Lockless (and preemptless) fastpaths for slub
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
ab4d5ed5 203#ifdef CONFIG_SYSFS
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
84c1cf62 214 kfree(s->name);
151c602f
CL
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
84e554e6 220static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
84e554e6 223 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be
CL
270#define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
272 __p += (__s)->size)
273
274/* Scan freelist */
275#define for_each_free_object(__p, __s, __free) \
a973e9dd 276 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
277
278/* Determine object index from a given position */
279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280{
281 return (p - addr) / s->size;
282}
283
834f3d11
CL
284static inline struct kmem_cache_order_objects oo_make(int order,
285 unsigned long size)
286{
287 struct kmem_cache_order_objects x = {
210b5c06 288 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
289 };
290
291 return x;
292}
293
294static inline int oo_order(struct kmem_cache_order_objects x)
295{
210b5c06 296 return x.x >> OO_SHIFT;
834f3d11
CL
297}
298
299static inline int oo_objects(struct kmem_cache_order_objects x)
300{
210b5c06 301 return x.x & OO_MASK;
834f3d11
CL
302}
303
41ecc55b
CL
304#ifdef CONFIG_SLUB_DEBUG
305/*
306 * Debug settings:
307 */
f0630fff
CL
308#ifdef CONFIG_SLUB_DEBUG_ON
309static int slub_debug = DEBUG_DEFAULT_FLAGS;
310#else
41ecc55b 311static int slub_debug;
f0630fff 312#endif
41ecc55b
CL
313
314static char *slub_debug_slabs;
fa5ec8a1 315static int disable_higher_order_debug;
41ecc55b 316
81819f0f
CL
317/*
318 * Object debugging
319 */
320static void print_section(char *text, u8 *addr, unsigned int length)
321{
322 int i, offset;
323 int newline = 1;
324 char ascii[17];
325
326 ascii[16] = 0;
327
328 for (i = 0; i < length; i++) {
329 if (newline) {
24922684 330 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
331 newline = 0;
332 }
06428780 333 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
334 offset = i % 16;
335 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
336 if (offset == 15) {
06428780 337 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
338 newline = 1;
339 }
340 }
341 if (!newline) {
342 i %= 16;
343 while (i < 16) {
06428780 344 printk(KERN_CONT " ");
81819f0f
CL
345 ascii[i] = ' ';
346 i++;
347 }
06428780 348 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
349 }
350}
351
81819f0f
CL
352static struct track *get_track(struct kmem_cache *s, void *object,
353 enum track_item alloc)
354{
355 struct track *p;
356
357 if (s->offset)
358 p = object + s->offset + sizeof(void *);
359 else
360 p = object + s->inuse;
361
362 return p + alloc;
363}
364
365static void set_track(struct kmem_cache *s, void *object,
ce71e27c 366 enum track_item alloc, unsigned long addr)
81819f0f 367{
1a00df4a 368 struct track *p = get_track(s, object, alloc);
81819f0f 369
81819f0f
CL
370 if (addr) {
371 p->addr = addr;
372 p->cpu = smp_processor_id();
88e4ccf2 373 p->pid = current->pid;
81819f0f
CL
374 p->when = jiffies;
375 } else
376 memset(p, 0, sizeof(struct track));
377}
378
81819f0f
CL
379static void init_tracking(struct kmem_cache *s, void *object)
380{
24922684
CL
381 if (!(s->flags & SLAB_STORE_USER))
382 return;
383
ce71e27c
EGM
384 set_track(s, object, TRACK_FREE, 0UL);
385 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
386}
387
388static void print_track(const char *s, struct track *t)
389{
390 if (!t->addr)
391 return;
392
7daf705f 393 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 394 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
395}
396
397static void print_tracking(struct kmem_cache *s, void *object)
398{
399 if (!(s->flags & SLAB_STORE_USER))
400 return;
401
402 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
403 print_track("Freed", get_track(s, object, TRACK_FREE));
404}
405
406static void print_page_info(struct page *page)
407{
39b26464
CL
408 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
409 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
410
411}
412
413static void slab_bug(struct kmem_cache *s, char *fmt, ...)
414{
415 va_list args;
416 char buf[100];
417
418 va_start(args, fmt);
419 vsnprintf(buf, sizeof(buf), fmt, args);
420 va_end(args);
421 printk(KERN_ERR "========================================"
422 "=====================================\n");
423 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
424 printk(KERN_ERR "----------------------------------------"
425 "-------------------------------------\n\n");
81819f0f
CL
426}
427
24922684
CL
428static void slab_fix(struct kmem_cache *s, char *fmt, ...)
429{
430 va_list args;
431 char buf[100];
432
433 va_start(args, fmt);
434 vsnprintf(buf, sizeof(buf), fmt, args);
435 va_end(args);
436 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
437}
438
439static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
440{
441 unsigned int off; /* Offset of last byte */
a973e9dd 442 u8 *addr = page_address(page);
24922684
CL
443
444 print_tracking(s, p);
445
446 print_page_info(page);
447
448 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
449 p, p - addr, get_freepointer(s, p));
450
451 if (p > addr + 16)
452 print_section("Bytes b4", p - 16, 16);
453
0ebd652b 454 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
455
456 if (s->flags & SLAB_RED_ZONE)
457 print_section("Redzone", p + s->objsize,
458 s->inuse - s->objsize);
459
81819f0f
CL
460 if (s->offset)
461 off = s->offset + sizeof(void *);
462 else
463 off = s->inuse;
464
24922684 465 if (s->flags & SLAB_STORE_USER)
81819f0f 466 off += 2 * sizeof(struct track);
81819f0f
CL
467
468 if (off != s->size)
469 /* Beginning of the filler is the free pointer */
24922684
CL
470 print_section("Padding", p + off, s->size - off);
471
472 dump_stack();
81819f0f
CL
473}
474
475static void object_err(struct kmem_cache *s, struct page *page,
476 u8 *object, char *reason)
477{
3dc50637 478 slab_bug(s, "%s", reason);
24922684 479 print_trailer(s, page, object);
81819f0f
CL
480}
481
24922684 482static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
483{
484 va_list args;
485 char buf[100];
486
24922684
CL
487 va_start(args, fmt);
488 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 489 va_end(args);
3dc50637 490 slab_bug(s, "%s", buf);
24922684 491 print_page_info(page);
81819f0f
CL
492 dump_stack();
493}
494
f7cb1933 495static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
496{
497 u8 *p = object;
498
499 if (s->flags & __OBJECT_POISON) {
500 memset(p, POISON_FREE, s->objsize - 1);
06428780 501 p[s->objsize - 1] = POISON_END;
81819f0f
CL
502 }
503
504 if (s->flags & SLAB_RED_ZONE)
f7cb1933 505 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
506}
507
24922684 508static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
509{
510 while (bytes) {
511 if (*start != (u8)value)
24922684 512 return start;
81819f0f
CL
513 start++;
514 bytes--;
515 }
24922684
CL
516 return NULL;
517}
518
519static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
520 void *from, void *to)
521{
522 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
523 memset(from, data, to - from);
524}
525
526static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
527 u8 *object, char *what,
06428780 528 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
529{
530 u8 *fault;
531 u8 *end;
532
533 fault = check_bytes(start, value, bytes);
534 if (!fault)
535 return 1;
536
537 end = start + bytes;
538 while (end > fault && end[-1] == value)
539 end--;
540
541 slab_bug(s, "%s overwritten", what);
542 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
543 fault, end - 1, fault[0], value);
544 print_trailer(s, page, object);
545
546 restore_bytes(s, what, value, fault, end);
547 return 0;
81819f0f
CL
548}
549
81819f0f
CL
550/*
551 * Object layout:
552 *
553 * object address
554 * Bytes of the object to be managed.
555 * If the freepointer may overlay the object then the free
556 * pointer is the first word of the object.
672bba3a 557 *
81819f0f
CL
558 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
559 * 0xa5 (POISON_END)
560 *
561 * object + s->objsize
562 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
563 * Padding is extended by another word if Redzoning is enabled and
564 * objsize == inuse.
565 *
81819f0f
CL
566 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
567 * 0xcc (RED_ACTIVE) for objects in use.
568 *
569 * object + s->inuse
672bba3a
CL
570 * Meta data starts here.
571 *
81819f0f
CL
572 * A. Free pointer (if we cannot overwrite object on free)
573 * B. Tracking data for SLAB_STORE_USER
672bba3a 574 * C. Padding to reach required alignment boundary or at mininum
6446faa2 575 * one word if debugging is on to be able to detect writes
672bba3a
CL
576 * before the word boundary.
577 *
578 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
579 *
580 * object + s->size
672bba3a 581 * Nothing is used beyond s->size.
81819f0f 582 *
672bba3a
CL
583 * If slabcaches are merged then the objsize and inuse boundaries are mostly
584 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
585 * may be used with merged slabcaches.
586 */
587
81819f0f
CL
588static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
589{
590 unsigned long off = s->inuse; /* The end of info */
591
592 if (s->offset)
593 /* Freepointer is placed after the object. */
594 off += sizeof(void *);
595
596 if (s->flags & SLAB_STORE_USER)
597 /* We also have user information there */
598 off += 2 * sizeof(struct track);
599
600 if (s->size == off)
601 return 1;
602
24922684
CL
603 return check_bytes_and_report(s, page, p, "Object padding",
604 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
605}
606
39b26464 607/* Check the pad bytes at the end of a slab page */
81819f0f
CL
608static int slab_pad_check(struct kmem_cache *s, struct page *page)
609{
24922684
CL
610 u8 *start;
611 u8 *fault;
612 u8 *end;
613 int length;
614 int remainder;
81819f0f
CL
615
616 if (!(s->flags & SLAB_POISON))
617 return 1;
618
a973e9dd 619 start = page_address(page);
834f3d11 620 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
621 end = start + length;
622 remainder = length % s->size;
81819f0f
CL
623 if (!remainder)
624 return 1;
625
39b26464 626 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
627 if (!fault)
628 return 1;
629 while (end > fault && end[-1] == POISON_INUSE)
630 end--;
631
632 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 633 print_section("Padding", end - remainder, remainder);
24922684 634
8a3d271d 635 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 636 return 0;
81819f0f
CL
637}
638
639static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 640 void *object, u8 val)
81819f0f
CL
641{
642 u8 *p = object;
643 u8 *endobject = object + s->objsize;
644
645 if (s->flags & SLAB_RED_ZONE) {
24922684 646 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 647 endobject, val, s->inuse - s->objsize))
81819f0f 648 return 0;
81819f0f 649 } else {
3adbefee
IM
650 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
651 check_bytes_and_report(s, page, p, "Alignment padding",
652 endobject, POISON_INUSE, s->inuse - s->objsize);
653 }
81819f0f
CL
654 }
655
656 if (s->flags & SLAB_POISON) {
f7cb1933 657 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
658 (!check_bytes_and_report(s, page, p, "Poison", p,
659 POISON_FREE, s->objsize - 1) ||
660 !check_bytes_and_report(s, page, p, "Poison",
06428780 661 p + s->objsize - 1, POISON_END, 1)))
81819f0f 662 return 0;
81819f0f
CL
663 /*
664 * check_pad_bytes cleans up on its own.
665 */
666 check_pad_bytes(s, page, p);
667 }
668
f7cb1933 669 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
670 /*
671 * Object and freepointer overlap. Cannot check
672 * freepointer while object is allocated.
673 */
674 return 1;
675
676 /* Check free pointer validity */
677 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
678 object_err(s, page, p, "Freepointer corrupt");
679 /*
9f6c708e 680 * No choice but to zap it and thus lose the remainder
81819f0f 681 * of the free objects in this slab. May cause
672bba3a 682 * another error because the object count is now wrong.
81819f0f 683 */
a973e9dd 684 set_freepointer(s, p, NULL);
81819f0f
CL
685 return 0;
686 }
687 return 1;
688}
689
690static int check_slab(struct kmem_cache *s, struct page *page)
691{
39b26464
CL
692 int maxobj;
693
81819f0f
CL
694 VM_BUG_ON(!irqs_disabled());
695
696 if (!PageSlab(page)) {
24922684 697 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
698 return 0;
699 }
39b26464
CL
700
701 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
702 if (page->objects > maxobj) {
703 slab_err(s, page, "objects %u > max %u",
704 s->name, page->objects, maxobj);
705 return 0;
706 }
707 if (page->inuse > page->objects) {
24922684 708 slab_err(s, page, "inuse %u > max %u",
39b26464 709 s->name, page->inuse, page->objects);
81819f0f
CL
710 return 0;
711 }
712 /* Slab_pad_check fixes things up after itself */
713 slab_pad_check(s, page);
714 return 1;
715}
716
717/*
672bba3a
CL
718 * Determine if a certain object on a page is on the freelist. Must hold the
719 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
720 */
721static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
722{
723 int nr = 0;
724 void *fp = page->freelist;
725 void *object = NULL;
224a88be 726 unsigned long max_objects;
81819f0f 727
39b26464 728 while (fp && nr <= page->objects) {
81819f0f
CL
729 if (fp == search)
730 return 1;
731 if (!check_valid_pointer(s, page, fp)) {
732 if (object) {
733 object_err(s, page, object,
734 "Freechain corrupt");
a973e9dd 735 set_freepointer(s, object, NULL);
81819f0f
CL
736 break;
737 } else {
24922684 738 slab_err(s, page, "Freepointer corrupt");
a973e9dd 739 page->freelist = NULL;
39b26464 740 page->inuse = page->objects;
24922684 741 slab_fix(s, "Freelist cleared");
81819f0f
CL
742 return 0;
743 }
744 break;
745 }
746 object = fp;
747 fp = get_freepointer(s, object);
748 nr++;
749 }
750
224a88be 751 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
752 if (max_objects > MAX_OBJS_PER_PAGE)
753 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
754
755 if (page->objects != max_objects) {
756 slab_err(s, page, "Wrong number of objects. Found %d but "
757 "should be %d", page->objects, max_objects);
758 page->objects = max_objects;
759 slab_fix(s, "Number of objects adjusted.");
760 }
39b26464 761 if (page->inuse != page->objects - nr) {
70d71228 762 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
763 "counted were %d", page->inuse, page->objects - nr);
764 page->inuse = page->objects - nr;
24922684 765 slab_fix(s, "Object count adjusted.");
81819f0f
CL
766 }
767 return search == NULL;
768}
769
0121c619
CL
770static void trace(struct kmem_cache *s, struct page *page, void *object,
771 int alloc)
3ec09742
CL
772{
773 if (s->flags & SLAB_TRACE) {
774 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
775 s->name,
776 alloc ? "alloc" : "free",
777 object, page->inuse,
778 page->freelist);
779
780 if (!alloc)
781 print_section("Object", (void *)object, s->objsize);
782
783 dump_stack();
784 }
785}
786
c016b0bd
CL
787/*
788 * Hooks for other subsystems that check memory allocations. In a typical
789 * production configuration these hooks all should produce no code at all.
790 */
791static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
792{
c1d50836 793 flags &= gfp_allowed_mask;
c016b0bd
CL
794 lockdep_trace_alloc(flags);
795 might_sleep_if(flags & __GFP_WAIT);
796
797 return should_failslab(s->objsize, flags, s->flags);
798}
799
800static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
801{
c1d50836 802 flags &= gfp_allowed_mask;
c016b0bd
CL
803 kmemcheck_slab_alloc(s, flags, object, s->objsize);
804 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
805}
806
807static inline void slab_free_hook(struct kmem_cache *s, void *x)
808{
809 kmemleak_free_recursive(x, s->flags);
c016b0bd 810
d3f661d6
CL
811 /*
812 * Trouble is that we may no longer disable interupts in the fast path
813 * So in order to make the debug calls that expect irqs to be
814 * disabled we need to disable interrupts temporarily.
815 */
816#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
817 {
818 unsigned long flags;
819
820 local_irq_save(flags);
821 kmemcheck_slab_free(s, x, s->objsize);
822 debug_check_no_locks_freed(x, s->objsize);
823 if (!(s->flags & SLAB_DEBUG_OBJECTS))
824 debug_check_no_obj_freed(x, s->objsize);
825 local_irq_restore(flags);
826 }
827#endif
c016b0bd
CL
828}
829
643b1138 830/*
672bba3a 831 * Tracking of fully allocated slabs for debugging purposes.
643b1138 832 */
e95eed57 833static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 834{
643b1138
CL
835 spin_lock(&n->list_lock);
836 list_add(&page->lru, &n->full);
837 spin_unlock(&n->list_lock);
838}
839
840static void remove_full(struct kmem_cache *s, struct page *page)
841{
842 struct kmem_cache_node *n;
843
844 if (!(s->flags & SLAB_STORE_USER))
845 return;
846
847 n = get_node(s, page_to_nid(page));
848
849 spin_lock(&n->list_lock);
850 list_del(&page->lru);
851 spin_unlock(&n->list_lock);
852}
853
0f389ec6
CL
854/* Tracking of the number of slabs for debugging purposes */
855static inline unsigned long slabs_node(struct kmem_cache *s, int node)
856{
857 struct kmem_cache_node *n = get_node(s, node);
858
859 return atomic_long_read(&n->nr_slabs);
860}
861
26c02cf0
AB
862static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
863{
864 return atomic_long_read(&n->nr_slabs);
865}
866
205ab99d 867static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
868{
869 struct kmem_cache_node *n = get_node(s, node);
870
871 /*
872 * May be called early in order to allocate a slab for the
873 * kmem_cache_node structure. Solve the chicken-egg
874 * dilemma by deferring the increment of the count during
875 * bootstrap (see early_kmem_cache_node_alloc).
