treewide: kmalloc() -> kmalloc_array()
[linux-2.6-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
3ac38faa 22#include <linux/notifier.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 55 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 56 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
881db7fb
CL
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
4b6f0750
CL
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f
CL
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
af537b0a
CL
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
5577bd8a 121#ifdef CONFIG_SLUB_DEBUG
af537b0a 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 123#else
af537b0a 124 return 0;
5577bd8a 125#endif
af537b0a 126}
5577bd8a 127
117d54df 128void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
345c905d
JK
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
81819f0f
CL
145/*
146 * Issues still to be resolved:
147 *
81819f0f
CL
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
b789ef51
CL
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
2086d26a
CL
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
76be8950 163#define MIN_PARTIAL 5
e95eed57 164
2086d26a
CL
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 168 * sort the partial list by the number of objects in use.
2086d26a
CL
169 */
170#define MAX_PARTIAL 10
171
becfda68 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 173 SLAB_POISON | SLAB_STORE_USER)
672bba3a 174
149daaf3
LA
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
fa5ec8a1 183/*
3de47213
DR
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
fa5ec8a1 187 */
3de47213 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 189
210b5c06
CG
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 193
81819f0f 194/* Internal SLUB flags */
d50112ed 195/* Poison object */
4fd0b46e 196#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 197/* Use cmpxchg_double */
4fd0b46e 198#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 199
02cbc874
CL
200/*
201 * Tracking user of a slab.
202 */
d6543e39 203#define TRACK_ADDRS_COUNT 16
02cbc874 204struct track {
ce71e27c 205 unsigned long addr; /* Called from address */
d6543e39
BG
206#ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208#endif
02cbc874
CL
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212};
213
214enum track_item { TRACK_ALLOC, TRACK_FREE };
215
ab4d5ed5 216#ifdef CONFIG_SYSFS
81819f0f
CL
217static int sysfs_slab_add(struct kmem_cache *);
218static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 220static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
88da03a6
CL
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
237#endif
238}
239
81819f0f
CL
240/********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
2482ddec
KC
244/*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251{
252#ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254#else
255 return ptr;
256#endif
257}
258
259/* Returns the freelist pointer recorded at location ptr_addr. */
260static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
262{
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
2482ddec 269 return freelist_dereference(s, object + s->offset);
7656c72b
CL
270}
271
0ad9500e
ED
272static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273{
2482ddec
KC
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
0ad9500e
ED
276}
277
1393d9a1
CL
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
2482ddec 280 unsigned long freepointer_addr;
1393d9a1
CL
281 void *p;
282
922d566c
JK
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
285
2482ddec
KC
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
289}
290
7656c72b
CL
291static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292{
2482ddec
KC
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
294
ce6fa91b
AP
295#ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297#endif
298
2482ddec 299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
300}
301
302/* Loop over all objects in a slab */
224a88be 303#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
7656c72b 307
54266640 308#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
54266640 312
7656c72b 313/* Determine object index from a given position */
284b50dd 314static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b
CL
315{
316 return (p - addr) / s->size;
317}
318
9736d2a9 319static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 320{
9736d2a9 321 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
322}
323
19af27af 324static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 325 unsigned int size)
834f3d11
CL
326{
327 struct kmem_cache_order_objects x = {
9736d2a9 328 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
329 };
330
331 return x;
332}
333
19af27af 334static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 335{
210b5c06 336 return x.x >> OO_SHIFT;
834f3d11
CL
337}
338
19af27af 339static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 340{
210b5c06 341 return x.x & OO_MASK;
834f3d11
CL
342}
343
881db7fb
CL
344/*
345 * Per slab locking using the pagelock
346 */
347static __always_inline void slab_lock(struct page *page)
348{
48c935ad 349 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
48c935ad 355 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
356 __bit_spin_unlock(PG_locked, &page->flags);
357}
358
1d07171c
CL
359/* Interrupts must be disabled (for the fallback code to work right) */
360static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
361 void *freelist_old, unsigned long counters_old,
362 void *freelist_new, unsigned long counters_new,
363 const char *n)
364{
365 VM_BUG_ON(!irqs_disabled());
2565409f
HC
366#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
367 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 368 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 369 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
370 freelist_old, counters_old,
371 freelist_new, counters_new))
6f6528a1 372 return true;
1d07171c
CL
373 } else
374#endif
375 {
376 slab_lock(page);
d0e0ac97
CG
377 if (page->freelist == freelist_old &&
378 page->counters == counters_old) {
1d07171c 379 page->freelist = freelist_new;
7d27a04b 380 page->counters = counters_new;
1d07171c 381 slab_unlock(page);
6f6528a1 382 return true;
1d07171c
CL
383 }
384 slab_unlock(page);
385 }
386
387 cpu_relax();
388 stat(s, CMPXCHG_DOUBLE_FAIL);
389
390#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 391 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
392#endif
393
6f6528a1 394 return false;
1d07171c
CL
395}
396
b789ef51
CL
397static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
398 void *freelist_old, unsigned long counters_old,
399 void *freelist_new, unsigned long counters_new,
400 const char *n)
401{
2565409f
HC
402#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
403 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 404 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 405 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
406 freelist_old, counters_old,
407 freelist_new, counters_new))
6f6528a1 408 return true;
b789ef51
CL
409 } else
410#endif
411 {
1d07171c
CL
412 unsigned long flags;
413
414 local_irq_save(flags);
881db7fb 415 slab_lock(page);
d0e0ac97
CG
416 if (page->freelist == freelist_old &&
417 page->counters == counters_old) {
b789ef51 418 page->freelist = freelist_new;
7d27a04b 419 page->counters = counters_new;
881db7fb 420 slab_unlock(page);
1d07171c 421 local_irq_restore(flags);
6f6528a1 422 return true;
b789ef51 423 }
881db7fb 424 slab_unlock(page);
1d07171c 425 local_irq_restore(flags);
b789ef51
CL
426 }
427
428 cpu_relax();
429 stat(s, CMPXCHG_DOUBLE_FAIL);
430
431#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 432 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
433#endif
434
6f6528a1 435 return false;
b789ef51
CL
436}
437
41ecc55b 438#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
439/*
440 * Determine a map of object in use on a page.
441 *
881db7fb 442 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
443 * not vanish from under us.
444 */
445static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
446{
447 void *p;
448 void *addr = page_address(page);
449
450 for (p = page->freelist; p; p = get_freepointer(s, p))
451 set_bit(slab_index(p, s, addr), map);
452}
453
870b1fbb 454static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
455{
456 if (s->flags & SLAB_RED_ZONE)
457 return s->size - s->red_left_pad;
458
459 return s->size;
460}
461
462static inline void *restore_red_left(struct kmem_cache *s, void *p)
463{
464 if (s->flags & SLAB_RED_ZONE)
465 p -= s->red_left_pad;
466
467 return p;
468}
469
41ecc55b
CL
470/*
471 * Debug settings:
472 */
89d3c87e 473#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 474static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 475#else
d50112ed 476static slab_flags_t slub_debug;
f0630fff 477#endif
41ecc55b
CL
478
479static char *slub_debug_slabs;
fa5ec8a1 480static int disable_higher_order_debug;
41ecc55b 481
a79316c6
AR
482/*
483 * slub is about to manipulate internal object metadata. This memory lies
484 * outside the range of the allocated object, so accessing it would normally
485 * be reported by kasan as a bounds error. metadata_access_enable() is used
486 * to tell kasan that these accesses are OK.
487 */
488static inline void metadata_access_enable(void)
489{
490 kasan_disable_current();
491}
492
493static inline void metadata_access_disable(void)
494{
495 kasan_enable_current();
496}
497
81819f0f
CL
498/*
499 * Object debugging
500 */
d86bd1be
JK
501
502/* Verify that a pointer has an address that is valid within a slab page */
503static inline int check_valid_pointer(struct kmem_cache *s,
504 struct page *page, void *object)
505{
506 void *base;
507
508 if (!object)
509 return 1;
510
511 base = page_address(page);
512 object = restore_red_left(s, object);
513 if (object < base || object >= base + page->objects * s->size ||
514 (object - base) % s->size) {
515 return 0;
516 }
517
518 return 1;
519}
520
aa2efd5e
DT
521static void print_section(char *level, char *text, u8 *addr,
522 unsigned int length)
81819f0f 523{
a79316c6 524 metadata_access_enable();
aa2efd5e 525 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 526 length, 1);
a79316c6 527 metadata_access_disable();
81819f0f
CL
528}
529
81819f0f
CL
530static struct track *get_track(struct kmem_cache *s, void *object,
531 enum track_item alloc)
532{
533 struct track *p;
534
535 if (s->offset)
536 p = object + s->offset + sizeof(void *);
537 else
538 p = object + s->inuse;
539
540 return p + alloc;
541}
542
543static void set_track(struct kmem_cache *s, void *object,
ce71e27c 544 enum track_item alloc, unsigned long addr)
81819f0f 545{
1a00df4a 546 struct track *p = get_track(s, object, alloc);
81819f0f 547
81819f0f 548 if (addr) {
d6543e39
BG
549#ifdef CONFIG_STACKTRACE
550 struct stack_trace trace;
551 int i;
552
553 trace.nr_entries = 0;
554 trace.max_entries = TRACK_ADDRS_COUNT;
555 trace.entries = p->addrs;
556 trace.skip = 3;
a79316c6 557 metadata_access_enable();
d6543e39 558 save_stack_trace(&trace);
a79316c6 559 metadata_access_disable();
d6543e39
BG
560
561 /* See rant in lockdep.c */
562 if (trace.nr_entries != 0 &&
563 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
564 trace.nr_entries--;
565
566 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
567 p->addrs[i] = 0;
568#endif
81819f0f
CL
569 p->addr = addr;
570 p->cpu = smp_processor_id();
88e4ccf2 571 p->pid = current->pid;
81819f0f
CL
572 p->when = jiffies;
573 } else
574 memset(p, 0, sizeof(struct track));
575}
576
81819f0f
CL
577static void init_tracking(struct kmem_cache *s, void *object)
578{
24922684
CL
579 if (!(s->flags & SLAB_STORE_USER))
580 return;
581
ce71e27c
EGM
582 set_track(s, object, TRACK_FREE, 0UL);
583 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
584}
585
86609d33 586static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
587{
588 if (!t->addr)
589 return;
590
f9f58285 591 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 592 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
593#ifdef CONFIG_STACKTRACE
594 {
595 int i;
596 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
597 if (t->addrs[i])
f9f58285 598 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
599 else
600 break;
601 }
602#endif
24922684
CL
603}
604
605static void print_tracking(struct kmem_cache *s, void *object)
606{
86609d33 607 unsigned long pr_time = jiffies;
24922684
CL
608 if (!(s->flags & SLAB_STORE_USER))
609 return;
610
86609d33
CP
611 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
612 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
613}
614
615static void print_page_info(struct page *page)
616{
f9f58285 617 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 618 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
619
620}
621
622static void slab_bug(struct kmem_cache *s, char *fmt, ...)
623{
ecc42fbe 624 struct va_format vaf;
24922684 625 va_list args;
24922684
CL
626
627 va_start(args, fmt);
ecc42fbe
FF
628 vaf.fmt = fmt;
629 vaf.va = &args;
f9f58285 630 pr_err("=============================================================================\n");
ecc42fbe 631 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 632 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 633
373d4d09 634 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 635 va_end(args);
81819f0f
CL
636}
637
24922684
CL
638static void slab_fix(struct kmem_cache *s, char *fmt, ...)
639{
ecc42fbe 640 struct va_format vaf;
24922684 641 va_list args;
24922684
CL
642
643 va_start(args, fmt);
ecc42fbe
FF
644 vaf.fmt = fmt;
645 vaf.va = &args;
646 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 647 va_end(args);
24922684
CL
648}
649
650static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
651{
652 unsigned int off; /* Offset of last byte */
a973e9dd 653 u8 *addr = page_address(page);
24922684
CL
654
655 print_tracking(s, p);
656
657 print_page_info(page);
658
f9f58285
FF
659 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
660 p, p - addr, get_freepointer(s, p));
24922684 661
d86bd1be 662 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
663 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
664 s->red_left_pad);
d86bd1be 665 else if (p > addr + 16)
aa2efd5e 666 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 667
aa2efd5e 668 print_section(KERN_ERR, "Object ", p,
1b473f29 669 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 670 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 671 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 672 s->inuse - s->object_size);
81819f0f 673
81819f0f
CL
674 if (s->offset)
675 off = s->offset + sizeof(void *);
676 else
677 off = s->inuse;
678
24922684 679 if (s->flags & SLAB_STORE_USER)
81819f0f 680 off += 2 * sizeof(struct track);
81819f0f 681
80a9201a
AP
682 off += kasan_metadata_size(s);
683
d86bd1be 684 if (off != size_from_object(s))
81819f0f 685 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
686 print_section(KERN_ERR, "Padding ", p + off,
687 size_from_object(s) - off);
24922684
CL
688
689 dump_stack();
81819f0f
CL
690}
691
75c66def 692void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
693 u8 *object, char *reason)
694{
3dc50637 695 slab_bug(s, "%s", reason);
24922684 696 print_trailer(s, page, object);
81819f0f
CL
697}
698
a38965bf 699static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 700 const char *fmt, ...)
81819f0f
CL
701{
702 va_list args;
703 char buf[100];
704
24922684
CL
705 va_start(args, fmt);
706 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 707 va_end(args);
3dc50637 708 slab_bug(s, "%s", buf);
24922684 709 print_page_info(page);
81819f0f
CL
710 dump_stack();
711}
712
f7cb1933 713static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
714{
715 u8 *p = object;
716
d86bd1be
JK
717 if (s->flags & SLAB_RED_ZONE)
718 memset(p - s->red_left_pad, val, s->red_left_pad);
719
81819f0f 720 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
721 memset(p, POISON_FREE, s->object_size - 1);
722 p[s->object_size - 1] = POISON_END;
81819f0f
CL
723 }
724
725 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 726 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
727}
728
24922684
CL
729static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
730 void *from, void *to)
731{
732 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
733 memset(from, data, to - from);
734}
735
736static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
737 u8 *object, char *what,
06428780 738 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
739{
740 u8 *fault;
741 u8 *end;
742
a79316c6 743 metadata_access_enable();
79824820 744 fault = memchr_inv(start, value, bytes);
a79316c6 745 metadata_access_disable();
24922684
CL
746 if (!fault)
747 return 1;
748
749 end = start + bytes;
750 while (end > fault && end[-1] == value)
751 end--;
752
753 slab_bug(s, "%s overwritten", what);
f9f58285 754 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
755 fault, end - 1, fault[0], value);
756 print_trailer(s, page, object);
757
758 restore_bytes(s, what, value, fault, end);
759 return 0;
81819f0f
CL
760}
761
81819f0f
CL
762/*
763 * Object layout:
764 *
765 * object address
766 * Bytes of the object to be managed.
767 * If the freepointer may overlay the object then the free
768 * pointer is the first word of the object.
672bba3a 769 *
81819f0f
CL
770 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
771 * 0xa5 (POISON_END)
772 *
3b0efdfa 773 * object + s->object_size
81819f0f 774 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 775 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 776 * object_size == inuse.
672bba3a 777 *
81819f0f
CL
778 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
779 * 0xcc (RED_ACTIVE) for objects in use.
780 *
781 * object + s->inuse
672bba3a
CL
782 * Meta data starts here.
783 *
81819f0f
CL
784 * A. Free pointer (if we cannot overwrite object on free)
785 * B. Tracking data for SLAB_STORE_USER
672bba3a 786 * C. Padding to reach required alignment boundary or at mininum
6446faa2 787 * one word if debugging is on to be able to detect writes
672bba3a
CL
788 * before the word boundary.
789 *
790 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
791 *
792 * object + s->size
672bba3a 793 * Nothing is used beyond s->size.
81819f0f 794 *
3b0efdfa 795 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 796 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
797 * may be used with merged slabcaches.
798 */
799
81819f0f
CL
800static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
801{
802 unsigned long off = s->inuse; /* The end of info */
803
804 if (s->offset)
805 /* Freepointer is placed after the object. */
806 off += sizeof(void *);
807
808 if (s->flags & SLAB_STORE_USER)
809 /* We also have user information there */
810 off += 2 * sizeof(struct track);
811
80a9201a
AP
812 off += kasan_metadata_size(s);
813
d86bd1be 814 if (size_from_object(s) == off)
81819f0f
CL
815 return 1;
816
24922684 817 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 818 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
819}
820
39b26464 821/* Check the pad bytes at the end of a slab page */
81819f0f
CL
822static int slab_pad_check(struct kmem_cache *s, struct page *page)
823{
24922684
CL
824 u8 *start;
825 u8 *fault;
826 u8 *end;
5d682681 827 u8 *pad;
24922684
CL
828 int length;
829 int remainder;
81819f0f
CL
830
831 if (!(s->flags & SLAB_POISON))
832 return 1;
833
a973e9dd 834 start = page_address(page);
9736d2a9 835 length = PAGE_SIZE << compound_order(page);
39b26464
CL
836 end = start + length;
837 remainder = length % s->size;
81819f0f
CL
838 if (!remainder)
839 return 1;
840
5d682681 841 pad = end - remainder;
a79316c6 842 metadata_access_enable();
5d682681 843 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 844 metadata_access_disable();
24922684
CL
845 if (!fault)
846 return 1;
847 while (end > fault && end[-1] == POISON_INUSE)
848 end--;
849
850 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
5d682681 851 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 852
5d682681 853 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 854 return 0;
81819f0f
CL
855}
856
857static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 858 void *object, u8 val)
81819f0f
CL
859{
860 u8 *p = object;
3b0efdfa 861 u8 *endobject = object + s->object_size;
81819f0f
CL
862
863 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
864 if (!check_bytes_and_report(s, page, object, "Redzone",
865 object - s->red_left_pad, val, s->red_left_pad))
866 return 0;
867
24922684 868 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 869 endobject, val, s->inuse - s->object_size))
81819f0f 870 return 0;
81819f0f 871 } else {
3b0efdfa 872 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 873 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
874 endobject, POISON_INUSE,
875 s->inuse - s->object_size);
3adbefee 876 }
81819f0f
CL
877 }
878
879 if (s->flags & SLAB_POISON) {
f7cb1933 880 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 881 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 882 POISON_FREE, s->object_size - 1) ||
24922684 883 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 884 p + s->object_size - 1, POISON_END, 1)))
81819f0f 885 return 0;
81819f0f
CL
886 /*
887 * check_pad_bytes cleans up on its own.
888 */
889 check_pad_bytes(s, page, p);
890 }
891
f7cb1933 892 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
893 /*
894 * Object and freepointer overlap. Cannot check
895 * freepointer while object is allocated.
896 */
897 return 1;
898
899 /* Check free pointer validity */
900 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
901 object_err(s, page, p, "Freepointer corrupt");
902 /*
9f6c708e 903 * No choice but to zap it and thus lose the remainder
81819f0f 904 * of the free objects in this slab. May cause
672bba3a 905 * another error because the object count is now wrong.
81819f0f 906 */
a973e9dd 907 set_freepointer(s, p, NULL);
81819f0f
CL
908 return 0;
909 }
910 return 1;
911}
912
913static int check_slab(struct kmem_cache *s, struct page *page)
914{
39b26464
CL
915 int maxobj;
916
81819f0f
CL
917 VM_BUG_ON(!irqs_disabled());
918
919 if (!PageSlab(page)) {
24922684 920 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
921 return 0;
922 }
39b26464 923
9736d2a9 924 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
925 if (page->objects > maxobj) {
926 slab_err(s, page, "objects %u > max %u",
f6edde9c 927 page->objects, maxobj);
39b26464
CL
928 return 0;
929 }
930 if (page->inuse > page->objects) {
24922684 931 slab_err(s, page, "inuse %u > max %u",
f6edde9c 932 page->inuse, page->objects);
81819f0f
CL
933 return 0;
934 }
935 /* Slab_pad_check fixes things up after itself */
936 slab_pad_check(s, page);
937 return 1;
938}
939
940/*
672bba3a
CL
941 * Determine if a certain object on a page is on the freelist. Must hold the
942 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
943 */
944static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
945{
946 int nr = 0;
881db7fb 947 void *fp;
81819f0f 948 void *object = NULL;
f6edde9c 949 int max_objects;
81819f0f 950
881db7fb 951 fp = page->freelist;
39b26464 952 while (fp && nr <= page->objects) {
81819f0f
CL
953 if (fp == search)
954 return 1;
955 if (!check_valid_pointer(s, page, fp)) {
956 if (object) {
957 object_err(s, page, object,
958 "Freechain corrupt");
a973e9dd 959 set_freepointer(s, object, NULL);
81819f0f 960 } else {
24922684 961 slab_err(s, page, "Freepointer corrupt");
a973e9dd 962 page->freelist = NULL;
39b26464 963 page->inuse = page->objects;
24922684 964 slab_fix(s, "Freelist cleared");
81819f0f
CL
965 return 0;
966 }
967 break;
968 }
969 object = fp;
970 fp = get_freepointer(s, object);
971 nr++;
972 }
973
9736d2a9 974 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
975 if (max_objects > MAX_OBJS_PER_PAGE)
976 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
977
978 if (page->objects != max_objects) {
756a025f
JP
979 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
980 page->objects, max_objects);
224a88be
CL
981 page->objects = max_objects;
982 slab_fix(s, "Number of objects adjusted.");
983 }
39b26464 984 if (page->inuse != page->objects - nr) {
756a025f
JP
985 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
986 page->inuse, page->objects - nr);
39b26464 987 page->inuse = page->objects - nr;
24922684 988 slab_fix(s, "Object count adjusted.");
81819f0f
CL
989 }
990 return search == NULL;
991}
992
0121c619
CL
993static void trace(struct kmem_cache *s, struct page *page, void *object,
994 int alloc)
3ec09742
CL
995{
996 if (s->flags & SLAB_TRACE) {
f9f58285 997 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
998 s->name,
999 alloc ? "alloc" : "free",
1000 object, page->inuse,
1001 page->freelist);
1002
1003 if (!alloc)
aa2efd5e 1004 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1005 s->object_size);
3ec09742
CL
1006
1007 dump_stack();
1008 }
1009}
1010
643b1138 1011/*
672bba3a 1012 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1013 */
5cc6eee8
CL
1014static void add_full(struct kmem_cache *s,
1015 struct kmem_cache_node *n, struct page *page)
643b1138 1016{
5cc6eee8
CL
1017 if (!(s->flags & SLAB_STORE_USER))
1018 return;
1019
255d0884 1020 lockdep_assert_held(&n->list_lock);
643b1138 1021 list_add(&page->lru, &n->full);
643b1138
CL
1022}
1023
c65c1877 1024static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1025{
643b1138
CL
1026 if (!(s->flags & SLAB_STORE_USER))
1027 return;
1028
255d0884 1029 lockdep_assert_held(&n->list_lock);
643b1138 1030 list_del(&page->lru);
643b1138
CL
1031}
1032
0f389ec6
CL
1033/* Tracking of the number of slabs for debugging purposes */
1034static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1035{
1036 struct kmem_cache_node *n = get_node(s, node);
1037
1038 return atomic_long_read(&n->nr_slabs);
1039}
1040
26c02cf0
AB
1041static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1042{
1043 return atomic_long_read(&n->nr_slabs);
1044}
1045
205ab99d 1046static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1047{
1048 struct kmem_cache_node *n = get_node(s, node);
1049
1050 /*
1051 * May be called early in order to allocate a slab for the
1052 * kmem_cache_node structure. Solve the chicken-egg
1053 * dilemma by deferring the increment of the count during
1054 * bootstrap (see early_kmem_cache_node_alloc).
