slub: Use freelist instead of "object" in __slab_alloc
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
4de900b4 32#include <linux/prefetch.h>
81819f0f 33
4a92379b
RK
34#include <trace/events/kmem.h>
35
81819f0f
CL
36/*
37 * Lock order:
881db7fb
CL
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 41 *
881db7fb
CL
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
81819f0f
CL
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
672bba3a
CL
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 81 * freed then the slab will show up again on the partial lists.
672bba3a
CL
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
81819f0f
CL
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
4b6f0750
CL
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
dfb4f096 103 * freelist that allows lockless access to
894b8788
CL
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
81819f0f
CL
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
894b8788 109 * the fast path and disables lockless freelists.
81819f0f
CL
110 */
111
af537b0a
CL
112#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115static inline int kmem_cache_debug(struct kmem_cache *s)
116{
5577bd8a 117#ifdef CONFIG_SLUB_DEBUG
af537b0a 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 119#else
af537b0a 120 return 0;
5577bd8a 121#endif
af537b0a 122}
5577bd8a 123
81819f0f
CL
124/*
125 * Issues still to be resolved:
126 *
81819f0f
CL
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
81819f0f
CL
129 * - Variable sizing of the per node arrays
130 */
131
132/* Enable to test recovery from slab corruption on boot */
133#undef SLUB_RESILIENCY_TEST
134
b789ef51
CL
135/* Enable to log cmpxchg failures */
136#undef SLUB_DEBUG_CMPXCHG
137
2086d26a
CL
138/*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
76be8950 142#define MIN_PARTIAL 5
e95eed57 143
2086d26a
CL
144/*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149#define MAX_PARTIAL 10
150
81819f0f
CL
151#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
672bba3a 153
fa5ec8a1 154/*
3de47213
DR
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
fa5ec8a1 158 */
3de47213 159#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 160
81819f0f
CL
161/*
162 * Set of flags that will prevent slab merging
163 */
164#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
81819f0f
CL
167
168#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 169 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 170
210b5c06
CG
171#define OO_SHIFT 16
172#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 173#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 174
81819f0f 175/* Internal SLUB flags */
f90ec390 176#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 177#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
178
179static int kmem_size = sizeof(struct kmem_cache);
180
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
185static enum {
186 DOWN, /* No slab functionality available */
51df1142 187 PARTIAL, /* Kmem_cache_node works */
672bba3a 188 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
189 SYSFS /* Sysfs up */
190} slab_state = DOWN;
191
192/* A list of all slab caches on the system */
193static DECLARE_RWSEM(slub_lock);
5af328a5 194static LIST_HEAD(slab_caches);
81819f0f 195
02cbc874
CL
196/*
197 * Tracking user of a slab.
198 */
d6543e39 199#define TRACK_ADDRS_COUNT 16
02cbc874 200struct track {
ce71e27c 201 unsigned long addr; /* Called from address */
d6543e39
BG
202#ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204#endif
02cbc874
CL
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208};
209
210enum track_item { TRACK_ALLOC, TRACK_FREE };
211
ab4d5ed5 212#ifdef CONFIG_SYSFS
81819f0f
CL
213static int sysfs_slab_add(struct kmem_cache *);
214static int sysfs_slab_alias(struct kmem_cache *, const char *);
215static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 216
81819f0f 217#else
0c710013
CL
218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
151c602f
CL
221static inline void sysfs_slab_remove(struct kmem_cache *s)
222{
84c1cf62 223 kfree(s->name);
151c602f
CL
224 kfree(s);
225}
8ff12cfc 226
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
84e554e6 232 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
233#endif
234}
235
81819f0f
CL
236/********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240int slab_is_available(void)
241{
242 return slab_state >= UP;
243}
244
245static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246{
81819f0f 247 return s->node[node];
81819f0f
CL
248}
249
6446faa2 250/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
251static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253{
254 void *base;
255
a973e9dd 256 if (!object)
02cbc874
CL
257 return 1;
258
a973e9dd 259 base = page_address(page);
39b26464 260 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266}
267
7656c72b
CL
268static inline void *get_freepointer(struct kmem_cache *s, void *object)
269{
270 return *(void **)(object + s->offset);
271}
272
0ad9500e
ED
273static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274{
275 prefetch(object + s->offset);
276}
277
1393d9a1
CL
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
280 void *p;
281
282#ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284#else
285 p = get_freepointer(s, object);
286#endif
287 return p;
288}
289
7656c72b
CL
290static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291{
292 *(void **)(object + s->offset) = fp;
293}
294
295/* Loop over all objects in a slab */
224a88be
CL
296#define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
298 __p += (__s)->size)
299
7656c72b
CL
300/* Determine object index from a given position */
301static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302{
303 return (p - addr) / s->size;
304}
305
d71f606f
MK
306static inline size_t slab_ksize(const struct kmem_cache *s)
307{
308#ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->objsize;
315
316#endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328}
329
ab9a0f19
LJ
330static inline int order_objects(int order, unsigned long size, int reserved)
331{
332 return ((PAGE_SIZE << order) - reserved) / size;
333}
334
834f3d11 335static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 336 unsigned long size, int reserved)
834f3d11
CL
337{
338 struct kmem_cache_order_objects x = {
ab9a0f19 339 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
340 };
341
342 return x;
343}
344
345static inline int oo_order(struct kmem_cache_order_objects x)
346{
210b5c06 347 return x.x >> OO_SHIFT;
834f3d11
CL
348}
349
350static inline int oo_objects(struct kmem_cache_order_objects x)
351{
210b5c06 352 return x.x & OO_MASK;
834f3d11
CL
353}
354
881db7fb
CL
355/*
356 * Per slab locking using the pagelock
357 */
358static __always_inline void slab_lock(struct page *page)
359{
360 bit_spin_lock(PG_locked, &page->flags);
361}
362
363static __always_inline void slab_unlock(struct page *page)
364{
365 __bit_spin_unlock(PG_locked, &page->flags);
366}
367
1d07171c
CL
368/* Interrupts must be disabled (for the fallback code to work right) */
369static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373{
374 VM_BUG_ON(!irqs_disabled());
2565409f
HC
375#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 377 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 378 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383#endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400#endif
401
402 return 0;
403}
404
b789ef51
CL
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409{
2565409f
HC
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 412 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 413 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418#endif
419 {
1d07171c
CL
420 unsigned long flags;
421
422 local_irq_save(flags);
881db7fb 423 slab_lock(page);
b789ef51
CL
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 return 1;
430 }
881db7fb 431 slab_unlock(page);
1d07171c 432 local_irq_restore(flags);
b789ef51
CL
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440#endif
441
442 return 0;
443}
444
41ecc55b 445#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
446/*
447 * Determine a map of object in use on a page.
448 *
881db7fb 449 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
450 * not vanish from under us.
451 */
452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453{
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459}
460
41ecc55b
CL
461/*
462 * Debug settings:
463 */
f0630fff
CL
464#ifdef CONFIG_SLUB_DEBUG_ON
465static int slub_debug = DEBUG_DEFAULT_FLAGS;
466#else
41ecc55b 467static int slub_debug;
f0630fff 468#endif
41ecc55b
CL
469
470static char *slub_debug_slabs;
fa5ec8a1 471static int disable_higher_order_debug;
41ecc55b 472
81819f0f
CL
473/*
474 * Object debugging
475 */
476static void print_section(char *text, u8 *addr, unsigned int length)
477{
ffc79d28
SAS
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
81819f0f
CL
480}
481
81819f0f
CL
482static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484{
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493}
494
495static void set_track(struct kmem_cache *s, void *object,
ce71e27c 496 enum track_item alloc, unsigned long addr)
81819f0f 497{
1a00df4a 498 struct track *p = get_track(s, object, alloc);
81819f0f 499
81819f0f 500 if (addr) {
d6543e39
BG
501#ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518#endif
81819f0f
CL
519 p->addr = addr;
520 p->cpu = smp_processor_id();
88e4ccf2 521 p->pid = current->pid;
81819f0f
CL
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525}
526
81819f0f
CL
527static void init_tracking(struct kmem_cache *s, void *object)
528{
24922684
CL
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
ce71e27c
EGM
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
534}
535
536static void print_track(const char *s, struct track *t)
537{
538 if (!t->addr)
539 return;
540
7daf705f 541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
543#ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552#endif
24922684
CL
553}
554
555static void print_tracking(struct kmem_cache *s, void *object)
556{
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562}
563
564static void print_page_info(struct page *page)
565{
39b26464
CL
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
568
569}
570
571static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572{
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
265d47e7 581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
81819f0f
CL
584}
585
24922684
CL
586static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587{
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
598{
599 unsigned int off; /* Offset of last byte */
a973e9dd 600 u8 *addr = page_address(page);
24922684
CL
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
ffc79d28 610 print_section("Bytes b4 ", p - 16, 16);
81819f0f 611
ffc79d28
SAS
612 print_section("Object ", p, min_t(unsigned long, s->objsize,
613 PAGE_SIZE));
81819f0f 614 if (s->flags & SLAB_RED_ZONE)
ffc79d28 615 print_section("Redzone ", p + s->objsize,
81819f0f
CL
616 s->inuse - s->objsize);
617
81819f0f
CL
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
24922684 623 if (s->flags & SLAB_STORE_USER)
81819f0f 624 off += 2 * sizeof(struct track);
81819f0f
CL
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
ffc79d28 628 print_section("Padding ", p + off, s->size - off);
24922684
CL
629
630 dump_stack();
81819f0f
CL
631}
632
633static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635{
3dc50637 636 slab_bug(s, "%s", reason);
24922684 637 print_trailer(s, page, object);
81819f0f
CL
638}
639
24922684 640static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->objsize - 1);
06428780 659 p[s->objsize - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
f7cb1933 663 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
672bba3a
CL
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
790 u8 *endobject = object + s->objsize;
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 794 endobject, val, s->inuse - s->objsize))
81819f0f 795 return 0;
81819f0f 796 } else {
3adbefee
IM
797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->objsize);
800 }
81819f0f
CL
801 }
802
803 if (s->flags & SLAB_POISON) {
f7cb1933 804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->objsize - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
06428780 808 p + s->objsize - 1, POISON_END, 1)))
81819f0f 809 return 0;
81819f0f
CL
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
f7cb1933 816 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
9f6c708e 827 * No choice but to zap it and thus lose the remainder
81819f0f 828 * of the free objects in this slab. May cause
672bba3a 829 * another error because the object count is now wrong.
81819f0f 830 */
a973e9dd 831 set_freepointer(s, p, NULL);
81819f0f
CL
832 return 0;
833 }
834 return 1;
835}
836
837static int check_slab(struct kmem_cache *s, struct page *page)
838{
39b26464
CL
839 int maxobj;
840
81819f0f
CL
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
24922684 844 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
845 return 0;
846 }
39b26464 847
ab9a0f19 848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
24922684 855 slab_err(s, page, "inuse %u > max %u",
39b26464 856 s->name, page->inuse, page->objects);
81819f0f
CL
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862}
863
864/*
672bba3a
CL
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
867 */
868static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869{
870 int nr = 0;
881db7fb 871 void *fp;
81819f0f 872 void *object = NULL;
224a88be 873 unsigned long max_objects;
81819f0f 874
881db7fb 875 fp = page->freelist;
39b26464 876 while (fp && nr <= page->objects) {
81819f0f
CL
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
a973e9dd 883 set_freepointer(s, object, NULL);
81819f0f
CL
884 break;
885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
ffc79d28 929 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
930
931 dump_stack();
932 }
933}
934
c016b0bd
CL
935/*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940{
c1d50836 941 flags &= gfp_allowed_mask;
c016b0bd
CL
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
945 return should_failslab(s->objsize, flags, s->flags);
946}
947
948static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949{
c1d50836 950 flags &= gfp_allowed_mask;
b3d41885 951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953}
954
955static inline void slab_free_hook(struct kmem_cache *s, void *x)
956{
957 kmemleak_free_recursive(x, s->flags);
c016b0bd 958
d3f661d6
CL
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->objsize);
970 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
971 local_irq_restore(flags);
972 }
973#endif
f9b615de
TG
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
976}
977
643b1138 978/*
672bba3a 979 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
980 *
981 * list_lock must be held.
643b1138 982 */
5cc6eee8
CL
983static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
643b1138 985{
5cc6eee8
CL
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
643b1138 989 list_add(&page->lru, &n->full);
643b1138
CL
990}
991
5cc6eee8
CL
992/*
993 * list_lock must be held.
994 */
643b1138
CL
995static void remove_full(struct kmem_cache *s, struct page *page)
996{
643b1138
CL
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
643b1138 1000 list_del(&page->lru);
643b1138
CL
1001}
1002
0f389ec6
CL
1003/* Tracking of the number of slabs for debugging purposes */
1004static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005{
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009}
1010
26c02cf0
AB
1011static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012{
1013 return atomic_long_read(&n->nr_slabs);
1014}
1015
205ab99d 1016static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1017{
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
7340cc84 1026 if (n) {
0f389ec6 1027 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1028 atomic_long_add(objects, &n->total_objects);
1029 }
0f389ec6 1030}
205ab99d 1031static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
205ab99d 1036 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1037}
1038
1039/* Object debug checks for alloc/free paths */
3ec09742
CL
1040static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042{
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
f7cb1933 1046 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1047 init_tracking(s, object);
1048}
1049
1537066c 1050static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1051 void *object, unsigned long addr)
81819f0f
CL
1052{
1053 if (!check_slab(s, page))
1054 goto bad;
1055
81819f0f
CL
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1058 goto bad;
81819f0f
CL
1059 }
1060
f7cb1933 1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1062 goto bad;
81819f0f 1063
3ec09742
CL
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
f7cb1933 1068 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1069 return 1;
3ec09742 1070
81819f0f
CL
1071bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
672bba3a 1076 * as used avoids touching the remaining objects.
81819f0f 1077 */
24922684 1078 slab_fix(s, "Marking all objects used");
39b26464 1079 page->inuse = page->objects;
a973e9dd 1080 page->freelist = NULL;
81819f0f
CL
1081 }
1082 return 0;
1083}
1084
1537066c
CL
1085static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
81819f0f 1087{
5c2e4bbb
CL
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
881db7fb
CL
1092 slab_lock(page);
1093
81819f0f
CL
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
70d71228 1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
24922684 1103 object_err(s, page, object, "Object already free");
81819f0f
CL
1104 goto fail;
1105 }
1106
f7cb1933 1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1108 goto out;
81819f0f
CL
1109
1110 if (unlikely(s != page->slab)) {
3adbefee 1111 if (!PageSlab(page)) {
70d71228
CL
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
3adbefee 1114 } else if (!page->slab) {
81819f0f 1115 printk(KERN_ERR
70d71228 1116 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1117 object);
70d71228 1118 dump_stack();
06428780 1119 } else
24922684
CL
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
81819f0f
CL
1122 goto fail;
1123 }
3ec09742 1124
3ec09742
CL
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
f7cb1933 1128 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1129 rc = 1;
1130out:
881db7fb 1131 slab_unlock(page);
5c2e4bbb
CL
1132 local_irq_restore(flags);
1133 return rc;
3ec09742 1134
81819f0f 1135fail:
24922684 1136 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1137 goto out;
81819f0f
CL
1138}
1139
41ecc55b
CL
1140static int __init setup_slub_debug(char *str)
1141{
f0630fff
CL
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
fa5ec8a1
DR
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
f0630fff
CL
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
06428780 1175 for (; *str && *str != ','; str++) {
f0630fff
CL
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
4c13dd3b
DM
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
f0630fff
CL
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
06428780 1197 "unknown. skipped\n", *str);
f0630fff 1198 }
41ecc55b
CL
1199 }
1200
f0630fff 1201check_slabs:
41ecc55b
CL
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
f0630fff 1204out:
41ecc55b
CL
1205 return 1;
1206}
1207
1208__setup("slub_debug", setup_slub_debug);
1209
ba0268a8
CL
1210static unsigned long kmem_cache_flags(unsigned long objsize,
1211 unsigned long flags, const char *name,
51cc5068 1212 void (*ctor)(void *))
41ecc55b
CL
1213{
1214 /*
e153362a 1215 * Enable debugging if selected on the kernel commandline.