876 */
7340cc84 877 if (n) {
0f389ec6 878 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
879 atomic_long_add(objects, &n->total_objects);
880 }
0f389ec6 881}
205ab99d 882static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
883{
884 struct kmem_cache_node *n = get_node(s, node);
885
886 atomic_long_dec(&n->nr_slabs);
205ab99d 887 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
888}
889
890/* Object debug checks for alloc/free paths */
3ec09742
CL
891static void setup_object_debug(struct kmem_cache *s, struct page *page,
892 void *object)
893{
894 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
895 return;
896
f7cb1933 897 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
898 init_tracking(s, object);
899}
900
1537066c 901static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 902 void *object, unsigned long addr)
81819f0f
CL
903{
904 if (!check_slab(s, page))
905 goto bad;
906
d692ef6d 907 if (!on_freelist(s, page, object)) {
24922684 908 object_err(s, page, object, "Object already allocated");
70d71228 909 goto bad;
81819f0f
CL
910 }
911
912 if (!check_valid_pointer(s, page, object)) {
913 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 914 goto bad;
81819f0f
CL
915 }
916
f7cb1933 917 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 918 goto bad;
81819f0f 919
3ec09742
CL
920 /* Success perform special debug activities for allocs */
921 if (s->flags & SLAB_STORE_USER)
922 set_track(s, object, TRACK_ALLOC, addr);
923 trace(s, page, object, 1);
f7cb1933 924 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 925 return 1;
3ec09742 926
81819f0f
CL
927bad:
928 if (PageSlab(page)) {
929 /*
930 * If this is a slab page then lets do the best we can
931 * to avoid issues in the future. Marking all objects
672bba3a 932 * as used avoids touching the remaining objects.
81819f0f 933 */
24922684 934 slab_fix(s, "Marking all objects used");
39b26464 935 page->inuse = page->objects;
a973e9dd 936 page->freelist = NULL;
81819f0f
CL
937 }
938 return 0;
939}
940
1537066c
CL
941static noinline int free_debug_processing(struct kmem_cache *s,
942 struct page *page, void *object, unsigned long addr)
81819f0f
CL
943{
944 if (!check_slab(s, page))
945 goto fail;
946
947 if (!check_valid_pointer(s, page, object)) {
70d71228 948 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
949 goto fail;
950 }
951
952 if (on_freelist(s, page, object)) {
24922684 953 object_err(s, page, object, "Object already free");
81819f0f
CL
954 goto fail;
955 }
956
f7cb1933 957 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
958 return 0;
959
960 if (unlikely(s != page->slab)) {
3adbefee 961 if (!PageSlab(page)) {
70d71228
CL
962 slab_err(s, page, "Attempt to free object(0x%p) "
963 "outside of slab", object);
3adbefee 964 } else if (!page->slab) {
81819f0f 965 printk(KERN_ERR
70d71228 966 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 967 object);
70d71228 968 dump_stack();
06428780 969 } else
24922684
CL
970 object_err(s, page, object,
971 "page slab pointer corrupt.");
81819f0f
CL
972 goto fail;
973 }
3ec09742
CL
974
975 /* Special debug activities for freeing objects */
8a38082d 976 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
977 remove_full(s, page);
978 if (s->flags & SLAB_STORE_USER)
979 set_track(s, object, TRACK_FREE, addr);
980 trace(s, page, object, 0);
f7cb1933 981 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 982 return 1;
3ec09742 983
81819f0f 984fail:
24922684 985 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
986 return 0;
987}
988
41ecc55b
CL
989static int __init setup_slub_debug(char *str)
990{
f0630fff
CL
991 slub_debug = DEBUG_DEFAULT_FLAGS;
992 if (*str++ != '=' || !*str)
993 /*
994 * No options specified. Switch on full debugging.
995 */
996 goto out;
997
998 if (*str == ',')
999 /*
1000 * No options but restriction on slabs. This means full
1001 * debugging for slabs matching a pattern.
1002 */
1003 goto check_slabs;
1004
fa5ec8a1
DR
1005 if (tolower(*str) == 'o') {
1006 /*
1007 * Avoid enabling debugging on caches if its minimum order
1008 * would increase as a result.
1009 */
1010 disable_higher_order_debug = 1;
1011 goto out;
1012 }
1013
f0630fff
CL
1014 slub_debug = 0;
1015 if (*str == '-')
1016 /*
1017 * Switch off all debugging measures.
1018 */
1019 goto out;
1020
1021 /*
1022 * Determine which debug features should be switched on
1023 */
06428780 1024 for (; *str && *str != ','; str++) {
f0630fff
CL
1025 switch (tolower(*str)) {
1026 case 'f':
1027 slub_debug |= SLAB_DEBUG_FREE;
1028 break;
1029 case 'z':
1030 slub_debug |= SLAB_RED_ZONE;
1031 break;
1032 case 'p':
1033 slub_debug |= SLAB_POISON;
1034 break;
1035 case 'u':
1036 slub_debug |= SLAB_STORE_USER;
1037 break;
1038 case 't':
1039 slub_debug |= SLAB_TRACE;
1040 break;
4c13dd3b
DM
1041 case 'a':
1042 slub_debug |= SLAB_FAILSLAB;
1043 break;
f0630fff
CL
1044 default:
1045 printk(KERN_ERR "slub_debug option '%c' "
06428780 1046 "unknown. skipped\n", *str);
f0630fff 1047 }
41ecc55b
CL
1048 }
1049
f0630fff 1050check_slabs:
41ecc55b
CL
1051 if (*str == ',')
1052 slub_debug_slabs = str + 1;
f0630fff 1053out:
41ecc55b
CL
1054 return 1;
1055}
1056
1057__setup("slub_debug", setup_slub_debug);
1058
ba0268a8
CL
1059static unsigned long kmem_cache_flags(unsigned long objsize,
1060 unsigned long flags, const char *name,
51cc5068 1061 void (*ctor)(void *))
41ecc55b
CL
1062{
1063 /*
e153362a 1064 * Enable debugging if selected on the kernel commandline.
41ecc55b 1065 */
e153362a 1066 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1067 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1068 flags |= slub_debug;
ba0268a8
CL
1069
1070 return flags;
41ecc55b
CL
1071}
1072#else
3ec09742
CL
1073static inline void setup_object_debug(struct kmem_cache *s,
1074 struct page *page, void *object) {}
41ecc55b 1075
3ec09742 1076static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1077 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1078
3ec09742 1079static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1080 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1081
41ecc55b
CL
1082static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1083 { return 1; }
1084static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1085 void *object, u8 val) { return 1; }
3ec09742 1086static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1087static inline unsigned long kmem_cache_flags(unsigned long objsize,
1088 unsigned long flags, const char *name,
51cc5068 1089 void (*ctor)(void *))
ba0268a8
CL
1090{
1091 return flags;
1092}
41ecc55b 1093#define slub_debug 0
0f389ec6 1094
fdaa45e9
IM
1095#define disable_higher_order_debug 0
1096
0f389ec6
CL
1097static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1098 { return 0; }
26c02cf0
AB
1099static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1100 { return 0; }
205ab99d
CL
1101static inline void inc_slabs_node(struct kmem_cache *s, int node,
1102 int objects) {}
1103static inline void dec_slabs_node(struct kmem_cache *s, int node,
1104 int objects) {}
7d550c56
CL
1105
1106static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1107 { return 0; }
1108
1109static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1110 void *object) {}
1111
1112static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1113
ab4d5ed5 1114#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1115
81819f0f
CL
1116/*
1117 * Slab allocation and freeing
1118 */
65c3376a
CL
1119static inline struct page *alloc_slab_page(gfp_t flags, int node,
1120 struct kmem_cache_order_objects oo)
1121{
1122 int order = oo_order(oo);
1123
b1eeab67
VN
1124 flags |= __GFP_NOTRACK;
1125
2154a336 1126 if (node == NUMA_NO_NODE)
65c3376a
CL
1127 return alloc_pages(flags, order);
1128 else
6b65aaf3 1129 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1130}
1131
81819f0f
CL
1132static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1133{
06428780 1134 struct page *page;
834f3d11 1135 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1136 gfp_t alloc_gfp;
81819f0f 1137
b7a49f0d 1138 flags |= s->allocflags;
e12ba74d 1139
ba52270d
PE
1140 /*
1141 * Let the initial higher-order allocation fail under memory pressure
1142 * so we fall-back to the minimum order allocation.
1143 */
1144 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1145
1146 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1147 if (unlikely(!page)) {
1148 oo = s->min;
1149 /*
1150 * Allocation may have failed due to fragmentation.
1151 * Try a lower order alloc if possible
1152 */
1153 page = alloc_slab_page(flags, node, oo);
1154 if (!page)
1155 return NULL;
81819f0f 1156
84e554e6 1157 stat(s, ORDER_FALLBACK);
65c3376a 1158 }
5a896d9e
VN
1159
1160 if (kmemcheck_enabled
5086c389 1161 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1162 int pages = 1 << oo_order(oo);
1163
1164 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1165
1166 /*
1167 * Objects from caches that have a constructor don't get
1168 * cleared when they're allocated, so we need to do it here.
1169 */
1170 if (s->ctor)
1171 kmemcheck_mark_uninitialized_pages(page, pages);
1172 else
1173 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1174 }
1175
834f3d11 1176 page->objects = oo_objects(oo);
81819f0f
CL
1177 mod_zone_page_state(page_zone(page),
1178 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1179 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1180 1 << oo_order(oo));
81819f0f
CL
1181
1182 return page;
1183}
1184
1185static void setup_object(struct kmem_cache *s, struct page *page,
1186 void *object)
1187{
3ec09742 1188 setup_object_debug(s, page, object);
4f104934 1189 if (unlikely(s->ctor))
51cc5068 1190 s->ctor(object);
81819f0f
CL
1191}
1192
1193static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1194{
1195 struct page *page;
81819f0f 1196 void *start;
81819f0f
CL
1197 void *last;
1198 void *p;
1199
6cb06229 1200 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1201
6cb06229
CL
1202 page = allocate_slab(s,
1203 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1204 if (!page)
1205 goto out;
1206
205ab99d 1207 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1208 page->slab = s;
1209 page->flags |= 1 << PG_slab;
81819f0f
CL
1210
1211 start = page_address(page);
81819f0f
CL
1212
1213 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1214 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1215
1216 last = start;
224a88be 1217 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1218 setup_object(s, page, last);
1219 set_freepointer(s, last, p);
1220 last = p;
1221 }
1222 setup_object(s, page, last);
a973e9dd 1223 set_freepointer(s, last, NULL);
81819f0f
CL
1224
1225 page->freelist = start;
1226 page->inuse = 0;
1227out:
81819f0f
CL
1228 return page;
1229}
1230
1231static void __free_slab(struct kmem_cache *s, struct page *page)
1232{
834f3d11
CL
1233 int order = compound_order(page);
1234 int pages = 1 << order;
81819f0f 1235
af537b0a 1236 if (kmem_cache_debug(s)) {
81819f0f
CL
1237 void *p;
1238
1239 slab_pad_check(s, page);
224a88be
CL
1240 for_each_object(p, s, page_address(page),
1241 page->objects)
f7cb1933 1242 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1243 }
1244
b1eeab67 1245 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1246
81819f0f
CL
1247 mod_zone_page_state(page_zone(page),
1248 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1249 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1250 -pages);
81819f0f 1251
49bd5221
CL
1252 __ClearPageSlab(page);
1253 reset_page_mapcount(page);
1eb5ac64
NP
1254 if (current->reclaim_state)
1255 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1256 __free_pages(page, order);
81819f0f
CL
1257}
1258
1259static void rcu_free_slab(struct rcu_head *h)
1260{
1261 struct page *page;
1262
1263 page = container_of((struct list_head *)h, struct page, lru);
1264 __free_slab(page->slab, page);
1265}
1266
1267static void free_slab(struct kmem_cache *s, struct page *page)
1268{
1269 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1270 /*
1271 * RCU free overloads the RCU head over the LRU
1272 */
1273 struct rcu_head *head = (void *)&page->lru;
1274
1275 call_rcu(head, rcu_free_slab);
1276 } else
1277 __free_slab(s, page);
1278}
1279
1280static void discard_slab(struct kmem_cache *s, struct page *page)
1281{
205ab99d 1282 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1283 free_slab(s, page);
1284}
1285
1286/*
1287 * Per slab locking using the pagelock
1288 */
1289static __always_inline void slab_lock(struct page *page)
1290{
1291 bit_spin_lock(PG_locked, &page->flags);
1292}
1293
1294static __always_inline void slab_unlock(struct page *page)
1295{
a76d3546 1296 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1297}
1298
1299static __always_inline int slab_trylock(struct page *page)
1300{
1301 int rc = 1;
1302
1303 rc = bit_spin_trylock(PG_locked, &page->flags);
1304 return rc;
1305}
1306
1307/*
1308 * Management of partially allocated slabs
1309 */
7c2e132c
CL
1310static void add_partial(struct kmem_cache_node *n,
1311 struct page *page, int tail)
81819f0f 1312{
e95eed57
CL
1313 spin_lock(&n->list_lock);
1314 n->nr_partial++;
7c2e132c
CL
1315 if (tail)
1316 list_add_tail(&page->lru, &n->partial);
1317 else
1318 list_add(&page->lru, &n->partial);
81819f0f
CL
1319 spin_unlock(&n->list_lock);
1320}
1321
62e346a8
CL
1322static inline void __remove_partial(struct kmem_cache_node *n,
1323 struct page *page)
1324{
1325 list_del(&page->lru);
1326 n->nr_partial--;
1327}
1328
0121c619 1329static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1330{
1331 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1332
1333 spin_lock(&n->list_lock);
62e346a8 1334 __remove_partial(n, page);
81819f0f
CL
1335 spin_unlock(&n->list_lock);
1336}
1337
1338/*
672bba3a 1339 * Lock slab and remove from the partial list.
81819f0f 1340 *
672bba3a 1341 * Must hold list_lock.
81819f0f 1342 */
0121c619
CL
1343static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1344 struct page *page)
81819f0f
CL
1345{
1346 if (slab_trylock(page)) {
62e346a8 1347 __remove_partial(n, page);
8a38082d 1348 __SetPageSlubFrozen(page);
81819f0f
CL
1349 return 1;
1350 }
1351 return 0;
1352}
1353
1354/*
672bba3a 1355 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1356 */
1357static struct page *get_partial_node(struct kmem_cache_node *n)
1358{
1359 struct page *page;
1360
1361 /*
1362 * Racy check. If we mistakenly see no partial slabs then we
1363 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1364 * partial slab and there is none available then get_partials()
1365 * will return NULL.
81819f0f
CL
1366 */
1367 if (!n || !n->nr_partial)
1368 return NULL;
1369
1370 spin_lock(&n->list_lock);
1371 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1372 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1373 goto out;
1374 page = NULL;
1375out:
1376 spin_unlock(&n->list_lock);
1377 return page;
1378}
1379
1380/*
672bba3a 1381 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1382 */
1383static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1384{
1385#ifdef CONFIG_NUMA
1386 struct zonelist *zonelist;
dd1a239f 1387 struct zoneref *z;
54a6eb5c
MG
1388 struct zone *zone;
1389 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1390 struct page *page;
1391
1392 /*
672bba3a
CL
1393 * The defrag ratio allows a configuration of the tradeoffs between
1394 * inter node defragmentation and node local allocations. A lower
1395 * defrag_ratio increases the tendency to do local allocations
1396 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1397 *
672bba3a
CL
1398 * If the defrag_ratio is set to 0 then kmalloc() always
1399 * returns node local objects. If the ratio is higher then kmalloc()
1400 * may return off node objects because partial slabs are obtained
1401 * from other nodes and filled up.
81819f0f 1402 *
6446faa2 1403 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1404 * defrag_ratio = 1000) then every (well almost) allocation will
1405 * first attempt to defrag slab caches on other nodes. This means
1406 * scanning over all nodes to look for partial slabs which may be
1407 * expensive if we do it every time we are trying to find a slab
1408 * with available objects.
81819f0f 1409 */
9824601e
CL
1410 if (!s->remote_node_defrag_ratio ||
1411 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1412 return NULL;
1413
c0ff7453 1414 get_mems_allowed();
0e88460d 1415 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1416 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1417 struct kmem_cache_node *n;
1418
54a6eb5c 1419 n = get_node(s, zone_to_nid(zone));
81819f0f 1420
54a6eb5c 1421 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1422 n->nr_partial > s->min_partial) {
81819f0f 1423 page = get_partial_node(n);
c0ff7453
MX
1424 if (page) {
1425 put_mems_allowed();
81819f0f 1426 return page;
c0ff7453 1427 }
81819f0f
CL
1428 }
1429 }
c0ff7453 1430 put_mems_allowed();
81819f0f
CL
1431#endif
1432 return NULL;
1433}
1434
1435/*
1436 * Get a partial page, lock it and return it.
1437 */
1438static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1439{
1440 struct page *page;
2154a336 1441 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1442
1443 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1444 if (page || node != -1)
81819f0f
CL
1445 return page;
1446
1447 return get_any_partial(s, flags);
1448}
1449
1450/*
1451 * Move a page back to the lists.
1452 *
1453 * Must be called with the slab lock held.
1454 *
1455 * On exit the slab lock will have been dropped.
1456 */
7c2e132c 1457static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1458 __releases(bitlock)
81819f0f 1459{
e95eed57
CL
1460 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1461
8a38082d 1462 __ClearPageSlubFrozen(page);
81819f0f 1463 if (page->inuse) {
e95eed57 1464
a973e9dd 1465 if (page->freelist) {
7c2e132c 1466 add_partial(n, page, tail);
84e554e6 1467 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1468 } else {
84e554e6 1469 stat(s, DEACTIVATE_FULL);
af537b0a 1470 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1471 add_full(n, page);
1472 }
81819f0f
CL
1473 slab_unlock(page);
1474 } else {
84e554e6 1475 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1476 if (n->nr_partial < s->min_partial) {
e95eed57 1477 /*
672bba3a
CL
1478 * Adding an empty slab to the partial slabs in order
1479 * to avoid page allocator overhead. This slab needs
1480 * to come after the other slabs with objects in
6446faa2
CL
1481 * so that the others get filled first. That way the
1482 * size of the partial list stays small.