1055 */
338b2642 1056 if (likely(n)) {
0f389ec6 1057 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1058 atomic_long_add(objects, &n->total_objects);
1059 }
0f389ec6 1060}
205ab99d 1061static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1062{
1063 struct kmem_cache_node *n = get_node(s, node);
1064
1065 atomic_long_dec(&n->nr_slabs);
205ab99d 1066 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1067}
1068
1069/* Object debug checks for alloc/free paths */
3ec09742
CL
1070static void setup_object_debug(struct kmem_cache *s, struct page *page,
1071 void *object)
1072{
1073 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1074 return;
1075
f7cb1933 1076 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1077 init_tracking(s, object);
1078}
1079
becfda68 1080static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1081 struct page *page,
ce71e27c 1082 void *object, unsigned long addr)
81819f0f
CL
1083{
1084 if (!check_slab(s, page))
becfda68 1085 return 0;
81819f0f 1086
81819f0f
CL
1087 if (!check_valid_pointer(s, page, object)) {
1088 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1089 return 0;
81819f0f
CL
1090 }
1091
f7cb1933 1092 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1093 return 0;
1094
1095 return 1;
1096}
1097
1098static noinline int alloc_debug_processing(struct kmem_cache *s,
1099 struct page *page,
1100 void *object, unsigned long addr)
1101{
1102 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1103 if (!alloc_consistency_checks(s, page, object, addr))
1104 goto bad;
1105 }
81819f0f 1106
3ec09742
CL
1107 /* Success perform special debug activities for allocs */
1108 if (s->flags & SLAB_STORE_USER)
1109 set_track(s, object, TRACK_ALLOC, addr);
1110 trace(s, page, object, 1);
f7cb1933 1111 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1112 return 1;
3ec09742 1113
81819f0f
CL
1114bad:
1115 if (PageSlab(page)) {
1116 /*
1117 * If this is a slab page then lets do the best we can
1118 * to avoid issues in the future. Marking all objects
672bba3a 1119 * as used avoids touching the remaining objects.
81819f0f 1120 */
24922684 1121 slab_fix(s, "Marking all objects used");
39b26464 1122 page->inuse = page->objects;
a973e9dd 1123 page->freelist = NULL;
81819f0f
CL
1124 }
1125 return 0;
1126}
1127
becfda68
LA
1128static inline int free_consistency_checks(struct kmem_cache *s,
1129 struct page *page, void *object, unsigned long addr)
81819f0f 1130{
81819f0f 1131 if (!check_valid_pointer(s, page, object)) {
70d71228 1132 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1133 return 0;
81819f0f
CL
1134 }
1135
1136 if (on_freelist(s, page, object)) {
24922684 1137 object_err(s, page, object, "Object already free");
becfda68 1138 return 0;
81819f0f
CL
1139 }
1140
f7cb1933 1141 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1142 return 0;
81819f0f 1143
1b4f59e3 1144 if (unlikely(s != page->slab_cache)) {
3adbefee 1145 if (!PageSlab(page)) {
756a025f
JP
1146 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1147 object);
1b4f59e3 1148 } else if (!page->slab_cache) {
f9f58285
FF
1149 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1150 object);
70d71228 1151 dump_stack();
06428780 1152 } else
24922684
CL
1153 object_err(s, page, object,
1154 "page slab pointer corrupt.");
becfda68
LA
1155 return 0;
1156 }
1157 return 1;
1158}
1159
1160/* Supports checking bulk free of a constructed freelist */
1161static noinline int free_debug_processing(
1162 struct kmem_cache *s, struct page *page,
1163 void *head, void *tail, int bulk_cnt,
1164 unsigned long addr)
1165{
1166 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1167 void *object = head;
1168 int cnt = 0;
1169 unsigned long uninitialized_var(flags);
1170 int ret = 0;
1171
1172 spin_lock_irqsave(&n->list_lock, flags);
1173 slab_lock(page);
1174
1175 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1176 if (!check_slab(s, page))
1177 goto out;
1178 }
1179
1180next_object:
1181 cnt++;
1182
1183 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1184 if (!free_consistency_checks(s, page, object, addr))
1185 goto out;
81819f0f 1186 }
3ec09742 1187
3ec09742
CL
1188 if (s->flags & SLAB_STORE_USER)
1189 set_track(s, object, TRACK_FREE, addr);
1190 trace(s, page, object, 0);
81084651 1191 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1192 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1193
1194 /* Reached end of constructed freelist yet? */
1195 if (object != tail) {
1196 object = get_freepointer(s, object);
1197 goto next_object;
1198 }
804aa132
LA
1199 ret = 1;
1200
5c2e4bbb 1201out:
81084651
JDB
1202 if (cnt != bulk_cnt)
1203 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1204 bulk_cnt, cnt);
1205
881db7fb 1206 slab_unlock(page);
282acb43 1207 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1208 if (!ret)
1209 slab_fix(s, "Object at 0x%p not freed", object);
1210 return ret;
81819f0f
CL
1211}
1212
41ecc55b
CL
1213static int __init setup_slub_debug(char *str)
1214{
f0630fff
CL
1215 slub_debug = DEBUG_DEFAULT_FLAGS;
1216 if (*str++ != '=' || !*str)
1217 /*
1218 * No options specified. Switch on full debugging.
1219 */
1220 goto out;
1221
1222 if (*str == ',')
1223 /*
1224 * No options but restriction on slabs. This means full
1225 * debugging for slabs matching a pattern.
1226 */
1227 goto check_slabs;
1228
1229 slub_debug = 0;
1230 if (*str == '-')
1231 /*
1232 * Switch off all debugging measures.
1233 */
1234 goto out;
1235
1236 /*
1237 * Determine which debug features should be switched on
1238 */
06428780 1239 for (; *str && *str != ','; str++) {
f0630fff
CL
1240 switch (tolower(*str)) {
1241 case 'f':
becfda68 1242 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1243 break;
1244 case 'z':
1245 slub_debug |= SLAB_RED_ZONE;
1246 break;
1247 case 'p':
1248 slub_debug |= SLAB_POISON;
1249 break;
1250 case 'u':
1251 slub_debug |= SLAB_STORE_USER;
1252 break;
1253 case 't':
1254 slub_debug |= SLAB_TRACE;
1255 break;
4c13dd3b
DM
1256 case 'a':
1257 slub_debug |= SLAB_FAILSLAB;
1258 break;
08303a73
CA
1259 case 'o':
1260 /*
1261 * Avoid enabling debugging on caches if its minimum
1262 * order would increase as a result.
1263 */
1264 disable_higher_order_debug = 1;
1265 break;
f0630fff 1266 default:
f9f58285
FF
1267 pr_err("slub_debug option '%c' unknown. skipped\n",
1268 *str);
f0630fff 1269 }
41ecc55b
CL
1270 }
1271
f0630fff 1272check_slabs:
41ecc55b
CL
1273 if (*str == ',')
1274 slub_debug_slabs = str + 1;
f0630fff 1275out:
41ecc55b
CL
1276 return 1;
1277}
1278
1279__setup("slub_debug", setup_slub_debug);
1280
0293d1fd 1281slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1282 slab_flags_t flags, const char *name,
51cc5068 1283 void (*ctor)(void *))
41ecc55b
CL
1284{
1285 /*
e153362a 1286 * Enable debugging if selected on the kernel commandline.
41ecc55b 1287 */
c6f58d9b
CL
1288 if (slub_debug && (!slub_debug_slabs || (name &&
1289 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1290 flags |= slub_debug;
ba0268a8
CL
1291
1292 return flags;
41ecc55b 1293}
b4a64718 1294#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1295static inline void setup_object_debug(struct kmem_cache *s,
1296 struct page *page, void *object) {}
41ecc55b 1297
3ec09742 1298static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1299 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1300
282acb43 1301static inline int free_debug_processing(
81084651
JDB
1302 struct kmem_cache *s, struct page *page,
1303 void *head, void *tail, int bulk_cnt,
282acb43 1304 unsigned long addr) { return 0; }
41ecc55b 1305
41ecc55b
CL
1306static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1307 { return 1; }
1308static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1309 void *object, u8 val) { return 1; }
5cc6eee8
CL
1310static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1311 struct page *page) {}
c65c1877
PZ
1312static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1313 struct page *page) {}
0293d1fd 1314slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1315 slab_flags_t flags, const char *name,
51cc5068 1316 void (*ctor)(void *))
ba0268a8
CL
1317{
1318 return flags;
1319}
41ecc55b 1320#define slub_debug 0
0f389ec6 1321
fdaa45e9
IM
1322#define disable_higher_order_debug 0
1323
0f389ec6
CL
1324static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1325 { return 0; }
26c02cf0
AB
1326static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1327 { return 0; }
205ab99d
CL
1328static inline void inc_slabs_node(struct kmem_cache *s, int node,
1329 int objects) {}
1330static inline void dec_slabs_node(struct kmem_cache *s, int node,
1331 int objects) {}
7d550c56 1332
02e72cc6
AR
1333#endif /* CONFIG_SLUB_DEBUG */
1334
1335/*
1336 * Hooks for other subsystems that check memory allocations. In a typical
1337 * production configuration these hooks all should produce no code at all.
1338 */
d56791b3
RB
1339static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1340{
1341 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1342 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1343}
1344
ee3ce779 1345static __always_inline void kfree_hook(void *x)
d56791b3
RB
1346{
1347 kmemleak_free(x);
ee3ce779 1348 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1349}
1350
c3895391 1351static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1352{
1353 kmemleak_free_recursive(x, s->flags);
7d550c56 1354
02e72cc6
AR
1355 /*
1356 * Trouble is that we may no longer disable interrupts in the fast path
1357 * So in order to make the debug calls that expect irqs to be
1358 * disabled we need to disable interrupts temporarily.
1359 */
4675ff05 1360#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1361 {
1362 unsigned long flags;
1363
1364 local_irq_save(flags);
02e72cc6
AR
1365 debug_check_no_locks_freed(x, s->object_size);
1366 local_irq_restore(flags);
1367 }
1368#endif
1369 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1370 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1371
c3895391
AK
1372 /* KASAN might put x into memory quarantine, delaying its reuse */
1373 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1374}
205ab99d 1375
c3895391
AK
1376static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1377 void **head, void **tail)
81084651
JDB
1378{
1379/*
1380 * Compiler cannot detect this function can be removed if slab_free_hook()
1381 * evaluates to nothing. Thus, catch all relevant config debug options here.
1382 */
4675ff05 1383#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1384 defined(CONFIG_DEBUG_KMEMLEAK) || \
1385 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1386 defined(CONFIG_KASAN)
1387
c3895391
AK
1388 void *object;
1389 void *next = *head;
1390 void *old_tail = *tail ? *tail : *head;
1391
1392 /* Head and tail of the reconstructed freelist */
1393 *head = NULL;
1394 *tail = NULL;
81084651
JDB
1395
1396 do {
c3895391
AK
1397 object = next;
1398 next = get_freepointer(s, object);
1399 /* If object's reuse doesn't have to be delayed */
1400 if (!slab_free_hook(s, object)) {
1401 /* Move object to the new freelist */
1402 set_freepointer(s, object, *head);
1403 *head = object;
1404 if (!*tail)
1405 *tail = object;
1406 }
1407 } while (object != old_tail);
1408
1409 if (*head == *tail)
1410 *tail = NULL;
1411
1412 return *head != NULL;
1413#else
1414 return true;
81084651
JDB
1415#endif
1416}
1417
588f8ba9
TG
1418static void setup_object(struct kmem_cache *s, struct page *page,
1419 void *object)
1420{
1421 setup_object_debug(s, page, object);
b3cbd9bf 1422 kasan_init_slab_obj(s, object);
588f8ba9
TG
1423 if (unlikely(s->ctor)) {
1424 kasan_unpoison_object_data(s, object);
1425 s->ctor(object);
1426 kasan_poison_object_data(s, object);
1427 }
1428}
1429
81819f0f
CL
1430/*
1431 * Slab allocation and freeing
1432 */
5dfb4175
VD
1433static inline struct page *alloc_slab_page(struct kmem_cache *s,
1434 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1435{
5dfb4175 1436 struct page *page;
19af27af 1437 unsigned int order = oo_order(oo);
65c3376a 1438
2154a336 1439 if (node == NUMA_NO_NODE)
5dfb4175 1440 page = alloc_pages(flags, order);
65c3376a 1441 else
96db800f 1442 page = __alloc_pages_node(node, flags, order);
5dfb4175 1443
f3ccb2c4
VD
1444 if (page && memcg_charge_slab(page, flags, order, s)) {
1445 __free_pages(page, order);
1446 page = NULL;
1447 }
5dfb4175
VD
1448
1449 return page;
65c3376a
CL
1450}
1451
210e7a43
TG
1452#ifdef CONFIG_SLAB_FREELIST_RANDOM
1453/* Pre-initialize the random sequence cache */
1454static int init_cache_random_seq(struct kmem_cache *s)
1455{
19af27af 1456 unsigned int count = oo_objects(s->oo);
210e7a43 1457 int err;
210e7a43 1458
a810007a
SR
1459 /* Bailout if already initialised */
1460 if (s->random_seq)
1461 return 0;
1462
210e7a43
TG
1463 err = cache_random_seq_create(s, count, GFP_KERNEL);
1464 if (err) {
1465 pr_err("SLUB: Unable to initialize free list for %s\n",
1466 s->name);
1467 return err;
1468 }
1469
1470 /* Transform to an offset on the set of pages */
1471 if (s->random_seq) {
19af27af
AD
1472 unsigned int i;
1473
210e7a43
TG
1474 for (i = 0; i < count; i++)
1475 s->random_seq[i] *= s->size;
1476 }
1477 return 0;
1478}
1479
1480/* Initialize each random sequence freelist per cache */
1481static void __init init_freelist_randomization(void)
1482{
1483 struct kmem_cache *s;
1484
1485 mutex_lock(&slab_mutex);
1486
1487 list_for_each_entry(s, &slab_caches, list)
1488 init_cache_random_seq(s);
1489
1490 mutex_unlock(&slab_mutex);
1491}
1492
1493/* Get the next entry on the pre-computed freelist randomized */
1494static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1495 unsigned long *pos, void *start,
1496 unsigned long page_limit,
1497 unsigned long freelist_count)
1498{
1499 unsigned int idx;
1500
1501 /*
1502 * If the target page allocation failed, the number of objects on the
1503 * page might be smaller than the usual size defined by the cache.
1504 */
1505 do {
1506 idx = s->random_seq[*pos];
1507 *pos += 1;
1508 if (*pos >= freelist_count)
1509 *pos = 0;
1510 } while (unlikely(idx >= page_limit));
1511
1512 return (char *)start + idx;
1513}
1514
1515/* Shuffle the single linked freelist based on a random pre-computed sequence */
1516static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1517{
1518 void *start;
1519 void *cur;
1520 void *next;
1521 unsigned long idx, pos, page_limit, freelist_count;
1522
1523 if (page->objects < 2 || !s->random_seq)
1524 return false;
1525
1526 freelist_count = oo_objects(s->oo);
1527 pos = get_random_int() % freelist_count;
1528
1529 page_limit = page->objects * s->size;
1530 start = fixup_red_left(s, page_address(page));
1531
1532 /* First entry is used as the base of the freelist */
1533 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1534 freelist_count);
1535 page->freelist = cur;
1536
1537 for (idx = 1; idx < page->objects; idx++) {
1538 setup_object(s, page, cur);
1539 next = next_freelist_entry(s, page, &pos, start, page_limit,
1540 freelist_count);
1541 set_freepointer(s, cur, next);
1542 cur = next;
1543 }
1544 setup_object(s, page, cur);
1545 set_freepointer(s, cur, NULL);
1546
1547 return true;
1548}
1549#else
1550static inline int init_cache_random_seq(struct kmem_cache *s)
1551{
1552 return 0;
1553}
1554static inline void init_freelist_randomization(void) { }
1555static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1556{
1557 return false;
1558}
1559#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1560
81819f0f
CL
1561static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1562{
06428780 1563 struct page *page;
834f3d11 1564 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1565 gfp_t alloc_gfp;
588f8ba9
TG
1566 void *start, *p;
1567 int idx, order;
210e7a43 1568 bool shuffle;
81819f0f 1569
7e0528da
CL
1570 flags &= gfp_allowed_mask;
1571
d0164adc 1572 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1573 local_irq_enable();
1574
b7a49f0d 1575 flags |= s->allocflags;
e12ba74d 1576
ba52270d
PE
1577 /*
1578 * Let the initial higher-order allocation fail under memory pressure
1579 * so we fall-back to the minimum order allocation.
1580 */
1581 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1582 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1583 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1584
5dfb4175 1585 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1586 if (unlikely(!page)) {
1587 oo = s->min;
80c3a998 1588 alloc_gfp = flags;
65c3376a
CL
1589 /*
1590 * Allocation may have failed due to fragmentation.
1591 * Try a lower order alloc if possible
1592 */
5dfb4175 1593 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1594 if (unlikely(!page))
1595 goto out;
1596 stat(s, ORDER_FALLBACK);
65c3376a 1597 }
5a896d9e 1598
834f3d11 1599 page->objects = oo_objects(oo);
81819f0f 1600
1f458cbf 1601 order = compound_order(page);
1b4f59e3 1602 page->slab_cache = s;
c03f94cc 1603 __SetPageSlab(page);
2f064f34 1604 if (page_is_pfmemalloc(page))
072bb0aa 1605 SetPageSlabPfmemalloc(page);
81819f0f
CL
1606
1607 start = page_address(page);
81819f0f
CL
1608
1609 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1610 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1611
0316bec2
AR
1612 kasan_poison_slab(page);
1613
210e7a43
TG
1614 shuffle = shuffle_freelist(s, page);
1615
1616 if (!shuffle) {
1617 for_each_object_idx(p, idx, s, start, page->objects) {
1618 setup_object(s, page, p);
1619 if (likely(idx < page->objects))
1620 set_freepointer(s, p, p + s->size);
1621 else
1622 set_freepointer(s, p, NULL);
1623 }
1624 page->freelist = fixup_red_left(s, start);
81819f0f 1625 }
81819f0f 1626
e6e82ea1 1627 page->inuse = page->objects;
8cb0a506 1628 page->frozen = 1;
588f8ba9 1629
81819f0f 1630out:
d0164adc 1631 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1632 local_irq_disable();
1633 if (!page)
1634 return NULL;
1635
7779f212 1636 mod_lruvec_page_state(page,
588f8ba9
TG
1637 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1638 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1639 1 << oo_order(oo));
1640
1641 inc_slabs_node(s, page_to_nid(page), page->objects);
1642
81819f0f
CL
1643 return page;
1644}
1645
588f8ba9
TG
1646static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1647{
1648 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1649 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1650 flags &= ~GFP_SLAB_BUG_MASK;
1651 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1652 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1653 dump_stack();
588f8ba9
TG
1654 }
1655
1656 return allocate_slab(s,
1657 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1658}
1659
81819f0f
CL
1660static void __free_slab(struct kmem_cache *s, struct page *page)
1661{
834f3d11
CL
1662 int order = compound_order(page);
1663 int pages = 1 << order;
81819f0f 1664
becfda68 1665 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1666 void *p;
1667
1668 slab_pad_check(s, page);
224a88be
CL
1669 for_each_object(p, s, page_address(page),
1670 page->objects)
f7cb1933 1671 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1672 }
1673
7779f212 1674 mod_lruvec_page_state(page,
81819f0f
CL
1675 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1676 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1677 -pages);
81819f0f 1678
072bb0aa 1679 __ClearPageSlabPfmemalloc(page);
49bd5221 1680 __ClearPageSlab(page);
1f458cbf 1681
d4fc5069 1682 page->mapping = NULL;
1eb5ac64
NP
1683 if (current->reclaim_state)
1684 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1685 memcg_uncharge_slab(page, order, s);
1686 __free_pages(page, order);
81819f0f
CL
1687}
1688
1689static void rcu_free_slab(struct rcu_head *h)
1690{
bf68c214 1691 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1692
1b4f59e3 1693 __free_slab(page->slab_cache, page);
81819f0f
CL
1694}
1695
1696static void free_slab(struct kmem_cache *s, struct page *page)
1697{
5f0d5a3a 1698 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1699 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1700 } else
1701 __free_slab(s, page);
1702}
1703
1704static void discard_slab(struct kmem_cache *s, struct page *page)
1705{
205ab99d 1706 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1707 free_slab(s, page);
1708}
1709
1710/*
5cc6eee8 1711 * Management of partially allocated slabs.