41ecc55b 1216 */
e153362a 1217 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
ba0268a8
CL
1220
1221 return flags;
41ecc55b
CL
1222}
1223#else
3ec09742
CL
1224static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
41ecc55b 1226
3ec09742 1227static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1228 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1229
3ec09742 1230static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1231 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1232
41ecc55b
CL
1233static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1236 void *object, u8 val) { return 1; }
5cc6eee8
CL
1237static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
2cfb7455 1239static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1240static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 unsigned long flags, const char *name,
51cc5068 1242 void (*ctor)(void *))
ba0268a8
CL
1243{
1244 return flags;
1245}
41ecc55b 1246#define slub_debug 0
0f389ec6 1247
fdaa45e9
IM
1248#define disable_higher_order_debug 0
1249
0f389ec6
CL
1250static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
26c02cf0
AB
1252static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
205ab99d
CL
1254static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
7d550c56
CL
1258
1259static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
ab4d5ed5 1267#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1268
81819f0f
CL
1269/*
1270 * Slab allocation and freeing
1271 */
65c3376a
CL
1272static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274{
1275 int order = oo_order(oo);
1276
b1eeab67
VN
1277 flags |= __GFP_NOTRACK;
1278
2154a336 1279 if (node == NUMA_NO_NODE)
65c3376a
CL
1280 return alloc_pages(flags, order);
1281 else
6b65aaf3 1282 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1283}
1284
81819f0f
CL
1285static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286{
06428780 1287 struct page *page;
834f3d11 1288 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1289 gfp_t alloc_gfp;
81819f0f 1290
7e0528da
CL
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
b7a49f0d 1296 flags |= s->allocflags;
e12ba74d 1297
ba52270d
PE
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
81819f0f 1312
7e0528da
CL
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
65c3376a 1315 }
5a896d9e 1316
7e0528da
CL
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
5a896d9e 1323 if (kmemcheck_enabled
5086c389 1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1337 }
1338
834f3d11 1339 page->objects = oo_objects(oo);
81819f0f
CL
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1343 1 << oo_order(oo));
81819f0f
CL
1344
1345 return page;
1346}
1347
1348static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350{
3ec09742 1351 setup_object_debug(s, page, object);
4f104934 1352 if (unlikely(s->ctor))
51cc5068 1353 s->ctor(object);
81819f0f
CL
1354}
1355
1356static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358 struct page *page;
81819f0f 1359 void *start;
81819f0f
CL
1360 void *last;
1361 void *p;
1362
6cb06229 1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1364
6cb06229
CL
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1367 if (!page)
1368 goto out;
1369
205ab99d 1370 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1371 page->slab = s;
1372 page->flags |= 1 << PG_slab;
81819f0f
CL
1373
1374 start = page_address(page);
81819f0f
CL
1375
1376 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1378
1379 last = start;
224a88be 1380 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
a973e9dd 1386 set_freepointer(s, last, NULL);
81819f0f
CL
1387
1388 page->freelist = start;
e6e82ea1 1389 page->inuse = page->objects;
8cb0a506 1390 page->frozen = 1;
81819f0f 1391out:
81819f0f
CL
1392 return page;
1393}
1394
1395static void __free_slab(struct kmem_cache *s, struct page *page)
1396{
834f3d11
CL
1397 int order = compound_order(page);
1398 int pages = 1 << order;
81819f0f 1399
af537b0a 1400 if (kmem_cache_debug(s)) {
81819f0f
CL
1401 void *p;
1402
1403 slab_pad_check(s, page);
224a88be
CL
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
f7cb1933 1406 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1407 }
1408
b1eeab67 1409 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1410
81819f0f
CL
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1414 -pages);
81819f0f 1415
49bd5221
CL
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1eb5ac64
NP
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1420 __free_pages(page, order);
81819f0f
CL
1421}
1422
da9a638c
LJ
1423#define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
81819f0f
CL
1426static void rcu_free_slab(struct rcu_head *h)
1427{
1428 struct page *page;
1429
da9a638c
LJ
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
81819f0f
CL
1435 __free_slab(page->slab, page);
1436}
1437
1438static void free_slab(struct kmem_cache *s, struct page *page)
1439{
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
81819f0f
CL
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459}
1460
1461static void discard_slab(struct kmem_cache *s, struct page *page)
1462{
205ab99d 1463 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1464 free_slab(s, page);
1465}
1466
1467/*
5cc6eee8
CL
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
81819f0f 1471 */
5cc6eee8 1472static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1473 struct page *page, int tail)
81819f0f 1474{
e95eed57 1475 n->nr_partial++;
136333d1 1476 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
81819f0f
CL
1480}
1481
5cc6eee8
CL
1482/*
1483 * list_lock must be held.
1484 */
1485static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1486 struct page *page)
1487{
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490}
1491
81819f0f 1492/*
5cc6eee8
CL
1493 * Lock slab, remove from the partial list and put the object into the
1494 * per cpu freelist.
81819f0f 1495 *
497b66f2
CL
1496 * Returns a list of objects or NULL if it fails.
1497 *
672bba3a 1498 * Must hold list_lock.
81819f0f 1499 */
497b66f2 1500static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1501 struct kmem_cache_node *n, struct page *page,
49e22585 1502 int mode)
81819f0f 1503{
2cfb7455
CL
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
2cfb7455
CL
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
1513 do {
1514 freelist = page->freelist;
1515 counters = page->counters;
1516 new.counters = counters;
49e22585
CL
1517 if (mode)
1518 new.inuse = page->objects;
2cfb7455
CL
1519
1520 VM_BUG_ON(new.frozen);
1521 new.frozen = 1;
1522
1d07171c 1523 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1524 freelist, counters,
1525 NULL, new.counters,
1526 "lock and freeze"));
1527
1528 remove_partial(n, page);
49e22585 1529 return freelist;
81819f0f
CL
1530}
1531
49e22585
CL
1532static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1533
81819f0f 1534/*
672bba3a 1535 * Try to allocate a partial slab from a specific node.
81819f0f 1536 */
497b66f2 1537static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1538 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1539{
49e22585
CL
1540 struct page *page, *page2;
1541 void *object = NULL;
81819f0f
CL
1542
1543 /*
1544 * Racy check. If we mistakenly see no partial slabs then we
1545 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1546 * partial slab and there is none available then get_partials()
1547 * will return NULL.
81819f0f
CL
1548 */
1549 if (!n || !n->nr_partial)
1550 return NULL;
1551
1552 spin_lock(&n->list_lock);
49e22585 1553 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1554 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1555 int available;
1556
1557 if (!t)
1558 break;
1559
12d79634 1560 if (!object) {
49e22585
CL
1561 c->page = page;
1562 c->node = page_to_nid(page);
1563 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1564 object = t;
1565 available = page->objects - page->inuse;
1566 } else {
1567 page->freelist = t;
1568 available = put_cpu_partial(s, page, 0);
8028dcea 1569 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1570 }
1571 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1572 break;
1573
497b66f2 1574 }
81819f0f 1575 spin_unlock(&n->list_lock);
497b66f2 1576 return object;
81819f0f
CL
1577}
1578
1579/*
672bba3a 1580 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1581 */
acd19fd1
CL
1582static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1583 struct kmem_cache_cpu *c)
81819f0f
CL
1584{
1585#ifdef CONFIG_NUMA
1586 struct zonelist *zonelist;
dd1a239f 1587 struct zoneref *z;
54a6eb5c
MG
1588 struct zone *zone;
1589 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1590 void *object;
cc9a6c87 1591 unsigned int cpuset_mems_cookie;
81819f0f
CL
1592
1593 /*
672bba3a
CL
1594 * The defrag ratio allows a configuration of the tradeoffs between
1595 * inter node defragmentation and node local allocations. A lower
1596 * defrag_ratio increases the tendency to do local allocations
1597 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1598 *
672bba3a
CL
1599 * If the defrag_ratio is set to 0 then kmalloc() always
1600 * returns node local objects. If the ratio is higher then kmalloc()
1601 * may return off node objects because partial slabs are obtained
1602 * from other nodes and filled up.
81819f0f 1603 *
6446faa2 1604 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1605 * defrag_ratio = 1000) then every (well almost) allocation will
1606 * first attempt to defrag slab caches on other nodes. This means
1607 * scanning over all nodes to look for partial slabs which may be
1608 * expensive if we do it every time we are trying to find a slab
1609 * with available objects.
81819f0f 1610 */
9824601e
CL
1611 if (!s->remote_node_defrag_ratio ||
1612 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1613 return NULL;
1614
cc9a6c87
MG
1615 do {
1616 cpuset_mems_cookie = get_mems_allowed();
1617 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1618 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1619 struct kmem_cache_node *n;
1620
1621 n = get_node(s, zone_to_nid(zone));
1622
1623 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1624 n->nr_partial > s->min_partial) {
1625 object = get_partial_node(s, n, c);
1626 if (object) {
1627 /*
1628 * Return the object even if
1629 * put_mems_allowed indicated that
1630 * the cpuset mems_allowed was
1631 * updated in parallel. It's a
1632 * harmless race between the alloc
1633 * and the cpuset update.
1634 */
1635 put_mems_allowed(cpuset_mems_cookie);
1636 return object;
1637 }
c0ff7453 1638 }
81819f0f 1639 }
cc9a6c87 1640 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1641#endif
1642 return NULL;
1643}
1644
1645/*
1646 * Get a partial page, lock it and return it.
1647 */
497b66f2 1648static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1649 struct kmem_cache_cpu *c)
81819f0f 1650{
497b66f2 1651 void *object;
2154a336 1652 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1653
497b66f2
CL
1654 object = get_partial_node(s, get_node(s, searchnode), c);
1655 if (object || node != NUMA_NO_NODE)
1656 return object;
81819f0f 1657
acd19fd1 1658 return get_any_partial(s, flags, c);
81819f0f
CL
1659}
1660
8a5ec0ba
CL
1661#ifdef CONFIG_PREEMPT
1662/*
1663 * Calculate the next globally unique transaction for disambiguiation
1664 * during cmpxchg. The transactions start with the cpu number and are then
1665 * incremented by CONFIG_NR_CPUS.
1666 */
1667#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1668#else
1669/*
1670 * No preemption supported therefore also no need to check for
1671 * different cpus.
1672 */
1673#define TID_STEP 1
1674#endif
1675
1676static inline unsigned long next_tid(unsigned long tid)
1677{
1678 return tid + TID_STEP;
1679}
1680
1681static inline unsigned int tid_to_cpu(unsigned long tid)
1682{
1683 return tid % TID_STEP;
1684}
1685
1686static inline unsigned long tid_to_event(unsigned long tid)
1687{
1688 return tid / TID_STEP;
1689}
1690
1691static inline unsigned int init_tid(int cpu)
1692{
1693 return cpu;
1694}
1695
1696static inline void note_cmpxchg_failure(const char *n,
1697 const struct kmem_cache *s, unsigned long tid)
1698{
1699#ifdef SLUB_DEBUG_CMPXCHG
1700 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1701
1702 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1703
1704#ifdef CONFIG_PREEMPT
1705 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1706 printk("due to cpu change %d -> %d\n",
1707 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1708 else
1709#endif
1710 if (tid_to_event(tid) != tid_to_event(actual_tid))
1711 printk("due to cpu running other code. Event %ld->%ld\n",
1712 tid_to_event(tid), tid_to_event(actual_tid));
1713 else
1714 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1715 actual_tid, tid, next_tid(tid));
1716#endif
4fdccdfb 1717 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1718}
1719
8a5ec0ba
CL
1720void init_kmem_cache_cpus(struct kmem_cache *s)
1721{
8a5ec0ba
CL
1722 int cpu;
1723
1724 for_each_possible_cpu(cpu)
1725 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1726}
2cfb7455 1727
81819f0f
CL
1728/*
1729 * Remove the cpu slab
1730 */
dfb4f096 1731static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1732{
2cfb7455 1733 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1734 struct page *page = c->page;
2cfb7455
CL
1735 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1736 int lock = 0;
1737 enum slab_modes l = M_NONE, m = M_NONE;
1738 void *freelist;
1739 void *nextfree;
136333d1 1740 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1741 struct page new;
1742 struct page old;
1743
1744 if (page->freelist) {
84e554e6 1745 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1746 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1747 }
1748
1749 c->tid = next_tid(c->tid);
1750 c->page = NULL;
1751 freelist = c->freelist;
1752 c->freelist = NULL;
1753
894b8788 1754 /*
2cfb7455
CL
1755 * Stage one: Free all available per cpu objects back
1756 * to the page freelist while it is still frozen. Leave the
1757 * last one.
1758 *
1759 * There is no need to take the list->lock because the page
1760 * is still frozen.
1761 */
1762 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1763 void *prior;
1764 unsigned long counters;
1765
1766 do {
1767 prior = page->freelist;
1768 counters = page->counters;
1769 set_freepointer(s, freelist, prior);
1770 new.counters = counters;
1771 new.inuse--;
1772 VM_BUG_ON(!new.frozen);
1773
1d07171c 1774 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1775 prior, counters,
1776 freelist, new.counters,
1777 "drain percpu freelist"));
1778
1779 freelist = nextfree;
1780 }
1781
894b8788 1782 /*
2cfb7455
CL
1783 * Stage two: Ensure that the page is unfrozen while the
1784 * list presence reflects the actual number of objects
1785 * during unfreeze.
1786 *
1787 * We setup the list membership and then perform a cmpxchg
1788 * with the count. If there is a mismatch then the page
1789 * is not unfrozen but the page is on the wrong list.
1790 *
1791 * Then we restart the process which may have to remove
1792 * the page from the list that we just put it on again
1793 * because the number of objects in the slab may have
1794 * changed.
894b8788 1795 */
2cfb7455 1796redo:
894b8788 1797
2cfb7455
CL
1798 old.freelist = page->freelist;
1799 old.counters = page->counters;
1800 VM_BUG_ON(!old.frozen);
7c2e132c 1801
2cfb7455
CL
1802 /* Determine target state of the slab */
1803 new.counters = old.counters;
1804 if (freelist) {
1805 new.inuse--;
1806 set_freepointer(s, freelist, old.freelist);
1807 new.freelist = freelist;
1808 } else
1809 new.freelist = old.freelist;
1810
1811 new.frozen = 0;
1812
81107188 1813 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1814 m = M_FREE;
1815 else if (new.freelist) {
1816 m = M_PARTIAL;
1817 if (!lock) {
1818 lock = 1;
1819 /*
1820 * Taking the spinlock removes the possiblity
1821 * that acquire_slab() will see a slab page that
1822 * is frozen
1823 */
1824 spin_lock(&n->list_lock);
1825 }
1826 } else {
1827 m = M_FULL;
1828 if (kmem_cache_debug(s) && !lock) {
1829 lock = 1;
1830 /*
1831 * This also ensures that the scanning of full
1832 * slabs from diagnostic functions will not see
1833 * any frozen slabs.
1834 */
1835 spin_lock(&n->list_lock);
1836 }
1837 }
1838
1839 if (l != m) {
1840
1841 if (l == M_PARTIAL)
1842
1843 remove_partial(n, page);
1844
1845 else if (l == M_FULL)
894b8788 1846
2cfb7455
CL
1847 remove_full(s, page);
1848
1849 if (m == M_PARTIAL) {
1850
1851 add_partial(n, page, tail);
136333d1 1852 stat(s, tail);
2cfb7455
CL
1853
1854 } else if (m == M_FULL) {
894b8788 1855
2cfb7455
CL
1856 stat(s, DEACTIVATE_FULL);
1857 add_full(s, n, page);
1858
1859 }
1860 }
1861
1862 l = m;
1d07171c 1863 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1864 old.freelist, old.counters,
1865 new.freelist, new.counters,
1866 "unfreezing slab"))
1867 goto redo;
1868
2cfb7455
CL
1869 if (lock)
1870 spin_unlock(&n->list_lock);
1871
1872 if (m == M_FREE) {
1873 stat(s, DEACTIVATE_EMPTY);
1874 discard_slab(s, page);
1875 stat(s, FREE_SLAB);
894b8788 1876 }
81819f0f
CL
1877}
1878
49e22585
CL
1879/* Unfreeze all the cpu partial slabs */
1880static void unfreeze_partials(struct kmem_cache *s)
1881{
1882 struct kmem_cache_node *n = NULL;
1883 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1884 struct page *page, *discard_page = NULL;
49e22585
CL
1885
1886 while ((page = c->partial)) {
1887 enum slab_modes { M_PARTIAL, M_FREE };
1888 enum slab_modes l, m;
1889 struct page new;
1890 struct page old;
1891
1892 c->partial = page->next;
1893 l = M_FREE;
1894
1895 do {
1896
1897 old.freelist = page->freelist;
1898 old.counters = page->counters;
1899 VM_BUG_ON(!old.frozen);
1900
1901 new.counters = old.counters;
1902 new.freelist = old.freelist;
1903
1904 new.frozen = 0;
1905
dcc3be6a 1906 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1907 m = M_FREE;
1908 else {
1909 struct kmem_cache_node *n2 = get_node(s,
1910 page_to_nid(page));
1911
1912 m = M_PARTIAL;
1913 if (n != n2) {
1914 if (n)
1915 spin_unlock(&n->list_lock);
1916
1917 n = n2;
1918 spin_lock(&n->list_lock);
1919 }
1920 }
1921
1922 if (l != m) {
4c493a5a 1923 if (l == M_PARTIAL) {
49e22585 1924 remove_partial(n, page);
4c493a5a
SL
1925 stat(s, FREE_REMOVE_PARTIAL);
1926 } else {
f64ae042
SL
1927 add_partial(n, page,
1928 DEACTIVATE_TO_TAIL);
4c493a5a
SL
1929 stat(s, FREE_ADD_PARTIAL);
1930 }
49e22585
CL
1931
1932 l = m;
1933 }
1934
1935 } while (!cmpxchg_double_slab(s, page,
1936 old.freelist, old.counters,
1937 new.freelist, new.counters,
1938 "unfreezing slab"));
1939
1940 if (m == M_FREE) {
9ada1934
SL
1941 page->next = discard_page;
1942 discard_page = page;
49e22585
CL
1943 }
1944 }
1945
1946 if (n)
1947 spin_unlock(&n->list_lock);
9ada1934
SL
1948
1949 while (discard_page) {
1950 page = discard_page;
1951 discard_page = discard_page->next;
1952
1953 stat(s, DEACTIVATE_EMPTY);
1954 discard_slab(s, page);
1955 stat(s, FREE_SLAB);
1956 }
49e22585
CL
1957}
1958
1959/*
1960 * Put a page that was just frozen (in __slab_free) into a partial page
1961 * slot if available. This is done without interrupts disabled and without
1962 * preemption disabled. The cmpxchg is racy and may put the partial page
1963 * onto a random cpus partial slot.
1964 *
1965 * If we did not find a slot then simply move all the partials to the
1966 * per node partial list.
1967 */
1968int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1969{
1970 struct page *oldpage;
1971 int pages;
1972 int pobjects;
1973
1974 do {
1975 pages = 0;
1976 pobjects = 0;
1977 oldpage = this_cpu_read(s->cpu_slab->partial);
1978
1979 if (oldpage) {
1980 pobjects = oldpage->pobjects;
1981 pages = oldpage->pages;
1982 if (drain && pobjects > s->cpu_partial) {
1983 unsigned long flags;
1984 /*
1985 * partial array is full. Move the existing
1986 * set to the per node partial list.
1987 */
1988 local_irq_save(flags);
1989 unfreeze_partials(s);
1990 local_irq_restore(flags);
1991 pobjects = 0;
1992 pages = 0;
8028dcea 1993 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1994 }
1995 }
1996
1997 pages++;
1998 pobjects += page->objects - page->inuse;
1999
2000 page->pages = pages;
2001 page->pobjects = pobjects;
2002 page->next = oldpage;
2003
933393f5 2004 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
2005 return pobjects;
2006}
2007
dfb4f096 2008static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2009{
84e554e6 2010 stat(s, CPUSLAB_FLUSH);
dfb4f096 2011 deactivate_slab(s, c);
81819f0f
CL
2012}
2013
2014/*
2015 * Flush cpu slab.