1483 *
0121c619
CL
1484 * kmem_cache_shrink can reclaim any empty slabs from
1485 * the partial list.
e95eed57 1486 */
7c2e132c 1487 add_partial(n, page, 1);
e95eed57
CL
1488 slab_unlock(page);
1489 } else {
1490 slab_unlock(page);
84e554e6 1491 stat(s, FREE_SLAB);
e95eed57
CL
1492 discard_slab(s, page);
1493 }
81819f0f
CL
1494 }
1495}
1496
8a5ec0ba
CL
1497#ifdef CONFIG_CMPXCHG_LOCAL
1498#ifdef CONFIG_PREEMPT
1499/*
1500 * Calculate the next globally unique transaction for disambiguiation
1501 * during cmpxchg. The transactions start with the cpu number and are then
1502 * incremented by CONFIG_NR_CPUS.
1503 */
1504#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1505#else
1506/*
1507 * No preemption supported therefore also no need to check for
1508 * different cpus.
1509 */
1510#define TID_STEP 1
1511#endif
1512
1513static inline unsigned long next_tid(unsigned long tid)
1514{
1515 return tid + TID_STEP;
1516}
1517
1518static inline unsigned int tid_to_cpu(unsigned long tid)
1519{
1520 return tid % TID_STEP;
1521}
1522
1523static inline unsigned long tid_to_event(unsigned long tid)
1524{
1525 return tid / TID_STEP;
1526}
1527
1528static inline unsigned int init_tid(int cpu)
1529{
1530 return cpu;
1531}
1532
1533static inline void note_cmpxchg_failure(const char *n,
1534 const struct kmem_cache *s, unsigned long tid)
1535{
1536#ifdef SLUB_DEBUG_CMPXCHG
1537 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1538
1539 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1540
1541#ifdef CONFIG_PREEMPT
1542 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1543 printk("due to cpu change %d -> %d\n",
1544 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1545 else
1546#endif
1547 if (tid_to_event(tid) != tid_to_event(actual_tid))
1548 printk("due to cpu running other code. Event %ld->%ld\n",
1549 tid_to_event(tid), tid_to_event(actual_tid));
1550 else
1551 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1552 actual_tid, tid, next_tid(tid));
1553#endif
1554}
1555
1556#endif
1557
1558void init_kmem_cache_cpus(struct kmem_cache *s)
1559{
1560#if defined(CONFIG_CMPXCHG_LOCAL) && defined(CONFIG_PREEMPT)
1561 int cpu;
1562
1563 for_each_possible_cpu(cpu)
1564 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1565#endif
1566
1567}
81819f0f
CL
1568/*
1569 * Remove the cpu slab
1570 */
dfb4f096 1571static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1572 __releases(bitlock)
81819f0f 1573{
dfb4f096 1574 struct page *page = c->page;
7c2e132c 1575 int tail = 1;
8ff12cfc 1576
b773ad73 1577 if (page->freelist)
84e554e6 1578 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1579 /*
6446faa2 1580 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1581 * because both freelists are empty. So this is unlikely
1582 * to occur.
1583 */
a973e9dd 1584 while (unlikely(c->freelist)) {
894b8788
CL
1585 void **object;
1586
7c2e132c
CL
1587 tail = 0; /* Hot objects. Put the slab first */
1588
894b8788 1589 /* Retrieve object from cpu_freelist */
dfb4f096 1590 object = c->freelist;
ff12059e 1591 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1592
1593 /* And put onto the regular freelist */
ff12059e 1594 set_freepointer(s, object, page->freelist);
894b8788
CL
1595 page->freelist = object;
1596 page->inuse--;
1597 }
dfb4f096 1598 c->page = NULL;
8a5ec0ba
CL
1599#ifdef CONFIG_CMPXCHG_LOCAL
1600 c->tid = next_tid(c->tid);
1601#endif
7c2e132c 1602 unfreeze_slab(s, page, tail);
81819f0f
CL
1603}
1604
dfb4f096 1605static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1606{
84e554e6 1607 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1608 slab_lock(c->page);
1609 deactivate_slab(s, c);
81819f0f
CL
1610}
1611
1612/*
1613 * Flush cpu slab.
6446faa2 1614 *
81819f0f
CL
1615 * Called from IPI handler with interrupts disabled.
1616 */
0c710013 1617static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1618{
9dfc6e68 1619 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1620
dfb4f096
CL
1621 if (likely(c && c->page))
1622 flush_slab(s, c);
81819f0f
CL
1623}
1624
1625static void flush_cpu_slab(void *d)
1626{
1627 struct kmem_cache *s = d;
81819f0f 1628
dfb4f096 1629 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1630}
1631
1632static void flush_all(struct kmem_cache *s)
1633{
15c8b6c1 1634 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1635}
1636
dfb4f096
CL
1637/*
1638 * Check if the objects in a per cpu structure fit numa
1639 * locality expectations.
1640 */
1641static inline int node_match(struct kmem_cache_cpu *c, int node)
1642{
1643#ifdef CONFIG_NUMA
2154a336 1644 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1645 return 0;
1646#endif
1647 return 1;
1648}
1649
781b2ba6
PE
1650static int count_free(struct page *page)
1651{
1652 return page->objects - page->inuse;
1653}
1654
1655static unsigned long count_partial(struct kmem_cache_node *n,
1656 int (*get_count)(struct page *))
1657{
1658 unsigned long flags;
1659 unsigned long x = 0;
1660 struct page *page;
1661
1662 spin_lock_irqsave(&n->list_lock, flags);
1663 list_for_each_entry(page, &n->partial, lru)
1664 x += get_count(page);
1665 spin_unlock_irqrestore(&n->list_lock, flags);
1666 return x;
1667}
1668
26c02cf0
AB
1669static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1670{
1671#ifdef CONFIG_SLUB_DEBUG
1672 return atomic_long_read(&n->total_objects);
1673#else
1674 return 0;
1675#endif
1676}
1677
781b2ba6
PE
1678static noinline void
1679slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1680{
1681 int node;
1682
1683 printk(KERN_WARNING
1684 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1685 nid, gfpflags);
1686 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1687 "default order: %d, min order: %d\n", s->name, s->objsize,
1688 s->size, oo_order(s->oo), oo_order(s->min));
1689
fa5ec8a1
DR
1690 if (oo_order(s->min) > get_order(s->objsize))
1691 printk(KERN_WARNING " %s debugging increased min order, use "
1692 "slub_debug=O to disable.\n", s->name);
1693
781b2ba6
PE
1694 for_each_online_node(node) {
1695 struct kmem_cache_node *n = get_node(s, node);
1696 unsigned long nr_slabs;
1697 unsigned long nr_objs;
1698 unsigned long nr_free;
1699
1700 if (!n)
1701 continue;
1702
26c02cf0
AB
1703 nr_free = count_partial(n, count_free);
1704 nr_slabs = node_nr_slabs(n);
1705 nr_objs = node_nr_objs(n);
781b2ba6
PE
1706
1707 printk(KERN_WARNING
1708 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1709 node, nr_slabs, nr_objs, nr_free);
1710 }
1711}
1712
81819f0f 1713/*
894b8788
CL
1714 * Slow path. The lockless freelist is empty or we need to perform
1715 * debugging duties.
1716 *
1717 * Interrupts are disabled.
81819f0f 1718 *
894b8788
CL
1719 * Processing is still very fast if new objects have been freed to the
1720 * regular freelist. In that case we simply take over the regular freelist
1721 * as the lockless freelist and zap the regular freelist.
81819f0f 1722 *
894b8788
CL
1723 * If that is not working then we fall back to the partial lists. We take the
1724 * first element of the freelist as the object to allocate now and move the
1725 * rest of the freelist to the lockless freelist.
81819f0f 1726 *
894b8788 1727 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1728 * we need to allocate a new slab. This is the slowest path since it involves
1729 * a call to the page allocator and the setup of a new slab.
81819f0f 1730 */
ce71e27c
EGM
1731static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1732 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1733{
81819f0f 1734 void **object;
dfb4f096 1735 struct page *new;
8a5ec0ba
CL
1736#ifdef CONFIG_CMPXCHG_LOCAL
1737 unsigned long flags;
1738
1739 local_irq_save(flags);
1740#ifdef CONFIG_PREEMPT
1741 /*
1742 * We may have been preempted and rescheduled on a different
1743 * cpu before disabling interrupts. Need to reload cpu area
1744 * pointer.
1745 */
1746 c = this_cpu_ptr(s->cpu_slab);
1747#endif
1748#endif
81819f0f 1749
e72e9c23
LT
1750 /* We handle __GFP_ZERO in the caller */
1751 gfpflags &= ~__GFP_ZERO;
1752
dfb4f096 1753 if (!c->page)
81819f0f
CL
1754 goto new_slab;
1755
dfb4f096
CL
1756 slab_lock(c->page);
1757 if (unlikely(!node_match(c, node)))
81819f0f 1758 goto another_slab;
6446faa2 1759
84e554e6 1760 stat(s, ALLOC_REFILL);
6446faa2 1761
894b8788 1762load_freelist:
dfb4f096 1763 object = c->page->freelist;
a973e9dd 1764 if (unlikely(!object))
81819f0f 1765 goto another_slab;
af537b0a 1766 if (kmem_cache_debug(s))
81819f0f
CL
1767 goto debug;
1768
ff12059e 1769 c->freelist = get_freepointer(s, object);
39b26464 1770 c->page->inuse = c->page->objects;
a973e9dd 1771 c->page->freelist = NULL;
dfb4f096 1772 c->node = page_to_nid(c->page);
1f84260c 1773unlock_out:
dfb4f096 1774 slab_unlock(c->page);
8a5ec0ba
CL
1775#ifdef CONFIG_CMPXCHG_LOCAL
1776 c->tid = next_tid(c->tid);
1777 local_irq_restore(flags);
1778#endif
84e554e6 1779 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1780 return object;
1781
1782another_slab:
dfb4f096 1783 deactivate_slab(s, c);
81819f0f
CL
1784
1785new_slab:
dfb4f096
CL
1786 new = get_partial(s, gfpflags, node);
1787 if (new) {
1788 c->page = new;
84e554e6 1789 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1790 goto load_freelist;
81819f0f
CL
1791 }
1792
c1d50836 1793 gfpflags &= gfp_allowed_mask;
b811c202
CL
1794 if (gfpflags & __GFP_WAIT)
1795 local_irq_enable();
1796
dfb4f096 1797 new = new_slab(s, gfpflags, node);
b811c202
CL
1798
1799 if (gfpflags & __GFP_WAIT)
1800 local_irq_disable();
1801
dfb4f096 1802 if (new) {
9dfc6e68 1803 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1804 stat(s, ALLOC_SLAB);
05aa3450 1805 if (c->page)
dfb4f096 1806 flush_slab(s, c);
dfb4f096 1807 slab_lock(new);
8a38082d 1808 __SetPageSlubFrozen(new);
dfb4f096 1809 c->page = new;
4b6f0750 1810 goto load_freelist;
81819f0f 1811 }
95f85989
PE
1812 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1813 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1814 return NULL;
81819f0f 1815debug:
dfb4f096 1816 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1817 goto another_slab;
894b8788 1818
dfb4f096 1819 c->page->inuse++;
ff12059e 1820 c->page->freelist = get_freepointer(s, object);
15b7c514 1821 c->node = NUMA_NO_NODE;
1f84260c 1822 goto unlock_out;
894b8788
CL
1823}
1824
1825/*
1826 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1827 * have the fastpath folded into their functions. So no function call
1828 * overhead for requests that can be satisfied on the fastpath.
1829 *
1830 * The fastpath works by first checking if the lockless freelist can be used.
1831 * If not then __slab_alloc is called for slow processing.
1832 *
1833 * Otherwise we can simply pick the next object from the lockless free list.
1834 */
06428780 1835static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1836 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1837{
894b8788 1838 void **object;
dfb4f096 1839 struct kmem_cache_cpu *c;
8a5ec0ba
CL
1840#ifdef CONFIG_CMPXCHG_LOCAL
1841 unsigned long tid;
1842#else
1f84260c 1843 unsigned long flags;
8a5ec0ba 1844#endif
1f84260c 1845
c016b0bd 1846 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1847 return NULL;
1f84260c 1848
8a5ec0ba 1849#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 1850 local_irq_save(flags);
8a5ec0ba
CL
1851#else
1852redo:
1853#endif
1854
1855 /*
1856 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1857 * enabled. We may switch back and forth between cpus while
1858 * reading from one cpu area. That does not matter as long
1859 * as we end up on the original cpu again when doing the cmpxchg.
1860 */
9dfc6e68 1861 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba
CL
1862
1863#ifdef CONFIG_CMPXCHG_LOCAL
1864 /*
1865 * The transaction ids are globally unique per cpu and per operation on
1866 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1867 * occurs on the right processor and that there was no operation on the
1868 * linked list in between.
1869 */
1870 tid = c->tid;
1871 barrier();
1872#endif
1873
9dfc6e68 1874 object = c->freelist;
9dfc6e68 1875 if (unlikely(!object || !node_match(c, node)))
894b8788 1876
dfb4f096 1877 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1878
1879 else {
8a5ec0ba
CL
1880#ifdef CONFIG_CMPXCHG_LOCAL
1881 /*
1882 * The cmpxchg will only match if there was no additonal
1883 * operation and if we are on the right processor.
1884 *
1885 * The cmpxchg does the following atomically (without lock semantics!)
1886 * 1. Relocate first pointer to the current per cpu area.
1887 * 2. Verify that tid and freelist have not been changed
1888 * 3. If they were not changed replace tid and freelist
1889 *
1890 * Since this is without lock semantics the protection is only against
1891 * code executing on this cpu *not* from access by other cpus.
1892 */
1893 if (unlikely(!this_cpu_cmpxchg_double(
1894 s->cpu_slab->freelist, s->cpu_slab->tid,
1895 object, tid,
1896 get_freepointer(s, object), next_tid(tid)))) {
1897
1898 note_cmpxchg_failure("slab_alloc", s, tid);
1899 goto redo;
1900 }
1901#else
ff12059e 1902 c->freelist = get_freepointer(s, object);
8a5ec0ba 1903#endif
84e554e6 1904 stat(s, ALLOC_FASTPATH);
894b8788 1905 }
8a5ec0ba
CL
1906
1907#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 1908 local_irq_restore(flags);
8a5ec0ba 1909#endif
d07dbea4 1910
74e2134f 1911 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1912 memset(object, 0, s->objsize);
d07dbea4 1913
c016b0bd 1914 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1915
894b8788 1916 return object;
81819f0f
CL
1917}
1918
1919void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1920{
2154a336 1921 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1922
ca2b84cb 1923 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1924
1925 return ret;
81819f0f
CL
1926}
1927EXPORT_SYMBOL(kmem_cache_alloc);
1928
0f24f128 1929#ifdef CONFIG_TRACING
4a92379b
RK
1930void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1931{
1932 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1933 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1934 return ret;
1935}
1936EXPORT_SYMBOL(kmem_cache_alloc_trace);
1937
1938void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 1939{
4a92379b
RK
1940 void *ret = kmalloc_order(size, flags, order);
1941 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1942 return ret;
5b882be4 1943}
4a92379b 1944EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
1945#endif
1946
81819f0f
CL
1947#ifdef CONFIG_NUMA
1948void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1949{
5b882be4
EGM
1950 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1951
ca2b84cb
EGM
1952 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1953 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1954
1955 return ret;
81819f0f
CL
1956}
1957EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 1958
0f24f128 1959#ifdef CONFIG_TRACING
4a92379b 1960void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 1961 gfp_t gfpflags,
4a92379b 1962 int node, size_t size)
5b882be4 1963{
4a92379b
RK
1964 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1965
1966 trace_kmalloc_node(_RET_IP_, ret,
1967 size, s->size, gfpflags, node);
1968 return ret;
5b882be4 1969}
4a92379b 1970EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 1971#endif
5d1f57e4 1972#endif
5b882be4 1973
81819f0f 1974/*
894b8788
CL
1975 * Slow patch handling. This may still be called frequently since objects
1976 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1977 *
894b8788
CL
1978 * So we still attempt to reduce cache line usage. Just take the slab
1979 * lock and free the item. If there is no additional partial page
1980 * handling required then we can return immediately.
81819f0f 1981 */
894b8788 1982static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1983 void *x, unsigned long addr)
81819f0f
CL
1984{
1985 void *prior;
1986 void **object = (void *)x;
8a5ec0ba
CL
1987#ifdef CONFIG_CMPXCHG_LOCAL
1988 unsigned long flags;
81819f0f 1989
8a5ec0ba
CL
1990 local_irq_save(flags);
1991#endif
81819f0f 1992 slab_lock(page);
8a5ec0ba 1993 stat(s, FREE_SLOWPATH);
81819f0f 1994
af537b0a 1995 if (kmem_cache_debug(s))
81819f0f 1996 goto debug;
6446faa2 1997
81819f0f 1998checks_ok:
ff12059e
CL
1999 prior = page->freelist;
2000 set_freepointer(s, object, prior);
81819f0f
CL
2001 page->freelist = object;
2002 page->inuse--;
2003
8a38082d 2004 if (unlikely(PageSlubFrozen(page))) {
84e554e6 2005 stat(s, FREE_FROZEN);
81819f0f 2006 goto out_unlock;
8ff12cfc 2007 }
81819f0f
CL
2008
2009 if (unlikely(!page->inuse))
2010 goto slab_empty;
2011
2012 /*
6446faa2 2013 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
2014 * then add it.
