slub: Dynamically size kmalloc cache allocations
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f
CL
30
31/*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
672bba3a
CL
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 78 * freed then the slab will show up again on the partial lists.
672bba3a
CL
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81819f0f
CL
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
4b6f0750
CL
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
dfb4f096 100 * freelist that allows lockless access to
894b8788
CL
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
81819f0f
CL
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
894b8788 106 * the fast path and disables lockless freelists.
81819f0f
CL
107 */
108
af537b0a
CL
109#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
111
112static inline int kmem_cache_debug(struct kmem_cache *s)
113{
5577bd8a 114#ifdef CONFIG_SLUB_DEBUG
af537b0a 115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 116#else
af537b0a 117 return 0;
5577bd8a 118#endif
af537b0a 119}
5577bd8a 120
81819f0f
CL
121/*
122 * Issues still to be resolved:
123 *
81819f0f
CL
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
81819f0f
CL
126 * - Variable sizing of the per node arrays
127 */
128
129/* Enable to test recovery from slab corruption on boot */
130#undef SLUB_RESILIENCY_TEST
131
2086d26a
CL
132/*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
76be8950 136#define MIN_PARTIAL 5
e95eed57 137
2086d26a
CL
138/*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143#define MAX_PARTIAL 10
144
81819f0f
CL
145#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
672bba3a 147
fa5ec8a1 148/*
3de47213
DR
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
fa5ec8a1 152 */
3de47213 153#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 154
81819f0f
CL
155/*
156 * Set of flags that will prevent slab merging
157 */
158#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
81819f0f
CL
161
162#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 163 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 164
210b5c06
CG
165#define OO_SHIFT 16
166#define OO_MASK ((1 << OO_SHIFT) - 1)
167#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
168
81819f0f 169/* Internal SLUB flags */
f90ec390 170#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
171
172static int kmem_size = sizeof(struct kmem_cache);
173
174#ifdef CONFIG_SMP
175static struct notifier_block slab_notifier;
176#endif
177
178static enum {
179 DOWN, /* No slab functionality available */
51df1142 180 PARTIAL, /* Kmem_cache_node works */
672bba3a 181 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
182 SYSFS /* Sysfs up */
183} slab_state = DOWN;
184
185/* A list of all slab caches on the system */
186static DECLARE_RWSEM(slub_lock);
5af328a5 187static LIST_HEAD(slab_caches);
81819f0f 188
02cbc874
CL
189/*
190 * Tracking user of a slab.
191 */
192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
f6acb635 201#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 205
81819f0f 206#else
0c710013
CL
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
151c602f
CL
210static inline void sysfs_slab_remove(struct kmem_cache *s)
211{
212 kfree(s);
213}
8ff12cfc 214
81819f0f
CL
215#endif
216
84e554e6 217static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
218{
219#ifdef CONFIG_SLUB_STATS
84e554e6 220 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
221#endif
222}
223
81819f0f
CL
224/********************************************************************
225 * Core slab cache functions
226 *******************************************************************/
227
228int slab_is_available(void)
229{
230 return slab_state >= UP;
231}
232
233static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
234{
235#ifdef CONFIG_NUMA
236 return s->node[node];
237#else
238 return &s->local_node;
239#endif
240}
241
6446faa2 242/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
243static inline int check_valid_pointer(struct kmem_cache *s,
244 struct page *page, const void *object)
245{
246 void *base;
247
a973e9dd 248 if (!object)
02cbc874
CL
249 return 1;
250
a973e9dd 251 base = page_address(page);
39b26464 252 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
253 (object - base) % s->size) {
254 return 0;
255 }
256
257 return 1;
258}
259
7656c72b
CL
260static inline void *get_freepointer(struct kmem_cache *s, void *object)
261{
262 return *(void **)(object + s->offset);
263}
264
265static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
266{
267 *(void **)(object + s->offset) = fp;
268}
269
270/* Loop over all objects in a slab */
224a88be
CL
271#define for_each_object(__p, __s, __addr, __objects) \
272 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
273 __p += (__s)->size)
274
275/* Scan freelist */
276#define for_each_free_object(__p, __s, __free) \
a973e9dd 277 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
278
279/* Determine object index from a given position */
280static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
281{
282 return (p - addr) / s->size;
283}
284
834f3d11
CL
285static inline struct kmem_cache_order_objects oo_make(int order,
286 unsigned long size)
287{
288 struct kmem_cache_order_objects x = {
210b5c06 289 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
290 };
291
292 return x;
293}
294
295static inline int oo_order(struct kmem_cache_order_objects x)
296{
210b5c06 297 return x.x >> OO_SHIFT;
834f3d11
CL
298}
299
300static inline int oo_objects(struct kmem_cache_order_objects x)
301{
210b5c06 302 return x.x & OO_MASK;
834f3d11
CL
303}
304
41ecc55b
CL
305#ifdef CONFIG_SLUB_DEBUG
306/*
307 * Debug settings:
308 */
f0630fff
CL
309#ifdef CONFIG_SLUB_DEBUG_ON
310static int slub_debug = DEBUG_DEFAULT_FLAGS;
311#else
41ecc55b 312static int slub_debug;
f0630fff 313#endif
41ecc55b
CL
314
315static char *slub_debug_slabs;
fa5ec8a1 316static int disable_higher_order_debug;
41ecc55b 317
81819f0f
CL
318/*
319 * Object debugging
320 */
321static void print_section(char *text, u8 *addr, unsigned int length)
322{
323 int i, offset;
324 int newline = 1;
325 char ascii[17];
326
327 ascii[16] = 0;
328
329 for (i = 0; i < length; i++) {
330 if (newline) {
24922684 331 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
332 newline = 0;
333 }
06428780 334 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
335 offset = i % 16;
336 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
337 if (offset == 15) {
06428780 338 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
339 newline = 1;
340 }
341 }
342 if (!newline) {
343 i %= 16;
344 while (i < 16) {
06428780 345 printk(KERN_CONT " ");
81819f0f
CL
346 ascii[i] = ' ';
347 i++;
348 }
06428780 349 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
350 }
351}
352
81819f0f
CL
353static struct track *get_track(struct kmem_cache *s, void *object,
354 enum track_item alloc)
355{
356 struct track *p;
357
358 if (s->offset)
359 p = object + s->offset + sizeof(void *);
360 else
361 p = object + s->inuse;
362
363 return p + alloc;
364}
365
366static void set_track(struct kmem_cache *s, void *object,
ce71e27c 367 enum track_item alloc, unsigned long addr)
81819f0f 368{
1a00df4a 369 struct track *p = get_track(s, object, alloc);
81819f0f 370
81819f0f
CL
371 if (addr) {
372 p->addr = addr;
373 p->cpu = smp_processor_id();
88e4ccf2 374 p->pid = current->pid;
81819f0f
CL
375 p->when = jiffies;
376 } else
377 memset(p, 0, sizeof(struct track));
378}
379
81819f0f
CL
380static void init_tracking(struct kmem_cache *s, void *object)
381{
24922684
CL
382 if (!(s->flags & SLAB_STORE_USER))
383 return;
384
ce71e27c
EGM
385 set_track(s, object, TRACK_FREE, 0UL);
386 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
387}
388
389static void print_track(const char *s, struct track *t)
390{
391 if (!t->addr)
392 return;
393
7daf705f 394 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 395 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
396}
397
398static void print_tracking(struct kmem_cache *s, void *object)
399{
400 if (!(s->flags & SLAB_STORE_USER))
401 return;
402
403 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
404 print_track("Freed", get_track(s, object, TRACK_FREE));
405}
406
407static void print_page_info(struct page *page)
408{
39b26464
CL
409 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
410 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
411
412}
413
414static void slab_bug(struct kmem_cache *s, char *fmt, ...)
415{
416 va_list args;
417 char buf[100];
418
419 va_start(args, fmt);
420 vsnprintf(buf, sizeof(buf), fmt, args);
421 va_end(args);
422 printk(KERN_ERR "========================================"
423 "=====================================\n");
424 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
425 printk(KERN_ERR "----------------------------------------"
426 "-------------------------------------\n\n");
81819f0f
CL
427}
428
24922684
CL
429static void slab_fix(struct kmem_cache *s, char *fmt, ...)
430{
431 va_list args;
432 char buf[100];
433
434 va_start(args, fmt);
435 vsnprintf(buf, sizeof(buf), fmt, args);
436 va_end(args);
437 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
438}
439
440static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
441{
442 unsigned int off; /* Offset of last byte */
a973e9dd 443 u8 *addr = page_address(page);
24922684
CL
444
445 print_tracking(s, p);
446
447 print_page_info(page);
448
449 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
450 p, p - addr, get_freepointer(s, p));
451
452 if (p > addr + 16)
453 print_section("Bytes b4", p - 16, 16);
454
0ebd652b 455 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
456
457 if (s->flags & SLAB_RED_ZONE)
458 print_section("Redzone", p + s->objsize,
459 s->inuse - s->objsize);
460
81819f0f
CL
461 if (s->offset)
462 off = s->offset + sizeof(void *);
463 else
464 off = s->inuse;
465
24922684 466 if (s->flags & SLAB_STORE_USER)
81819f0f 467 off += 2 * sizeof(struct track);
81819f0f
CL
468
469 if (off != s->size)
470 /* Beginning of the filler is the free pointer */
24922684
CL
471 print_section("Padding", p + off, s->size - off);
472
473 dump_stack();
81819f0f
CL
474}
475
476static void object_err(struct kmem_cache *s, struct page *page,
477 u8 *object, char *reason)
478{
3dc50637 479 slab_bug(s, "%s", reason);
24922684 480 print_trailer(s, page, object);
81819f0f
CL
481}
482
24922684 483static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
484{
485 va_list args;
486 char buf[100];
487
24922684
CL
488 va_start(args, fmt);
489 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 490 va_end(args);
3dc50637 491 slab_bug(s, "%s", buf);
24922684 492 print_page_info(page);
81819f0f
CL
493 dump_stack();
494}
495
496static void init_object(struct kmem_cache *s, void *object, int active)
497{
498 u8 *p = object;
499
500 if (s->flags & __OBJECT_POISON) {
501 memset(p, POISON_FREE, s->objsize - 1);
06428780 502 p[s->objsize - 1] = POISON_END;
81819f0f
CL
503 }
504
505 if (s->flags & SLAB_RED_ZONE)
506 memset(p + s->objsize,
507 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
508 s->inuse - s->objsize);
509}
510
24922684 511static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
512{
513 while (bytes) {
514 if (*start != (u8)value)
24922684 515 return start;
81819f0f
CL
516 start++;
517 bytes--;
518 }
24922684
CL
519 return NULL;
520}
521
522static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
523 void *from, void *to)
524{
525 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
526 memset(from, data, to - from);
527}
528
529static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
530 u8 *object, char *what,
06428780 531 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
532{
533 u8 *fault;
534 u8 *end;
535
536 fault = check_bytes(start, value, bytes);
537 if (!fault)
538 return 1;
539
540 end = start + bytes;
541 while (end > fault && end[-1] == value)
542 end--;
543
544 slab_bug(s, "%s overwritten", what);
545 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
546 fault, end - 1, fault[0], value);
547 print_trailer(s, page, object);
548
549 restore_bytes(s, what, value, fault, end);
550 return 0;
81819f0f
CL
551}
552
81819f0f
CL
553/*
554 * Object layout:
555 *
556 * object address
557 * Bytes of the object to be managed.
558 * If the freepointer may overlay the object then the free
559 * pointer is the first word of the object.
672bba3a 560 *
81819f0f
CL
561 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
562 * 0xa5 (POISON_END)
563 *
564 * object + s->objsize
565 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
566 * Padding is extended by another word if Redzoning is enabled and
567 * objsize == inuse.
568 *
81819f0f
CL
569 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
570 * 0xcc (RED_ACTIVE) for objects in use.
571 *
572 * object + s->inuse
672bba3a
CL
573 * Meta data starts here.
574 *
81819f0f
CL
575 * A. Free pointer (if we cannot overwrite object on free)
576 * B. Tracking data for SLAB_STORE_USER
672bba3a 577 * C. Padding to reach required alignment boundary or at mininum
6446faa2 578 * one word if debugging is on to be able to detect writes
672bba3a
CL
579 * before the word boundary.
580 *
581 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
582 *
583 * object + s->size
672bba3a 584 * Nothing is used beyond s->size.
81819f0f 585 *
672bba3a
CL
586 * If slabcaches are merged then the objsize and inuse boundaries are mostly
587 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
588 * may be used with merged slabcaches.
589 */
590
81819f0f
CL
591static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
592{
593 unsigned long off = s->inuse; /* The end of info */
594
595 if (s->offset)
596 /* Freepointer is placed after the object. */
597 off += sizeof(void *);
598
599 if (s->flags & SLAB_STORE_USER)
600 /* We also have user information there */
601 off += 2 * sizeof(struct track);
602
603 if (s->size == off)
604 return 1;
605
24922684
CL
606 return check_bytes_and_report(s, page, p, "Object padding",
607 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
608}
609
39b26464 610/* Check the pad bytes at the end of a slab page */
81819f0f
CL
611static int slab_pad_check(struct kmem_cache *s, struct page *page)
612{
24922684
CL
613 u8 *start;
614 u8 *fault;
615 u8 *end;
616 int length;
617 int remainder;
81819f0f
CL
618
619 if (!(s->flags & SLAB_POISON))
620 return 1;
621
a973e9dd 622 start = page_address(page);
834f3d11 623 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
624 end = start + length;
625 remainder = length % s->size;
81819f0f
CL
626 if (!remainder)
627 return 1;
628
39b26464 629 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
630 if (!fault)
631 return 1;
632 while (end > fault && end[-1] == POISON_INUSE)
633 end--;
634
635 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 636 print_section("Padding", end - remainder, remainder);
24922684 637
8a3d271d 638 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 639 return 0;
81819f0f
CL
640}
641
642static int check_object(struct kmem_cache *s, struct page *page,
643 void *object, int active)
644{
645 u8 *p = object;
646 u8 *endobject = object + s->objsize;
647
648 if (s->flags & SLAB_RED_ZONE) {
649 unsigned int red =
650 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
651
24922684
CL
652 if (!check_bytes_and_report(s, page, object, "Redzone",
653 endobject, red, s->inuse - s->objsize))
81819f0f 654 return 0;
81819f0f 655 } else {
3adbefee
IM
656 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
657 check_bytes_and_report(s, page, p, "Alignment padding",
658 endobject, POISON_INUSE, s->inuse - s->objsize);
659 }
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_POISON) {
663 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
664 (!check_bytes_and_report(s, page, p, "Poison", p,
665 POISON_FREE, s->objsize - 1) ||
666 !check_bytes_and_report(s, page, p, "Poison",
06428780 667 p + s->objsize - 1, POISON_END, 1)))
81819f0f 668 return 0;
81819f0f
CL
669 /*
670 * check_pad_bytes cleans up on its own.
671 */
672 check_pad_bytes(s, page, p);
673 }
674
675 if (!s->offset && active)
676 /*
677 * Object and freepointer overlap. Cannot check
678 * freepointer while object is allocated.
679 */
680 return 1;
681
682 /* Check free pointer validity */
683 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
684 object_err(s, page, p, "Freepointer corrupt");
685 /*
9f6c708e 686 * No choice but to zap it and thus lose the remainder
81819f0f 687 * of the free objects in this slab. May cause
672bba3a 688 * another error because the object count is now wrong.
81819f0f 689 */
a973e9dd 690 set_freepointer(s, p, NULL);
81819f0f
CL
691 return 0;
692 }
693 return 1;
694}
695
696static int check_slab(struct kmem_cache *s, struct page *page)
697{
39b26464
CL
698 int maxobj;
699
81819f0f
CL
700 VM_BUG_ON(!irqs_disabled());
701
702 if (!PageSlab(page)) {
24922684 703 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
704 return 0;
705 }
39b26464
CL
706
707 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
708 if (page->objects > maxobj) {
709 slab_err(s, page, "objects %u > max %u",
710 s->name, page->objects, maxobj);
711 return 0;
712 }
713 if (page->inuse > page->objects) {
24922684 714 slab_err(s, page, "inuse %u > max %u",
39b26464 715 s->name, page->inuse, page->objects);
81819f0f
CL
716 return 0;
717 }
718 /* Slab_pad_check fixes things up after itself */
719 slab_pad_check(s, page);
720 return 1;
721}
722
723/*
672bba3a
CL
724 * Determine if a certain object on a page is on the freelist. Must hold the
725 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
726 */
727static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
728{
729 int nr = 0;
730 void *fp = page->freelist;
731 void *object = NULL;
224a88be 732 unsigned long max_objects;
81819f0f 733
39b26464 734 while (fp && nr <= page->objects) {
81819f0f
CL
735 if (fp == search)
736 return 1;
737 if (!check_valid_pointer(s, page, fp)) {
738 if (object) {
739 object_err(s, page, object,
740 "Freechain corrupt");
a973e9dd 741 set_freepointer(s, object, NULL);
81819f0f
CL
742 break;
743 } else {
24922684 744 slab_err(s, page, "Freepointer corrupt");
a973e9dd 745 page->freelist = NULL;
39b26464 746 page->inuse = page->objects;
24922684 747 slab_fix(s, "Freelist cleared");
81819f0f
CL
748 return 0;
749 }
750 break;
751 }
752 object = fp;
753 fp = get_freepointer(s, object);
754 nr++;
755 }
756
224a88be 757 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
758 if (max_objects > MAX_OBJS_PER_PAGE)
759 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
760
761 if (page->objects != max_objects) {
762 slab_err(s, page, "Wrong number of objects. Found %d but "
763 "should be %d", page->objects, max_objects);
764 page->objects = max_objects;
765 slab_fix(s, "Number of objects adjusted.");
766 }
39b26464 767 if (page->inuse != page->objects - nr) {
70d71228 768 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
769 "counted were %d", page->inuse, page->objects - nr);
770 page->inuse = page->objects - nr;
24922684 771 slab_fix(s, "Object count adjusted.");
81819f0f
CL
772 }
773 return search == NULL;
774}
775
0121c619
CL
776static void trace(struct kmem_cache *s, struct page *page, void *object,
777 int alloc)
3ec09742
CL
778{
779 if (s->flags & SLAB_TRACE) {
780 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
781 s->name,
782 alloc ? "alloc" : "free",
783 object, page->inuse,
784 page->freelist);
785
786 if (!alloc)
787 print_section("Object", (void *)object, s->objsize);
788
789 dump_stack();
790 }
791}
792
643b1138 793/*
672bba3a 794 * Tracking of fully allocated slabs for debugging purposes.