6446faa2 2016 *
81819f0f
CL
2017 * Called from IPI handler with interrupts disabled.
2018 */
0c710013 2019static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2020{
9dfc6e68 2021 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2022
49e22585
CL
2023 if (likely(c)) {
2024 if (c->page)
2025 flush_slab(s, c);
2026
2027 unfreeze_partials(s);
2028 }
81819f0f
CL
2029}
2030
2031static void flush_cpu_slab(void *d)
2032{
2033 struct kmem_cache *s = d;
81819f0f 2034
dfb4f096 2035 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2036}
2037
a8364d55
GBY
2038static bool has_cpu_slab(int cpu, void *info)
2039{
2040 struct kmem_cache *s = info;
2041 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2042
02e1a9cd 2043 return c->page || c->partial;
a8364d55
GBY
2044}
2045
81819f0f
CL
2046static void flush_all(struct kmem_cache *s)
2047{
a8364d55 2048 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2049}
2050
dfb4f096
CL
2051/*
2052 * Check if the objects in a per cpu structure fit numa
2053 * locality expectations.
2054 */
2055static inline int node_match(struct kmem_cache_cpu *c, int node)
2056{
2057#ifdef CONFIG_NUMA
2154a336 2058 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2059 return 0;
2060#endif
2061 return 1;
2062}
2063
781b2ba6
PE
2064static int count_free(struct page *page)
2065{
2066 return page->objects - page->inuse;
2067}
2068
2069static unsigned long count_partial(struct kmem_cache_node *n,
2070 int (*get_count)(struct page *))
2071{
2072 unsigned long flags;
2073 unsigned long x = 0;
2074 struct page *page;
2075
2076 spin_lock_irqsave(&n->list_lock, flags);
2077 list_for_each_entry(page, &n->partial, lru)
2078 x += get_count(page);
2079 spin_unlock_irqrestore(&n->list_lock, flags);
2080 return x;
2081}
2082
26c02cf0
AB
2083static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2084{
2085#ifdef CONFIG_SLUB_DEBUG
2086 return atomic_long_read(&n->total_objects);
2087#else
2088 return 0;
2089#endif
2090}
2091
781b2ba6
PE
2092static noinline void
2093slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2094{
2095 int node;
2096
2097 printk(KERN_WARNING
2098 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2099 nid, gfpflags);
2100 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2101 "default order: %d, min order: %d\n", s->name, s->objsize,
2102 s->size, oo_order(s->oo), oo_order(s->min));
2103
fa5ec8a1
DR
2104 if (oo_order(s->min) > get_order(s->objsize))
2105 printk(KERN_WARNING " %s debugging increased min order, use "
2106 "slub_debug=O to disable.\n", s->name);
2107
781b2ba6
PE
2108 for_each_online_node(node) {
2109 struct kmem_cache_node *n = get_node(s, node);
2110 unsigned long nr_slabs;
2111 unsigned long nr_objs;
2112 unsigned long nr_free;
2113
2114 if (!n)
2115 continue;
2116
26c02cf0
AB
2117 nr_free = count_partial(n, count_free);
2118 nr_slabs = node_nr_slabs(n);
2119 nr_objs = node_nr_objs(n);
781b2ba6
PE
2120
2121 printk(KERN_WARNING
2122 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2123 node, nr_slabs, nr_objs, nr_free);
2124 }
2125}
2126
497b66f2
CL
2127static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2128 int node, struct kmem_cache_cpu **pc)
2129{
6faa6833 2130 void *freelist;
497b66f2
CL
2131 struct kmem_cache_cpu *c;
2132 struct page *page = new_slab(s, flags, node);
2133
2134 if (page) {
2135 c = __this_cpu_ptr(s->cpu_slab);
2136 if (c->page)
2137 flush_slab(s, c);
2138
2139 /*
2140 * No other reference to the page yet so we can
2141 * muck around with it freely without cmpxchg
2142 */
6faa6833 2143 freelist = page->freelist;
497b66f2
CL
2144 page->freelist = NULL;
2145
2146 stat(s, ALLOC_SLAB);
2147 c->node = page_to_nid(page);
2148 c->page = page;
2149 *pc = c;
2150 } else
6faa6833 2151 freelist = NULL;
497b66f2 2152
6faa6833 2153 return freelist;
497b66f2
CL
2154}
2155
213eeb9f
CL
2156/*
2157 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2158 * or deactivate the page.
2159 *
2160 * The page is still frozen if the return value is not NULL.
2161 *
2162 * If this function returns NULL then the page has been unfrozen.
2163 */
2164static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2165{
2166 struct page new;
2167 unsigned long counters;
2168 void *freelist;
2169
2170 do {
2171 freelist = page->freelist;
2172 counters = page->counters;
6faa6833 2173
213eeb9f
CL
2174 new.counters = counters;
2175 VM_BUG_ON(!new.frozen);
2176
2177 new.inuse = page->objects;
2178 new.frozen = freelist != NULL;
2179
2180 } while (!cmpxchg_double_slab(s, page,
2181 freelist, counters,
2182 NULL, new.counters,
2183 "get_freelist"));
2184
2185 return freelist;
2186}
2187
81819f0f 2188/*
894b8788
CL
2189 * Slow path. The lockless freelist is empty or we need to perform
2190 * debugging duties.
2191 *
894b8788
CL
2192 * Processing is still very fast if new objects have been freed to the
2193 * regular freelist. In that case we simply take over the regular freelist
2194 * as the lockless freelist and zap the regular freelist.
81819f0f 2195 *
894b8788
CL
2196 * If that is not working then we fall back to the partial lists. We take the
2197 * first element of the freelist as the object to allocate now and move the
2198 * rest of the freelist to the lockless freelist.
81819f0f 2199 *
894b8788 2200 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2201 * we need to allocate a new slab. This is the slowest path since it involves
2202 * a call to the page allocator and the setup of a new slab.
81819f0f 2203 */
ce71e27c
EGM
2204static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2205 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2206{
6faa6833 2207 void *freelist;
8a5ec0ba
CL
2208 unsigned long flags;
2209
2210 local_irq_save(flags);
2211#ifdef CONFIG_PREEMPT
2212 /*
2213 * We may have been preempted and rescheduled on a different
2214 * cpu before disabling interrupts. Need to reload cpu area
2215 * pointer.
2216 */
2217 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2218#endif
81819f0f 2219
497b66f2 2220 if (!c->page)
81819f0f 2221 goto new_slab;
49e22585 2222redo:
6faa6833 2223
fc59c053 2224 if (unlikely(!node_match(c, node))) {
e36a2652 2225 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2226 deactivate_slab(s, c);
2227 goto new_slab;
2228 }
6446faa2 2229
73736e03 2230 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2231 freelist = c->freelist;
2232 if (freelist)
73736e03 2233 goto load_freelist;
03e404af 2234
2cfb7455 2235 stat(s, ALLOC_SLOWPATH);
03e404af 2236
6faa6833 2237 freelist = get_freelist(s, c->page);
6446faa2 2238
6faa6833 2239 if (!freelist) {
03e404af
CL
2240 c->page = NULL;
2241 stat(s, DEACTIVATE_BYPASS);
fc59c053 2242 goto new_slab;
03e404af 2243 }
6446faa2 2244
84e554e6 2245 stat(s, ALLOC_REFILL);
6446faa2 2246
894b8788 2247load_freelist:
6faa6833 2248 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2249 c->tid = next_tid(c->tid);
2250 local_irq_restore(flags);
6faa6833 2251 return freelist;
81819f0f 2252
81819f0f 2253new_slab:
2cfb7455 2254
49e22585
CL
2255 if (c->partial) {
2256 c->page = c->partial;
2257 c->partial = c->page->next;
2258 c->node = page_to_nid(c->page);
2259 stat(s, CPU_PARTIAL_ALLOC);
2260 c->freelist = NULL;
2261 goto redo;
81819f0f
CL
2262 }
2263
49e22585 2264 /* Then do expensive stuff like retrieving pages from the partial lists */
6faa6833 2265 freelist = get_partial(s, gfpflags, node, c);
b811c202 2266
6faa6833 2267 if (unlikely(!freelist)) {
01ad8a7b 2268
6faa6833 2269 freelist = new_slab_objects(s, gfpflags, node, &c);
2cfb7455 2270
6faa6833 2271 if (unlikely(!freelist)) {
497b66f2
CL
2272 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2273 slab_out_of_memory(s, gfpflags, node);
9e577e8b 2274
497b66f2
CL
2275 local_irq_restore(flags);
2276 return NULL;
2277 }
81819f0f 2278 }
2cfb7455 2279
497b66f2 2280 if (likely(!kmem_cache_debug(s)))
4b6f0750 2281 goto load_freelist;
2cfb7455 2282
497b66f2 2283 /* Only entered in the debug case */
6faa6833 2284 if (!alloc_debug_processing(s, c->page, freelist, addr))
497b66f2 2285 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2286
6faa6833 2287 c->freelist = get_freepointer(s, freelist);
442b06bc 2288 deactivate_slab(s, c);
15b7c514 2289 c->node = NUMA_NO_NODE;
a71ae47a 2290 local_irq_restore(flags);
6faa6833 2291 return freelist;
894b8788
CL
2292}
2293
2294/*
2295 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2296 * have the fastpath folded into their functions. So no function call
2297 * overhead for requests that can be satisfied on the fastpath.
2298 *
2299 * The fastpath works by first checking if the lockless freelist can be used.
2300 * If not then __slab_alloc is called for slow processing.
2301 *
2302 * Otherwise we can simply pick the next object from the lockless free list.
2303 */
06428780 2304static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2305 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2306{
894b8788 2307 void **object;
dfb4f096 2308 struct kmem_cache_cpu *c;
8a5ec0ba 2309 unsigned long tid;
1f84260c 2310
c016b0bd 2311 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2312 return NULL;
1f84260c 2313
8a5ec0ba 2314redo:
8a5ec0ba
CL
2315
2316 /*
2317 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2318 * enabled. We may switch back and forth between cpus while
2319 * reading from one cpu area. That does not matter as long
2320 * as we end up on the original cpu again when doing the cmpxchg.
2321 */
9dfc6e68 2322 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2323
8a5ec0ba
CL
2324 /*
2325 * The transaction ids are globally unique per cpu and per operation on
2326 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2327 * occurs on the right processor and that there was no operation on the
2328 * linked list in between.
2329 */
2330 tid = c->tid;
2331 barrier();
8a5ec0ba 2332
9dfc6e68 2333 object = c->freelist;
9dfc6e68 2334 if (unlikely(!object || !node_match(c, node)))
894b8788 2335
dfb4f096 2336 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2337
2338 else {
0ad9500e
ED
2339 void *next_object = get_freepointer_safe(s, object);
2340
8a5ec0ba 2341 /*
25985edc 2342 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2343 * operation and if we are on the right processor.
2344 *
2345 * The cmpxchg does the following atomically (without lock semantics!)
2346 * 1. Relocate first pointer to the current per cpu area.
2347 * 2. Verify that tid and freelist have not been changed
2348 * 3. If they were not changed replace tid and freelist
2349 *
2350 * Since this is without lock semantics the protection is only against
2351 * code executing on this cpu *not* from access by other cpus.
2352 */
933393f5 2353 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2354 s->cpu_slab->freelist, s->cpu_slab->tid,
2355 object, tid,
0ad9500e 2356 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2357
2358 note_cmpxchg_failure("slab_alloc", s, tid);
2359 goto redo;
2360 }
0ad9500e 2361 prefetch_freepointer(s, next_object);
84e554e6 2362 stat(s, ALLOC_FASTPATH);
894b8788 2363 }
8a5ec0ba 2364
74e2134f 2365 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2366 memset(object, 0, s->objsize);
d07dbea4 2367
c016b0bd 2368 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2369
894b8788 2370 return object;
81819f0f
CL
2371}
2372
2373void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2374{
2154a336 2375 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2376
ca2b84cb 2377 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2378
2379 return ret;
81819f0f
CL
2380}
2381EXPORT_SYMBOL(kmem_cache_alloc);
2382
0f24f128 2383#ifdef CONFIG_TRACING
4a92379b
RK
2384void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2385{
2386 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2387 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2388 return ret;
2389}
2390EXPORT_SYMBOL(kmem_cache_alloc_trace);
2391
2392void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2393{
4a92379b
RK
2394 void *ret = kmalloc_order(size, flags, order);
2395 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2396 return ret;
5b882be4 2397}
4a92379b 2398EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2399#endif
2400
81819f0f
CL
2401#ifdef CONFIG_NUMA
2402void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2403{
5b882be4
EGM
2404 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2405
ca2b84cb
EGM
2406 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2407 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2408
2409 return ret;
81819f0f
CL
2410}
2411EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2412
0f24f128 2413#ifdef CONFIG_TRACING
4a92379b 2414void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2415 gfp_t gfpflags,
4a92379b 2416 int node, size_t size)
5b882be4 2417{
4a92379b
RK
2418 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2419
2420 trace_kmalloc_node(_RET_IP_, ret,
2421 size, s->size, gfpflags, node);
2422 return ret;
5b882be4 2423}
4a92379b 2424EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2425#endif
5d1f57e4 2426#endif
5b882be4 2427
81819f0f 2428/*
894b8788
CL
2429 * Slow patch handling. This may still be called frequently since objects
2430 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2431 *
894b8788
CL
2432 * So we still attempt to reduce cache line usage. Just take the slab
2433 * lock and free the item. If there is no additional partial page
2434 * handling required then we can return immediately.
81819f0f 2435 */
894b8788 2436static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2437 void *x, unsigned long addr)
81819f0f
CL
2438{
2439 void *prior;
2440 void **object = (void *)x;
2cfb7455
CL
2441 int was_frozen;
2442 int inuse;
2443 struct page new;
2444 unsigned long counters;
2445 struct kmem_cache_node *n = NULL;
61728d1e 2446 unsigned long uninitialized_var(flags);
81819f0f 2447
8a5ec0ba 2448 stat(s, FREE_SLOWPATH);
81819f0f 2449
8dc16c6c 2450 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2451 return;
6446faa2 2452
2cfb7455
CL
2453 do {
2454 prior = page->freelist;
2455 counters = page->counters;
2456 set_freepointer(s, object, prior);
2457 new.counters = counters;
2458 was_frozen = new.frozen;
2459 new.inuse--;
2460 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2461
2462 if (!kmem_cache_debug(s) && !prior)
2463
2464 /*
2465 * Slab was on no list before and will be partially empty
2466 * We can defer the list move and instead freeze it.
2467 */
2468 new.frozen = 1;
2469
2470 else { /* Needs to be taken off a list */
2471
2472 n = get_node(s, page_to_nid(page));
2473 /*
2474 * Speculatively acquire the list_lock.
2475 * If the cmpxchg does not succeed then we may
2476 * drop the list_lock without any processing.
2477 *
2478 * Otherwise the list_lock will synchronize with
2479 * other processors updating the list of slabs.
2480 */
2481 spin_lock_irqsave(&n->list_lock, flags);
2482
2483 }
2cfb7455
CL
2484 }
2485 inuse = new.inuse;
81819f0f 2486
2cfb7455
CL
2487 } while (!cmpxchg_double_slab(s, page,
2488 prior, counters,
2489 object, new.counters,
2490 "__slab_free"));
81819f0f 2491
2cfb7455 2492 if (likely(!n)) {
49e22585
CL
2493
2494 /*
2495 * If we just froze the page then put it onto the
2496 * per cpu partial list.
2497 */
8028dcea 2498 if (new.frozen && !was_frozen) {
49e22585 2499 put_cpu_partial(s, page, 1);
8028dcea
AS
2500 stat(s, CPU_PARTIAL_FREE);
2501 }
49e22585 2502 /*
2cfb7455
CL
2503 * The list lock was not taken therefore no list
2504 * activity can be necessary.
2505 */
2506 if (was_frozen)
2507 stat(s, FREE_FROZEN);
80f08c19 2508 return;
2cfb7455 2509 }
81819f0f
CL
2510
2511 /*
2cfb7455
CL
2512 * was_frozen may have been set after we acquired the list_lock in
2513 * an earlier loop. So we need to check it here again.
81819f0f 2514 */
2cfb7455
CL
2515 if (was_frozen)
2516 stat(s, FREE_FROZEN);
2517 else {
2518 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2519 goto slab_empty;
81819f0f 2520
2cfb7455
CL
2521 /*
2522 * Objects left in the slab. If it was not on the partial list before
2523 * then add it.
2524 */
2525 if (unlikely(!prior)) {
2526 remove_full(s, page);
136333d1 2527 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2528 stat(s, FREE_ADD_PARTIAL);
2529 }
8ff12cfc 2530 }
80f08c19 2531 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2532 return;
2533
2534slab_empty:
a973e9dd 2535 if (prior) {
81819f0f 2536 /*
6fbabb20 2537 * Slab on the partial list.
81819f0f 2538 */
5cc6eee8 2539 remove_partial(n, page);
84e554e6 2540 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2541 } else
2542 /* Slab must be on the full list */
2543 remove_full(s, page);
2cfb7455 2544
80f08c19 2545 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2546 stat(s, FREE_SLAB);
81819f0f 2547 discard_slab(s, page);
81819f0f
CL
2548}
2549
894b8788
CL
2550/*
2551 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2552 * can perform fastpath freeing without additional function calls.
2553 *
2554 * The fastpath is only possible if we are freeing to the current cpu slab
2555 * of this processor. This typically the case if we have just allocated
2556 * the item before.
2557 *
2558 * If fastpath is not possible then fall back to __slab_free where we deal
2559 * with all sorts of special processing.
2560 */
06428780 2561static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2562 struct page *page, void *x, unsigned long addr)
894b8788
CL
2563{
2564 void **object = (void *)x;
dfb4f096 2565 struct kmem_cache_cpu *c;
8a5ec0ba 2566 unsigned long tid;
1f84260c 2567
c016b0bd
CL
2568 slab_free_hook(s, x);
2569
8a5ec0ba
CL
2570redo:
2571 /*
2572 * Determine the currently cpus per cpu slab.