81819f0f 1712 */
1e4dd946
SR
1713static inline void
1714__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1715{
e95eed57 1716 n->nr_partial++;
136333d1 1717 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1718 list_add_tail(&page->lru, &n->partial);
1719 else
1720 list_add(&page->lru, &n->partial);
81819f0f
CL
1721}
1722
1e4dd946
SR
1723static inline void add_partial(struct kmem_cache_node *n,
1724 struct page *page, int tail)
62e346a8 1725{
c65c1877 1726 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1727 __add_partial(n, page, tail);
1728}
c65c1877 1729
1e4dd946
SR
1730static inline void remove_partial(struct kmem_cache_node *n,
1731 struct page *page)
1732{
1733 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1734 list_del(&page->lru);
1735 n->nr_partial--;
1e4dd946
SR
1736}
1737
81819f0f 1738/*
7ced3719
CL
1739 * Remove slab from the partial list, freeze it and
1740 * return the pointer to the freelist.
81819f0f 1741 *
497b66f2 1742 * Returns a list of objects or NULL if it fails.
81819f0f 1743 */
497b66f2 1744static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1745 struct kmem_cache_node *n, struct page *page,
633b0764 1746 int mode, int *objects)
81819f0f 1747{
2cfb7455
CL
1748 void *freelist;
1749 unsigned long counters;
1750 struct page new;
1751
c65c1877
PZ
1752 lockdep_assert_held(&n->list_lock);
1753
2cfb7455
CL
1754 /*
1755 * Zap the freelist and set the frozen bit.
1756 * The old freelist is the list of objects for the
1757 * per cpu allocation list.
1758 */
7ced3719
CL
1759 freelist = page->freelist;
1760 counters = page->counters;
1761 new.counters = counters;
633b0764 1762 *objects = new.objects - new.inuse;
23910c50 1763 if (mode) {
7ced3719 1764 new.inuse = page->objects;
23910c50
PE
1765 new.freelist = NULL;
1766 } else {
1767 new.freelist = freelist;
1768 }
2cfb7455 1769
a0132ac0 1770 VM_BUG_ON(new.frozen);
7ced3719 1771 new.frozen = 1;
2cfb7455 1772
7ced3719 1773 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1774 freelist, counters,
02d7633f 1775 new.freelist, new.counters,
7ced3719 1776 "acquire_slab"))
7ced3719 1777 return NULL;
2cfb7455
CL
1778
1779 remove_partial(n, page);
7ced3719 1780 WARN_ON(!freelist);
49e22585 1781 return freelist;
81819f0f
CL
1782}
1783
633b0764 1784static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1785static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1786
81819f0f 1787/*
672bba3a 1788 * Try to allocate a partial slab from a specific node.
81819f0f 1789 */
8ba00bb6
JK
1790static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1791 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1792{
49e22585
CL
1793 struct page *page, *page2;
1794 void *object = NULL;
e5d9998f 1795 unsigned int available = 0;
633b0764 1796 int objects;
81819f0f
CL
1797
1798 /*
1799 * Racy check. If we mistakenly see no partial slabs then we
1800 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1801 * partial slab and there is none available then get_partials()
1802 * will return NULL.
81819f0f
CL
1803 */
1804 if (!n || !n->nr_partial)
1805 return NULL;
1806
1807 spin_lock(&n->list_lock);
49e22585 1808 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1809 void *t;
49e22585 1810
8ba00bb6
JK
1811 if (!pfmemalloc_match(page, flags))
1812 continue;
1813
633b0764 1814 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1815 if (!t)
1816 break;
1817
633b0764 1818 available += objects;
12d79634 1819 if (!object) {
49e22585 1820 c->page = page;
49e22585 1821 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1822 object = t;
49e22585 1823 } else {
633b0764 1824 put_cpu_partial(s, page, 0);
8028dcea 1825 stat(s, CPU_PARTIAL_NODE);
49e22585 1826 }
345c905d 1827 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1828 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1829 break;
1830
497b66f2 1831 }
81819f0f 1832 spin_unlock(&n->list_lock);
497b66f2 1833 return object;
81819f0f
CL
1834}
1835
1836/*
672bba3a 1837 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1838 */
de3ec035 1839static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1840 struct kmem_cache_cpu *c)
81819f0f
CL
1841{
1842#ifdef CONFIG_NUMA
1843 struct zonelist *zonelist;
dd1a239f 1844 struct zoneref *z;
54a6eb5c
MG
1845 struct zone *zone;
1846 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1847 void *object;
cc9a6c87 1848 unsigned int cpuset_mems_cookie;
81819f0f
CL
1849
1850 /*
672bba3a
CL
1851 * The defrag ratio allows a configuration of the tradeoffs between
1852 * inter node defragmentation and node local allocations. A lower
1853 * defrag_ratio increases the tendency to do local allocations
1854 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1855 *
672bba3a
CL
1856 * If the defrag_ratio is set to 0 then kmalloc() always
1857 * returns node local objects. If the ratio is higher then kmalloc()
1858 * may return off node objects because partial slabs are obtained
1859 * from other nodes and filled up.
81819f0f 1860 *
43efd3ea
LP
1861 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1862 * (which makes defrag_ratio = 1000) then every (well almost)
1863 * allocation will first attempt to defrag slab caches on other nodes.
1864 * This means scanning over all nodes to look for partial slabs which
1865 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1866 * with available objects.
81819f0f 1867 */
9824601e
CL
1868 if (!s->remote_node_defrag_ratio ||
1869 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1870 return NULL;
1871
cc9a6c87 1872 do {
d26914d1 1873 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1874 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1875 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1876 struct kmem_cache_node *n;
1877
1878 n = get_node(s, zone_to_nid(zone));
1879
dee2f8aa 1880 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1881 n->nr_partial > s->min_partial) {
8ba00bb6 1882 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1883 if (object) {
1884 /*
d26914d1
MG
1885 * Don't check read_mems_allowed_retry()
1886 * here - if mems_allowed was updated in
1887 * parallel, that was a harmless race
1888 * between allocation and the cpuset
1889 * update
cc9a6c87 1890 */
cc9a6c87
MG
1891 return object;
1892 }
c0ff7453 1893 }
81819f0f 1894 }
d26914d1 1895 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1896#endif
1897 return NULL;
1898}
1899
1900/*
1901 * Get a partial page, lock it and return it.
1902 */
497b66f2 1903static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1904 struct kmem_cache_cpu *c)
81819f0f 1905{
497b66f2 1906 void *object;
a561ce00
JK
1907 int searchnode = node;
1908
1909 if (node == NUMA_NO_NODE)
1910 searchnode = numa_mem_id();
1911 else if (!node_present_pages(node))
1912 searchnode = node_to_mem_node(node);
81819f0f 1913
8ba00bb6 1914 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1915 if (object || node != NUMA_NO_NODE)
1916 return object;
81819f0f 1917
acd19fd1 1918 return get_any_partial(s, flags, c);
81819f0f
CL
1919}
1920
8a5ec0ba
CL
1921#ifdef CONFIG_PREEMPT
1922/*
1923 * Calculate the next globally unique transaction for disambiguiation
1924 * during cmpxchg. The transactions start with the cpu number and are then
1925 * incremented by CONFIG_NR_CPUS.
1926 */
1927#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1928#else
1929/*
1930 * No preemption supported therefore also no need to check for
1931 * different cpus.
1932 */
1933#define TID_STEP 1
1934#endif
1935
1936static inline unsigned long next_tid(unsigned long tid)
1937{
1938 return tid + TID_STEP;
1939}
1940
1941static inline unsigned int tid_to_cpu(unsigned long tid)
1942{
1943 return tid % TID_STEP;
1944}
1945
1946static inline unsigned long tid_to_event(unsigned long tid)
1947{
1948 return tid / TID_STEP;
1949}
1950
1951static inline unsigned int init_tid(int cpu)
1952{
1953 return cpu;
1954}
1955
1956static inline void note_cmpxchg_failure(const char *n,
1957 const struct kmem_cache *s, unsigned long tid)
1958{
1959#ifdef SLUB_DEBUG_CMPXCHG
1960 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1961
f9f58285 1962 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1963
1964#ifdef CONFIG_PREEMPT
1965 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1966 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1967 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1968 else
1969#endif
1970 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1971 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1972 tid_to_event(tid), tid_to_event(actual_tid));
1973 else
f9f58285 1974 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1975 actual_tid, tid, next_tid(tid));
1976#endif
4fdccdfb 1977 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1978}
1979
788e1aad 1980static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1981{
8a5ec0ba
CL
1982 int cpu;
1983
1984 for_each_possible_cpu(cpu)
1985 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1986}
2cfb7455 1987
81819f0f
CL
1988/*
1989 * Remove the cpu slab
1990 */
d0e0ac97 1991static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 1992 void *freelist, struct kmem_cache_cpu *c)
81819f0f 1993{
2cfb7455 1994 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1995 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1996 int lock = 0;
1997 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1998 void *nextfree;
136333d1 1999 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2000 struct page new;
2001 struct page old;
2002
2003 if (page->freelist) {
84e554e6 2004 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2005 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2006 }
2007
894b8788 2008 /*
2cfb7455
CL
2009 * Stage one: Free all available per cpu objects back
2010 * to the page freelist while it is still frozen. Leave the
2011 * last one.
2012 *
2013 * There is no need to take the list->lock because the page
2014 * is still frozen.
2015 */
2016 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2017 void *prior;
2018 unsigned long counters;
2019
2020 do {
2021 prior = page->freelist;
2022 counters = page->counters;
2023 set_freepointer(s, freelist, prior);
2024 new.counters = counters;
2025 new.inuse--;
a0132ac0 2026 VM_BUG_ON(!new.frozen);
2cfb7455 2027
1d07171c 2028 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2029 prior, counters,
2030 freelist, new.counters,
2031 "drain percpu freelist"));
2032
2033 freelist = nextfree;
2034 }
2035
894b8788 2036 /*
2cfb7455
CL
2037 * Stage two: Ensure that the page is unfrozen while the
2038 * list presence reflects the actual number of objects
2039 * during unfreeze.
2040 *
2041 * We setup the list membership and then perform a cmpxchg
2042 * with the count. If there is a mismatch then the page
2043 * is not unfrozen but the page is on the wrong list.
2044 *
2045 * Then we restart the process which may have to remove
2046 * the page from the list that we just put it on again
2047 * because the number of objects in the slab may have
2048 * changed.
894b8788 2049 */
2cfb7455 2050redo:
894b8788 2051
2cfb7455
CL
2052 old.freelist = page->freelist;
2053 old.counters = page->counters;
a0132ac0 2054 VM_BUG_ON(!old.frozen);
7c2e132c 2055
2cfb7455
CL
2056 /* Determine target state of the slab */
2057 new.counters = old.counters;
2058 if (freelist) {
2059 new.inuse--;
2060 set_freepointer(s, freelist, old.freelist);
2061 new.freelist = freelist;
2062 } else
2063 new.freelist = old.freelist;
2064
2065 new.frozen = 0;
2066
8a5b20ae 2067 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2068 m = M_FREE;
2069 else if (new.freelist) {
2070 m = M_PARTIAL;
2071 if (!lock) {
2072 lock = 1;
2073 /*
2074 * Taking the spinlock removes the possiblity
2075 * that acquire_slab() will see a slab page that
2076 * is frozen
2077 */
2078 spin_lock(&n->list_lock);
2079 }
2080 } else {
2081 m = M_FULL;
2082 if (kmem_cache_debug(s) && !lock) {
2083 lock = 1;
2084 /*
2085 * This also ensures that the scanning of full
2086 * slabs from diagnostic functions will not see
2087 * any frozen slabs.
2088 */
2089 spin_lock(&n->list_lock);
2090 }
2091 }
2092
2093 if (l != m) {
2094
2095 if (l == M_PARTIAL)
2096
2097 remove_partial(n, page);
2098
2099 else if (l == M_FULL)
894b8788 2100
c65c1877 2101 remove_full(s, n, page);
2cfb7455
CL
2102
2103 if (m == M_PARTIAL) {
2104
2105 add_partial(n, page, tail);
136333d1 2106 stat(s, tail);
2cfb7455
CL
2107
2108 } else if (m == M_FULL) {
894b8788 2109
2cfb7455
CL
2110 stat(s, DEACTIVATE_FULL);
2111 add_full(s, n, page);
2112
2113 }
2114 }
2115
2116 l = m;
1d07171c 2117 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2118 old.freelist, old.counters,
2119 new.freelist, new.counters,
2120 "unfreezing slab"))
2121 goto redo;
2122
2cfb7455
CL
2123 if (lock)
2124 spin_unlock(&n->list_lock);
2125
2126 if (m == M_FREE) {
2127 stat(s, DEACTIVATE_EMPTY);
2128 discard_slab(s, page);
2129 stat(s, FREE_SLAB);
894b8788 2130 }
d4ff6d35
WY
2131
2132 c->page = NULL;
2133 c->freelist = NULL;
81819f0f
CL
2134}
2135
d24ac77f
JK
2136/*
2137 * Unfreeze all the cpu partial slabs.
2138 *
59a09917
CL
2139 * This function must be called with interrupts disabled
2140 * for the cpu using c (or some other guarantee must be there
2141 * to guarantee no concurrent accesses).
d24ac77f 2142 */
59a09917
CL
2143static void unfreeze_partials(struct kmem_cache *s,
2144 struct kmem_cache_cpu *c)
49e22585 2145{
345c905d 2146#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2147 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2148 struct page *page, *discard_page = NULL;
49e22585
CL
2149
2150 while ((page = c->partial)) {
49e22585
CL
2151 struct page new;
2152 struct page old;
2153
2154 c->partial = page->next;
43d77867
JK
2155
2156 n2 = get_node(s, page_to_nid(page));
2157 if (n != n2) {
2158 if (n)
2159 spin_unlock(&n->list_lock);
2160
2161 n = n2;
2162 spin_lock(&n->list_lock);
2163 }
49e22585
CL
2164
2165 do {
2166
2167 old.freelist = page->freelist;
2168 old.counters = page->counters;
a0132ac0 2169 VM_BUG_ON(!old.frozen);
49e22585
CL
2170
2171 new.counters = old.counters;
2172 new.freelist = old.freelist;
2173
2174 new.frozen = 0;
2175
d24ac77f 2176 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2177 old.freelist, old.counters,
2178 new.freelist, new.counters,
2179 "unfreezing slab"));
2180
8a5b20ae 2181 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2182 page->next = discard_page;
2183 discard_page = page;
43d77867
JK
2184 } else {
2185 add_partial(n, page, DEACTIVATE_TO_TAIL);
2186 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2187 }
2188 }
2189
2190 if (n)
2191 spin_unlock(&n->list_lock);
9ada1934
SL
2192
2193 while (discard_page) {
2194 page = discard_page;
2195 discard_page = discard_page->next;
2196
2197 stat(s, DEACTIVATE_EMPTY);
2198 discard_slab(s, page);
2199 stat(s, FREE_SLAB);
2200 }
345c905d 2201#endif
49e22585
CL
2202}
2203
2204/*
2205 * Put a page that was just frozen (in __slab_free) into a partial page
0d2d5d40 2206 * slot if available.
49e22585
CL
2207 *
2208 * If we did not find a slot then simply move all the partials to the
2209 * per node partial list.
2210 */
633b0764 2211static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2212{
345c905d 2213#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2214 struct page *oldpage;
2215 int pages;
2216 int pobjects;
2217
d6e0b7fa 2218 preempt_disable();
49e22585
CL
2219 do {
2220 pages = 0;
2221 pobjects = 0;
2222 oldpage = this_cpu_read(s->cpu_slab->partial);
2223
2224 if (oldpage) {
2225 pobjects = oldpage->pobjects;
2226 pages = oldpage->pages;
2227 if (drain && pobjects > s->cpu_partial) {
2228 unsigned long flags;
2229 /*
2230 * partial array is full. Move the existing
2231 * set to the per node partial list.
2232 */
2233 local_irq_save(flags);
59a09917 2234 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2235 local_irq_restore(flags);
e24fc410 2236 oldpage = NULL;
49e22585
CL
2237 pobjects = 0;
2238 pages = 0;
8028dcea 2239 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2240 }
2241 }
2242
2243 pages++;
2244 pobjects += page->objects - page->inuse;
2245
2246 page->pages = pages;
2247 page->pobjects = pobjects;
2248 page->next = oldpage;
2249
d0e0ac97
CG
2250 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2251 != oldpage);
d6e0b7fa
VD
2252 if (unlikely(!s->cpu_partial)) {
2253 unsigned long flags;
2254
2255 local_irq_save(flags);
2256 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2257 local_irq_restore(flags);
2258 }
2259 preempt_enable();
345c905d 2260#endif
49e22585
CL
2261}
2262
dfb4f096 2263static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2264{
84e554e6 2265 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2266 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2267
2268 c->tid = next_tid(c->tid);
81819f0f
CL
2269}
2270
2271/*
2272 * Flush cpu slab.
6446faa2 2273 *
81819f0f
CL
2274 * Called from IPI handler with interrupts disabled.
2275 */
0c710013 2276static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2277{
9dfc6e68 2278 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2279
49e22585
CL
2280 if (likely(c)) {
2281 if (c->page)
2282 flush_slab(s, c);
2283
59a09917 2284 unfreeze_partials(s, c);
49e22585 2285 }
81819f0f
CL
2286}
2287
2288static void flush_cpu_slab(void *d)
2289{
2290 struct kmem_cache *s = d;
81819f0f 2291
dfb4f096 2292 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2293}
2294
a8364d55
GBY
2295static bool has_cpu_slab(int cpu, void *info)
2296{
2297 struct kmem_cache *s = info;
2298 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2299
a93cf07b 2300 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2301}
2302
81819f0f
CL
2303static void flush_all(struct kmem_cache *s)
2304{
a8364d55 2305 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2306}
2307
a96a87bf
SAS
2308/*
2309 * Use the cpu notifier to insure that the cpu slabs are flushed when
2310 * necessary.
2311 */
2312static int slub_cpu_dead(unsigned int cpu)
2313{
2314 struct kmem_cache *s;
2315 unsigned long flags;
2316
2317 mutex_lock(&slab_mutex);
2318 list_for_each_entry(s, &slab_caches, list) {
2319 local_irq_save(flags);
2320 __flush_cpu_slab(s, cpu);
2321 local_irq_restore(flags);
2322 }
2323 mutex_unlock(&slab_mutex);
2324 return 0;
2325}
2326
dfb4f096
CL
2327/*
2328 * Check if the objects in a per cpu structure fit numa
2329 * locality expectations.
2330 */
57d437d2 2331static inline int node_match(struct page *page, int node)
dfb4f096
CL
2332{
2333#ifdef CONFIG_NUMA
4d7868e6 2334 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2335 return 0;
2336#endif
2337 return 1;
2338}
2339
9a02d699 2340#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2341static int count_free(struct page *page)
2342{
2343 return page->objects - page->inuse;
2344}
2345
9a02d699
DR
2346static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2347{
2348 return atomic_long_read(&n->total_objects);
2349}
2350#endif /* CONFIG_SLUB_DEBUG */
2351
2352#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2353static unsigned long count_partial(struct kmem_cache_node *n,
2354 int (*get_count)(struct page *))
2355{
2356 unsigned long flags;
2357 unsigned long x = 0;
2358 struct page *page;
2359
2360 spin_lock_irqsave(&n->list_lock, flags);
2361 list_for_each_entry(page, &n->partial, lru)
2362 x += get_count(page);
2363 spin_unlock_irqrestore(&n->list_lock, flags);
2364 return x;
2365}
9a02d699 2366#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2367
781b2ba6
PE
2368static noinline void
2369slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2370{
9a02d699
DR
2371#ifdef CONFIG_SLUB_DEBUG
2372 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2373 DEFAULT_RATELIMIT_BURST);
781b2ba6 2374 int node;
fa45dc25 2375 struct kmem_cache_node *n;
781b2ba6 2376
9a02d699
DR
2377 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2378 return;
2379
5b3810e5
VB
2380 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2381 nid, gfpflags, &gfpflags);
19af27af 2382 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2383 s->name, s->object_size, s->size, oo_order(s->oo),
2384 oo_order(s->min));
781b2ba6 2385
3b0efdfa 2386 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2387 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2388 s->name);
fa5ec8a1 2389
fa45dc25 2390 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2391 unsigned long nr_slabs;
2392 unsigned long nr_objs;
2393 unsigned long nr_free;
2394
26c02cf0
AB
2395 nr_free = count_partial(n, count_free);
2396 nr_slabs = node_nr_slabs(n);
2397 nr_objs = node_nr_objs(n);
781b2ba6 2398
f9f58285 2399 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2400 node, nr_slabs, nr_objs, nr_free);
2401 }
9a02d699 2402#endif
781b2ba6
PE
2403}
2404
497b66f2
CL
2405static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2406 int node, struct kmem_cache_cpu **pc)
2407{
6faa6833 2408 void *freelist;
188fd063
CL
2409 struct kmem_cache_cpu *c = *pc;
2410 struct page *page;
497b66f2 2411
128227e7
MW
2412 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2413
188fd063 2414 freelist = get_partial(s, flags, node, c);
497b66f2 2415
188fd063
CL
2416 if (freelist)
2417 return freelist;
2418
2419 page = new_slab(s, flags, node);
497b66f2 2420 if (page) {
7c8e0181 2421 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2422 if (c->page)
2423 flush_slab(s, c);
2424
2425 /*
2426 * No other reference to the page yet so we can
2427 * muck around with it freely without cmpxchg
2428 */
6faa6833 2429 freelist = page->freelist;
497b66f2
CL
2430 page->freelist = NULL;
2431
2432 stat(s, ALLOC_SLAB);
497b66f2
CL
2433 c->page = page;
2434 *pc = c;
2435 } else
6faa6833 2436 freelist = NULL;
497b66f2 2437
6faa6833 2438 return freelist;
497b66f2
CL
2439}
2440
072bb0aa
MG
2441static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2442{
2443 if (unlikely(PageSlabPfmemalloc(page)))
2444 return gfp_pfmemalloc_allowed(gfpflags);
2445
2446 return true;
2447}
2448
213eeb9f 2449/*
d0e0ac97
CG
2450 * Check the page->freelist of a page and either transfer the freelist to the
2451 * per cpu freelist or deactivate the page.