2015 */
a973e9dd 2016 if (unlikely(!prior)) {
7c2e132c 2017 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 2018 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2019 }
81819f0f
CL
2020
2021out_unlock:
2022 slab_unlock(page);
8a5ec0ba
CL
2023#ifdef CONFIG_CMPXCHG_LOCAL
2024 local_irq_restore(flags);
2025#endif
81819f0f
CL
2026 return;
2027
2028slab_empty:
a973e9dd 2029 if (prior) {
81819f0f 2030 /*
672bba3a 2031 * Slab still on the partial list.
81819f0f
CL
2032 */
2033 remove_partial(s, page);
84e554e6 2034 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2035 }
81819f0f 2036 slab_unlock(page);
8a5ec0ba
CL
2037#ifdef CONFIG_CMPXCHG_LOCAL
2038 local_irq_restore(flags);
2039#endif
84e554e6 2040 stat(s, FREE_SLAB);
81819f0f 2041 discard_slab(s, page);
81819f0f
CL
2042 return;
2043
2044debug:
3ec09742 2045 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 2046 goto out_unlock;
77c5e2d0 2047 goto checks_ok;
81819f0f
CL
2048}
2049
894b8788
CL
2050/*
2051 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2052 * can perform fastpath freeing without additional function calls.
2053 *
2054 * The fastpath is only possible if we are freeing to the current cpu slab
2055 * of this processor. This typically the case if we have just allocated
2056 * the item before.
2057 *
2058 * If fastpath is not possible then fall back to __slab_free where we deal
2059 * with all sorts of special processing.
2060 */
06428780 2061static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2062 struct page *page, void *x, unsigned long addr)
894b8788
CL
2063{
2064 void **object = (void *)x;
dfb4f096 2065 struct kmem_cache_cpu *c;
8a5ec0ba
CL
2066#ifdef CONFIG_CMPXCHG_LOCAL
2067 unsigned long tid;
2068#else
1f84260c 2069 unsigned long flags;
8a5ec0ba 2070#endif
1f84260c 2071
c016b0bd
CL
2072 slab_free_hook(s, x);
2073
8a5ec0ba 2074#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 2075 local_irq_save(flags);
8a5ec0ba
CL
2076#endif
2077
2078redo:
2079 /*
2080 * Determine the currently cpus per cpu slab.
2081 * The cpu may change afterward. However that does not matter since
2082 * data is retrieved via this pointer. If we are on the same cpu
2083 * during the cmpxchg then the free will succedd.
2084 */
9dfc6e68 2085 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2086
8a5ec0ba
CL
2087#ifdef CONFIG_CMPXCHG_LOCAL
2088 tid = c->tid;
2089 barrier();
2090#endif
2091
15b7c514 2092 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
ff12059e 2093 set_freepointer(s, object, c->freelist);
8a5ec0ba
CL
2094
2095#ifdef CONFIG_CMPXCHG_LOCAL
2096 if (unlikely(!this_cpu_cmpxchg_double(
2097 s->cpu_slab->freelist, s->cpu_slab->tid,
2098 c->freelist, tid,
2099 object, next_tid(tid)))) {
2100
2101 note_cmpxchg_failure("slab_free", s, tid);
2102 goto redo;
2103 }
2104#else
dfb4f096 2105 c->freelist = object;
8a5ec0ba 2106#endif
84e554e6 2107 stat(s, FREE_FASTPATH);
894b8788 2108 } else
ff12059e 2109 __slab_free(s, page, x, addr);
894b8788 2110
8a5ec0ba 2111#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 2112 local_irq_restore(flags);
8a5ec0ba 2113#endif
894b8788
CL
2114}
2115
81819f0f
CL
2116void kmem_cache_free(struct kmem_cache *s, void *x)
2117{
77c5e2d0 2118 struct page *page;
81819f0f 2119
b49af68f 2120 page = virt_to_head_page(x);
81819f0f 2121
ce71e27c 2122 slab_free(s, page, x, _RET_IP_);
5b882be4 2123
ca2b84cb 2124 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2125}
2126EXPORT_SYMBOL(kmem_cache_free);
2127
81819f0f 2128/*
672bba3a
CL
2129 * Object placement in a slab is made very easy because we always start at
2130 * offset 0. If we tune the size of the object to the alignment then we can
2131 * get the required alignment by putting one properly sized object after
2132 * another.
81819f0f
CL
2133 *
2134 * Notice that the allocation order determines the sizes of the per cpu
2135 * caches. Each processor has always one slab available for allocations.
2136 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2137 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2138 * locking overhead.
81819f0f
CL
2139 */
2140
2141/*
2142 * Mininum / Maximum order of slab pages. This influences locking overhead
2143 * and slab fragmentation. A higher order reduces the number of partial slabs
2144 * and increases the number of allocations possible without having to
2145 * take the list_lock.
2146 */
2147static int slub_min_order;
114e9e89 2148static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2149static int slub_min_objects;
81819f0f
CL
2150
2151/*
2152 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2153 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2154 */
2155static int slub_nomerge;
2156
81819f0f
CL
2157/*
2158 * Calculate the order of allocation given an slab object size.
2159 *
672bba3a
CL
2160 * The order of allocation has significant impact on performance and other
2161 * system components. Generally order 0 allocations should be preferred since
2162 * order 0 does not cause fragmentation in the page allocator. Larger objects
2163 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2164 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2165 * would be wasted.
2166 *
2167 * In order to reach satisfactory performance we must ensure that a minimum
2168 * number of objects is in one slab. Otherwise we may generate too much
2169 * activity on the partial lists which requires taking the list_lock. This is
2170 * less a concern for large slabs though which are rarely used.
81819f0f 2171 *
672bba3a
CL
2172 * slub_max_order specifies the order where we begin to stop considering the
2173 * number of objects in a slab as critical. If we reach slub_max_order then
2174 * we try to keep the page order as low as possible. So we accept more waste
2175 * of space in favor of a small page order.
81819f0f 2176 *
672bba3a
CL
2177 * Higher order allocations also allow the placement of more objects in a
2178 * slab and thereby reduce object handling overhead. If the user has
2179 * requested a higher mininum order then we start with that one instead of
2180 * the smallest order which will fit the object.
81819f0f 2181 */
5e6d444e
CL
2182static inline int slab_order(int size, int min_objects,
2183 int max_order, int fract_leftover)
81819f0f
CL
2184{
2185 int order;
2186 int rem;
6300ea75 2187 int min_order = slub_min_order;
81819f0f 2188
210b5c06
CG
2189 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
2190 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2191
6300ea75 2192 for (order = max(min_order,
5e6d444e
CL
2193 fls(min_objects * size - 1) - PAGE_SHIFT);
2194 order <= max_order; order++) {
81819f0f 2195
5e6d444e 2196 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2197
5e6d444e 2198 if (slab_size < min_objects * size)
81819f0f
CL
2199 continue;
2200
2201 rem = slab_size % size;
2202
5e6d444e 2203 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2204 break;
2205
2206 }
672bba3a 2207
81819f0f
CL
2208 return order;
2209}
2210
5e6d444e
CL
2211static inline int calculate_order(int size)
2212{
2213 int order;
2214 int min_objects;
2215 int fraction;
e8120ff1 2216 int max_objects;
5e6d444e
CL
2217
2218 /*
2219 * Attempt to find best configuration for a slab. This
2220 * works by first attempting to generate a layout with
2221 * the best configuration and backing off gradually.
2222 *
2223 * First we reduce the acceptable waste in a slab. Then
2224 * we reduce the minimum objects required in a slab.
2225 */
2226 min_objects = slub_min_objects;
9b2cd506
CL
2227 if (!min_objects)
2228 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2229 max_objects = (PAGE_SIZE << slub_max_order)/size;
2230 min_objects = min(min_objects, max_objects);
2231
5e6d444e 2232 while (min_objects > 1) {
c124f5b5 2233 fraction = 16;
5e6d444e
CL
2234 while (fraction >= 4) {
2235 order = slab_order(size, min_objects,
2236 slub_max_order, fraction);
2237 if (order <= slub_max_order)
2238 return order;
2239 fraction /= 2;
2240 }
5086c389 2241 min_objects--;
5e6d444e
CL
2242 }
2243
2244 /*
2245 * We were unable to place multiple objects in a slab. Now
2246 * lets see if we can place a single object there.
2247 */
2248 order = slab_order(size, 1, slub_max_order, 1);
2249 if (order <= slub_max_order)
2250 return order;
2251
2252 /*
2253 * Doh this slab cannot be placed using slub_max_order.
2254 */
2255 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2256 if (order < MAX_ORDER)
5e6d444e
CL
2257 return order;
2258 return -ENOSYS;
2259}
2260
81819f0f 2261/*
672bba3a 2262 * Figure out what the alignment of the objects will be.
81819f0f
CL
2263 */
2264static unsigned long calculate_alignment(unsigned long flags,
2265 unsigned long align, unsigned long size)
2266{
2267 /*
6446faa2
CL
2268 * If the user wants hardware cache aligned objects then follow that
2269 * suggestion if the object is sufficiently large.
81819f0f 2270 *
6446faa2
CL
2271 * The hardware cache alignment cannot override the specified
2272 * alignment though. If that is greater then use it.
81819f0f 2273 */
b6210386
NP
2274 if (flags & SLAB_HWCACHE_ALIGN) {
2275 unsigned long ralign = cache_line_size();
2276 while (size <= ralign / 2)
2277 ralign /= 2;
2278 align = max(align, ralign);
2279 }
81819f0f
CL
2280
2281 if (align < ARCH_SLAB_MINALIGN)
b6210386 2282 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2283
2284 return ALIGN(align, sizeof(void *));
2285}
2286
5595cffc
PE
2287static void
2288init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2289{
2290 n->nr_partial = 0;
81819f0f
CL
2291 spin_lock_init(&n->list_lock);
2292 INIT_LIST_HEAD(&n->partial);
8ab1372f 2293#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2294 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2295 atomic_long_set(&n->total_objects, 0);
643b1138 2296 INIT_LIST_HEAD(&n->full);
8ab1372f 2297#endif
81819f0f
CL
2298}
2299
55136592 2300static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2301{
6c182dc0
CL
2302 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2303 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2304
8a5ec0ba
CL
2305#ifdef CONFIG_CMPXCHG_LOCAL
2306 /*
2307 * Must align to double word boundary for the double cmpxchg instructions
2308 * to work.
2309 */
2310 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2311#else
2312 /* Regular alignment is sufficient */
6c182dc0 2313 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
8a5ec0ba
CL
2314#endif
2315
2316 if (!s->cpu_slab)
2317 return 0;
2318
2319 init_kmem_cache_cpus(s);
4c93c355 2320
8a5ec0ba 2321 return 1;
4c93c355 2322}
4c93c355 2323
51df1142
CL
2324static struct kmem_cache *kmem_cache_node;
2325
81819f0f
CL
2326/*
2327 * No kmalloc_node yet so do it by hand. We know that this is the first
2328 * slab on the node for this slabcache. There are no concurrent accesses
2329 * possible.
2330 *
2331 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2332 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2333 * memory on a fresh node that has no slab structures yet.
81819f0f 2334 */
55136592 2335static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2336{
2337 struct page *page;
2338 struct kmem_cache_node *n;
ba84c73c 2339 unsigned long flags;
81819f0f 2340
51df1142 2341 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2342
51df1142 2343 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2344
2345 BUG_ON(!page);
a2f92ee7
CL
2346 if (page_to_nid(page) != node) {
2347 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2348 "node %d\n", node);
2349 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2350 "in order to be able to continue\n");
2351 }
2352
81819f0f
CL
2353 n = page->freelist;
2354 BUG_ON(!n);
51df1142 2355 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2356 page->inuse++;
51df1142 2357 kmem_cache_node->node[node] = n;
8ab1372f 2358#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2359 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2360 init_tracking(kmem_cache_node, n);
8ab1372f 2361#endif
51df1142
CL
2362 init_kmem_cache_node(n, kmem_cache_node);
2363 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2364
ba84c73c 2365 /*
2366 * lockdep requires consistent irq usage for each lock
2367 * so even though there cannot be a race this early in
2368 * the boot sequence, we still disable irqs.
2369 */
2370 local_irq_save(flags);
7c2e132c 2371 add_partial(n, page, 0);
ba84c73c 2372 local_irq_restore(flags);
81819f0f
CL
2373}
2374
2375static void free_kmem_cache_nodes(struct kmem_cache *s)
2376{
2377 int node;
2378
f64dc58c 2379 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2380 struct kmem_cache_node *n = s->node[node];
51df1142 2381
73367bd8 2382 if (n)
51df1142
CL
2383 kmem_cache_free(kmem_cache_node, n);
2384
81819f0f
CL
2385 s->node[node] = NULL;
2386 }
2387}
2388
55136592 2389static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2390{
2391 int node;
81819f0f 2392
f64dc58c 2393 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2394 struct kmem_cache_node *n;
2395
73367bd8 2396 if (slab_state == DOWN) {
55136592 2397 early_kmem_cache_node_alloc(node);
73367bd8
AD
2398 continue;
2399 }
51df1142 2400 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2401 GFP_KERNEL, node);
81819f0f 2402
73367bd8
AD
2403 if (!n) {
2404 free_kmem_cache_nodes(s);
2405 return 0;
81819f0f 2406 }
73367bd8 2407
81819f0f 2408 s->node[node] = n;
5595cffc 2409 init_kmem_cache_node(n, s);
81819f0f
CL
2410 }
2411 return 1;
2412}
81819f0f 2413
c0bdb232 2414static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2415{
2416 if (min < MIN_PARTIAL)
2417 min = MIN_PARTIAL;
2418 else if (min > MAX_PARTIAL)
2419 min = MAX_PARTIAL;
2420 s->min_partial = min;
2421}
2422
81819f0f
CL
2423/*
2424 * calculate_sizes() determines the order and the distribution of data within
2425 * a slab object.
2426 */
06b285dc 2427static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2428{
2429 unsigned long flags = s->flags;
2430 unsigned long size = s->objsize;
2431 unsigned long align = s->align;
834f3d11 2432 int order;
81819f0f 2433
d8b42bf5
CL
2434 /*
2435 * Round up object size to the next word boundary. We can only
2436 * place the free pointer at word boundaries and this determines
2437 * the possible location of the free pointer.
2438 */
2439 size = ALIGN(size, sizeof(void *));
2440
2441#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2442 /*
2443 * Determine if we can poison the object itself. If the user of
2444 * the slab may touch the object after free or before allocation
2445 * then we should never poison the object itself.
2446 */
2447 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2448 !s->ctor)
81819f0f
CL
2449 s->flags |= __OBJECT_POISON;
2450 else
2451 s->flags &= ~__OBJECT_POISON;
2452
81819f0f
CL
2453
2454 /*
672bba3a 2455 * If we are Redzoning then check if there is some space between the
81819f0f 2456 * end of the object and the free pointer. If not then add an
672bba3a 2457 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2458 */
2459 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2460 size += sizeof(void *);
41ecc55b 2461#endif
81819f0f
CL
2462
2463 /*
672bba3a
CL
2464 * With that we have determined the number of bytes in actual use
2465 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2466 */
2467 s->inuse = size;
2468
2469 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2470 s->ctor)) {
81819f0f
CL
2471 /*
2472 * Relocate free pointer after the object if it is not
2473 * permitted to overwrite the first word of the object on
2474 * kmem_cache_free.
2475 *
2476 * This is the case if we do RCU, have a constructor or
2477 * destructor or are poisoning the objects.
2478 */
2479 s->offset = size;
2480 size += sizeof(void *);
2481 }
2482
c12b3c62 2483#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2484 if (flags & SLAB_STORE_USER)
2485 /*
2486 * Need to store information about allocs and frees after
2487 * the object.
2488 */
2489 size += 2 * sizeof(struct track);
2490
be7b3fbc 2491 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2492 /*
2493 * Add some empty padding so that we can catch
2494 * overwrites from earlier objects rather than let
2495 * tracking information or the free pointer be
0211a9c8 2496 * corrupted if a user writes before the start
81819f0f
CL
2497 * of the object.
2498 */
2499 size += sizeof(void *);
41ecc55b 2500#endif
672bba3a 2501
81819f0f
CL
2502 /*
2503 * Determine the alignment based on various parameters that the
65c02d4c
CL
2504 * user specified and the dynamic determination of cache line size
2505 * on bootup.
81819f0f
CL
2506 */
2507 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2508 s->align = align;
81819f0f
CL
2509
2510 /*
2511 * SLUB stores one object immediately after another beginning from
2512 * offset 0. In order to align the objects we have to simply size
2513 * each object to conform to the alignment.
2514 */
2515 size = ALIGN(size, align);
2516 s->size = size;
06b285dc
CL
2517 if (forced_order >= 0)
2518 order = forced_order;
2519 else
2520 order = calculate_order(size);
81819f0f 2521
834f3d11 2522 if (order < 0)
81819f0f
CL
2523 return 0;
2524
b7a49f0d 2525 s->allocflags = 0;
834f3d11 2526 if (order)
b7a49f0d
CL
2527 s->allocflags |= __GFP_COMP;
2528
2529 if (s->flags & SLAB_CACHE_DMA)
2530 s->allocflags |= SLUB_DMA;
2531
2532 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2533 s->allocflags |= __GFP_RECLAIMABLE;
2534
81819f0f
CL
2535 /*
2536 * Determine the number of objects per slab
2537 */
834f3d11 2538 s->oo = oo_make(order, size);
65c3376a 2539 s->min = oo_make(get_order(size), size);
205ab99d
CL
2540 if (oo_objects(s->oo) > oo_objects(s->max))
2541 s->max = s->oo;
81819f0f 2542
834f3d11 2543 return !!oo_objects(s->oo);
81819f0f
CL
2544
2545}
2546
55136592 2547static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2548 const char *name, size_t size,
2549 size_t align, unsigned long flags,
51cc5068 2550 void (*ctor)(void *))
81819f0f
CL
2551{
2552 memset(s, 0, kmem_size);
2553 s->name = name;
2554 s->ctor = ctor;
81819f0f 2555 s->objsize = size;
81819f0f 2556 s->align = align;
ba0268a8 2557 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2558
06b285dc 2559 if (!calculate_sizes(s, -1))
81819f0f 2560 goto error;
3de47213
DR
2561 if (disable_higher_order_debug) {
2562 /*
2563 * Disable debugging flags that store metadata if the min slab
2564 * order increased.
