3ec09742
CL
819{
820 if (s->flags & SLAB_TRACE) {
821 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
822 s->name,
823 alloc ? "alloc" : "free",
824 object, page->inuse,
825 page->freelist);
826
827 if (!alloc)
828 print_section("Object", (void *)object, s->objsize);
829
830 dump_stack();
831 }
832}
833
643b1138 834/*
672bba3a 835 * Tracking of fully allocated slabs for debugging purposes.
643b1138 836 */
e95eed57 837static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 838{
643b1138
CL
839 spin_lock(&n->list_lock);
840 list_add(&page->lru, &n->full);
841 spin_unlock(&n->list_lock);
842}
843
844static void remove_full(struct kmem_cache *s, struct page *page)
845{
846 struct kmem_cache_node *n;
847
848 if (!(s->flags & SLAB_STORE_USER))
849 return;
850
851 n = get_node(s, page_to_nid(page));
852
853 spin_lock(&n->list_lock);
854 list_del(&page->lru);
855 spin_unlock(&n->list_lock);
856}
857
0f389ec6
CL
858/* Tracking of the number of slabs for debugging purposes */
859static inline unsigned long slabs_node(struct kmem_cache *s, int node)
860{
861 struct kmem_cache_node *n = get_node(s, node);
862
863 return atomic_long_read(&n->nr_slabs);
864}
865
205ab99d 866static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
867{
868 struct kmem_cache_node *n = get_node(s, node);
869
870 /*
871 * May be called early in order to allocate a slab for the
872 * kmem_cache_node structure. Solve the chicken-egg
873 * dilemma by deferring the increment of the count during
874 * bootstrap (see early_kmem_cache_node_alloc).
875 */
205ab99d 876 if (!NUMA_BUILD || n) {
0f389ec6 877 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
878 atomic_long_add(objects, &n->total_objects);
879 }
0f389ec6 880}
205ab99d 881static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
882{
883 struct kmem_cache_node *n = get_node(s, node);
884
885 atomic_long_dec(&n->nr_slabs);
205ab99d 886 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
887}
888
889/* Object debug checks for alloc/free paths */
3ec09742
CL
890static void setup_object_debug(struct kmem_cache *s, struct page *page,
891 void *object)
892{
893 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
894 return;
895
896 init_object(s, object, 0);
897 init_tracking(s, object);
898}
899
900static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
901 void *object, void *addr)
81819f0f
CL
902{
903 if (!check_slab(s, page))
904 goto bad;
905
d692ef6d 906 if (!on_freelist(s, page, object)) {
24922684 907 object_err(s, page, object, "Object already allocated");
70d71228 908 goto bad;
81819f0f
CL
909 }
910
911 if (!check_valid_pointer(s, page, object)) {
912 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 913 goto bad;
81819f0f
CL
914 }
915
d692ef6d 916 if (!check_object(s, page, object, 0))
81819f0f 917 goto bad;
81819f0f 918
3ec09742
CL
919 /* Success perform special debug activities for allocs */
920 if (s->flags & SLAB_STORE_USER)
921 set_track(s, object, TRACK_ALLOC, addr);
922 trace(s, page, object, 1);
923 init_object(s, object, 1);
81819f0f 924 return 1;
3ec09742 925
81819f0f
CL
926bad:
927 if (PageSlab(page)) {
928 /*
929 * If this is a slab page then lets do the best we can
930 * to avoid issues in the future. Marking all objects
672bba3a 931 * as used avoids touching the remaining objects.
81819f0f 932 */
24922684 933 slab_fix(s, "Marking all objects used");
39b26464 934 page->inuse = page->objects;
a973e9dd 935 page->freelist = NULL;
81819f0f
CL
936 }
937 return 0;
938}
939
3ec09742
CL
940static int free_debug_processing(struct kmem_cache *s, struct page *page,
941 void *object, void *addr)
81819f0f
CL
942{
943 if (!check_slab(s, page))
944 goto fail;
945
946 if (!check_valid_pointer(s, page, object)) {
70d71228 947 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
948 goto fail;
949 }
950
951 if (on_freelist(s, page, object)) {
24922684 952 object_err(s, page, object, "Object already free");
81819f0f
CL
953 goto fail;
954 }
955
956 if (!check_object(s, page, object, 1))
957 return 0;
958
959 if (unlikely(s != page->slab)) {
3adbefee 960 if (!PageSlab(page)) {
70d71228
CL
961 slab_err(s, page, "Attempt to free object(0x%p) "
962 "outside of slab", object);
3adbefee 963 } else if (!page->slab) {
81819f0f 964 printk(KERN_ERR
70d71228 965 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 966 object);
70d71228 967 dump_stack();
06428780 968 } else
24922684
CL
969 object_err(s, page, object,
970 "page slab pointer corrupt.");
81819f0f
CL
971 goto fail;
972 }
3ec09742
CL
973
974 /* Special debug activities for freeing objects */
a973e9dd 975 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
976 remove_full(s, page);
977 if (s->flags & SLAB_STORE_USER)
978 set_track(s, object, TRACK_FREE, addr);
979 trace(s, page, object, 0);
980 init_object(s, object, 0);
81819f0f 981 return 1;
3ec09742 982
81819f0f 983fail:
24922684 984 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
985 return 0;
986}
987
41ecc55b
CL
988static int __init setup_slub_debug(char *str)
989{
f0630fff
CL
990 slub_debug = DEBUG_DEFAULT_FLAGS;
991 if (*str++ != '=' || !*str)
992 /*
993 * No options specified. Switch on full debugging.
994 */
995 goto out;
996
997 if (*str == ',')
998 /*
999 * No options but restriction on slabs. This means full
1000 * debugging for slabs matching a pattern.
1001 */
1002 goto check_slabs;
1003
1004 slub_debug = 0;
1005 if (*str == '-')
1006 /*
1007 * Switch off all debugging measures.
1008 */
1009 goto out;
1010
1011 /*
1012 * Determine which debug features should be switched on
1013 */
06428780 1014 for (; *str && *str != ','; str++) {
f0630fff
CL
1015 switch (tolower(*str)) {
1016 case 'f':
1017 slub_debug |= SLAB_DEBUG_FREE;
1018 break;
1019 case 'z':
1020 slub_debug |= SLAB_RED_ZONE;
1021 break;
1022 case 'p':
1023 slub_debug |= SLAB_POISON;
1024 break;
1025 case 'u':
1026 slub_debug |= SLAB_STORE_USER;
1027 break;
1028 case 't':
1029 slub_debug |= SLAB_TRACE;
1030 break;
1031 default:
1032 printk(KERN_ERR "slub_debug option '%c' "
06428780 1033 "unknown. skipped\n", *str);
f0630fff 1034 }
41ecc55b
CL
1035 }
1036
f0630fff 1037check_slabs:
41ecc55b
CL
1038 if (*str == ',')
1039 slub_debug_slabs = str + 1;
f0630fff 1040out:
41ecc55b
CL
1041 return 1;
1042}
1043
1044__setup("slub_debug", setup_slub_debug);
1045
ba0268a8
CL
1046static unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
4ba9b9d0 1048 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
1049{
1050 /*
e153362a 1051 * Enable debugging if selected on the kernel commandline.
41ecc55b 1052 */
e153362a
CL
1053 if (slub_debug && (!slub_debug_slabs ||
1054 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1055 flags |= slub_debug;
ba0268a8
CL
1056
1057 return flags;
41ecc55b
CL
1058}
1059#else
3ec09742
CL
1060static inline void setup_object_debug(struct kmem_cache *s,
1061 struct page *page, void *object) {}
41ecc55b 1062
3ec09742
CL
1063static inline int alloc_debug_processing(struct kmem_cache *s,
1064 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1065
3ec09742
CL
1066static inline int free_debug_processing(struct kmem_cache *s,
1067 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1068
41ecc55b
CL
1069static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1070 { return 1; }
1071static inline int check_object(struct kmem_cache *s, struct page *page,
1072 void *object, int active) { return 1; }
3ec09742 1073static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1074static inline unsigned long kmem_cache_flags(unsigned long objsize,
1075 unsigned long flags, const char *name,
4ba9b9d0 1076 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1077{
1078 return flags;
1079}
41ecc55b 1080#define slub_debug 0
0f389ec6
CL
1081
1082static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1083 { return 0; }
205ab99d
CL
1084static inline void inc_slabs_node(struct kmem_cache *s, int node,
1085 int objects) {}
1086static inline void dec_slabs_node(struct kmem_cache *s, int node,
1087 int objects) {}
41ecc55b 1088#endif
205ab99d 1089
81819f0f
CL
1090/*
1091 * Slab allocation and freeing
1092 */
65c3376a
CL
1093static inline struct page *alloc_slab_page(gfp_t flags, int node,
1094 struct kmem_cache_order_objects oo)
1095{
1096 int order = oo_order(oo);
1097
1098 if (node == -1)
1099 return alloc_pages(flags, order);
1100 else
1101 return alloc_pages_node(node, flags, order);
1102}
1103
81819f0f
CL
1104static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1105{
06428780 1106 struct page *page;
834f3d11 1107 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1108
b7a49f0d 1109 flags |= s->allocflags;
e12ba74d 1110
65c3376a
CL
1111 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1112 oo);
1113 if (unlikely(!page)) {
1114 oo = s->min;
1115 /*
1116 * Allocation may have failed due to fragmentation.
1117 * Try a lower order alloc if possible
1118 */
1119 page = alloc_slab_page(flags, node, oo);
1120 if (!page)
1121 return NULL;
81819f0f 1122
65c3376a
CL
1123 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1124 }
834f3d11 1125 page->objects = oo_objects(oo);
81819f0f
CL
1126 mod_zone_page_state(page_zone(page),
1127 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1128 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1129 1 << oo_order(oo));
81819f0f
CL
1130
1131 return page;
1132}
1133
1134static void setup_object(struct kmem_cache *s, struct page *page,
1135 void *object)
1136{
3ec09742 1137 setup_object_debug(s, page, object);
4f104934 1138 if (unlikely(s->ctor))
4ba9b9d0 1139 s->ctor(s, object);
81819f0f
CL
1140}
1141
1142static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1143{
1144 struct page *page;
81819f0f 1145 void *start;
81819f0f
CL
1146 void *last;
1147 void *p;
1148
6cb06229 1149 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1150
6cb06229
CL
1151 page = allocate_slab(s,
1152 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1153 if (!page)
1154 goto out;
1155
205ab99d 1156 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1157 page->slab = s;
1158 page->flags |= 1 << PG_slab;
1159 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1160 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1161 SetSlabDebug(page);
81819f0f
CL
1162
1163 start = page_address(page);
81819f0f
CL
1164
1165 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1166 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1167
1168 last = start;
224a88be 1169 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1170 setup_object(s, page, last);
1171 set_freepointer(s, last, p);
1172 last = p;
1173 }
1174 setup_object(s, page, last);
a973e9dd 1175 set_freepointer(s, last, NULL);
81819f0f
CL
1176
1177 page->freelist = start;
1178 page->inuse = 0;
1179out:
81819f0f
CL
1180 return page;
1181}
1182
1183static void __free_slab(struct kmem_cache *s, struct page *page)
1184{
834f3d11
CL
1185 int order = compound_order(page);
1186 int pages = 1 << order;
81819f0f 1187
c59def9f 1188 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1189 void *p;
1190
1191 slab_pad_check(s, page);
224a88be
CL
1192 for_each_object(p, s, page_address(page),
1193 page->objects)
81819f0f 1194 check_object(s, page, p, 0);
2208b764 1195 ClearSlabDebug(page);
81819f0f
CL
1196 }
1197
1198 mod_zone_page_state(page_zone(page),
1199 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1200 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1201 -pages);
81819f0f 1202
49bd5221
CL
1203 __ClearPageSlab(page);
1204 reset_page_mapcount(page);
834f3d11 1205 __free_pages(page, order);
81819f0f
CL
1206}
1207
1208static void rcu_free_slab(struct rcu_head *h)
1209{
1210 struct page *page;
1211
1212 page = container_of((struct list_head *)h, struct page, lru);
1213 __free_slab(page->slab, page);
1214}
1215
1216static void free_slab(struct kmem_cache *s, struct page *page)
1217{
1218 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1219 /*
1220 * RCU free overloads the RCU head over the LRU
1221 */
1222 struct rcu_head *head = (void *)&page->lru;
1223
1224 call_rcu(head, rcu_free_slab);
1225 } else
1226 __free_slab(s, page);
1227}
1228
1229static void discard_slab(struct kmem_cache *s, struct page *page)
1230{
205ab99d 1231 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1232 free_slab(s, page);
1233}
1234
1235/*
1236 * Per slab locking using the pagelock
1237 */
1238static __always_inline void slab_lock(struct page *page)
1239{
1240 bit_spin_lock(PG_locked, &page->flags);
1241}
1242
1243static __always_inline void slab_unlock(struct page *page)
1244{
a76d3546 1245 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1246}
1247
1248static __always_inline int slab_trylock(struct page *page)
1249{
1250 int rc = 1;
1251
1252 rc = bit_spin_trylock(PG_locked, &page->flags);
1253 return rc;
1254}
1255
1256/*
1257 * Management of partially allocated slabs
1258 */
7c2e132c
CL
1259static void add_partial(struct kmem_cache_node *n,
1260 struct page *page, int tail)
81819f0f 1261{
e95eed57
CL
1262 spin_lock(&n->list_lock);
1263 n->nr_partial++;
7c2e132c
CL
1264 if (tail)
1265 list_add_tail(&page->lru, &n->partial);
1266 else
1267 list_add(&page->lru, &n->partial);
81819f0f
CL
1268 spin_unlock(&n->list_lock);
1269}
1270
0121c619 1271static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1272{
1273 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1274
1275 spin_lock(&n->list_lock);
1276 list_del(&page->lru);
1277 n->nr_partial--;
1278 spin_unlock(&n->list_lock);
1279}
1280
1281/*
672bba3a 1282 * Lock slab and remove from the partial list.
81819f0f 1283 *
672bba3a 1284 * Must hold list_lock.