213eeb9f
CL
2452 *
2453 * The page is still frozen if the return value is not NULL.
2454 *
2455 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2456 *
2457 * This function must be called with interrupt disabled.
213eeb9f
CL
2458 */
2459static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2460{
2461 struct page new;
2462 unsigned long counters;
2463 void *freelist;
2464
2465 do {
2466 freelist = page->freelist;
2467 counters = page->counters;
6faa6833 2468
213eeb9f 2469 new.counters = counters;
a0132ac0 2470 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2471
2472 new.inuse = page->objects;
2473 new.frozen = freelist != NULL;
2474
d24ac77f 2475 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2476 freelist, counters,
2477 NULL, new.counters,
2478 "get_freelist"));
2479
2480 return freelist;
2481}
2482
81819f0f 2483/*
894b8788
CL
2484 * Slow path. The lockless freelist is empty or we need to perform
2485 * debugging duties.
2486 *
894b8788
CL
2487 * Processing is still very fast if new objects have been freed to the
2488 * regular freelist. In that case we simply take over the regular freelist
2489 * as the lockless freelist and zap the regular freelist.
81819f0f 2490 *
894b8788
CL
2491 * If that is not working then we fall back to the partial lists. We take the
2492 * first element of the freelist as the object to allocate now and move the
2493 * rest of the freelist to the lockless freelist.
81819f0f 2494 *
894b8788 2495 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2496 * we need to allocate a new slab. This is the slowest path since it involves
2497 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2498 *
2499 * Version of __slab_alloc to use when we know that interrupts are
2500 * already disabled (which is the case for bulk allocation).
81819f0f 2501 */
a380a3c7 2502static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2503 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2504{
6faa6833 2505 void *freelist;
f6e7def7 2506 struct page *page;
81819f0f 2507
f6e7def7
CL
2508 page = c->page;
2509 if (!page)
81819f0f 2510 goto new_slab;
49e22585 2511redo:
6faa6833 2512
57d437d2 2513 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2514 int searchnode = node;
2515
2516 if (node != NUMA_NO_NODE && !node_present_pages(node))
2517 searchnode = node_to_mem_node(node);
2518
2519 if (unlikely(!node_match(page, searchnode))) {
2520 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2521 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2522 goto new_slab;
2523 }
fc59c053 2524 }
6446faa2 2525
072bb0aa
MG
2526 /*
2527 * By rights, we should be searching for a slab page that was
2528 * PFMEMALLOC but right now, we are losing the pfmemalloc
2529 * information when the page leaves the per-cpu allocator
2530 */
2531 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2532 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2533 goto new_slab;
2534 }
2535
73736e03 2536 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2537 freelist = c->freelist;
2538 if (freelist)
73736e03 2539 goto load_freelist;
03e404af 2540
f6e7def7 2541 freelist = get_freelist(s, page);
6446faa2 2542
6faa6833 2543 if (!freelist) {
03e404af
CL
2544 c->page = NULL;
2545 stat(s, DEACTIVATE_BYPASS);
fc59c053 2546 goto new_slab;
03e404af 2547 }
6446faa2 2548
84e554e6 2549 stat(s, ALLOC_REFILL);
6446faa2 2550
894b8788 2551load_freelist:
507effea
CL
2552 /*
2553 * freelist is pointing to the list of objects to be used.
2554 * page is pointing to the page from which the objects are obtained.
2555 * That page must be frozen for per cpu allocations to work.
2556 */
a0132ac0 2557 VM_BUG_ON(!c->page->frozen);
6faa6833 2558 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2559 c->tid = next_tid(c->tid);
6faa6833 2560 return freelist;
81819f0f 2561
81819f0f 2562new_slab:
2cfb7455 2563
a93cf07b
WY
2564 if (slub_percpu_partial(c)) {
2565 page = c->page = slub_percpu_partial(c);
2566 slub_set_percpu_partial(c, page);
49e22585 2567 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2568 goto redo;
81819f0f
CL
2569 }
2570
188fd063 2571 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2572
f4697436 2573 if (unlikely(!freelist)) {
9a02d699 2574 slab_out_of_memory(s, gfpflags, node);
f4697436 2575 return NULL;
81819f0f 2576 }
2cfb7455 2577
f6e7def7 2578 page = c->page;
5091b74a 2579 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2580 goto load_freelist;
2cfb7455 2581
497b66f2 2582 /* Only entered in the debug case */
d0e0ac97
CG
2583 if (kmem_cache_debug(s) &&
2584 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2585 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2586
d4ff6d35 2587 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2588 return freelist;
894b8788
CL
2589}
2590
a380a3c7
CL
2591/*
2592 * Another one that disabled interrupt and compensates for possible
2593 * cpu changes by refetching the per cpu area pointer.
2594 */
2595static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2596 unsigned long addr, struct kmem_cache_cpu *c)
2597{
2598 void *p;
2599 unsigned long flags;
2600
2601 local_irq_save(flags);
2602#ifdef CONFIG_PREEMPT
2603 /*
2604 * We may have been preempted and rescheduled on a different
2605 * cpu before disabling interrupts. Need to reload cpu area
2606 * pointer.
2607 */
2608 c = this_cpu_ptr(s->cpu_slab);
2609#endif
2610
2611 p = ___slab_alloc(s, gfpflags, node, addr, c);
2612 local_irq_restore(flags);
2613 return p;
2614}
2615
894b8788
CL
2616/*
2617 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2618 * have the fastpath folded into their functions. So no function call
2619 * overhead for requests that can be satisfied on the fastpath.
2620 *
2621 * The fastpath works by first checking if the lockless freelist can be used.
2622 * If not then __slab_alloc is called for slow processing.
2623 *
2624 * Otherwise we can simply pick the next object from the lockless free list.
2625 */
2b847c3c 2626static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2627 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2628{
03ec0ed5 2629 void *object;
dfb4f096 2630 struct kmem_cache_cpu *c;
57d437d2 2631 struct page *page;
8a5ec0ba 2632 unsigned long tid;
1f84260c 2633
8135be5a
VD
2634 s = slab_pre_alloc_hook(s, gfpflags);
2635 if (!s)
773ff60e 2636 return NULL;
8a5ec0ba 2637redo:
8a5ec0ba
CL
2638 /*
2639 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2640 * enabled. We may switch back and forth between cpus while
2641 * reading from one cpu area. That does not matter as long
2642 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2643 *
9aabf810
JK
2644 * We should guarantee that tid and kmem_cache are retrieved on
2645 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2646 * to check if it is matched or not.
8a5ec0ba 2647 */
9aabf810
JK
2648 do {
2649 tid = this_cpu_read(s->cpu_slab->tid);
2650 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2651 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2652 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2653
2654 /*
2655 * Irqless object alloc/free algorithm used here depends on sequence
2656 * of fetching cpu_slab's data. tid should be fetched before anything
2657 * on c to guarantee that object and page associated with previous tid
2658 * won't be used with current tid. If we fetch tid first, object and
2659 * page could be one associated with next tid and our alloc/free
2660 * request will be failed. In this case, we will retry. So, no problem.
2661 */
2662 barrier();
8a5ec0ba 2663
8a5ec0ba
CL
2664 /*
2665 * The transaction ids are globally unique per cpu and per operation on
2666 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2667 * occurs on the right processor and that there was no operation on the
2668 * linked list in between.
2669 */
8a5ec0ba 2670
9dfc6e68 2671 object = c->freelist;
57d437d2 2672 page = c->page;
8eae1492 2673 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2674 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2675 stat(s, ALLOC_SLOWPATH);
2676 } else {
0ad9500e
ED
2677 void *next_object = get_freepointer_safe(s, object);
2678
8a5ec0ba 2679 /*
25985edc 2680 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2681 * operation and if we are on the right processor.
2682 *
d0e0ac97
CG
2683 * The cmpxchg does the following atomically (without lock
2684 * semantics!)
8a5ec0ba
CL
2685 * 1. Relocate first pointer to the current per cpu area.
2686 * 2. Verify that tid and freelist have not been changed
2687 * 3. If they were not changed replace tid and freelist
2688 *
d0e0ac97
CG
2689 * Since this is without lock semantics the protection is only
2690 * against code executing on this cpu *not* from access by
2691 * other cpus.
8a5ec0ba 2692 */
933393f5 2693 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2694 s->cpu_slab->freelist, s->cpu_slab->tid,
2695 object, tid,
0ad9500e 2696 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2697
2698 note_cmpxchg_failure("slab_alloc", s, tid);
2699 goto redo;
2700 }
0ad9500e 2701 prefetch_freepointer(s, next_object);
84e554e6 2702 stat(s, ALLOC_FASTPATH);
894b8788 2703 }
8a5ec0ba 2704
74e2134f 2705 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2706 memset(object, 0, s->object_size);
d07dbea4 2707
03ec0ed5 2708 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2709
894b8788 2710 return object;
81819f0f
CL
2711}
2712
2b847c3c
EG
2713static __always_inline void *slab_alloc(struct kmem_cache *s,
2714 gfp_t gfpflags, unsigned long addr)
2715{
2716 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2717}
2718
81819f0f
CL
2719void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2720{
2b847c3c 2721 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2722
d0e0ac97
CG
2723 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2724 s->size, gfpflags);
5b882be4
EGM
2725
2726 return ret;
81819f0f
CL
2727}
2728EXPORT_SYMBOL(kmem_cache_alloc);
2729
0f24f128 2730#ifdef CONFIG_TRACING
4a92379b
RK
2731void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2732{
2b847c3c 2733 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2734 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2735 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2736 return ret;
2737}
2738EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2739#endif
2740
81819f0f
CL
2741#ifdef CONFIG_NUMA
2742void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2743{
2b847c3c 2744 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2745
ca2b84cb 2746 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2747 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2748
2749 return ret;
81819f0f
CL
2750}
2751EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2752
0f24f128 2753#ifdef CONFIG_TRACING
4a92379b 2754void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2755 gfp_t gfpflags,
4a92379b 2756 int node, size_t size)
5b882be4 2757{
2b847c3c 2758 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2759
2760 trace_kmalloc_node(_RET_IP_, ret,
2761 size, s->size, gfpflags, node);
0316bec2 2762
505f5dcb 2763 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2764 return ret;
5b882be4 2765}
4a92379b 2766EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2767#endif
5d1f57e4 2768#endif
5b882be4 2769
81819f0f 2770/*
94e4d712 2771 * Slow path handling. This may still be called frequently since objects
894b8788 2772 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2773 *
894b8788
CL
2774 * So we still attempt to reduce cache line usage. Just take the slab
2775 * lock and free the item. If there is no additional partial page
2776 * handling required then we can return immediately.
81819f0f 2777 */
894b8788 2778static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2779 void *head, void *tail, int cnt,
2780 unsigned long addr)
2781
81819f0f
CL
2782{
2783 void *prior;
2cfb7455 2784 int was_frozen;
2cfb7455
CL
2785 struct page new;
2786 unsigned long counters;
2787 struct kmem_cache_node *n = NULL;
61728d1e 2788 unsigned long uninitialized_var(flags);
81819f0f 2789
8a5ec0ba 2790 stat(s, FREE_SLOWPATH);
81819f0f 2791
19c7ff9e 2792 if (kmem_cache_debug(s) &&
282acb43 2793 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2794 return;
6446faa2 2795
2cfb7455 2796 do {
837d678d
JK
2797 if (unlikely(n)) {
2798 spin_unlock_irqrestore(&n->list_lock, flags);
2799 n = NULL;
2800 }
2cfb7455
CL
2801 prior = page->freelist;
2802 counters = page->counters;
81084651 2803 set_freepointer(s, tail, prior);
2cfb7455
CL
2804 new.counters = counters;
2805 was_frozen = new.frozen;
81084651 2806 new.inuse -= cnt;
837d678d 2807 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2808
c65c1877 2809 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2810
2811 /*
d0e0ac97
CG
2812 * Slab was on no list before and will be
2813 * partially empty
2814 * We can defer the list move and instead
2815 * freeze it.
49e22585
CL
2816 */
2817 new.frozen = 1;
2818
c65c1877 2819 } else { /* Needs to be taken off a list */
49e22585 2820
b455def2 2821 n = get_node(s, page_to_nid(page));
49e22585
CL
2822 /*
2823 * Speculatively acquire the list_lock.
2824 * If the cmpxchg does not succeed then we may
2825 * drop the list_lock without any processing.
2826 *
2827 * Otherwise the list_lock will synchronize with
2828 * other processors updating the list of slabs.
2829 */
2830 spin_lock_irqsave(&n->list_lock, flags);
2831
2832 }
2cfb7455 2833 }
81819f0f 2834
2cfb7455
CL
2835 } while (!cmpxchg_double_slab(s, page,
2836 prior, counters,
81084651 2837 head, new.counters,
2cfb7455 2838 "__slab_free"));
81819f0f 2839
2cfb7455 2840 if (likely(!n)) {
49e22585
CL
2841
2842 /*
2843 * If we just froze the page then put it onto the
2844 * per cpu partial list.
2845 */
8028dcea 2846 if (new.frozen && !was_frozen) {
49e22585 2847 put_cpu_partial(s, page, 1);
8028dcea
AS
2848 stat(s, CPU_PARTIAL_FREE);
2849 }
49e22585 2850 /*
2cfb7455
CL
2851 * The list lock was not taken therefore no list
2852 * activity can be necessary.
2853 */
b455def2
L
2854 if (was_frozen)
2855 stat(s, FREE_FROZEN);
2856 return;
2857 }
81819f0f 2858
8a5b20ae 2859 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2860 goto slab_empty;
2861
81819f0f 2862 /*
837d678d
JK
2863 * Objects left in the slab. If it was not on the partial list before
2864 * then add it.
81819f0f 2865 */
345c905d
JK
2866 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2867 if (kmem_cache_debug(s))
c65c1877 2868 remove_full(s, n, page);
837d678d
JK
2869 add_partial(n, page, DEACTIVATE_TO_TAIL);
2870 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2871 }
80f08c19 2872 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2873 return;
2874
2875slab_empty:
a973e9dd 2876 if (prior) {
81819f0f 2877 /*
6fbabb20 2878 * Slab on the partial list.
81819f0f 2879 */
5cc6eee8 2880 remove_partial(n, page);
84e554e6 2881 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2882 } else {
6fbabb20 2883 /* Slab must be on the full list */
c65c1877
PZ
2884 remove_full(s, n, page);
2885 }
2cfb7455 2886
80f08c19 2887 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2888 stat(s, FREE_SLAB);
81819f0f 2889 discard_slab(s, page);
81819f0f
CL
2890}
2891
894b8788
CL
2892/*
2893 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2894 * can perform fastpath freeing without additional function calls.
2895 *
2896 * The fastpath is only possible if we are freeing to the current cpu slab
2897 * of this processor. This typically the case if we have just allocated
2898 * the item before.
2899 *
2900 * If fastpath is not possible then fall back to __slab_free where we deal
2901 * with all sorts of special processing.
81084651
JDB
2902 *
2903 * Bulk free of a freelist with several objects (all pointing to the
2904 * same page) possible by specifying head and tail ptr, plus objects
2905 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2906 */
80a9201a
AP
2907static __always_inline void do_slab_free(struct kmem_cache *s,
2908 struct page *page, void *head, void *tail,
2909 int cnt, unsigned long addr)
894b8788 2910{
81084651 2911 void *tail_obj = tail ? : head;
dfb4f096 2912 struct kmem_cache_cpu *c;
8a5ec0ba 2913 unsigned long tid;
8a5ec0ba
CL
2914redo:
2915 /*
2916 * Determine the currently cpus per cpu slab.
2917 * The cpu may change afterward. However that does not matter since
2918 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2919 * during the cmpxchg then the free will succeed.
8a5ec0ba 2920 */
9aabf810
JK
2921 do {
2922 tid = this_cpu_read(s->cpu_slab->tid);
2923 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2924 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2925 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2926
9aabf810
JK
2927 /* Same with comment on barrier() in slab_alloc_node() */
2928 barrier();
c016b0bd 2929
442b06bc 2930 if (likely(page == c->page)) {
81084651 2931 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2932
933393f5 2933 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2934 s->cpu_slab->freelist, s->cpu_slab->tid,
2935 c->freelist, tid,
81084651 2936 head, next_tid(tid)))) {
8a5ec0ba
CL
2937
2938 note_cmpxchg_failure("slab_free", s, tid);
2939 goto redo;
2940 }
84e554e6 2941 stat(s, FREE_FASTPATH);
894b8788 2942 } else
81084651 2943 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2944
894b8788
CL
2945}
2946
80a9201a
AP
2947static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2948 void *head, void *tail, int cnt,
2949 unsigned long addr)
2950{
80a9201a 2951 /*
c3895391
AK
2952 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2953 * to remove objects, whose reuse must be delayed.
80a9201a 2954 */
c3895391
AK
2955 if (slab_free_freelist_hook(s, &head, &tail))
2956 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
2957}
2958
2959#ifdef CONFIG_KASAN
2960void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2961{
2962 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2963}
2964#endif
2965
81819f0f
CL
2966void kmem_cache_free(struct kmem_cache *s, void *x)
2967{
b9ce5ef4
GC
2968 s = cache_from_obj(s, x);
2969 if (!s)
79576102 2970 return;
81084651 2971 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2972 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2973}
2974EXPORT_SYMBOL(kmem_cache_free);
2975
d0ecd894 2976struct detached_freelist {
fbd02630 2977 struct page *page;
d0ecd894
JDB
2978 void *tail;
2979 void *freelist;
2980 int cnt;
376bf125 2981 struct kmem_cache *s;
d0ecd894 2982};
fbd02630 2983
d0ecd894
JDB
2984/*
2985 * This function progressively scans the array with free objects (with
2986 * a limited look ahead) and extract objects belonging to the same
2987 * page. It builds a detached freelist directly within the given
2988 * page/objects. This can happen without any need for
2989 * synchronization, because the objects are owned by running process.
2990 * The freelist is build up as a single linked list in the objects.
2991 * The idea is, that this detached freelist can then be bulk
2992 * transferred to the real freelist(s), but only requiring a single
2993 * synchronization primitive. Look ahead in the array is limited due
2994 * to performance reasons.
2995 */
376bf125
JDB
2996static inline
2997int build_detached_freelist(struct kmem_cache *s, size_t size,
2998 void **p, struct detached_freelist *df)
d0ecd894
JDB
2999{
3000 size_t first_skipped_index = 0;
3001 int lookahead = 3;
3002 void *object;
ca257195 3003 struct page *page;
fbd02630 3004
d0ecd894
JDB
3005 /* Always re-init detached_freelist */
3006 df->page = NULL;
fbd02630 3007
d0ecd894
JDB
3008 do {
3009 object = p[--size];
ca257195 3010 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3011 } while (!object && size);
3eed034d 3012
d0ecd894
JDB
3013 if (!object)
3014 return 0;
fbd02630 3015
ca257195
JDB
3016 page = virt_to_head_page(object);
3017 if (!s) {
3018 /* Handle kalloc'ed objects */
3019 if (unlikely(!PageSlab(page))) {
3020 BUG_ON(!PageCompound(page));
3021 kfree_hook(object);
4949148a 3022 __free_pages(page, compound_order(page));
ca257195
JDB
3023 p[size] = NULL; /* mark object processed */
3024 return size;
3025 }
3026 /* Derive kmem_cache from object */
3027 df->s = page->slab_cache;
3028 } else {
3029 df->s = cache_from_obj(s, object); /* Support for memcg */
3030 }
376bf125 3031
d0ecd894 3032 /* Start new detached freelist */
ca257195 3033 df->page = page;
376bf125 3034 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3035 df->tail = object;
3036 df->freelist = object;
3037 p[size] = NULL; /* mark object processed */
3038 df->cnt = 1;
3039
3040 while (size) {
3041 object = p[--size];
3042 if (!object)
3043 continue; /* Skip processed objects */
3044
3045 /* df->page is always set at this point */
3046 if (df->page == virt_to_head_page(object)) {
3047 /* Opportunity build freelist */
376bf125 3048 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3049 df->freelist = object;
3050 df->cnt++;
3051 p[size] = NULL; /* mark object processed */
3052
3053 continue;
fbd02630 3054 }
d0ecd894
JDB
3055
3056 /* Limit look ahead search */
3057 if (!--lookahead)
3058 break;
3059
3060 if (!first_skipped_index)
3061 first_skipped_index = size + 1;
fbd02630 3062 }
d0ecd894
JDB
3063
3064 return first_skipped_index;
3065}
3066
d0ecd894 3067/* Note that interrupts must be enabled when calling this function. */
376bf125 3068void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3069{
3070 if (WARN_ON(!size))
3071 return;
3072
3073 do {
3074 struct detached_freelist df;
3075
3076 size = build_detached_freelist(s, size, p, &df);
84582c8a 3077 if (!df.page)
d0ecd894
JDB
3078 continue;
3079
376bf125 3080 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3081 } while (likely(size));
484748f0
CL
3082}
3083EXPORT_SYMBOL(kmem_cache_free_bulk);
3084
994eb764 3085/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3086int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3087 void **p)
484748f0 3088{
994eb764
JDB
3089 struct kmem_cache_cpu *c;
3090 int i;
3091
03ec0ed5
JDB
3092 /* memcg and kmem_cache debug support */
3093 s = slab_pre_alloc_hook(s, flags);
3094 if (unlikely(!s))
3095 return false;
994eb764
JDB
3096 /*
3097 * Drain objects in the per cpu slab, while disabling local
3098 * IRQs, which protects against PREEMPT and interrupts
3099 * handlers invoking normal fastpath.