643b1138 795 */
e95eed57 796static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 797{
643b1138
CL
798 spin_lock(&n->list_lock);
799 list_add(&page->lru, &n->full);
800 spin_unlock(&n->list_lock);
801}
802
803static void remove_full(struct kmem_cache *s, struct page *page)
804{
805 struct kmem_cache_node *n;
806
807 if (!(s->flags & SLAB_STORE_USER))
808 return;
809
810 n = get_node(s, page_to_nid(page));
811
812 spin_lock(&n->list_lock);
813 list_del(&page->lru);
814 spin_unlock(&n->list_lock);
815}
816
0f389ec6
CL
817/* Tracking of the number of slabs for debugging purposes */
818static inline unsigned long slabs_node(struct kmem_cache *s, int node)
819{
820 struct kmem_cache_node *n = get_node(s, node);
821
822 return atomic_long_read(&n->nr_slabs);
823}
824
26c02cf0
AB
825static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
826{
827 return atomic_long_read(&n->nr_slabs);
828}
829
205ab99d 830static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
831{
832 struct kmem_cache_node *n = get_node(s, node);
833
834 /*
835 * May be called early in order to allocate a slab for the
836 * kmem_cache_node structure. Solve the chicken-egg
837 * dilemma by deferring the increment of the count during
838 * bootstrap (see early_kmem_cache_node_alloc).
839 */
205ab99d 840 if (!NUMA_BUILD || n) {
0f389ec6 841 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
842 atomic_long_add(objects, &n->total_objects);
843 }
0f389ec6 844}
205ab99d 845static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
846{
847 struct kmem_cache_node *n = get_node(s, node);
848
849 atomic_long_dec(&n->nr_slabs);
205ab99d 850 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
851}
852
853/* Object debug checks for alloc/free paths */
3ec09742
CL
854static void setup_object_debug(struct kmem_cache *s, struct page *page,
855 void *object)
856{
857 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
858 return;
859
860 init_object(s, object, 0);
861 init_tracking(s, object);
862}
863
1537066c 864static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 865 void *object, unsigned long addr)
81819f0f
CL
866{
867 if (!check_slab(s, page))
868 goto bad;
869
d692ef6d 870 if (!on_freelist(s, page, object)) {
24922684 871 object_err(s, page, object, "Object already allocated");
70d71228 872 goto bad;
81819f0f
CL
873 }
874
875 if (!check_valid_pointer(s, page, object)) {
876 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 877 goto bad;
81819f0f
CL
878 }
879
d692ef6d 880 if (!check_object(s, page, object, 0))
81819f0f 881 goto bad;
81819f0f 882
3ec09742
CL
883 /* Success perform special debug activities for allocs */
884 if (s->flags & SLAB_STORE_USER)
885 set_track(s, object, TRACK_ALLOC, addr);
886 trace(s, page, object, 1);
887 init_object(s, object, 1);
81819f0f 888 return 1;
3ec09742 889
81819f0f
CL
890bad:
891 if (PageSlab(page)) {
892 /*
893 * If this is a slab page then lets do the best we can
894 * to avoid issues in the future. Marking all objects
672bba3a 895 * as used avoids touching the remaining objects.
81819f0f 896 */
24922684 897 slab_fix(s, "Marking all objects used");
39b26464 898 page->inuse = page->objects;
a973e9dd 899 page->freelist = NULL;
81819f0f
CL
900 }
901 return 0;
902}
903
1537066c
CL
904static noinline int free_debug_processing(struct kmem_cache *s,
905 struct page *page, void *object, unsigned long addr)
81819f0f
CL
906{
907 if (!check_slab(s, page))
908 goto fail;
909
910 if (!check_valid_pointer(s, page, object)) {
70d71228 911 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
912 goto fail;
913 }
914
915 if (on_freelist(s, page, object)) {
24922684 916 object_err(s, page, object, "Object already free");
81819f0f
CL
917 goto fail;
918 }
919
920 if (!check_object(s, page, object, 1))
921 return 0;
922
923 if (unlikely(s != page->slab)) {
3adbefee 924 if (!PageSlab(page)) {
70d71228
CL
925 slab_err(s, page, "Attempt to free object(0x%p) "
926 "outside of slab", object);
3adbefee 927 } else if (!page->slab) {
81819f0f 928 printk(KERN_ERR
70d71228 929 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 930 object);
70d71228 931 dump_stack();
06428780 932 } else
24922684
CL
933 object_err(s, page, object,
934 "page slab pointer corrupt.");
81819f0f
CL
935 goto fail;
936 }
3ec09742
CL
937
938 /* Special debug activities for freeing objects */
8a38082d 939 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
940 remove_full(s, page);
941 if (s->flags & SLAB_STORE_USER)
942 set_track(s, object, TRACK_FREE, addr);
943 trace(s, page, object, 0);
944 init_object(s, object, 0);
81819f0f 945 return 1;
3ec09742 946
81819f0f 947fail:
24922684 948 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
949 return 0;
950}
951
41ecc55b
CL
952static int __init setup_slub_debug(char *str)
953{
f0630fff
CL
954 slub_debug = DEBUG_DEFAULT_FLAGS;
955 if (*str++ != '=' || !*str)
956 /*
957 * No options specified. Switch on full debugging.
958 */
959 goto out;
960
961 if (*str == ',')
962 /*
963 * No options but restriction on slabs. This means full
964 * debugging for slabs matching a pattern.
965 */
966 goto check_slabs;
967
fa5ec8a1
DR
968 if (tolower(*str) == 'o') {
969 /*
970 * Avoid enabling debugging on caches if its minimum order
971 * would increase as a result.
972 */
973 disable_higher_order_debug = 1;
974 goto out;
975 }
976
f0630fff
CL
977 slub_debug = 0;
978 if (*str == '-')
979 /*
980 * Switch off all debugging measures.
981 */
982 goto out;
983
984 /*
985 * Determine which debug features should be switched on
986 */
06428780 987 for (; *str && *str != ','; str++) {
f0630fff
CL
988 switch (tolower(*str)) {
989 case 'f':
990 slub_debug |= SLAB_DEBUG_FREE;
991 break;
992 case 'z':
993 slub_debug |= SLAB_RED_ZONE;
994 break;
995 case 'p':
996 slub_debug |= SLAB_POISON;
997 break;
998 case 'u':
999 slub_debug |= SLAB_STORE_USER;
1000 break;
1001 case 't':
1002 slub_debug |= SLAB_TRACE;
1003 break;
4c13dd3b
DM
1004 case 'a':
1005 slub_debug |= SLAB_FAILSLAB;
1006 break;
f0630fff
CL
1007 default:
1008 printk(KERN_ERR "slub_debug option '%c' "
06428780 1009 "unknown. skipped\n", *str);
f0630fff 1010 }
41ecc55b
CL
1011 }
1012
f0630fff 1013check_slabs:
41ecc55b
CL
1014 if (*str == ',')
1015 slub_debug_slabs = str + 1;
f0630fff 1016out:
41ecc55b
CL
1017 return 1;
1018}
1019
1020__setup("slub_debug", setup_slub_debug);
1021
ba0268a8
CL
1022static unsigned long kmem_cache_flags(unsigned long objsize,
1023 unsigned long flags, const char *name,
51cc5068 1024 void (*ctor)(void *))
41ecc55b
CL
1025{
1026 /*
e153362a 1027 * Enable debugging if selected on the kernel commandline.
41ecc55b 1028 */
e153362a 1029 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1030 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1031 flags |= slub_debug;
ba0268a8
CL
1032
1033 return flags;
41ecc55b
CL
1034}
1035#else
3ec09742
CL
1036static inline void setup_object_debug(struct kmem_cache *s,
1037 struct page *page, void *object) {}
41ecc55b 1038
3ec09742 1039static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1040 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1041
3ec09742 1042static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1043 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1044
41ecc55b
CL
1045static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 { return 1; }
1047static inline int check_object(struct kmem_cache *s, struct page *page,
1048 void *object, int active) { return 1; }
3ec09742 1049static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1050static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 unsigned long flags, const char *name,
51cc5068 1052 void (*ctor)(void *))
ba0268a8
CL
1053{
1054 return flags;
1055}
41ecc55b 1056#define slub_debug 0
0f389ec6 1057
fdaa45e9
IM
1058#define disable_higher_order_debug 0
1059
0f389ec6
CL
1060static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1061 { return 0; }
26c02cf0
AB
1062static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1063 { return 0; }
205ab99d
CL
1064static inline void inc_slabs_node(struct kmem_cache *s, int node,
1065 int objects) {}
1066static inline void dec_slabs_node(struct kmem_cache *s, int node,
1067 int objects) {}
41ecc55b 1068#endif
205ab99d 1069
81819f0f
CL
1070/*
1071 * Slab allocation and freeing
1072 */
65c3376a
CL
1073static inline struct page *alloc_slab_page(gfp_t flags, int node,
1074 struct kmem_cache_order_objects oo)
1075{
1076 int order = oo_order(oo);
1077
b1eeab67
VN
1078 flags |= __GFP_NOTRACK;
1079
2154a336 1080 if (node == NUMA_NO_NODE)
65c3376a
CL
1081 return alloc_pages(flags, order);
1082 else
6b65aaf3 1083 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1084}
1085
81819f0f
CL
1086static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1087{
06428780 1088 struct page *page;
834f3d11 1089 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1090 gfp_t alloc_gfp;
81819f0f 1091
b7a49f0d 1092 flags |= s->allocflags;
e12ba74d 1093
ba52270d
PE
1094 /*
1095 * Let the initial higher-order allocation fail under memory pressure
1096 * so we fall-back to the minimum order allocation.
1097 */
1098 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1099
1100 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1101 if (unlikely(!page)) {
1102 oo = s->min;
1103 /*
1104 * Allocation may have failed due to fragmentation.
1105 * Try a lower order alloc if possible
1106 */
1107 page = alloc_slab_page(flags, node, oo);
1108 if (!page)
1109 return NULL;
81819f0f 1110
84e554e6 1111 stat(s, ORDER_FALLBACK);
65c3376a 1112 }
5a896d9e
VN
1113
1114 if (kmemcheck_enabled
5086c389 1115 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1116 int pages = 1 << oo_order(oo);
1117
1118 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1119
1120 /*
1121 * Objects from caches that have a constructor don't get
1122 * cleared when they're allocated, so we need to do it here.
1123 */
1124 if (s->ctor)
1125 kmemcheck_mark_uninitialized_pages(page, pages);
1126 else
1127 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1128 }
1129
834f3d11 1130 page->objects = oo_objects(oo);
81819f0f
CL
1131 mod_zone_page_state(page_zone(page),
1132 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1133 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1134 1 << oo_order(oo));
81819f0f
CL
1135
1136 return page;
1137}
1138
1139static void setup_object(struct kmem_cache *s, struct page *page,
1140 void *object)
1141{
3ec09742 1142 setup_object_debug(s, page, object);
4f104934 1143 if (unlikely(s->ctor))
51cc5068 1144 s->ctor(object);
81819f0f
CL
1145}
1146
1147static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1148{
1149 struct page *page;
81819f0f 1150 void *start;
81819f0f
CL
1151 void *last;
1152 void *p;
1153
6cb06229 1154 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1155
6cb06229
CL
1156 page = allocate_slab(s,
1157 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1158 if (!page)
1159 goto out;
1160
205ab99d 1161 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1162 page->slab = s;
1163 page->flags |= 1 << PG_slab;
81819f0f
CL
1164
1165 start = page_address(page);
81819f0f
CL
1166
1167 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1168 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1169
1170 last = start;
224a88be 1171 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1172 setup_object(s, page, last);
1173 set_freepointer(s, last, p);
1174 last = p;
1175 }
1176 setup_object(s, page, last);
a973e9dd 1177 set_freepointer(s, last, NULL);
81819f0f
CL
1178
1179 page->freelist = start;
1180 page->inuse = 0;
1181out:
81819f0f
CL
1182 return page;
1183}
1184
1185static void __free_slab(struct kmem_cache *s, struct page *page)
1186{
834f3d11
CL
1187 int order = compound_order(page);
1188 int pages = 1 << order;
81819f0f 1189
af537b0a 1190 if (kmem_cache_debug(s)) {
81819f0f
CL
1191 void *p;
1192
1193 slab_pad_check(s, page);
224a88be
CL
1194 for_each_object(p, s, page_address(page),
1195 page->objects)
81819f0f 1196 check_object(s, page, p, 0);
81819f0f
CL
1197 }
1198
b1eeab67 1199 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1200
81819f0f
CL
1201 mod_zone_page_state(page_zone(page),
1202 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1203 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1204 -pages);
81819f0f 1205
49bd5221
CL
1206 __ClearPageSlab(page);
1207 reset_page_mapcount(page);
1eb5ac64
NP
1208 if (current->reclaim_state)
1209 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1210 __free_pages(page, order);
81819f0f
CL
1211}
1212
1213static void rcu_free_slab(struct rcu_head *h)
1214{
1215 struct page *page;
1216
1217 page = container_of((struct list_head *)h, struct page, lru);
1218 __free_slab(page->slab, page);
1219}
1220
1221static void free_slab(struct kmem_cache *s, struct page *page)
1222{
1223 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1224 /*
1225 * RCU free overloads the RCU head over the LRU
1226 */
1227 struct rcu_head *head = (void *)&page->lru;
1228
1229 call_rcu(head, rcu_free_slab);
1230 } else
1231 __free_slab(s, page);
1232}
1233
1234static void discard_slab(struct kmem_cache *s, struct page *page)
1235{
205ab99d 1236 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1237 free_slab(s, page);
1238}
1239
1240/*
1241 * Per slab locking using the pagelock
1242 */
1243static __always_inline void slab_lock(struct page *page)
1244{
1245 bit_spin_lock(PG_locked, &page->flags);
1246}
1247
1248static __always_inline void slab_unlock(struct page *page)
1249{
a76d3546 1250 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1251}
1252
1253static __always_inline int slab_trylock(struct page *page)
1254{
1255 int rc = 1;
1256
1257 rc = bit_spin_trylock(PG_locked, &page->flags);
1258 return rc;
1259}
1260
1261/*
1262 * Management of partially allocated slabs
1263 */
7c2e132c
CL
1264static void add_partial(struct kmem_cache_node *n,
1265 struct page *page, int tail)
81819f0f 1266{
e95eed57
CL
1267 spin_lock(&n->list_lock);
1268 n->nr_partial++;
7c2e132c
CL
1269 if (tail)
1270 list_add_tail(&page->lru, &n->partial);
1271 else
1272 list_add(&page->lru, &n->partial);
81819f0f
CL
1273 spin_unlock(&n->list_lock);
1274}
1275
0121c619 1276static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1277{
1278 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1279
1280 spin_lock(&n->list_lock);
1281 list_del(&page->lru);
1282 n->nr_partial--;
1283 spin_unlock(&n->list_lock);
1284}
1285
1286/*
672bba3a 1287 * Lock slab and remove from the partial list.
81819f0f 1288 *
672bba3a 1289 * Must hold list_lock.
81819f0f 1290 */
0121c619
CL
1291static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1292 struct page *page)
81819f0f
CL
1293{
1294 if (slab_trylock(page)) {
1295 list_del(&page->lru);
1296 n->nr_partial--;
8a38082d 1297 __SetPageSlubFrozen(page);
81819f0f
CL
1298 return 1;
1299 }
1300 return 0;
1301}
1302
1303/*
672bba3a 1304 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1305 */
1306static struct page *get_partial_node(struct kmem_cache_node *n)
1307{
1308 struct page *page;
1309
1310 /*
1311 * Racy check. If we mistakenly see no partial slabs then we
1312 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1313 * partial slab and there is none available then get_partials()
1314 * will return NULL.