81819f0f 1285 */
0121c619
CL
1286static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1287 struct page *page)
81819f0f
CL
1288{
1289 if (slab_trylock(page)) {
1290 list_del(&page->lru);
1291 n->nr_partial--;
4b6f0750 1292 SetSlabFrozen(page);
81819f0f
CL
1293 return 1;
1294 }
1295 return 0;
1296}
1297
1298/*
672bba3a 1299 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1300 */
1301static struct page *get_partial_node(struct kmem_cache_node *n)
1302{
1303 struct page *page;
1304
1305 /*
1306 * Racy check. If we mistakenly see no partial slabs then we
1307 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1308 * partial slab and there is none available then get_partials()
1309 * will return NULL.
81819f0f
CL
1310 */
1311 if (!n || !n->nr_partial)
1312 return NULL;
1313
1314 spin_lock(&n->list_lock);
1315 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1316 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1317 goto out;
1318 page = NULL;
1319out:
1320 spin_unlock(&n->list_lock);
1321 return page;
1322}
1323
1324/*
672bba3a 1325 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1326 */
1327static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1328{
1329#ifdef CONFIG_NUMA
1330 struct zonelist *zonelist;
dd1a239f 1331 struct zoneref *z;
54a6eb5c
MG
1332 struct zone *zone;
1333 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1334 struct page *page;
1335
1336 /*
672bba3a
CL
1337 * The defrag ratio allows a configuration of the tradeoffs between
1338 * inter node defragmentation and node local allocations. A lower
1339 * defrag_ratio increases the tendency to do local allocations
1340 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1341 *
672bba3a
CL
1342 * If the defrag_ratio is set to 0 then kmalloc() always
1343 * returns node local objects. If the ratio is higher then kmalloc()
1344 * may return off node objects because partial slabs are obtained
1345 * from other nodes and filled up.
81819f0f 1346 *
6446faa2 1347 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1348 * defrag_ratio = 1000) then every (well almost) allocation will
1349 * first attempt to defrag slab caches on other nodes. This means
1350 * scanning over all nodes to look for partial slabs which may be
1351 * expensive if we do it every time we are trying to find a slab
1352 * with available objects.
81819f0f 1353 */
9824601e
CL
1354 if (!s->remote_node_defrag_ratio ||
1355 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1356 return NULL;
1357
0e88460d 1358 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1359 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1360 struct kmem_cache_node *n;
1361
54a6eb5c 1362 n = get_node(s, zone_to_nid(zone));
81819f0f 1363
54a6eb5c 1364 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
e95eed57 1365 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1366 page = get_partial_node(n);
1367 if (page)
1368 return page;
1369 }
1370 }
1371#endif
1372 return NULL;
1373}
1374
1375/*
1376 * Get a partial page, lock it and return it.
1377 */
1378static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1379{
1380 struct page *page;
1381 int searchnode = (node == -1) ? numa_node_id() : node;
1382
1383 page = get_partial_node(get_node(s, searchnode));
1384 if (page || (flags & __GFP_THISNODE))
1385 return page;
1386
1387 return get_any_partial(s, flags);
1388}
1389
1390/*
1391 * Move a page back to the lists.
1392 *
1393 * Must be called with the slab lock held.
1394 *
1395 * On exit the slab lock will have been dropped.
1396 */
7c2e132c 1397static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1398{
e95eed57 1399 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1400 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1401
4b6f0750 1402 ClearSlabFrozen(page);
81819f0f 1403 if (page->inuse) {
e95eed57 1404
a973e9dd 1405 if (page->freelist) {
7c2e132c 1406 add_partial(n, page, tail);
8ff12cfc
CL
1407 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1408 } else {
1409 stat(c, DEACTIVATE_FULL);
1410 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1411 add_full(n, page);
1412 }
81819f0f
CL
1413 slab_unlock(page);
1414 } else {
8ff12cfc 1415 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1416 if (n->nr_partial < MIN_PARTIAL) {
1417 /*
672bba3a
CL
1418 * Adding an empty slab to the partial slabs in order
1419 * to avoid page allocator overhead. This slab needs
1420 * to come after the other slabs with objects in
6446faa2
CL
1421 * so that the others get filled first. That way the
1422 * size of the partial list stays small.
1423 *
0121c619
CL
1424 * kmem_cache_shrink can reclaim any empty slabs from
1425 * the partial list.
e95eed57 1426 */
7c2e132c 1427 add_partial(n, page, 1);
e95eed57
CL
1428 slab_unlock(page);
1429 } else {
1430 slab_unlock(page);
8ff12cfc 1431 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1432 discard_slab(s, page);
1433 }
81819f0f
CL
1434 }
1435}
1436
1437/*
1438 * Remove the cpu slab
1439 */
dfb4f096 1440static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1441{
dfb4f096 1442 struct page *page = c->page;
7c2e132c 1443 int tail = 1;
8ff12cfc 1444
b773ad73 1445 if (page->freelist)
8ff12cfc 1446 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1447 /*
6446faa2 1448 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1449 * because both freelists are empty. So this is unlikely
1450 * to occur.
1451 */
a973e9dd 1452 while (unlikely(c->freelist)) {
894b8788
CL
1453 void **object;
1454
7c2e132c
CL
1455 tail = 0; /* Hot objects. Put the slab first */
1456
894b8788 1457 /* Retrieve object from cpu_freelist */
dfb4f096 1458 object = c->freelist;
b3fba8da 1459 c->freelist = c->freelist[c->offset];
894b8788
CL
1460
1461 /* And put onto the regular freelist */
b3fba8da 1462 object[c->offset] = page->freelist;
894b8788
CL
1463 page->freelist = object;
1464 page->inuse--;
1465 }
dfb4f096 1466 c->page = NULL;
7c2e132c 1467 unfreeze_slab(s, page, tail);
81819f0f
CL
1468}
1469
dfb4f096 1470static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1471{
8ff12cfc 1472 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1473 slab_lock(c->page);
1474 deactivate_slab(s, c);
81819f0f
CL
1475}
1476
1477/*
1478 * Flush cpu slab.
6446faa2 1479 *
81819f0f
CL
1480 * Called from IPI handler with interrupts disabled.
1481 */
0c710013 1482static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1483{
dfb4f096 1484 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1485
dfb4f096
CL
1486 if (likely(c && c->page))
1487 flush_slab(s, c);
81819f0f
CL
1488}
1489
1490static void flush_cpu_slab(void *d)
1491{
1492 struct kmem_cache *s = d;
81819f0f 1493
dfb4f096 1494 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1495}
1496
1497static void flush_all(struct kmem_cache *s)
1498{
1499#ifdef CONFIG_SMP
1500 on_each_cpu(flush_cpu_slab, s, 1, 1);
1501#else
1502 unsigned long flags;
1503
1504 local_irq_save(flags);
1505 flush_cpu_slab(s);
1506 local_irq_restore(flags);
1507#endif
1508}
1509
dfb4f096
CL
1510/*
1511 * Check if the objects in a per cpu structure fit numa
1512 * locality expectations.
1513 */
1514static inline int node_match(struct kmem_cache_cpu *c, int node)
1515{
1516#ifdef CONFIG_NUMA
1517 if (node != -1 && c->node != node)
1518 return 0;
1519#endif
1520 return 1;
1521}
1522
81819f0f 1523/*
894b8788
CL
1524 * Slow path. The lockless freelist is empty or we need to perform
1525 * debugging duties.
1526 *
1527 * Interrupts are disabled.
81819f0f 1528 *
894b8788
CL
1529 * Processing is still very fast if new objects have been freed to the
1530 * regular freelist. In that case we simply take over the regular freelist
1531 * as the lockless freelist and zap the regular freelist.
81819f0f 1532 *
894b8788
CL
1533 * If that is not working then we fall back to the partial lists. We take the
1534 * first element of the freelist as the object to allocate now and move the
1535 * rest of the freelist to the lockless freelist.
81819f0f 1536 *
894b8788 1537 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1538 * we need to allocate a new slab. This is the slowest path since it involves
1539 * a call to the page allocator and the setup of a new slab.
81819f0f 1540 */
894b8788 1541static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1542 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1543{
81819f0f 1544 void **object;
dfb4f096 1545 struct page *new;
81819f0f 1546
e72e9c23
LT
1547 /* We handle __GFP_ZERO in the caller */
1548 gfpflags &= ~__GFP_ZERO;
1549
dfb4f096 1550 if (!c->page)
81819f0f
CL
1551 goto new_slab;
1552
dfb4f096
CL
1553 slab_lock(c->page);
1554 if (unlikely(!node_match(c, node)))
81819f0f 1555 goto another_slab;
6446faa2 1556
8ff12cfc 1557 stat(c, ALLOC_REFILL);
6446faa2 1558
894b8788 1559load_freelist:
dfb4f096 1560 object = c->page->freelist;
a973e9dd 1561 if (unlikely(!object))
81819f0f 1562 goto another_slab;
dfb4f096 1563 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1564 goto debug;
1565
b3fba8da 1566 c->freelist = object[c->offset];
39b26464 1567 c->page->inuse = c->page->objects;
a973e9dd 1568 c->page->freelist = NULL;
dfb4f096 1569 c->node = page_to_nid(c->page);
1f84260c 1570unlock_out:
dfb4f096 1571 slab_unlock(c->page);
8ff12cfc 1572 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1573 return object;
1574
1575another_slab:
dfb4f096 1576 deactivate_slab(s, c);
81819f0f
CL
1577
1578new_slab:
dfb4f096
CL
1579 new = get_partial(s, gfpflags, node);
1580 if (new) {
1581 c->page = new;
8ff12cfc 1582 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1583 goto load_freelist;
81819f0f
CL
1584 }
1585
b811c202
CL
1586 if (gfpflags & __GFP_WAIT)
1587 local_irq_enable();
1588
dfb4f096 1589 new = new_slab(s, gfpflags, node);
b811c202
CL
1590
1591 if (gfpflags & __GFP_WAIT)
1592 local_irq_disable();
1593
dfb4f096
CL
1594 if (new) {
1595 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1596 stat(c, ALLOC_SLAB);
05aa3450 1597 if (c->page)
dfb4f096 1598 flush_slab(s, c);
dfb4f096
CL
1599 slab_lock(new);
1600 SetSlabFrozen(new);
1601 c->page = new;
4b6f0750 1602 goto load_freelist;
81819f0f 1603 }
71c7a06f 1604 return NULL;
81819f0f 1605debug:
dfb4f096 1606 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1607 goto another_slab;
894b8788 1608
dfb4f096 1609 c->page->inuse++;
b3fba8da 1610 c->page->freelist = object[c->offset];
ee3c72a1 1611 c->node = -1;
1f84260c 1612 goto unlock_out;
894b8788
CL
1613}
1614
1615/*
1616 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1617 * have the fastpath folded into their functions. So no function call
1618 * overhead for requests that can be satisfied on the fastpath.
1619 *
1620 * The fastpath works by first checking if the lockless freelist can be used.
1621 * If not then __slab_alloc is called for slow processing.
1622 *
1623 * Otherwise we can simply pick the next object from the lockless free list.
1624 */
06428780 1625static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1626 gfp_t gfpflags, int node, void *addr)
894b8788 1627{
894b8788 1628 void **object;
dfb4f096 1629 struct kmem_cache_cpu *c;
1f84260c
CL
1630 unsigned long flags;
1631
894b8788 1632 local_irq_save(flags);
dfb4f096 1633 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1634 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1635
dfb4f096 1636 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1637
1638 else {
dfb4f096 1639 object = c->freelist;
b3fba8da 1640 c->freelist = object[c->offset];
8ff12cfc 1641 stat(c, ALLOC_FASTPATH);
894b8788
CL
1642 }
1643 local_irq_restore(flags);
d07dbea4
CL
1644
1645 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1646 memset(object, 0, c->objsize);
d07dbea4 1647
894b8788 1648 return object;
81819f0f
CL
1649}
1650
1651void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1652{
ce15fea8 1653 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1654}
1655EXPORT_SYMBOL(kmem_cache_alloc);
1656
1657#ifdef CONFIG_NUMA
1658void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1659{
ce15fea8 1660 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1661}
1662EXPORT_SYMBOL(kmem_cache_alloc_node);
1663#endif
1664
1665/*
894b8788
CL
1666 * Slow patch handling. This may still be called frequently since objects
1667 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1668 *
894b8788
CL
1669 * So we still attempt to reduce cache line usage. Just take the slab
1670 * lock and free the item. If there is no additional partial page
1671 * handling required then we can return immediately.
81819f0f 1672 */
894b8788 1673static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1674 void *x, void *addr, unsigned int offset)
81819f0f
CL
1675{
1676 void *prior;
1677 void **object = (void *)x;
8ff12cfc 1678 struct kmem_cache_cpu *c;
81819f0f 1679
8ff12cfc
CL
1680 c = get_cpu_slab(s, raw_smp_processor_id());
1681 stat(c, FREE_SLOWPATH);
81819f0f
CL
1682 slab_lock(page);
1683
35e5d7ee 1684 if (unlikely(SlabDebug(page)))
81819f0f 1685 goto debug;
6446faa2 1686
81819f0f 1687checks_ok:
b3fba8da 1688 prior = object[offset] = page->freelist;
81819f0f
CL
1689 page->freelist = object;
1690 page->inuse--;
1691
8ff12cfc
CL
1692 if (unlikely(SlabFrozen(page))) {
1693 stat(c, FREE_FROZEN);
81819f0f 1694 goto out_unlock;
8ff12cfc 1695 }
81819f0f
CL
1696
1697 if (unlikely(!page->inuse))
1698 goto slab_empty;
1699
1700 /*
6446faa2 1701 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1702 * then add it.
1703 */
a973e9dd 1704 if (unlikely(!prior)) {
7c2e132c 1705 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1706 stat(c, FREE_ADD_PARTIAL);
1707 }
81819f0f
CL
1708
1709out_unlock:
1710 slab_unlock(page);
81819f0f
CL
1711 return;
1712
1713slab_empty:
a973e9dd 1714 if (prior) {
81819f0f 1715 /*
672bba3a 1716 * Slab still on the partial list.