2565 */
2566 if (get_order(s->size) > get_order(s->objsize)) {
2567 s->flags &= ~DEBUG_METADATA_FLAGS;
2568 s->offset = 0;
2569 if (!calculate_sizes(s, -1))
2570 goto error;
2571 }
2572 }
81819f0f 2573
3b89d7d8
DR
2574 /*
2575 * The larger the object size is, the more pages we want on the partial
2576 * list to avoid pounding the page allocator excessively.
2577 */
c0bdb232 2578 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2579 s->refcount = 1;
2580#ifdef CONFIG_NUMA
e2cb96b7 2581 s->remote_node_defrag_ratio = 1000;
81819f0f 2582#endif
55136592 2583 if (!init_kmem_cache_nodes(s))
dfb4f096 2584 goto error;
81819f0f 2585
55136592 2586 if (alloc_kmem_cache_cpus(s))
81819f0f 2587 return 1;
ff12059e 2588
4c93c355 2589 free_kmem_cache_nodes(s);
81819f0f
CL
2590error:
2591 if (flags & SLAB_PANIC)
2592 panic("Cannot create slab %s size=%lu realsize=%u "
2593 "order=%u offset=%u flags=%lx\n",
834f3d11 2594 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2595 s->offset, flags);
2596 return 0;
2597}
81819f0f 2598
81819f0f
CL
2599/*
2600 * Determine the size of a slab object
2601 */
2602unsigned int kmem_cache_size(struct kmem_cache *s)
2603{
2604 return s->objsize;
2605}
2606EXPORT_SYMBOL(kmem_cache_size);
2607
2608const char *kmem_cache_name(struct kmem_cache *s)
2609{
2610 return s->name;
2611}
2612EXPORT_SYMBOL(kmem_cache_name);
2613
33b12c38
CL
2614static void list_slab_objects(struct kmem_cache *s, struct page *page,
2615 const char *text)
2616{
2617#ifdef CONFIG_SLUB_DEBUG
2618 void *addr = page_address(page);
2619 void *p;
a5dd5c11
NK
2620 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2621 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2622 if (!map)
2623 return;
33b12c38
CL
2624 slab_err(s, page, "%s", text);
2625 slab_lock(page);
2626 for_each_free_object(p, s, page->freelist)
2627 set_bit(slab_index(p, s, addr), map);
2628
2629 for_each_object(p, s, addr, page->objects) {
2630
2631 if (!test_bit(slab_index(p, s, addr), map)) {
2632 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2633 p, p - addr);
2634 print_tracking(s, p);
2635 }
2636 }
2637 slab_unlock(page);
bbd7d57b 2638 kfree(map);
33b12c38
CL
2639#endif
2640}
2641
81819f0f 2642/*
599870b1 2643 * Attempt to free all partial slabs on a node.
81819f0f 2644 */
599870b1 2645static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2646{
81819f0f
CL
2647 unsigned long flags;
2648 struct page *page, *h;
2649
2650 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2651 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2652 if (!page->inuse) {
62e346a8 2653 __remove_partial(n, page);
81819f0f 2654 discard_slab(s, page);
33b12c38
CL
2655 } else {
2656 list_slab_objects(s, page,
2657 "Objects remaining on kmem_cache_close()");
599870b1 2658 }
33b12c38 2659 }
81819f0f 2660 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2661}
2662
2663/*
672bba3a 2664 * Release all resources used by a slab cache.
81819f0f 2665 */
0c710013 2666static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2667{
2668 int node;
2669
2670 flush_all(s);
9dfc6e68 2671 free_percpu(s->cpu_slab);
81819f0f 2672 /* Attempt to free all objects */
f64dc58c 2673 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2674 struct kmem_cache_node *n = get_node(s, node);
2675
599870b1
CL
2676 free_partial(s, n);
2677 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2678 return 1;
2679 }
2680 free_kmem_cache_nodes(s);
2681 return 0;
2682}
2683
2684/*
2685 * Close a cache and release the kmem_cache structure
2686 * (must be used for caches created using kmem_cache_create)
2687 */
2688void kmem_cache_destroy(struct kmem_cache *s)
2689{
2690 down_write(&slub_lock);
2691 s->refcount--;
2692 if (!s->refcount) {
2693 list_del(&s->list);
d629d819
PE
2694 if (kmem_cache_close(s)) {
2695 printk(KERN_ERR "SLUB %s: %s called for cache that "
2696 "still has objects.\n", s->name, __func__);
2697 dump_stack();
2698 }
d76b1590
ED
2699 if (s->flags & SLAB_DESTROY_BY_RCU)
2700 rcu_barrier();
81819f0f 2701 sysfs_slab_remove(s);
2bce6485
CL
2702 }
2703 up_write(&slub_lock);
81819f0f
CL
2704}
2705EXPORT_SYMBOL(kmem_cache_destroy);
2706
2707/********************************************************************
2708 * Kmalloc subsystem
2709 *******************************************************************/
2710
51df1142 2711struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2712EXPORT_SYMBOL(kmalloc_caches);
2713
51df1142
CL
2714static struct kmem_cache *kmem_cache;
2715
55136592 2716#ifdef CONFIG_ZONE_DMA
51df1142 2717static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2718#endif
2719
81819f0f
CL
2720static int __init setup_slub_min_order(char *str)
2721{
06428780 2722 get_option(&str, &slub_min_order);
81819f0f
CL
2723
2724 return 1;
2725}
2726
2727__setup("slub_min_order=", setup_slub_min_order);
2728
2729static int __init setup_slub_max_order(char *str)
2730{
06428780 2731 get_option(&str, &slub_max_order);
818cf590 2732 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2733
2734 return 1;
2735}
2736
2737__setup("slub_max_order=", setup_slub_max_order);
2738
2739static int __init setup_slub_min_objects(char *str)
2740{
06428780 2741 get_option(&str, &slub_min_objects);
81819f0f
CL
2742
2743 return 1;
2744}
2745
2746__setup("slub_min_objects=", setup_slub_min_objects);
2747
2748static int __init setup_slub_nomerge(char *str)
2749{
2750 slub_nomerge = 1;
2751 return 1;
2752}
2753
2754__setup("slub_nomerge", setup_slub_nomerge);
2755
51df1142
CL
2756static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2757 int size, unsigned int flags)
81819f0f 2758{
51df1142
CL
2759 struct kmem_cache *s;
2760
2761 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2762
83b519e8
PE
2763 /*
2764 * This function is called with IRQs disabled during early-boot on
2765 * single CPU so there's no need to take slub_lock here.
2766 */
55136592 2767 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2768 flags, NULL))
81819f0f
CL
2769 goto panic;
2770
2771 list_add(&s->list, &slab_caches);
51df1142 2772 return s;
81819f0f
CL
2773
2774panic:
2775 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2776 return NULL;
81819f0f
CL
2777}
2778
f1b26339
CL
2779/*
2780 * Conversion table for small slabs sizes / 8 to the index in the
2781 * kmalloc array. This is necessary for slabs < 192 since we have non power
2782 * of two cache sizes there. The size of larger slabs can be determined using
2783 * fls.
2784 */
2785static s8 size_index[24] = {
2786 3, /* 8 */
2787 4, /* 16 */
2788 5, /* 24 */
2789 5, /* 32 */
2790 6, /* 40 */
2791 6, /* 48 */
2792 6, /* 56 */
2793 6, /* 64 */
2794 1, /* 72 */
2795 1, /* 80 */
2796 1, /* 88 */
2797 1, /* 96 */
2798 7, /* 104 */
2799 7, /* 112 */
2800 7, /* 120 */
2801 7, /* 128 */
2802 2, /* 136 */
2803 2, /* 144 */
2804 2, /* 152 */
2805 2, /* 160 */
2806 2, /* 168 */
2807 2, /* 176 */
2808 2, /* 184 */
2809 2 /* 192 */
2810};
2811
acdfcd04
AK
2812static inline int size_index_elem(size_t bytes)
2813{
2814 return (bytes - 1) / 8;
2815}
2816
81819f0f
CL
2817static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2818{
f1b26339 2819 int index;
81819f0f 2820
f1b26339
CL
2821 if (size <= 192) {
2822 if (!size)
2823 return ZERO_SIZE_PTR;
81819f0f 2824
acdfcd04 2825 index = size_index[size_index_elem(size)];
aadb4bc4 2826 } else
f1b26339 2827 index = fls(size - 1);
81819f0f
CL
2828
2829#ifdef CONFIG_ZONE_DMA
f1b26339 2830 if (unlikely((flags & SLUB_DMA)))
51df1142 2831 return kmalloc_dma_caches[index];
f1b26339 2832
81819f0f 2833#endif
51df1142 2834 return kmalloc_caches[index];
81819f0f
CL
2835}
2836
2837void *__kmalloc(size_t size, gfp_t flags)
2838{
aadb4bc4 2839 struct kmem_cache *s;
5b882be4 2840 void *ret;
81819f0f 2841
ffadd4d0 2842 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2843 return kmalloc_large(size, flags);
aadb4bc4
CL
2844
2845 s = get_slab(size, flags);
2846
2847 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2848 return s;
2849
2154a336 2850 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2851
ca2b84cb 2852 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2853
2854 return ret;
81819f0f
CL
2855}
2856EXPORT_SYMBOL(__kmalloc);
2857
5d1f57e4 2858#ifdef CONFIG_NUMA
f619cfe1
CL
2859static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2860{
b1eeab67 2861 struct page *page;
e4f7c0b4 2862 void *ptr = NULL;
f619cfe1 2863
b1eeab67
VN
2864 flags |= __GFP_COMP | __GFP_NOTRACK;
2865 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2866 if (page)
e4f7c0b4
CM
2867 ptr = page_address(page);
2868
2869 kmemleak_alloc(ptr, size, 1, flags);
2870 return ptr;
f619cfe1
CL
2871}
2872
81819f0f
CL
2873void *__kmalloc_node(size_t size, gfp_t flags, int node)
2874{
aadb4bc4 2875 struct kmem_cache *s;
5b882be4 2876 void *ret;
81819f0f 2877
057685cf 2878 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2879 ret = kmalloc_large_node(size, flags, node);
2880
ca2b84cb
EGM
2881 trace_kmalloc_node(_RET_IP_, ret,
2882 size, PAGE_SIZE << get_order(size),
2883 flags, node);
5b882be4
EGM
2884
2885 return ret;
2886 }
aadb4bc4
CL
2887
2888 s = get_slab(size, flags);
2889
2890 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2891 return s;
2892
5b882be4
EGM
2893 ret = slab_alloc(s, flags, node, _RET_IP_);
2894
ca2b84cb 2895 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2896
2897 return ret;
81819f0f
CL
2898}
2899EXPORT_SYMBOL(__kmalloc_node);
2900#endif
2901
2902size_t ksize(const void *object)
2903{
272c1d21 2904 struct page *page;
81819f0f
CL
2905 struct kmem_cache *s;
2906
ef8b4520 2907 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2908 return 0;
2909
294a80a8 2910 page = virt_to_head_page(object);
294a80a8 2911
76994412
PE
2912 if (unlikely(!PageSlab(page))) {
2913 WARN_ON(!PageCompound(page));
294a80a8 2914 return PAGE_SIZE << compound_order(page);
76994412 2915 }
81819f0f 2916 s = page->slab;
81819f0f 2917
ae20bfda 2918#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2919 /*
2920 * Debugging requires use of the padding between object
2921 * and whatever may come after it.
2922 */
2923 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2924 return s->objsize;
2925
ae20bfda 2926#endif
81819f0f
CL
2927 /*
2928 * If we have the need to store the freelist pointer
2929 * back there or track user information then we can
2930 * only use the space before that information.
2931 */
2932 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2933 return s->inuse;
81819f0f
CL
2934 /*
2935 * Else we can use all the padding etc for the allocation
2936 */
2937 return s->size;
2938}
b1aabecd 2939EXPORT_SYMBOL(ksize);
81819f0f
CL
2940
2941void kfree(const void *x)
2942{
81819f0f 2943 struct page *page;
5bb983b0 2944 void *object = (void *)x;
81819f0f 2945
2121db74
PE
2946 trace_kfree(_RET_IP_, x);
2947
2408c550 2948 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2949 return;
2950
b49af68f 2951 page = virt_to_head_page(x);
aadb4bc4 2952 if (unlikely(!PageSlab(page))) {
0937502a 2953 BUG_ON(!PageCompound(page));
e4f7c0b4 2954 kmemleak_free(x);
aadb4bc4
CL
2955 put_page(page);
2956 return;
2957 }
ce71e27c 2958 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2959}
2960EXPORT_SYMBOL(kfree);
2961
2086d26a 2962/*
672bba3a
CL
2963 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2964 * the remaining slabs by the number of items in use. The slabs with the
2965 * most items in use come first. New allocations will then fill those up
2966 * and thus they can be removed from the partial lists.
2967 *
2968 * The slabs with the least items are placed last. This results in them
2969 * being allocated from last increasing the chance that the last objects
2970 * are freed in them.
2086d26a
CL
2971 */
2972int kmem_cache_shrink(struct kmem_cache *s)
2973{
2974 int node;
2975 int i;
2976 struct kmem_cache_node *n;
2977 struct page *page;
2978 struct page *t;
205ab99d 2979 int objects = oo_objects(s->max);
2086d26a 2980 struct list_head *slabs_by_inuse =
834f3d11 2981 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2982 unsigned long flags;
2983
2984 if (!slabs_by_inuse)
2985 return -ENOMEM;
2986
2987 flush_all(s);
f64dc58c 2988 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2989 n = get_node(s, node);
2990
2991 if (!n->nr_partial)
2992 continue;
2993
834f3d11 2994 for (i = 0; i < objects; i++)
2086d26a
CL
2995 INIT_LIST_HEAD(slabs_by_inuse + i);
2996
2997 spin_lock_irqsave(&n->list_lock, flags);
2998
2999 /*
672bba3a 3000 * Build lists indexed by the items in use in each slab.
2086d26a 3001 *
672bba3a
CL
3002 * Note that concurrent frees may occur while we hold the
3003 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3004 */
3005 list_for_each_entry_safe(page, t, &n->partial, lru) {
3006 if (!page->inuse && slab_trylock(page)) {
3007 /*
3008 * Must hold slab lock here because slab_free
3009 * may have freed the last object and be
3010 * waiting to release the slab.
3011 */
62e346a8 3012 __remove_partial(n, page);
2086d26a
CL
3013 slab_unlock(page);
3014 discard_slab(s, page);
3015 } else {
fcda3d89
CL
3016 list_move(&page->lru,
3017 slabs_by_inuse + page->inuse);
2086d26a
CL
3018 }
3019 }
3020
2086d26a 3021 /*
672bba3a
CL
3022 * Rebuild the partial list with the slabs filled up most
3023 * first and the least used slabs at the end.
2086d26a 3024 */
834f3d11 3025 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3026 list_splice(slabs_by_inuse + i, n->partial.prev);
3027
2086d26a
CL
3028 spin_unlock_irqrestore(&n->list_lock, flags);
3029 }
3030
3031 kfree(slabs_by_inuse);
3032 return 0;
3033}
3034EXPORT_SYMBOL(kmem_cache_shrink);
3035
92a5bbc1 3036#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3037static int slab_mem_going_offline_callback(void *arg)
3038{
3039 struct kmem_cache *s;
3040
3041 down_read(&slub_lock);
3042 list_for_each_entry(s, &slab_caches, list)
3043 kmem_cache_shrink(s);
3044 up_read(&slub_lock);
3045
3046 return 0;
3047}
3048
3049static void slab_mem_offline_callback(void *arg)
3050{
3051 struct kmem_cache_node *n;
3052 struct kmem_cache *s;
3053 struct memory_notify *marg = arg;
3054 int offline_node;
3055
3056 offline_node = marg->status_change_nid;
3057
3058 /*
3059 * If the node still has available memory. we need kmem_cache_node
3060 * for it yet.
3061 */
3062 if (offline_node < 0)
3063 return;
3064
3065 down_read(&slub_lock);
3066 list_for_each_entry(s, &slab_caches, list) {
3067 n = get_node(s, offline_node);
3068 if (n) {
3069 /*
3070 * if n->nr_slabs > 0, slabs still exist on the node
3071 * that is going down. We were unable to free them,
c9404c9c 3072 * and offline_pages() function shouldn't call this
b9049e23
YG
3073 * callback. So, we must fail.
3074 */
0f389ec6 3075 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3076
3077 s->node[offline_node] = NULL;
8de66a0c 3078 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3079 }
3080 }
3081 up_read(&slub_lock);
3082}
3083
3084static int slab_mem_going_online_callback(void *arg)
3085{
3086 struct kmem_cache_node *n;
3087 struct kmem_cache *s;
3088 struct memory_notify *marg = arg;
3089 int nid = marg->status_change_nid;
3090 int ret = 0;
3091
3092 /*
3093 * If the node's memory is already available, then kmem_cache_node is
3094 * already created. Nothing to do.
3095 */
3096 if (nid < 0)
3097 return 0;
3098
3099 /*
0121c619 3100 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3101 * allocate a kmem_cache_node structure in order to bring the node
3102 * online.
3103 */
3104 down_read(&slub_lock);
3105 list_for_each_entry(s, &slab_caches, list) {
3106 /*
3107 * XXX: kmem_cache_alloc_node will fallback to other nodes
3108 * since memory is not yet available from the node that
3109 * is brought up.