2573 * The cpu may change afterward. However that does not matter since
2574 * data is retrieved via this pointer. If we are on the same cpu
2575 * during the cmpxchg then the free will succedd.
2576 */
9dfc6e68 2577 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2578
8a5ec0ba
CL
2579 tid = c->tid;
2580 barrier();
c016b0bd 2581
442b06bc 2582 if (likely(page == c->page)) {
ff12059e 2583 set_freepointer(s, object, c->freelist);
8a5ec0ba 2584
933393f5 2585 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2586 s->cpu_slab->freelist, s->cpu_slab->tid,
2587 c->freelist, tid,
2588 object, next_tid(tid)))) {
2589
2590 note_cmpxchg_failure("slab_free", s, tid);
2591 goto redo;
2592 }
84e554e6 2593 stat(s, FREE_FASTPATH);
894b8788 2594 } else
ff12059e 2595 __slab_free(s, page, x, addr);
894b8788 2596
894b8788
CL
2597}
2598
81819f0f
CL
2599void kmem_cache_free(struct kmem_cache *s, void *x)
2600{
77c5e2d0 2601 struct page *page;
81819f0f 2602
b49af68f 2603 page = virt_to_head_page(x);
81819f0f 2604
ce71e27c 2605 slab_free(s, page, x, _RET_IP_);
5b882be4 2606
ca2b84cb 2607 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2608}
2609EXPORT_SYMBOL(kmem_cache_free);
2610
81819f0f 2611/*
672bba3a
CL
2612 * Object placement in a slab is made very easy because we always start at
2613 * offset 0. If we tune the size of the object to the alignment then we can
2614 * get the required alignment by putting one properly sized object after
2615 * another.
81819f0f
CL
2616 *
2617 * Notice that the allocation order determines the sizes of the per cpu
2618 * caches. Each processor has always one slab available for allocations.
2619 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2620 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2621 * locking overhead.
81819f0f
CL
2622 */
2623
2624/*
2625 * Mininum / Maximum order of slab pages. This influences locking overhead
2626 * and slab fragmentation. A higher order reduces the number of partial slabs
2627 * and increases the number of allocations possible without having to
2628 * take the list_lock.
2629 */
2630static int slub_min_order;
114e9e89 2631static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2632static int slub_min_objects;
81819f0f
CL
2633
2634/*
2635 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2636 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2637 */
2638static int slub_nomerge;
2639
81819f0f
CL
2640/*
2641 * Calculate the order of allocation given an slab object size.
2642 *
672bba3a
CL
2643 * The order of allocation has significant impact on performance and other
2644 * system components. Generally order 0 allocations should be preferred since
2645 * order 0 does not cause fragmentation in the page allocator. Larger objects
2646 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2647 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2648 * would be wasted.
2649 *
2650 * In order to reach satisfactory performance we must ensure that a minimum
2651 * number of objects is in one slab. Otherwise we may generate too much
2652 * activity on the partial lists which requires taking the list_lock. This is
2653 * less a concern for large slabs though which are rarely used.
81819f0f 2654 *
672bba3a
CL
2655 * slub_max_order specifies the order where we begin to stop considering the
2656 * number of objects in a slab as critical. If we reach slub_max_order then
2657 * we try to keep the page order as low as possible. So we accept more waste
2658 * of space in favor of a small page order.
81819f0f 2659 *
672bba3a
CL
2660 * Higher order allocations also allow the placement of more objects in a
2661 * slab and thereby reduce object handling overhead. If the user has
2662 * requested a higher mininum order then we start with that one instead of
2663 * the smallest order which will fit the object.
81819f0f 2664 */
5e6d444e 2665static inline int slab_order(int size, int min_objects,
ab9a0f19 2666 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2667{
2668 int order;
2669 int rem;
6300ea75 2670 int min_order = slub_min_order;
81819f0f 2671
ab9a0f19 2672 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2673 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2674
6300ea75 2675 for (order = max(min_order,
5e6d444e
CL
2676 fls(min_objects * size - 1) - PAGE_SHIFT);
2677 order <= max_order; order++) {
81819f0f 2678
5e6d444e 2679 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2680
ab9a0f19 2681 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2682 continue;
2683
ab9a0f19 2684 rem = (slab_size - reserved) % size;
81819f0f 2685
5e6d444e 2686 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2687 break;
2688
2689 }
672bba3a 2690
81819f0f
CL
2691 return order;
2692}
2693
ab9a0f19 2694static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2695{
2696 int order;
2697 int min_objects;
2698 int fraction;
e8120ff1 2699 int max_objects;
5e6d444e
CL
2700
2701 /*
2702 * Attempt to find best configuration for a slab. This
2703 * works by first attempting to generate a layout with
2704 * the best configuration and backing off gradually.
2705 *
2706 * First we reduce the acceptable waste in a slab. Then
2707 * we reduce the minimum objects required in a slab.
2708 */
2709 min_objects = slub_min_objects;
9b2cd506
CL
2710 if (!min_objects)
2711 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2712 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2713 min_objects = min(min_objects, max_objects);
2714
5e6d444e 2715 while (min_objects > 1) {
c124f5b5 2716 fraction = 16;
5e6d444e
CL
2717 while (fraction >= 4) {
2718 order = slab_order(size, min_objects,
ab9a0f19 2719 slub_max_order, fraction, reserved);
5e6d444e
CL
2720 if (order <= slub_max_order)
2721 return order;
2722 fraction /= 2;
2723 }
5086c389 2724 min_objects--;
5e6d444e
CL
2725 }
2726
2727 /*
2728 * We were unable to place multiple objects in a slab. Now
2729 * lets see if we can place a single object there.
2730 */
ab9a0f19 2731 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2732 if (order <= slub_max_order)
2733 return order;
2734
2735 /*
2736 * Doh this slab cannot be placed using slub_max_order.
2737 */
ab9a0f19 2738 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2739 if (order < MAX_ORDER)
5e6d444e
CL
2740 return order;
2741 return -ENOSYS;
2742}
2743
81819f0f 2744/*
672bba3a 2745 * Figure out what the alignment of the objects will be.
81819f0f
CL
2746 */
2747static unsigned long calculate_alignment(unsigned long flags,
2748 unsigned long align, unsigned long size)
2749{
2750 /*
6446faa2
CL
2751 * If the user wants hardware cache aligned objects then follow that
2752 * suggestion if the object is sufficiently large.
81819f0f 2753 *
6446faa2
CL
2754 * The hardware cache alignment cannot override the specified
2755 * alignment though. If that is greater then use it.
81819f0f 2756 */
b6210386
NP
2757 if (flags & SLAB_HWCACHE_ALIGN) {
2758 unsigned long ralign = cache_line_size();
2759 while (size <= ralign / 2)
2760 ralign /= 2;
2761 align = max(align, ralign);
2762 }
81819f0f
CL
2763
2764 if (align < ARCH_SLAB_MINALIGN)
b6210386 2765 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2766
2767 return ALIGN(align, sizeof(void *));
2768}
2769
5595cffc
PE
2770static void
2771init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2772{
2773 n->nr_partial = 0;
81819f0f
CL
2774 spin_lock_init(&n->list_lock);
2775 INIT_LIST_HEAD(&n->partial);
8ab1372f 2776#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2777 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2778 atomic_long_set(&n->total_objects, 0);
643b1138 2779 INIT_LIST_HEAD(&n->full);
8ab1372f 2780#endif
81819f0f
CL
2781}
2782
55136592 2783static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2784{
6c182dc0
CL
2785 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2786 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2787
8a5ec0ba 2788 /*
d4d84fef
CM
2789 * Must align to double word boundary for the double cmpxchg
2790 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2791 */
d4d84fef
CM
2792 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2793 2 * sizeof(void *));
8a5ec0ba
CL
2794
2795 if (!s->cpu_slab)
2796 return 0;
2797
2798 init_kmem_cache_cpus(s);
4c93c355 2799
8a5ec0ba 2800 return 1;
4c93c355 2801}
4c93c355 2802
51df1142
CL
2803static struct kmem_cache *kmem_cache_node;
2804
81819f0f
CL
2805/*
2806 * No kmalloc_node yet so do it by hand. We know that this is the first
2807 * slab on the node for this slabcache. There are no concurrent accesses
2808 * possible.
2809 *
2810 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2811 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2812 * memory on a fresh node that has no slab structures yet.
81819f0f 2813 */
55136592 2814static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2815{
2816 struct page *page;
2817 struct kmem_cache_node *n;
2818
51df1142 2819 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2820
51df1142 2821 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2822
2823 BUG_ON(!page);
a2f92ee7
CL
2824 if (page_to_nid(page) != node) {
2825 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2826 "node %d\n", node);
2827 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2828 "in order to be able to continue\n");
2829 }
2830
81819f0f
CL
2831 n = page->freelist;
2832 BUG_ON(!n);
51df1142 2833 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2834 page->inuse = 1;
8cb0a506 2835 page->frozen = 0;
51df1142 2836 kmem_cache_node->node[node] = n;
8ab1372f 2837#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2838 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2839 init_tracking(kmem_cache_node, n);
8ab1372f 2840#endif
51df1142
CL
2841 init_kmem_cache_node(n, kmem_cache_node);
2842 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2843
136333d1 2844 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2845}
2846
2847static void free_kmem_cache_nodes(struct kmem_cache *s)
2848{
2849 int node;
2850
f64dc58c 2851 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2852 struct kmem_cache_node *n = s->node[node];
51df1142 2853
73367bd8 2854 if (n)
51df1142
CL
2855 kmem_cache_free(kmem_cache_node, n);
2856
81819f0f
CL
2857 s->node[node] = NULL;
2858 }
2859}
2860
55136592 2861static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2862{
2863 int node;
81819f0f 2864
f64dc58c 2865 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2866 struct kmem_cache_node *n;
2867
73367bd8 2868 if (slab_state == DOWN) {
55136592 2869 early_kmem_cache_node_alloc(node);
73367bd8
AD
2870 continue;
2871 }
51df1142 2872 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2873 GFP_KERNEL, node);
81819f0f 2874
73367bd8
AD
2875 if (!n) {
2876 free_kmem_cache_nodes(s);
2877 return 0;
81819f0f 2878 }
73367bd8 2879
81819f0f 2880 s->node[node] = n;
5595cffc 2881 init_kmem_cache_node(n, s);
81819f0f
CL
2882 }
2883 return 1;
2884}
81819f0f 2885
c0bdb232 2886static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2887{
2888 if (min < MIN_PARTIAL)
2889 min = MIN_PARTIAL;
2890 else if (min > MAX_PARTIAL)
2891 min = MAX_PARTIAL;
2892 s->min_partial = min;
2893}
2894
81819f0f
CL
2895/*
2896 * calculate_sizes() determines the order and the distribution of data within
2897 * a slab object.
2898 */
06b285dc 2899static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2900{
2901 unsigned long flags = s->flags;
2902 unsigned long size = s->objsize;
2903 unsigned long align = s->align;
834f3d11 2904 int order;
81819f0f 2905
d8b42bf5
CL
2906 /*
2907 * Round up object size to the next word boundary. We can only
2908 * place the free pointer at word boundaries and this determines
2909 * the possible location of the free pointer.
2910 */
2911 size = ALIGN(size, sizeof(void *));
2912
2913#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2914 /*
2915 * Determine if we can poison the object itself. If the user of
2916 * the slab may touch the object after free or before allocation
2917 * then we should never poison the object itself.
2918 */
2919 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2920 !s->ctor)
81819f0f
CL
2921 s->flags |= __OBJECT_POISON;
2922 else
2923 s->flags &= ~__OBJECT_POISON;
2924
81819f0f
CL
2925
2926 /*
672bba3a 2927 * If we are Redzoning then check if there is some space between the
81819f0f 2928 * end of the object and the free pointer. If not then add an
672bba3a 2929 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2930 */
2931 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2932 size += sizeof(void *);
41ecc55b 2933#endif
81819f0f
CL
2934
2935 /*
672bba3a
CL
2936 * With that we have determined the number of bytes in actual use
2937 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2938 */
2939 s->inuse = size;
2940
2941 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2942 s->ctor)) {
81819f0f
CL
2943 /*
2944 * Relocate free pointer after the object if it is not
2945 * permitted to overwrite the first word of the object on
2946 * kmem_cache_free.
2947 *
2948 * This is the case if we do RCU, have a constructor or
2949 * destructor or are poisoning the objects.
2950 */
2951 s->offset = size;
2952 size += sizeof(void *);
2953 }
2954
c12b3c62 2955#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2956 if (flags & SLAB_STORE_USER)
2957 /*
2958 * Need to store information about allocs and frees after
2959 * the object.
2960 */
2961 size += 2 * sizeof(struct track);
2962
be7b3fbc 2963 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2964 /*
2965 * Add some empty padding so that we can catch
2966 * overwrites from earlier objects rather than let
2967 * tracking information or the free pointer be
0211a9c8 2968 * corrupted if a user writes before the start
81819f0f
CL
2969 * of the object.
2970 */
2971 size += sizeof(void *);
41ecc55b 2972#endif
672bba3a 2973
81819f0f
CL
2974 /*
2975 * Determine the alignment based on various parameters that the
65c02d4c
CL
2976 * user specified and the dynamic determination of cache line size
2977 * on bootup.
81819f0f
CL
2978 */
2979 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2980 s->align = align;
81819f0f
CL
2981
2982 /*
2983 * SLUB stores one object immediately after another beginning from
2984 * offset 0. In order to align the objects we have to simply size
2985 * each object to conform to the alignment.
2986 */
2987 size = ALIGN(size, align);
2988 s->size = size;
06b285dc
CL
2989 if (forced_order >= 0)
2990 order = forced_order;
2991 else
ab9a0f19 2992 order = calculate_order(size, s->reserved);
81819f0f 2993
834f3d11 2994 if (order < 0)
81819f0f
CL
2995 return 0;
2996
b7a49f0d 2997 s->allocflags = 0;
834f3d11 2998 if (order)
b7a49f0d
CL
2999 s->allocflags |= __GFP_COMP;
3000
3001 if (s->flags & SLAB_CACHE_DMA)
3002 s->allocflags |= SLUB_DMA;
3003
3004 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3005 s->allocflags |= __GFP_RECLAIMABLE;
3006
81819f0f
CL
3007 /*
3008 * Determine the number of objects per slab
3009 */
ab9a0f19
LJ
3010 s->oo = oo_make(order, size, s->reserved);
3011 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3012 if (oo_objects(s->oo) > oo_objects(s->max))
3013 s->max = s->oo;
81819f0f 3014
834f3d11 3015 return !!oo_objects(s->oo);
81819f0f
CL
3016
3017}
3018
55136592 3019static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3020 const char *name, size_t size,
3021 size_t align, unsigned long flags,
51cc5068 3022 void (*ctor)(void *))
81819f0f
CL
3023{
3024 memset(s, 0, kmem_size);
3025 s->name = name;
3026 s->ctor = ctor;
81819f0f 3027 s->objsize = size;
81819f0f 3028 s->align = align;
ba0268a8 3029 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3030 s->reserved = 0;
81819f0f 3031
da9a638c
LJ
3032 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3033 s->reserved = sizeof(struct rcu_head);
81819f0f 3034
06b285dc 3035 if (!calculate_sizes(s, -1))
81819f0f 3036 goto error;
3de47213
DR
3037 if (disable_higher_order_debug) {
3038 /*
3039 * Disable debugging flags that store metadata if the min slab
3040 * order increased.
3041 */
3042 if (get_order(s->size) > get_order(s->objsize)) {
3043 s->flags &= ~DEBUG_METADATA_FLAGS;
3044 s->offset = 0;
3045 if (!calculate_sizes(s, -1))
3046 goto error;
3047 }
3048 }
81819f0f 3049
2565409f
HC
3050#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3051 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3052 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3053 /* Enable fast mode */
3054 s->flags |= __CMPXCHG_DOUBLE;
3055#endif
3056
3b89d7d8
DR
3057 /*
3058 * The larger the object size is, the more pages we want on the partial
3059 * list to avoid pounding the page allocator excessively.
3060 */
49e22585
CL
3061 set_min_partial(s, ilog2(s->size) / 2);
3062
3063 /*
3064 * cpu_partial determined the maximum number of objects kept in the
3065 * per cpu partial lists of a processor.
3066 *
3067 * Per cpu partial lists mainly contain slabs that just have one
3068 * object freed. If they are used for allocation then they can be
3069 * filled up again with minimal effort. The slab will never hit the
3070 * per node partial lists and therefore no locking will be required.
3071 *
3072 * This setting also determines
3073 *
3074 * A) The number of objects from per cpu partial slabs dumped to the
3075 * per node list when we reach the limit.
9f264904 3076 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3077 * per node list when we run out of per cpu objects. We only fetch 50%
3078 * to keep some capacity around for frees.
3079 */
8f1e33da
CL
3080 if (kmem_cache_debug(s))
3081 s->cpu_partial = 0;
3082 else if (s->size >= PAGE_SIZE)
49e22585
CL
3083 s->cpu_partial = 2;
3084 else if (s->size >= 1024)
3085 s->cpu_partial = 6;
3086 else if (s->size >= 256)
3087 s->cpu_partial = 13;
3088 else
3089 s->cpu_partial = 30;
3090
81819f0f
CL
3091 s->refcount = 1;
3092#ifdef CONFIG_NUMA
e2cb96b7 3093 s->remote_node_defrag_ratio = 1000;
81819f0f 3094#endif
55136592 3095 if (!init_kmem_cache_nodes(s))
dfb4f096 3096 goto error;
81819f0f 3097
55136592 3098 if (alloc_kmem_cache_cpus(s))
81819f0f 3099 return 1;
ff12059e 3100
4c93c355 3101 free_kmem_cache_nodes(s);
81819f0f
CL
3102error:
3103 if (flags & SLAB_PANIC)
3104 panic("Cannot create slab %s size=%lu realsize=%u "
3105 "order=%u offset=%u flags=%lx\n",
834f3d11 3106 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3107 s->offset, flags);
3108 return 0;
3109}
81819f0f 3110
81819f0f
CL
3111/*
3112 * Determine the size of a slab object
3113 */
3114unsigned int kmem_cache_size(struct kmem_cache *s)
3115{
3116 return s->objsize;
3117}
3118EXPORT_SYMBOL(kmem_cache_size);
3119
33b12c38
CL
3120static void list_slab_objects(struct kmem_cache *s, struct page *page,
3121 const char *text)
3122{
3123#ifdef CONFIG_SLUB_DEBUG
3124 void *addr = page_address(page);
3125 void *p;
a5dd5c11
NK
3126 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3127 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3128 if (!map)
3129 return;
33b12c38
CL
3130 slab_err(s, page, "%s", text);
3131 slab_lock(page);
33b12c38 3132
5f80b13a 3133 get_map(s, page, map);
33b12c38
CL
3134 for_each_object(p, s, addr, page->objects) {
3135
3136 if (!test_bit(slab_index(p, s, addr), map)) {
3137 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3138 p, p - addr);
3139 print_tracking(s, p);
3140 }
3141 }
3142 slab_unlock(page);
bbd7d57b 3143 kfree(map);
33b12c38
CL
3144#endif
3145}
3146
81819f0f 3147/*
599870b1 3148 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3149 * This is called from kmem_cache_close(). We must be the last thread
3150 * using the cache and therefore we do not need to lock anymore.