3100 */
3101 local_irq_disable();
3102 c = this_cpu_ptr(s->cpu_slab);
3103
3104 for (i = 0; i < size; i++) {
3105 void *object = c->freelist;
3106
ebe909e0 3107 if (unlikely(!object)) {
ebe909e0
JDB
3108 /*
3109 * Invoking slow path likely have side-effect
3110 * of re-populating per CPU c->freelist
3111 */
87098373 3112 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3113 _RET_IP_, c);
87098373
CL
3114 if (unlikely(!p[i]))
3115 goto error;
3116
ebe909e0
JDB
3117 c = this_cpu_ptr(s->cpu_slab);
3118 continue; /* goto for-loop */
3119 }
994eb764
JDB
3120 c->freelist = get_freepointer(s, object);
3121 p[i] = object;
3122 }
3123 c->tid = next_tid(c->tid);
3124 local_irq_enable();
3125
3126 /* Clear memory outside IRQ disabled fastpath loop */
3127 if (unlikely(flags & __GFP_ZERO)) {
3128 int j;
3129
3130 for (j = 0; j < i; j++)
3131 memset(p[j], 0, s->object_size);
3132 }
3133
03ec0ed5
JDB
3134 /* memcg and kmem_cache debug support */
3135 slab_post_alloc_hook(s, flags, size, p);
865762a8 3136 return i;
87098373 3137error:
87098373 3138 local_irq_enable();
03ec0ed5
JDB
3139 slab_post_alloc_hook(s, flags, i, p);
3140 __kmem_cache_free_bulk(s, i, p);
865762a8 3141 return 0;
484748f0
CL
3142}
3143EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3144
3145
81819f0f 3146/*
672bba3a
CL
3147 * Object placement in a slab is made very easy because we always start at
3148 * offset 0. If we tune the size of the object to the alignment then we can
3149 * get the required alignment by putting one properly sized object after
3150 * another.
81819f0f
CL
3151 *
3152 * Notice that the allocation order determines the sizes of the per cpu
3153 * caches. Each processor has always one slab available for allocations.
3154 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3155 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3156 * locking overhead.
81819f0f
CL
3157 */
3158
3159/*
3160 * Mininum / Maximum order of slab pages. This influences locking overhead
3161 * and slab fragmentation. A higher order reduces the number of partial slabs
3162 * and increases the number of allocations possible without having to
3163 * take the list_lock.
3164 */
19af27af
AD
3165static unsigned int slub_min_order;
3166static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3167static unsigned int slub_min_objects;
81819f0f 3168
81819f0f
CL
3169/*
3170 * Calculate the order of allocation given an slab object size.
3171 *
672bba3a
CL
3172 * The order of allocation has significant impact on performance and other
3173 * system components. Generally order 0 allocations should be preferred since
3174 * order 0 does not cause fragmentation in the page allocator. Larger objects
3175 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3176 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3177 * would be wasted.
3178 *
3179 * In order to reach satisfactory performance we must ensure that a minimum
3180 * number of objects is in one slab. Otherwise we may generate too much
3181 * activity on the partial lists which requires taking the list_lock. This is
3182 * less a concern for large slabs though which are rarely used.
81819f0f 3183 *
672bba3a
CL
3184 * slub_max_order specifies the order where we begin to stop considering the
3185 * number of objects in a slab as critical. If we reach slub_max_order then
3186 * we try to keep the page order as low as possible. So we accept more waste
3187 * of space in favor of a small page order.
81819f0f 3188 *
672bba3a
CL
3189 * Higher order allocations also allow the placement of more objects in a
3190 * slab and thereby reduce object handling overhead. If the user has
3191 * requested a higher mininum order then we start with that one instead of
3192 * the smallest order which will fit the object.
81819f0f 3193 */
19af27af
AD
3194static inline unsigned int slab_order(unsigned int size,
3195 unsigned int min_objects, unsigned int max_order,
9736d2a9 3196 unsigned int fract_leftover)
81819f0f 3197{
19af27af
AD
3198 unsigned int min_order = slub_min_order;
3199 unsigned int order;
81819f0f 3200
9736d2a9 3201 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3202 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3203
9736d2a9 3204 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3205 order <= max_order; order++) {
81819f0f 3206
19af27af
AD
3207 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3208 unsigned int rem;
81819f0f 3209
9736d2a9 3210 rem = slab_size % size;
81819f0f 3211
5e6d444e 3212 if (rem <= slab_size / fract_leftover)
81819f0f 3213 break;
81819f0f 3214 }
672bba3a 3215
81819f0f
CL
3216 return order;
3217}
3218
9736d2a9 3219static inline int calculate_order(unsigned int size)
5e6d444e 3220{
19af27af
AD
3221 unsigned int order;
3222 unsigned int min_objects;
3223 unsigned int max_objects;
5e6d444e
CL
3224
3225 /*
3226 * Attempt to find best configuration for a slab. This
3227 * works by first attempting to generate a layout with
3228 * the best configuration and backing off gradually.
3229 *
422ff4d7 3230 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3231 * we reduce the minimum objects required in a slab.
3232 */
3233 min_objects = slub_min_objects;
9b2cd506
CL
3234 if (!min_objects)
3235 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3236 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3237 min_objects = min(min_objects, max_objects);
3238
5e6d444e 3239 while (min_objects > 1) {
19af27af
AD
3240 unsigned int fraction;
3241
c124f5b5 3242 fraction = 16;
5e6d444e
CL
3243 while (fraction >= 4) {
3244 order = slab_order(size, min_objects,
9736d2a9 3245 slub_max_order, fraction);
5e6d444e
CL
3246 if (order <= slub_max_order)
3247 return order;
3248 fraction /= 2;
3249 }
5086c389 3250 min_objects--;
5e6d444e
CL
3251 }
3252
3253 /*
3254 * We were unable to place multiple objects in a slab. Now
3255 * lets see if we can place a single object there.
3256 */
9736d2a9 3257 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3258 if (order <= slub_max_order)
3259 return order;
3260
3261 /*
3262 * Doh this slab cannot be placed using slub_max_order.
3263 */
9736d2a9 3264 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3265 if (order < MAX_ORDER)
5e6d444e
CL
3266 return order;
3267 return -ENOSYS;
3268}
3269
5595cffc 3270static void
4053497d 3271init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3272{
3273 n->nr_partial = 0;
81819f0f
CL
3274 spin_lock_init(&n->list_lock);
3275 INIT_LIST_HEAD(&n->partial);
8ab1372f 3276#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3277 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3278 atomic_long_set(&n->total_objects, 0);
643b1138 3279 INIT_LIST_HEAD(&n->full);
8ab1372f 3280#endif
81819f0f
CL
3281}
3282
55136592 3283static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3284{
6c182dc0 3285 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3286 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3287
8a5ec0ba 3288 /*
d4d84fef
CM
3289 * Must align to double word boundary for the double cmpxchg
3290 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3291 */
d4d84fef
CM
3292 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3293 2 * sizeof(void *));
8a5ec0ba
CL
3294
3295 if (!s->cpu_slab)
3296 return 0;
3297
3298 init_kmem_cache_cpus(s);
4c93c355 3299
8a5ec0ba 3300 return 1;
4c93c355 3301}
4c93c355 3302
51df1142
CL
3303static struct kmem_cache *kmem_cache_node;
3304
81819f0f
CL
3305/*
3306 * No kmalloc_node yet so do it by hand. We know that this is the first
3307 * slab on the node for this slabcache. There are no concurrent accesses
3308 * possible.
3309 *
721ae22a
ZYW
3310 * Note that this function only works on the kmem_cache_node
3311 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3312 * memory on a fresh node that has no slab structures yet.
81819f0f 3313 */
55136592 3314static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3315{
3316 struct page *page;
3317 struct kmem_cache_node *n;
3318
51df1142 3319 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3320
51df1142 3321 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3322
3323 BUG_ON(!page);
a2f92ee7 3324 if (page_to_nid(page) != node) {
f9f58285
FF
3325 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3326 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3327 }
3328
81819f0f
CL
3329 n = page->freelist;
3330 BUG_ON(!n);
51df1142 3331 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3332 page->inuse = 1;
8cb0a506 3333 page->frozen = 0;
51df1142 3334 kmem_cache_node->node[node] = n;
8ab1372f 3335#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3336 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3337 init_tracking(kmem_cache_node, n);
8ab1372f 3338#endif
505f5dcb
AP
3339 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3340 GFP_KERNEL);
4053497d 3341 init_kmem_cache_node(n);
51df1142 3342 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3343
67b6c900 3344 /*
1e4dd946
SR
3345 * No locks need to be taken here as it has just been
3346 * initialized and there is no concurrent access.
67b6c900 3347 */
1e4dd946 3348 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3349}
3350
3351static void free_kmem_cache_nodes(struct kmem_cache *s)
3352{
3353 int node;
fa45dc25 3354 struct kmem_cache_node *n;
81819f0f 3355
fa45dc25 3356 for_each_kmem_cache_node(s, node, n) {
81819f0f 3357 s->node[node] = NULL;
ea37df54 3358 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3359 }
3360}
3361
52b4b950
DS
3362void __kmem_cache_release(struct kmem_cache *s)
3363{
210e7a43 3364 cache_random_seq_destroy(s);
52b4b950
DS
3365 free_percpu(s->cpu_slab);
3366 free_kmem_cache_nodes(s);
3367}
3368
55136592 3369static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3370{
3371 int node;
81819f0f 3372
f64dc58c 3373 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3374 struct kmem_cache_node *n;
3375
73367bd8 3376 if (slab_state == DOWN) {
55136592 3377 early_kmem_cache_node_alloc(node);
73367bd8
AD
3378 continue;
3379 }
51df1142 3380 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3381 GFP_KERNEL, node);
81819f0f 3382
73367bd8
AD
3383 if (!n) {
3384 free_kmem_cache_nodes(s);
3385 return 0;
81819f0f 3386 }
73367bd8 3387
4053497d 3388 init_kmem_cache_node(n);
ea37df54 3389 s->node[node] = n;
81819f0f
CL
3390 }
3391 return 1;
3392}
81819f0f 3393
c0bdb232 3394static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3395{
3396 if (min < MIN_PARTIAL)
3397 min = MIN_PARTIAL;
3398 else if (min > MAX_PARTIAL)
3399 min = MAX_PARTIAL;
3400 s->min_partial = min;
3401}
3402
e6d0e1dc
WY
3403static void set_cpu_partial(struct kmem_cache *s)
3404{
3405#ifdef CONFIG_SLUB_CPU_PARTIAL
3406 /*
3407 * cpu_partial determined the maximum number of objects kept in the
3408 * per cpu partial lists of a processor.
3409 *
3410 * Per cpu partial lists mainly contain slabs that just have one
3411 * object freed. If they are used for allocation then they can be
3412 * filled up again with minimal effort. The slab will never hit the
3413 * per node partial lists and therefore no locking will be required.
3414 *
3415 * This setting also determines
3416 *
3417 * A) The number of objects from per cpu partial slabs dumped to the
3418 * per node list when we reach the limit.
3419 * B) The number of objects in cpu partial slabs to extract from the
3420 * per node list when we run out of per cpu objects. We only fetch
3421 * 50% to keep some capacity around for frees.
3422 */
3423 if (!kmem_cache_has_cpu_partial(s))
3424 s->cpu_partial = 0;
3425 else if (s->size >= PAGE_SIZE)
3426 s->cpu_partial = 2;
3427 else if (s->size >= 1024)
3428 s->cpu_partial = 6;
3429 else if (s->size >= 256)
3430 s->cpu_partial = 13;
3431 else
3432 s->cpu_partial = 30;
3433#endif
3434}
3435
81819f0f
CL
3436/*
3437 * calculate_sizes() determines the order and the distribution of data within
3438 * a slab object.
3439 */
06b285dc 3440static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3441{
d50112ed 3442 slab_flags_t flags = s->flags;
be4a7988 3443 unsigned int size = s->object_size;
19af27af 3444 unsigned int order;
81819f0f 3445
d8b42bf5
CL
3446 /*
3447 * Round up object size to the next word boundary. We can only
3448 * place the free pointer at word boundaries and this determines
3449 * the possible location of the free pointer.
3450 */
3451 size = ALIGN(size, sizeof(void *));
3452
3453#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3454 /*
3455 * Determine if we can poison the object itself. If the user of
3456 * the slab may touch the object after free or before allocation
3457 * then we should never poison the object itself.
3458 */
5f0d5a3a 3459 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3460 !s->ctor)
81819f0f
CL
3461 s->flags |= __OBJECT_POISON;
3462 else
3463 s->flags &= ~__OBJECT_POISON;
3464
81819f0f
CL
3465
3466 /*
672bba3a 3467 * If we are Redzoning then check if there is some space between the
81819f0f 3468 * end of the object and the free pointer. If not then add an
672bba3a 3469 * additional word to have some bytes to store Redzone information.
81819f0f 3470 */
3b0efdfa 3471 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3472 size += sizeof(void *);
41ecc55b 3473#endif
81819f0f
CL
3474
3475 /*
672bba3a
CL
3476 * With that we have determined the number of bytes in actual use
3477 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3478 */
3479 s->inuse = size;
3480
5f0d5a3a 3481 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3482 s->ctor)) {
81819f0f
CL
3483 /*
3484 * Relocate free pointer after the object if it is not
3485 * permitted to overwrite the first word of the object on
3486 * kmem_cache_free.
3487 *
3488 * This is the case if we do RCU, have a constructor or
3489 * destructor or are poisoning the objects.
3490 */
3491 s->offset = size;
3492 size += sizeof(void *);
3493 }
3494
c12b3c62 3495#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3496 if (flags & SLAB_STORE_USER)
3497 /*
3498 * Need to store information about allocs and frees after
3499 * the object.
3500 */
3501 size += 2 * sizeof(struct track);
80a9201a 3502#endif
81819f0f 3503
80a9201a
AP
3504 kasan_cache_create(s, &size, &s->flags);
3505#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3506 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3507 /*
3508 * Add some empty padding so that we can catch
3509 * overwrites from earlier objects rather than let
3510 * tracking information or the free pointer be
0211a9c8 3511 * corrupted if a user writes before the start
81819f0f
CL
3512 * of the object.
3513 */
3514 size += sizeof(void *);
d86bd1be
JK
3515
3516 s->red_left_pad = sizeof(void *);
3517 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3518 size += s->red_left_pad;
3519 }
41ecc55b 3520#endif
672bba3a 3521
81819f0f
CL
3522 /*
3523 * SLUB stores one object immediately after another beginning from
3524 * offset 0. In order to align the objects we have to simply size
3525 * each object to conform to the alignment.
3526 */
45906855 3527 size = ALIGN(size, s->align);
81819f0f 3528 s->size = size;
06b285dc
CL
3529 if (forced_order >= 0)
3530 order = forced_order;
3531 else
9736d2a9 3532 order = calculate_order(size);
81819f0f 3533
19af27af 3534 if ((int)order < 0)
81819f0f
CL
3535 return 0;
3536
b7a49f0d 3537 s->allocflags = 0;
834f3d11 3538 if (order)
b7a49f0d
CL
3539 s->allocflags |= __GFP_COMP;
3540
3541 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3542 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3543
3544 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3545 s->allocflags |= __GFP_RECLAIMABLE;
3546
81819f0f
CL
3547 /*
3548 * Determine the number of objects per slab
3549 */
9736d2a9
MW
3550 s->oo = oo_make(order, size);
3551 s->min = oo_make(get_order(size), size);
205ab99d
CL
3552 if (oo_objects(s->oo) > oo_objects(s->max))
3553 s->max = s->oo;
81819f0f 3554
834f3d11 3555 return !!oo_objects(s->oo);
81819f0f
CL
3556}
3557
d50112ed 3558static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3559{
8a13a4cc 3560 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3561#ifdef CONFIG_SLAB_FREELIST_HARDENED
3562 s->random = get_random_long();
3563#endif
81819f0f 3564
06b285dc 3565 if (!calculate_sizes(s, -1))
81819f0f 3566 goto error;
3de47213
DR
3567 if (disable_higher_order_debug) {
3568 /*
3569 * Disable debugging flags that store metadata if the min slab
3570 * order increased.
3571 */
3b0efdfa 3572 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3573 s->flags &= ~DEBUG_METADATA_FLAGS;
3574 s->offset = 0;
3575 if (!calculate_sizes(s, -1))
3576 goto error;
3577 }
3578 }
81819f0f 3579
2565409f
HC
3580#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3581 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3582 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3583 /* Enable fast mode */
3584 s->flags |= __CMPXCHG_DOUBLE;
3585#endif
3586
3b89d7d8
DR
3587 /*
3588 * The larger the object size is, the more pages we want on the partial
3589 * list to avoid pounding the page allocator excessively.
3590 */
49e22585
CL
3591 set_min_partial(s, ilog2(s->size) / 2);
3592
e6d0e1dc 3593 set_cpu_partial(s);
49e22585 3594
81819f0f 3595#ifdef CONFIG_NUMA
e2cb96b7 3596 s->remote_node_defrag_ratio = 1000;
81819f0f 3597#endif
210e7a43
TG
3598
3599 /* Initialize the pre-computed randomized freelist if slab is up */
3600 if (slab_state >= UP) {
3601 if (init_cache_random_seq(s))
3602 goto error;
3603 }
3604
55136592 3605 if (!init_kmem_cache_nodes(s))
dfb4f096 3606 goto error;
81819f0f 3607
55136592 3608 if (alloc_kmem_cache_cpus(s))
278b1bb1 3609 return 0;
ff12059e 3610
4c93c355 3611 free_kmem_cache_nodes(s);
81819f0f
CL
3612error:
3613 if (flags & SLAB_PANIC)
44065b2e
AD
3614 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3615 s->name, s->size, s->size,
4fd0b46e 3616 oo_order(s->oo), s->offset, (unsigned long)flags);
278b1bb1 3617 return -EINVAL;
81819f0f 3618}
81819f0f 3619
33b12c38
CL
3620static void list_slab_objects(struct kmem_cache *s, struct page *page,
3621 const char *text)
3622{
3623#ifdef CONFIG_SLUB_DEBUG
3624 void *addr = page_address(page);
3625 void *p;
a5dd5c11
NK
3626 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3627 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3628 if (!map)
3629 return;
945cf2b6 3630 slab_err(s, page, text, s->name);
33b12c38 3631 slab_lock(page);
33b12c38 3632
5f80b13a 3633 get_map(s, page, map);
33b12c38
CL
3634 for_each_object(p, s, addr, page->objects) {
3635
3636 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3637 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3638 print_tracking(s, p);
3639 }
3640 }
3641 slab_unlock(page);
bbd7d57b 3642 kfree(map);
33b12c38
CL
3643#endif
3644}
3645
81819f0f 3646/*
599870b1 3647 * Attempt to free all partial slabs on a node.
52b4b950
DS
3648 * This is called from __kmem_cache_shutdown(). We must take list_lock
3649 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3650 */
599870b1 3651static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3652{
60398923 3653 LIST_HEAD(discard);
81819f0f
CL
3654 struct page *page, *h;
3655
52b4b950
DS
3656 BUG_ON(irqs_disabled());
3657 spin_lock_irq(&n->list_lock);
33b12c38 3658 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3659 if (!page->inuse) {
52b4b950 3660 remove_partial(n, page);
60398923 3661 list_add(&page->lru, &discard);
33b12c38
CL
3662 } else {
3663 list_slab_objects(s, page,
52b4b950 3664 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3665 }
33b12c38 3666 }
52b4b950 3667 spin_unlock_irq(&n->list_lock);
60398923
CW
3668
3669 list_for_each_entry_safe(page, h, &discard, lru)
3670 discard_slab(s, page);
81819f0f
CL
3671}
3672
f9e13c0a
SB
3673bool __kmem_cache_empty(struct kmem_cache *s)
3674{
3675 int node;
3676 struct kmem_cache_node *n;
3677
3678 for_each_kmem_cache_node(s, node, n)
3679 if (n->nr_partial || slabs_node(s, node))
3680 return false;
3681 return true;
3682}
3683
81819f0f 3684/*
672bba3a 3685 * Release all resources used by a slab cache.