81819f0f
CL
1717 */
1718 remove_partial(s, page);
8ff12cfc
CL
1719 stat(c, FREE_REMOVE_PARTIAL);
1720 }
81819f0f 1721 slab_unlock(page);
8ff12cfc 1722 stat(c, FREE_SLAB);
81819f0f 1723 discard_slab(s, page);
81819f0f
CL
1724 return;
1725
1726debug:
3ec09742 1727 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1728 goto out_unlock;
77c5e2d0 1729 goto checks_ok;
81819f0f
CL
1730}
1731
894b8788
CL
1732/*
1733 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1734 * can perform fastpath freeing without additional function calls.
1735 *
1736 * The fastpath is only possible if we are freeing to the current cpu slab
1737 * of this processor. This typically the case if we have just allocated
1738 * the item before.
1739 *
1740 * If fastpath is not possible then fall back to __slab_free where we deal
1741 * with all sorts of special processing.
1742 */
06428780 1743static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1744 struct page *page, void *x, void *addr)
1745{
1746 void **object = (void *)x;
dfb4f096 1747 struct kmem_cache_cpu *c;
1f84260c
CL
1748 unsigned long flags;
1749
894b8788 1750 local_irq_save(flags);
dfb4f096 1751 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1752 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a
TG
1753 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1754 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1755 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1756 object[c->offset] = c->freelist;
dfb4f096 1757 c->freelist = object;
8ff12cfc 1758 stat(c, FREE_FASTPATH);
894b8788 1759 } else
b3fba8da 1760 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1761
1762 local_irq_restore(flags);
1763}
1764
81819f0f
CL
1765void kmem_cache_free(struct kmem_cache *s, void *x)
1766{
77c5e2d0 1767 struct page *page;
81819f0f 1768
b49af68f 1769 page = virt_to_head_page(x);
81819f0f 1770
77c5e2d0 1771 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1772}
1773EXPORT_SYMBOL(kmem_cache_free);
1774
1775/* Figure out on which slab object the object resides */
1776static struct page *get_object_page(const void *x)
1777{
b49af68f 1778 struct page *page = virt_to_head_page(x);
81819f0f
CL
1779
1780 if (!PageSlab(page))
1781 return NULL;
1782
1783 return page;
1784}
1785
1786/*
672bba3a
CL
1787 * Object placement in a slab is made very easy because we always start at
1788 * offset 0. If we tune the size of the object to the alignment then we can
1789 * get the required alignment by putting one properly sized object after
1790 * another.
81819f0f
CL
1791 *
1792 * Notice that the allocation order determines the sizes of the per cpu
1793 * caches. Each processor has always one slab available for allocations.
1794 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1795 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1796 * locking overhead.
81819f0f
CL
1797 */
1798
1799/*
1800 * Mininum / Maximum order of slab pages. This influences locking overhead
1801 * and slab fragmentation. A higher order reduces the number of partial slabs
1802 * and increases the number of allocations possible without having to
1803 * take the list_lock.
1804 */
1805static int slub_min_order;
114e9e89 1806static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1807static int slub_min_objects;
81819f0f
CL
1808
1809/*
1810 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1811 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1812 */
1813static int slub_nomerge;
1814
81819f0f
CL
1815/*
1816 * Calculate the order of allocation given an slab object size.
1817 *
672bba3a
CL
1818 * The order of allocation has significant impact on performance and other
1819 * system components. Generally order 0 allocations should be preferred since
1820 * order 0 does not cause fragmentation in the page allocator. Larger objects
1821 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1822 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1823 * would be wasted.
1824 *
1825 * In order to reach satisfactory performance we must ensure that a minimum
1826 * number of objects is in one slab. Otherwise we may generate too much
1827 * activity on the partial lists which requires taking the list_lock. This is
1828 * less a concern for large slabs though which are rarely used.
81819f0f 1829 *
672bba3a
CL
1830 * slub_max_order specifies the order where we begin to stop considering the
1831 * number of objects in a slab as critical. If we reach slub_max_order then
1832 * we try to keep the page order as low as possible. So we accept more waste
1833 * of space in favor of a small page order.
81819f0f 1834 *
672bba3a
CL
1835 * Higher order allocations also allow the placement of more objects in a
1836 * slab and thereby reduce object handling overhead. If the user has
1837 * requested a higher mininum order then we start with that one instead of
1838 * the smallest order which will fit the object.
81819f0f 1839 */
5e6d444e
CL
1840static inline int slab_order(int size, int min_objects,
1841 int max_order, int fract_leftover)
81819f0f
CL
1842{
1843 int order;
1844 int rem;
6300ea75 1845 int min_order = slub_min_order;
81819f0f 1846
39b26464
CL
1847 if ((PAGE_SIZE << min_order) / size > 65535)
1848 return get_order(size * 65535) - 1;
1849
6300ea75 1850 for (order = max(min_order,
5e6d444e
CL
1851 fls(min_objects * size - 1) - PAGE_SHIFT);
1852 order <= max_order; order++) {
81819f0f 1853
5e6d444e 1854 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1855
5e6d444e 1856 if (slab_size < min_objects * size)
81819f0f
CL
1857 continue;
1858
1859 rem = slab_size % size;
1860
5e6d444e 1861 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1862 break;
1863
1864 }
672bba3a 1865
81819f0f
CL
1866 return order;
1867}
1868
5e6d444e
CL
1869static inline int calculate_order(int size)
1870{
1871 int order;
1872 int min_objects;
1873 int fraction;
1874
1875 /*
1876 * Attempt to find best configuration for a slab. This
1877 * works by first attempting to generate a layout with
1878 * the best configuration and backing off gradually.
1879 *
1880 * First we reduce the acceptable waste in a slab. Then
1881 * we reduce the minimum objects required in a slab.
1882 */
1883 min_objects = slub_min_objects;
9b2cd506
CL
1884 if (!min_objects)
1885 min_objects = 4 * (fls(nr_cpu_ids) + 1);
5e6d444e 1886 while (min_objects > 1) {
c124f5b5 1887 fraction = 16;
5e6d444e
CL
1888 while (fraction >= 4) {
1889 order = slab_order(size, min_objects,
1890 slub_max_order, fraction);
1891 if (order <= slub_max_order)
1892 return order;
1893 fraction /= 2;
1894 }
1895 min_objects /= 2;
1896 }
1897
1898 /*
1899 * We were unable to place multiple objects in a slab. Now
1900 * lets see if we can place a single object there.
1901 */
1902 order = slab_order(size, 1, slub_max_order, 1);
1903 if (order <= slub_max_order)
1904 return order;
1905
1906 /*
1907 * Doh this slab cannot be placed using slub_max_order.
1908 */
1909 order = slab_order(size, 1, MAX_ORDER, 1);
1910 if (order <= MAX_ORDER)
1911 return order;
1912 return -ENOSYS;
1913}
1914
81819f0f 1915/*
672bba3a 1916 * Figure out what the alignment of the objects will be.
81819f0f
CL
1917 */
1918static unsigned long calculate_alignment(unsigned long flags,
1919 unsigned long align, unsigned long size)
1920{
1921 /*
6446faa2
CL
1922 * If the user wants hardware cache aligned objects then follow that
1923 * suggestion if the object is sufficiently large.
81819f0f 1924 *
6446faa2
CL
1925 * The hardware cache alignment cannot override the specified
1926 * alignment though. If that is greater then use it.
81819f0f 1927 */
b6210386
NP
1928 if (flags & SLAB_HWCACHE_ALIGN) {
1929 unsigned long ralign = cache_line_size();
1930 while (size <= ralign / 2)
1931 ralign /= 2;
1932 align = max(align, ralign);
1933 }
81819f0f
CL
1934
1935 if (align < ARCH_SLAB_MINALIGN)
b6210386 1936 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1937
1938 return ALIGN(align, sizeof(void *));
1939}
1940
dfb4f096
CL
1941static void init_kmem_cache_cpu(struct kmem_cache *s,
1942 struct kmem_cache_cpu *c)
1943{
1944 c->page = NULL;
a973e9dd 1945 c->freelist = NULL;
dfb4f096 1946 c->node = 0;
42a9fdbb
CL
1947 c->offset = s->offset / sizeof(void *);
1948 c->objsize = s->objsize;
62f75532
PE
1949#ifdef CONFIG_SLUB_STATS
1950 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1951#endif
dfb4f096
CL
1952}
1953
81819f0f
CL
1954static void init_kmem_cache_node(struct kmem_cache_node *n)
1955{
1956 n->nr_partial = 0;
81819f0f
CL
1957 spin_lock_init(&n->list_lock);
1958 INIT_LIST_HEAD(&n->partial);
8ab1372f 1959#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1960 atomic_long_set(&n->nr_slabs, 0);
643b1138 1961 INIT_LIST_HEAD(&n->full);
8ab1372f 1962#endif
81819f0f
CL
1963}
1964
4c93c355
CL
1965#ifdef CONFIG_SMP
1966/*
1967 * Per cpu array for per cpu structures.
1968 *
1969 * The per cpu array places all kmem_cache_cpu structures from one processor
1970 * close together meaning that it becomes possible that multiple per cpu
1971 * structures are contained in one cacheline. This may be particularly
1972 * beneficial for the kmalloc caches.
1973 *
1974 * A desktop system typically has around 60-80 slabs. With 100 here we are
1975 * likely able to get per cpu structures for all caches from the array defined
1976 * here. We must be able to cover all kmalloc caches during bootstrap.
1977 *
1978 * If the per cpu array is exhausted then fall back to kmalloc
1979 * of individual cachelines. No sharing is possible then.
1980 */
1981#define NR_KMEM_CACHE_CPU 100
1982
1983static DEFINE_PER_CPU(struct kmem_cache_cpu,
1984 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1985
1986static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1987static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1988
1989static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1990 int cpu, gfp_t flags)
1991{
1992 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1993
1994 if (c)
1995 per_cpu(kmem_cache_cpu_free, cpu) =
1996 (void *)c->freelist;
1997 else {
1998 /* Table overflow: So allocate ourselves */
1999 c = kmalloc_node(
2000 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2001 flags, cpu_to_node(cpu));
2002 if (!c)
2003 return NULL;
2004 }
2005
2006 init_kmem_cache_cpu(s, c);
2007 return c;
2008}
2009
2010static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2011{
2012 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2013 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2014 kfree(c);
2015 return;
2016 }
2017 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2018 per_cpu(kmem_cache_cpu_free, cpu) = c;
2019}
2020
2021static void free_kmem_cache_cpus(struct kmem_cache *s)
2022{
2023 int cpu;
2024
2025 for_each_online_cpu(cpu) {
2026 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2027
2028 if (c) {
2029 s->cpu_slab[cpu] = NULL;
2030 free_kmem_cache_cpu(c, cpu);
2031 }
2032 }
2033}
2034
2035static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2036{
2037 int cpu;
2038
2039 for_each_online_cpu(cpu) {
2040 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2041
2042 if (c)
2043 continue;
2044
2045 c = alloc_kmem_cache_cpu(s, cpu, flags);
2046 if (!c) {
2047 free_kmem_cache_cpus(s);
2048 return 0;
2049 }
2050 s->cpu_slab[cpu] = c;
2051 }
2052 return 1;
2053}
2054
2055/*
2056 * Initialize the per cpu array.
2057 */
2058static void init_alloc_cpu_cpu(int cpu)
2059{
2060 int i;
2061
2062 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2063 return;
2064
2065 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2066 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2067
2068 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2069}
2070
2071static void __init init_alloc_cpu(void)
2072{
2073 int cpu;
2074
2075 for_each_online_cpu(cpu)
2076 init_alloc_cpu_cpu(cpu);
2077 }
2078
2079#else
2080static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2081static inline void init_alloc_cpu(void) {}
2082
2083static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2084{
2085 init_kmem_cache_cpu(s, &s->cpu_slab);
2086 return 1;
2087}
2088#endif
2089
81819f0f
CL
2090#ifdef CONFIG_NUMA
2091/*
2092 * No kmalloc_node yet so do it by hand. We know that this is the first
2093 * slab on the node for this slabcache. There are no concurrent accesses
2094 * possible.
2095 *
2096 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2097 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2098 * memory on a fresh node that has no slab structures yet.
81819f0f 2099 */
1cd7daa5
AB
2100static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2101 int node)
81819f0f
CL
2102{
2103 struct page *page;
2104 struct kmem_cache_node *n;
ba84c73c 2105 unsigned long flags;
81819f0f
CL
2106
2107 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2108
a2f92ee7 2109 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2110
2111 BUG_ON(!page);
a2f92ee7
CL
2112 if (page_to_nid(page) != node) {
2113 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2114 "node %d\n", node);
2115 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2116 "in order to be able to continue\n");
2117 }
2118
81819f0f
CL
2119 n = page->freelist;
2120 BUG_ON(!n);
2121 page->freelist = get_freepointer(kmalloc_caches, n);
2122 page->inuse++;
2123 kmalloc_caches->node[node] = n;
8ab1372f 2124#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2125 init_object(kmalloc_caches, n, 1);
2126 init_tracking(kmalloc_caches, n);
8ab1372f 2127#endif
81819f0f 2128 init_kmem_cache_node(n);
205ab99d 2129 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2130
ba84c73c 2131 /*
2132 * lockdep requires consistent irq usage for each lock
2133 * so even though there cannot be a race this early in
2134 * the boot sequence, we still disable irqs.