3110 */
8de66a0c 3111 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3112 if (!n) {
3113 ret = -ENOMEM;
3114 goto out;
3115 }
5595cffc 3116 init_kmem_cache_node(n, s);
b9049e23
YG
3117 s->node[nid] = n;
3118 }
3119out:
3120 up_read(&slub_lock);
3121 return ret;
3122}
3123
3124static int slab_memory_callback(struct notifier_block *self,
3125 unsigned long action, void *arg)
3126{
3127 int ret = 0;
3128
3129 switch (action) {
3130 case MEM_GOING_ONLINE:
3131 ret = slab_mem_going_online_callback(arg);
3132 break;
3133 case MEM_GOING_OFFLINE:
3134 ret = slab_mem_going_offline_callback(arg);
3135 break;
3136 case MEM_OFFLINE:
3137 case MEM_CANCEL_ONLINE:
3138 slab_mem_offline_callback(arg);
3139 break;
3140 case MEM_ONLINE:
3141 case MEM_CANCEL_OFFLINE:
3142 break;
3143 }
dc19f9db
KH
3144 if (ret)
3145 ret = notifier_from_errno(ret);
3146 else
3147 ret = NOTIFY_OK;
b9049e23
YG
3148 return ret;
3149}
3150
3151#endif /* CONFIG_MEMORY_HOTPLUG */
3152
81819f0f
CL
3153/********************************************************************
3154 * Basic setup of slabs
3155 *******************************************************************/
3156
51df1142
CL
3157/*
3158 * Used for early kmem_cache structures that were allocated using
3159 * the page allocator
3160 */
3161
3162static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3163{
3164 int node;
3165
3166 list_add(&s->list, &slab_caches);
3167 s->refcount = -1;
3168
3169 for_each_node_state(node, N_NORMAL_MEMORY) {
3170 struct kmem_cache_node *n = get_node(s, node);
3171 struct page *p;
3172
3173 if (n) {
3174 list_for_each_entry(p, &n->partial, lru)
3175 p->slab = s;
3176
3177#ifdef CONFIG_SLAB_DEBUG
3178 list_for_each_entry(p, &n->full, lru)
3179 p->slab = s;
3180#endif
3181 }
3182 }
3183}
3184
81819f0f
CL
3185void __init kmem_cache_init(void)
3186{
3187 int i;
4b356be0 3188 int caches = 0;
51df1142
CL
3189 struct kmem_cache *temp_kmem_cache;
3190 int order;
51df1142
CL
3191 struct kmem_cache *temp_kmem_cache_node;
3192 unsigned long kmalloc_size;
3193
3194 kmem_size = offsetof(struct kmem_cache, node) +
3195 nr_node_ids * sizeof(struct kmem_cache_node *);
3196
3197 /* Allocate two kmem_caches from the page allocator */
3198 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3199 order = get_order(2 * kmalloc_size);
3200 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3201
81819f0f
CL
3202 /*
3203 * Must first have the slab cache available for the allocations of the
672bba3a 3204 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3205 * kmem_cache_open for slab_state == DOWN.
3206 */
51df1142
CL
3207 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3208
3209 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3210 sizeof(struct kmem_cache_node),
3211 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3212
0c40ba4f 3213 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3214
3215 /* Able to allocate the per node structures */
3216 slab_state = PARTIAL;
3217
51df1142
CL
3218 temp_kmem_cache = kmem_cache;
3219 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3220 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3221 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3222 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3223
51df1142
CL
3224 /*
3225 * Allocate kmem_cache_node properly from the kmem_cache slab.
3226 * kmem_cache_node is separately allocated so no need to
3227 * update any list pointers.
3228 */
3229 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3230
51df1142
CL
3231 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3232 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3233
3234 kmem_cache_bootstrap_fixup(kmem_cache_node);
3235
3236 caches++;
51df1142
CL
3237 kmem_cache_bootstrap_fixup(kmem_cache);
3238 caches++;
3239 /* Free temporary boot structure */
3240 free_pages((unsigned long)temp_kmem_cache, order);
3241
3242 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3243
3244 /*
3245 * Patch up the size_index table if we have strange large alignment
3246 * requirements for the kmalloc array. This is only the case for
6446faa2 3247 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3248 *
3249 * Largest permitted alignment is 256 bytes due to the way we
3250 * handle the index determination for the smaller caches.
3251 *
3252 * Make sure that nothing crazy happens if someone starts tinkering
3253 * around with ARCH_KMALLOC_MINALIGN
3254 */
3255 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3256 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3257
acdfcd04
AK
3258 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3259 int elem = size_index_elem(i);
3260 if (elem >= ARRAY_SIZE(size_index))
3261 break;
3262 size_index[elem] = KMALLOC_SHIFT_LOW;
3263 }
f1b26339 3264
acdfcd04
AK
3265 if (KMALLOC_MIN_SIZE == 64) {
3266 /*
3267 * The 96 byte size cache is not used if the alignment
3268 * is 64 byte.
3269 */
3270 for (i = 64 + 8; i <= 96; i += 8)
3271 size_index[size_index_elem(i)] = 7;
3272 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3273 /*
3274 * The 192 byte sized cache is not used if the alignment
3275 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3276 * instead.
3277 */
3278 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3279 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3280 }
3281
51df1142
CL
3282 /* Caches that are not of the two-to-the-power-of size */
3283 if (KMALLOC_MIN_SIZE <= 32) {
3284 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3285 caches++;
3286 }
3287
3288 if (KMALLOC_MIN_SIZE <= 64) {
3289 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3290 caches++;
3291 }
3292
3293 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3294 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3295 caches++;
3296 }
3297
81819f0f
CL
3298 slab_state = UP;
3299
3300 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3301 if (KMALLOC_MIN_SIZE <= 32) {
3302 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3303 BUG_ON(!kmalloc_caches[1]->name);
3304 }
3305
3306 if (KMALLOC_MIN_SIZE <= 64) {
3307 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3308 BUG_ON(!kmalloc_caches[2]->name);
3309 }
3310
d7278bd7
CL
3311 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3312 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3313
3314 BUG_ON(!s);
51df1142 3315 kmalloc_caches[i]->name = s;
d7278bd7 3316 }
81819f0f
CL
3317
3318#ifdef CONFIG_SMP
3319 register_cpu_notifier(&slab_notifier);
9dfc6e68 3320#endif
81819f0f 3321
55136592 3322#ifdef CONFIG_ZONE_DMA
51df1142
CL
3323 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3324 struct kmem_cache *s = kmalloc_caches[i];
55136592 3325
51df1142 3326 if (s && s->size) {
55136592
CL
3327 char *name = kasprintf(GFP_NOWAIT,
3328 "dma-kmalloc-%d", s->objsize);
3329
3330 BUG_ON(!name);
51df1142
CL
3331 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3332 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3333 }
3334 }
3335#endif
3adbefee
IM
3336 printk(KERN_INFO
3337 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3338 " CPUs=%d, Nodes=%d\n",
3339 caches, cache_line_size(),
81819f0f
CL
3340 slub_min_order, slub_max_order, slub_min_objects,
3341 nr_cpu_ids, nr_node_ids);
3342}
3343
7e85ee0c
PE
3344void __init kmem_cache_init_late(void)
3345{
7e85ee0c
PE
3346}
3347
81819f0f
CL
3348/*
3349 * Find a mergeable slab cache
3350 */
3351static int slab_unmergeable(struct kmem_cache *s)
3352{
3353 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3354 return 1;
3355
c59def9f 3356 if (s->ctor)
81819f0f
CL
3357 return 1;
3358
8ffa6875
CL
3359 /*
3360 * We may have set a slab to be unmergeable during bootstrap.
3361 */
3362 if (s->refcount < 0)
3363 return 1;
3364
81819f0f
CL
3365 return 0;
3366}
3367
3368static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3369 size_t align, unsigned long flags, const char *name,
51cc5068 3370 void (*ctor)(void *))
81819f0f 3371{
5b95a4ac 3372 struct kmem_cache *s;
81819f0f
CL
3373
3374 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3375 return NULL;
3376
c59def9f 3377 if (ctor)
81819f0f
CL
3378 return NULL;
3379
3380 size = ALIGN(size, sizeof(void *));
3381 align = calculate_alignment(flags, align, size);
3382 size = ALIGN(size, align);
ba0268a8 3383 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3384
5b95a4ac 3385 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3386 if (slab_unmergeable(s))
3387 continue;
3388
3389 if (size > s->size)
3390 continue;
3391
ba0268a8 3392 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3393 continue;
3394 /*
3395 * Check if alignment is compatible.
3396 * Courtesy of Adrian Drzewiecki
3397 */
06428780 3398 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3399 continue;
3400
3401 if (s->size - size >= sizeof(void *))
3402 continue;
3403
3404 return s;
3405 }
3406 return NULL;
3407}
3408
3409struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3410 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3411{
3412 struct kmem_cache *s;
84c1cf62 3413 char *n;
81819f0f 3414
fe1ff49d
BH
3415 if (WARN_ON(!name))
3416 return NULL;
3417
81819f0f 3418 down_write(&slub_lock);
ba0268a8 3419 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3420 if (s) {
3421 s->refcount++;
3422 /*
3423 * Adjust the object sizes so that we clear
3424 * the complete object on kzalloc.
3425 */
3426 s->objsize = max(s->objsize, (int)size);
3427 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3428
7b8f3b66 3429 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3430 s->refcount--;
81819f0f 3431 goto err;
7b8f3b66 3432 }
2bce6485 3433 up_write(&slub_lock);
a0e1d1be
CL
3434 return s;
3435 }
6446faa2 3436
84c1cf62
PE
3437 n = kstrdup(name, GFP_KERNEL);
3438 if (!n)
3439 goto err;
3440
a0e1d1be
CL
3441 s = kmalloc(kmem_size, GFP_KERNEL);
3442 if (s) {
84c1cf62 3443 if (kmem_cache_open(s, n,
c59def9f 3444 size, align, flags, ctor)) {
81819f0f 3445 list_add(&s->list, &slab_caches);
7b8f3b66 3446 if (sysfs_slab_add(s)) {
7b8f3b66 3447 list_del(&s->list);
84c1cf62 3448 kfree(n);
7b8f3b66 3449 kfree(s);
a0e1d1be 3450 goto err;
7b8f3b66 3451 }
2bce6485 3452 up_write(&slub_lock);
a0e1d1be
CL
3453 return s;
3454 }
84c1cf62 3455 kfree(n);
a0e1d1be 3456 kfree(s);
81819f0f 3457 }
68cee4f1 3458err:
81819f0f 3459 up_write(&slub_lock);
81819f0f 3460
81819f0f
CL
3461 if (flags & SLAB_PANIC)
3462 panic("Cannot create slabcache %s\n", name);
3463 else
3464 s = NULL;
3465 return s;
3466}
3467EXPORT_SYMBOL(kmem_cache_create);
3468
81819f0f 3469#ifdef CONFIG_SMP
81819f0f 3470/*
672bba3a
CL
3471 * Use the cpu notifier to insure that the cpu slabs are flushed when
3472 * necessary.
81819f0f
CL
3473 */
3474static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3475 unsigned long action, void *hcpu)
3476{
3477 long cpu = (long)hcpu;
5b95a4ac
CL
3478 struct kmem_cache *s;
3479 unsigned long flags;
81819f0f
CL
3480
3481 switch (action) {
3482 case CPU_UP_CANCELED:
8bb78442 3483 case CPU_UP_CANCELED_FROZEN:
81819f0f 3484 case CPU_DEAD:
8bb78442 3485 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3486 down_read(&slub_lock);
3487 list_for_each_entry(s, &slab_caches, list) {
3488 local_irq_save(flags);
3489 __flush_cpu_slab(s, cpu);
3490 local_irq_restore(flags);
3491 }
3492 up_read(&slub_lock);
81819f0f
CL
3493 break;
3494 default:
3495 break;
3496 }
3497 return NOTIFY_OK;
3498}
3499
06428780 3500static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3501 .notifier_call = slab_cpuup_callback
06428780 3502};
81819f0f
CL
3503
3504#endif
3505
ce71e27c 3506void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3507{
aadb4bc4 3508 struct kmem_cache *s;
94b528d0 3509 void *ret;
aadb4bc4 3510
ffadd4d0 3511 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3512 return kmalloc_large(size, gfpflags);
3513
aadb4bc4 3514 s = get_slab(size, gfpflags);
81819f0f 3515
2408c550 3516 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3517 return s;
81819f0f 3518
2154a336 3519 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3520
3521 /* Honor the call site pointer we recieved. */
ca2b84cb 3522 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3523
3524 return ret;
81819f0f
CL
3525}
3526
5d1f57e4 3527#ifdef CONFIG_NUMA
81819f0f 3528void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3529 int node, unsigned long caller)
81819f0f 3530{
aadb4bc4 3531 struct kmem_cache *s;
94b528d0 3532 void *ret;
aadb4bc4 3533
d3e14aa3
XF
3534 if (unlikely(size > SLUB_MAX_SIZE)) {
3535 ret = kmalloc_large_node(size, gfpflags, node);
3536
3537 trace_kmalloc_node(caller, ret,
3538 size, PAGE_SIZE << get_order(size),
3539 gfpflags, node);
3540
3541 return ret;
3542 }
eada35ef 3543
aadb4bc4 3544 s = get_slab(size, gfpflags);
81819f0f 3545
2408c550 3546 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3547 return s;
81819f0f 3548
94b528d0
EGM
3549 ret = slab_alloc(s, gfpflags, node, caller);
3550
3551 /* Honor the call site pointer we recieved. */
ca2b84cb 3552 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3553
3554 return ret;
81819f0f 3555}
5d1f57e4 3556#endif
81819f0f 3557
ab4d5ed5 3558#ifdef CONFIG_SYSFS
205ab99d
CL
3559static int count_inuse(struct page *page)
3560{
3561 return page->inuse;
3562}
3563
3564static int count_total(struct page *page)
3565{
3566 return page->objects;
3567}
ab4d5ed5 3568#endif
205ab99d 3569
ab4d5ed5 3570#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3571static int validate_slab(struct kmem_cache *s, struct page *page,
3572 unsigned long *map)
53e15af0
CL
3573{
3574 void *p;
a973e9dd 3575 void *addr = page_address(page);
53e15af0
CL
3576
3577 if (!check_slab(s, page) ||
3578 !on_freelist(s, page, NULL))
3579 return 0;
3580
3581 /* Now we know that a valid freelist exists */
39b26464 3582 bitmap_zero(map, page->objects);
53e15af0 3583
7656c72b
CL
3584 for_each_free_object(p, s, page->freelist) {
3585 set_bit(slab_index(p, s, addr), map);
37d57443 3586 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
53e15af0
CL
3587 return 0;
3588 }
3589
224a88be 3590 for_each_object(p, s, addr, page->objects)
7656c72b 3591 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3592 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3593 return 0;
3594 return 1;
3595}
3596
434e245d
CL
3597static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3598 unsigned long *map)
53e15af0
CL
3599{
3600 if (slab_trylock(page)) {
434e245d 3601 validate_slab(s, page, map);
53e15af0
CL
3602 slab_unlock(page);
3603 } else
3604 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3605 s->name, page);
53e15af0
CL
3606}
3607
434e245d
CL
3608static int validate_slab_node(struct kmem_cache *s,
3609 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3610{
3611 unsigned long count = 0;
3612 struct page *page;
3613 unsigned long flags;
3614
3615 spin_lock_irqsave(&n->list_lock, flags);
3616
3617 list_for_each_entry(page, &n->partial, lru) {
434e245d 3618 validate_slab_slab(s, page, map);
53e15af0
CL
3619 count++;
3620 }
3621 if (count != n->nr_partial)
3622 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3623 "counter=%ld\n", s->name, count, n->nr_partial);
3624
3625 if (!(s->flags & SLAB_STORE_USER))
3626 goto out;
3627
3628 list_for_each_entry(page, &n->full, lru) {
434e245d 3629 validate_slab_slab(s, page, map);
53e15af0
CL
3630 count++;
3631 }
3632 if (count != atomic_long_read(&n->nr_slabs))
3633 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3634 "counter=%ld\n", s->name, count,
3635 atomic_long_read(&n->nr_slabs));
3636
3637out:
3638 spin_unlock_irqrestore(&n->list_lock, flags);
3639 return count;
3640}
3641
434e245d 3642static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3643{
3644 int node;
3645 unsigned long count = 0;
205ab99d 3646 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3647 sizeof(unsigned long), GFP_KERNEL);
3648
3649 if (!map)
3650 return -ENOMEM;
53e15af0
CL
3651
3652 flush_all(s);
f64dc58c 3653 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3654 struct kmem_cache_node *n = get_node(s, node);
3655
434e245d 3656 count += validate_slab_node(s, n, map);
53e15af0 3657 }
434e245d 3658 kfree(map);
53e15af0
CL
3659 return count;
3660}
88a420e4 3661/*
672bba3a 3662 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3663 * and freed.
3664 */
3665
3666struct location {
3667 unsigned long count;
ce71e27c 3668 unsigned long addr;
45edfa58
CL
3669 long long sum_time;
3670 long min_time;
3671 long max_time;
3672 long min_pid;
3673 long max_pid;
174596a0 3674 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3675 nodemask_t nodes;
88a420e4
CL
3676};
3677
3678struct loc_track {
3679 unsigned long max;
3680 unsigned long count;
3681 struct location *loc;
3682};
3683
3684static void free_loc_track(struct loc_track *t)
3685{
3686 if (t->max)
3687 free_pages((unsigned long)t->loc,
3688 get_order(sizeof(struct location) * t->max));
3689}
3690
68dff6a9 3691static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3692{
3693 struct location *l;
3694 int order;
3695
88a420e4
CL
3696 order = get_order(sizeof(struct location) * max);
3697
68dff6a9 3698 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3699 if (!l)
3700 return 0;
3701
3702 if (t->count) {
3703 memcpy(l, t->loc, sizeof(struct location) * t->count);
3704 free_loc_track(t);
3705 }
3706 t->max = max;
3707 t->loc = l;
3708 return 1;
3709}
3710
3711static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3712 const struct track *track)
88a420e4
CL
3713{
3714 long start, end, pos;
3715 struct location *l;
ce71e27c 3716 unsigned long caddr;
45edfa58 3717 unsigned long age = jiffies - track->when;
88a420e4
CL
3718
3719 start = -1;
3720 end = t->count;
3721
3722 for ( ; ; ) {
3723 pos = start + (end - start + 1) / 2;
3724
3725 /*
3726 * There is nothing at "end". If we end up there
3727 * we need to add something to before end.