81819f0f 3686 */
52b4b950 3687int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3688{
3689 int node;
fa45dc25 3690 struct kmem_cache_node *n;
81819f0f
CL
3691
3692 flush_all(s);
81819f0f 3693 /* Attempt to free all objects */
fa45dc25 3694 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3695 free_partial(s, n);
3696 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3697 return 1;
3698 }
bf5eb3de 3699 sysfs_slab_remove(s);
81819f0f
CL
3700 return 0;
3701}
3702
81819f0f
CL
3703/********************************************************************
3704 * Kmalloc subsystem
3705 *******************************************************************/
3706
81819f0f
CL
3707static int __init setup_slub_min_order(char *str)
3708{
19af27af 3709 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3710
3711 return 1;
3712}
3713
3714__setup("slub_min_order=", setup_slub_min_order);
3715
3716static int __init setup_slub_max_order(char *str)
3717{
19af27af
AD
3718 get_option(&str, (int *)&slub_max_order);
3719 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3720
3721 return 1;
3722}
3723
3724__setup("slub_max_order=", setup_slub_max_order);
3725
3726static int __init setup_slub_min_objects(char *str)
3727{
19af27af 3728 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3729
3730 return 1;
3731}
3732
3733__setup("slub_min_objects=", setup_slub_min_objects);
3734
81819f0f
CL
3735void *__kmalloc(size_t size, gfp_t flags)
3736{
aadb4bc4 3737 struct kmem_cache *s;
5b882be4 3738 void *ret;
81819f0f 3739
95a05b42 3740 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3741 return kmalloc_large(size, flags);
aadb4bc4 3742
2c59dd65 3743 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3744
3745 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3746 return s;
3747
2b847c3c 3748 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3749
ca2b84cb 3750 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3751
505f5dcb 3752 kasan_kmalloc(s, ret, size, flags);
0316bec2 3753
5b882be4 3754 return ret;
81819f0f
CL
3755}
3756EXPORT_SYMBOL(__kmalloc);
3757
5d1f57e4 3758#ifdef CONFIG_NUMA
f619cfe1
CL
3759static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3760{
b1eeab67 3761 struct page *page;
e4f7c0b4 3762 void *ptr = NULL;
f619cfe1 3763
75f296d9 3764 flags |= __GFP_COMP;
4949148a 3765 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3766 if (page)
e4f7c0b4
CM
3767 ptr = page_address(page);
3768
d56791b3 3769 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3770 return ptr;
f619cfe1
CL
3771}
3772
81819f0f
CL
3773void *__kmalloc_node(size_t size, gfp_t flags, int node)
3774{
aadb4bc4 3775 struct kmem_cache *s;
5b882be4 3776 void *ret;
81819f0f 3777
95a05b42 3778 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3779 ret = kmalloc_large_node(size, flags, node);
3780
ca2b84cb
EGM
3781 trace_kmalloc_node(_RET_IP_, ret,
3782 size, PAGE_SIZE << get_order(size),
3783 flags, node);
5b882be4
EGM
3784
3785 return ret;
3786 }
aadb4bc4 3787
2c59dd65 3788 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3789
3790 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3791 return s;
3792
2b847c3c 3793 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3794
ca2b84cb 3795 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3796
505f5dcb 3797 kasan_kmalloc(s, ret, size, flags);
0316bec2 3798
5b882be4 3799 return ret;
81819f0f
CL
3800}
3801EXPORT_SYMBOL(__kmalloc_node);
3802#endif
3803
ed18adc1
KC
3804#ifdef CONFIG_HARDENED_USERCOPY
3805/*
afcc90f8
KC
3806 * Rejects incorrectly sized objects and objects that are to be copied
3807 * to/from userspace but do not fall entirely within the containing slab
3808 * cache's usercopy region.
ed18adc1
KC
3809 *
3810 * Returns NULL if check passes, otherwise const char * to name of cache
3811 * to indicate an error.
3812 */
f4e6e289
KC
3813void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3814 bool to_user)
ed18adc1
KC
3815{
3816 struct kmem_cache *s;
44065b2e 3817 unsigned int offset;
ed18adc1
KC
3818 size_t object_size;
3819
3820 /* Find object and usable object size. */
3821 s = page->slab_cache;
ed18adc1
KC
3822
3823 /* Reject impossible pointers. */
3824 if (ptr < page_address(page))
f4e6e289
KC
3825 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3826 to_user, 0, n);
ed18adc1
KC
3827
3828 /* Find offset within object. */
3829 offset = (ptr - page_address(page)) % s->size;
3830
3831 /* Adjust for redzone and reject if within the redzone. */
3832 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3833 if (offset < s->red_left_pad)
f4e6e289
KC
3834 usercopy_abort("SLUB object in left red zone",
3835 s->name, to_user, offset, n);
ed18adc1
KC
3836 offset -= s->red_left_pad;
3837 }
3838
afcc90f8
KC
3839 /* Allow address range falling entirely within usercopy region. */
3840 if (offset >= s->useroffset &&
3841 offset - s->useroffset <= s->usersize &&
3842 n <= s->useroffset - offset + s->usersize)
f4e6e289 3843 return;
ed18adc1 3844
afcc90f8
KC
3845 /*
3846 * If the copy is still within the allocated object, produce
3847 * a warning instead of rejecting the copy. This is intended
3848 * to be a temporary method to find any missing usercopy
3849 * whitelists.
3850 */
3851 object_size = slab_ksize(s);
2d891fbc
KC
3852 if (usercopy_fallback &&
3853 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3854 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3855 return;
3856 }
ed18adc1 3857
f4e6e289 3858 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3859}
3860#endif /* CONFIG_HARDENED_USERCOPY */
3861
0316bec2 3862static size_t __ksize(const void *object)
81819f0f 3863{
272c1d21 3864 struct page *page;
81819f0f 3865
ef8b4520 3866 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3867 return 0;
3868
294a80a8 3869 page = virt_to_head_page(object);
294a80a8 3870
76994412
PE
3871 if (unlikely(!PageSlab(page))) {
3872 WARN_ON(!PageCompound(page));
294a80a8 3873 return PAGE_SIZE << compound_order(page);
76994412 3874 }
81819f0f 3875
1b4f59e3 3876 return slab_ksize(page->slab_cache);
81819f0f 3877}
0316bec2
AR
3878
3879size_t ksize(const void *object)
3880{
3881 size_t size = __ksize(object);
3882 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3883 * so we need to unpoison this area.
3884 */
3885 kasan_unpoison_shadow(object, size);
0316bec2
AR
3886 return size;
3887}
b1aabecd 3888EXPORT_SYMBOL(ksize);
81819f0f
CL
3889
3890void kfree(const void *x)
3891{
81819f0f 3892 struct page *page;
5bb983b0 3893 void *object = (void *)x;
81819f0f 3894
2121db74
PE
3895 trace_kfree(_RET_IP_, x);
3896
2408c550 3897 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3898 return;
3899
b49af68f 3900 page = virt_to_head_page(x);
aadb4bc4 3901 if (unlikely(!PageSlab(page))) {
0937502a 3902 BUG_ON(!PageCompound(page));
47adccce 3903 kfree_hook(object);
4949148a 3904 __free_pages(page, compound_order(page));
aadb4bc4
CL
3905 return;
3906 }
81084651 3907 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3908}
3909EXPORT_SYMBOL(kfree);
3910
832f37f5
VD
3911#define SHRINK_PROMOTE_MAX 32
3912
2086d26a 3913/*
832f37f5
VD
3914 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3915 * up most to the head of the partial lists. New allocations will then
3916 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3917 *
3918 * The slabs with the least items are placed last. This results in them
3919 * being allocated from last increasing the chance that the last objects
3920 * are freed in them.
2086d26a 3921 */
c9fc5864 3922int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3923{
3924 int node;
3925 int i;
3926 struct kmem_cache_node *n;
3927 struct page *page;
3928 struct page *t;
832f37f5
VD
3929 struct list_head discard;
3930 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3931 unsigned long flags;
ce3712d7 3932 int ret = 0;
2086d26a 3933
2086d26a 3934 flush_all(s);
fa45dc25 3935 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3936 INIT_LIST_HEAD(&discard);
3937 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3938 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3939
3940 spin_lock_irqsave(&n->list_lock, flags);
3941
3942 /*
832f37f5 3943 * Build lists of slabs to discard or promote.
2086d26a 3944 *
672bba3a
CL
3945 * Note that concurrent frees may occur while we hold the
3946 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3947 */
3948 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3949 int free = page->objects - page->inuse;
3950
3951 /* Do not reread page->inuse */
3952 barrier();
3953
3954 /* We do not keep full slabs on the list */
3955 BUG_ON(free <= 0);
3956
3957 if (free == page->objects) {
3958 list_move(&page->lru, &discard);
69cb8e6b 3959 n->nr_partial--;
832f37f5
VD
3960 } else if (free <= SHRINK_PROMOTE_MAX)
3961 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3962 }
3963
2086d26a 3964 /*
832f37f5
VD
3965 * Promote the slabs filled up most to the head of the
3966 * partial list.
2086d26a 3967 */
832f37f5
VD
3968 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3969 list_splice(promote + i, &n->partial);
2086d26a 3970
2086d26a 3971 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3972
3973 /* Release empty slabs */
832f37f5 3974 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3975 discard_slab(s, page);
ce3712d7
VD
3976
3977 if (slabs_node(s, node))
3978 ret = 1;
2086d26a
CL
3979 }
3980
ce3712d7 3981 return ret;
2086d26a 3982}
2086d26a 3983
c9fc5864 3984#ifdef CONFIG_MEMCG
01fb58bc
TH
3985static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3986{
50862ce7
TH
3987 /*
3988 * Called with all the locks held after a sched RCU grace period.
3989 * Even if @s becomes empty after shrinking, we can't know that @s
3990 * doesn't have allocations already in-flight and thus can't
3991 * destroy @s until the associated memcg is released.
3992 *
3993 * However, let's remove the sysfs files for empty caches here.
3994 * Each cache has a lot of interface files which aren't
3995 * particularly useful for empty draining caches; otherwise, we can
3996 * easily end up with millions of unnecessary sysfs files on
3997 * systems which have a lot of memory and transient cgroups.
3998 */
3999 if (!__kmem_cache_shrink(s))
4000 sysfs_slab_remove(s);
01fb58bc
TH
4001}
4002
c9fc5864
TH
4003void __kmemcg_cache_deactivate(struct kmem_cache *s)
4004{
4005 /*
4006 * Disable empty slabs caching. Used to avoid pinning offline
4007 * memory cgroups by kmem pages that can be freed.
4008 */
e6d0e1dc 4009 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4010 s->min_partial = 0;
4011
4012 /*
4013 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4014 * we have to make sure the change is visible before shrinking.
c9fc5864 4015 */
01fb58bc 4016 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
4017}
4018#endif
4019
b9049e23
YG
4020static int slab_mem_going_offline_callback(void *arg)
4021{
4022 struct kmem_cache *s;
4023
18004c5d 4024 mutex_lock(&slab_mutex);
b9049e23 4025 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4026 __kmem_cache_shrink(s);
18004c5d 4027 mutex_unlock(&slab_mutex);
b9049e23
YG
4028
4029 return 0;
4030}
4031
4032static void slab_mem_offline_callback(void *arg)
4033{
4034 struct kmem_cache_node *n;
4035 struct kmem_cache *s;
4036 struct memory_notify *marg = arg;
4037 int offline_node;
4038
b9d5ab25 4039 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4040
4041 /*
4042 * If the node still has available memory. we need kmem_cache_node
4043 * for it yet.
4044 */
4045 if (offline_node < 0)
4046 return;
4047
18004c5d 4048 mutex_lock(&slab_mutex);
b9049e23
YG
4049 list_for_each_entry(s, &slab_caches, list) {
4050 n = get_node(s, offline_node);
4051 if (n) {
4052 /*
4053 * if n->nr_slabs > 0, slabs still exist on the node
4054 * that is going down. We were unable to free them,
c9404c9c 4055 * and offline_pages() function shouldn't call this
b9049e23
YG
4056 * callback. So, we must fail.
4057 */
0f389ec6 4058 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4059
4060 s->node[offline_node] = NULL;
8de66a0c 4061 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4062 }
4063 }
18004c5d 4064 mutex_unlock(&slab_mutex);
b9049e23
YG
4065}
4066
4067static int slab_mem_going_online_callback(void *arg)
4068{
4069 struct kmem_cache_node *n;
4070 struct kmem_cache *s;
4071 struct memory_notify *marg = arg;
b9d5ab25 4072 int nid = marg->status_change_nid_normal;
b9049e23
YG
4073 int ret = 0;
4074
4075 /*
4076 * If the node's memory is already available, then kmem_cache_node is
4077 * already created. Nothing to do.
4078 */
4079 if (nid < 0)
4080 return 0;
4081
4082 /*
0121c619 4083 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4084 * allocate a kmem_cache_node structure in order to bring the node
4085 * online.
4086 */
18004c5d 4087 mutex_lock(&slab_mutex);
b9049e23
YG
4088 list_for_each_entry(s, &slab_caches, list) {
4089 /*
4090 * XXX: kmem_cache_alloc_node will fallback to other nodes
4091 * since memory is not yet available from the node that
4092 * is brought up.
4093 */
8de66a0c 4094 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4095 if (!n) {
4096 ret = -ENOMEM;
4097 goto out;
4098 }
4053497d 4099 init_kmem_cache_node(n);
b9049e23
YG
4100 s->node[nid] = n;
4101 }
4102out:
18004c5d 4103 mutex_unlock(&slab_mutex);
b9049e23
YG
4104 return ret;
4105}
4106
4107static int slab_memory_callback(struct notifier_block *self,
4108 unsigned long action, void *arg)
4109{
4110 int ret = 0;
4111
4112 switch (action) {
4113 case MEM_GOING_ONLINE:
4114 ret = slab_mem_going_online_callback(arg);
4115 break;
4116 case MEM_GOING_OFFLINE:
4117 ret = slab_mem_going_offline_callback(arg);
4118 break;
4119 case MEM_OFFLINE:
4120 case MEM_CANCEL_ONLINE:
4121 slab_mem_offline_callback(arg);
4122 break;
4123 case MEM_ONLINE:
4124 case MEM_CANCEL_OFFLINE:
4125 break;
4126 }
dc19f9db
KH
4127 if (ret)
4128 ret = notifier_from_errno(ret);
4129 else
4130 ret = NOTIFY_OK;
b9049e23
YG
4131 return ret;
4132}
4133
3ac38faa
AM
4134static struct notifier_block slab_memory_callback_nb = {
4135 .notifier_call = slab_memory_callback,
4136 .priority = SLAB_CALLBACK_PRI,
4137};
b9049e23 4138
81819f0f
CL
4139/********************************************************************
4140 * Basic setup of slabs
4141 *******************************************************************/
4142
51df1142
CL
4143/*
4144 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4145 * the page allocator. Allocate them properly then fix up the pointers
4146 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4147 */
4148
dffb4d60 4149static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4150{
4151 int node;
dffb4d60 4152 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4153 struct kmem_cache_node *n;
51df1142 4154
dffb4d60 4155 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4156
7d557b3c
GC
4157 /*
4158 * This runs very early, and only the boot processor is supposed to be
4159 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4160 * IPIs around.
4161 */
4162 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4163 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4164 struct page *p;
4165
fa45dc25
CL
4166 list_for_each_entry(p, &n->partial, lru)
4167 p->slab_cache = s;
51df1142 4168
607bf324 4169#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4170 list_for_each_entry(p, &n->full, lru)
4171 p->slab_cache = s;
51df1142 4172#endif
51df1142 4173 }
f7ce3190 4174 slab_init_memcg_params(s);
dffb4d60 4175 list_add(&s->list, &slab_caches);
510ded33 4176 memcg_link_cache(s);
dffb4d60 4177 return s;
51df1142
CL
4178}
4179
81819f0f
CL
4180void __init kmem_cache_init(void)
4181{
dffb4d60
CL
4182 static __initdata struct kmem_cache boot_kmem_cache,
4183 boot_kmem_cache_node;
51df1142 4184
fc8d8620
SG
4185 if (debug_guardpage_minorder())
4186 slub_max_order = 0;
4187
dffb4d60
CL
4188 kmem_cache_node = &boot_kmem_cache_node;
4189 kmem_cache = &boot_kmem_cache;
51df1142 4190
dffb4d60 4191 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4192 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4193
3ac38faa 4194 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4195
4196 /* Able to allocate the per node structures */
4197 slab_state = PARTIAL;
4198
dffb4d60
CL
4199 create_boot_cache(kmem_cache, "kmem_cache",
4200 offsetof(struct kmem_cache, node) +
4201 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4202 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4203
dffb4d60 4204 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4205 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4206
4207 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4208 setup_kmalloc_cache_index_table();
f97d5f63 4209 create_kmalloc_caches(0);
81819f0f 4210
210e7a43
TG
4211 /* Setup random freelists for each cache */
4212 init_freelist_randomization();
4213
a96a87bf
SAS
4214 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4215 slub_cpu_dead);
81819f0f 4216
19af27af 4217 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
f97d5f63 4218 cache_line_size(),
81819f0f
CL
4219 slub_min_order, slub_max_order, slub_min_objects,
4220 nr_cpu_ids, nr_node_ids);
4221}
4222
7e85ee0c
PE
4223void __init kmem_cache_init_late(void)
4224{
7e85ee0c
PE
4225}
4226
2633d7a0 4227struct kmem_cache *
f4957d5b 4228__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4229 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4230{
426589f5 4231 struct kmem_cache *s, *c;
81819f0f 4232
a44cb944 4233 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4234 if (s) {
4235 s->refcount++;
84d0ddd6 4236
81819f0f
CL
4237 /*
4238 * Adjust the object sizes so that we clear
4239 * the complete object on kzalloc.
4240 */
1b473f29 4241 s->object_size = max(s->object_size, size);
52ee6d74 4242 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4243
426589f5 4244 for_each_memcg_cache(c, s) {
84d0ddd6 4245 c->object_size = s->object_size;
52ee6d74 4246 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4247 }
4248
7b8f3b66 4249 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4250 s->refcount--;
cbb79694 4251 s = NULL;
7b8f3b66 4252 }
a0e1d1be 4253 }
6446faa2 4254
cbb79694
CL
4255 return s;
4256}
84c1cf62 4257
d50112ed 4258int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4259{
aac3a166
PE
4260 int err;
4261
4262 err = kmem_cache_open(s, flags);
4263 if (err)
4264 return err;
20cea968 4265
45530c44
CL
4266 /* Mutex is not taken during early boot */
4267 if (slab_state <= UP)
4268 return 0;
4269
107dab5c 4270 memcg_propagate_slab_attrs(s);
aac3a166 4271 err = sysfs_slab_add(s);
aac3a166 4272 if (err)
52b4b950 4273 __kmem_cache_release(s);
20cea968 4274
aac3a166 4275 return err;
81819f0f 4276}
81819f0f 4277
ce71e27c 4278void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4279{
aadb4bc4 4280 struct kmem_cache *s;
94b528d0 4281 void *ret;
aadb4bc4 4282
95a05b42 4283 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4284 return kmalloc_large(size, gfpflags);
4285
2c59dd65 4286 s = kmalloc_slab(size, gfpflags);
81819f0f 4287
2408c550 4288 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4289 return s;
81819f0f 4290
2b847c3c 4291 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4292
25985edc 4293 /* Honor the call site pointer we received. */
ca2b84cb 4294 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4295
4296 return ret;
81819f0f
CL
4297}
4298
5d1f57e4 4299#ifdef CONFIG_NUMA
81819f0f 4300void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4301 int node, unsigned long caller)
81819f0f 4302{
aadb4bc4 4303 struct kmem_cache *s;
94b528d0 4304 void *ret;
aadb4bc4 4305
95a05b42 4306 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4307 ret = kmalloc_large_node(size, gfpflags, node);
4308
4309 trace_kmalloc_node(caller, ret,
4310 size, PAGE_SIZE << get_order(size),
4311 gfpflags, node);
4312
4313 return ret;
4314 }
eada35ef 4315
2c59dd65 4316 s = kmalloc_slab(size, gfpflags);
81819f0f 4317
2408c550 4318 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4319 return s;
81819f0f 4320
2b847c3c 4321 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4322
25985edc 4323 /* Honor the call site pointer we received. */
ca2b84cb 4324 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4325
4326 return ret;
81819f0f 4327}
5d1f57e4 4328#endif
81819f0f 4329
ab4d5ed5 4330#ifdef CONFIG_SYSFS
205ab99d
CL
4331static int count_inuse(struct page *page)
4332{
4333 return page->inuse;
4334}
4335
4336static int count_total(struct page *page)
4337{
4338 return page->objects;
4339}
ab4d5ed5 4340#endif
205ab99d 4341
ab4d5ed5 4342#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4343static int validate_slab(struct kmem_cache *s, struct page *page,
4344 unsigned long *map)
53e15af0
CL
4345{
4346 void *p;
a973e9dd 4347 void *addr = page_address(page);
53e15af0
CL
4348
4349 if (!check_slab(s, page) ||
4350 !on_freelist(s, page, NULL))
4351 return 0;
4352
4353 /* Now we know that a valid freelist exists */
39b26464 4354 bitmap_zero(map, page->objects);
53e15af0 4355
5f80b13a
CL
4356 get_map(s, page, map);
4357 for_each_object(p, s, addr, page->objects) {
4358 if (test_bit(slab_index(p, s, addr), map))
4359 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4360 return 0;
53e15af0
CL
4361 }
4362
224a88be 4363 for_each_object(p, s, addr, page->objects)
7656c72b 4364 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4365 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4366 return 0;
4367 return 1;
4368}
4369
434e245d
CL
4370static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4371 unsigned long *map)
53e15af0 4372{
881db7fb
CL
4373 slab_lock(page);
4374 validate_slab(s, page, map);
4375 slab_unlock(page);
53e15af0
CL
4376}
4377
434e245d
CL
4378static int validate_slab_node(struct kmem_cache *s,
4379 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4380{
4381 unsigned long count = 0;
4382 struct page *page;
4383 unsigned long flags;
4384
4385 spin_lock_irqsave(&n->list_lock, flags);
4386
4387 list_for_each_entry(page, &n->partial, lru) {
434e245d 4388 validate_slab_slab(s, page, map);
53e15af0
CL
4389 count++;
4390 }
4391 if (count != n->nr_partial)
f9f58285
FF
4392 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4393 s->name, count, n->nr_partial);
53e15af0
CL
4394
4395 if (!(s->flags & SLAB_STORE_USER))
4396 goto out;
4397
4398 list_for_each_entry(page, &n->full, lru) {
434e245d 4399 validate_slab_slab(s, page, map);
53e15af0
CL
4400 count++;
4401 }
4402 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4403 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4404 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4405
4406out:
4407 spin_unlock_irqrestore(&n->list_lock, flags);
4408 return count;
4409}
4410
434e245d 4411static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4412{
4413 int node;
4414 unsigned long count = 0;
6da2ec56
KC
4415 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4416 sizeof(unsigned long),
4417 GFP_KERNEL);
fa45dc25 4418 struct kmem_cache_node *n;
434e245d
CL
4419
4420 if (!map)
4421 return -ENOMEM;
53e15af0
CL
4422
4423 flush_all(s);
fa45dc25 4424 for_each_kmem_cache_node(s, node, n)
434e245d 4425 count += validate_slab_node(s, n, map);
434e245d 4426 kfree(map);
53e15af0
CL
4427 return count;
4428}
88a420e4 4429/*
672bba3a 4430 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4431 * and freed.