2135 */
2136 local_irq_save(flags);
7c2e132c 2137 add_partial(n, page, 0);
ba84c73c 2138 local_irq_restore(flags);
81819f0f
CL
2139 return n;
2140}
2141
2142static void free_kmem_cache_nodes(struct kmem_cache *s)
2143{
2144 int node;
2145
f64dc58c 2146 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2147 struct kmem_cache_node *n = s->node[node];
2148 if (n && n != &s->local_node)
2149 kmem_cache_free(kmalloc_caches, n);
2150 s->node[node] = NULL;
2151 }
2152}
2153
2154static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2155{
2156 int node;
2157 int local_node;
2158
2159 if (slab_state >= UP)
2160 local_node = page_to_nid(virt_to_page(s));
2161 else
2162 local_node = 0;
2163
f64dc58c 2164 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2165 struct kmem_cache_node *n;
2166
2167 if (local_node == node)
2168 n = &s->local_node;
2169 else {
2170 if (slab_state == DOWN) {
2171 n = early_kmem_cache_node_alloc(gfpflags,
2172 node);
2173 continue;
2174 }
2175 n = kmem_cache_alloc_node(kmalloc_caches,
2176 gfpflags, node);
2177
2178 if (!n) {
2179 free_kmem_cache_nodes(s);
2180 return 0;
2181 }
2182
2183 }
2184 s->node[node] = n;
2185 init_kmem_cache_node(n);
2186 }
2187 return 1;
2188}
2189#else
2190static void free_kmem_cache_nodes(struct kmem_cache *s)
2191{
2192}
2193
2194static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2195{
2196 init_kmem_cache_node(&s->local_node);
2197 return 1;
2198}
2199#endif
2200
2201/*
2202 * calculate_sizes() determines the order and the distribution of data within
2203 * a slab object.
2204 */
06b285dc 2205static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2206{
2207 unsigned long flags = s->flags;
2208 unsigned long size = s->objsize;
2209 unsigned long align = s->align;
834f3d11 2210 int order;
81819f0f 2211
d8b42bf5
CL
2212 /*
2213 * Round up object size to the next word boundary. We can only
2214 * place the free pointer at word boundaries and this determines
2215 * the possible location of the free pointer.
2216 */
2217 size = ALIGN(size, sizeof(void *));
2218
2219#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2220 /*
2221 * Determine if we can poison the object itself. If the user of
2222 * the slab may touch the object after free or before allocation
2223 * then we should never poison the object itself.
2224 */
2225 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2226 !s->ctor)
81819f0f
CL
2227 s->flags |= __OBJECT_POISON;
2228 else
2229 s->flags &= ~__OBJECT_POISON;
2230
81819f0f
CL
2231
2232 /*
672bba3a 2233 * If we are Redzoning then check if there is some space between the
81819f0f 2234 * end of the object and the free pointer. If not then add an
672bba3a 2235 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2236 */
2237 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2238 size += sizeof(void *);
41ecc55b 2239#endif
81819f0f
CL
2240
2241 /*
672bba3a
CL
2242 * With that we have determined the number of bytes in actual use
2243 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2244 */
2245 s->inuse = size;
2246
2247 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2248 s->ctor)) {
81819f0f
CL
2249 /*
2250 * Relocate free pointer after the object if it is not
2251 * permitted to overwrite the first word of the object on
2252 * kmem_cache_free.
2253 *
2254 * This is the case if we do RCU, have a constructor or
2255 * destructor or are poisoning the objects.
2256 */
2257 s->offset = size;
2258 size += sizeof(void *);
2259 }
2260
c12b3c62 2261#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2262 if (flags & SLAB_STORE_USER)
2263 /*
2264 * Need to store information about allocs and frees after
2265 * the object.
2266 */
2267 size += 2 * sizeof(struct track);
2268
be7b3fbc 2269 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2270 /*
2271 * Add some empty padding so that we can catch
2272 * overwrites from earlier objects rather than let
2273 * tracking information or the free pointer be
2274 * corrupted if an user writes before the start
2275 * of the object.
2276 */
2277 size += sizeof(void *);
41ecc55b 2278#endif
672bba3a 2279
81819f0f
CL
2280 /*
2281 * Determine the alignment based on various parameters that the
65c02d4c
CL
2282 * user specified and the dynamic determination of cache line size
2283 * on bootup.
81819f0f
CL
2284 */
2285 align = calculate_alignment(flags, align, s->objsize);
2286
2287 /*
2288 * SLUB stores one object immediately after another beginning from
2289 * offset 0. In order to align the objects we have to simply size
2290 * each object to conform to the alignment.
2291 */
2292 size = ALIGN(size, align);
2293 s->size = size;
06b285dc
CL
2294 if (forced_order >= 0)
2295 order = forced_order;
2296 else
2297 order = calculate_order(size);
81819f0f 2298
834f3d11 2299 if (order < 0)
81819f0f
CL
2300 return 0;
2301
b7a49f0d 2302 s->allocflags = 0;
834f3d11 2303 if (order)
b7a49f0d
CL
2304 s->allocflags |= __GFP_COMP;
2305
2306 if (s->flags & SLAB_CACHE_DMA)
2307 s->allocflags |= SLUB_DMA;
2308
2309 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2310 s->allocflags |= __GFP_RECLAIMABLE;
2311
81819f0f
CL
2312 /*
2313 * Determine the number of objects per slab
2314 */
834f3d11 2315 s->oo = oo_make(order, size);
65c3376a 2316 s->min = oo_make(get_order(size), size);
205ab99d
CL
2317 if (oo_objects(s->oo) > oo_objects(s->max))
2318 s->max = s->oo;
81819f0f 2319
834f3d11 2320 return !!oo_objects(s->oo);
81819f0f
CL
2321
2322}
2323
81819f0f
CL
2324static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2325 const char *name, size_t size,
2326 size_t align, unsigned long flags,
4ba9b9d0 2327 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2328{
2329 memset(s, 0, kmem_size);
2330 s->name = name;
2331 s->ctor = ctor;
81819f0f 2332 s->objsize = size;
81819f0f 2333 s->align = align;
ba0268a8 2334 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2335
06b285dc 2336 if (!calculate_sizes(s, -1))
81819f0f
CL
2337 goto error;
2338
2339 s->refcount = 1;
2340#ifdef CONFIG_NUMA
9824601e 2341 s->remote_node_defrag_ratio = 100;
81819f0f 2342#endif
dfb4f096
CL
2343 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2344 goto error;
81819f0f 2345
dfb4f096 2346 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2347 return 1;
4c93c355 2348 free_kmem_cache_nodes(s);
81819f0f
CL
2349error:
2350 if (flags & SLAB_PANIC)
2351 panic("Cannot create slab %s size=%lu realsize=%u "
2352 "order=%u offset=%u flags=%lx\n",
834f3d11 2353 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2354 s->offset, flags);
2355 return 0;
2356}
81819f0f
CL
2357
2358/*
2359 * Check if a given pointer is valid
2360 */
2361int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2362{
06428780 2363 struct page *page;
81819f0f
CL
2364
2365 page = get_object_page(object);
2366
2367 if (!page || s != page->slab)
2368 /* No slab or wrong slab */
2369 return 0;
2370
abcd08a6 2371 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2372 return 0;
2373
2374 /*
2375 * We could also check if the object is on the slabs freelist.
2376 * But this would be too expensive and it seems that the main
6446faa2 2377 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2378 * to a certain slab.
2379 */
2380 return 1;
2381}
2382EXPORT_SYMBOL(kmem_ptr_validate);
2383
2384/*
2385 * Determine the size of a slab object
2386 */
2387unsigned int kmem_cache_size(struct kmem_cache *s)
2388{
2389 return s->objsize;
2390}
2391EXPORT_SYMBOL(kmem_cache_size);
2392
2393const char *kmem_cache_name(struct kmem_cache *s)
2394{
2395 return s->name;
2396}
2397EXPORT_SYMBOL(kmem_cache_name);
2398
33b12c38
CL
2399static void list_slab_objects(struct kmem_cache *s, struct page *page,
2400 const char *text)
2401{
2402#ifdef CONFIG_SLUB_DEBUG
2403 void *addr = page_address(page);
2404 void *p;
2405 DECLARE_BITMAP(map, page->objects);
2406
2407 bitmap_zero(map, page->objects);
2408 slab_err(s, page, "%s", text);
2409 slab_lock(page);
2410 for_each_free_object(p, s, page->freelist)
2411 set_bit(slab_index(p, s, addr), map);
2412
2413 for_each_object(p, s, addr, page->objects) {
2414
2415 if (!test_bit(slab_index(p, s, addr), map)) {
2416 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2417 p, p - addr);
2418 print_tracking(s, p);
2419 }
2420 }
2421 slab_unlock(page);
2422#endif
2423}
2424
81819f0f 2425/*
599870b1 2426 * Attempt to free all partial slabs on a node.
81819f0f 2427 */
599870b1 2428static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2429{
81819f0f
CL
2430 unsigned long flags;
2431 struct page *page, *h;
2432
2433 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2434 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2435 if (!page->inuse) {
2436 list_del(&page->lru);
2437 discard_slab(s, page);
599870b1 2438 n->nr_partial--;
33b12c38
CL
2439 } else {
2440 list_slab_objects(s, page,
2441 "Objects remaining on kmem_cache_close()");
599870b1 2442 }
33b12c38 2443 }
81819f0f 2444 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2445}
2446
2447/*
672bba3a 2448 * Release all resources used by a slab cache.
81819f0f 2449 */
0c710013 2450static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2451{
2452 int node;
2453
2454 flush_all(s);
2455
2456 /* Attempt to free all objects */
4c93c355 2457 free_kmem_cache_cpus(s);
f64dc58c 2458 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2459 struct kmem_cache_node *n = get_node(s, node);
2460
599870b1
CL
2461 free_partial(s, n);
2462 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2463 return 1;
2464 }
2465 free_kmem_cache_nodes(s);
2466 return 0;
2467}
2468
2469/*
2470 * Close a cache and release the kmem_cache structure
2471 * (must be used for caches created using kmem_cache_create)
2472 */
2473void kmem_cache_destroy(struct kmem_cache *s)
2474{
2475 down_write(&slub_lock);
2476 s->refcount--;
2477 if (!s->refcount) {
2478 list_del(&s->list);
a0e1d1be 2479 up_write(&slub_lock);
d629d819
PE
2480 if (kmem_cache_close(s)) {
2481 printk(KERN_ERR "SLUB %s: %s called for cache that "
2482 "still has objects.\n", s->name, __func__);
2483 dump_stack();
2484 }
81819f0f 2485 sysfs_slab_remove(s);
a0e1d1be
CL
2486 } else
2487 up_write(&slub_lock);
81819f0f
CL
2488}
2489EXPORT_SYMBOL(kmem_cache_destroy);
2490
2491/********************************************************************
2492 * Kmalloc subsystem
2493 *******************************************************************/
2494
331dc558 2495struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2496EXPORT_SYMBOL(kmalloc_caches);
2497
81819f0f
CL
2498static int __init setup_slub_min_order(char *str)
2499{
06428780 2500 get_option(&str, &slub_min_order);
81819f0f
CL
2501
2502 return 1;
2503}
2504
2505__setup("slub_min_order=", setup_slub_min_order);
2506
2507static int __init setup_slub_max_order(char *str)
2508{
06428780 2509 get_option(&str, &slub_max_order);
81819f0f
CL
2510
2511 return 1;
2512}
2513
2514__setup("slub_max_order=", setup_slub_max_order);
2515
2516static int __init setup_slub_min_objects(char *str)
2517{
06428780 2518 get_option(&str, &slub_min_objects);
81819f0f
CL
2519
2520 return 1;
2521}
2522
2523__setup("slub_min_objects=", setup_slub_min_objects);
2524
2525static int __init setup_slub_nomerge(char *str)
2526{
2527 slub_nomerge = 1;
2528 return 1;
2529}
2530
2531__setup("slub_nomerge", setup_slub_nomerge);
2532
81819f0f
CL
2533static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2534 const char *name, int size, gfp_t gfp_flags)
2535{
2536 unsigned int flags = 0;
2537
2538 if (gfp_flags & SLUB_DMA)
2539 flags = SLAB_CACHE_DMA;
2540
2541 down_write(&slub_lock);
2542 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2543 flags, NULL))
81819f0f
CL
2544 goto panic;
2545
2546 list_add(&s->list, &slab_caches);
2547 up_write(&slub_lock);
2548 if (sysfs_slab_add(s))
2549 goto panic;
2550 return s;
2551
2552panic:
2553 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2554}
2555
2e443fd0 2556#ifdef CONFIG_ZONE_DMA
4097d601 2557static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2558
2559static void sysfs_add_func(struct work_struct *w)
2560{
2561 struct kmem_cache *s;
2562
2563 down_write(&slub_lock);
2564 list_for_each_entry(s, &slab_caches, list) {
2565 if (s->flags & __SYSFS_ADD_DEFERRED) {
2566 s->flags &= ~__SYSFS_ADD_DEFERRED;
2567 sysfs_slab_add(s);
2568 }
2569 }
2570 up_write(&slub_lock);
2571}
2572
2573static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2574
2e443fd0
CL
2575static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2576{
2577 struct kmem_cache *s;
2e443fd0
CL
2578 char *text;
2579 size_t realsize;
2580
2581 s = kmalloc_caches_dma[index];
2582 if (s)
2583 return s;
2584
2585 /* Dynamically create dma cache */
1ceef402
CL
2586 if (flags & __GFP_WAIT)
2587 down_write(&slub_lock);
2588 else {
2589 if (!down_write_trylock(&slub_lock))
2590 goto out;
2591 }
2592
2593 if (kmalloc_caches_dma[index])
2594 goto unlock_out;
2e443fd0 2595
7b55f620 2596 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2597 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2598 (unsigned int)realsize);
1ceef402
CL
2599 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2600
2601 if (!s || !text || !kmem_cache_open(s, flags, text,
2602 realsize, ARCH_KMALLOC_MINALIGN,
2603 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2604 kfree(s);
2605 kfree(text);
2606 goto unlock_out;
dfce8648 2607 }
1ceef402
CL
2608
2609 list_add(&s->list, &slab_caches);
2610 kmalloc_caches_dma[index] = s;
2611
2612 schedule_work(&sysfs_add_work);
2613
2614unlock_out:
dfce8648 2615 up_write(&slub_lock);
1ceef402 2616out:
dfce8648 2617 return kmalloc_caches_dma[index];
2e443fd0
CL
2618}
2619#endif
2620
f1b26339
CL
2621/*
2622 * Conversion table for small slabs sizes / 8 to the index in the
2623 * kmalloc array. This is necessary for slabs < 192 since we have non power
2624 * of two cache sizes there. The size of larger slabs can be determined using
2625 * fls.