81819f0f 3151 */
599870b1 3152static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3153{
81819f0f
CL
3154 struct page *page, *h;
3155
33b12c38 3156 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3157 if (!page->inuse) {
5cc6eee8 3158 remove_partial(n, page);
81819f0f 3159 discard_slab(s, page);
33b12c38
CL
3160 } else {
3161 list_slab_objects(s, page,
3162 "Objects remaining on kmem_cache_close()");
599870b1 3163 }
33b12c38 3164 }
81819f0f
CL
3165}
3166
3167/*
672bba3a 3168 * Release all resources used by a slab cache.
81819f0f 3169 */
0c710013 3170static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3171{
3172 int node;
3173
3174 flush_all(s);
9dfc6e68 3175 free_percpu(s->cpu_slab);
81819f0f 3176 /* Attempt to free all objects */
f64dc58c 3177 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3178 struct kmem_cache_node *n = get_node(s, node);
3179
599870b1
CL
3180 free_partial(s, n);
3181 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3182 return 1;
3183 }
3184 free_kmem_cache_nodes(s);
3185 return 0;
3186}
3187
3188/*
3189 * Close a cache and release the kmem_cache structure
3190 * (must be used for caches created using kmem_cache_create)
3191 */
3192void kmem_cache_destroy(struct kmem_cache *s)
3193{
3194 down_write(&slub_lock);
3195 s->refcount--;
3196 if (!s->refcount) {
3197 list_del(&s->list);
69cb8e6b 3198 up_write(&slub_lock);
d629d819
PE
3199 if (kmem_cache_close(s)) {
3200 printk(KERN_ERR "SLUB %s: %s called for cache that "
3201 "still has objects.\n", s->name, __func__);
3202 dump_stack();
3203 }
d76b1590
ED
3204 if (s->flags & SLAB_DESTROY_BY_RCU)
3205 rcu_barrier();
81819f0f 3206 sysfs_slab_remove(s);
69cb8e6b
CL
3207 } else
3208 up_write(&slub_lock);
81819f0f
CL
3209}
3210EXPORT_SYMBOL(kmem_cache_destroy);
3211
3212/********************************************************************
3213 * Kmalloc subsystem
3214 *******************************************************************/
3215
51df1142 3216struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3217EXPORT_SYMBOL(kmalloc_caches);
3218
51df1142
CL
3219static struct kmem_cache *kmem_cache;
3220
55136592 3221#ifdef CONFIG_ZONE_DMA
51df1142 3222static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3223#endif
3224
81819f0f
CL
3225static int __init setup_slub_min_order(char *str)
3226{
06428780 3227 get_option(&str, &slub_min_order);
81819f0f
CL
3228
3229 return 1;
3230}
3231
3232__setup("slub_min_order=", setup_slub_min_order);
3233
3234static int __init setup_slub_max_order(char *str)
3235{
06428780 3236 get_option(&str, &slub_max_order);
818cf590 3237 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3238
3239 return 1;
3240}
3241
3242__setup("slub_max_order=", setup_slub_max_order);
3243
3244static int __init setup_slub_min_objects(char *str)
3245{
06428780 3246 get_option(&str, &slub_min_objects);
81819f0f
CL
3247
3248 return 1;
3249}
3250
3251__setup("slub_min_objects=", setup_slub_min_objects);
3252
3253static int __init setup_slub_nomerge(char *str)
3254{
3255 slub_nomerge = 1;
3256 return 1;
3257}
3258
3259__setup("slub_nomerge", setup_slub_nomerge);
3260
51df1142
CL
3261static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3262 int size, unsigned int flags)
81819f0f 3263{
51df1142
CL
3264 struct kmem_cache *s;
3265
3266 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3267
83b519e8
PE
3268 /*
3269 * This function is called with IRQs disabled during early-boot on
3270 * single CPU so there's no need to take slub_lock here.
3271 */
55136592 3272 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3273 flags, NULL))
81819f0f
CL
3274 goto panic;
3275
3276 list_add(&s->list, &slab_caches);
51df1142 3277 return s;
81819f0f
CL
3278
3279panic:
3280 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3281 return NULL;
81819f0f
CL
3282}
3283
f1b26339
CL
3284/*
3285 * Conversion table for small slabs sizes / 8 to the index in the
3286 * kmalloc array. This is necessary for slabs < 192 since we have non power
3287 * of two cache sizes there. The size of larger slabs can be determined using
3288 * fls.
3289 */
3290static s8 size_index[24] = {
3291 3, /* 8 */
3292 4, /* 16 */
3293 5, /* 24 */
3294 5, /* 32 */
3295 6, /* 40 */
3296 6, /* 48 */
3297 6, /* 56 */
3298 6, /* 64 */
3299 1, /* 72 */
3300 1, /* 80 */
3301 1, /* 88 */
3302 1, /* 96 */
3303 7, /* 104 */
3304 7, /* 112 */
3305 7, /* 120 */
3306 7, /* 128 */
3307 2, /* 136 */
3308 2, /* 144 */
3309 2, /* 152 */
3310 2, /* 160 */
3311 2, /* 168 */
3312 2, /* 176 */
3313 2, /* 184 */
3314 2 /* 192 */
3315};
3316
acdfcd04
AK
3317static inline int size_index_elem(size_t bytes)
3318{
3319 return (bytes - 1) / 8;
3320}
3321
81819f0f
CL
3322static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3323{
f1b26339 3324 int index;
81819f0f 3325
f1b26339
CL
3326 if (size <= 192) {
3327 if (!size)
3328 return ZERO_SIZE_PTR;
81819f0f 3329
acdfcd04 3330 index = size_index[size_index_elem(size)];
aadb4bc4 3331 } else
f1b26339 3332 index = fls(size - 1);
81819f0f
CL
3333
3334#ifdef CONFIG_ZONE_DMA
f1b26339 3335 if (unlikely((flags & SLUB_DMA)))
51df1142 3336 return kmalloc_dma_caches[index];
f1b26339 3337
81819f0f 3338#endif
51df1142 3339 return kmalloc_caches[index];
81819f0f
CL
3340}
3341
3342void *__kmalloc(size_t size, gfp_t flags)
3343{
aadb4bc4 3344 struct kmem_cache *s;
5b882be4 3345 void *ret;
81819f0f 3346
ffadd4d0 3347 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3348 return kmalloc_large(size, flags);
aadb4bc4
CL
3349
3350 s = get_slab(size, flags);
3351
3352 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3353 return s;
3354
2154a336 3355 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3356
ca2b84cb 3357 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3358
3359 return ret;
81819f0f
CL
3360}
3361EXPORT_SYMBOL(__kmalloc);
3362
5d1f57e4 3363#ifdef CONFIG_NUMA
f619cfe1
CL
3364static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3365{
b1eeab67 3366 struct page *page;
e4f7c0b4 3367 void *ptr = NULL;
f619cfe1 3368
b1eeab67
VN
3369 flags |= __GFP_COMP | __GFP_NOTRACK;
3370 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3371 if (page)
e4f7c0b4
CM
3372 ptr = page_address(page);
3373
3374 kmemleak_alloc(ptr, size, 1, flags);
3375 return ptr;
f619cfe1
CL
3376}
3377
81819f0f
CL
3378void *__kmalloc_node(size_t size, gfp_t flags, int node)
3379{
aadb4bc4 3380 struct kmem_cache *s;
5b882be4 3381 void *ret;
81819f0f 3382
057685cf 3383 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3384 ret = kmalloc_large_node(size, flags, node);
3385
ca2b84cb
EGM
3386 trace_kmalloc_node(_RET_IP_, ret,
3387 size, PAGE_SIZE << get_order(size),
3388 flags, node);
5b882be4
EGM
3389
3390 return ret;
3391 }
aadb4bc4
CL
3392
3393 s = get_slab(size, flags);
3394
3395 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3396 return s;
3397
5b882be4
EGM
3398 ret = slab_alloc(s, flags, node, _RET_IP_);
3399
ca2b84cb 3400 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3401
3402 return ret;
81819f0f
CL
3403}
3404EXPORT_SYMBOL(__kmalloc_node);
3405#endif
3406
3407size_t ksize(const void *object)
3408{
272c1d21 3409 struct page *page;
81819f0f 3410
ef8b4520 3411 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3412 return 0;
3413
294a80a8 3414 page = virt_to_head_page(object);
294a80a8 3415
76994412
PE
3416 if (unlikely(!PageSlab(page))) {
3417 WARN_ON(!PageCompound(page));
294a80a8 3418 return PAGE_SIZE << compound_order(page);
76994412 3419 }
81819f0f 3420
b3d41885 3421 return slab_ksize(page->slab);
81819f0f 3422}
b1aabecd 3423EXPORT_SYMBOL(ksize);
81819f0f 3424
d18a90dd
BG
3425#ifdef CONFIG_SLUB_DEBUG
3426bool verify_mem_not_deleted(const void *x)
3427{
3428 struct page *page;
3429 void *object = (void *)x;
3430 unsigned long flags;
3431 bool rv;
3432
3433 if (unlikely(ZERO_OR_NULL_PTR(x)))
3434 return false;
3435
3436 local_irq_save(flags);
3437
3438 page = virt_to_head_page(x);
3439 if (unlikely(!PageSlab(page))) {
3440 /* maybe it was from stack? */
3441 rv = true;
3442 goto out_unlock;
3443 }
3444
3445 slab_lock(page);
3446 if (on_freelist(page->slab, page, object)) {
3447 object_err(page->slab, page, object, "Object is on free-list");
3448 rv = false;
3449 } else {
3450 rv = true;
3451 }
3452 slab_unlock(page);
3453
3454out_unlock:
3455 local_irq_restore(flags);
3456 return rv;
3457}
3458EXPORT_SYMBOL(verify_mem_not_deleted);
3459#endif
3460
81819f0f
CL
3461void kfree(const void *x)
3462{
81819f0f 3463 struct page *page;
5bb983b0 3464 void *object = (void *)x;
81819f0f 3465
2121db74
PE
3466 trace_kfree(_RET_IP_, x);
3467
2408c550 3468 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3469 return;
3470
b49af68f 3471 page = virt_to_head_page(x);
aadb4bc4 3472 if (unlikely(!PageSlab(page))) {
0937502a 3473 BUG_ON(!PageCompound(page));
e4f7c0b4 3474 kmemleak_free(x);
aadb4bc4
CL
3475 put_page(page);
3476 return;
3477 }
ce71e27c 3478 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3479}
3480EXPORT_SYMBOL(kfree);
3481
2086d26a 3482/*
672bba3a
CL
3483 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3484 * the remaining slabs by the number of items in use. The slabs with the
3485 * most items in use come first. New allocations will then fill those up
3486 * and thus they can be removed from the partial lists.
3487 *
3488 * The slabs with the least items are placed last. This results in them
3489 * being allocated from last increasing the chance that the last objects
3490 * are freed in them.
2086d26a
CL
3491 */
3492int kmem_cache_shrink(struct kmem_cache *s)
3493{
3494 int node;
3495 int i;
3496 struct kmem_cache_node *n;
3497 struct page *page;
3498 struct page *t;
205ab99d 3499 int objects = oo_objects(s->max);
2086d26a 3500 struct list_head *slabs_by_inuse =
834f3d11 3501 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3502 unsigned long flags;
3503
3504 if (!slabs_by_inuse)
3505 return -ENOMEM;
3506
3507 flush_all(s);
f64dc58c 3508 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3509 n = get_node(s, node);
3510
3511 if (!n->nr_partial)
3512 continue;
3513
834f3d11 3514 for (i = 0; i < objects; i++)
2086d26a
CL
3515 INIT_LIST_HEAD(slabs_by_inuse + i);
3516
3517 spin_lock_irqsave(&n->list_lock, flags);
3518
3519 /*
672bba3a 3520 * Build lists indexed by the items in use in each slab.
2086d26a 3521 *
672bba3a
CL
3522 * Note that concurrent frees may occur while we hold the
3523 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3524 */
3525 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3526 list_move(&page->lru, slabs_by_inuse + page->inuse);
3527 if (!page->inuse)
3528 n->nr_partial--;
2086d26a
CL
3529 }
3530
2086d26a 3531 /*
672bba3a
CL
3532 * Rebuild the partial list with the slabs filled up most
3533 * first and the least used slabs at the end.
2086d26a 3534 */
69cb8e6b 3535 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3536 list_splice(slabs_by_inuse + i, n->partial.prev);
3537
2086d26a 3538 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3539
3540 /* Release empty slabs */
3541 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3542 discard_slab(s, page);
2086d26a
CL
3543 }
3544
3545 kfree(slabs_by_inuse);
3546 return 0;
3547}
3548EXPORT_SYMBOL(kmem_cache_shrink);
3549
92a5bbc1 3550#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3551static int slab_mem_going_offline_callback(void *arg)
3552{
3553 struct kmem_cache *s;
3554
3555 down_read(&slub_lock);
3556 list_for_each_entry(s, &slab_caches, list)
3557 kmem_cache_shrink(s);
3558 up_read(&slub_lock);
3559
3560 return 0;
3561}
3562
3563static void slab_mem_offline_callback(void *arg)
3564{
3565 struct kmem_cache_node *n;
3566 struct kmem_cache *s;
3567 struct memory_notify *marg = arg;
3568 int offline_node;
3569
3570 offline_node = marg->status_change_nid;
3571
3572 /*
3573 * If the node still has available memory. we need kmem_cache_node
3574 * for it yet.
3575 */
3576 if (offline_node < 0)
3577 return;
3578
3579 down_read(&slub_lock);
3580 list_for_each_entry(s, &slab_caches, list) {
3581 n = get_node(s, offline_node);
3582 if (n) {
3583 /*
3584 * if n->nr_slabs > 0, slabs still exist on the node
3585 * that is going down. We were unable to free them,
c9404c9c 3586 * and offline_pages() function shouldn't call this
b9049e23
YG
3587 * callback. So, we must fail.
3588 */
0f389ec6 3589 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3590
3591 s->node[offline_node] = NULL;
8de66a0c 3592 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3593 }
3594 }
3595 up_read(&slub_lock);
3596}
3597
3598static int slab_mem_going_online_callback(void *arg)
3599{
3600 struct kmem_cache_node *n;
3601 struct kmem_cache *s;
3602 struct memory_notify *marg = arg;
3603 int nid = marg->status_change_nid;
3604 int ret = 0;
3605
3606 /*
3607 * If the node's memory is already available, then kmem_cache_node is
3608 * already created. Nothing to do.
3609 */
3610 if (nid < 0)
3611 return 0;
3612
3613 /*
0121c619 3614 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3615 * allocate a kmem_cache_node structure in order to bring the node
3616 * online.
3617 */
3618 down_read(&slub_lock);
3619 list_for_each_entry(s, &slab_caches, list) {
3620 /*
3621 * XXX: kmem_cache_alloc_node will fallback to other nodes
3622 * since memory is not yet available from the node that
3623 * is brought up.
3624 */
8de66a0c 3625 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3626 if (!n) {
3627 ret = -ENOMEM;
3628 goto out;
3629 }
5595cffc 3630 init_kmem_cache_node(n, s);
b9049e23
YG
3631 s->node[nid] = n;
3632 }
3633out:
3634 up_read(&slub_lock);
3635 return ret;
3636}
3637
3638static int slab_memory_callback(struct notifier_block *self,
3639 unsigned long action, void *arg)
3640{
3641 int ret = 0;
3642
3643 switch (action) {
3644 case MEM_GOING_ONLINE:
3645 ret = slab_mem_going_online_callback(arg);
3646 break;
3647 case MEM_GOING_OFFLINE:
3648 ret = slab_mem_going_offline_callback(arg);
3649 break;
3650 case MEM_OFFLINE:
3651 case MEM_CANCEL_ONLINE:
3652 slab_mem_offline_callback(arg);
3653 break;
3654 case MEM_ONLINE:
3655 case MEM_CANCEL_OFFLINE:
3656 break;
3657 }
dc19f9db
KH
3658 if (ret)
3659 ret = notifier_from_errno(ret);
3660 else
3661 ret = NOTIFY_OK;
b9049e23
YG
3662 return ret;
3663}
3664
3665#endif /* CONFIG_MEMORY_HOTPLUG */
3666
81819f0f
CL
3667/********************************************************************
3668 * Basic setup of slabs
3669 *******************************************************************/
3670
51df1142
CL
3671/*
3672 * Used for early kmem_cache structures that were allocated using
3673 * the page allocator
3674 */
3675
3676static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3677{
3678 int node;
3679
3680 list_add(&s->list, &slab_caches);
3681 s->refcount = -1;
3682
3683 for_each_node_state(node, N_NORMAL_MEMORY) {
3684 struct kmem_cache_node *n = get_node(s, node);
3685 struct page *p;
3686
3687 if (n) {
3688 list_for_each_entry(p, &n->partial, lru)
3689 p->slab = s;
3690
607bf324 3691#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3692 list_for_each_entry(p, &n->full, lru)
3693 p->slab = s;
3694#endif
3695 }
3696 }
3697}
3698
81819f0f
CL
3699void __init kmem_cache_init(void)
3700{
3701 int i;
4b356be0 3702 int caches = 0;
51df1142
CL
3703 struct kmem_cache *temp_kmem_cache;
3704 int order;
51df1142
CL
3705 struct kmem_cache *temp_kmem_cache_node;
3706 unsigned long kmalloc_size;
3707
fc8d8620
SG
3708 if (debug_guardpage_minorder())
3709 slub_max_order = 0;
3710
51df1142
CL
3711 kmem_size = offsetof(struct kmem_cache, node) +
3712 nr_node_ids * sizeof(struct kmem_cache_node *);
3713
3714 /* Allocate two kmem_caches from the page allocator */
3715 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3716 order = get_order(2 * kmalloc_size);
3717 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3718
81819f0f
CL
3719 /*
3720 * Must first have the slab cache available for the allocations of the
672bba3a 3721 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3722 * kmem_cache_open for slab_state == DOWN.