4432 */
4433
4434struct location {
4435 unsigned long count;
ce71e27c 4436 unsigned long addr;
45edfa58
CL
4437 long long sum_time;
4438 long min_time;
4439 long max_time;
4440 long min_pid;
4441 long max_pid;
174596a0 4442 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4443 nodemask_t nodes;
88a420e4
CL
4444};
4445
4446struct loc_track {
4447 unsigned long max;
4448 unsigned long count;
4449 struct location *loc;
4450};
4451
4452static void free_loc_track(struct loc_track *t)
4453{
4454 if (t->max)
4455 free_pages((unsigned long)t->loc,
4456 get_order(sizeof(struct location) * t->max));
4457}
4458
68dff6a9 4459static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4460{
4461 struct location *l;
4462 int order;
4463
88a420e4
CL
4464 order = get_order(sizeof(struct location) * max);
4465
68dff6a9 4466 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4467 if (!l)
4468 return 0;
4469
4470 if (t->count) {
4471 memcpy(l, t->loc, sizeof(struct location) * t->count);
4472 free_loc_track(t);
4473 }
4474 t->max = max;
4475 t->loc = l;
4476 return 1;
4477}
4478
4479static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4480 const struct track *track)
88a420e4
CL
4481{
4482 long start, end, pos;
4483 struct location *l;
ce71e27c 4484 unsigned long caddr;
45edfa58 4485 unsigned long age = jiffies - track->when;
88a420e4
CL
4486
4487 start = -1;
4488 end = t->count;
4489
4490 for ( ; ; ) {
4491 pos = start + (end - start + 1) / 2;
4492
4493 /*
4494 * There is nothing at "end". If we end up there
4495 * we need to add something to before end.
4496 */
4497 if (pos == end)
4498 break;
4499
4500 caddr = t->loc[pos].addr;
45edfa58
CL
4501 if (track->addr == caddr) {
4502
4503 l = &t->loc[pos];
4504 l->count++;
4505 if (track->when) {
4506 l->sum_time += age;
4507 if (age < l->min_time)
4508 l->min_time = age;
4509 if (age > l->max_time)
4510 l->max_time = age;
4511
4512 if (track->pid < l->min_pid)
4513 l->min_pid = track->pid;
4514 if (track->pid > l->max_pid)
4515 l->max_pid = track->pid;
4516
174596a0
RR
4517 cpumask_set_cpu(track->cpu,
4518 to_cpumask(l->cpus));
45edfa58
CL
4519 }
4520 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4521 return 1;
4522 }
4523
45edfa58 4524 if (track->addr < caddr)
88a420e4
CL
4525 end = pos;
4526 else
4527 start = pos;
4528 }
4529
4530 /*
672bba3a 4531 * Not found. Insert new tracking element.
88a420e4 4532 */
68dff6a9 4533 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4534 return 0;
4535
4536 l = t->loc + pos;
4537 if (pos < t->count)
4538 memmove(l + 1, l,
4539 (t->count - pos) * sizeof(struct location));
4540 t->count++;
4541 l->count = 1;
45edfa58
CL
4542 l->addr = track->addr;
4543 l->sum_time = age;
4544 l->min_time = age;
4545 l->max_time = age;
4546 l->min_pid = track->pid;
4547 l->max_pid = track->pid;
174596a0
RR
4548 cpumask_clear(to_cpumask(l->cpus));
4549 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4550 nodes_clear(l->nodes);
4551 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4552 return 1;
4553}
4554
4555static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4556 struct page *page, enum track_item alloc,
a5dd5c11 4557 unsigned long *map)
88a420e4 4558{
a973e9dd 4559 void *addr = page_address(page);
88a420e4
CL
4560 void *p;
4561
39b26464 4562 bitmap_zero(map, page->objects);
5f80b13a 4563 get_map(s, page, map);
88a420e4 4564
224a88be 4565 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4566 if (!test_bit(slab_index(p, s, addr), map))
4567 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4568}
4569
4570static int list_locations(struct kmem_cache *s, char *buf,
4571 enum track_item alloc)
4572{
e374d483 4573 int len = 0;
88a420e4 4574 unsigned long i;
68dff6a9 4575 struct loc_track t = { 0, 0, NULL };
88a420e4 4576 int node;
6da2ec56
KC
4577 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4578 sizeof(unsigned long),
4579 GFP_KERNEL);
fa45dc25 4580 struct kmem_cache_node *n;
88a420e4 4581
bbd7d57b 4582 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4583 GFP_KERNEL)) {
bbd7d57b 4584 kfree(map);
68dff6a9 4585 return sprintf(buf, "Out of memory\n");
bbd7d57b 4586 }
88a420e4
CL
4587 /* Push back cpu slabs */
4588 flush_all(s);
4589
fa45dc25 4590 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4591 unsigned long flags;
4592 struct page *page;
4593
9e86943b 4594 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4595 continue;
4596
4597 spin_lock_irqsave(&n->list_lock, flags);
4598 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4599 process_slab(&t, s, page, alloc, map);
88a420e4 4600 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4601 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4602 spin_unlock_irqrestore(&n->list_lock, flags);
4603 }
4604
4605 for (i = 0; i < t.count; i++) {
45edfa58 4606 struct location *l = &t.loc[i];
88a420e4 4607
9c246247 4608 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4609 break;
e374d483 4610 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4611
4612 if (l->addr)
62c70bce 4613 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4614 else
e374d483 4615 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4616
4617 if (l->sum_time != l->min_time) {
e374d483 4618 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4619 l->min_time,
4620 (long)div_u64(l->sum_time, l->count),
4621 l->max_time);
45edfa58 4622 } else
e374d483 4623 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4624 l->min_time);
4625
4626 if (l->min_pid != l->max_pid)
e374d483 4627 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4628 l->min_pid, l->max_pid);
4629 else
e374d483 4630 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4631 l->min_pid);
4632
174596a0
RR
4633 if (num_online_cpus() > 1 &&
4634 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4635 len < PAGE_SIZE - 60)
4636 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4637 " cpus=%*pbl",
4638 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4639
62bc62a8 4640 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4641 len < PAGE_SIZE - 60)
4642 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4643 " nodes=%*pbl",
4644 nodemask_pr_args(&l->nodes));
45edfa58 4645
e374d483 4646 len += sprintf(buf + len, "\n");
88a420e4
CL
4647 }
4648
4649 free_loc_track(&t);
bbd7d57b 4650 kfree(map);
88a420e4 4651 if (!t.count)
e374d483
HH
4652 len += sprintf(buf, "No data\n");
4653 return len;
88a420e4 4654}
ab4d5ed5 4655#endif
88a420e4 4656
a5a84755 4657#ifdef SLUB_RESILIENCY_TEST
c07b8183 4658static void __init resiliency_test(void)
a5a84755
CL
4659{
4660 u8 *p;
4661
95a05b42 4662 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4663
f9f58285
FF
4664 pr_err("SLUB resiliency testing\n");
4665 pr_err("-----------------------\n");
4666 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4667
4668 p = kzalloc(16, GFP_KERNEL);
4669 p[16] = 0x12;
f9f58285
FF
4670 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4671 p + 16);
a5a84755
CL
4672
4673 validate_slab_cache(kmalloc_caches[4]);
4674
4675 /* Hmmm... The next two are dangerous */
4676 p = kzalloc(32, GFP_KERNEL);
4677 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4678 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4679 p);
4680 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4681
4682 validate_slab_cache(kmalloc_caches[5]);
4683 p = kzalloc(64, GFP_KERNEL);
4684 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4685 *p = 0x56;
f9f58285
FF
4686 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4687 p);
4688 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4689 validate_slab_cache(kmalloc_caches[6]);
4690
f9f58285 4691 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4692 p = kzalloc(128, GFP_KERNEL);
4693 kfree(p);
4694 *p = 0x78;
f9f58285 4695 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4696 validate_slab_cache(kmalloc_caches[7]);
4697
4698 p = kzalloc(256, GFP_KERNEL);
4699 kfree(p);
4700 p[50] = 0x9a;
f9f58285 4701 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4702 validate_slab_cache(kmalloc_caches[8]);
4703
4704 p = kzalloc(512, GFP_KERNEL);
4705 kfree(p);
4706 p[512] = 0xab;
f9f58285 4707 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4708 validate_slab_cache(kmalloc_caches[9]);
4709}
4710#else
4711#ifdef CONFIG_SYSFS
4712static void resiliency_test(void) {};
4713#endif
4714#endif
4715
ab4d5ed5 4716#ifdef CONFIG_SYSFS
81819f0f 4717enum slab_stat_type {
205ab99d
CL
4718 SL_ALL, /* All slabs */
4719 SL_PARTIAL, /* Only partially allocated slabs */
4720 SL_CPU, /* Only slabs used for cpu caches */
4721 SL_OBJECTS, /* Determine allocated objects not slabs */
4722 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4723};
4724
205ab99d 4725#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4726#define SO_PARTIAL (1 << SL_PARTIAL)
4727#define SO_CPU (1 << SL_CPU)
4728#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4729#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4730
1663f26d
TH
4731#ifdef CONFIG_MEMCG
4732static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4733
4734static int __init setup_slub_memcg_sysfs(char *str)
4735{
4736 int v;
4737
4738 if (get_option(&str, &v) > 0)
4739 memcg_sysfs_enabled = v;
4740
4741 return 1;
4742}
4743
4744__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4745#endif
4746
62e5c4b4
CG
4747static ssize_t show_slab_objects(struct kmem_cache *s,
4748 char *buf, unsigned long flags)
81819f0f
CL
4749{
4750 unsigned long total = 0;
81819f0f
CL
4751 int node;
4752 int x;
4753 unsigned long *nodes;
81819f0f 4754
e35e1a97 4755 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4756 if (!nodes)
4757 return -ENOMEM;
81819f0f 4758
205ab99d
CL
4759 if (flags & SO_CPU) {
4760 int cpu;
81819f0f 4761
205ab99d 4762 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4763 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4764 cpu);
ec3ab083 4765 int node;
49e22585 4766 struct page *page;
dfb4f096 4767
4db0c3c2 4768 page = READ_ONCE(c->page);
ec3ab083
CL
4769 if (!page)
4770 continue;
205ab99d 4771
ec3ab083
CL
4772 node = page_to_nid(page);
4773 if (flags & SO_TOTAL)
4774 x = page->objects;
4775 else if (flags & SO_OBJECTS)
4776 x = page->inuse;
4777 else
4778 x = 1;
49e22585 4779
ec3ab083
CL
4780 total += x;
4781 nodes[node] += x;
4782
a93cf07b 4783 page = slub_percpu_partial_read_once(c);
49e22585 4784 if (page) {
8afb1474
LZ
4785 node = page_to_nid(page);
4786 if (flags & SO_TOTAL)
4787 WARN_ON_ONCE(1);
4788 else if (flags & SO_OBJECTS)
4789 WARN_ON_ONCE(1);
4790 else
4791 x = page->pages;
bc6697d8
ED
4792 total += x;
4793 nodes[node] += x;
49e22585 4794 }
81819f0f
CL
4795 }
4796 }
4797
bfc8c901 4798 get_online_mems();
ab4d5ed5 4799#ifdef CONFIG_SLUB_DEBUG
205ab99d 4800 if (flags & SO_ALL) {
fa45dc25
CL
4801 struct kmem_cache_node *n;
4802
4803 for_each_kmem_cache_node(s, node, n) {
205ab99d 4804
d0e0ac97
CG
4805 if (flags & SO_TOTAL)
4806 x = atomic_long_read(&n->total_objects);
4807 else if (flags & SO_OBJECTS)
4808 x = atomic_long_read(&n->total_objects) -
4809 count_partial(n, count_free);
81819f0f 4810 else
205ab99d 4811 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4812 total += x;
4813 nodes[node] += x;
4814 }
4815
ab4d5ed5
CL
4816 } else
4817#endif
4818 if (flags & SO_PARTIAL) {
fa45dc25 4819 struct kmem_cache_node *n;
81819f0f 4820
fa45dc25 4821 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4822 if (flags & SO_TOTAL)
4823 x = count_partial(n, count_total);
4824 else if (flags & SO_OBJECTS)
4825 x = count_partial(n, count_inuse);
81819f0f 4826 else
205ab99d 4827 x = n->nr_partial;
81819f0f
CL
4828 total += x;
4829 nodes[node] += x;
4830 }
4831 }
81819f0f
CL
4832 x = sprintf(buf, "%lu", total);
4833#ifdef CONFIG_NUMA
fa45dc25 4834 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4835 if (nodes[node])
4836 x += sprintf(buf + x, " N%d=%lu",
4837 node, nodes[node]);
4838#endif
bfc8c901 4839 put_online_mems();
81819f0f
CL
4840 kfree(nodes);
4841 return x + sprintf(buf + x, "\n");
4842}
4843
ab4d5ed5 4844#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4845static int any_slab_objects(struct kmem_cache *s)
4846{
4847 int node;
fa45dc25 4848 struct kmem_cache_node *n;
81819f0f 4849
fa45dc25 4850 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4851 if (atomic_long_read(&n->total_objects))
81819f0f 4852 return 1;
fa45dc25 4853
81819f0f
CL
4854 return 0;
4855}
ab4d5ed5 4856#endif
81819f0f
CL
4857
4858#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4859#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4860
4861struct slab_attribute {
4862 struct attribute attr;
4863 ssize_t (*show)(struct kmem_cache *s, char *buf);
4864 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4865};
4866
4867#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4868 static struct slab_attribute _name##_attr = \
4869 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4870
4871#define SLAB_ATTR(_name) \
4872 static struct slab_attribute _name##_attr = \
ab067e99 4873 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4874
81819f0f
CL
4875static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4876{
44065b2e 4877 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4878}
4879SLAB_ATTR_RO(slab_size);
4880
4881static ssize_t align_show(struct kmem_cache *s, char *buf)
4882{
3a3791ec 4883 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4884}
4885SLAB_ATTR_RO(align);
4886
4887static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4888{
1b473f29 4889 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4890}
4891SLAB_ATTR_RO(object_size);
4892
4893static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4894{
19af27af 4895 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4896}
4897SLAB_ATTR_RO(objs_per_slab);
4898
06b285dc
CL
4899static ssize_t order_store(struct kmem_cache *s,
4900 const char *buf, size_t length)
4901{
19af27af 4902 unsigned int order;
0121c619
CL
4903 int err;
4904
19af27af 4905 err = kstrtouint(buf, 10, &order);
0121c619
CL
4906 if (err)
4907 return err;
06b285dc
CL
4908
4909 if (order > slub_max_order || order < slub_min_order)
4910 return -EINVAL;
4911
4912 calculate_sizes(s, order);
4913 return length;
4914}
4915
81819f0f
CL
4916static ssize_t order_show(struct kmem_cache *s, char *buf)
4917{
19af27af 4918 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4919}
06b285dc 4920SLAB_ATTR(order);
81819f0f 4921
73d342b1
DR
4922static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4923{
4924 return sprintf(buf, "%lu\n", s->min_partial);
4925}
4926
4927static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4928 size_t length)
4929{
4930 unsigned long min;
4931 int err;
4932
3dbb95f7 4933 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4934 if (err)
4935 return err;
4936
c0bdb232 4937 set_min_partial(s, min);
73d342b1
DR
4938 return length;
4939}
4940SLAB_ATTR(min_partial);
4941
49e22585
CL
4942static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4943{
e6d0e1dc 4944 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4945}
4946
4947static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4948 size_t length)
4949{
e5d9998f 4950 unsigned int objects;
49e22585
CL
4951 int err;
4952
e5d9998f 4953 err = kstrtouint(buf, 10, &objects);
49e22585
CL
4954 if (err)
4955 return err;
345c905d 4956 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4957 return -EINVAL;
49e22585 4958
e6d0e1dc 4959 slub_set_cpu_partial(s, objects);
49e22585
CL
4960 flush_all(s);
4961 return length;
4962}
4963SLAB_ATTR(cpu_partial);
4964
81819f0f
CL
4965static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4966{
62c70bce
JP
4967 if (!s->ctor)
4968 return 0;
4969 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4970}
4971SLAB_ATTR_RO(ctor);
4972
81819f0f
CL
4973static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4974{
4307c14f 4975 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4976}
4977SLAB_ATTR_RO(aliases);
4978
81819f0f
CL
4979static ssize_t partial_show(struct kmem_cache *s, char *buf)
4980{
d9acf4b7 4981 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4982}
4983SLAB_ATTR_RO(partial);
4984
4985static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4986{
d9acf4b7 4987 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4988}
4989SLAB_ATTR_RO(cpu_slabs);
4990
4991static ssize_t objects_show(struct kmem_cache *s, char *buf)
4992{
205ab99d 4993 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4994}
4995SLAB_ATTR_RO(objects);
4996
205ab99d
CL
4997static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4998{
4999 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5000}
5001SLAB_ATTR_RO(objects_partial);
5002
49e22585
CL
5003static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5004{
5005 int objects = 0;
5006 int pages = 0;
5007 int cpu;
5008 int len;
5009
5010 for_each_online_cpu(cpu) {
a93cf07b
WY
5011 struct page *page;
5012
5013 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5014
5015 if (page) {
5016 pages += page->pages;
5017 objects += page->pobjects;
5018 }
5019 }
5020
5021 len = sprintf(buf, "%d(%d)", objects, pages);
5022
5023#ifdef CONFIG_SMP
5024 for_each_online_cpu(cpu) {
a93cf07b
WY
5025 struct page *page;
5026
5027 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5028
5029 if (page && len < PAGE_SIZE - 20)
5030 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5031 page->pobjects, page->pages);
5032 }
5033#endif
5034 return len + sprintf(buf + len, "\n");
5035}
5036SLAB_ATTR_RO(slabs_cpu_partial);
5037
a5a84755
CL
5038static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5039{
5040 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5041}
5042
5043static ssize_t reclaim_account_store(struct kmem_cache *s,
5044 const char *buf, size_t length)
5045{
5046 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5047 if (buf[0] == '1')
5048 s->flags |= SLAB_RECLAIM_ACCOUNT;
5049 return length;
5050}
5051SLAB_ATTR(reclaim_account);
5052
5053static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5054{
5055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5056}
5057SLAB_ATTR_RO(hwcache_align);
5058
5059#ifdef CONFIG_ZONE_DMA
5060static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5061{
5062 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5063}
5064SLAB_ATTR_RO(cache_dma);
5065#endif
5066
8eb8284b
DW
5067static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5068{
7bbdb81e 5069 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5070}
5071SLAB_ATTR_RO(usersize);
5072
a5a84755
CL
5073static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5074{
5f0d5a3a 5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5076}
5077SLAB_ATTR_RO(destroy_by_rcu);
5078
ab4d5ed5 5079#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5080static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5081{
5082 return show_slab_objects(s, buf, SO_ALL);
5083}
5084SLAB_ATTR_RO(slabs);
5085
205ab99d
CL
5086static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5087{
5088 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5089}
5090SLAB_ATTR_RO(total_objects);
5091
81819f0f
CL
5092static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5093{
becfda68 5094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5095}
5096
5097static ssize_t sanity_checks_store(struct kmem_cache *s,
5098 const char *buf, size_t length)
5099{
becfda68 5100 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5101 if (buf[0] == '1') {
5102 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5103 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5104 }
81819f0f
CL
5105 return length;
5106}
5107SLAB_ATTR(sanity_checks);
5108
5109static ssize_t trace_show(struct kmem_cache *s, char *buf)
5110{
5111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5112}
5113
5114static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5115 size_t length)
5116{
c9e16131
CL
5117 /*
5118 * Tracing a merged cache is going to give confusing results
5119 * as well as cause other issues like converting a mergeable
5120 * cache into an umergeable one.