2626 */
2627static s8 size_index[24] = {
2628 3, /* 8 */
2629 4, /* 16 */
2630 5, /* 24 */
2631 5, /* 32 */
2632 6, /* 40 */
2633 6, /* 48 */
2634 6, /* 56 */
2635 6, /* 64 */
2636 1, /* 72 */
2637 1, /* 80 */
2638 1, /* 88 */
2639 1, /* 96 */
2640 7, /* 104 */
2641 7, /* 112 */
2642 7, /* 120 */
2643 7, /* 128 */
2644 2, /* 136 */
2645 2, /* 144 */
2646 2, /* 152 */
2647 2, /* 160 */
2648 2, /* 168 */
2649 2, /* 176 */
2650 2, /* 184 */
2651 2 /* 192 */
2652};
2653
81819f0f
CL
2654static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2655{
f1b26339 2656 int index;
81819f0f 2657
f1b26339
CL
2658 if (size <= 192) {
2659 if (!size)
2660 return ZERO_SIZE_PTR;
81819f0f 2661
f1b26339 2662 index = size_index[(size - 1) / 8];
aadb4bc4 2663 } else
f1b26339 2664 index = fls(size - 1);
81819f0f
CL
2665
2666#ifdef CONFIG_ZONE_DMA
f1b26339 2667 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2668 return dma_kmalloc_cache(index, flags);
f1b26339 2669
81819f0f
CL
2670#endif
2671 return &kmalloc_caches[index];
2672}
2673
2674void *__kmalloc(size_t size, gfp_t flags)
2675{
aadb4bc4 2676 struct kmem_cache *s;
81819f0f 2677
331dc558 2678 if (unlikely(size > PAGE_SIZE))
eada35ef 2679 return kmalloc_large(size, flags);
aadb4bc4
CL
2680
2681 s = get_slab(size, flags);
2682
2683 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2684 return s;
2685
ce15fea8 2686 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2687}
2688EXPORT_SYMBOL(__kmalloc);
2689
f619cfe1
CL
2690static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2691{
2692 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2693 get_order(size));
2694
2695 if (page)
2696 return page_address(page);
2697 else
2698 return NULL;
2699}
2700
81819f0f
CL
2701#ifdef CONFIG_NUMA
2702void *__kmalloc_node(size_t size, gfp_t flags, int node)
2703{
aadb4bc4 2704 struct kmem_cache *s;
81819f0f 2705
331dc558 2706 if (unlikely(size > PAGE_SIZE))
f619cfe1 2707 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2708
2709 s = get_slab(size, flags);
2710
2711 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2712 return s;
2713
ce15fea8 2714 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2715}
2716EXPORT_SYMBOL(__kmalloc_node);
2717#endif
2718
2719size_t ksize(const void *object)
2720{
272c1d21 2721 struct page *page;
81819f0f
CL
2722 struct kmem_cache *s;
2723
ef8b4520 2724 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2725 return 0;
2726
294a80a8 2727 page = virt_to_head_page(object);
294a80a8 2728
76994412
PE
2729 if (unlikely(!PageSlab(page))) {
2730 WARN_ON(!PageCompound(page));
294a80a8 2731 return PAGE_SIZE << compound_order(page);
76994412 2732 }
81819f0f 2733 s = page->slab;
81819f0f 2734
ae20bfda 2735#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2736 /*
2737 * Debugging requires use of the padding between object
2738 * and whatever may come after it.
2739 */
2740 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2741 return s->objsize;
2742
ae20bfda 2743#endif
81819f0f
CL
2744 /*
2745 * If we have the need to store the freelist pointer
2746 * back there or track user information then we can
2747 * only use the space before that information.
2748 */
2749 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2750 return s->inuse;
81819f0f
CL
2751 /*
2752 * Else we can use all the padding etc for the allocation
2753 */
2754 return s->size;
2755}
2756EXPORT_SYMBOL(ksize);
2757
2758void kfree(const void *x)
2759{
81819f0f 2760 struct page *page;
5bb983b0 2761 void *object = (void *)x;
81819f0f 2762
2408c550 2763 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2764 return;
2765
b49af68f 2766 page = virt_to_head_page(x);
aadb4bc4
CL
2767 if (unlikely(!PageSlab(page))) {
2768 put_page(page);
2769 return;
2770 }
5bb983b0 2771 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2772}
2773EXPORT_SYMBOL(kfree);
2774
2086d26a 2775/*
672bba3a
CL
2776 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2777 * the remaining slabs by the number of items in use. The slabs with the
2778 * most items in use come first. New allocations will then fill those up
2779 * and thus they can be removed from the partial lists.
2780 *
2781 * The slabs with the least items are placed last. This results in them
2782 * being allocated from last increasing the chance that the last objects
2783 * are freed in them.
2086d26a
CL
2784 */
2785int kmem_cache_shrink(struct kmem_cache *s)
2786{
2787 int node;
2788 int i;
2789 struct kmem_cache_node *n;
2790 struct page *page;
2791 struct page *t;
205ab99d 2792 int objects = oo_objects(s->max);
2086d26a 2793 struct list_head *slabs_by_inuse =
834f3d11 2794 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2795 unsigned long flags;
2796
2797 if (!slabs_by_inuse)
2798 return -ENOMEM;
2799
2800 flush_all(s);
f64dc58c 2801 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2802 n = get_node(s, node);
2803
2804 if (!n->nr_partial)
2805 continue;
2806
834f3d11 2807 for (i = 0; i < objects; i++)
2086d26a
CL
2808 INIT_LIST_HEAD(slabs_by_inuse + i);
2809
2810 spin_lock_irqsave(&n->list_lock, flags);
2811
2812 /*
672bba3a 2813 * Build lists indexed by the items in use in each slab.
2086d26a 2814 *
672bba3a
CL
2815 * Note that concurrent frees may occur while we hold the
2816 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2817 */
2818 list_for_each_entry_safe(page, t, &n->partial, lru) {
2819 if (!page->inuse && slab_trylock(page)) {
2820 /*
2821 * Must hold slab lock here because slab_free
2822 * may have freed the last object and be
2823 * waiting to release the slab.
2824 */
2825 list_del(&page->lru);
2826 n->nr_partial--;
2827 slab_unlock(page);
2828 discard_slab(s, page);
2829 } else {
fcda3d89
CL
2830 list_move(&page->lru,
2831 slabs_by_inuse + page->inuse);
2086d26a
CL
2832 }
2833 }
2834
2086d26a 2835 /*
672bba3a
CL
2836 * Rebuild the partial list with the slabs filled up most
2837 * first and the least used slabs at the end.
2086d26a 2838 */
834f3d11 2839 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2840 list_splice(slabs_by_inuse + i, n->partial.prev);
2841
2086d26a
CL
2842 spin_unlock_irqrestore(&n->list_lock, flags);
2843 }
2844
2845 kfree(slabs_by_inuse);
2846 return 0;
2847}
2848EXPORT_SYMBOL(kmem_cache_shrink);
2849
b9049e23
YG
2850#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2851static int slab_mem_going_offline_callback(void *arg)
2852{
2853 struct kmem_cache *s;
2854
2855 down_read(&slub_lock);
2856 list_for_each_entry(s, &slab_caches, list)
2857 kmem_cache_shrink(s);
2858 up_read(&slub_lock);
2859
2860 return 0;
2861}
2862
2863static void slab_mem_offline_callback(void *arg)
2864{
2865 struct kmem_cache_node *n;
2866 struct kmem_cache *s;
2867 struct memory_notify *marg = arg;
2868 int offline_node;
2869
2870 offline_node = marg->status_change_nid;
2871
2872 /*
2873 * If the node still has available memory. we need kmem_cache_node
2874 * for it yet.
2875 */
2876 if (offline_node < 0)
2877 return;
2878
2879 down_read(&slub_lock);
2880 list_for_each_entry(s, &slab_caches, list) {
2881 n = get_node(s, offline_node);
2882 if (n) {
2883 /*
2884 * if n->nr_slabs > 0, slabs still exist on the node
2885 * that is going down. We were unable to free them,
2886 * and offline_pages() function shoudn't call this
2887 * callback. So, we must fail.
2888 */
0f389ec6 2889 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2890
2891 s->node[offline_node] = NULL;
2892 kmem_cache_free(kmalloc_caches, n);
2893 }
2894 }
2895 up_read(&slub_lock);
2896}
2897
2898static int slab_mem_going_online_callback(void *arg)
2899{
2900 struct kmem_cache_node *n;
2901 struct kmem_cache *s;
2902 struct memory_notify *marg = arg;
2903 int nid = marg->status_change_nid;
2904 int ret = 0;
2905
2906 /*
2907 * If the node's memory is already available, then kmem_cache_node is
2908 * already created. Nothing to do.
2909 */
2910 if (nid < 0)
2911 return 0;
2912
2913 /*
0121c619 2914 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2915 * allocate a kmem_cache_node structure in order to bring the node
2916 * online.
2917 */
2918 down_read(&slub_lock);
2919 list_for_each_entry(s, &slab_caches, list) {
2920 /*
2921 * XXX: kmem_cache_alloc_node will fallback to other nodes
2922 * since memory is not yet available from the node that
2923 * is brought up.
2924 */
2925 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2926 if (!n) {
2927 ret = -ENOMEM;
2928 goto out;
2929 }
2930 init_kmem_cache_node(n);
2931 s->node[nid] = n;
2932 }
2933out:
2934 up_read(&slub_lock);
2935 return ret;
2936}
2937
2938static int slab_memory_callback(struct notifier_block *self,
2939 unsigned long action, void *arg)
2940{
2941 int ret = 0;
2942
2943 switch (action) {
2944 case MEM_GOING_ONLINE:
2945 ret = slab_mem_going_online_callback(arg);
2946 break;
2947 case MEM_GOING_OFFLINE:
2948 ret = slab_mem_going_offline_callback(arg);
2949 break;
2950 case MEM_OFFLINE:
2951 case MEM_CANCEL_ONLINE:
2952 slab_mem_offline_callback(arg);
2953 break;
2954 case MEM_ONLINE:
2955 case MEM_CANCEL_OFFLINE:
2956 break;
2957 }
2958
2959 ret = notifier_from_errno(ret);
2960 return ret;
2961}
2962
2963#endif /* CONFIG_MEMORY_HOTPLUG */
2964
81819f0f
CL
2965/********************************************************************
2966 * Basic setup of slabs
2967 *******************************************************************/
2968
2969void __init kmem_cache_init(void)
2970{
2971 int i;
4b356be0 2972 int caches = 0;
81819f0f 2973
4c93c355
CL
2974 init_alloc_cpu();
2975
81819f0f
CL
2976#ifdef CONFIG_NUMA
2977 /*
2978 * Must first have the slab cache available for the allocations of the
672bba3a 2979 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2980 * kmem_cache_open for slab_state == DOWN.
2981 */
2982 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2983 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2984 kmalloc_caches[0].refcount = -1;
4b356be0 2985 caches++;
b9049e23 2986
0c40ba4f 2987 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
2988#endif
2989
2990 /* Able to allocate the per node structures */
2991 slab_state = PARTIAL;
2992
2993 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2994 if (KMALLOC_MIN_SIZE <= 64) {
2995 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2996 "kmalloc-96", 96, GFP_KERNEL);
4b356be0 2997 caches++;
4b356be0 2998 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2999 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
3000 caches++;
3001 }
81819f0f 3002
331dc558 3003 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
3004 create_kmalloc_cache(&kmalloc_caches[i],
3005 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
3006 caches++;
3007 }
81819f0f 3008
f1b26339
CL
3009
3010 /*
3011 * Patch up the size_index table if we have strange large alignment
3012 * requirements for the kmalloc array. This is only the case for
6446faa2 3013 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3014 *
3015 * Largest permitted alignment is 256 bytes due to the way we
3016 * handle the index determination for the smaller caches.
3017 *
3018 * Make sure that nothing crazy happens if someone starts tinkering
3019 * around with ARCH_KMALLOC_MINALIGN
3020 */
3021 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3022 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3023
12ad6843 3024 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3025 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3026
41d54d3b
CL
3027 if (KMALLOC_MIN_SIZE == 128) {
3028 /*
3029 * The 192 byte sized cache is not used if the alignment
3030 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3031 * instead.
3032 */
3033 for (i = 128 + 8; i <= 192; i += 8)
3034 size_index[(i - 1) / 8] = 8;
3035 }
3036
81819f0f
CL
3037 slab_state = UP;
3038
3039 /* Provide the correct kmalloc names now that the caches are up */
331dc558 3040 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
3041 kmalloc_caches[i]. name =
3042 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3043
3044#ifdef CONFIG_SMP
3045 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3046 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3047 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3048#else
3049 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3050#endif
3051
3adbefee
IM
3052 printk(KERN_INFO
3053 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3054 " CPUs=%d, Nodes=%d\n",
3055 caches, cache_line_size(),
81819f0f
CL
3056 slub_min_order, slub_max_order, slub_min_objects,
3057 nr_cpu_ids, nr_node_ids);
3058}
3059
3060/*
3061 * Find a mergeable slab cache
3062 */
3063static int slab_unmergeable(struct kmem_cache *s)
3064{
3065 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3066 return 1;
3067
c59def9f 3068 if (s->ctor)
81819f0f
CL
3069 return 1;
3070
8ffa6875
CL
3071 /*
3072 * We may have set a slab to be unmergeable during bootstrap.