3728 */
3729 if (pos == end)
3730 break;
3731
3732 caddr = t->loc[pos].addr;
45edfa58
CL
3733 if (track->addr == caddr) {
3734
3735 l = &t->loc[pos];
3736 l->count++;
3737 if (track->when) {
3738 l->sum_time += age;
3739 if (age < l->min_time)
3740 l->min_time = age;
3741 if (age > l->max_time)
3742 l->max_time = age;
3743
3744 if (track->pid < l->min_pid)
3745 l->min_pid = track->pid;
3746 if (track->pid > l->max_pid)
3747 l->max_pid = track->pid;
3748
174596a0
RR
3749 cpumask_set_cpu(track->cpu,
3750 to_cpumask(l->cpus));
45edfa58
CL
3751 }
3752 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3753 return 1;
3754 }
3755
45edfa58 3756 if (track->addr < caddr)
88a420e4
CL
3757 end = pos;
3758 else
3759 start = pos;
3760 }
3761
3762 /*
672bba3a 3763 * Not found. Insert new tracking element.
88a420e4 3764 */
68dff6a9 3765 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3766 return 0;
3767
3768 l = t->loc + pos;
3769 if (pos < t->count)
3770 memmove(l + 1, l,
3771 (t->count - pos) * sizeof(struct location));
3772 t->count++;
3773 l->count = 1;
45edfa58
CL
3774 l->addr = track->addr;
3775 l->sum_time = age;
3776 l->min_time = age;
3777 l->max_time = age;
3778 l->min_pid = track->pid;
3779 l->max_pid = track->pid;
174596a0
RR
3780 cpumask_clear(to_cpumask(l->cpus));
3781 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3782 nodes_clear(l->nodes);
3783 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3784 return 1;
3785}
3786
3787static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3788 struct page *page, enum track_item alloc,
a5dd5c11 3789 unsigned long *map)
88a420e4 3790{
a973e9dd 3791 void *addr = page_address(page);
88a420e4
CL
3792 void *p;
3793
39b26464 3794 bitmap_zero(map, page->objects);
7656c72b
CL
3795 for_each_free_object(p, s, page->freelist)
3796 set_bit(slab_index(p, s, addr), map);
88a420e4 3797
224a88be 3798 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3799 if (!test_bit(slab_index(p, s, addr), map))
3800 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3801}
3802
3803static int list_locations(struct kmem_cache *s, char *buf,
3804 enum track_item alloc)
3805{
e374d483 3806 int len = 0;
88a420e4 3807 unsigned long i;
68dff6a9 3808 struct loc_track t = { 0, 0, NULL };
88a420e4 3809 int node;
bbd7d57b
ED
3810 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3811 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3812
bbd7d57b
ED
3813 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3814 GFP_TEMPORARY)) {
3815 kfree(map);
68dff6a9 3816 return sprintf(buf, "Out of memory\n");
bbd7d57b 3817 }
88a420e4
CL
3818 /* Push back cpu slabs */
3819 flush_all(s);
3820
f64dc58c 3821 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3822 struct kmem_cache_node *n = get_node(s, node);
3823 unsigned long flags;
3824 struct page *page;
3825
9e86943b 3826 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3827 continue;
3828
3829 spin_lock_irqsave(&n->list_lock, flags);
3830 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3831 process_slab(&t, s, page, alloc, map);
88a420e4 3832 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3833 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3834 spin_unlock_irqrestore(&n->list_lock, flags);
3835 }
3836
3837 for (i = 0; i < t.count; i++) {
45edfa58 3838 struct location *l = &t.loc[i];
88a420e4 3839
9c246247 3840 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3841 break;
e374d483 3842 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3843
3844 if (l->addr)
62c70bce 3845 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3846 else
e374d483 3847 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3848
3849 if (l->sum_time != l->min_time) {
e374d483 3850 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3851 l->min_time,
3852 (long)div_u64(l->sum_time, l->count),
3853 l->max_time);
45edfa58 3854 } else
e374d483 3855 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3856 l->min_time);
3857
3858 if (l->min_pid != l->max_pid)
e374d483 3859 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3860 l->min_pid, l->max_pid);
3861 else
e374d483 3862 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3863 l->min_pid);
3864
174596a0
RR
3865 if (num_online_cpus() > 1 &&
3866 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3867 len < PAGE_SIZE - 60) {
3868 len += sprintf(buf + len, " cpus=");
3869 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3870 to_cpumask(l->cpus));
45edfa58
CL
3871 }
3872
62bc62a8 3873 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3874 len < PAGE_SIZE - 60) {
3875 len += sprintf(buf + len, " nodes=");
3876 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3877 l->nodes);
3878 }
3879
e374d483 3880 len += sprintf(buf + len, "\n");
88a420e4
CL
3881 }
3882
3883 free_loc_track(&t);
bbd7d57b 3884 kfree(map);
88a420e4 3885 if (!t.count)
e374d483
HH
3886 len += sprintf(buf, "No data\n");
3887 return len;
88a420e4 3888}
ab4d5ed5 3889#endif
88a420e4 3890
a5a84755
CL
3891#ifdef SLUB_RESILIENCY_TEST
3892static void resiliency_test(void)
3893{
3894 u8 *p;
3895
3896 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3897
3898 printk(KERN_ERR "SLUB resiliency testing\n");
3899 printk(KERN_ERR "-----------------------\n");
3900 printk(KERN_ERR "A. Corruption after allocation\n");
3901
3902 p = kzalloc(16, GFP_KERNEL);
3903 p[16] = 0x12;
3904 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3905 " 0x12->0x%p\n\n", p + 16);
3906
3907 validate_slab_cache(kmalloc_caches[4]);
3908
3909 /* Hmmm... The next two are dangerous */
3910 p = kzalloc(32, GFP_KERNEL);
3911 p[32 + sizeof(void *)] = 0x34;
3912 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3913 " 0x34 -> -0x%p\n", p);
3914 printk(KERN_ERR
3915 "If allocated object is overwritten then not detectable\n\n");
3916
3917 validate_slab_cache(kmalloc_caches[5]);
3918 p = kzalloc(64, GFP_KERNEL);
3919 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3920 *p = 0x56;
3921 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3922 p);
3923 printk(KERN_ERR
3924 "If allocated object is overwritten then not detectable\n\n");
3925 validate_slab_cache(kmalloc_caches[6]);
3926
3927 printk(KERN_ERR "\nB. Corruption after free\n");
3928 p = kzalloc(128, GFP_KERNEL);
3929 kfree(p);
3930 *p = 0x78;
3931 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3932 validate_slab_cache(kmalloc_caches[7]);
3933
3934 p = kzalloc(256, GFP_KERNEL);
3935 kfree(p);
3936 p[50] = 0x9a;
3937 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3938 p);
3939 validate_slab_cache(kmalloc_caches[8]);
3940
3941 p = kzalloc(512, GFP_KERNEL);
3942 kfree(p);
3943 p[512] = 0xab;
3944 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3945 validate_slab_cache(kmalloc_caches[9]);
3946}
3947#else
3948#ifdef CONFIG_SYSFS
3949static void resiliency_test(void) {};
3950#endif
3951#endif
3952
ab4d5ed5 3953#ifdef CONFIG_SYSFS
81819f0f 3954enum slab_stat_type {
205ab99d
CL
3955 SL_ALL, /* All slabs */
3956 SL_PARTIAL, /* Only partially allocated slabs */
3957 SL_CPU, /* Only slabs used for cpu caches */
3958 SL_OBJECTS, /* Determine allocated objects not slabs */
3959 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3960};
3961
205ab99d 3962#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3963#define SO_PARTIAL (1 << SL_PARTIAL)
3964#define SO_CPU (1 << SL_CPU)
3965#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3966#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3967
62e5c4b4
CG
3968static ssize_t show_slab_objects(struct kmem_cache *s,
3969 char *buf, unsigned long flags)
81819f0f
CL
3970{
3971 unsigned long total = 0;
81819f0f
CL
3972 int node;
3973 int x;
3974 unsigned long *nodes;
3975 unsigned long *per_cpu;
3976
3977 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3978 if (!nodes)
3979 return -ENOMEM;
81819f0f
CL
3980 per_cpu = nodes + nr_node_ids;
3981
205ab99d
CL
3982 if (flags & SO_CPU) {
3983 int cpu;
81819f0f 3984
205ab99d 3985 for_each_possible_cpu(cpu) {
9dfc6e68 3986 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3987
205ab99d
CL
3988 if (!c || c->node < 0)
3989 continue;
3990
3991 if (c->page) {
3992 if (flags & SO_TOTAL)
3993 x = c->page->objects;
3994 else if (flags & SO_OBJECTS)
3995 x = c->page->inuse;
81819f0f
CL
3996 else
3997 x = 1;
205ab99d 3998
81819f0f 3999 total += x;
205ab99d 4000 nodes[c->node] += x;
81819f0f 4001 }
205ab99d 4002 per_cpu[c->node]++;
81819f0f
CL
4003 }
4004 }
4005
04d94879 4006 lock_memory_hotplug();
ab4d5ed5 4007#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4008 if (flags & SO_ALL) {
4009 for_each_node_state(node, N_NORMAL_MEMORY) {
4010 struct kmem_cache_node *n = get_node(s, node);
4011
4012 if (flags & SO_TOTAL)
4013 x = atomic_long_read(&n->total_objects);
4014 else if (flags & SO_OBJECTS)
4015 x = atomic_long_read(&n->total_objects) -
4016 count_partial(n, count_free);
81819f0f 4017
81819f0f 4018 else
205ab99d 4019 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4020 total += x;
4021 nodes[node] += x;
4022 }
4023
ab4d5ed5
CL
4024 } else
4025#endif
4026 if (flags & SO_PARTIAL) {
205ab99d
CL
4027 for_each_node_state(node, N_NORMAL_MEMORY) {
4028 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4029
205ab99d
CL
4030 if (flags & SO_TOTAL)
4031 x = count_partial(n, count_total);
4032 else if (flags & SO_OBJECTS)
4033 x = count_partial(n, count_inuse);
81819f0f 4034 else
205ab99d 4035 x = n->nr_partial;
81819f0f
CL
4036 total += x;
4037 nodes[node] += x;
4038 }
4039 }
81819f0f
CL
4040 x = sprintf(buf, "%lu", total);
4041#ifdef CONFIG_NUMA
f64dc58c 4042 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4043 if (nodes[node])
4044 x += sprintf(buf + x, " N%d=%lu",
4045 node, nodes[node]);
4046#endif
04d94879 4047 unlock_memory_hotplug();
81819f0f
CL
4048 kfree(nodes);
4049 return x + sprintf(buf + x, "\n");
4050}
4051
ab4d5ed5 4052#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4053static int any_slab_objects(struct kmem_cache *s)
4054{
4055 int node;
81819f0f 4056
dfb4f096 4057 for_each_online_node(node) {
81819f0f
CL
4058 struct kmem_cache_node *n = get_node(s, node);
4059
dfb4f096
CL
4060 if (!n)
4061 continue;
4062
4ea33e2d 4063 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4064 return 1;
4065 }
4066 return 0;
4067}
ab4d5ed5 4068#endif
81819f0f
CL
4069
4070#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4071#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4072
4073struct slab_attribute {
4074 struct attribute attr;
4075 ssize_t (*show)(struct kmem_cache *s, char *buf);
4076 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4077};
4078
4079#define SLAB_ATTR_RO(_name) \
4080 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4081
4082#define SLAB_ATTR(_name) \
4083 static struct slab_attribute _name##_attr = \
4084 __ATTR(_name, 0644, _name##_show, _name##_store)
4085
81819f0f
CL
4086static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4087{
4088 return sprintf(buf, "%d\n", s->size);
4089}
4090SLAB_ATTR_RO(slab_size);
4091
4092static ssize_t align_show(struct kmem_cache *s, char *buf)
4093{
4094 return sprintf(buf, "%d\n", s->align);
4095}
4096SLAB_ATTR_RO(align);
4097
4098static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4099{
4100 return sprintf(buf, "%d\n", s->objsize);
4101}
4102SLAB_ATTR_RO(object_size);
4103
4104static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4105{
834f3d11 4106 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4107}
4108SLAB_ATTR_RO(objs_per_slab);
4109
06b285dc
CL
4110static ssize_t order_store(struct kmem_cache *s,
4111 const char *buf, size_t length)
4112{
0121c619
CL
4113 unsigned long order;
4114 int err;
4115
4116 err = strict_strtoul(buf, 10, &order);
4117 if (err)
4118 return err;
06b285dc
CL
4119
4120 if (order > slub_max_order || order < slub_min_order)
4121 return -EINVAL;
4122
4123 calculate_sizes(s, order);
4124 return length;
4125}
4126
81819f0f
CL
4127static ssize_t order_show(struct kmem_cache *s, char *buf)
4128{
834f3d11 4129 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4130}
06b285dc 4131SLAB_ATTR(order);
81819f0f 4132
73d342b1
DR
4133static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4134{
4135 return sprintf(buf, "%lu\n", s->min_partial);
4136}
4137
4138static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4139 size_t length)
4140{
4141 unsigned long min;
4142 int err;
4143
4144 err = strict_strtoul(buf, 10, &min);
4145 if (err)
4146 return err;
4147
c0bdb232 4148 set_min_partial(s, min);
73d342b1
DR
4149 return length;
4150}
4151SLAB_ATTR(min_partial);
4152
81819f0f
CL
4153static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4154{
62c70bce
JP
4155 if (!s->ctor)
4156 return 0;
4157 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4158}
4159SLAB_ATTR_RO(ctor);
4160
81819f0f
CL
4161static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4162{
4163 return sprintf(buf, "%d\n", s->refcount - 1);
4164}
4165SLAB_ATTR_RO(aliases);
4166
81819f0f
CL
4167static ssize_t partial_show(struct kmem_cache *s, char *buf)
4168{
d9acf4b7 4169 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4170}
4171SLAB_ATTR_RO(partial);
4172
4173static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4174{
d9acf4b7 4175 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4176}
4177SLAB_ATTR_RO(cpu_slabs);
4178
4179static ssize_t objects_show(struct kmem_cache *s, char *buf)
4180{
205ab99d 4181 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4182}
4183SLAB_ATTR_RO(objects);
4184
205ab99d
CL
4185static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4186{
4187 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4188}
4189SLAB_ATTR_RO(objects_partial);
4190
a5a84755
CL
4191static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4192{
4193 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4194}
4195
4196static ssize_t reclaim_account_store(struct kmem_cache *s,
4197 const char *buf, size_t length)
4198{
4199 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4200 if (buf[0] == '1')
4201 s->flags |= SLAB_RECLAIM_ACCOUNT;
4202 return length;
4203}
4204SLAB_ATTR(reclaim_account);
4205
4206static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4207{
4208 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4209}
4210SLAB_ATTR_RO(hwcache_align);
4211
4212#ifdef CONFIG_ZONE_DMA
4213static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4214{
4215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4216}
4217SLAB_ATTR_RO(cache_dma);
4218#endif
4219
4220static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4221{
4222 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4223}
4224SLAB_ATTR_RO(destroy_by_rcu);
4225
ab4d5ed5 4226#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4227static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4228{
4229 return show_slab_objects(s, buf, SO_ALL);
4230}
4231SLAB_ATTR_RO(slabs);
4232
205ab99d
CL
4233static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4234{
4235 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4236}
4237SLAB_ATTR_RO(total_objects);
4238
81819f0f
CL
4239static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4240{
4241 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4242}
4243
4244static ssize_t sanity_checks_store(struct kmem_cache *s,
4245 const char *buf, size_t length)
4246{
4247 s->flags &= ~SLAB_DEBUG_FREE;
4248 if (buf[0] == '1')
4249 s->flags |= SLAB_DEBUG_FREE;
4250 return length;
4251}
4252SLAB_ATTR(sanity_checks);
4253
4254static ssize_t trace_show(struct kmem_cache *s, char *buf)
4255{
4256 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4257}
4258
4259static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4260 size_t length)
4261{
4262 s->flags &= ~SLAB_TRACE;
4263 if (buf[0] == '1')
4264 s->flags |= SLAB_TRACE;
4265 return length;
4266}
4267SLAB_ATTR(trace);
4268
81819f0f
CL
4269static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4270{
4271 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4272}
4273
4274static ssize_t red_zone_store(struct kmem_cache *s,
4275 const char *buf, size_t length)
4276{
4277 if (any_slab_objects(s))
4278 return -EBUSY;
4279
4280 s->flags &= ~SLAB_RED_ZONE;
4281 if (buf[0] == '1')
4282 s->flags |= SLAB_RED_ZONE;
06b285dc 4283 calculate_sizes(s, -1);
81819f0f
CL
4284 return length;
4285}
4286SLAB_ATTR(red_zone);
4287
4288static ssize_t poison_show(struct kmem_cache *s, char *buf)
4289{
4290 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4291}
4292
4293static ssize_t poison_store(struct kmem_cache *s,
4294 const char *buf, size_t length)
4295{
4296 if (any_slab_objects(s))