5121 */
5122 if (s->refcount > 1)
5123 return -EINVAL;
5124
81819f0f 5125 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5126 if (buf[0] == '1') {
5127 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5128 s->flags |= SLAB_TRACE;
b789ef51 5129 }
81819f0f
CL
5130 return length;
5131}
5132SLAB_ATTR(trace);
5133
81819f0f
CL
5134static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5135{
5136 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5137}
5138
5139static ssize_t red_zone_store(struct kmem_cache *s,
5140 const char *buf, size_t length)
5141{
5142 if (any_slab_objects(s))
5143 return -EBUSY;
5144
5145 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5146 if (buf[0] == '1') {
81819f0f 5147 s->flags |= SLAB_RED_ZONE;
b789ef51 5148 }
06b285dc 5149 calculate_sizes(s, -1);
81819f0f
CL
5150 return length;
5151}
5152SLAB_ATTR(red_zone);
5153
5154static ssize_t poison_show(struct kmem_cache *s, char *buf)
5155{
5156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5157}
5158
5159static ssize_t poison_store(struct kmem_cache *s,
5160 const char *buf, size_t length)
5161{
5162 if (any_slab_objects(s))
5163 return -EBUSY;
5164
5165 s->flags &= ~SLAB_POISON;
b789ef51 5166 if (buf[0] == '1') {
81819f0f 5167 s->flags |= SLAB_POISON;
b789ef51 5168 }
06b285dc 5169 calculate_sizes(s, -1);
81819f0f
CL
5170 return length;
5171}
5172SLAB_ATTR(poison);
5173
5174static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5175{
5176 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5177}
5178
5179static ssize_t store_user_store(struct kmem_cache *s,
5180 const char *buf, size_t length)
5181{
5182 if (any_slab_objects(s))
5183 return -EBUSY;
5184
5185 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5186 if (buf[0] == '1') {
5187 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5188 s->flags |= SLAB_STORE_USER;
b789ef51 5189 }
06b285dc 5190 calculate_sizes(s, -1);
81819f0f
CL
5191 return length;
5192}
5193SLAB_ATTR(store_user);
5194
53e15af0
CL
5195static ssize_t validate_show(struct kmem_cache *s, char *buf)
5196{
5197 return 0;
5198}
5199
5200static ssize_t validate_store(struct kmem_cache *s,
5201 const char *buf, size_t length)
5202{
434e245d
CL
5203 int ret = -EINVAL;
5204
5205 if (buf[0] == '1') {
5206 ret = validate_slab_cache(s);
5207 if (ret >= 0)
5208 ret = length;
5209 }
5210 return ret;
53e15af0
CL
5211}
5212SLAB_ATTR(validate);
a5a84755
CL
5213
5214static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5215{
5216 if (!(s->flags & SLAB_STORE_USER))
5217 return -ENOSYS;
5218 return list_locations(s, buf, TRACK_ALLOC);
5219}
5220SLAB_ATTR_RO(alloc_calls);
5221
5222static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5223{
5224 if (!(s->flags & SLAB_STORE_USER))
5225 return -ENOSYS;
5226 return list_locations(s, buf, TRACK_FREE);
5227}
5228SLAB_ATTR_RO(free_calls);
5229#endif /* CONFIG_SLUB_DEBUG */
5230
5231#ifdef CONFIG_FAILSLAB
5232static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5233{
5234 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5235}
5236
5237static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5238 size_t length)
5239{
c9e16131
CL
5240 if (s->refcount > 1)
5241 return -EINVAL;
5242
a5a84755
CL
5243 s->flags &= ~SLAB_FAILSLAB;
5244 if (buf[0] == '1')
5245 s->flags |= SLAB_FAILSLAB;
5246 return length;
5247}
5248SLAB_ATTR(failslab);
ab4d5ed5 5249#endif
53e15af0 5250
2086d26a
CL
5251static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5252{
5253 return 0;
5254}
5255
5256static ssize_t shrink_store(struct kmem_cache *s,
5257 const char *buf, size_t length)
5258{
832f37f5
VD
5259 if (buf[0] == '1')
5260 kmem_cache_shrink(s);
5261 else
2086d26a
CL
5262 return -EINVAL;
5263 return length;
5264}
5265SLAB_ATTR(shrink);
5266
81819f0f 5267#ifdef CONFIG_NUMA
9824601e 5268static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5269{
eb7235eb 5270 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5271}
5272
9824601e 5273static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5274 const char *buf, size_t length)
5275{
eb7235eb 5276 unsigned int ratio;
0121c619
CL
5277 int err;
5278
eb7235eb 5279 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5280 if (err)
5281 return err;
eb7235eb
AD
5282 if (ratio > 100)
5283 return -ERANGE;
0121c619 5284
eb7235eb 5285 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5286
81819f0f
CL
5287 return length;
5288}
9824601e 5289SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5290#endif
5291
8ff12cfc 5292#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5293static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5294{
5295 unsigned long sum = 0;
5296 int cpu;
5297 int len;
6da2ec56 5298 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5299
5300 if (!data)
5301 return -ENOMEM;
5302
5303 for_each_online_cpu(cpu) {
9dfc6e68 5304 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5305
5306 data[cpu] = x;
5307 sum += x;
5308 }
5309
5310 len = sprintf(buf, "%lu", sum);
5311
50ef37b9 5312#ifdef CONFIG_SMP
8ff12cfc
CL
5313 for_each_online_cpu(cpu) {
5314 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5315 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5316 }
50ef37b9 5317#endif
8ff12cfc
CL
5318 kfree(data);
5319 return len + sprintf(buf + len, "\n");
5320}
5321
78eb00cc
DR
5322static void clear_stat(struct kmem_cache *s, enum stat_item si)
5323{
5324 int cpu;
5325
5326 for_each_online_cpu(cpu)
9dfc6e68 5327 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5328}
5329
8ff12cfc
CL
5330#define STAT_ATTR(si, text) \
5331static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5332{ \
5333 return show_stat(s, buf, si); \
5334} \
78eb00cc
DR
5335static ssize_t text##_store(struct kmem_cache *s, \
5336 const char *buf, size_t length) \
5337{ \
5338 if (buf[0] != '0') \
5339 return -EINVAL; \
5340 clear_stat(s, si); \
5341 return length; \
5342} \
5343SLAB_ATTR(text); \
8ff12cfc
CL
5344
5345STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5346STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5347STAT_ATTR(FREE_FASTPATH, free_fastpath);
5348STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5349STAT_ATTR(FREE_FROZEN, free_frozen);
5350STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5351STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5352STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5353STAT_ATTR(ALLOC_SLAB, alloc_slab);
5354STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5355STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5356STAT_ATTR(FREE_SLAB, free_slab);
5357STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5358STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5359STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5360STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5361STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5362STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5363STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5364STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5365STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5366STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5367STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5368STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5369STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5370STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5371#endif
5372
06428780 5373static struct attribute *slab_attrs[] = {
81819f0f
CL
5374 &slab_size_attr.attr,
5375 &object_size_attr.attr,
5376 &objs_per_slab_attr.attr,
5377 &order_attr.attr,
73d342b1 5378 &min_partial_attr.attr,
49e22585 5379 &cpu_partial_attr.attr,
81819f0f 5380 &objects_attr.attr,
205ab99d 5381 &objects_partial_attr.attr,
81819f0f
CL
5382 &partial_attr.attr,
5383 &cpu_slabs_attr.attr,
5384 &ctor_attr.attr,
81819f0f
CL
5385 &aliases_attr.attr,
5386 &align_attr.attr,
81819f0f
CL
5387 &hwcache_align_attr.attr,
5388 &reclaim_account_attr.attr,
5389 &destroy_by_rcu_attr.attr,
a5a84755 5390 &shrink_attr.attr,
49e22585 5391 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5392#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5393 &total_objects_attr.attr,
5394 &slabs_attr.attr,
5395 &sanity_checks_attr.attr,
5396 &trace_attr.attr,
81819f0f
CL
5397 &red_zone_attr.attr,
5398 &poison_attr.attr,
5399 &store_user_attr.attr,
53e15af0 5400 &validate_attr.attr,
88a420e4
CL
5401 &alloc_calls_attr.attr,
5402 &free_calls_attr.attr,
ab4d5ed5 5403#endif
81819f0f
CL
5404#ifdef CONFIG_ZONE_DMA
5405 &cache_dma_attr.attr,
5406#endif
5407#ifdef CONFIG_NUMA
9824601e 5408 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5409#endif
5410#ifdef CONFIG_SLUB_STATS
5411 &alloc_fastpath_attr.attr,
5412 &alloc_slowpath_attr.attr,
5413 &free_fastpath_attr.attr,
5414 &free_slowpath_attr.attr,
5415 &free_frozen_attr.attr,
5416 &free_add_partial_attr.attr,
5417 &free_remove_partial_attr.attr,
5418 &alloc_from_partial_attr.attr,
5419 &alloc_slab_attr.attr,
5420 &alloc_refill_attr.attr,
e36a2652 5421 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5422 &free_slab_attr.attr,
5423 &cpuslab_flush_attr.attr,
5424 &deactivate_full_attr.attr,
5425 &deactivate_empty_attr.attr,
5426 &deactivate_to_head_attr.attr,
5427 &deactivate_to_tail_attr.attr,
5428 &deactivate_remote_frees_attr.attr,
03e404af 5429 &deactivate_bypass_attr.attr,
65c3376a 5430 &order_fallback_attr.attr,
b789ef51
CL
5431 &cmpxchg_double_fail_attr.attr,
5432 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5433 &cpu_partial_alloc_attr.attr,
5434 &cpu_partial_free_attr.attr,
8028dcea
AS
5435 &cpu_partial_node_attr.attr,
5436 &cpu_partial_drain_attr.attr,
81819f0f 5437#endif
4c13dd3b
DM
5438#ifdef CONFIG_FAILSLAB
5439 &failslab_attr.attr,
5440#endif
8eb8284b 5441 &usersize_attr.attr,
4c13dd3b 5442
81819f0f
CL
5443 NULL
5444};
5445
1fdaaa23 5446static const struct attribute_group slab_attr_group = {
81819f0f
CL
5447 .attrs = slab_attrs,
5448};
5449
5450static ssize_t slab_attr_show(struct kobject *kobj,
5451 struct attribute *attr,
5452 char *buf)
5453{
5454 struct slab_attribute *attribute;
5455 struct kmem_cache *s;
5456 int err;
5457
5458 attribute = to_slab_attr(attr);
5459 s = to_slab(kobj);
5460
5461 if (!attribute->show)
5462 return -EIO;
5463
5464 err = attribute->show(s, buf);
5465
5466 return err;
5467}
5468
5469static ssize_t slab_attr_store(struct kobject *kobj,
5470 struct attribute *attr,
5471 const char *buf, size_t len)
5472{
5473 struct slab_attribute *attribute;
5474 struct kmem_cache *s;
5475 int err;
5476
5477 attribute = to_slab_attr(attr);
5478 s = to_slab(kobj);
5479
5480 if (!attribute->store)
5481 return -EIO;
5482
5483 err = attribute->store(s, buf, len);
127424c8 5484#ifdef CONFIG_MEMCG
107dab5c 5485 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5486 struct kmem_cache *c;
81819f0f 5487
107dab5c
GC
5488 mutex_lock(&slab_mutex);
5489 if (s->max_attr_size < len)
5490 s->max_attr_size = len;
5491
ebe945c2
GC
5492 /*
5493 * This is a best effort propagation, so this function's return
5494 * value will be determined by the parent cache only. This is
5495 * basically because not all attributes will have a well
5496 * defined semantics for rollbacks - most of the actions will
5497 * have permanent effects.
5498 *
5499 * Returning the error value of any of the children that fail
5500 * is not 100 % defined, in the sense that users seeing the
5501 * error code won't be able to know anything about the state of
5502 * the cache.
5503 *
5504 * Only returning the error code for the parent cache at least
5505 * has well defined semantics. The cache being written to
5506 * directly either failed or succeeded, in which case we loop
5507 * through the descendants with best-effort propagation.
5508 */
426589f5
VD
5509 for_each_memcg_cache(c, s)
5510 attribute->store(c, buf, len);
107dab5c
GC
5511 mutex_unlock(&slab_mutex);
5512 }
5513#endif
81819f0f
CL
5514 return err;
5515}
5516
107dab5c
GC
5517static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5518{
127424c8 5519#ifdef CONFIG_MEMCG
107dab5c
GC
5520 int i;
5521 char *buffer = NULL;
93030d83 5522 struct kmem_cache *root_cache;
107dab5c 5523
93030d83 5524 if (is_root_cache(s))
107dab5c
GC
5525 return;
5526
f7ce3190 5527 root_cache = s->memcg_params.root_cache;
93030d83 5528
107dab5c
GC
5529 /*
5530 * This mean this cache had no attribute written. Therefore, no point
5531 * in copying default values around
5532 */
93030d83 5533 if (!root_cache->max_attr_size)
107dab5c
GC
5534 return;
5535
5536 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5537 char mbuf[64];
5538 char *buf;
5539 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5540 ssize_t len;
107dab5c
GC
5541
5542 if (!attr || !attr->store || !attr->show)
5543 continue;
5544
5545 /*
5546 * It is really bad that we have to allocate here, so we will
5547 * do it only as a fallback. If we actually allocate, though,
5548 * we can just use the allocated buffer until the end.
5549 *
5550 * Most of the slub attributes will tend to be very small in
5551 * size, but sysfs allows buffers up to a page, so they can
5552 * theoretically happen.
5553 */
5554 if (buffer)
5555 buf = buffer;
93030d83 5556 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5557 buf = mbuf;
5558 else {
5559 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5560 if (WARN_ON(!buffer))
5561 continue;
5562 buf = buffer;
5563 }
5564
478fe303
TG
5565 len = attr->show(root_cache, buf);
5566 if (len > 0)
5567 attr->store(s, buf, len);
107dab5c
GC
5568 }
5569
5570 if (buffer)
5571 free_page((unsigned long)buffer);
5572#endif
5573}
5574
41a21285
CL
5575static void kmem_cache_release(struct kobject *k)
5576{
5577 slab_kmem_cache_release(to_slab(k));
5578}
5579
52cf25d0 5580static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5581 .show = slab_attr_show,
5582 .store = slab_attr_store,
5583};
5584
5585static struct kobj_type slab_ktype = {
5586 .sysfs_ops = &slab_sysfs_ops,
41a21285 5587 .release = kmem_cache_release,
81819f0f
CL
5588};
5589
5590static int uevent_filter(struct kset *kset, struct kobject *kobj)
5591{
5592 struct kobj_type *ktype = get_ktype(kobj);
5593
5594 if (ktype == &slab_ktype)
5595 return 1;
5596 return 0;
5597}
5598
9cd43611 5599static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5600 .filter = uevent_filter,
5601};
5602
27c3a314 5603static struct kset *slab_kset;
81819f0f 5604
9a41707b
VD
5605static inline struct kset *cache_kset(struct kmem_cache *s)
5606{
127424c8 5607#ifdef CONFIG_MEMCG
9a41707b 5608 if (!is_root_cache(s))
f7ce3190 5609 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5610#endif
5611 return slab_kset;
5612}
5613
81819f0f
CL
5614#define ID_STR_LENGTH 64
5615
5616/* Create a unique string id for a slab cache:
6446faa2
CL
5617 *
5618 * Format :[flags-]size
81819f0f
CL
5619 */
5620static char *create_unique_id(struct kmem_cache *s)
5621{
5622 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5623 char *p = name;
5624
5625 BUG_ON(!name);
5626
5627 *p++ = ':';
5628 /*
5629 * First flags affecting slabcache operations. We will only
5630 * get here for aliasable slabs so we do not need to support
5631 * too many flags. The flags here must cover all flags that
5632 * are matched during merging to guarantee that the id is
5633 * unique.
5634 */
5635 if (s->flags & SLAB_CACHE_DMA)
5636 *p++ = 'd';
5637 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5638 *p++ = 'a';
becfda68 5639 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5640 *p++ = 'F';
230e9fc2
VD
5641 if (s->flags & SLAB_ACCOUNT)
5642 *p++ = 'A';
81819f0f
CL
5643 if (p != name + 1)
5644 *p++ = '-';
44065b2e 5645 p += sprintf(p, "%07u", s->size);
2633d7a0 5646
81819f0f
CL
5647 BUG_ON(p > name + ID_STR_LENGTH - 1);
5648 return name;
5649}
5650
3b7b3140
TH
5651static void sysfs_slab_remove_workfn(struct work_struct *work)
5652{
5653 struct kmem_cache *s =
5654 container_of(work, struct kmem_cache, kobj_remove_work);
5655
5656 if (!s->kobj.state_in_sysfs)
5657 /*
5658 * For a memcg cache, this may be called during
5659 * deactivation and again on shutdown. Remove only once.
5660 * A cache is never shut down before deactivation is
5661 * complete, so no need to worry about synchronization.
5662 */
f6ba4880 5663 goto out;
3b7b3140
TH
5664
5665#ifdef CONFIG_MEMCG
5666 kset_unregister(s->memcg_kset);
5667#endif
5668 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5669 kobject_del(&s->kobj);
f6ba4880 5670out:
3b7b3140
TH
5671 kobject_put(&s->kobj);
5672}
5673
81819f0f
CL
5674static int sysfs_slab_add(struct kmem_cache *s)
5675{
5676 int err;
5677 const char *name;
1663f26d 5678 struct kset *kset = cache_kset(s);
45530c44 5679 int unmergeable = slab_unmergeable(s);
81819f0f 5680
3b7b3140
TH
5681 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5682
1663f26d
TH
5683 if (!kset) {
5684 kobject_init(&s->kobj, &slab_ktype);
5685 return 0;
5686 }
5687
11066386
MC
5688 if (!unmergeable && disable_higher_order_debug &&
5689 (slub_debug & DEBUG_METADATA_FLAGS))
5690 unmergeable = 1;
5691
81819f0f
CL
5692 if (unmergeable) {
5693 /*
5694 * Slabcache can never be merged so we can use the name proper.
5695 * This is typically the case for debug situations. In that
5696 * case we can catch duplicate names easily.
5697 */
27c3a314 5698 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5699 name = s->name;
5700 } else {
5701 /*
5702 * Create a unique name for the slab as a target
5703 * for the symlinks.
5704 */
5705 name = create_unique_id(s);
5706 }
5707
1663f26d 5708 s->kobj.kset = kset;
26e4f205 5709 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5710 if (err)
80da026a 5711 goto out;
81819f0f
CL
5712
5713 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5714 if (err)
5715 goto out_del_kobj;
9a41707b 5716
127424c8 5717#ifdef CONFIG_MEMCG
1663f26d 5718 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5719 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5720 if (!s->memcg_kset) {
54b6a731
DJ
5721 err = -ENOMEM;
5722 goto out_del_kobj;
9a41707b
VD
5723 }
5724 }
5725#endif
5726
81819f0f
CL
5727 kobject_uevent(&s->kobj, KOBJ_ADD);
5728 if (!unmergeable) {
5729 /* Setup first alias */
5730 sysfs_slab_alias(s, s->name);
81819f0f 5731 }
54b6a731
DJ
5732out:
5733 if (!unmergeable)
5734 kfree(name);
5735 return err;
5736out_del_kobj:
5737 kobject_del(&s->kobj);
54b6a731 5738 goto out;
81819f0f
CL
5739}
5740
bf5eb3de 5741static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5742{
97d06609 5743 if (slab_state < FULL)
2bce6485
CL
5744 /*
5745 * Sysfs has not been setup yet so no need to remove the
5746 * cache from sysfs.
5747 */
5748 return;
5749
3b7b3140
TH
5750 kobject_get(&s->kobj);
5751 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5752}
5753
5754void sysfs_slab_release(struct kmem_cache *s)
5755{
5756 if (slab_state >= FULL)
5757 kobject_put(&s->kobj);
81819f0f
CL
5758}
5759
5760/*
5761 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5762 * available lest we lose that information.
81819f0f
CL
5763 */
5764struct saved_alias {
5765 struct kmem_cache *s;
5766 const char *name;
5767 struct saved_alias *next;
5768};
5769
5af328a5 5770static struct saved_alias *alias_list;
81819f0f
CL
5771
5772static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5773{
5774 struct saved_alias *al;
5775
97d06609 5776 if (slab_state == FULL) {
81819f0f
CL
5777 /*
5778 * If we have a leftover link then remove it.
5779 */
27c3a314
GKH
5780 sysfs_remove_link(&slab_kset->kobj, name);
5781 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5782 }
5783
5784 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5785 if (!al)
5786 return -ENOMEM;
5787
5788 al->s = s;
5789 al->name = name;
5790 al->next = alias_list;
5791 alias_list = al;
5792 return 0;
5793}
5794
5795static int __init slab_sysfs_init(void)
5796{
5b95a4ac 5797 struct kmem_cache *s;
81819f0f
CL
5798 int err;
5799
18004c5d 5800 mutex_lock(&slab_mutex);
2bce6485 5801
0ff21e46 5802 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5803 if (!slab_kset) {
18004c5d 5804 mutex_unlock(&slab_mutex);
f9f58285 5805 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5806 return -ENOSYS;
5807 }
5808
97d06609 5809 slab_state = FULL;
26a7bd03 5810
5b95a4ac 5811 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5812 err = sysfs_slab_add(s);
5d540fb7 5813 if (err)
f9f58285
FF
5814 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5815 s->name);
26a7bd03 5816 }
81819f0f
CL
5817
5818 while (alias_list) {
5819 struct saved_alias *al = alias_list;
5820
5821 alias_list = alias_list->next;
5822 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5823 if (err)
f9f58285
FF
5824 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5825 al->name);
81819f0f
CL
5826 kfree(al);
5827 }
5828
18004c5d 5829 mutex_unlock(&slab_mutex);
81819f0f
CL
5830 resiliency_test();
5831 return 0;
5832}
5833
5834__initcall(slab_sysfs_init);
ab4d5ed5 5835#endif /* CONFIG_SYSFS */
57ed3eda
PE
5836
5837/*
5838 * The /proc/slabinfo ABI
5839 */
5b365771 5840#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5841void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5842{
57ed3eda 5843 unsigned long nr_slabs = 0;
205ab99d
CL
5844 unsigned long nr_objs = 0;
5845 unsigned long nr_free = 0;
57ed3eda 5846 int node;
fa45dc25 5847 struct kmem_cache_node *n;
57ed3eda 5848
fa45dc25 5849 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5850 nr_slabs += node_nr_slabs(n);
5851 nr_objs += node_nr_objs(n);
205ab99d 5852 nr_free += count_partial(n, count_free);
57ed3eda
PE
5853 }
5854
0d7561c6
GC
5855 sinfo->active_objs = nr_objs - nr_free;
5856 sinfo->num_objs = nr_objs;
5857 sinfo->active_slabs = nr_slabs;
5858 sinfo->num_slabs = nr_slabs;
5859 sinfo->objects_per_slab = oo_objects(s->oo);
5860 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5861}
5862
0d7561c6 5863void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5864{
7b3c3a50
AD
5865}
5866
b7454ad3
GC
5867ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5868 size_t count, loff_t *ppos)
7b3c3a50 5869{
b7454ad3 5870 return -EIO;
7b3c3a50 5871}
5b365771 5872#endif /* CONFIG_SLUB_DEBUG */