3073 */
3074 if (s->refcount < 0)
3075 return 1;
3076
81819f0f
CL
3077 return 0;
3078}
3079
3080static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3081 size_t align, unsigned long flags, const char *name,
4ba9b9d0 3082 void (*ctor)(struct kmem_cache *, void *))
81819f0f 3083{
5b95a4ac 3084 struct kmem_cache *s;
81819f0f
CL
3085
3086 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3087 return NULL;
3088
c59def9f 3089 if (ctor)
81819f0f
CL
3090 return NULL;
3091
3092 size = ALIGN(size, sizeof(void *));
3093 align = calculate_alignment(flags, align, size);
3094 size = ALIGN(size, align);
ba0268a8 3095 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3096
5b95a4ac 3097 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3098 if (slab_unmergeable(s))
3099 continue;
3100
3101 if (size > s->size)
3102 continue;
3103
ba0268a8 3104 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3105 continue;
3106 /*
3107 * Check if alignment is compatible.
3108 * Courtesy of Adrian Drzewiecki
3109 */
06428780 3110 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3111 continue;
3112
3113 if (s->size - size >= sizeof(void *))
3114 continue;
3115
3116 return s;
3117 }
3118 return NULL;
3119}
3120
3121struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3122 size_t align, unsigned long flags,
4ba9b9d0 3123 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3124{
3125 struct kmem_cache *s;
3126
3127 down_write(&slub_lock);
ba0268a8 3128 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3129 if (s) {
42a9fdbb
CL
3130 int cpu;
3131
81819f0f
CL
3132 s->refcount++;
3133 /*
3134 * Adjust the object sizes so that we clear
3135 * the complete object on kzalloc.
3136 */
3137 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3138
3139 /*
3140 * And then we need to update the object size in the
3141 * per cpu structures
3142 */
3143 for_each_online_cpu(cpu)
3144 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3145
81819f0f 3146 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3147 up_write(&slub_lock);
6446faa2 3148
81819f0f
CL
3149 if (sysfs_slab_alias(s, name))
3150 goto err;
a0e1d1be
CL
3151 return s;
3152 }
6446faa2 3153
a0e1d1be
CL
3154 s = kmalloc(kmem_size, GFP_KERNEL);
3155 if (s) {
3156 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3157 size, align, flags, ctor)) {
81819f0f 3158 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3159 up_write(&slub_lock);
3160 if (sysfs_slab_add(s))
3161 goto err;
3162 return s;
3163 }
3164 kfree(s);
81819f0f
CL
3165 }
3166 up_write(&slub_lock);
81819f0f
CL
3167
3168err:
81819f0f
CL
3169 if (flags & SLAB_PANIC)
3170 panic("Cannot create slabcache %s\n", name);
3171 else
3172 s = NULL;
3173 return s;
3174}
3175EXPORT_SYMBOL(kmem_cache_create);
3176
81819f0f 3177#ifdef CONFIG_SMP
81819f0f 3178/*
672bba3a
CL
3179 * Use the cpu notifier to insure that the cpu slabs are flushed when
3180 * necessary.
81819f0f
CL
3181 */
3182static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3183 unsigned long action, void *hcpu)
3184{
3185 long cpu = (long)hcpu;
5b95a4ac
CL
3186 struct kmem_cache *s;
3187 unsigned long flags;
81819f0f
CL
3188
3189 switch (action) {
4c93c355
CL
3190 case CPU_UP_PREPARE:
3191 case CPU_UP_PREPARE_FROZEN:
3192 init_alloc_cpu_cpu(cpu);
3193 down_read(&slub_lock);
3194 list_for_each_entry(s, &slab_caches, list)
3195 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3196 GFP_KERNEL);
3197 up_read(&slub_lock);
3198 break;
3199
81819f0f 3200 case CPU_UP_CANCELED:
8bb78442 3201 case CPU_UP_CANCELED_FROZEN:
81819f0f 3202 case CPU_DEAD:
8bb78442 3203 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3204 down_read(&slub_lock);
3205 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3206 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3207
5b95a4ac
CL
3208 local_irq_save(flags);
3209 __flush_cpu_slab(s, cpu);
3210 local_irq_restore(flags);
4c93c355
CL
3211 free_kmem_cache_cpu(c, cpu);
3212 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3213 }
3214 up_read(&slub_lock);
81819f0f
CL
3215 break;
3216 default:
3217 break;
3218 }
3219 return NOTIFY_OK;
3220}
3221
06428780 3222static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3223 .notifier_call = slab_cpuup_callback
06428780 3224};
81819f0f
CL
3225
3226#endif
3227
81819f0f
CL
3228void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3229{
aadb4bc4
CL
3230 struct kmem_cache *s;
3231
331dc558 3232 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3233 return kmalloc_large(size, gfpflags);
3234
aadb4bc4 3235 s = get_slab(size, gfpflags);
81819f0f 3236
2408c550 3237 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3238 return s;
81819f0f 3239
ce15fea8 3240 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3241}
3242
3243void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3244 int node, void *caller)
3245{
aadb4bc4
CL
3246 struct kmem_cache *s;
3247
331dc558 3248 if (unlikely(size > PAGE_SIZE))
f619cfe1 3249 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3250
aadb4bc4 3251 s = get_slab(size, gfpflags);
81819f0f 3252
2408c550 3253 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3254 return s;
81819f0f 3255
ce15fea8 3256 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3257}
3258
f6acb635 3259#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3260static unsigned long count_partial(struct kmem_cache_node *n,
3261 int (*get_count)(struct page *))
5b06c853
CL
3262{
3263 unsigned long flags;
3264 unsigned long x = 0;
3265 struct page *page;
3266
3267 spin_lock_irqsave(&n->list_lock, flags);
3268 list_for_each_entry(page, &n->partial, lru)
205ab99d 3269 x += get_count(page);
5b06c853
CL
3270 spin_unlock_irqrestore(&n->list_lock, flags);
3271 return x;
3272}
205ab99d
CL
3273
3274static int count_inuse(struct page *page)
3275{
3276 return page->inuse;
3277}
3278
3279static int count_total(struct page *page)
3280{
3281 return page->objects;
3282}
3283
3284static int count_free(struct page *page)
3285{
3286 return page->objects - page->inuse;
3287}
5b06c853 3288
434e245d
CL
3289static int validate_slab(struct kmem_cache *s, struct page *page,
3290 unsigned long *map)
53e15af0
CL
3291{
3292 void *p;
a973e9dd 3293 void *addr = page_address(page);
53e15af0
CL
3294
3295 if (!check_slab(s, page) ||
3296 !on_freelist(s, page, NULL))
3297 return 0;
3298
3299 /* Now we know that a valid freelist exists */
39b26464 3300 bitmap_zero(map, page->objects);
53e15af0 3301
7656c72b
CL
3302 for_each_free_object(p, s, page->freelist) {
3303 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3304 if (!check_object(s, page, p, 0))
3305 return 0;
3306 }
3307
224a88be 3308 for_each_object(p, s, addr, page->objects)
7656c72b 3309 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3310 if (!check_object(s, page, p, 1))
3311 return 0;
3312 return 1;
3313}
3314
434e245d
CL
3315static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3316 unsigned long *map)
53e15af0
CL
3317{
3318 if (slab_trylock(page)) {
434e245d 3319 validate_slab(s, page, map);
53e15af0
CL
3320 slab_unlock(page);
3321 } else
3322 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3323 s->name, page);
3324
3325 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3326 if (!SlabDebug(page))
3327 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3328 "on slab 0x%p\n", s->name, page);
3329 } else {
35e5d7ee
CL
3330 if (SlabDebug(page))
3331 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3332 "slab 0x%p\n", s->name, page);
3333 }
3334}
3335
434e245d
CL
3336static int validate_slab_node(struct kmem_cache *s,
3337 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3338{
3339 unsigned long count = 0;
3340 struct page *page;
3341 unsigned long flags;
3342
3343 spin_lock_irqsave(&n->list_lock, flags);
3344
3345 list_for_each_entry(page, &n->partial, lru) {
434e245d 3346 validate_slab_slab(s, page, map);
53e15af0
CL
3347 count++;
3348 }
3349 if (count != n->nr_partial)
3350 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3351 "counter=%ld\n", s->name, count, n->nr_partial);
3352
3353 if (!(s->flags & SLAB_STORE_USER))
3354 goto out;
3355
3356 list_for_each_entry(page, &n->full, lru) {
434e245d 3357 validate_slab_slab(s, page, map);
53e15af0
CL
3358 count++;
3359 }
3360 if (count != atomic_long_read(&n->nr_slabs))
3361 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3362 "counter=%ld\n", s->name, count,
3363 atomic_long_read(&n->nr_slabs));
3364
3365out:
3366 spin_unlock_irqrestore(&n->list_lock, flags);
3367 return count;
3368}
3369
434e245d 3370static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3371{
3372 int node;
3373 unsigned long count = 0;
205ab99d 3374 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3375 sizeof(unsigned long), GFP_KERNEL);
3376
3377 if (!map)
3378 return -ENOMEM;
53e15af0
CL
3379
3380 flush_all(s);
f64dc58c 3381 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3382 struct kmem_cache_node *n = get_node(s, node);
3383
434e245d 3384 count += validate_slab_node(s, n, map);
53e15af0 3385 }
434e245d 3386 kfree(map);
53e15af0
CL
3387 return count;
3388}
3389
b3459709
CL
3390#ifdef SLUB_RESILIENCY_TEST
3391static void resiliency_test(void)
3392{
3393 u8 *p;
3394
3395 printk(KERN_ERR "SLUB resiliency testing\n");
3396 printk(KERN_ERR "-----------------------\n");
3397 printk(KERN_ERR "A. Corruption after allocation\n");
3398
3399 p = kzalloc(16, GFP_KERNEL);
3400 p[16] = 0x12;
3401 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3402 " 0x12->0x%p\n\n", p + 16);
3403
3404 validate_slab_cache(kmalloc_caches + 4);
3405
3406 /* Hmmm... The next two are dangerous */
3407 p = kzalloc(32, GFP_KERNEL);
3408 p[32 + sizeof(void *)] = 0x34;
3409 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3410 " 0x34 -> -0x%p\n", p);
3411 printk(KERN_ERR
3412 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3413
3414 validate_slab_cache(kmalloc_caches + 5);
3415 p = kzalloc(64, GFP_KERNEL);
3416 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3417 *p = 0x56;
3418 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3419 p);
3adbefee
IM
3420 printk(KERN_ERR
3421 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3422 validate_slab_cache(kmalloc_caches + 6);
3423
3424 printk(KERN_ERR "\nB. Corruption after free\n");
3425 p = kzalloc(128, GFP_KERNEL);
3426 kfree(p);
3427 *p = 0x78;
3428 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3429 validate_slab_cache(kmalloc_caches + 7);
3430
3431 p = kzalloc(256, GFP_KERNEL);
3432 kfree(p);
3433 p[50] = 0x9a;
3adbefee
IM
3434 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3435 p);
b3459709
CL
3436 validate_slab_cache(kmalloc_caches + 8);
3437
3438 p = kzalloc(512, GFP_KERNEL);
3439 kfree(p);
3440 p[512] = 0xab;
3441 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3442 validate_slab_cache(kmalloc_caches + 9);
3443}
3444#else
3445static void resiliency_test(void) {};
3446#endif
3447
88a420e4 3448/*
672bba3a 3449 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3450 * and freed.
3451 */
3452
3453struct location {
3454 unsigned long count;
3455 void *addr;
45edfa58
CL
3456 long long sum_time;
3457 long min_time;
3458 long max_time;
3459 long min_pid;
3460 long max_pid;
3461 cpumask_t cpus;
3462 nodemask_t nodes;
88a420e4
CL
3463};
3464
3465struct loc_track {
3466 unsigned long max;
3467 unsigned long count;
3468 struct location *loc;
3469};
3470
3471static void free_loc_track(struct loc_track *t)
3472{
3473 if (t->max)
3474 free_pages((unsigned long)t->loc,
3475 get_order(sizeof(struct location) * t->max));
3476}
3477
68dff6a9 3478static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3479{
3480 struct location *l;
3481 int order;
3482
88a420e4
CL
3483 order = get_order(sizeof(struct location) * max);
3484
68dff6a9 3485 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3486 if (!l)
3487 return 0;
3488
3489 if (t->count) {
3490 memcpy(l, t->loc, sizeof(struct location) * t->count);
3491 free_loc_track(t);
3492 }
3493 t->max = max;
3494 t->loc = l;
3495 return 1;
3496}
3497
3498static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3499 const struct track *track)
88a420e4
CL
3500{
3501 long start, end, pos;
3502 struct location *l;
3503 void *caddr;
45edfa58 3504 unsigned long age = jiffies - track->when;
88a420e4
CL
3505
3506 start = -1;
3507 end = t->count;
3508
3509 for ( ; ; ) {
3510 pos = start + (end - start + 1) / 2;
3511
3512 /*
3513 * There is nothing at "end". If we end up there
3514 * we need to add something to before end.
3515 */
3516 if (pos == end)
3517 break;
3518
3519 caddr = t->loc[pos].addr;
45edfa58
CL
3520 if (track->addr == caddr) {
3521
3522 l = &t->loc[pos];
3523 l->count++;
3524 if (track->when) {
3525 l->sum_time += age;
3526 if (age < l->min_time)
3527 l->min_time = age;
3528 if (age > l->max_time)
3529 l->max_time = age;
3530
3531 if (track->pid < l->min_pid)
3532 l->min_pid = track->pid;
3533 if (track->pid > l->max_pid)
3534 l->max_pid = track->pid;
3535
3536 cpu_set(track->cpu, l->cpus);
3537 }
3538 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3539 return 1;
3540 }
3541
45edfa58 3542 if (track->addr < caddr)
88a420e4
CL
3543 end = pos;
3544 else
3545 start = pos;
3546 }
3547
3548 /*
672bba3a 3549 * Not found. Insert new tracking element.