81819f0f
CL
1315 */
1316 if (!n || !n->nr_partial)
1317 return NULL;
1318
1319 spin_lock(&n->list_lock);
1320 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1321 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1322 goto out;
1323 page = NULL;
1324out:
1325 spin_unlock(&n->list_lock);
1326 return page;
1327}
1328
1329/*
672bba3a 1330 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1331 */
1332static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1333{
1334#ifdef CONFIG_NUMA
1335 struct zonelist *zonelist;
dd1a239f 1336 struct zoneref *z;
54a6eb5c
MG
1337 struct zone *zone;
1338 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1339 struct page *page;
1340
1341 /*
672bba3a
CL
1342 * The defrag ratio allows a configuration of the tradeoffs between
1343 * inter node defragmentation and node local allocations. A lower
1344 * defrag_ratio increases the tendency to do local allocations
1345 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1346 *
672bba3a
CL
1347 * If the defrag_ratio is set to 0 then kmalloc() always
1348 * returns node local objects. If the ratio is higher then kmalloc()
1349 * may return off node objects because partial slabs are obtained
1350 * from other nodes and filled up.
81819f0f 1351 *
6446faa2 1352 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1353 * defrag_ratio = 1000) then every (well almost) allocation will
1354 * first attempt to defrag slab caches on other nodes. This means
1355 * scanning over all nodes to look for partial slabs which may be
1356 * expensive if we do it every time we are trying to find a slab
1357 * with available objects.
81819f0f 1358 */
9824601e
CL
1359 if (!s->remote_node_defrag_ratio ||
1360 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1361 return NULL;
1362
c0ff7453 1363 get_mems_allowed();
0e88460d 1364 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1365 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1366 struct kmem_cache_node *n;
1367
54a6eb5c 1368 n = get_node(s, zone_to_nid(zone));
81819f0f 1369
54a6eb5c 1370 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1371 n->nr_partial > s->min_partial) {
81819f0f 1372 page = get_partial_node(n);
c0ff7453
MX
1373 if (page) {
1374 put_mems_allowed();
81819f0f 1375 return page;
c0ff7453 1376 }
81819f0f
CL
1377 }
1378 }
c0ff7453 1379 put_mems_allowed();
81819f0f
CL
1380#endif
1381 return NULL;
1382}
1383
1384/*
1385 * Get a partial page, lock it and return it.
1386 */
1387static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1388{
1389 struct page *page;
2154a336 1390 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1391
1392 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1393 if (page || node != -1)
81819f0f
CL
1394 return page;
1395
1396 return get_any_partial(s, flags);
1397}
1398
1399/*
1400 * Move a page back to the lists.
1401 *
1402 * Must be called with the slab lock held.
1403 *
1404 * On exit the slab lock will have been dropped.
1405 */
7c2e132c 1406static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1407{
e95eed57
CL
1408 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1409
8a38082d 1410 __ClearPageSlubFrozen(page);
81819f0f 1411 if (page->inuse) {
e95eed57 1412
a973e9dd 1413 if (page->freelist) {
7c2e132c 1414 add_partial(n, page, tail);
84e554e6 1415 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1416 } else {
84e554e6 1417 stat(s, DEACTIVATE_FULL);
af537b0a 1418 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1419 add_full(n, page);
1420 }
81819f0f
CL
1421 slab_unlock(page);
1422 } else {
84e554e6 1423 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1424 if (n->nr_partial < s->min_partial) {
e95eed57 1425 /*
672bba3a
CL
1426 * Adding an empty slab to the partial slabs in order
1427 * to avoid page allocator overhead. This slab needs
1428 * to come after the other slabs with objects in
6446faa2
CL
1429 * so that the others get filled first. That way the
1430 * size of the partial list stays small.
1431 *
0121c619
CL
1432 * kmem_cache_shrink can reclaim any empty slabs from
1433 * the partial list.
e95eed57 1434 */
7c2e132c 1435 add_partial(n, page, 1);
e95eed57
CL
1436 slab_unlock(page);
1437 } else {
1438 slab_unlock(page);
84e554e6 1439 stat(s, FREE_SLAB);
e95eed57
CL
1440 discard_slab(s, page);
1441 }
81819f0f
CL
1442 }
1443}
1444
1445/*
1446 * Remove the cpu slab
1447 */
dfb4f096 1448static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1449{
dfb4f096 1450 struct page *page = c->page;
7c2e132c 1451 int tail = 1;
8ff12cfc 1452
b773ad73 1453 if (page->freelist)
84e554e6 1454 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1455 /*
6446faa2 1456 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1457 * because both freelists are empty. So this is unlikely
1458 * to occur.
1459 */
a973e9dd 1460 while (unlikely(c->freelist)) {
894b8788
CL
1461 void **object;
1462
7c2e132c
CL
1463 tail = 0; /* Hot objects. Put the slab first */
1464
894b8788 1465 /* Retrieve object from cpu_freelist */
dfb4f096 1466 object = c->freelist;
ff12059e 1467 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1468
1469 /* And put onto the regular freelist */
ff12059e 1470 set_freepointer(s, object, page->freelist);
894b8788
CL
1471 page->freelist = object;
1472 page->inuse--;
1473 }
dfb4f096 1474 c->page = NULL;
7c2e132c 1475 unfreeze_slab(s, page, tail);
81819f0f
CL
1476}
1477
dfb4f096 1478static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1479{
84e554e6 1480 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1481 slab_lock(c->page);
1482 deactivate_slab(s, c);
81819f0f
CL
1483}
1484
1485/*
1486 * Flush cpu slab.
6446faa2 1487 *
81819f0f
CL
1488 * Called from IPI handler with interrupts disabled.
1489 */
0c710013 1490static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1491{
9dfc6e68 1492 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1493
dfb4f096
CL
1494 if (likely(c && c->page))
1495 flush_slab(s, c);
81819f0f
CL
1496}
1497
1498static void flush_cpu_slab(void *d)
1499{
1500 struct kmem_cache *s = d;
81819f0f 1501
dfb4f096 1502 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1503}
1504
1505static void flush_all(struct kmem_cache *s)
1506{
15c8b6c1 1507 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1508}
1509
dfb4f096
CL
1510/*
1511 * Check if the objects in a per cpu structure fit numa
1512 * locality expectations.
1513 */
1514static inline int node_match(struct kmem_cache_cpu *c, int node)
1515{
1516#ifdef CONFIG_NUMA
2154a336 1517 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1518 return 0;
1519#endif
1520 return 1;
1521}
1522
781b2ba6
PE
1523static int count_free(struct page *page)
1524{
1525 return page->objects - page->inuse;
1526}
1527
1528static unsigned long count_partial(struct kmem_cache_node *n,
1529 int (*get_count)(struct page *))
1530{
1531 unsigned long flags;
1532 unsigned long x = 0;
1533 struct page *page;
1534
1535 spin_lock_irqsave(&n->list_lock, flags);
1536 list_for_each_entry(page, &n->partial, lru)
1537 x += get_count(page);
1538 spin_unlock_irqrestore(&n->list_lock, flags);
1539 return x;
1540}
1541
26c02cf0
AB
1542static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1543{
1544#ifdef CONFIG_SLUB_DEBUG
1545 return atomic_long_read(&n->total_objects);
1546#else
1547 return 0;
1548#endif
1549}
1550
781b2ba6
PE
1551static noinline void
1552slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1553{
1554 int node;
1555
1556 printk(KERN_WARNING
1557 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1558 nid, gfpflags);
1559 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1560 "default order: %d, min order: %d\n", s->name, s->objsize,
1561 s->size, oo_order(s->oo), oo_order(s->min));
1562
fa5ec8a1
DR
1563 if (oo_order(s->min) > get_order(s->objsize))
1564 printk(KERN_WARNING " %s debugging increased min order, use "
1565 "slub_debug=O to disable.\n", s->name);
1566
781b2ba6
PE
1567 for_each_online_node(node) {
1568 struct kmem_cache_node *n = get_node(s, node);
1569 unsigned long nr_slabs;
1570 unsigned long nr_objs;
1571 unsigned long nr_free;
1572
1573 if (!n)
1574 continue;
1575
26c02cf0
AB
1576 nr_free = count_partial(n, count_free);
1577 nr_slabs = node_nr_slabs(n);
1578 nr_objs = node_nr_objs(n);
781b2ba6
PE
1579
1580 printk(KERN_WARNING
1581 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1582 node, nr_slabs, nr_objs, nr_free);
1583 }
1584}
1585
81819f0f 1586/*
894b8788
CL
1587 * Slow path. The lockless freelist is empty or we need to perform
1588 * debugging duties.
1589 *
1590 * Interrupts are disabled.
81819f0f 1591 *
894b8788
CL
1592 * Processing is still very fast if new objects have been freed to the
1593 * regular freelist. In that case we simply take over the regular freelist
1594 * as the lockless freelist and zap the regular freelist.
81819f0f 1595 *
894b8788
CL
1596 * If that is not working then we fall back to the partial lists. We take the
1597 * first element of the freelist as the object to allocate now and move the
1598 * rest of the freelist to the lockless freelist.
81819f0f 1599 *
894b8788 1600 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1601 * we need to allocate a new slab. This is the slowest path since it involves
1602 * a call to the page allocator and the setup of a new slab.
81819f0f 1603 */
ce71e27c
EGM
1604static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1605 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1606{
81819f0f 1607 void **object;
dfb4f096 1608 struct page *new;
81819f0f 1609
e72e9c23
LT
1610 /* We handle __GFP_ZERO in the caller */
1611 gfpflags &= ~__GFP_ZERO;
1612
dfb4f096 1613 if (!c->page)
81819f0f
CL
1614 goto new_slab;
1615
dfb4f096
CL
1616 slab_lock(c->page);
1617 if (unlikely(!node_match(c, node)))
81819f0f 1618 goto another_slab;
6446faa2 1619
84e554e6 1620 stat(s, ALLOC_REFILL);
6446faa2 1621
894b8788 1622load_freelist:
dfb4f096 1623 object = c->page->freelist;
a973e9dd 1624 if (unlikely(!object))
81819f0f 1625 goto another_slab;
af537b0a 1626 if (kmem_cache_debug(s))
81819f0f
CL
1627 goto debug;
1628
ff12059e 1629 c->freelist = get_freepointer(s, object);
39b26464 1630 c->page->inuse = c->page->objects;
a973e9dd 1631 c->page->freelist = NULL;
dfb4f096 1632 c->node = page_to_nid(c->page);
1f84260c 1633unlock_out:
dfb4f096 1634 slab_unlock(c->page);
84e554e6 1635 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1636 return object;
1637
1638another_slab:
dfb4f096 1639 deactivate_slab(s, c);
81819f0f
CL
1640
1641new_slab:
dfb4f096
CL
1642 new = get_partial(s, gfpflags, node);
1643 if (new) {
1644 c->page = new;
84e554e6 1645 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1646 goto load_freelist;
81819f0f
CL
1647 }
1648
b811c202
CL
1649 if (gfpflags & __GFP_WAIT)
1650 local_irq_enable();
1651
dfb4f096 1652 new = new_slab(s, gfpflags, node);
b811c202
CL
1653
1654 if (gfpflags & __GFP_WAIT)
1655 local_irq_disable();
1656
dfb4f096 1657 if (new) {
9dfc6e68 1658 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1659 stat(s, ALLOC_SLAB);
05aa3450 1660 if (c->page)
dfb4f096 1661 flush_slab(s, c);
dfb4f096 1662 slab_lock(new);
8a38082d 1663 __SetPageSlubFrozen(new);
dfb4f096 1664 c->page = new;
4b6f0750 1665 goto load_freelist;
81819f0f 1666 }
95f85989
PE
1667 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1668 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1669 return NULL;
81819f0f 1670debug:
dfb4f096 1671 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1672 goto another_slab;
894b8788 1673
dfb4f096 1674 c->page->inuse++;
ff12059e 1675 c->page->freelist = get_freepointer(s, object);
ee3c72a1 1676 c->node = -1;
1f84260c 1677 goto unlock_out;
894b8788
CL
1678}
1679
1680/*
1681 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1682 * have the fastpath folded into their functions. So no function call
1683 * overhead for requests that can be satisfied on the fastpath.
1684 *
1685 * The fastpath works by first checking if the lockless freelist can be used.
1686 * If not then __slab_alloc is called for slow processing.
1687 *
1688 * Otherwise we can simply pick the next object from the lockless free list.
1689 */
06428780 1690static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1691 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1692{
894b8788 1693 void **object;
dfb4f096 1694 struct kmem_cache_cpu *c;
1f84260c
CL
1695 unsigned long flags;
1696
dcce284a 1697 gfpflags &= gfp_allowed_mask;
7e85ee0c 1698
cf40bd16 1699 lockdep_trace_alloc(gfpflags);
89124d70 1700 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1701
4c13dd3b 1702 if (should_failslab(s->objsize, gfpflags, s->flags))
773ff60e 1703 return NULL;
1f84260c 1704
894b8788 1705 local_irq_save(flags);
9dfc6e68
CL
1706 c = __this_cpu_ptr(s->cpu_slab);
1707 object = c->freelist;
9dfc6e68 1708 if (unlikely(!object || !node_match(c, node)))
894b8788 1709
dfb4f096 1710 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1711
1712 else {
ff12059e 1713 c->freelist = get_freepointer(s, object);
84e554e6 1714 stat(s, ALLOC_FASTPATH);
894b8788
CL
1715 }
1716 local_irq_restore(flags);
d07dbea4 1717
74e2134f 1718 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1719 memset(object, 0, s->objsize);
d07dbea4 1720
ff12059e
CL
1721 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1722 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
5a896d9e 1723
894b8788 1724 return object;
81819f0f
CL
1725}
1726
1727void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1728{
2154a336 1729 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1730
ca2b84cb 1731 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1732
1733 return ret;
81819f0f
CL
1734}
1735EXPORT_SYMBOL(kmem_cache_alloc);
1736
0f24f128 1737#ifdef CONFIG_TRACING
5b882be4
EGM
1738void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1739{
2154a336 1740 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4
EGM
1741}
1742EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1743#endif
1744
81819f0f
CL
1745#ifdef CONFIG_NUMA
1746void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1747{
5b882be4
EGM
1748 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1749
ca2b84cb
EGM
1750 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1751 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1752
1753 return ret;
81819f0f
CL
1754}
1755EXPORT_SYMBOL(kmem_cache_alloc_node);
1756#endif
1757
0f24f128 1758#ifdef CONFIG_TRACING
5b882be4
EGM
1759void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1760 gfp_t gfpflags,
1761 int node)
1762{
1763 return slab_alloc(s, gfpflags, node, _RET_IP_);
1764}
1765EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1766#endif
1767
81819f0f 1768/*
894b8788
CL
1769 * Slow patch handling. This may still be called frequently since objects
1770 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1771 *
894b8788
CL
1772 * So we still attempt to reduce cache line usage. Just take the slab
1773 * lock and free the item. If there is no additional partial page
1774 * handling required then we can return immediately.
81819f0f 1775 */
894b8788 1776static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1777 void *x, unsigned long addr)
81819f0f
CL
1778{
1779 void *prior;
1780 void **object = (void *)x;
81819f0f 1781
84e554e6 1782 stat(s, FREE_SLOWPATH);
81819f0f
CL
1783 slab_lock(page);
1784
af537b0a 1785 if (kmem_cache_debug(s))
81819f0f 1786 goto debug;
6446faa2 1787
81819f0f 1788checks_ok:
ff12059e
CL
1789 prior = page->freelist;
1790 set_freepointer(s, object, prior);
81819f0f
CL
1791 page->freelist = object;
1792 page->inuse--;
1793
8a38082d 1794 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1795 stat(s, FREE_FROZEN);
81819f0f 1796 goto out_unlock;
8ff12cfc 1797 }
81819f0f
CL
1798
1799 if (unlikely(!page->inuse))
1800 goto slab_empty;
1801
1802 /*
6446faa2 1803 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1804 * then add it.
1805 */
a973e9dd 1806 if (unlikely(!prior)) {
7c2e132c 1807 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1808 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1809 }
81819f0f
CL
1810
1811out_unlock:
1812 slab_unlock(page);
81819f0f
CL
1813 return;
1814
1815slab_empty:
a973e9dd 1816 if (prior) {
81819f0f 1817 /*
672bba3a 1818 * Slab still on the partial list.
81819f0f
CL
1819 */
1820 remove_partial(s, page);
84e554e6 1821 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1822 }
81819f0f 1823 slab_unlock(page);
84e554e6 1824 stat(s, FREE_SLAB);
81819f0f 1825 discard_slab(s, page);
81819f0f
CL
1826 return;
1827
1828debug:
3ec09742 1829 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1830 goto out_unlock;
77c5e2d0 1831 goto checks_ok;
81819f0f
CL
1832}
1833
894b8788
CL
1834/*
1835 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1836 * can perform fastpath freeing without additional function calls.
1837 *
1838 * The fastpath is only possible if we are freeing to the current cpu slab
1839 * of this processor. This typically the case if we have just allocated
1840 * the item before.
1841 *
1842 * If fastpath is not possible then fall back to __slab_free where we deal
1843 * with all sorts of special processing.