3723 */
51df1142
CL
3724 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3725
3726 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3727 sizeof(struct kmem_cache_node),
3728 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3729
0c40ba4f 3730 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3731
3732 /* Able to allocate the per node structures */
3733 slab_state = PARTIAL;
3734
51df1142
CL
3735 temp_kmem_cache = kmem_cache;
3736 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3737 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3738 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3739 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3740
51df1142
CL
3741 /*
3742 * Allocate kmem_cache_node properly from the kmem_cache slab.
3743 * kmem_cache_node is separately allocated so no need to
3744 * update any list pointers.
3745 */
3746 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3747
51df1142
CL
3748 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3749 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3750
3751 kmem_cache_bootstrap_fixup(kmem_cache_node);
3752
3753 caches++;
51df1142
CL
3754 kmem_cache_bootstrap_fixup(kmem_cache);
3755 caches++;
3756 /* Free temporary boot structure */
3757 free_pages((unsigned long)temp_kmem_cache, order);
3758
3759 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3760
3761 /*
3762 * Patch up the size_index table if we have strange large alignment
3763 * requirements for the kmalloc array. This is only the case for
6446faa2 3764 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3765 *
3766 * Largest permitted alignment is 256 bytes due to the way we
3767 * handle the index determination for the smaller caches.
3768 *
3769 * Make sure that nothing crazy happens if someone starts tinkering
3770 * around with ARCH_KMALLOC_MINALIGN
3771 */
3772 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3773 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3774
acdfcd04
AK
3775 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3776 int elem = size_index_elem(i);
3777 if (elem >= ARRAY_SIZE(size_index))
3778 break;
3779 size_index[elem] = KMALLOC_SHIFT_LOW;
3780 }
f1b26339 3781
acdfcd04
AK
3782 if (KMALLOC_MIN_SIZE == 64) {
3783 /*
3784 * The 96 byte size cache is not used if the alignment
3785 * is 64 byte.
3786 */
3787 for (i = 64 + 8; i <= 96; i += 8)
3788 size_index[size_index_elem(i)] = 7;
3789 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3790 /*
3791 * The 192 byte sized cache is not used if the alignment
3792 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3793 * instead.
3794 */
3795 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3796 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3797 }
3798
51df1142
CL
3799 /* Caches that are not of the two-to-the-power-of size */
3800 if (KMALLOC_MIN_SIZE <= 32) {
3801 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3802 caches++;
3803 }
3804
3805 if (KMALLOC_MIN_SIZE <= 64) {
3806 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3807 caches++;
3808 }
3809
3810 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3811 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3812 caches++;
3813 }
3814
81819f0f
CL
3815 slab_state = UP;
3816
3817 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3818 if (KMALLOC_MIN_SIZE <= 32) {
3819 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3820 BUG_ON(!kmalloc_caches[1]->name);
3821 }
3822
3823 if (KMALLOC_MIN_SIZE <= 64) {
3824 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3825 BUG_ON(!kmalloc_caches[2]->name);
3826 }
3827
d7278bd7
CL
3828 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3829 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3830
3831 BUG_ON(!s);
51df1142 3832 kmalloc_caches[i]->name = s;
d7278bd7 3833 }
81819f0f
CL
3834
3835#ifdef CONFIG_SMP
3836 register_cpu_notifier(&slab_notifier);
9dfc6e68 3837#endif
81819f0f 3838
55136592 3839#ifdef CONFIG_ZONE_DMA
51df1142
CL
3840 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3841 struct kmem_cache *s = kmalloc_caches[i];
55136592 3842
51df1142 3843 if (s && s->size) {
55136592
CL
3844 char *name = kasprintf(GFP_NOWAIT,
3845 "dma-kmalloc-%d", s->objsize);
3846
3847 BUG_ON(!name);
51df1142
CL
3848 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3849 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3850 }
3851 }
3852#endif
3adbefee
IM
3853 printk(KERN_INFO
3854 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3855 " CPUs=%d, Nodes=%d\n",
3856 caches, cache_line_size(),
81819f0f
CL
3857 slub_min_order, slub_max_order, slub_min_objects,
3858 nr_cpu_ids, nr_node_ids);
3859}
3860
7e85ee0c
PE
3861void __init kmem_cache_init_late(void)
3862{
7e85ee0c
PE
3863}
3864
81819f0f
CL
3865/*
3866 * Find a mergeable slab cache
3867 */
3868static int slab_unmergeable(struct kmem_cache *s)
3869{
3870 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3871 return 1;
3872
c59def9f 3873 if (s->ctor)
81819f0f
CL
3874 return 1;
3875
8ffa6875
CL
3876 /*
3877 * We may have set a slab to be unmergeable during bootstrap.
3878 */
3879 if (s->refcount < 0)
3880 return 1;
3881
81819f0f
CL
3882 return 0;
3883}
3884
3885static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3886 size_t align, unsigned long flags, const char *name,
51cc5068 3887 void (*ctor)(void *))
81819f0f 3888{
5b95a4ac 3889 struct kmem_cache *s;
81819f0f
CL
3890
3891 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3892 return NULL;
3893
c59def9f 3894 if (ctor)
81819f0f
CL
3895 return NULL;
3896
3897 size = ALIGN(size, sizeof(void *));
3898 align = calculate_alignment(flags, align, size);
3899 size = ALIGN(size, align);
ba0268a8 3900 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3901
5b95a4ac 3902 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3903 if (slab_unmergeable(s))
3904 continue;
3905
3906 if (size > s->size)
3907 continue;
3908
ba0268a8 3909 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3910 continue;
3911 /*
3912 * Check if alignment is compatible.
3913 * Courtesy of Adrian Drzewiecki
3914 */
06428780 3915 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3916 continue;
3917
3918 if (s->size - size >= sizeof(void *))
3919 continue;
3920
3921 return s;
3922 }
3923 return NULL;
3924}
3925
3926struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3927 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3928{
3929 struct kmem_cache *s;
84c1cf62 3930 char *n;
81819f0f 3931
fe1ff49d
BH
3932 if (WARN_ON(!name))
3933 return NULL;
3934
81819f0f 3935 down_write(&slub_lock);
ba0268a8 3936 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3937 if (s) {
3938 s->refcount++;
3939 /*
3940 * Adjust the object sizes so that we clear
3941 * the complete object on kzalloc.
3942 */
3943 s->objsize = max(s->objsize, (int)size);
3944 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3945
7b8f3b66 3946 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3947 s->refcount--;
81819f0f 3948 goto err;
7b8f3b66 3949 }
2bce6485 3950 up_write(&slub_lock);
a0e1d1be
CL
3951 return s;
3952 }
6446faa2 3953
84c1cf62
PE
3954 n = kstrdup(name, GFP_KERNEL);
3955 if (!n)
3956 goto err;
3957
a0e1d1be
CL
3958 s = kmalloc(kmem_size, GFP_KERNEL);
3959 if (s) {
84c1cf62 3960 if (kmem_cache_open(s, n,
c59def9f 3961 size, align, flags, ctor)) {
81819f0f 3962 list_add(&s->list, &slab_caches);
66c4c35c 3963 up_write(&slub_lock);
7b8f3b66 3964 if (sysfs_slab_add(s)) {
66c4c35c 3965 down_write(&slub_lock);
7b8f3b66 3966 list_del(&s->list);
84c1cf62 3967 kfree(n);
7b8f3b66 3968 kfree(s);
a0e1d1be 3969 goto err;
7b8f3b66 3970 }
a0e1d1be
CL
3971 return s;
3972 }
84c1cf62 3973 kfree(n);
a0e1d1be 3974 kfree(s);
81819f0f 3975 }
68cee4f1 3976err:
81819f0f 3977 up_write(&slub_lock);
81819f0f 3978
81819f0f
CL
3979 if (flags & SLAB_PANIC)
3980 panic("Cannot create slabcache %s\n", name);
3981 else
3982 s = NULL;
3983 return s;
3984}
3985EXPORT_SYMBOL(kmem_cache_create);
3986
81819f0f 3987#ifdef CONFIG_SMP
81819f0f 3988/*
672bba3a
CL
3989 * Use the cpu notifier to insure that the cpu slabs are flushed when
3990 * necessary.
81819f0f
CL
3991 */
3992static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3993 unsigned long action, void *hcpu)
3994{
3995 long cpu = (long)hcpu;
5b95a4ac
CL
3996 struct kmem_cache *s;
3997 unsigned long flags;
81819f0f
CL
3998
3999 switch (action) {
4000 case CPU_UP_CANCELED:
8bb78442 4001 case CPU_UP_CANCELED_FROZEN:
81819f0f 4002 case CPU_DEAD:
8bb78442 4003 case CPU_DEAD_FROZEN:
5b95a4ac
CL
4004 down_read(&slub_lock);
4005 list_for_each_entry(s, &slab_caches, list) {
4006 local_irq_save(flags);
4007 __flush_cpu_slab(s, cpu);
4008 local_irq_restore(flags);
4009 }
4010 up_read(&slub_lock);
81819f0f
CL
4011 break;
4012 default:
4013 break;
4014 }
4015 return NOTIFY_OK;
4016}
4017
06428780 4018static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 4019 .notifier_call = slab_cpuup_callback
06428780 4020};
81819f0f
CL
4021
4022#endif
4023
ce71e27c 4024void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4025{
aadb4bc4 4026 struct kmem_cache *s;
94b528d0 4027 void *ret;
aadb4bc4 4028
ffadd4d0 4029 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4030 return kmalloc_large(size, gfpflags);
4031
aadb4bc4 4032 s = get_slab(size, gfpflags);
81819f0f 4033
2408c550 4034 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4035 return s;
81819f0f 4036
2154a336 4037 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4038
25985edc 4039 /* Honor the call site pointer we received. */
ca2b84cb 4040 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4041
4042 return ret;
81819f0f
CL
4043}
4044
5d1f57e4 4045#ifdef CONFIG_NUMA
81819f0f 4046void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4047 int node, unsigned long caller)
81819f0f 4048{
aadb4bc4 4049 struct kmem_cache *s;
94b528d0 4050 void *ret;
aadb4bc4 4051
d3e14aa3
XF
4052 if (unlikely(size > SLUB_MAX_SIZE)) {
4053 ret = kmalloc_large_node(size, gfpflags, node);
4054
4055 trace_kmalloc_node(caller, ret,
4056 size, PAGE_SIZE << get_order(size),
4057 gfpflags, node);
4058
4059 return ret;
4060 }
eada35ef 4061
aadb4bc4 4062 s = get_slab(size, gfpflags);
81819f0f 4063
2408c550 4064 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4065 return s;
81819f0f 4066
94b528d0
EGM
4067 ret = slab_alloc(s, gfpflags, node, caller);
4068
25985edc 4069 /* Honor the call site pointer we received. */
ca2b84cb 4070 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4071
4072 return ret;
81819f0f 4073}
5d1f57e4 4074#endif
81819f0f 4075
ab4d5ed5 4076#ifdef CONFIG_SYSFS
205ab99d
CL
4077static int count_inuse(struct page *page)
4078{
4079 return page->inuse;
4080}
4081
4082static int count_total(struct page *page)
4083{
4084 return page->objects;
4085}
ab4d5ed5 4086#endif
205ab99d 4087
ab4d5ed5 4088#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4089static int validate_slab(struct kmem_cache *s, struct page *page,
4090 unsigned long *map)
53e15af0
CL
4091{
4092 void *p;
a973e9dd 4093 void *addr = page_address(page);
53e15af0
CL
4094
4095 if (!check_slab(s, page) ||
4096 !on_freelist(s, page, NULL))
4097 return 0;
4098
4099 /* Now we know that a valid freelist exists */
39b26464 4100 bitmap_zero(map, page->objects);
53e15af0 4101
5f80b13a
CL
4102 get_map(s, page, map);
4103 for_each_object(p, s, addr, page->objects) {
4104 if (test_bit(slab_index(p, s, addr), map))
4105 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4106 return 0;
53e15af0
CL
4107 }
4108
224a88be 4109 for_each_object(p, s, addr, page->objects)
7656c72b 4110 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4111 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4112 return 0;
4113 return 1;
4114}
4115
434e245d
CL
4116static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4117 unsigned long *map)
53e15af0 4118{
881db7fb
CL
4119 slab_lock(page);
4120 validate_slab(s, page, map);
4121 slab_unlock(page);
53e15af0
CL
4122}
4123
434e245d
CL
4124static int validate_slab_node(struct kmem_cache *s,
4125 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4126{
4127 unsigned long count = 0;
4128 struct page *page;
4129 unsigned long flags;
4130
4131 spin_lock_irqsave(&n->list_lock, flags);
4132
4133 list_for_each_entry(page, &n->partial, lru) {
434e245d 4134 validate_slab_slab(s, page, map);
53e15af0
CL
4135 count++;
4136 }
4137 if (count != n->nr_partial)
4138 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4139 "counter=%ld\n", s->name, count, n->nr_partial);
4140
4141 if (!(s->flags & SLAB_STORE_USER))
4142 goto out;
4143
4144 list_for_each_entry(page, &n->full, lru) {
434e245d 4145 validate_slab_slab(s, page, map);
53e15af0
CL
4146 count++;
4147 }
4148 if (count != atomic_long_read(&n->nr_slabs))
4149 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4150 "counter=%ld\n", s->name, count,
4151 atomic_long_read(&n->nr_slabs));
4152
4153out:
4154 spin_unlock_irqrestore(&n->list_lock, flags);
4155 return count;
4156}
4157
434e245d 4158static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4159{
4160 int node;
4161 unsigned long count = 0;
205ab99d 4162 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4163 sizeof(unsigned long), GFP_KERNEL);
4164
4165 if (!map)
4166 return -ENOMEM;
53e15af0
CL
4167
4168 flush_all(s);
f64dc58c 4169 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4170 struct kmem_cache_node *n = get_node(s, node);
4171
434e245d 4172 count += validate_slab_node(s, n, map);
53e15af0 4173 }
434e245d 4174 kfree(map);
53e15af0
CL
4175 return count;
4176}
88a420e4 4177/*
672bba3a 4178 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4179 * and freed.
4180 */
4181
4182struct location {
4183 unsigned long count;
ce71e27c 4184 unsigned long addr;
45edfa58
CL
4185 long long sum_time;
4186 long min_time;
4187 long max_time;
4188 long min_pid;
4189 long max_pid;
174596a0 4190 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4191 nodemask_t nodes;
88a420e4
CL
4192};
4193
4194struct loc_track {
4195 unsigned long max;
4196 unsigned long count;
4197 struct location *loc;
4198};
4199
4200static void free_loc_track(struct loc_track *t)
4201{
4202 if (t->max)
4203 free_pages((unsigned long)t->loc,
4204 get_order(sizeof(struct location) * t->max));
4205}
4206
68dff6a9 4207static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4208{
4209 struct location *l;
4210 int order;
4211
88a420e4
CL
4212 order = get_order(sizeof(struct location) * max);
4213
68dff6a9 4214 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4215 if (!l)
4216 return 0;
4217
4218 if (t->count) {
4219 memcpy(l, t->loc, sizeof(struct location) * t->count);
4220 free_loc_track(t);
4221 }
4222 t->max = max;
4223 t->loc = l;
4224 return 1;
4225}
4226
4227static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4228 const struct track *track)
88a420e4
CL
4229{
4230 long start, end, pos;
4231 struct location *l;
ce71e27c 4232 unsigned long caddr;
45edfa58 4233 unsigned long age = jiffies - track->when;
88a420e4
CL
4234
4235 start = -1;
4236 end = t->count;
4237
4238 for ( ; ; ) {
4239 pos = start + (end - start + 1) / 2;
4240
4241 /*
4242 * There is nothing at "end". If we end up there
4243 * we need to add something to before end.
4244 */
4245 if (pos == end)
4246 break;
4247
4248 caddr = t->loc[pos].addr;
45edfa58
CL
4249 if (track->addr == caddr) {
4250
4251 l = &t->loc[pos];
4252 l->count++;
4253 if (track->when) {
4254 l->sum_time += age;
4255 if (age < l->min_time)
4256 l->min_time = age;
4257 if (age > l->max_time)
4258 l->max_time = age;
4259
4260 if (track->pid < l->min_pid)
4261 l->min_pid = track->pid;
4262 if (track->pid > l->max_pid)
4263 l->max_pid = track->pid;
4264
174596a0
RR
4265 cpumask_set_cpu(track->cpu,
4266 to_cpumask(l->cpus));
45edfa58
CL
4267 }
4268 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4269 return 1;
4270 }
4271
45edfa58 4272 if (track->addr < caddr)
88a420e4
CL
4273 end = pos;
4274 else
4275 start = pos;
4276 }
4277
4278 /*
672bba3a 4279 * Not found. Insert new tracking element.