88a420e4 3550 */
68dff6a9 3551 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3552 return 0;
3553
3554 l = t->loc + pos;
3555 if (pos < t->count)
3556 memmove(l + 1, l,
3557 (t->count - pos) * sizeof(struct location));
3558 t->count++;
3559 l->count = 1;
45edfa58
CL
3560 l->addr = track->addr;
3561 l->sum_time = age;
3562 l->min_time = age;
3563 l->max_time = age;
3564 l->min_pid = track->pid;
3565 l->max_pid = track->pid;
3566 cpus_clear(l->cpus);
3567 cpu_set(track->cpu, l->cpus);
3568 nodes_clear(l->nodes);
3569 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3570 return 1;
3571}
3572
3573static void process_slab(struct loc_track *t, struct kmem_cache *s,
3574 struct page *page, enum track_item alloc)
3575{
a973e9dd 3576 void *addr = page_address(page);
39b26464 3577 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3578 void *p;
3579
39b26464 3580 bitmap_zero(map, page->objects);
7656c72b
CL
3581 for_each_free_object(p, s, page->freelist)
3582 set_bit(slab_index(p, s, addr), map);
88a420e4 3583
224a88be 3584 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3585 if (!test_bit(slab_index(p, s, addr), map))
3586 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3587}
3588
3589static int list_locations(struct kmem_cache *s, char *buf,
3590 enum track_item alloc)
3591{
e374d483 3592 int len = 0;
88a420e4 3593 unsigned long i;
68dff6a9 3594 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3595 int node;
3596
68dff6a9 3597 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3598 GFP_TEMPORARY))
68dff6a9 3599 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3600
3601 /* Push back cpu slabs */
3602 flush_all(s);
3603
f64dc58c 3604 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3605 struct kmem_cache_node *n = get_node(s, node);
3606 unsigned long flags;
3607 struct page *page;
3608
9e86943b 3609 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3610 continue;
3611
3612 spin_lock_irqsave(&n->list_lock, flags);
3613 list_for_each_entry(page, &n->partial, lru)
3614 process_slab(&t, s, page, alloc);
3615 list_for_each_entry(page, &n->full, lru)
3616 process_slab(&t, s, page, alloc);
3617 spin_unlock_irqrestore(&n->list_lock, flags);
3618 }
3619
3620 for (i = 0; i < t.count; i++) {
45edfa58 3621 struct location *l = &t.loc[i];
88a420e4 3622
e374d483 3623 if (len > PAGE_SIZE - 100)
88a420e4 3624 break;
e374d483 3625 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3626
3627 if (l->addr)
e374d483 3628 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3629 else
e374d483 3630 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3631
3632 if (l->sum_time != l->min_time) {
e374d483 3633 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3634 l->min_time,
3635 (long)div_u64(l->sum_time, l->count),
3636 l->max_time);
45edfa58 3637 } else
e374d483 3638 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3639 l->min_time);
3640
3641 if (l->min_pid != l->max_pid)
e374d483 3642 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3643 l->min_pid, l->max_pid);
3644 else
e374d483 3645 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3646 l->min_pid);
3647
84966343 3648 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3649 len < PAGE_SIZE - 60) {
3650 len += sprintf(buf + len, " cpus=");
3651 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3652 l->cpus);
3653 }
3654
84966343 3655 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3656 len < PAGE_SIZE - 60) {
3657 len += sprintf(buf + len, " nodes=");
3658 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3659 l->nodes);
3660 }
3661
e374d483 3662 len += sprintf(buf + len, "\n");
88a420e4
CL
3663 }
3664
3665 free_loc_track(&t);
3666 if (!t.count)
e374d483
HH
3667 len += sprintf(buf, "No data\n");
3668 return len;
88a420e4
CL
3669}
3670
81819f0f 3671enum slab_stat_type {
205ab99d
CL
3672 SL_ALL, /* All slabs */
3673 SL_PARTIAL, /* Only partially allocated slabs */
3674 SL_CPU, /* Only slabs used for cpu caches */
3675 SL_OBJECTS, /* Determine allocated objects not slabs */
3676 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3677};
3678
205ab99d 3679#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3680#define SO_PARTIAL (1 << SL_PARTIAL)
3681#define SO_CPU (1 << SL_CPU)
3682#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3683#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3684
62e5c4b4
CG
3685static ssize_t show_slab_objects(struct kmem_cache *s,
3686 char *buf, unsigned long flags)
81819f0f
CL
3687{
3688 unsigned long total = 0;
81819f0f
CL
3689 int node;
3690 int x;
3691 unsigned long *nodes;
3692 unsigned long *per_cpu;
3693
3694 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3695 if (!nodes)
3696 return -ENOMEM;
81819f0f
CL
3697 per_cpu = nodes + nr_node_ids;
3698
205ab99d
CL
3699 if (flags & SO_CPU) {
3700 int cpu;
81819f0f 3701
205ab99d
CL
3702 for_each_possible_cpu(cpu) {
3703 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3704
205ab99d
CL
3705 if (!c || c->node < 0)
3706 continue;
3707
3708 if (c->page) {
3709 if (flags & SO_TOTAL)
3710 x = c->page->objects;
3711 else if (flags & SO_OBJECTS)
3712 x = c->page->inuse;
81819f0f
CL
3713 else
3714 x = 1;
205ab99d 3715
81819f0f 3716 total += x;
205ab99d 3717 nodes[c->node] += x;
81819f0f 3718 }
205ab99d 3719 per_cpu[c->node]++;
81819f0f
CL
3720 }
3721 }
3722
205ab99d
CL
3723 if (flags & SO_ALL) {
3724 for_each_node_state(node, N_NORMAL_MEMORY) {
3725 struct kmem_cache_node *n = get_node(s, node);
3726
3727 if (flags & SO_TOTAL)
3728 x = atomic_long_read(&n->total_objects);
3729 else if (flags & SO_OBJECTS)
3730 x = atomic_long_read(&n->total_objects) -
3731 count_partial(n, count_free);
81819f0f 3732
81819f0f 3733 else
205ab99d 3734 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3735 total += x;
3736 nodes[node] += x;
3737 }
3738
205ab99d
CL
3739 } else if (flags & SO_PARTIAL) {
3740 for_each_node_state(node, N_NORMAL_MEMORY) {
3741 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3742
205ab99d
CL
3743 if (flags & SO_TOTAL)
3744 x = count_partial(n, count_total);
3745 else if (flags & SO_OBJECTS)
3746 x = count_partial(n, count_inuse);
81819f0f 3747 else
205ab99d 3748 x = n->nr_partial;
81819f0f
CL
3749 total += x;
3750 nodes[node] += x;
3751 }
3752 }
81819f0f
CL
3753 x = sprintf(buf, "%lu", total);
3754#ifdef CONFIG_NUMA
f64dc58c 3755 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3756 if (nodes[node])
3757 x += sprintf(buf + x, " N%d=%lu",
3758 node, nodes[node]);
3759#endif
3760 kfree(nodes);
3761 return x + sprintf(buf + x, "\n");
3762}
3763
3764static int any_slab_objects(struct kmem_cache *s)
3765{
3766 int node;
81819f0f 3767
dfb4f096 3768 for_each_online_node(node) {
81819f0f
CL
3769 struct kmem_cache_node *n = get_node(s, node);
3770
dfb4f096
CL
3771 if (!n)
3772 continue;
3773
4ea33e2d 3774 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3775 return 1;
3776 }
3777 return 0;
3778}
3779
3780#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3781#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3782
3783struct slab_attribute {
3784 struct attribute attr;
3785 ssize_t (*show)(struct kmem_cache *s, char *buf);
3786 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3787};
3788
3789#define SLAB_ATTR_RO(_name) \
3790 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3791
3792#define SLAB_ATTR(_name) \
3793 static struct slab_attribute _name##_attr = \
3794 __ATTR(_name, 0644, _name##_show, _name##_store)
3795
81819f0f
CL
3796static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3797{
3798 return sprintf(buf, "%d\n", s->size);
3799}
3800SLAB_ATTR_RO(slab_size);
3801
3802static ssize_t align_show(struct kmem_cache *s, char *buf)
3803{
3804 return sprintf(buf, "%d\n", s->align);
3805}
3806SLAB_ATTR_RO(align);
3807
3808static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3809{
3810 return sprintf(buf, "%d\n", s->objsize);
3811}
3812SLAB_ATTR_RO(object_size);
3813
3814static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3815{
834f3d11 3816 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3817}
3818SLAB_ATTR_RO(objs_per_slab);
3819
06b285dc
CL
3820static ssize_t order_store(struct kmem_cache *s,
3821 const char *buf, size_t length)
3822{
0121c619
CL
3823 unsigned long order;
3824 int err;
3825
3826 err = strict_strtoul(buf, 10, &order);
3827 if (err)
3828 return err;
06b285dc
CL
3829
3830 if (order > slub_max_order || order < slub_min_order)
3831 return -EINVAL;
3832
3833 calculate_sizes(s, order);
3834 return length;
3835}
3836
81819f0f
CL
3837static ssize_t order_show(struct kmem_cache *s, char *buf)
3838{
834f3d11 3839 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3840}
06b285dc 3841SLAB_ATTR(order);
81819f0f
CL
3842
3843static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3844{
3845 if (s->ctor) {
3846 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3847
3848 return n + sprintf(buf + n, "\n");
3849 }
3850 return 0;
3851}
3852SLAB_ATTR_RO(ctor);
3853
81819f0f
CL
3854static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3855{
3856 return sprintf(buf, "%d\n", s->refcount - 1);
3857}
3858SLAB_ATTR_RO(aliases);
3859
3860static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3861{
205ab99d 3862 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3863}
3864SLAB_ATTR_RO(slabs);
3865
3866static ssize_t partial_show(struct kmem_cache *s, char *buf)
3867{
d9acf4b7 3868 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3869}
3870SLAB_ATTR_RO(partial);
3871
3872static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3873{
d9acf4b7 3874 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3875}
3876SLAB_ATTR_RO(cpu_slabs);
3877
3878static ssize_t objects_show(struct kmem_cache *s, char *buf)
3879{
205ab99d 3880 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3881}
3882SLAB_ATTR_RO(objects);
3883
205ab99d
CL
3884static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3885{
3886 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3887}
3888SLAB_ATTR_RO(objects_partial);
3889
3890static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3891{
3892 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3893}
3894SLAB_ATTR_RO(total_objects);
3895
81819f0f
CL
3896static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3897{
3898 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3899}
3900
3901static ssize_t sanity_checks_store(struct kmem_cache *s,
3902 const char *buf, size_t length)
3903{
3904 s->flags &= ~SLAB_DEBUG_FREE;
3905 if (buf[0] == '1')
3906 s->flags |= SLAB_DEBUG_FREE;
3907 return length;
3908}
3909SLAB_ATTR(sanity_checks);
3910
3911static ssize_t trace_show(struct kmem_cache *s, char *buf)
3912{
3913 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3914}
3915
3916static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3917 size_t length)
3918{
3919 s->flags &= ~SLAB_TRACE;
3920 if (buf[0] == '1')
3921 s->flags |= SLAB_TRACE;
3922 return length;
3923}
3924SLAB_ATTR(trace);
3925
3926static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3927{
3928 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3929}
3930
3931static ssize_t reclaim_account_store(struct kmem_cache *s,
3932 const char *buf, size_t length)
3933{
3934 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3935 if (buf[0] == '1')
3936 s->flags |= SLAB_RECLAIM_ACCOUNT;
3937 return length;
3938}
3939SLAB_ATTR(reclaim_account);
3940
3941static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3942{
5af60839 3943 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3944}
3945SLAB_ATTR_RO(hwcache_align);
3946
3947#ifdef CONFIG_ZONE_DMA
3948static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3949{
3950 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3951}
3952SLAB_ATTR_RO(cache_dma);
3953#endif
3954
3955static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3956{
3957 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3958}
3959SLAB_ATTR_RO(destroy_by_rcu);
3960
3961static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3962{
3963 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3964}
3965
3966static ssize_t red_zone_store(struct kmem_cache *s,
3967 const char *buf, size_t length)
3968{
3969 if (any_slab_objects(s))
3970 return -EBUSY;
3971
3972 s->flags &= ~SLAB_RED_ZONE;
3973 if (buf[0] == '1')
3974 s->flags |= SLAB_RED_ZONE;
06b285dc 3975 calculate_sizes(s, -1);
81819f0f
CL
3976 return length;
3977}
3978SLAB_ATTR(red_zone);
3979
3980static ssize_t poison_show(struct kmem_cache *s, char *buf)
3981{
3982 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3983}
3984
3985static ssize_t poison_store(struct kmem_cache *s,
3986 const char *buf, size_t length)
3987{
3988 if (any_slab_objects(s))
3989 return -EBUSY;
3990
3991 s->flags &= ~SLAB_POISON;
3992 if (buf[0] == '1')
3993 s->flags |= SLAB_POISON;
06b285dc 3994 calculate_sizes(s, -1);
81819f0f
CL
3995 return length;
3996}
3997SLAB_ATTR(poison);
3998
3999static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4000{
4001 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4002}
4003
4004static ssize_t store_user_store(struct kmem_cache *s,
4005 const char *buf, size_t length)
4006{
4007 if (any_slab_objects(s))
4008 return -EBUSY;
4009
4010 s->flags &= ~SLAB_STORE_USER;
4011 if (buf[0] == '1')
4012 s->flags |= SLAB_STORE_USER;
06b285dc 4013 calculate_sizes(s, -1);
81819f0f
CL
4014 return length;
4015}
4016SLAB_ATTR(store_user);
4017
53e15af0
CL
4018static ssize_t validate_show(struct kmem_cache *s, char *buf)
4019{
4020 return 0;
4021}
4022
4023static ssize_t validate_store(struct kmem_cache *s,