4297 return -EBUSY;
4298
4299 s->flags &= ~SLAB_POISON;
4300 if (buf[0] == '1')
4301 s->flags |= SLAB_POISON;
06b285dc 4302 calculate_sizes(s, -1);
81819f0f
CL
4303 return length;
4304}
4305SLAB_ATTR(poison);
4306
4307static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4308{
4309 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4310}
4311
4312static ssize_t store_user_store(struct kmem_cache *s,
4313 const char *buf, size_t length)
4314{
4315 if (any_slab_objects(s))
4316 return -EBUSY;
4317
4318 s->flags &= ~SLAB_STORE_USER;
4319 if (buf[0] == '1')
4320 s->flags |= SLAB_STORE_USER;
06b285dc 4321 calculate_sizes(s, -1);
81819f0f
CL
4322 return length;
4323}
4324SLAB_ATTR(store_user);
4325
53e15af0
CL
4326static ssize_t validate_show(struct kmem_cache *s, char *buf)
4327{
4328 return 0;
4329}
4330
4331static ssize_t validate_store(struct kmem_cache *s,
4332 const char *buf, size_t length)
4333{
434e245d
CL
4334 int ret = -EINVAL;
4335
4336 if (buf[0] == '1') {
4337 ret = validate_slab_cache(s);
4338 if (ret >= 0)
4339 ret = length;
4340 }
4341 return ret;
53e15af0
CL
4342}
4343SLAB_ATTR(validate);
a5a84755
CL
4344
4345static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4346{
4347 if (!(s->flags & SLAB_STORE_USER))
4348 return -ENOSYS;
4349 return list_locations(s, buf, TRACK_ALLOC);
4350}
4351SLAB_ATTR_RO(alloc_calls);
4352
4353static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4354{
4355 if (!(s->flags & SLAB_STORE_USER))
4356 return -ENOSYS;
4357 return list_locations(s, buf, TRACK_FREE);
4358}
4359SLAB_ATTR_RO(free_calls);
4360#endif /* CONFIG_SLUB_DEBUG */
4361
4362#ifdef CONFIG_FAILSLAB
4363static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4364{
4365 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4366}
4367
4368static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4369 size_t length)
4370{
4371 s->flags &= ~SLAB_FAILSLAB;
4372 if (buf[0] == '1')
4373 s->flags |= SLAB_FAILSLAB;
4374 return length;
4375}
4376SLAB_ATTR(failslab);
ab4d5ed5 4377#endif
53e15af0 4378
2086d26a
CL
4379static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4380{
4381 return 0;
4382}
4383
4384static ssize_t shrink_store(struct kmem_cache *s,
4385 const char *buf, size_t length)
4386{
4387 if (buf[0] == '1') {
4388 int rc = kmem_cache_shrink(s);
4389
4390 if (rc)
4391 return rc;
4392 } else
4393 return -EINVAL;
4394 return length;
4395}
4396SLAB_ATTR(shrink);
4397
81819f0f 4398#ifdef CONFIG_NUMA
9824601e 4399static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4400{
9824601e 4401 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4402}
4403
9824601e 4404static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4405 const char *buf, size_t length)
4406{
0121c619
CL
4407 unsigned long ratio;
4408 int err;
4409
4410 err = strict_strtoul(buf, 10, &ratio);
4411 if (err)
4412 return err;
4413
e2cb96b7 4414 if (ratio <= 100)
0121c619 4415 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4416
81819f0f
CL
4417 return length;
4418}
9824601e 4419SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4420#endif
4421
8ff12cfc 4422#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4423static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4424{
4425 unsigned long sum = 0;
4426 int cpu;
4427 int len;
4428 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4429
4430 if (!data)
4431 return -ENOMEM;
4432
4433 for_each_online_cpu(cpu) {
9dfc6e68 4434 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4435
4436 data[cpu] = x;
4437 sum += x;
4438 }
4439
4440 len = sprintf(buf, "%lu", sum);
4441
50ef37b9 4442#ifdef CONFIG_SMP
8ff12cfc
CL
4443 for_each_online_cpu(cpu) {
4444 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4445 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4446 }
50ef37b9 4447#endif
8ff12cfc
CL
4448 kfree(data);
4449 return len + sprintf(buf + len, "\n");
4450}
4451
78eb00cc
DR
4452static void clear_stat(struct kmem_cache *s, enum stat_item si)
4453{
4454 int cpu;
4455
4456 for_each_online_cpu(cpu)
9dfc6e68 4457 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4458}
4459
8ff12cfc
CL
4460#define STAT_ATTR(si, text) \
4461static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4462{ \
4463 return show_stat(s, buf, si); \
4464} \
78eb00cc
DR
4465static ssize_t text##_store(struct kmem_cache *s, \
4466 const char *buf, size_t length) \
4467{ \
4468 if (buf[0] != '0') \
4469 return -EINVAL; \
4470 clear_stat(s, si); \
4471 return length; \
4472} \
4473SLAB_ATTR(text); \
8ff12cfc
CL
4474
4475STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4476STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4477STAT_ATTR(FREE_FASTPATH, free_fastpath);
4478STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4479STAT_ATTR(FREE_FROZEN, free_frozen);
4480STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4481STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4482STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4483STAT_ATTR(ALLOC_SLAB, alloc_slab);
4484STAT_ATTR(ALLOC_REFILL, alloc_refill);
4485STAT_ATTR(FREE_SLAB, free_slab);
4486STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4487STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4488STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4489STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4490STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4491STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4492STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4493#endif
4494
06428780 4495static struct attribute *slab_attrs[] = {
81819f0f
CL
4496 &slab_size_attr.attr,
4497 &object_size_attr.attr,
4498 &objs_per_slab_attr.attr,
4499 &order_attr.attr,
73d342b1 4500 &min_partial_attr.attr,
81819f0f 4501 &objects_attr.attr,
205ab99d 4502 &objects_partial_attr.attr,
81819f0f
CL
4503 &partial_attr.attr,
4504 &cpu_slabs_attr.attr,
4505 &ctor_attr.attr,
81819f0f
CL
4506 &aliases_attr.attr,
4507 &align_attr.attr,
81819f0f
CL
4508 &hwcache_align_attr.attr,
4509 &reclaim_account_attr.attr,
4510 &destroy_by_rcu_attr.attr,
a5a84755 4511 &shrink_attr.attr,
ab4d5ed5 4512#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4513 &total_objects_attr.attr,
4514 &slabs_attr.attr,
4515 &sanity_checks_attr.attr,
4516 &trace_attr.attr,
81819f0f
CL
4517 &red_zone_attr.attr,
4518 &poison_attr.attr,
4519 &store_user_attr.attr,
53e15af0 4520 &validate_attr.attr,
88a420e4
CL
4521 &alloc_calls_attr.attr,
4522 &free_calls_attr.attr,
ab4d5ed5 4523#endif
81819f0f
CL
4524#ifdef CONFIG_ZONE_DMA
4525 &cache_dma_attr.attr,
4526#endif
4527#ifdef CONFIG_NUMA
9824601e 4528 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4529#endif
4530#ifdef CONFIG_SLUB_STATS
4531 &alloc_fastpath_attr.attr,
4532 &alloc_slowpath_attr.attr,
4533 &free_fastpath_attr.attr,
4534 &free_slowpath_attr.attr,
4535 &free_frozen_attr.attr,
4536 &free_add_partial_attr.attr,
4537 &free_remove_partial_attr.attr,
4538 &alloc_from_partial_attr.attr,
4539 &alloc_slab_attr.attr,
4540 &alloc_refill_attr.attr,
4541 &free_slab_attr.attr,
4542 &cpuslab_flush_attr.attr,
4543 &deactivate_full_attr.attr,
4544 &deactivate_empty_attr.attr,
4545 &deactivate_to_head_attr.attr,
4546 &deactivate_to_tail_attr.attr,
4547 &deactivate_remote_frees_attr.attr,
65c3376a 4548 &order_fallback_attr.attr,
81819f0f 4549#endif
4c13dd3b
DM
4550#ifdef CONFIG_FAILSLAB
4551 &failslab_attr.attr,
4552#endif
4553
81819f0f
CL
4554 NULL
4555};
4556
4557static struct attribute_group slab_attr_group = {
4558 .attrs = slab_attrs,
4559};
4560
4561static ssize_t slab_attr_show(struct kobject *kobj,
4562 struct attribute *attr,
4563 char *buf)
4564{
4565 struct slab_attribute *attribute;
4566 struct kmem_cache *s;
4567 int err;
4568
4569 attribute = to_slab_attr(attr);
4570 s = to_slab(kobj);
4571
4572 if (!attribute->show)
4573 return -EIO;
4574
4575 err = attribute->show(s, buf);
4576
4577 return err;
4578}
4579
4580static ssize_t slab_attr_store(struct kobject *kobj,
4581 struct attribute *attr,
4582 const char *buf, size_t len)
4583{
4584 struct slab_attribute *attribute;
4585 struct kmem_cache *s;
4586 int err;
4587
4588 attribute = to_slab_attr(attr);
4589 s = to_slab(kobj);
4590
4591 if (!attribute->store)
4592 return -EIO;
4593
4594 err = attribute->store(s, buf, len);
4595
4596 return err;
4597}
4598
151c602f
CL
4599static void kmem_cache_release(struct kobject *kobj)
4600{
4601 struct kmem_cache *s = to_slab(kobj);
4602
84c1cf62 4603 kfree(s->name);
151c602f
CL
4604 kfree(s);
4605}
4606
52cf25d0 4607static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4608 .show = slab_attr_show,
4609 .store = slab_attr_store,
4610};
4611
4612static struct kobj_type slab_ktype = {
4613 .sysfs_ops = &slab_sysfs_ops,
151c602f 4614 .release = kmem_cache_release
81819f0f
CL
4615};
4616
4617static int uevent_filter(struct kset *kset, struct kobject *kobj)
4618{
4619 struct kobj_type *ktype = get_ktype(kobj);
4620
4621 if (ktype == &slab_ktype)
4622 return 1;
4623 return 0;
4624}
4625
9cd43611 4626static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4627 .filter = uevent_filter,
4628};
4629
27c3a314 4630static struct kset *slab_kset;
81819f0f
CL
4631
4632#define ID_STR_LENGTH 64
4633
4634/* Create a unique string id for a slab cache:
6446faa2
CL
4635 *
4636 * Format :[flags-]size
81819f0f
CL
4637 */
4638static char *create_unique_id(struct kmem_cache *s)
4639{
4640 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4641 char *p = name;
4642
4643 BUG_ON(!name);
4644
4645 *p++ = ':';
4646 /*
4647 * First flags affecting slabcache operations. We will only
4648 * get here for aliasable slabs so we do not need to support
4649 * too many flags. The flags here must cover all flags that
4650 * are matched during merging to guarantee that the id is
4651 * unique.
4652 */
4653 if (s->flags & SLAB_CACHE_DMA)
4654 *p++ = 'd';
4655 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4656 *p++ = 'a';
4657 if (s->flags & SLAB_DEBUG_FREE)
4658 *p++ = 'F';
5a896d9e
VN
4659 if (!(s->flags & SLAB_NOTRACK))
4660 *p++ = 't';
81819f0f
CL
4661 if (p != name + 1)
4662 *p++ = '-';
4663 p += sprintf(p, "%07d", s->size);
4664 BUG_ON(p > name + ID_STR_LENGTH - 1);
4665 return name;
4666}
4667
4668static int sysfs_slab_add(struct kmem_cache *s)
4669{
4670 int err;
4671 const char *name;
4672 int unmergeable;
4673
4674 if (slab_state < SYSFS)
4675 /* Defer until later */
4676 return 0;
4677
4678 unmergeable = slab_unmergeable(s);
4679 if (unmergeable) {
4680 /*
4681 * Slabcache can never be merged so we can use the name proper.
4682 * This is typically the case for debug situations. In that
4683 * case we can catch duplicate names easily.
4684 */
27c3a314 4685 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4686 name = s->name;
4687 } else {
4688 /*
4689 * Create a unique name for the slab as a target
4690 * for the symlinks.
4691 */
4692 name = create_unique_id(s);
4693 }
4694
27c3a314 4695 s->kobj.kset = slab_kset;
1eada11c
GKH
4696 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4697 if (err) {
4698 kobject_put(&s->kobj);
81819f0f 4699 return err;
1eada11c 4700 }
81819f0f
CL
4701
4702 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4703 if (err) {
4704 kobject_del(&s->kobj);
4705 kobject_put(&s->kobj);
81819f0f 4706 return err;
5788d8ad 4707 }
81819f0f
CL
4708 kobject_uevent(&s->kobj, KOBJ_ADD);
4709 if (!unmergeable) {
4710 /* Setup first alias */
4711 sysfs_slab_alias(s, s->name);
4712 kfree(name);
4713 }
4714 return 0;
4715}
4716
4717static void sysfs_slab_remove(struct kmem_cache *s)
4718{
2bce6485
CL
4719 if (slab_state < SYSFS)
4720 /*
4721 * Sysfs has not been setup yet so no need to remove the
4722 * cache from sysfs.
4723 */
4724 return;
4725
81819f0f
CL
4726 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4727 kobject_del(&s->kobj);
151c602f 4728 kobject_put(&s->kobj);
81819f0f
CL
4729}
4730
4731/*
4732 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4733 * available lest we lose that information.
81819f0f
CL
4734 */
4735struct saved_alias {
4736 struct kmem_cache *s;
4737 const char *name;
4738 struct saved_alias *next;
4739};
4740
5af328a5 4741static struct saved_alias *alias_list;
81819f0f
CL
4742
4743static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4744{
4745 struct saved_alias *al;
4746
4747 if (slab_state == SYSFS) {
4748 /*
4749 * If we have a leftover link then remove it.
4750 */
27c3a314
GKH
4751 sysfs_remove_link(&slab_kset->kobj, name);
4752 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4753 }
4754
4755 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4756 if (!al)
4757 return -ENOMEM;
4758
4759 al->s = s;
4760 al->name = name;
4761 al->next = alias_list;
4762 alias_list = al;
4763 return 0;
4764}
4765
4766static int __init slab_sysfs_init(void)
4767{
5b95a4ac 4768 struct kmem_cache *s;
81819f0f
CL
4769 int err;
4770
2bce6485
CL
4771 down_write(&slub_lock);
4772
0ff21e46 4773 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4774 if (!slab_kset) {
2bce6485 4775 up_write(&slub_lock);
81819f0f
CL
4776 printk(KERN_ERR "Cannot register slab subsystem.\n");
4777 return -ENOSYS;
4778 }
4779
26a7bd03
CL
4780 slab_state = SYSFS;
4781
5b95a4ac 4782 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4783 err = sysfs_slab_add(s);
5d540fb7
CL
4784 if (err)
4785 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4786 " to sysfs\n", s->name);
26a7bd03 4787 }
81819f0f
CL
4788
4789 while (alias_list) {
4790 struct saved_alias *al = alias_list;
4791
4792 alias_list = alias_list->next;
4793 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4794 if (err)
4795 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4796 " %s to sysfs\n", s->name);
81819f0f
CL
4797 kfree(al);
4798 }
4799
2bce6485 4800 up_write(&slub_lock);
81819f0f
CL
4801 resiliency_test();
4802 return 0;
4803}
4804
4805__initcall(slab_sysfs_init);
ab4d5ed5 4806#endif /* CONFIG_SYSFS */
57ed3eda
PE
4807
4808/*
4809 * The /proc/slabinfo ABI
4810 */
158a9624 4811#ifdef CONFIG_SLABINFO
57ed3eda
PE
4812static void print_slabinfo_header(struct seq_file *m)
4813{
4814 seq_puts(m, "slabinfo - version: 2.1\n");
4815 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4816 "<objperslab> <pagesperslab>");
4817 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4818 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4819 seq_putc(m, '\n');
4820}
4821
4822static void *s_start(struct seq_file *m, loff_t *pos)
4823{
4824 loff_t n = *pos;
4825
4826 down_read(&slub_lock);
4827 if (!n)
4828 print_slabinfo_header(m);
4829
4830 return seq_list_start(&slab_caches, *pos);
4831}
4832
4833static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4834{
4835 return seq_list_next(p, &slab_caches, pos);
4836}
4837
4838static void s_stop(struct seq_file *m, void *p)
4839{
4840 up_read(&slub_lock);
4841}
4842
4843static int s_show(struct seq_file *m, void *p)
4844{
4845 unsigned long nr_partials = 0;
4846 unsigned long nr_slabs = 0;
4847 unsigned long nr_inuse = 0;
205ab99d
CL
4848 unsigned long nr_objs = 0;
4849 unsigned long nr_free = 0;
57ed3eda
PE
4850 struct kmem_cache *s;
4851 int node;
4852
4853 s = list_entry(p, struct kmem_cache, list);
4854
4855 for_each_online_node(node) {
4856 struct kmem_cache_node *n = get_node(s, node);
4857
4858 if (!n)
4859 continue;
4860
4861 nr_partials += n->nr_partial;
4862 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4863 nr_objs += atomic_long_read(&n->total_objects);
4864 nr_free += count_partial(n, count_free);
57ed3eda
PE
4865 }
4866
205ab99d 4867 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4868
4869 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4870 nr_objs, s->size, oo_objects(s->oo),
4871 (1 << oo_order(s->oo)));
57ed3eda
PE
4872 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4873 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4874 0UL);
4875 seq_putc(m, '\n');
4876 return 0;
4877}
4878
7b3c3a50 4879static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4880 .start = s_start,
4881 .next = s_next,
4882 .stop = s_stop,
4883 .show = s_show,
4884};
4885
7b3c3a50
AD
4886static int slabinfo_open(struct inode *inode, struct file *file)
4887{
4888 return seq_open(file, &slabinfo_op);
4889}
4890
4891static const struct file_operations proc_slabinfo_operations = {
4892 .open = slabinfo_open,
4893 .read = seq_read,
4894 .llseek = seq_lseek,
4895 .release = seq_release,
4896};
4897
4898static int __init slab_proc_init(void)
4899{
cf5d1131 4900 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4901 return 0;
4902}
4903module_init(slab_proc_init);
158a9624 4904#endif /* CONFIG_SLABINFO */