1844 */
06428780 1845static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1846 struct page *page, void *x, unsigned long addr)
894b8788
CL
1847{
1848 void **object = (void *)x;
dfb4f096 1849 struct kmem_cache_cpu *c;
1f84260c
CL
1850 unsigned long flags;
1851
06f22f13 1852 kmemleak_free_recursive(x, s->flags);
894b8788 1853 local_irq_save(flags);
9dfc6e68 1854 c = __this_cpu_ptr(s->cpu_slab);
ff12059e
CL
1855 kmemcheck_slab_free(s, object, s->objsize);
1856 debug_check_no_locks_freed(object, s->objsize);
3ac7fe5a 1857 if (!(s->flags & SLAB_DEBUG_OBJECTS))
ff12059e 1858 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1859 if (likely(page == c->page && c->node >= 0)) {
ff12059e 1860 set_freepointer(s, object, c->freelist);
dfb4f096 1861 c->freelist = object;
84e554e6 1862 stat(s, FREE_FASTPATH);
894b8788 1863 } else
ff12059e 1864 __slab_free(s, page, x, addr);
894b8788
CL
1865
1866 local_irq_restore(flags);
1867}
1868
81819f0f
CL
1869void kmem_cache_free(struct kmem_cache *s, void *x)
1870{
77c5e2d0 1871 struct page *page;
81819f0f 1872
b49af68f 1873 page = virt_to_head_page(x);
81819f0f 1874
ce71e27c 1875 slab_free(s, page, x, _RET_IP_);
5b882be4 1876
ca2b84cb 1877 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1878}
1879EXPORT_SYMBOL(kmem_cache_free);
1880
e9beef18 1881/* Figure out on which slab page the object resides */
81819f0f
CL
1882static struct page *get_object_page(const void *x)
1883{
b49af68f 1884 struct page *page = virt_to_head_page(x);
81819f0f
CL
1885
1886 if (!PageSlab(page))
1887 return NULL;
1888
1889 return page;
1890}
1891
1892/*
672bba3a
CL
1893 * Object placement in a slab is made very easy because we always start at
1894 * offset 0. If we tune the size of the object to the alignment then we can
1895 * get the required alignment by putting one properly sized object after
1896 * another.
81819f0f
CL
1897 *
1898 * Notice that the allocation order determines the sizes of the per cpu
1899 * caches. Each processor has always one slab available for allocations.
1900 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1901 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1902 * locking overhead.
81819f0f
CL
1903 */
1904
1905/*
1906 * Mininum / Maximum order of slab pages. This influences locking overhead
1907 * and slab fragmentation. A higher order reduces the number of partial slabs
1908 * and increases the number of allocations possible without having to
1909 * take the list_lock.
1910 */
1911static int slub_min_order;
114e9e89 1912static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1913static int slub_min_objects;
81819f0f
CL
1914
1915/*
1916 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1917 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1918 */
1919static int slub_nomerge;
1920
81819f0f
CL
1921/*
1922 * Calculate the order of allocation given an slab object size.
1923 *
672bba3a
CL
1924 * The order of allocation has significant impact on performance and other
1925 * system components. Generally order 0 allocations should be preferred since
1926 * order 0 does not cause fragmentation in the page allocator. Larger objects
1927 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1928 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1929 * would be wasted.
1930 *
1931 * In order to reach satisfactory performance we must ensure that a minimum
1932 * number of objects is in one slab. Otherwise we may generate too much
1933 * activity on the partial lists which requires taking the list_lock. This is
1934 * less a concern for large slabs though which are rarely used.
81819f0f 1935 *
672bba3a
CL
1936 * slub_max_order specifies the order where we begin to stop considering the
1937 * number of objects in a slab as critical. If we reach slub_max_order then
1938 * we try to keep the page order as low as possible. So we accept more waste
1939 * of space in favor of a small page order.
81819f0f 1940 *
672bba3a
CL
1941 * Higher order allocations also allow the placement of more objects in a
1942 * slab and thereby reduce object handling overhead. If the user has
1943 * requested a higher mininum order then we start with that one instead of
1944 * the smallest order which will fit the object.
81819f0f 1945 */
5e6d444e
CL
1946static inline int slab_order(int size, int min_objects,
1947 int max_order, int fract_leftover)
81819f0f
CL
1948{
1949 int order;
1950 int rem;
6300ea75 1951 int min_order = slub_min_order;
81819f0f 1952
210b5c06
CG
1953 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1954 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1955
6300ea75 1956 for (order = max(min_order,
5e6d444e
CL
1957 fls(min_objects * size - 1) - PAGE_SHIFT);
1958 order <= max_order; order++) {
81819f0f 1959
5e6d444e 1960 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1961
5e6d444e 1962 if (slab_size < min_objects * size)
81819f0f
CL
1963 continue;
1964
1965 rem = slab_size % size;
1966
5e6d444e 1967 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1968 break;
1969
1970 }
672bba3a 1971
81819f0f
CL
1972 return order;
1973}
1974
5e6d444e
CL
1975static inline int calculate_order(int size)
1976{
1977 int order;
1978 int min_objects;
1979 int fraction;
e8120ff1 1980 int max_objects;
5e6d444e
CL
1981
1982 /*
1983 * Attempt to find best configuration for a slab. This
1984 * works by first attempting to generate a layout with
1985 * the best configuration and backing off gradually.
1986 *
1987 * First we reduce the acceptable waste in a slab. Then
1988 * we reduce the minimum objects required in a slab.
1989 */
1990 min_objects = slub_min_objects;
9b2cd506
CL
1991 if (!min_objects)
1992 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1993 max_objects = (PAGE_SIZE << slub_max_order)/size;
1994 min_objects = min(min_objects, max_objects);
1995
5e6d444e 1996 while (min_objects > 1) {
c124f5b5 1997 fraction = 16;
5e6d444e
CL
1998 while (fraction >= 4) {
1999 order = slab_order(size, min_objects,
2000 slub_max_order, fraction);
2001 if (order <= slub_max_order)
2002 return order;
2003 fraction /= 2;
2004 }
5086c389 2005 min_objects--;
5e6d444e
CL
2006 }
2007
2008 /*
2009 * We were unable to place multiple objects in a slab. Now
2010 * lets see if we can place a single object there.
2011 */
2012 order = slab_order(size, 1, slub_max_order, 1);
2013 if (order <= slub_max_order)
2014 return order;
2015
2016 /*
2017 * Doh this slab cannot be placed using slub_max_order.
2018 */
2019 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2020 if (order < MAX_ORDER)
5e6d444e
CL
2021 return order;
2022 return -ENOSYS;
2023}
2024
81819f0f 2025/*
672bba3a 2026 * Figure out what the alignment of the objects will be.
81819f0f
CL
2027 */
2028static unsigned long calculate_alignment(unsigned long flags,
2029 unsigned long align, unsigned long size)
2030{
2031 /*
6446faa2
CL
2032 * If the user wants hardware cache aligned objects then follow that
2033 * suggestion if the object is sufficiently large.
81819f0f 2034 *
6446faa2
CL
2035 * The hardware cache alignment cannot override the specified
2036 * alignment though. If that is greater then use it.
81819f0f 2037 */
b6210386
NP
2038 if (flags & SLAB_HWCACHE_ALIGN) {
2039 unsigned long ralign = cache_line_size();
2040 while (size <= ralign / 2)
2041 ralign /= 2;
2042 align = max(align, ralign);
2043 }
81819f0f
CL
2044
2045 if (align < ARCH_SLAB_MINALIGN)
b6210386 2046 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2047
2048 return ALIGN(align, sizeof(void *));
2049}
2050
5595cffc
PE
2051static void
2052init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2053{
2054 n->nr_partial = 0;
81819f0f
CL
2055 spin_lock_init(&n->list_lock);
2056 INIT_LIST_HEAD(&n->partial);
8ab1372f 2057#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2058 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2059 atomic_long_set(&n->total_objects, 0);
643b1138 2060 INIT_LIST_HEAD(&n->full);
8ab1372f 2061#endif
81819f0f
CL
2062}
2063
55136592 2064static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2065{
6c182dc0
CL
2066 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2067 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2068
6c182dc0 2069 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2070
6c182dc0 2071 return s->cpu_slab != NULL;
4c93c355 2072}
4c93c355 2073
81819f0f 2074#ifdef CONFIG_NUMA
51df1142
CL
2075static struct kmem_cache *kmem_cache_node;
2076
81819f0f
CL
2077/*
2078 * No kmalloc_node yet so do it by hand. We know that this is the first
2079 * slab on the node for this slabcache. There are no concurrent accesses
2080 * possible.
2081 *
2082 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2083 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2084 * memory on a fresh node that has no slab structures yet.
81819f0f 2085 */
55136592 2086static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2087{
2088 struct page *page;
2089 struct kmem_cache_node *n;
ba84c73c 2090 unsigned long flags;
81819f0f 2091
51df1142 2092 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2093
51df1142 2094 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2095
2096 BUG_ON(!page);
a2f92ee7
CL
2097 if (page_to_nid(page) != node) {
2098 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2099 "node %d\n", node);
2100 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2101 "in order to be able to continue\n");
2102 }
2103
81819f0f
CL
2104 n = page->freelist;
2105 BUG_ON(!n);
51df1142 2106 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2107 page->inuse++;
51df1142 2108 kmem_cache_node->node[node] = n;
8ab1372f 2109#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
2110 init_object(kmem_cache_node, n, 1);
2111 init_tracking(kmem_cache_node, n);
8ab1372f 2112#endif
51df1142
CL
2113 init_kmem_cache_node(n, kmem_cache_node);
2114 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2115
ba84c73c 2116 /*
2117 * lockdep requires consistent irq usage for each lock
2118 * so even though there cannot be a race this early in
2119 * the boot sequence, we still disable irqs.
2120 */
2121 local_irq_save(flags);
7c2e132c 2122 add_partial(n, page, 0);
ba84c73c 2123 local_irq_restore(flags);
81819f0f
CL
2124}
2125
2126static void free_kmem_cache_nodes(struct kmem_cache *s)
2127{
2128 int node;
2129
f64dc58c 2130 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2131 struct kmem_cache_node *n = s->node[node];
51df1142 2132
73367bd8 2133 if (n)
51df1142
CL
2134 kmem_cache_free(kmem_cache_node, n);
2135
81819f0f
CL
2136 s->node[node] = NULL;
2137 }
2138}
2139
55136592 2140static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2141{
2142 int node;
81819f0f 2143
f64dc58c 2144 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2145 struct kmem_cache_node *n;
2146
73367bd8 2147 if (slab_state == DOWN) {
55136592 2148 early_kmem_cache_node_alloc(node);
73367bd8
AD
2149 continue;
2150 }
51df1142 2151 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2152 GFP_KERNEL, node);
81819f0f 2153
73367bd8
AD
2154 if (!n) {
2155 free_kmem_cache_nodes(s);
2156 return 0;
81819f0f 2157 }
73367bd8 2158
81819f0f 2159 s->node[node] = n;
5595cffc 2160 init_kmem_cache_node(n, s);
81819f0f
CL
2161 }
2162 return 1;
2163}
2164#else
2165static void free_kmem_cache_nodes(struct kmem_cache *s)
2166{
2167}
2168
55136592 2169static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f 2170{
5595cffc 2171 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2172 return 1;
2173}
2174#endif
2175
c0bdb232 2176static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2177{
2178 if (min < MIN_PARTIAL)
2179 min = MIN_PARTIAL;
2180 else if (min > MAX_PARTIAL)
2181 min = MAX_PARTIAL;
2182 s->min_partial = min;
2183}
2184
81819f0f
CL
2185/*
2186 * calculate_sizes() determines the order and the distribution of data within
2187 * a slab object.
2188 */
06b285dc 2189static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2190{
2191 unsigned long flags = s->flags;
2192 unsigned long size = s->objsize;
2193 unsigned long align = s->align;
834f3d11 2194 int order;
81819f0f 2195
d8b42bf5
CL
2196 /*
2197 * Round up object size to the next word boundary. We can only
2198 * place the free pointer at word boundaries and this determines
2199 * the possible location of the free pointer.
2200 */
2201 size = ALIGN(size, sizeof(void *));
2202
2203#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2204 /*
2205 * Determine if we can poison the object itself. If the user of
2206 * the slab may touch the object after free or before allocation
2207 * then we should never poison the object itself.
2208 */
2209 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2210 !s->ctor)
81819f0f
CL
2211 s->flags |= __OBJECT_POISON;
2212 else
2213 s->flags &= ~__OBJECT_POISON;
2214
81819f0f
CL
2215
2216 /*
672bba3a 2217 * If we are Redzoning then check if there is some space between the
81819f0f 2218 * end of the object and the free pointer. If not then add an
672bba3a 2219 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2220 */
2221 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2222 size += sizeof(void *);
41ecc55b 2223#endif
81819f0f
CL
2224
2225 /*
672bba3a
CL
2226 * With that we have determined the number of bytes in actual use
2227 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2228 */
2229 s->inuse = size;
2230
2231 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2232 s->ctor)) {
81819f0f
CL
2233 /*
2234 * Relocate free pointer after the object if it is not
2235 * permitted to overwrite the first word of the object on
2236 * kmem_cache_free.
2237 *
2238 * This is the case if we do RCU, have a constructor or
2239 * destructor or are poisoning the objects.
2240 */
2241 s->offset = size;
2242 size += sizeof(void *);
2243 }
2244
c12b3c62 2245#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2246 if (flags & SLAB_STORE_USER)
2247 /*
2248 * Need to store information about allocs and frees after
2249 * the object.
2250 */
2251 size += 2 * sizeof(struct track);
2252
be7b3fbc 2253 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2254 /*
2255 * Add some empty padding so that we can catch
2256 * overwrites from earlier objects rather than let
2257 * tracking information or the free pointer be
0211a9c8 2258 * corrupted if a user writes before the start
81819f0f
CL
2259 * of the object.
2260 */
2261 size += sizeof(void *);
41ecc55b 2262#endif
672bba3a 2263
81819f0f
CL
2264 /*
2265 * Determine the alignment based on various parameters that the
65c02d4c
CL
2266 * user specified and the dynamic determination of cache line size
2267 * on bootup.
81819f0f
CL
2268 */
2269 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2270 s->align = align;
81819f0f
CL
2271
2272 /*
2273 * SLUB stores one object immediately after another beginning from
2274 * offset 0. In order to align the objects we have to simply size
2275 * each object to conform to the alignment.
2276 */
2277 size = ALIGN(size, align);
2278 s->size = size;
06b285dc
CL
2279 if (forced_order >= 0)
2280 order = forced_order;
2281 else
2282 order = calculate_order(size);
81819f0f 2283
834f3d11 2284 if (order < 0)
81819f0f
CL
2285 return 0;
2286
b7a49f0d 2287 s->allocflags = 0;
834f3d11 2288 if (order)
b7a49f0d
CL
2289 s->allocflags |= __GFP_COMP;
2290
2291 if (s->flags & SLAB_CACHE_DMA)
2292 s->allocflags |= SLUB_DMA;
2293
2294 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2295 s->allocflags |= __GFP_RECLAIMABLE;
2296
81819f0f
CL
2297 /*
2298 * Determine the number of objects per slab
2299 */
834f3d11 2300 s->oo = oo_make(order, size);
65c3376a 2301 s->min = oo_make(get_order(size), size);
205ab99d
CL
2302 if (oo_objects(s->oo) > oo_objects(s->max))
2303 s->max = s->oo;
81819f0f 2304
834f3d11 2305 return !!oo_objects(s->oo);
81819f0f
CL
2306
2307}
2308
55136592 2309static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2310 const char *name, size_t size,
2311 size_t align, unsigned long flags,
51cc5068 2312 void (*ctor)(void *))
81819f0f
CL
2313{
2314 memset(s, 0, kmem_size);
2315 s->name = name;
2316 s->ctor = ctor;
81819f0f 2317 s->objsize = size;
81819f0f 2318 s->align = align;
ba0268a8 2319 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2320
06b285dc 2321 if (!calculate_sizes(s, -1))
81819f0f 2322 goto error;
3de47213
DR
2323 if (disable_higher_order_debug) {
2324 /*
2325 * Disable debugging flags that store metadata if the min slab
2326 * order increased.
2327 */
2328 if (get_order(s->size) > get_order(s->objsize)) {
2329 s->flags &= ~DEBUG_METADATA_FLAGS;
2330 s->offset = 0;
2331 if (!calculate_sizes(s, -1))
2332 goto error;
2333 }
2334 }
81819f0f 2335
3b89d7d8
DR
2336 /*
2337 * The larger the object size is, the more pages we want on the partial
2338 * list to avoid pounding the page allocator excessively.
2339 */
c0bdb232 2340 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2341 s->refcount = 1;
2342#ifdef CONFIG_NUMA
e2cb96b7 2343 s->remote_node_defrag_ratio = 1000;
81819f0f 2344#endif
55136592 2345 if (!init_kmem_cache_nodes(s))
dfb4f096 2346 goto error;
81819f0f 2347
55136592 2348 if (alloc_kmem_cache_cpus(s))
81819f0f 2349 return 1;
ff12059e 2350
4c93c355 2351 free_kmem_cache_nodes(s);
81819f0f
CL
2352error:
2353 if (flags & SLAB_PANIC)
2354 panic("Cannot create slab %s size=%lu realsize=%u "
2355 "order=%u offset=%u flags=%lx\n",
834f3d11 2356 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2357 s->offset, flags);
2358 return 0;
2359}
81819f0f
CL
2360
2361/*
2362 * Check if a given pointer is valid
2363 */
2364int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2365{
06428780 2366 struct page *page;
81819f0f 2367
d3e06e2b
PE
2368 if (!kern_ptr_validate(object, s->size))
2369 return 0;
2370
81819f0f
CL
2371 page = get_object_page(object);
2372
2373 if (!page || s != page->slab)
2374 /* No slab or wrong slab */
2375 return 0;
2376
abcd08a6 2377 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2378 return 0;
2379
2380 /*
2381 * We could also check if the object is on the slabs freelist.