88a420e4 4280 */
68dff6a9 4281 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4282 return 0;
4283
4284 l = t->loc + pos;
4285 if (pos < t->count)
4286 memmove(l + 1, l,
4287 (t->count - pos) * sizeof(struct location));
4288 t->count++;
4289 l->count = 1;
45edfa58
CL
4290 l->addr = track->addr;
4291 l->sum_time = age;
4292 l->min_time = age;
4293 l->max_time = age;
4294 l->min_pid = track->pid;
4295 l->max_pid = track->pid;
174596a0
RR
4296 cpumask_clear(to_cpumask(l->cpus));
4297 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4298 nodes_clear(l->nodes);
4299 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4300 return 1;
4301}
4302
4303static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4304 struct page *page, enum track_item alloc,
a5dd5c11 4305 unsigned long *map)
88a420e4 4306{
a973e9dd 4307 void *addr = page_address(page);
88a420e4
CL
4308 void *p;
4309
39b26464 4310 bitmap_zero(map, page->objects);
5f80b13a 4311 get_map(s, page, map);
88a420e4 4312
224a88be 4313 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4314 if (!test_bit(slab_index(p, s, addr), map))
4315 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4316}
4317
4318static int list_locations(struct kmem_cache *s, char *buf,
4319 enum track_item alloc)
4320{
e374d483 4321 int len = 0;
88a420e4 4322 unsigned long i;
68dff6a9 4323 struct loc_track t = { 0, 0, NULL };
88a420e4 4324 int node;
bbd7d57b
ED
4325 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4326 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4327
bbd7d57b
ED
4328 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4329 GFP_TEMPORARY)) {
4330 kfree(map);
68dff6a9 4331 return sprintf(buf, "Out of memory\n");
bbd7d57b 4332 }
88a420e4
CL
4333 /* Push back cpu slabs */
4334 flush_all(s);
4335
f64dc58c 4336 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4337 struct kmem_cache_node *n = get_node(s, node);
4338 unsigned long flags;
4339 struct page *page;
4340
9e86943b 4341 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4342 continue;
4343
4344 spin_lock_irqsave(&n->list_lock, flags);
4345 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4346 process_slab(&t, s, page, alloc, map);
88a420e4 4347 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4348 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4349 spin_unlock_irqrestore(&n->list_lock, flags);
4350 }
4351
4352 for (i = 0; i < t.count; i++) {
45edfa58 4353 struct location *l = &t.loc[i];
88a420e4 4354
9c246247 4355 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4356 break;
e374d483 4357 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4358
4359 if (l->addr)
62c70bce 4360 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4361 else
e374d483 4362 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4363
4364 if (l->sum_time != l->min_time) {
e374d483 4365 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4366 l->min_time,
4367 (long)div_u64(l->sum_time, l->count),
4368 l->max_time);
45edfa58 4369 } else
e374d483 4370 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4371 l->min_time);
4372
4373 if (l->min_pid != l->max_pid)
e374d483 4374 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4375 l->min_pid, l->max_pid);
4376 else
e374d483 4377 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4378 l->min_pid);
4379
174596a0
RR
4380 if (num_online_cpus() > 1 &&
4381 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4382 len < PAGE_SIZE - 60) {
4383 len += sprintf(buf + len, " cpus=");
4384 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4385 to_cpumask(l->cpus));
45edfa58
CL
4386 }
4387
62bc62a8 4388 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4389 len < PAGE_SIZE - 60) {
4390 len += sprintf(buf + len, " nodes=");
4391 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4392 l->nodes);
4393 }
4394
e374d483 4395 len += sprintf(buf + len, "\n");
88a420e4
CL
4396 }
4397
4398 free_loc_track(&t);
bbd7d57b 4399 kfree(map);
88a420e4 4400 if (!t.count)
e374d483
HH
4401 len += sprintf(buf, "No data\n");
4402 return len;
88a420e4 4403}
ab4d5ed5 4404#endif
88a420e4 4405
a5a84755
CL
4406#ifdef SLUB_RESILIENCY_TEST
4407static void resiliency_test(void)
4408{
4409 u8 *p;
4410
4411 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4412
4413 printk(KERN_ERR "SLUB resiliency testing\n");
4414 printk(KERN_ERR "-----------------------\n");
4415 printk(KERN_ERR "A. Corruption after allocation\n");
4416
4417 p = kzalloc(16, GFP_KERNEL);
4418 p[16] = 0x12;
4419 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4420 " 0x12->0x%p\n\n", p + 16);
4421
4422 validate_slab_cache(kmalloc_caches[4]);
4423
4424 /* Hmmm... The next two are dangerous */
4425 p = kzalloc(32, GFP_KERNEL);
4426 p[32 + sizeof(void *)] = 0x34;
4427 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4428 " 0x34 -> -0x%p\n", p);
4429 printk(KERN_ERR
4430 "If allocated object is overwritten then not detectable\n\n");
4431
4432 validate_slab_cache(kmalloc_caches[5]);
4433 p = kzalloc(64, GFP_KERNEL);
4434 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4435 *p = 0x56;
4436 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4437 p);
4438 printk(KERN_ERR
4439 "If allocated object is overwritten then not detectable\n\n");
4440 validate_slab_cache(kmalloc_caches[6]);
4441
4442 printk(KERN_ERR "\nB. Corruption after free\n");
4443 p = kzalloc(128, GFP_KERNEL);
4444 kfree(p);
4445 *p = 0x78;
4446 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4447 validate_slab_cache(kmalloc_caches[7]);
4448
4449 p = kzalloc(256, GFP_KERNEL);
4450 kfree(p);
4451 p[50] = 0x9a;
4452 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4453 p);
4454 validate_slab_cache(kmalloc_caches[8]);
4455
4456 p = kzalloc(512, GFP_KERNEL);
4457 kfree(p);
4458 p[512] = 0xab;
4459 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4460 validate_slab_cache(kmalloc_caches[9]);
4461}
4462#else
4463#ifdef CONFIG_SYSFS
4464static void resiliency_test(void) {};
4465#endif
4466#endif
4467
ab4d5ed5 4468#ifdef CONFIG_SYSFS
81819f0f 4469enum slab_stat_type {
205ab99d
CL
4470 SL_ALL, /* All slabs */
4471 SL_PARTIAL, /* Only partially allocated slabs */
4472 SL_CPU, /* Only slabs used for cpu caches */
4473 SL_OBJECTS, /* Determine allocated objects not slabs */
4474 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4475};
4476
205ab99d 4477#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4478#define SO_PARTIAL (1 << SL_PARTIAL)
4479#define SO_CPU (1 << SL_CPU)
4480#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4481#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4482
62e5c4b4
CG
4483static ssize_t show_slab_objects(struct kmem_cache *s,
4484 char *buf, unsigned long flags)
81819f0f
CL
4485{
4486 unsigned long total = 0;
81819f0f
CL
4487 int node;
4488 int x;
4489 unsigned long *nodes;
4490 unsigned long *per_cpu;
4491
4492 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4493 if (!nodes)
4494 return -ENOMEM;
81819f0f
CL
4495 per_cpu = nodes + nr_node_ids;
4496
205ab99d
CL
4497 if (flags & SO_CPU) {
4498 int cpu;
81819f0f 4499
205ab99d 4500 for_each_possible_cpu(cpu) {
9dfc6e68 4501 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
bc6697d8 4502 int node = ACCESS_ONCE(c->node);
49e22585 4503 struct page *page;
dfb4f096 4504
bc6697d8 4505 if (node < 0)
205ab99d 4506 continue;
bc6697d8
ED
4507 page = ACCESS_ONCE(c->page);
4508 if (page) {
4509 if (flags & SO_TOTAL)
4510 x = page->objects;
205ab99d 4511 else if (flags & SO_OBJECTS)
bc6697d8 4512 x = page->inuse;
81819f0f
CL
4513 else
4514 x = 1;
205ab99d 4515
81819f0f 4516 total += x;
bc6697d8 4517 nodes[node] += x;
81819f0f 4518 }
49e22585
CL
4519 page = c->partial;
4520
4521 if (page) {
4522 x = page->pobjects;
bc6697d8
ED
4523 total += x;
4524 nodes[node] += x;
49e22585 4525 }
bc6697d8 4526 per_cpu[node]++;
81819f0f
CL
4527 }
4528 }
4529
04d94879 4530 lock_memory_hotplug();
ab4d5ed5 4531#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4532 if (flags & SO_ALL) {
4533 for_each_node_state(node, N_NORMAL_MEMORY) {
4534 struct kmem_cache_node *n = get_node(s, node);
4535
4536 if (flags & SO_TOTAL)
4537 x = atomic_long_read(&n->total_objects);
4538 else if (flags & SO_OBJECTS)
4539 x = atomic_long_read(&n->total_objects) -
4540 count_partial(n, count_free);
81819f0f 4541
81819f0f 4542 else
205ab99d 4543 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4544 total += x;
4545 nodes[node] += x;
4546 }
4547
ab4d5ed5
CL
4548 } else
4549#endif
4550 if (flags & SO_PARTIAL) {
205ab99d
CL
4551 for_each_node_state(node, N_NORMAL_MEMORY) {
4552 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4553
205ab99d
CL
4554 if (flags & SO_TOTAL)
4555 x = count_partial(n, count_total);
4556 else if (flags & SO_OBJECTS)
4557 x = count_partial(n, count_inuse);
81819f0f 4558 else
205ab99d 4559 x = n->nr_partial;
81819f0f
CL
4560 total += x;
4561 nodes[node] += x;
4562 }
4563 }
81819f0f
CL
4564 x = sprintf(buf, "%lu", total);
4565#ifdef CONFIG_NUMA
f64dc58c 4566 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4567 if (nodes[node])
4568 x += sprintf(buf + x, " N%d=%lu",
4569 node, nodes[node]);
4570#endif
04d94879 4571 unlock_memory_hotplug();
81819f0f
CL
4572 kfree(nodes);
4573 return x + sprintf(buf + x, "\n");
4574}
4575
ab4d5ed5 4576#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4577static int any_slab_objects(struct kmem_cache *s)
4578{
4579 int node;
81819f0f 4580
dfb4f096 4581 for_each_online_node(node) {
81819f0f
CL
4582 struct kmem_cache_node *n = get_node(s, node);
4583
dfb4f096
CL
4584 if (!n)
4585 continue;
4586
4ea33e2d 4587 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4588 return 1;
4589 }
4590 return 0;
4591}
ab4d5ed5 4592#endif
81819f0f
CL
4593
4594#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4595#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4596
4597struct slab_attribute {
4598 struct attribute attr;
4599 ssize_t (*show)(struct kmem_cache *s, char *buf);
4600 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4601};
4602
4603#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4604 static struct slab_attribute _name##_attr = \
4605 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4606
4607#define SLAB_ATTR(_name) \
4608 static struct slab_attribute _name##_attr = \
ab067e99 4609 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4610
81819f0f
CL
4611static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4612{
4613 return sprintf(buf, "%d\n", s->size);
4614}
4615SLAB_ATTR_RO(slab_size);
4616
4617static ssize_t align_show(struct kmem_cache *s, char *buf)
4618{
4619 return sprintf(buf, "%d\n", s->align);
4620}
4621SLAB_ATTR_RO(align);
4622
4623static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4624{
4625 return sprintf(buf, "%d\n", s->objsize);
4626}
4627SLAB_ATTR_RO(object_size);
4628
4629static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4630{
834f3d11 4631 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4632}
4633SLAB_ATTR_RO(objs_per_slab);
4634
06b285dc
CL
4635static ssize_t order_store(struct kmem_cache *s,
4636 const char *buf, size_t length)
4637{
0121c619
CL
4638 unsigned long order;
4639 int err;
4640
4641 err = strict_strtoul(buf, 10, &order);
4642 if (err)
4643 return err;
06b285dc
CL
4644
4645 if (order > slub_max_order || order < slub_min_order)
4646 return -EINVAL;
4647
4648 calculate_sizes(s, order);
4649 return length;
4650}
4651
81819f0f
CL
4652static ssize_t order_show(struct kmem_cache *s, char *buf)
4653{
834f3d11 4654 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4655}
06b285dc 4656SLAB_ATTR(order);
81819f0f 4657
73d342b1
DR
4658static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4659{
4660 return sprintf(buf, "%lu\n", s->min_partial);
4661}
4662
4663static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4664 size_t length)
4665{
4666 unsigned long min;
4667 int err;
4668
4669 err = strict_strtoul(buf, 10, &min);
4670 if (err)
4671 return err;
4672
c0bdb232 4673 set_min_partial(s, min);
73d342b1
DR
4674 return length;
4675}
4676SLAB_ATTR(min_partial);
4677
49e22585
CL
4678static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4679{
4680 return sprintf(buf, "%u\n", s->cpu_partial);
4681}
4682
4683static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4684 size_t length)
4685{
4686 unsigned long objects;
4687 int err;
4688
4689 err = strict_strtoul(buf, 10, &objects);
4690 if (err)
4691 return err;
74ee4ef1
DR
4692 if (objects && kmem_cache_debug(s))
4693 return -EINVAL;
49e22585
CL
4694
4695 s->cpu_partial = objects;
4696 flush_all(s);
4697 return length;
4698}
4699SLAB_ATTR(cpu_partial);
4700
81819f0f
CL
4701static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4702{
62c70bce
JP
4703 if (!s->ctor)
4704 return 0;
4705 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4706}
4707SLAB_ATTR_RO(ctor);
4708
81819f0f
CL
4709static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4710{
4711 return sprintf(buf, "%d\n", s->refcount - 1);
4712}
4713SLAB_ATTR_RO(aliases);
4714
81819f0f
CL
4715static ssize_t partial_show(struct kmem_cache *s, char *buf)
4716{
d9acf4b7 4717 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4718}
4719SLAB_ATTR_RO(partial);
4720
4721static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4722{
d9acf4b7 4723 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4724}
4725SLAB_ATTR_RO(cpu_slabs);
4726
4727static ssize_t objects_show(struct kmem_cache *s, char *buf)
4728{
205ab99d 4729 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4730}
4731SLAB_ATTR_RO(objects);
4732
205ab99d
CL
4733static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4734{
4735 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4736}
4737SLAB_ATTR_RO(objects_partial);
4738
49e22585
CL
4739static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4740{
4741 int objects = 0;
4742 int pages = 0;
4743 int cpu;
4744 int len;
4745
4746 for_each_online_cpu(cpu) {
4747 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4748
4749 if (page) {
4750 pages += page->pages;
4751 objects += page->pobjects;
4752 }
4753 }
4754
4755 len = sprintf(buf, "%d(%d)", objects, pages);
4756
4757#ifdef CONFIG_SMP
4758 for_each_online_cpu(cpu) {
4759 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4760
4761 if (page && len < PAGE_SIZE - 20)
4762 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4763 page->pobjects, page->pages);
4764 }
4765#endif
4766 return len + sprintf(buf + len, "\n");
4767}
4768SLAB_ATTR_RO(slabs_cpu_partial);
4769
a5a84755
CL
4770static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4771{
4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4773}
4774
4775static ssize_t reclaim_account_store(struct kmem_cache *s,
4776 const char *buf, size_t length)
4777{
4778 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4779 if (buf[0] == '1')
4780 s->flags |= SLAB_RECLAIM_ACCOUNT;
4781 return length;
4782}
4783SLAB_ATTR(reclaim_account);
4784
4785static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4786{
4787 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4788}
4789SLAB_ATTR_RO(hwcache_align);
4790
4791#ifdef CONFIG_ZONE_DMA
4792static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4793{
4794 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4795}
4796SLAB_ATTR_RO(cache_dma);
4797#endif
4798
4799static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4800{
4801 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4802}
4803SLAB_ATTR_RO(destroy_by_rcu);
4804
ab9a0f19
LJ
4805static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4806{
4807 return sprintf(buf, "%d\n", s->reserved);
4808}
4809SLAB_ATTR_RO(reserved);
4810
ab4d5ed5 4811#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4812static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4813{
4814 return show_slab_objects(s, buf, SO_ALL);
4815}
4816SLAB_ATTR_RO(slabs);
4817
205ab99d
CL
4818static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4819{
4820 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4821}
4822SLAB_ATTR_RO(total_objects);
4823
81819f0f
CL
4824static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4825{
4826 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4827}
4828
4829static ssize_t sanity_checks_store(struct kmem_cache *s,
4830 const char *buf, size_t length)
4831{
4832 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4833 if (buf[0] == '1') {
4834 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4835 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4836 }
81819f0f
CL
4837 return length;
4838}
4839SLAB_ATTR(sanity_checks);
4840
4841static ssize_t trace_show(struct kmem_cache *s, char *buf)
4842{
4843 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4844}
4845
4846static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4847 size_t length)
4848{
4849 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4850 if (buf[0] == '1') {
4851 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4852 s->flags |= SLAB_TRACE;
b789ef51 4853 }
81819f0f
CL
4854 return length;
4855}
4856SLAB_ATTR(trace);
4857
81819f0f
CL
4858static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4859{
4860 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4861}
4862
4863static ssize_t red_zone_store(struct kmem_cache *s,
4864 const char *buf, size_t length)
4865{
4866 if (any_slab_objects(s))
4867 return -EBUSY;
4868
4869 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4870 if (buf[0] == '1') {
4871 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4872 s->flags |= SLAB_RED_ZONE;
b789ef51 4873 }
06b285dc 4874 calculate_sizes(s, -1);
81819f0f
CL
4875 return length;
4876}
4877SLAB_ATTR(red_zone);
4878
4879static ssize_t poison_show(struct kmem_cache *s, char *buf)
4880{
4881 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4882}
4883
4884static ssize_t poison_store(struct kmem_cache *s,