4024 const char *buf, size_t length)
4025{
434e245d
CL
4026 int ret = -EINVAL;
4027
4028 if (buf[0] == '1') {
4029 ret = validate_slab_cache(s);
4030 if (ret >= 0)
4031 ret = length;
4032 }
4033 return ret;
53e15af0
CL
4034}
4035SLAB_ATTR(validate);
4036
2086d26a
CL
4037static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4038{
4039 return 0;
4040}
4041
4042static ssize_t shrink_store(struct kmem_cache *s,
4043 const char *buf, size_t length)
4044{
4045 if (buf[0] == '1') {
4046 int rc = kmem_cache_shrink(s);
4047
4048 if (rc)
4049 return rc;
4050 } else
4051 return -EINVAL;
4052 return length;
4053}
4054SLAB_ATTR(shrink);
4055
88a420e4
CL
4056static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4057{
4058 if (!(s->flags & SLAB_STORE_USER))
4059 return -ENOSYS;
4060 return list_locations(s, buf, TRACK_ALLOC);
4061}
4062SLAB_ATTR_RO(alloc_calls);
4063
4064static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4065{
4066 if (!(s->flags & SLAB_STORE_USER))
4067 return -ENOSYS;
4068 return list_locations(s, buf, TRACK_FREE);
4069}
4070SLAB_ATTR_RO(free_calls);
4071
81819f0f 4072#ifdef CONFIG_NUMA
9824601e 4073static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4074{
9824601e 4075 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4076}
4077
9824601e 4078static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4079 const char *buf, size_t length)
4080{
0121c619
CL
4081 unsigned long ratio;
4082 int err;
4083
4084 err = strict_strtoul(buf, 10, &ratio);
4085 if (err)
4086 return err;
4087
4088 if (ratio < 100)
4089 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4090
81819f0f
CL
4091 return length;
4092}
9824601e 4093SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4094#endif
4095
8ff12cfc 4096#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4097static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4098{
4099 unsigned long sum = 0;
4100 int cpu;
4101 int len;
4102 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4103
4104 if (!data)
4105 return -ENOMEM;
4106
4107 for_each_online_cpu(cpu) {
4108 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4109
4110 data[cpu] = x;
4111 sum += x;
4112 }
4113
4114 len = sprintf(buf, "%lu", sum);
4115
50ef37b9 4116#ifdef CONFIG_SMP
8ff12cfc
CL
4117 for_each_online_cpu(cpu) {
4118 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4119 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4120 }
50ef37b9 4121#endif
8ff12cfc
CL
4122 kfree(data);
4123 return len + sprintf(buf + len, "\n");
4124}
4125
4126#define STAT_ATTR(si, text) \
4127static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4128{ \
4129 return show_stat(s, buf, si); \
4130} \
4131SLAB_ATTR_RO(text); \
4132
4133STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4134STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4135STAT_ATTR(FREE_FASTPATH, free_fastpath);
4136STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4137STAT_ATTR(FREE_FROZEN, free_frozen);
4138STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4139STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4140STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4141STAT_ATTR(ALLOC_SLAB, alloc_slab);
4142STAT_ATTR(ALLOC_REFILL, alloc_refill);
4143STAT_ATTR(FREE_SLAB, free_slab);
4144STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4145STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4146STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4147STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4148STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4149STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4150STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4151#endif
4152
06428780 4153static struct attribute *slab_attrs[] = {
81819f0f
CL
4154 &slab_size_attr.attr,
4155 &object_size_attr.attr,
4156 &objs_per_slab_attr.attr,
4157 &order_attr.attr,
4158 &objects_attr.attr,
205ab99d
CL
4159 &objects_partial_attr.attr,
4160 &total_objects_attr.attr,
81819f0f
CL
4161 &slabs_attr.attr,
4162 &partial_attr.attr,
4163 &cpu_slabs_attr.attr,
4164 &ctor_attr.attr,
81819f0f
CL
4165 &aliases_attr.attr,
4166 &align_attr.attr,
4167 &sanity_checks_attr.attr,
4168 &trace_attr.attr,
4169 &hwcache_align_attr.attr,
4170 &reclaim_account_attr.attr,
4171 &destroy_by_rcu_attr.attr,
4172 &red_zone_attr.attr,
4173 &poison_attr.attr,
4174 &store_user_attr.attr,
53e15af0 4175 &validate_attr.attr,
2086d26a 4176 &shrink_attr.attr,
88a420e4
CL
4177 &alloc_calls_attr.attr,
4178 &free_calls_attr.attr,
81819f0f
CL
4179#ifdef CONFIG_ZONE_DMA
4180 &cache_dma_attr.attr,
4181#endif
4182#ifdef CONFIG_NUMA
9824601e 4183 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4184#endif
4185#ifdef CONFIG_SLUB_STATS
4186 &alloc_fastpath_attr.attr,
4187 &alloc_slowpath_attr.attr,
4188 &free_fastpath_attr.attr,
4189 &free_slowpath_attr.attr,
4190 &free_frozen_attr.attr,
4191 &free_add_partial_attr.attr,
4192 &free_remove_partial_attr.attr,
4193 &alloc_from_partial_attr.attr,
4194 &alloc_slab_attr.attr,
4195 &alloc_refill_attr.attr,
4196 &free_slab_attr.attr,
4197 &cpuslab_flush_attr.attr,
4198 &deactivate_full_attr.attr,
4199 &deactivate_empty_attr.attr,
4200 &deactivate_to_head_attr.attr,
4201 &deactivate_to_tail_attr.attr,
4202 &deactivate_remote_frees_attr.attr,
65c3376a 4203 &order_fallback_attr.attr,
81819f0f
CL
4204#endif
4205 NULL
4206};
4207
4208static struct attribute_group slab_attr_group = {
4209 .attrs = slab_attrs,
4210};
4211
4212static ssize_t slab_attr_show(struct kobject *kobj,
4213 struct attribute *attr,
4214 char *buf)
4215{
4216 struct slab_attribute *attribute;
4217 struct kmem_cache *s;
4218 int err;
4219
4220 attribute = to_slab_attr(attr);
4221 s = to_slab(kobj);
4222
4223 if (!attribute->show)
4224 return -EIO;
4225
4226 err = attribute->show(s, buf);
4227
4228 return err;
4229}
4230
4231static ssize_t slab_attr_store(struct kobject *kobj,
4232 struct attribute *attr,
4233 const char *buf, size_t len)
4234{
4235 struct slab_attribute *attribute;
4236 struct kmem_cache *s;
4237 int err;
4238
4239 attribute = to_slab_attr(attr);
4240 s = to_slab(kobj);
4241
4242 if (!attribute->store)
4243 return -EIO;
4244
4245 err = attribute->store(s, buf, len);
4246
4247 return err;
4248}
4249
151c602f
CL
4250static void kmem_cache_release(struct kobject *kobj)
4251{
4252 struct kmem_cache *s = to_slab(kobj);
4253
4254 kfree(s);
4255}
4256
81819f0f
CL
4257static struct sysfs_ops slab_sysfs_ops = {
4258 .show = slab_attr_show,
4259 .store = slab_attr_store,
4260};
4261
4262static struct kobj_type slab_ktype = {
4263 .sysfs_ops = &slab_sysfs_ops,
151c602f 4264 .release = kmem_cache_release
81819f0f
CL
4265};
4266
4267static int uevent_filter(struct kset *kset, struct kobject *kobj)
4268{
4269 struct kobj_type *ktype = get_ktype(kobj);
4270
4271 if (ktype == &slab_ktype)
4272 return 1;
4273 return 0;
4274}
4275
4276static struct kset_uevent_ops slab_uevent_ops = {
4277 .filter = uevent_filter,
4278};
4279
27c3a314 4280static struct kset *slab_kset;
81819f0f
CL
4281
4282#define ID_STR_LENGTH 64
4283
4284/* Create a unique string id for a slab cache:
6446faa2
CL
4285 *
4286 * Format :[flags-]size
81819f0f
CL
4287 */
4288static char *create_unique_id(struct kmem_cache *s)
4289{
4290 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4291 char *p = name;
4292
4293 BUG_ON(!name);
4294
4295 *p++ = ':';
4296 /*
4297 * First flags affecting slabcache operations. We will only
4298 * get here for aliasable slabs so we do not need to support
4299 * too many flags. The flags here must cover all flags that
4300 * are matched during merging to guarantee that the id is
4301 * unique.
4302 */
4303 if (s->flags & SLAB_CACHE_DMA)
4304 *p++ = 'd';
4305 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4306 *p++ = 'a';
4307 if (s->flags & SLAB_DEBUG_FREE)
4308 *p++ = 'F';
4309 if (p != name + 1)
4310 *p++ = '-';
4311 p += sprintf(p, "%07d", s->size);
4312 BUG_ON(p > name + ID_STR_LENGTH - 1);
4313 return name;
4314}
4315
4316static int sysfs_slab_add(struct kmem_cache *s)
4317{
4318 int err;
4319 const char *name;
4320 int unmergeable;
4321
4322 if (slab_state < SYSFS)
4323 /* Defer until later */
4324 return 0;
4325
4326 unmergeable = slab_unmergeable(s);
4327 if (unmergeable) {
4328 /*
4329 * Slabcache can never be merged so we can use the name proper.
4330 * This is typically the case for debug situations. In that
4331 * case we can catch duplicate names easily.
4332 */
27c3a314 4333 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4334 name = s->name;
4335 } else {
4336 /*
4337 * Create a unique name for the slab as a target
4338 * for the symlinks.
4339 */
4340 name = create_unique_id(s);
4341 }
4342
27c3a314 4343 s->kobj.kset = slab_kset;
1eada11c
GKH
4344 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4345 if (err) {
4346 kobject_put(&s->kobj);
81819f0f 4347 return err;
1eada11c 4348 }
81819f0f
CL
4349
4350 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4351 if (err)
4352 return err;
4353 kobject_uevent(&s->kobj, KOBJ_ADD);
4354 if (!unmergeable) {
4355 /* Setup first alias */
4356 sysfs_slab_alias(s, s->name);
4357 kfree(name);
4358 }
4359 return 0;
4360}
4361
4362static void sysfs_slab_remove(struct kmem_cache *s)
4363{
4364 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4365 kobject_del(&s->kobj);
151c602f 4366 kobject_put(&s->kobj);
81819f0f
CL
4367}
4368
4369/*
4370 * Need to buffer aliases during bootup until sysfs becomes
4371 * available lest we loose that information.
4372 */
4373struct saved_alias {
4374 struct kmem_cache *s;
4375 const char *name;
4376 struct saved_alias *next;
4377};
4378
5af328a5 4379static struct saved_alias *alias_list;
81819f0f
CL
4380
4381static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4382{
4383 struct saved_alias *al;
4384
4385 if (slab_state == SYSFS) {
4386 /*
4387 * If we have a leftover link then remove it.
4388 */
27c3a314
GKH
4389 sysfs_remove_link(&slab_kset->kobj, name);
4390 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4391 }
4392
4393 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4394 if (!al)
4395 return -ENOMEM;
4396
4397 al->s = s;
4398 al->name = name;
4399 al->next = alias_list;
4400 alias_list = al;
4401 return 0;
4402}
4403
4404static int __init slab_sysfs_init(void)
4405{
5b95a4ac 4406 struct kmem_cache *s;
81819f0f
CL
4407 int err;
4408
0ff21e46 4409 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4410 if (!slab_kset) {
81819f0f
CL
4411 printk(KERN_ERR "Cannot register slab subsystem.\n");
4412 return -ENOSYS;
4413 }
4414
26a7bd03
CL
4415 slab_state = SYSFS;
4416
5b95a4ac 4417 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4418 err = sysfs_slab_add(s);
5d540fb7
CL
4419 if (err)
4420 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4421 " to sysfs\n", s->name);
26a7bd03 4422 }
81819f0f
CL
4423
4424 while (alias_list) {
4425 struct saved_alias *al = alias_list;
4426
4427 alias_list = alias_list->next;
4428 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4429 if (err)
4430 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4431 " %s to sysfs\n", s->name);
81819f0f
CL
4432 kfree(al);
4433 }
4434
4435 resiliency_test();
4436 return 0;
4437}
4438
4439__initcall(slab_sysfs_init);
81819f0f 4440#endif
57ed3eda
PE
4441
4442/*
4443 * The /proc/slabinfo ABI
4444 */
158a9624
LT
4445#ifdef CONFIG_SLABINFO
4446
0121c619
CL
4447ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4448 size_t count, loff_t *ppos)
158a9624
LT
4449{
4450 return -EINVAL;
4451}
4452
57ed3eda
PE
4453
4454static void print_slabinfo_header(struct seq_file *m)
4455{
4456 seq_puts(m, "slabinfo - version: 2.1\n");
4457 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4458 "<objperslab> <pagesperslab>");
4459 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4460 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4461 seq_putc(m, '\n');
4462}
4463
4464static void *s_start(struct seq_file *m, loff_t *pos)
4465{
4466 loff_t n = *pos;
4467
4468 down_read(&slub_lock);
4469 if (!n)
4470 print_slabinfo_header(m);
4471
4472 return seq_list_start(&slab_caches, *pos);
4473}
4474
4475static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4476{
4477 return seq_list_next(p, &slab_caches, pos);
4478}
4479
4480static void s_stop(struct seq_file *m, void *p)
4481{
4482 up_read(&slub_lock);
4483}
4484
4485static int s_show(struct seq_file *m, void *p)
4486{
4487 unsigned long nr_partials = 0;
4488 unsigned long nr_slabs = 0;
4489 unsigned long nr_inuse = 0;
205ab99d
CL
4490 unsigned long nr_objs = 0;
4491 unsigned long nr_free = 0;
57ed3eda
PE
4492 struct kmem_cache *s;
4493 int node;
4494
4495 s = list_entry(p, struct kmem_cache, list);
4496
4497 for_each_online_node(node) {
4498 struct kmem_cache_node *n = get_node(s, node);
4499
4500 if (!n)
4501 continue;
4502
4503 nr_partials += n->nr_partial;
4504 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4505 nr_objs += atomic_long_read(&n->total_objects);
4506 nr_free += count_partial(n, count_free);
57ed3eda
PE
4507 }
4508
205ab99d 4509 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4510
4511 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4512 nr_objs, s->size, oo_objects(s->oo),
4513 (1 << oo_order(s->oo)));
57ed3eda
PE
4514 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4515 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4516 0UL);
4517 seq_putc(m, '\n');
4518 return 0;
4519}
4520
4521const struct seq_operations slabinfo_op = {
4522 .start = s_start,
4523 .next = s_next,
4524 .stop = s_stop,
4525 .show = s_show,
4526};
4527
158a9624 4528#endif /* CONFIG_SLABINFO */