2382 * But this would be too expensive and it seems that the main
6446faa2 2383 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2384 * to a certain slab.
2385 */
2386 return 1;
2387}
2388EXPORT_SYMBOL(kmem_ptr_validate);
2389
2390/*
2391 * Determine the size of a slab object
2392 */
2393unsigned int kmem_cache_size(struct kmem_cache *s)
2394{
2395 return s->objsize;
2396}
2397EXPORT_SYMBOL(kmem_cache_size);
2398
2399const char *kmem_cache_name(struct kmem_cache *s)
2400{
2401 return s->name;
2402}
2403EXPORT_SYMBOL(kmem_cache_name);
2404
33b12c38
CL
2405static void list_slab_objects(struct kmem_cache *s, struct page *page,
2406 const char *text)
2407{
2408#ifdef CONFIG_SLUB_DEBUG
2409 void *addr = page_address(page);
2410 void *p;
bbd7d57b
ED
2411 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2412 GFP_ATOMIC);
33b12c38 2413
bbd7d57b
ED
2414 if (!map)
2415 return;
33b12c38
CL
2416 slab_err(s, page, "%s", text);
2417 slab_lock(page);
2418 for_each_free_object(p, s, page->freelist)
2419 set_bit(slab_index(p, s, addr), map);
2420
2421 for_each_object(p, s, addr, page->objects) {
2422
2423 if (!test_bit(slab_index(p, s, addr), map)) {
2424 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2425 p, p - addr);
2426 print_tracking(s, p);
2427 }
2428 }
2429 slab_unlock(page);
bbd7d57b 2430 kfree(map);
33b12c38
CL
2431#endif
2432}
2433
81819f0f 2434/*
599870b1 2435 * Attempt to free all partial slabs on a node.
81819f0f 2436 */
599870b1 2437static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2438{
81819f0f
CL
2439 unsigned long flags;
2440 struct page *page, *h;
2441
2442 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2443 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2444 if (!page->inuse) {
2445 list_del(&page->lru);
2446 discard_slab(s, page);
599870b1 2447 n->nr_partial--;
33b12c38
CL
2448 } else {
2449 list_slab_objects(s, page,
2450 "Objects remaining on kmem_cache_close()");
599870b1 2451 }
33b12c38 2452 }
81819f0f 2453 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2454}
2455
2456/*
672bba3a 2457 * Release all resources used by a slab cache.
81819f0f 2458 */
0c710013 2459static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2460{
2461 int node;
2462
2463 flush_all(s);
9dfc6e68 2464 free_percpu(s->cpu_slab);
81819f0f 2465 /* Attempt to free all objects */
f64dc58c 2466 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2467 struct kmem_cache_node *n = get_node(s, node);
2468
599870b1
CL
2469 free_partial(s, n);
2470 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2471 return 1;
2472 }
2473 free_kmem_cache_nodes(s);
2474 return 0;
2475}
2476
2477/*
2478 * Close a cache and release the kmem_cache structure
2479 * (must be used for caches created using kmem_cache_create)
2480 */
2481void kmem_cache_destroy(struct kmem_cache *s)
2482{
2483 down_write(&slub_lock);
2484 s->refcount--;
2485 if (!s->refcount) {
2486 list_del(&s->list);
d629d819
PE
2487 if (kmem_cache_close(s)) {
2488 printk(KERN_ERR "SLUB %s: %s called for cache that "
2489 "still has objects.\n", s->name, __func__);
2490 dump_stack();
2491 }
d76b1590
ED
2492 if (s->flags & SLAB_DESTROY_BY_RCU)
2493 rcu_barrier();
81819f0f 2494 sysfs_slab_remove(s);
2bce6485
CL
2495 }
2496 up_write(&slub_lock);
81819f0f
CL
2497}
2498EXPORT_SYMBOL(kmem_cache_destroy);
2499
2500/********************************************************************
2501 * Kmalloc subsystem
2502 *******************************************************************/
2503
51df1142 2504struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2505EXPORT_SYMBOL(kmalloc_caches);
2506
51df1142
CL
2507static struct kmem_cache *kmem_cache;
2508
55136592 2509#ifdef CONFIG_ZONE_DMA
51df1142 2510static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2511#endif
2512
81819f0f
CL
2513static int __init setup_slub_min_order(char *str)
2514{
06428780 2515 get_option(&str, &slub_min_order);
81819f0f
CL
2516
2517 return 1;
2518}
2519
2520__setup("slub_min_order=", setup_slub_min_order);
2521
2522static int __init setup_slub_max_order(char *str)
2523{
06428780 2524 get_option(&str, &slub_max_order);
818cf590 2525 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2526
2527 return 1;
2528}
2529
2530__setup("slub_max_order=", setup_slub_max_order);
2531
2532static int __init setup_slub_min_objects(char *str)
2533{
06428780 2534 get_option(&str, &slub_min_objects);
81819f0f
CL
2535
2536 return 1;
2537}
2538
2539__setup("slub_min_objects=", setup_slub_min_objects);
2540
2541static int __init setup_slub_nomerge(char *str)
2542{
2543 slub_nomerge = 1;
2544 return 1;
2545}
2546
2547__setup("slub_nomerge", setup_slub_nomerge);
2548
51df1142
CL
2549static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2550 int size, unsigned int flags)
81819f0f 2551{
51df1142
CL
2552 struct kmem_cache *s;
2553
2554 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2555
83b519e8
PE
2556 /*
2557 * This function is called with IRQs disabled during early-boot on
2558 * single CPU so there's no need to take slub_lock here.
2559 */
55136592 2560 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2561 flags, NULL))
81819f0f
CL
2562 goto panic;
2563
2564 list_add(&s->list, &slab_caches);
51df1142 2565 return s;
81819f0f
CL
2566
2567panic:
2568 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2569 return NULL;
81819f0f
CL
2570}
2571
f1b26339
CL
2572/*
2573 * Conversion table for small slabs sizes / 8 to the index in the
2574 * kmalloc array. This is necessary for slabs < 192 since we have non power
2575 * of two cache sizes there. The size of larger slabs can be determined using
2576 * fls.
2577 */
2578static s8 size_index[24] = {
2579 3, /* 8 */
2580 4, /* 16 */
2581 5, /* 24 */
2582 5, /* 32 */
2583 6, /* 40 */
2584 6, /* 48 */
2585 6, /* 56 */
2586 6, /* 64 */
2587 1, /* 72 */
2588 1, /* 80 */
2589 1, /* 88 */
2590 1, /* 96 */
2591 7, /* 104 */
2592 7, /* 112 */
2593 7, /* 120 */
2594 7, /* 128 */
2595 2, /* 136 */
2596 2, /* 144 */
2597 2, /* 152 */
2598 2, /* 160 */
2599 2, /* 168 */
2600 2, /* 176 */
2601 2, /* 184 */
2602 2 /* 192 */
2603};
2604
acdfcd04
AK
2605static inline int size_index_elem(size_t bytes)
2606{
2607 return (bytes - 1) / 8;
2608}
2609
81819f0f
CL
2610static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2611{
f1b26339 2612 int index;
81819f0f 2613
f1b26339
CL
2614 if (size <= 192) {
2615 if (!size)
2616 return ZERO_SIZE_PTR;
81819f0f 2617
acdfcd04 2618 index = size_index[size_index_elem(size)];
aadb4bc4 2619 } else
f1b26339 2620 index = fls(size - 1);
81819f0f
CL
2621
2622#ifdef CONFIG_ZONE_DMA
f1b26339 2623 if (unlikely((flags & SLUB_DMA)))
51df1142 2624 return kmalloc_dma_caches[index];
f1b26339 2625
81819f0f 2626#endif
51df1142 2627 return kmalloc_caches[index];
81819f0f
CL
2628}
2629
2630void *__kmalloc(size_t size, gfp_t flags)
2631{
aadb4bc4 2632 struct kmem_cache *s;
5b882be4 2633 void *ret;
81819f0f 2634
ffadd4d0 2635 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2636 return kmalloc_large(size, flags);
aadb4bc4
CL
2637
2638 s = get_slab(size, flags);
2639
2640 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2641 return s;
2642
2154a336 2643 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2644
ca2b84cb 2645 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2646
2647 return ret;
81819f0f
CL
2648}
2649EXPORT_SYMBOL(__kmalloc);
2650
f619cfe1
CL
2651static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2652{
b1eeab67 2653 struct page *page;
e4f7c0b4 2654 void *ptr = NULL;
f619cfe1 2655
b1eeab67
VN
2656 flags |= __GFP_COMP | __GFP_NOTRACK;
2657 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2658 if (page)
e4f7c0b4
CM
2659 ptr = page_address(page);
2660
2661 kmemleak_alloc(ptr, size, 1, flags);
2662 return ptr;
f619cfe1
CL
2663}
2664
81819f0f
CL
2665#ifdef CONFIG_NUMA
2666void *__kmalloc_node(size_t size, gfp_t flags, int node)
2667{
aadb4bc4 2668 struct kmem_cache *s;
5b882be4 2669 void *ret;
81819f0f 2670
057685cf 2671 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2672 ret = kmalloc_large_node(size, flags, node);
2673
ca2b84cb
EGM
2674 trace_kmalloc_node(_RET_IP_, ret,
2675 size, PAGE_SIZE << get_order(size),
2676 flags, node);
5b882be4
EGM
2677
2678 return ret;
2679 }
aadb4bc4
CL
2680
2681 s = get_slab(size, flags);
2682
2683 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2684 return s;
2685
5b882be4
EGM
2686 ret = slab_alloc(s, flags, node, _RET_IP_);
2687
ca2b84cb 2688 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2689
2690 return ret;
81819f0f
CL
2691}
2692EXPORT_SYMBOL(__kmalloc_node);
2693#endif
2694
2695size_t ksize(const void *object)
2696{
272c1d21 2697 struct page *page;
81819f0f
CL
2698 struct kmem_cache *s;
2699
ef8b4520 2700 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2701 return 0;
2702
294a80a8 2703 page = virt_to_head_page(object);
294a80a8 2704
76994412
PE
2705 if (unlikely(!PageSlab(page))) {
2706 WARN_ON(!PageCompound(page));
294a80a8 2707 return PAGE_SIZE << compound_order(page);
76994412 2708 }
81819f0f 2709 s = page->slab;
81819f0f 2710
ae20bfda 2711#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2712 /*
2713 * Debugging requires use of the padding between object
2714 * and whatever may come after it.
2715 */
2716 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2717 return s->objsize;
2718
ae20bfda 2719#endif
81819f0f
CL
2720 /*
2721 * If we have the need to store the freelist pointer
2722 * back there or track user information then we can
2723 * only use the space before that information.
2724 */
2725 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2726 return s->inuse;
81819f0f
CL
2727 /*
2728 * Else we can use all the padding etc for the allocation
2729 */
2730 return s->size;
2731}
b1aabecd 2732EXPORT_SYMBOL(ksize);
81819f0f
CL
2733
2734void kfree(const void *x)
2735{
81819f0f 2736 struct page *page;
5bb983b0 2737 void *object = (void *)x;
81819f0f 2738
2121db74
PE
2739 trace_kfree(_RET_IP_, x);
2740
2408c550 2741 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2742 return;
2743
b49af68f 2744 page = virt_to_head_page(x);
aadb4bc4 2745 if (unlikely(!PageSlab(page))) {
0937502a 2746 BUG_ON(!PageCompound(page));
e4f7c0b4 2747 kmemleak_free(x);
aadb4bc4
CL
2748 put_page(page);
2749 return;
2750 }
ce71e27c 2751 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2752}
2753EXPORT_SYMBOL(kfree);
2754
2086d26a 2755/*
672bba3a
CL
2756 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2757 * the remaining slabs by the number of items in use. The slabs with the
2758 * most items in use come first. New allocations will then fill those up
2759 * and thus they can be removed from the partial lists.
2760 *
2761 * The slabs with the least items are placed last. This results in them
2762 * being allocated from last increasing the chance that the last objects
2763 * are freed in them.
2086d26a
CL
2764 */
2765int kmem_cache_shrink(struct kmem_cache *s)
2766{
2767 int node;
2768 int i;
2769 struct kmem_cache_node *n;
2770 struct page *page;
2771 struct page *t;
205ab99d 2772 int objects = oo_objects(s->max);
2086d26a 2773 struct list_head *slabs_by_inuse =
834f3d11 2774 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2775 unsigned long flags;
2776
2777 if (!slabs_by_inuse)
2778 return -ENOMEM;
2779
2780 flush_all(s);
f64dc58c 2781 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2782 n = get_node(s, node);
2783
2784 if (!n->nr_partial)
2785 continue;
2786
834f3d11 2787 for (i = 0; i < objects; i++)
2086d26a
CL
2788 INIT_LIST_HEAD(slabs_by_inuse + i);
2789
2790 spin_lock_irqsave(&n->list_lock, flags);
2791
2792 /*
672bba3a 2793 * Build lists indexed by the items in use in each slab.
2086d26a 2794 *
672bba3a
CL
2795 * Note that concurrent frees may occur while we hold the
2796 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2797 */
2798 list_for_each_entry_safe(page, t, &n->partial, lru) {
2799 if (!page->inuse && slab_trylock(page)) {
2800 /*
2801 * Must hold slab lock here because slab_free
2802 * may have freed the last object and be
2803 * waiting to release the slab.
2804 */
2805 list_del(&page->lru);
2806 n->nr_partial--;
2807 slab_unlock(page);
2808 discard_slab(s, page);
2809 } else {
fcda3d89
CL
2810 list_move(&page->lru,
2811 slabs_by_inuse + page->inuse);
2086d26a
CL
2812 }
2813 }
2814
2086d26a 2815 /*
672bba3a
CL
2816 * Rebuild the partial list with the slabs filled up most
2817 * first and the least used slabs at the end.
2086d26a 2818 */
834f3d11 2819 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2820 list_splice(slabs_by_inuse + i, n->partial.prev);
2821
2086d26a
CL
2822 spin_unlock_irqrestore(&n->list_lock, flags);
2823 }
2824
2825 kfree(slabs_by_inuse);
2826 return 0;
2827}
2828EXPORT_SYMBOL(kmem_cache_shrink);
2829
b9049e23
YG
2830#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2831static int slab_mem_going_offline_callback(void *arg)
2832{
2833 struct kmem_cache *s;
2834
2835 down_read(&slub_lock);
2836 list_for_each_entry(s, &slab_caches, list)
2837 kmem_cache_shrink(s);
2838 up_read(&slub_lock);
2839
2840 return 0;
2841}
2842
2843static void slab_mem_offline_callback(void *arg)
2844{
2845 struct kmem_cache_node *n;
2846 struct kmem_cache *s;
2847 struct memory_notify *marg = arg;
2848 int offline_node;
2849
2850 offline_node = marg->status_change_nid;
2851
2852 /*
2853 * If the node still has available memory. we need kmem_cache_node
2854 * for it yet.
2855 */
2856 if (offline_node < 0)
2857 return;
2858
2859 down_read(&slub_lock);
2860 list_for_each_entry(s, &slab_caches, list) {
2861 n = get_node(s, offline_node);
2862 if (n) {
2863 /*
2864 * if n->nr_slabs > 0, slabs still exist on the node
2865 * that is going down. We were unable to free them,
c9404c9c 2866 * and offline_pages() function shouldn't call this
b9049e23
YG
2867 * callback. So, we must fail.
2868 */
0f389ec6 2869 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2870
2871 s->node[offline_node] = NULL;
2872 kmem_cache_free(kmalloc_caches, n);
2873 }
2874 }
2875 up_read(&slub_lock);
2876}
2877
2878static int slab_mem_going_online_callback(void *arg)
2879{
2880 struct kmem_cache_node *n;
2881 struct kmem_cache *s;
2882 struct memory_notify *marg = arg;
2883 int nid = marg->status_change_nid;
2884 int ret = 0;
2885
2886 /*
2887 * If the node's memory is already available, then kmem_cache_node is
2888 * already created. Nothing to do.
2889 */
2890 if (nid < 0)
2891 return 0;
2892
2893 /*
0121c619 2894 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2895 * allocate a kmem_cache_node structure in order to bring the node
2896 * online.
2897 */
2898 down_read(&slub_lock);
2899 list_for_each_entry(s, &slab_caches, list) {
2900 /*
2901 * XXX: kmem_cache_alloc_node will fallback to other nodes
2902 * since memory is not yet available from the node that
2903 * is brought up.