4885 const char *buf, size_t length)
4886{
4887 if (any_slab_objects(s))
4888 return -EBUSY;
4889
4890 s->flags &= ~SLAB_POISON;
b789ef51
CL
4891 if (buf[0] == '1') {
4892 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4893 s->flags |= SLAB_POISON;
b789ef51 4894 }
06b285dc 4895 calculate_sizes(s, -1);
81819f0f
CL
4896 return length;
4897}
4898SLAB_ATTR(poison);
4899
4900static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4901{
4902 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4903}
4904
4905static ssize_t store_user_store(struct kmem_cache *s,
4906 const char *buf, size_t length)
4907{
4908 if (any_slab_objects(s))
4909 return -EBUSY;
4910
4911 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4912 if (buf[0] == '1') {
4913 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4914 s->flags |= SLAB_STORE_USER;
b789ef51 4915 }
06b285dc 4916 calculate_sizes(s, -1);
81819f0f
CL
4917 return length;
4918}
4919SLAB_ATTR(store_user);
4920
53e15af0
CL
4921static ssize_t validate_show(struct kmem_cache *s, char *buf)
4922{
4923 return 0;
4924}
4925
4926static ssize_t validate_store(struct kmem_cache *s,
4927 const char *buf, size_t length)
4928{
434e245d
CL
4929 int ret = -EINVAL;
4930
4931 if (buf[0] == '1') {
4932 ret = validate_slab_cache(s);
4933 if (ret >= 0)
4934 ret = length;
4935 }
4936 return ret;
53e15af0
CL
4937}
4938SLAB_ATTR(validate);
a5a84755
CL
4939
4940static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4941{
4942 if (!(s->flags & SLAB_STORE_USER))
4943 return -ENOSYS;
4944 return list_locations(s, buf, TRACK_ALLOC);
4945}
4946SLAB_ATTR_RO(alloc_calls);
4947
4948static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4949{
4950 if (!(s->flags & SLAB_STORE_USER))
4951 return -ENOSYS;
4952 return list_locations(s, buf, TRACK_FREE);
4953}
4954SLAB_ATTR_RO(free_calls);
4955#endif /* CONFIG_SLUB_DEBUG */
4956
4957#ifdef CONFIG_FAILSLAB
4958static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4959{
4960 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4961}
4962
4963static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4964 size_t length)
4965{
4966 s->flags &= ~SLAB_FAILSLAB;
4967 if (buf[0] == '1')
4968 s->flags |= SLAB_FAILSLAB;
4969 return length;
4970}
4971SLAB_ATTR(failslab);
ab4d5ed5 4972#endif
53e15af0 4973
2086d26a
CL
4974static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4975{
4976 return 0;
4977}
4978
4979static ssize_t shrink_store(struct kmem_cache *s,
4980 const char *buf, size_t length)
4981{
4982 if (buf[0] == '1') {
4983 int rc = kmem_cache_shrink(s);
4984
4985 if (rc)
4986 return rc;
4987 } else
4988 return -EINVAL;
4989 return length;
4990}
4991SLAB_ATTR(shrink);
4992
81819f0f 4993#ifdef CONFIG_NUMA
9824601e 4994static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4995{
9824601e 4996 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4997}
4998
9824601e 4999static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5000 const char *buf, size_t length)
5001{
0121c619
CL
5002 unsigned long ratio;
5003 int err;
5004
5005 err = strict_strtoul(buf, 10, &ratio);
5006 if (err)
5007 return err;
5008
e2cb96b7 5009 if (ratio <= 100)
0121c619 5010 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5011
81819f0f
CL
5012 return length;
5013}
9824601e 5014SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5015#endif
5016
8ff12cfc 5017#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5018static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5019{
5020 unsigned long sum = 0;
5021 int cpu;
5022 int len;
5023 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5024
5025 if (!data)
5026 return -ENOMEM;
5027
5028 for_each_online_cpu(cpu) {
9dfc6e68 5029 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5030
5031 data[cpu] = x;
5032 sum += x;
5033 }
5034
5035 len = sprintf(buf, "%lu", sum);
5036
50ef37b9 5037#ifdef CONFIG_SMP
8ff12cfc
CL
5038 for_each_online_cpu(cpu) {
5039 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5040 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5041 }
50ef37b9 5042#endif
8ff12cfc
CL
5043 kfree(data);
5044 return len + sprintf(buf + len, "\n");
5045}
5046
78eb00cc
DR
5047static void clear_stat(struct kmem_cache *s, enum stat_item si)
5048{
5049 int cpu;
5050
5051 for_each_online_cpu(cpu)
9dfc6e68 5052 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5053}
5054
8ff12cfc
CL
5055#define STAT_ATTR(si, text) \
5056static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5057{ \
5058 return show_stat(s, buf, si); \
5059} \
78eb00cc
DR
5060static ssize_t text##_store(struct kmem_cache *s, \
5061 const char *buf, size_t length) \
5062{ \
5063 if (buf[0] != '0') \
5064 return -EINVAL; \
5065 clear_stat(s, si); \
5066 return length; \
5067} \
5068SLAB_ATTR(text); \
8ff12cfc
CL
5069
5070STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5071STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5072STAT_ATTR(FREE_FASTPATH, free_fastpath);
5073STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5074STAT_ATTR(FREE_FROZEN, free_frozen);
5075STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5076STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5077STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5078STAT_ATTR(ALLOC_SLAB, alloc_slab);
5079STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5080STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5081STAT_ATTR(FREE_SLAB, free_slab);
5082STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5083STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5084STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5085STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5086STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5087STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5088STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5089STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5090STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5091STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5092STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5093STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5094STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5095STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5096#endif
5097
06428780 5098static struct attribute *slab_attrs[] = {
81819f0f
CL
5099 &slab_size_attr.attr,
5100 &object_size_attr.attr,
5101 &objs_per_slab_attr.attr,
5102 &order_attr.attr,
73d342b1 5103 &min_partial_attr.attr,
49e22585 5104 &cpu_partial_attr.attr,
81819f0f 5105 &objects_attr.attr,
205ab99d 5106 &objects_partial_attr.attr,
81819f0f
CL
5107 &partial_attr.attr,
5108 &cpu_slabs_attr.attr,
5109 &ctor_attr.attr,
81819f0f
CL
5110 &aliases_attr.attr,
5111 &align_attr.attr,
81819f0f
CL
5112 &hwcache_align_attr.attr,
5113 &reclaim_account_attr.attr,
5114 &destroy_by_rcu_attr.attr,
a5a84755 5115 &shrink_attr.attr,
ab9a0f19 5116 &reserved_attr.attr,
49e22585 5117 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5118#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5119 &total_objects_attr.attr,
5120 &slabs_attr.attr,
5121 &sanity_checks_attr.attr,
5122 &trace_attr.attr,
81819f0f
CL
5123 &red_zone_attr.attr,
5124 &poison_attr.attr,
5125 &store_user_attr.attr,
53e15af0 5126 &validate_attr.attr,
88a420e4
CL
5127 &alloc_calls_attr.attr,
5128 &free_calls_attr.attr,
ab4d5ed5 5129#endif
81819f0f
CL
5130#ifdef CONFIG_ZONE_DMA
5131 &cache_dma_attr.attr,
5132#endif
5133#ifdef CONFIG_NUMA
9824601e 5134 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5135#endif
5136#ifdef CONFIG_SLUB_STATS
5137 &alloc_fastpath_attr.attr,
5138 &alloc_slowpath_attr.attr,
5139 &free_fastpath_attr.attr,
5140 &free_slowpath_attr.attr,
5141 &free_frozen_attr.attr,
5142 &free_add_partial_attr.attr,
5143 &free_remove_partial_attr.attr,
5144 &alloc_from_partial_attr.attr,
5145 &alloc_slab_attr.attr,
5146 &alloc_refill_attr.attr,
e36a2652 5147 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5148 &free_slab_attr.attr,
5149 &cpuslab_flush_attr.attr,
5150 &deactivate_full_attr.attr,
5151 &deactivate_empty_attr.attr,
5152 &deactivate_to_head_attr.attr,
5153 &deactivate_to_tail_attr.attr,
5154 &deactivate_remote_frees_attr.attr,
03e404af 5155 &deactivate_bypass_attr.attr,
65c3376a 5156 &order_fallback_attr.attr,
b789ef51
CL
5157 &cmpxchg_double_fail_attr.attr,
5158 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5159 &cpu_partial_alloc_attr.attr,
5160 &cpu_partial_free_attr.attr,
8028dcea
AS
5161 &cpu_partial_node_attr.attr,
5162 &cpu_partial_drain_attr.attr,
81819f0f 5163#endif
4c13dd3b
DM
5164#ifdef CONFIG_FAILSLAB
5165 &failslab_attr.attr,
5166#endif
5167
81819f0f
CL
5168 NULL
5169};
5170
5171static struct attribute_group slab_attr_group = {
5172 .attrs = slab_attrs,
5173};
5174
5175static ssize_t slab_attr_show(struct kobject *kobj,
5176 struct attribute *attr,
5177 char *buf)
5178{
5179 struct slab_attribute *attribute;
5180 struct kmem_cache *s;
5181 int err;
5182
5183 attribute = to_slab_attr(attr);
5184 s = to_slab(kobj);
5185
5186 if (!attribute->show)
5187 return -EIO;
5188
5189 err = attribute->show(s, buf);
5190
5191 return err;
5192}
5193
5194static ssize_t slab_attr_store(struct kobject *kobj,
5195 struct attribute *attr,
5196 const char *buf, size_t len)
5197{
5198 struct slab_attribute *attribute;
5199 struct kmem_cache *s;
5200 int err;
5201
5202 attribute = to_slab_attr(attr);
5203 s = to_slab(kobj);
5204
5205 if (!attribute->store)
5206 return -EIO;
5207
5208 err = attribute->store(s, buf, len);
5209
5210 return err;
5211}
5212
151c602f
CL
5213static void kmem_cache_release(struct kobject *kobj)
5214{
5215 struct kmem_cache *s = to_slab(kobj);
5216
84c1cf62 5217 kfree(s->name);
151c602f
CL
5218 kfree(s);
5219}
5220
52cf25d0 5221static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5222 .show = slab_attr_show,
5223 .store = slab_attr_store,
5224};
5225
5226static struct kobj_type slab_ktype = {
5227 .sysfs_ops = &slab_sysfs_ops,
151c602f 5228 .release = kmem_cache_release
81819f0f
CL
5229};
5230
5231static int uevent_filter(struct kset *kset, struct kobject *kobj)
5232{
5233 struct kobj_type *ktype = get_ktype(kobj);
5234
5235 if (ktype == &slab_ktype)
5236 return 1;
5237 return 0;
5238}
5239
9cd43611 5240static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5241 .filter = uevent_filter,
5242};
5243
27c3a314 5244static struct kset *slab_kset;
81819f0f
CL
5245
5246#define ID_STR_LENGTH 64
5247
5248/* Create a unique string id for a slab cache:
6446faa2
CL
5249 *
5250 * Format :[flags-]size
81819f0f
CL
5251 */
5252static char *create_unique_id(struct kmem_cache *s)
5253{
5254 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5255 char *p = name;
5256
5257 BUG_ON(!name);
5258
5259 *p++ = ':';
5260 /*
5261 * First flags affecting slabcache operations. We will only
5262 * get here for aliasable slabs so we do not need to support
5263 * too many flags. The flags here must cover all flags that
5264 * are matched during merging to guarantee that the id is
5265 * unique.
5266 */
5267 if (s->flags & SLAB_CACHE_DMA)
5268 *p++ = 'd';
5269 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5270 *p++ = 'a';
5271 if (s->flags & SLAB_DEBUG_FREE)
5272 *p++ = 'F';
5a896d9e
VN
5273 if (!(s->flags & SLAB_NOTRACK))
5274 *p++ = 't';
81819f0f
CL
5275 if (p != name + 1)
5276 *p++ = '-';
5277 p += sprintf(p, "%07d", s->size);
5278 BUG_ON(p > name + ID_STR_LENGTH - 1);
5279 return name;
5280}
5281
5282static int sysfs_slab_add(struct kmem_cache *s)
5283{
5284 int err;
5285 const char *name;
5286 int unmergeable;
5287
5288 if (slab_state < SYSFS)
5289 /* Defer until later */
5290 return 0;
5291
5292 unmergeable = slab_unmergeable(s);
5293 if (unmergeable) {
5294 /*
5295 * Slabcache can never be merged so we can use the name proper.
5296 * This is typically the case for debug situations. In that
5297 * case we can catch duplicate names easily.
5298 */
27c3a314 5299 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5300 name = s->name;
5301 } else {
5302 /*
5303 * Create a unique name for the slab as a target
5304 * for the symlinks.
5305 */
5306 name = create_unique_id(s);
5307 }
5308
27c3a314 5309 s->kobj.kset = slab_kset;
1eada11c
GKH
5310 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5311 if (err) {
5312 kobject_put(&s->kobj);
81819f0f 5313 return err;
1eada11c 5314 }
81819f0f
CL
5315
5316 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5317 if (err) {
5318 kobject_del(&s->kobj);
5319 kobject_put(&s->kobj);
81819f0f 5320 return err;
5788d8ad 5321 }
81819f0f
CL
5322 kobject_uevent(&s->kobj, KOBJ_ADD);
5323 if (!unmergeable) {
5324 /* Setup first alias */
5325 sysfs_slab_alias(s, s->name);
5326 kfree(name);
5327 }
5328 return 0;
5329}
5330
5331static void sysfs_slab_remove(struct kmem_cache *s)
5332{
2bce6485
CL
5333 if (slab_state < SYSFS)
5334 /*
5335 * Sysfs has not been setup yet so no need to remove the
5336 * cache from sysfs.
5337 */
5338 return;
5339
81819f0f
CL
5340 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5341 kobject_del(&s->kobj);
151c602f 5342 kobject_put(&s->kobj);
81819f0f
CL
5343}
5344
5345/*
5346 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5347 * available lest we lose that information.
81819f0f
CL
5348 */
5349struct saved_alias {
5350 struct kmem_cache *s;
5351 const char *name;
5352 struct saved_alias *next;
5353};
5354
5af328a5 5355static struct saved_alias *alias_list;
81819f0f
CL
5356
5357static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5358{
5359 struct saved_alias *al;
5360
5361 if (slab_state == SYSFS) {
5362 /*
5363 * If we have a leftover link then remove it.
5364 */
27c3a314
GKH
5365 sysfs_remove_link(&slab_kset->kobj, name);
5366 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5367 }
5368
5369 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5370 if (!al)
5371 return -ENOMEM;
5372
5373 al->s = s;
5374 al->name = name;
5375 al->next = alias_list;
5376 alias_list = al;
5377 return 0;
5378}
5379
5380static int __init slab_sysfs_init(void)
5381{
5b95a4ac 5382 struct kmem_cache *s;
81819f0f
CL
5383 int err;
5384
2bce6485
CL
5385 down_write(&slub_lock);
5386
0ff21e46 5387 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5388 if (!slab_kset) {
2bce6485 5389 up_write(&slub_lock);
81819f0f
CL
5390 printk(KERN_ERR "Cannot register slab subsystem.\n");
5391 return -ENOSYS;
5392 }
5393
26a7bd03
CL
5394 slab_state = SYSFS;
5395
5b95a4ac 5396 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5397 err = sysfs_slab_add(s);
5d540fb7
CL
5398 if (err)
5399 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5400 " to sysfs\n", s->name);
26a7bd03 5401 }
81819f0f
CL
5402
5403 while (alias_list) {
5404 struct saved_alias *al = alias_list;
5405
5406 alias_list = alias_list->next;
5407 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5408 if (err)
5409 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5410 " %s to sysfs\n", s->name);
81819f0f
CL
5411 kfree(al);
5412 }
5413
2bce6485 5414 up_write(&slub_lock);
81819f0f
CL
5415 resiliency_test();
5416 return 0;
5417}
5418
5419__initcall(slab_sysfs_init);
ab4d5ed5 5420#endif /* CONFIG_SYSFS */
57ed3eda
PE
5421
5422/*
5423 * The /proc/slabinfo ABI
5424 */
158a9624 5425#ifdef CONFIG_SLABINFO
57ed3eda
PE
5426static void print_slabinfo_header(struct seq_file *m)
5427{
5428 seq_puts(m, "slabinfo - version: 2.1\n");
5429 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5430 "<objperslab> <pagesperslab>");
5431 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5432 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5433 seq_putc(m, '\n');
5434}
5435
5436static void *s_start(struct seq_file *m, loff_t *pos)
5437{
5438 loff_t n = *pos;
5439
5440 down_read(&slub_lock);
5441 if (!n)
5442 print_slabinfo_header(m);
5443
5444 return seq_list_start(&slab_caches, *pos);
5445}
5446
5447static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5448{
5449 return seq_list_next(p, &slab_caches, pos);
5450}
5451
5452static void s_stop(struct seq_file *m, void *p)
5453{
5454 up_read(&slub_lock);
5455}
5456
5457static int s_show(struct seq_file *m, void *p)
5458{
5459 unsigned long nr_partials = 0;
5460 unsigned long nr_slabs = 0;
5461 unsigned long nr_inuse = 0;
205ab99d
CL
5462 unsigned long nr_objs = 0;
5463 unsigned long nr_free = 0;
57ed3eda
PE
5464 struct kmem_cache *s;
5465 int node;
5466
5467 s = list_entry(p, struct kmem_cache, list);
5468
5469 for_each_online_node(node) {
5470 struct kmem_cache_node *n = get_node(s, node);
5471
5472 if (!n)
5473 continue;
5474
5475 nr_partials += n->nr_partial;
5476 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5477 nr_objs += atomic_long_read(&n->total_objects);
5478 nr_free += count_partial(n, count_free);
57ed3eda
PE
5479 }
5480
205ab99d 5481 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5482
5483 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5484 nr_objs, s->size, oo_objects(s->oo),
5485 (1 << oo_order(s->oo)));
57ed3eda
PE
5486 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5487 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5488 0UL);
5489 seq_putc(m, '\n');
5490 return 0;
5491}
5492
7b3c3a50 5493static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5494 .start = s_start,
5495 .next = s_next,
5496 .stop = s_stop,
5497 .show = s_show,
5498};
5499
7b3c3a50
AD
5500static int slabinfo_open(struct inode *inode, struct file *file)
5501{
5502 return seq_open(file, &slabinfo_op);
5503}
5504
5505static const struct file_operations proc_slabinfo_operations = {
5506 .open = slabinfo_open,
5507 .read = seq_read,
5508 .llseek = seq_lseek,
5509 .release = seq_release,
5510};
5511
5512static int __init slab_proc_init(void)
5513{
ab067e99 5514 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5515 return 0;
5516}
5517module_init(slab_proc_init);
158a9624 5518#endif /* CONFIG_SLABINFO */