2904 */
2905 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2906 if (!n) {
2907 ret = -ENOMEM;
2908 goto out;
2909 }
5595cffc 2910 init_kmem_cache_node(n, s);
b9049e23
YG
2911 s->node[nid] = n;
2912 }
2913out:
2914 up_read(&slub_lock);
2915 return ret;
2916}
2917
2918static int slab_memory_callback(struct notifier_block *self,
2919 unsigned long action, void *arg)
2920{
2921 int ret = 0;
2922
2923 switch (action) {
2924 case MEM_GOING_ONLINE:
2925 ret = slab_mem_going_online_callback(arg);
2926 break;
2927 case MEM_GOING_OFFLINE:
2928 ret = slab_mem_going_offline_callback(arg);
2929 break;
2930 case MEM_OFFLINE:
2931 case MEM_CANCEL_ONLINE:
2932 slab_mem_offline_callback(arg);
2933 break;
2934 case MEM_ONLINE:
2935 case MEM_CANCEL_OFFLINE:
2936 break;
2937 }
dc19f9db
KH
2938 if (ret)
2939 ret = notifier_from_errno(ret);
2940 else
2941 ret = NOTIFY_OK;
b9049e23
YG
2942 return ret;
2943}
2944
2945#endif /* CONFIG_MEMORY_HOTPLUG */
2946
81819f0f
CL
2947/********************************************************************
2948 * Basic setup of slabs
2949 *******************************************************************/
2950
51df1142
CL
2951/*
2952 * Used for early kmem_cache structures that were allocated using
2953 * the page allocator
2954 */
2955
2956static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2957{
2958 int node;
2959
2960 list_add(&s->list, &slab_caches);
2961 s->refcount = -1;
2962
2963 for_each_node_state(node, N_NORMAL_MEMORY) {
2964 struct kmem_cache_node *n = get_node(s, node);
2965 struct page *p;
2966
2967 if (n) {
2968 list_for_each_entry(p, &n->partial, lru)
2969 p->slab = s;
2970
2971#ifdef CONFIG_SLAB_DEBUG
2972 list_for_each_entry(p, &n->full, lru)
2973 p->slab = s;
2974#endif
2975 }
2976 }
2977}
2978
81819f0f
CL
2979void __init kmem_cache_init(void)
2980{
2981 int i;
4b356be0 2982 int caches = 0;
51df1142
CL
2983 struct kmem_cache *temp_kmem_cache;
2984 int order;
81819f0f
CL
2985
2986#ifdef CONFIG_NUMA
51df1142
CL
2987 struct kmem_cache *temp_kmem_cache_node;
2988 unsigned long kmalloc_size;
2989
2990 kmem_size = offsetof(struct kmem_cache, node) +
2991 nr_node_ids * sizeof(struct kmem_cache_node *);
2992
2993 /* Allocate two kmem_caches from the page allocator */
2994 kmalloc_size = ALIGN(kmem_size, cache_line_size());
2995 order = get_order(2 * kmalloc_size);
2996 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
2997
81819f0f
CL
2998 /*
2999 * Must first have the slab cache available for the allocations of the
672bba3a 3000 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3001 * kmem_cache_open for slab_state == DOWN.
3002 */
51df1142
CL
3003 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3004
3005 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3006 sizeof(struct kmem_cache_node),
3007 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3008
0c40ba4f 3009 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
51df1142
CL
3010#else
3011 /* Allocate a single kmem_cache from the page allocator */
3012 kmem_size = sizeof(struct kmem_cache);
3013 order = get_order(kmem_size);
3014 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
81819f0f
CL
3015#endif
3016
3017 /* Able to allocate the per node structures */
3018 slab_state = PARTIAL;
3019
51df1142
CL
3020 temp_kmem_cache = kmem_cache;
3021 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3022 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3023 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3024 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3025
51df1142
CL
3026#ifdef CONFIG_NUMA
3027 /*
3028 * Allocate kmem_cache_node properly from the kmem_cache slab.
3029 * kmem_cache_node is separately allocated so no need to
3030 * update any list pointers.
3031 */
3032 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3033
51df1142
CL
3034 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3035 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3036
3037 kmem_cache_bootstrap_fixup(kmem_cache_node);
3038
3039 caches++;
3040#else
3041 /*
3042 * kmem_cache has kmem_cache_node embedded and we moved it!
3043 * Update the list heads
3044 */
3045 INIT_LIST_HEAD(&kmem_cache->local_node.partial);
3046 list_splice(&temp_kmem_cache->local_node.partial, &kmem_cache->local_node.partial);
3047#ifdef CONFIG_SLUB_DEBUG
3048 INIT_LIST_HEAD(&kmem_cache->local_node.full);
3049 list_splice(&temp_kmem_cache->local_node.full, &kmem_cache->local_node.full);
3050#endif
3051#endif
3052 kmem_cache_bootstrap_fixup(kmem_cache);
3053 caches++;
3054 /* Free temporary boot structure */
3055 free_pages((unsigned long)temp_kmem_cache, order);
3056
3057 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3058
3059 /*
3060 * Patch up the size_index table if we have strange large alignment
3061 * requirements for the kmalloc array. This is only the case for
6446faa2 3062 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3063 *
3064 * Largest permitted alignment is 256 bytes due to the way we
3065 * handle the index determination for the smaller caches.
3066 *
3067 * Make sure that nothing crazy happens if someone starts tinkering
3068 * around with ARCH_KMALLOC_MINALIGN
3069 */
3070 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3071 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3072
acdfcd04
AK
3073 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3074 int elem = size_index_elem(i);
3075 if (elem >= ARRAY_SIZE(size_index))
3076 break;
3077 size_index[elem] = KMALLOC_SHIFT_LOW;
3078 }
f1b26339 3079
acdfcd04
AK
3080 if (KMALLOC_MIN_SIZE == 64) {
3081 /*
3082 * The 96 byte size cache is not used if the alignment
3083 * is 64 byte.
3084 */
3085 for (i = 64 + 8; i <= 96; i += 8)
3086 size_index[size_index_elem(i)] = 7;
3087 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3088 /*
3089 * The 192 byte sized cache is not used if the alignment
3090 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3091 * instead.
3092 */
3093 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3094 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3095 }
3096
51df1142
CL
3097 /* Caches that are not of the two-to-the-power-of size */
3098 if (KMALLOC_MIN_SIZE <= 32) {
3099 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3100 caches++;
3101 }
3102
3103 if (KMALLOC_MIN_SIZE <= 64) {
3104 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3105 caches++;
3106 }
3107
3108 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3109 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3110 caches++;
3111 }
3112
81819f0f
CL
3113 slab_state = UP;
3114
3115 /* Provide the correct kmalloc names now that the caches are up */
d7278bd7
CL
3116 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3117 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3118
3119 BUG_ON(!s);
51df1142 3120 kmalloc_caches[i]->name = s;
d7278bd7 3121 }
81819f0f
CL
3122
3123#ifdef CONFIG_SMP
3124 register_cpu_notifier(&slab_notifier);
9dfc6e68 3125#endif
81819f0f 3126
55136592 3127#ifdef CONFIG_ZONE_DMA
51df1142
CL
3128 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3129 struct kmem_cache *s = kmalloc_caches[i];
55136592 3130
51df1142 3131 if (s && s->size) {
55136592
CL
3132 char *name = kasprintf(GFP_NOWAIT,
3133 "dma-kmalloc-%d", s->objsize);
3134
3135 BUG_ON(!name);
51df1142
CL
3136 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3137 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3138 }
3139 }
3140#endif
3adbefee
IM
3141 printk(KERN_INFO
3142 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3143 " CPUs=%d, Nodes=%d\n",
3144 caches, cache_line_size(),
81819f0f
CL
3145 slub_min_order, slub_max_order, slub_min_objects,
3146 nr_cpu_ids, nr_node_ids);
3147}
3148
7e85ee0c
PE
3149void __init kmem_cache_init_late(void)
3150{
7e85ee0c
PE
3151}
3152
81819f0f
CL
3153/*
3154 * Find a mergeable slab cache
3155 */
3156static int slab_unmergeable(struct kmem_cache *s)
3157{
3158 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3159 return 1;
3160
c59def9f 3161 if (s->ctor)
81819f0f
CL
3162 return 1;
3163
8ffa6875
CL
3164 /*
3165 * We may have set a slab to be unmergeable during bootstrap.
3166 */
3167 if (s->refcount < 0)
3168 return 1;
3169
81819f0f
CL
3170 return 0;
3171}
3172
3173static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3174 size_t align, unsigned long flags, const char *name,
51cc5068 3175 void (*ctor)(void *))
81819f0f 3176{
5b95a4ac 3177 struct kmem_cache *s;
81819f0f
CL
3178
3179 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3180 return NULL;
3181
c59def9f 3182 if (ctor)
81819f0f
CL
3183 return NULL;
3184
3185 size = ALIGN(size, sizeof(void *));
3186 align = calculate_alignment(flags, align, size);
3187 size = ALIGN(size, align);
ba0268a8 3188 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3189
5b95a4ac 3190 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3191 if (slab_unmergeable(s))
3192 continue;
3193
3194 if (size > s->size)
3195 continue;
3196
ba0268a8 3197 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3198 continue;
3199 /*
3200 * Check if alignment is compatible.
3201 * Courtesy of Adrian Drzewiecki
3202 */
06428780 3203 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3204 continue;
3205
3206 if (s->size - size >= sizeof(void *))
3207 continue;
3208
3209 return s;
3210 }
3211 return NULL;
3212}
3213
3214struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3215 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3216{
3217 struct kmem_cache *s;
3218
fe1ff49d
BH
3219 if (WARN_ON(!name))
3220 return NULL;
3221
81819f0f 3222 down_write(&slub_lock);
ba0268a8 3223 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3224 if (s) {
3225 s->refcount++;
3226 /*
3227 * Adjust the object sizes so that we clear
3228 * the complete object on kzalloc.
3229 */
3230 s->objsize = max(s->objsize, (int)size);
3231 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3232
7b8f3b66 3233 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3234 s->refcount--;
81819f0f 3235 goto err;
7b8f3b66 3236 }
2bce6485 3237 up_write(&slub_lock);
a0e1d1be
CL
3238 return s;
3239 }
6446faa2 3240
a0e1d1be
CL
3241 s = kmalloc(kmem_size, GFP_KERNEL);
3242 if (s) {
55136592 3243 if (kmem_cache_open(s, name,
c59def9f 3244 size, align, flags, ctor)) {
81819f0f 3245 list_add(&s->list, &slab_caches);
7b8f3b66 3246 if (sysfs_slab_add(s)) {
7b8f3b66 3247 list_del(&s->list);
7b8f3b66 3248 kfree(s);
a0e1d1be 3249 goto err;
7b8f3b66 3250 }
2bce6485 3251 up_write(&slub_lock);
a0e1d1be
CL
3252 return s;
3253 }
3254 kfree(s);
81819f0f
CL
3255 }
3256 up_write(&slub_lock);
81819f0f
CL
3257
3258err:
81819f0f
CL
3259 if (flags & SLAB_PANIC)
3260 panic("Cannot create slabcache %s\n", name);
3261 else
3262 s = NULL;
3263 return s;
3264}
3265EXPORT_SYMBOL(kmem_cache_create);
3266
81819f0f 3267#ifdef CONFIG_SMP
81819f0f 3268/*
672bba3a
CL
3269 * Use the cpu notifier to insure that the cpu slabs are flushed when
3270 * necessary.
81819f0f
CL
3271 */
3272static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3273 unsigned long action, void *hcpu)
3274{
3275 long cpu = (long)hcpu;
5b95a4ac
CL
3276 struct kmem_cache *s;
3277 unsigned long flags;
81819f0f
CL
3278
3279 switch (action) {
3280 case CPU_UP_CANCELED:
8bb78442 3281 case CPU_UP_CANCELED_FROZEN:
81819f0f 3282 case CPU_DEAD:
8bb78442 3283 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3284 down_read(&slub_lock);
3285 list_for_each_entry(s, &slab_caches, list) {
3286 local_irq_save(flags);
3287 __flush_cpu_slab(s, cpu);
3288 local_irq_restore(flags);
3289 }
3290 up_read(&slub_lock);
81819f0f
CL
3291 break;
3292 default:
3293 break;
3294 }
3295 return NOTIFY_OK;
3296}
3297
06428780 3298static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3299 .notifier_call = slab_cpuup_callback
06428780 3300};
81819f0f
CL
3301
3302#endif
3303
ce71e27c 3304void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3305{
aadb4bc4 3306 struct kmem_cache *s;
94b528d0 3307 void *ret;
aadb4bc4 3308
ffadd4d0 3309 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3310 return kmalloc_large(size, gfpflags);
3311
aadb4bc4 3312 s = get_slab(size, gfpflags);
81819f0f 3313
2408c550 3314 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3315 return s;
81819f0f 3316
2154a336 3317 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3318
3319 /* Honor the call site pointer we recieved. */
ca2b84cb 3320 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3321
3322 return ret;
81819f0f
CL
3323}
3324
3325void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3326 int node, unsigned long caller)
81819f0f 3327{
aadb4bc4 3328 struct kmem_cache *s;
94b528d0 3329 void *ret;
aadb4bc4 3330
d3e14aa3
XF
3331 if (unlikely(size > SLUB_MAX_SIZE)) {
3332 ret = kmalloc_large_node(size, gfpflags, node);
3333
3334 trace_kmalloc_node(caller, ret,
3335 size, PAGE_SIZE << get_order(size),
3336 gfpflags, node);
3337
3338 return ret;
3339 }
eada35ef 3340
aadb4bc4 3341 s = get_slab(size, gfpflags);
81819f0f 3342
2408c550 3343 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3344 return s;
81819f0f 3345
94b528d0
EGM
3346 ret = slab_alloc(s, gfpflags, node, caller);
3347
3348 /* Honor the call site pointer we recieved. */
ca2b84cb 3349 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3350
3351 return ret;
81819f0f
CL
3352}
3353
f6acb635 3354#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3355static int count_inuse(struct page *page)
3356{
3357 return page->inuse;
3358}
3359
3360static int count_total(struct page *page)
3361{
3362 return page->objects;
3363}
3364
434e245d
CL
3365static int validate_slab(struct kmem_cache *s, struct page *page,
3366 unsigned long *map)
53e15af0
CL
3367{
3368 void *p;
a973e9dd 3369 void *addr = page_address(page);
53e15af0
CL
3370
3371 if (!check_slab(s, page) ||
3372 !on_freelist(s, page, NULL))
3373 return 0;
3374
3375 /* Now we know that a valid freelist exists */
39b26464 3376 bitmap_zero(map, page->objects);
53e15af0 3377
7656c72b
CL
3378 for_each_free_object(p, s, page->freelist) {
3379 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3380 if (!check_object(s, page, p, 0))
3381 return 0;
3382 }
3383
224a88be 3384 for_each_object(p, s, addr, page->objects)
7656c72b 3385 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3386 if (!check_object(s, page, p, 1))
3387 return 0;
3388 return 1;
3389}
3390
434e245d
CL
3391static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3392 unsigned long *map)
53e15af0
CL
3393{
3394 if (slab_trylock(page)) {
434e245d 3395 validate_slab(s, page, map);
53e15af0
CL
3396 slab_unlock(page);
3397 } else
3398 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3399 s->name, page);
53e15af0
CL
3400}
3401
434e245d
CL
3402static int validate_slab_node(struct kmem_cache *s,
3403 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3404{
3405 unsigned long count = 0;
3406 struct page *page;
3407 unsigned long flags;
3408
3409 spin_lock_irqsave(&n->list_lock, flags);
3410
3411 list_for_each_entry(page, &n->partial, lru) {
434e245d 3412 validate_slab_slab(s, page, map);
53e15af0
CL
3413 count++;
3414 }
3415 if (count != n->nr_partial)
3416 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3417 "counter=%ld\n", s->name, count, n->nr_partial);
3418
3419 if (!(s->flags & SLAB_STORE_USER))
3420 goto out;
3421
3422 list_for_each_entry(page, &n->full, lru) {
434e245d 3423 validate_slab_slab(s, page, map);
53e15af0
CL
3424 count++;
3425 }
3426 if (count != atomic_long_read(&n->nr_slabs))
3427 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3428 "counter=%ld\n", s->name, count,
3429 atomic_long_read(&n->nr_slabs));
3430
3431out:
3432 spin_unlock_irqrestore(&n->list_lock, flags);
3433 return count;
3434}
3435
434e245d 3436static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3437{
3438 int node;
3439 unsigned long count = 0;
205ab99d 3440 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3441 sizeof(unsigned long), GFP_KERNEL);
3442
3443 if (!map)
3444 return -ENOMEM;
53e15af0
CL
3445
3446 flush_all(s);
f64dc58c 3447 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3448 struct kmem_cache_node *n = get_node(s, node);
3449
434e245d 3450 count += validate_slab_node(s, n, map);
53e15af0 3451 }
434e245d 3452 kfree(map);
53e15af0
CL
3453 return count;
3454}
3455
b3459709
CL
3456#ifdef SLUB_RESILIENCY_TEST
3457static void resiliency_test(void)
3458{
3459 u8 *p;
3460
3461 printk(KERN_ERR "SLUB resiliency testing\n");
3462 printk(KERN_ERR "-----------------------\n");
3463 printk(KERN_ERR "A. Corruption after allocation\n");
3464
3465 p = kzalloc(16, GFP_KERNEL);
3466 p[16] = 0x12;
3467 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3468 " 0x12->0x%p\n\n", p + 16);
3469
3470 validate_slab_cache(kmalloc_caches + 4);
3471
3472 /* Hmmm... The next two are dangerous */
3473 p = kzalloc(32, GFP_KERNEL);
3474 p[32 + sizeof(void *)] = 0x34;
3475 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3476 " 0x34 -> -0x%p\n", p);
3477 printk(KERN_ERR
3478 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3479
3480 validate_slab_cache(kmalloc_caches + 5);
3481 p = kzalloc(64, GFP_KERNEL);
3482 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3483 *p = 0x56;
3484 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3485 p);
3adbefee
IM
3486 printk(KERN_ERR
3487 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3488 validate_slab_cache(kmalloc_caches + 6);
3489
3490 printk(KERN_ERR "\nB. Corruption after free\n");
3491 p = kzalloc(128, GFP_KERNEL);
3492 kfree(p);
3493 *p = 0x78;
3494 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3495 validate_slab_cache(kmalloc_caches + 7);
3496
3497 p = kzalloc(256, GFP_KERNEL);
3498 kfree(p);
3499 p[50] = 0x9a;
3adbefee
IM
3500 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3501 p);
b3459709
CL
3502 validate_slab_cache(kmalloc_caches + 8);
3503
3504 p = kzalloc(512, GFP_KERNEL);
3505 kfree(p);
3506 p[512] = 0xab;
3507 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3508 validate_slab_cache(kmalloc_caches + 9);
3509}
3510#else
3511static void resiliency_test(void) {};
3512#endif
3513
88a420e4 3514/*
672bba3a 3515 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3516 * and freed.
3517 */
3518
3519struct location {
3520 unsigned long count;
ce71e27c 3521 unsigned long addr;
45edfa58
CL
3522 long long sum_time;
3523 long min_time;
3524 long max_time;
3525 long min_pid;
3526 long max_pid;
174596a0 3527 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3528 nodemask_t nodes;
88a420e4
CL
3529};
3530
3531struct loc_track {
3532 unsigned long max;
3533 unsigned long count;
3534 struct location *loc;
3535};
3536
3537static void free_loc_track(struct loc_track *t)
3538{
3539 if (t->max)
3540 free_pages((unsigned long)t->loc,
3541 get_order(sizeof(struct location) * t->max));
3542}
3543
68dff6a9 3544static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3545{
3546 struct location *l;
3547 int order;
3548
88a420e4
CL
3549 order = get_order(sizeof(struct location) * max);
3550
68dff6a9 3551 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3552 if (!l)
3553 return 0;
3554
3555 if (t->count) {
3556 memcpy(l, t->loc, sizeof(struct location) * t->count);
3557 free_loc_track(t);
3558 }
3559 t->max = max;
3560 t->loc = l;
3561 return 1;
3562}
3563
3564static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3565 const struct track *track)
88a420e4
CL
3566{
3567 long start, end, pos;
3568 struct location *l;
ce71e27c 3569 unsigned long caddr;
45edfa58 3570 unsigned long age = jiffies - track->when;
88a420e4
CL
3571
3572 start = -1;
3573 end = t->count;
3574
3575 for ( ; ; ) {
3576 pos = start + (end - start + 1) / 2;
3577
3578 /*
3579 * There is nothing at "end". If we end up there
3580 * we need to add something to before end.
3581 */
3582 if (pos == end)
3583 break;
3584
3585 caddr = t->loc[pos].addr;
45edfa58
CL
3586 if (track->addr == caddr) {
3587
3588 l = &t->loc[pos];
3589 l->count++;
3590 if (track->when) {
3591 l->sum_time += age;
3592 if (age < l->min_time)
3593 l->min_time = age;
3594 if (age > l->max_time)
3595 l->max_time = age;
3596
3597 if (track->pid < l->min_pid)
3598 l->min_pid = track->pid;
3599 if (track->pid > l->max_pid)
3600 l->max_pid = track->pid;
3601
174596a0
RR
3602 cpumask_set_cpu(track->cpu,
3603 to_cpumask(l->cpus));
45edfa58
CL
3604 }
3605 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3606 return 1;
3607 }
3608
45edfa58 3609 if (track->addr < caddr)
88a420e4
CL
3610 end = pos;
3611 else
3612 start = pos;
3613 }
3614
3615 /*
672bba3a 3616 * Not found. Insert new tracking element.
88a420e4 3617 */
68dff6a9 3618 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3619 return 0;
3620
3621 l = t->loc + pos;
3622 if (pos < t->count)
3623 memmove(l + 1, l,
3624 (t->count - pos) * sizeof(struct location));
3625 t->count++;
3626 l->count = 1;
45edfa58
CL
3627 l->addr = track->addr;
3628 l->sum_time = age;
3629 l->min_time = age;
3630 l->max_time = age;
3631 l->min_pid = track->pid;
3632 l->max_pid = track->pid;
174596a0
RR
3633 cpumask_clear(to_cpumask(l->cpus));
3634 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3635 nodes_clear(l->nodes);
3636 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3637 return 1;
3638}
3639
3640static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b
ED
3641 struct page *page, enum track_item alloc,
3642 long *map)
88a420e4 3643{
a973e9dd 3644 void *addr = page_address(page);
88a420e4
CL
3645 void *p;
3646
39b26464 3647 bitmap_zero(map, page->objects);
7656c72b
CL
3648 for_each_free_object(p, s, page->freelist)
3649 set_bit(slab_index(p, s, addr), map);
88a420e4 3650
224a88be 3651 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3652 if (!test_bit(slab_index(p, s, addr), map))
3653 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3654}
3655
3656static int list_locations(struct kmem_cache *s, char *buf,
3657 enum track_item alloc)
3658{
e374d483 3659 int len = 0;
88a420e4 3660 unsigned long i;
68dff6a9 3661 struct loc_track t = { 0, 0, NULL };
88a420e4 3662 int node;
bbd7d57b
ED
3663 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3664 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3665
bbd7d57b
ED
3666 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3667 GFP_TEMPORARY)) {
3668 kfree(map);
68dff6a9 3669 return sprintf(buf, "Out of memory\n");
bbd7d57b 3670 }
88a420e4
CL
3671 /* Push back cpu slabs */
3672 flush_all(s);
3673
f64dc58c 3674 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3675 struct kmem_cache_node *n = get_node(s, node);
3676 unsigned long flags;
3677 struct page *page;
3678
9e86943b 3679 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3680 continue;
3681
3682 spin_lock_irqsave(&n->list_lock, flags);
3683 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3684 process_slab(&t, s, page, alloc, map);
88a420e4 3685 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3686 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3687 spin_unlock_irqrestore(&n->list_lock, flags);
3688 }
3689
3690 for (i = 0; i < t.count; i++) {
45edfa58 3691 struct location *l = &t.loc[i];
88a420e4 3692
9c246247 3693 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3694 break;
e374d483 3695 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3696
3697 if (l->addr)
e374d483 3698 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3699 else
e374d483 3700 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3701
3702 if (l->sum_time != l->min_time) {
e374d483 3703 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3704 l->min_time,
3705 (long)div_u64(l->sum_time, l->count),
3706 l->max_time);
45edfa58 3707 } else
e374d483 3708 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3709 l->min_time);
3710
3711 if (l->min_pid != l->max_pid)
e374d483 3712 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3713 l->min_pid, l->max_pid);
3714 else
e374d483 3715 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3716 l->min_pid);
3717
174596a0
RR
3718 if (num_online_cpus() > 1 &&
3719 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3720 len < PAGE_SIZE - 60) {
3721 len += sprintf(buf + len, " cpus=");
3722 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3723 to_cpumask(l->cpus));
45edfa58
CL
3724 }
3725
62bc62a8 3726 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3727 len < PAGE_SIZE - 60) {
3728 len += sprintf(buf + len, " nodes=");
3729 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3730 l->nodes);
3731 }
3732
e374d483 3733 len += sprintf(buf + len, "\n");
88a420e4
CL
3734 }
3735
3736 free_loc_track(&t);
bbd7d57b 3737 kfree(map);
88a420e4 3738 if (!t.count)
e374d483
HH
3739 len += sprintf(buf, "No data\n");
3740 return len;
88a420e4
CL
3741}
3742
81819f0f 3743enum slab_stat_type {
205ab99d
CL
3744 SL_ALL, /* All slabs */
3745 SL_PARTIAL, /* Only partially allocated slabs */
3746 SL_CPU, /* Only slabs used for cpu caches */
3747 SL_OBJECTS, /* Determine allocated objects not slabs */
3748 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3749};
3750
205ab99d 3751#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3752#define SO_PARTIAL (1 << SL_PARTIAL)
3753#define SO_CPU (1 << SL_CPU)
3754#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3755#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3756
62e5c4b4
CG
3757static ssize_t show_slab_objects(struct kmem_cache *s,
3758 char *buf, unsigned long flags)
81819f0f
CL
3759{
3760 unsigned long total = 0;
81819f0f
CL
3761 int node;
3762 int x;
3763 unsigned long *nodes;
3764 unsigned long *per_cpu;
3765
3766 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3767 if (!nodes)
3768 return -ENOMEM;
81819f0f
CL
3769 per_cpu = nodes + nr_node_ids;
3770
205ab99d
CL
3771 if (flags & SO_CPU) {
3772 int cpu;
81819f0f 3773
205ab99d 3774 for_each_possible_cpu(cpu) {
9dfc6e68 3775 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3776
205ab99d
CL
3777 if (!c || c->node < 0)
3778 continue;
3779
3780 if (c->page) {
3781 if (flags & SO_TOTAL)
3782 x = c->page->objects;
3783 else if (flags & SO_OBJECTS)
3784 x = c->page->inuse;
81819f0f
CL
3785 else
3786 x = 1;
205ab99d 3787
81819f0f 3788 total += x;
205ab99d 3789 nodes[c->node] += x;
81819f0f 3790 }
205ab99d 3791 per_cpu[c->node]++;
81819f0f
CL
3792 }
3793 }
3794
205ab99d
CL
3795 if (flags & SO_ALL) {
3796 for_each_node_state(node, N_NORMAL_MEMORY) {
3797 struct kmem_cache_node *n = get_node(s, node);
3798
3799 if (flags & SO_TOTAL)
3800 x = atomic_long_read(&n->total_objects);
3801 else if (flags & SO_OBJECTS)
3802 x = atomic_long_read(&n->total_objects) -
3803 count_partial(n, count_free);
81819f0f 3804
81819f0f 3805 else
205ab99d 3806 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3807 total += x;
3808 nodes[node] += x;
3809 }
3810
205ab99d
CL
3811 } else if (flags & SO_PARTIAL) {
3812 for_each_node_state(node, N_NORMAL_MEMORY) {
3813 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3814
205ab99d
CL
3815 if (flags & SO_TOTAL)
3816 x = count_partial(n, count_total);
3817 else if (flags & SO_OBJECTS)
3818 x = count_partial(n, count_inuse);
81819f0f 3819 else
205ab99d 3820 x = n->nr_partial;
81819f0f
CL
3821 total += x;
3822 nodes[node] += x;
3823 }
3824 }
81819f0f
CL
3825 x = sprintf(buf, "%lu", total);
3826#ifdef CONFIG_NUMA
f64dc58c 3827 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3828 if (nodes[node])
3829 x += sprintf(buf + x, " N%d=%lu",
3830 node, nodes[node]);
3831#endif
3832 kfree(nodes);
3833 return x + sprintf(buf + x, "\n");
3834}
3835
3836static int any_slab_objects(struct kmem_cache *s)
3837{
3838 int node;
81819f0f 3839
dfb4f096 3840 for_each_online_node(node) {
81819f0f
CL
3841 struct kmem_cache_node *n = get_node(s, node);
3842
dfb4f096
CL
3843 if (!n)
3844 continue;
3845
4ea33e2d 3846 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3847 return 1;
3848 }
3849 return 0;
3850}
3851
3852#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3853#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3854
3855struct slab_attribute {
3856 struct attribute attr;
3857 ssize_t (*show)(struct kmem_cache *s, char *buf);
3858 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3859};
3860
3861#define SLAB_ATTR_RO(_name) \
3862 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3863
3864#define SLAB_ATTR(_name) \
3865 static struct slab_attribute _name##_attr = \
3866 __ATTR(_name, 0644, _name##_show, _name##_store)
3867
81819f0f
CL
3868static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3869{
3870 return sprintf(buf, "%d\n", s->size);
3871}
3872SLAB_ATTR_RO(slab_size);
3873
3874static ssize_t align_show(struct kmem_cache *s, char *buf)
3875{
3876 return sprintf(buf, "%d\n", s->align);
3877}
3878SLAB_ATTR_RO(align);
3879
3880static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3881{
3882 return sprintf(buf, "%d\n", s->objsize);
3883}
3884SLAB_ATTR_RO(object_size);
3885
3886static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3887{
834f3d11 3888 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3889}
3890SLAB_ATTR_RO(objs_per_slab);
3891
06b285dc
CL
3892static ssize_t order_store(struct kmem_cache *s,
3893 const char *buf, size_t length)
3894{
0121c619
CL
3895 unsigned long order;
3896 int err;
3897
3898 err = strict_strtoul(buf, 10, &order);
3899 if (err)
3900 return err;
06b285dc
CL
3901
3902 if (order > slub_max_order || order < slub_min_order)
3903 return -EINVAL;
3904
3905 calculate_sizes(s, order);
3906 return length;
3907}
3908
81819f0f
CL
3909static ssize_t order_show(struct kmem_cache *s, char *buf)
3910{
834f3d11 3911 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3912}
06b285dc 3913SLAB_ATTR(order);
81819f0f 3914
73d342b1
DR
3915static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3916{
3917 return sprintf(buf, "%lu\n", s->min_partial);
3918}
3919
3920static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3921 size_t length)
3922{
3923 unsigned long min;
3924 int err;
3925
3926 err = strict_strtoul(buf, 10, &min);
3927 if (err)
3928 return err;
3929
c0bdb232 3930 set_min_partial(s, min);
73d342b1
DR
3931 return length;
3932}
3933SLAB_ATTR(min_partial);
3934
81819f0f
CL
3935static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3936{
3937 if (s->ctor) {
3938 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3939
3940 return n + sprintf(buf + n, "\n");
3941 }
3942 return 0;
3943}
3944SLAB_ATTR_RO(ctor);
3945
81819f0f
CL
3946static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3947{
3948 return sprintf(buf, "%d\n", s->refcount - 1);
3949}
3950SLAB_ATTR_RO(aliases);
3951
3952static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3953{
205ab99d 3954 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3955}
3956SLAB_ATTR_RO(slabs);
3957
3958static ssize_t partial_show(struct kmem_cache *s, char *buf)
3959{
d9acf4b7 3960 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3961}
3962SLAB_ATTR_RO(partial);
3963
3964static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3965{
d9acf4b7 3966 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3967}
3968SLAB_ATTR_RO(cpu_slabs);
3969
3970static ssize_t objects_show(struct kmem_cache *s, char *buf)
3971{
205ab99d 3972 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3973}
3974SLAB_ATTR_RO(objects);
3975
205ab99d
CL
3976static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3977{
3978 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3979}
3980SLAB_ATTR_RO(objects_partial);
3981
3982static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3983{
3984 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3985}
3986SLAB_ATTR_RO(total_objects);
3987
81819f0f
CL
3988static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3989{
3990 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3991}
3992
3993static ssize_t sanity_checks_store(struct kmem_cache *s,
3994 const char *buf, size_t length)
3995{
3996 s->flags &= ~SLAB_DEBUG_FREE;
3997 if (buf[0] == '1')
3998 s->flags |= SLAB_DEBUG_FREE;
3999 return length;
4000}
4001SLAB_ATTR(sanity_checks);
4002
4003static ssize_t trace_show(struct kmem_cache *s, char *buf)
4004{
4005 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4006}
4007
4008static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4009 size_t length)
4010{
4011 s->flags &= ~SLAB_TRACE;
4012 if (buf[0] == '1')
4013 s->flags |= SLAB_TRACE;
4014 return length;
4015}
4016SLAB_ATTR(trace);
4017
4c13dd3b
DM
4018#ifdef CONFIG_FAILSLAB
4019static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4020{
4021 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4022}
4023
4024static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4025 size_t length)
4026{
4027 s->flags &= ~SLAB_FAILSLAB;
4028 if (buf[0] == '1')
4029 s->flags |= SLAB_FAILSLAB;
4030 return length;
4031}
4032SLAB_ATTR(failslab);
4033#endif
4034
81819f0f
CL
4035static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4036{
4037 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4038}
4039
4040static ssize_t reclaim_account_store(struct kmem_cache *s,
4041 const char *buf, size_t length)
4042{
4043 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4044 if (buf[0] == '1')
4045 s->flags |= SLAB_RECLAIM_ACCOUNT;
4046 return length;
4047}
4048SLAB_ATTR(reclaim_account);
4049
4050static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4051{
5af60839 4052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4053}
4054SLAB_ATTR_RO(hwcache_align);
4055
4056#ifdef CONFIG_ZONE_DMA
4057static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4058{
4059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4060}
4061SLAB_ATTR_RO(cache_dma);
4062#endif
4063
4064static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4065{
4066 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4067}
4068SLAB_ATTR_RO(destroy_by_rcu);
4069
4070static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4071{
4072 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4073}
4074
4075static ssize_t red_zone_store(struct kmem_cache *s,
4076 const char *buf, size_t length)
4077{
4078 if (any_slab_objects(s))
4079 return -EBUSY;
4080
4081 s->flags &= ~SLAB_RED_ZONE;
4082 if (buf[0] == '1')
4083 s->flags |= SLAB_RED_ZONE;
06b285dc 4084 calculate_sizes(s, -1);
81819f0f
CL
4085 return length;
4086}
4087SLAB_ATTR(red_zone);
4088
4089static ssize_t poison_show(struct kmem_cache *s, char *buf)
4090{
4091 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4092}
4093
4094static ssize_t poison_store(struct kmem_cache *s,
4095 const char *buf, size_t length)
4096{
4097 if (any_slab_objects(s))
4098 return -EBUSY;
4099
4100 s->flags &= ~SLAB_POISON;
4101 if (buf[0] == '1')
4102 s->flags |= SLAB_POISON;
06b285dc 4103 calculate_sizes(s, -1);
81819f0f
CL
4104 return length;
4105}
4106SLAB_ATTR(poison);
4107
4108static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4109{
4110 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4111}
4112
4113static ssize_t store_user_store(struct kmem_cache *s,
4114 const char *buf, size_t length)
4115{
4116 if (any_slab_objects(s))
4117 return -EBUSY;
4118
4119 s->flags &= ~SLAB_STORE_USER;
4120 if (buf[0] == '1')
4121 s->flags |= SLAB_STORE_USER;
06b285dc 4122 calculate_sizes(s, -1);
81819f0f
CL
4123 return length;
4124}
4125SLAB_ATTR(store_user);
4126
53e15af0
CL
4127static ssize_t validate_show(struct kmem_cache *s, char *buf)
4128{
4129 return 0;
4130}
4131
4132static ssize_t validate_store(struct kmem_cache *s,
4133 const char *buf, size_t length)
4134{
434e245d
CL
4135 int ret = -EINVAL;
4136
4137 if (buf[0] == '1') {
4138 ret = validate_slab_cache(s);
4139 if (ret >= 0)
4140 ret = length;
4141 }
4142 return ret;
53e15af0
CL
4143}
4144SLAB_ATTR(validate);
4145
2086d26a
CL
4146static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4147{
4148 return 0;
4149}
4150
4151static ssize_t shrink_store(struct kmem_cache *s,
4152 const char *buf, size_t length)
4153{
4154 if (buf[0] == '1') {
4155 int rc = kmem_cache_shrink(s);
4156
4157 if (rc)
4158 return rc;
4159 } else
4160 return -EINVAL;
4161 return length;
4162}
4163SLAB_ATTR(shrink);
4164
88a420e4
CL
4165static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4166{
4167 if (!(s->flags & SLAB_STORE_USER))
4168 return -ENOSYS;
4169 return list_locations(s, buf, TRACK_ALLOC);
4170}
4171SLAB_ATTR_RO(alloc_calls);
4172
4173static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4174{
4175 if (!(s->flags & SLAB_STORE_USER))
4176 return -ENOSYS;
4177 return list_locations(s, buf, TRACK_FREE);
4178}
4179SLAB_ATTR_RO(free_calls);
4180
81819f0f 4181#ifdef CONFIG_NUMA
9824601e 4182static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4183{
9824601e 4184 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4185}
4186
9824601e 4187static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4188 const char *buf, size_t length)
4189{
0121c619
CL
4190 unsigned long ratio;
4191 int err;
4192
4193 err = strict_strtoul(buf, 10, &ratio);
4194 if (err)
4195 return err;
4196
e2cb96b7 4197 if (ratio <= 100)
0121c619 4198 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4199
81819f0f
CL
4200 return length;
4201}
9824601e 4202SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4203#endif
4204
8ff12cfc 4205#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4206static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4207{
4208 unsigned long sum = 0;
4209 int cpu;
4210 int len;
4211 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4212
4213 if (!data)
4214 return -ENOMEM;
4215
4216 for_each_online_cpu(cpu) {
9dfc6e68 4217 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4218
4219 data[cpu] = x;
4220 sum += x;
4221 }
4222
4223 len = sprintf(buf, "%lu", sum);
4224
50ef37b9 4225#ifdef CONFIG_SMP
8ff12cfc
CL
4226 for_each_online_cpu(cpu) {
4227 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4228 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4229 }
50ef37b9 4230#endif
8ff12cfc
CL
4231 kfree(data);
4232 return len + sprintf(buf + len, "\n");
4233}
4234
78eb00cc
DR
4235static void clear_stat(struct kmem_cache *s, enum stat_item si)
4236{
4237 int cpu;
4238
4239 for_each_online_cpu(cpu)
9dfc6e68 4240 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4241}
4242
8ff12cfc
CL
4243#define STAT_ATTR(si, text) \
4244static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4245{ \
4246 return show_stat(s, buf, si); \
4247} \
78eb00cc
DR
4248static ssize_t text##_store(struct kmem_cache *s, \
4249 const char *buf, size_t length) \
4250{ \
4251 if (buf[0] != '0') \
4252 return -EINVAL; \
4253 clear_stat(s, si); \
4254 return length; \
4255} \
4256SLAB_ATTR(text); \
8ff12cfc
CL
4257
4258STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4259STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4260STAT_ATTR(FREE_FASTPATH, free_fastpath);
4261STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4262STAT_ATTR(FREE_FROZEN, free_frozen);
4263STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4264STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4265STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4266STAT_ATTR(ALLOC_SLAB, alloc_slab);
4267STAT_ATTR(ALLOC_REFILL, alloc_refill);
4268STAT_ATTR(FREE_SLAB, free_slab);
4269STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4270STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4271STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4272STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4273STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4274STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4275STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4276#endif
4277
06428780 4278static struct attribute *slab_attrs[] = {
81819f0f
CL
4279 &slab_size_attr.attr,
4280 &object_size_attr.attr,
4281 &objs_per_slab_attr.attr,
4282 &order_attr.attr,
73d342b1 4283 &min_partial_attr.attr,
81819f0f 4284 &objects_attr.attr,
205ab99d
CL
4285 &objects_partial_attr.attr,
4286 &total_objects_attr.attr,
81819f0f
CL
4287 &slabs_attr.attr,
4288 &partial_attr.attr,
4289 &cpu_slabs_attr.attr,
4290 &ctor_attr.attr,
81819f0f
CL
4291 &aliases_attr.attr,
4292 &align_attr.attr,
4293 &sanity_checks_attr.attr,
4294 &trace_attr.attr,
4295 &hwcache_align_attr.attr,
4296 &reclaim_account_attr.attr,
4297 &destroy_by_rcu_attr.attr,
4298 &red_zone_attr.attr,
4299 &poison_attr.attr,
4300 &store_user_attr.attr,
53e15af0 4301 &validate_attr.attr,
2086d26a 4302 &shrink_attr.attr,
88a420e4
CL
4303 &alloc_calls_attr.attr,
4304 &free_calls_attr.attr,
81819f0f
CL
4305#ifdef CONFIG_ZONE_DMA
4306 &cache_dma_attr.attr,
4307#endif
4308#ifdef CONFIG_NUMA
9824601e 4309 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4310#endif
4311#ifdef CONFIG_SLUB_STATS
4312 &alloc_fastpath_attr.attr,
4313 &alloc_slowpath_attr.attr,
4314 &free_fastpath_attr.attr,
4315 &free_slowpath_attr.attr,
4316 &free_frozen_attr.attr,
4317 &free_add_partial_attr.attr,
4318 &free_remove_partial_attr.attr,
4319 &alloc_from_partial_attr.attr,
4320 &alloc_slab_attr.attr,
4321 &alloc_refill_attr.attr,
4322 &free_slab_attr.attr,
4323 &cpuslab_flush_attr.attr,
4324 &deactivate_full_attr.attr,
4325 &deactivate_empty_attr.attr,
4326 &deactivate_to_head_attr.attr,
4327 &deactivate_to_tail_attr.attr,
4328 &deactivate_remote_frees_attr.attr,
65c3376a 4329 &order_fallback_attr.attr,
81819f0f 4330#endif
4c13dd3b
DM
4331#ifdef CONFIG_FAILSLAB
4332 &failslab_attr.attr,
4333#endif
4334
81819f0f
CL
4335 NULL
4336};
4337
4338static struct attribute_group slab_attr_group = {
4339 .attrs = slab_attrs,
4340};
4341
4342static ssize_t slab_attr_show(struct kobject *kobj,
4343 struct attribute *attr,
4344 char *buf)
4345{
4346 struct slab_attribute *attribute;
4347 struct kmem_cache *s;
4348 int err;
4349
4350 attribute = to_slab_attr(attr);
4351 s = to_slab(kobj);
4352
4353 if (!attribute->show)
4354 return -EIO;
4355
4356 err = attribute->show(s, buf);
4357
4358 return err;
4359}
4360
4361static ssize_t slab_attr_store(struct kobject *kobj,
4362 struct attribute *attr,
4363 const char *buf, size_t len)
4364{
4365 struct slab_attribute *attribute;
4366 struct kmem_cache *s;
4367 int err;
4368
4369 attribute = to_slab_attr(attr);
4370 s = to_slab(kobj);
4371
4372 if (!attribute->store)
4373 return -EIO;
4374
4375 err = attribute->store(s, buf, len);
4376
4377 return err;
4378}
4379
151c602f
CL
4380static void kmem_cache_release(struct kobject *kobj)
4381{
4382 struct kmem_cache *s = to_slab(kobj);
4383
4384 kfree(s);
4385}
4386
52cf25d0 4387static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4388 .show = slab_attr_show,
4389 .store = slab_attr_store,
4390};
4391
4392static struct kobj_type slab_ktype = {
4393 .sysfs_ops = &slab_sysfs_ops,
151c602f 4394 .release = kmem_cache_release
81819f0f
CL
4395};
4396
4397static int uevent_filter(struct kset *kset, struct kobject *kobj)
4398{
4399 struct kobj_type *ktype = get_ktype(kobj);
4400
4401 if (ktype == &slab_ktype)
4402 return 1;
4403 return 0;
4404}
4405
9cd43611 4406static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4407 .filter = uevent_filter,
4408};
4409
27c3a314 4410static struct kset *slab_kset;
81819f0f
CL
4411
4412#define ID_STR_LENGTH 64
4413
4414/* Create a unique string id for a slab cache:
6446faa2
CL
4415 *
4416 * Format :[flags-]size
81819f0f
CL
4417 */
4418static char *create_unique_id(struct kmem_cache *s)
4419{
4420 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4421 char *p = name;
4422
4423 BUG_ON(!name);
4424
4425 *p++ = ':';
4426 /*
4427 * First flags affecting slabcache operations. We will only
4428 * get here for aliasable slabs so we do not need to support
4429 * too many flags. The flags here must cover all flags that
4430 * are matched during merging to guarantee that the id is
4431 * unique.
4432 */
4433 if (s->flags & SLAB_CACHE_DMA)
4434 *p++ = 'd';
4435 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4436 *p++ = 'a';
4437 if (s->flags & SLAB_DEBUG_FREE)
4438 *p++ = 'F';
5a896d9e
VN
4439 if (!(s->flags & SLAB_NOTRACK))
4440 *p++ = 't';
81819f0f
CL
4441 if (p != name + 1)
4442 *p++ = '-';
4443 p += sprintf(p, "%07d", s->size);
4444 BUG_ON(p > name + ID_STR_LENGTH - 1);
4445 return name;
4446}
4447
4448static int sysfs_slab_add(struct kmem_cache *s)
4449{
4450 int err;
4451 const char *name;
4452 int unmergeable;
4453
4454 if (slab_state < SYSFS)
4455 /* Defer until later */
4456 return 0;
4457
4458 unmergeable = slab_unmergeable(s);
4459 if (unmergeable) {
4460 /*
4461 * Slabcache can never be merged so we can use the name proper.
4462 * This is typically the case for debug situations. In that
4463 * case we can catch duplicate names easily.
4464 */
27c3a314 4465 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4466 name = s->name;
4467 } else {
4468 /*
4469 * Create a unique name for the slab as a target
4470 * for the symlinks.
4471 */
4472 name = create_unique_id(s);
4473 }
4474
27c3a314 4475 s->kobj.kset = slab_kset;
1eada11c
GKH
4476 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4477 if (err) {
4478 kobject_put(&s->kobj);
81819f0f 4479 return err;
1eada11c 4480 }
81819f0f
CL
4481
4482 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4483 if (err) {
4484 kobject_del(&s->kobj);
4485 kobject_put(&s->kobj);
81819f0f 4486 return err;
5788d8ad 4487 }
81819f0f
CL
4488 kobject_uevent(&s->kobj, KOBJ_ADD);
4489 if (!unmergeable) {
4490 /* Setup first alias */
4491 sysfs_slab_alias(s, s->name);
4492 kfree(name);
4493 }
4494 return 0;
4495}
4496
4497static void sysfs_slab_remove(struct kmem_cache *s)
4498{
2bce6485
CL
4499 if (slab_state < SYSFS)
4500 /*
4501 * Sysfs has not been setup yet so no need to remove the
4502 * cache from sysfs.
4503 */
4504 return;
4505
81819f0f
CL
4506 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4507 kobject_del(&s->kobj);
151c602f 4508 kobject_put(&s->kobj);
81819f0f
CL
4509}
4510
4511/*
4512 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4513 * available lest we lose that information.
81819f0f
CL
4514 */
4515struct saved_alias {
4516 struct kmem_cache *s;
4517 const char *name;
4518 struct saved_alias *next;
4519};
4520
5af328a5 4521static struct saved_alias *alias_list;
81819f0f
CL
4522
4523static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4524{
4525 struct saved_alias *al;
4526
4527 if (slab_state == SYSFS) {
4528 /*
4529 * If we have a leftover link then remove it.
4530 */
27c3a314
GKH
4531 sysfs_remove_link(&slab_kset->kobj, name);
4532 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4533 }
4534
4535 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4536 if (!al)
4537 return -ENOMEM;
4538
4539 al->s = s;
4540 al->name = name;
4541 al->next = alias_list;
4542 alias_list = al;
4543 return 0;
4544}
4545
4546static int __init slab_sysfs_init(void)
4547{
5b95a4ac 4548 struct kmem_cache *s;
81819f0f
CL
4549 int err;
4550
2bce6485
CL
4551 down_write(&slub_lock);
4552
0ff21e46 4553 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4554 if (!slab_kset) {
2bce6485 4555 up_write(&slub_lock);
81819f0f
CL
4556 printk(KERN_ERR "Cannot register slab subsystem.\n");
4557 return -ENOSYS;
4558 }
4559
26a7bd03
CL
4560 slab_state = SYSFS;
4561
5b95a4ac 4562 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4563 err = sysfs_slab_add(s);
5d540fb7
CL
4564 if (err)
4565 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4566 " to sysfs\n", s->name);
26a7bd03 4567 }
81819f0f
CL
4568
4569 while (alias_list) {
4570 struct saved_alias *al = alias_list;
4571
4572 alias_list = alias_list->next;
4573 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4574 if (err)
4575 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4576 " %s to sysfs\n", s->name);
81819f0f
CL
4577 kfree(al);
4578 }
4579
2bce6485 4580 up_write(&slub_lock);
81819f0f
CL
4581 resiliency_test();
4582 return 0;
4583}
4584
4585__initcall(slab_sysfs_init);
81819f0f 4586#endif
57ed3eda
PE
4587
4588/*
4589 * The /proc/slabinfo ABI
4590 */
158a9624 4591#ifdef CONFIG_SLABINFO
57ed3eda
PE
4592static void print_slabinfo_header(struct seq_file *m)
4593{
4594 seq_puts(m, "slabinfo - version: 2.1\n");
4595 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4596 "<objperslab> <pagesperslab>");
4597 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4598 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4599 seq_putc(m, '\n');
4600}
4601
4602static void *s_start(struct seq_file *m, loff_t *pos)
4603{
4604 loff_t n = *pos;
4605
4606 down_read(&slub_lock);
4607 if (!n)
4608 print_slabinfo_header(m);
4609
4610 return seq_list_start(&slab_caches, *pos);
4611}
4612
4613static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4614{
4615 return seq_list_next(p, &slab_caches, pos);
4616}
4617
4618static void s_stop(struct seq_file *m, void *p)
4619{
4620 up_read(&slub_lock);
4621}
4622
4623static int s_show(struct seq_file *m, void *p)
4624{
4625 unsigned long nr_partials = 0;
4626 unsigned long nr_slabs = 0;
4627 unsigned long nr_inuse = 0;
205ab99d
CL
4628 unsigned long nr_objs = 0;
4629 unsigned long nr_free = 0;
57ed3eda
PE
4630 struct kmem_cache *s;
4631 int node;
4632
4633 s = list_entry(p, struct kmem_cache, list);
4634
4635 for_each_online_node(node) {
4636 struct kmem_cache_node *n = get_node(s, node);
4637
4638 if (!n)
4639 continue;
4640
4641 nr_partials += n->nr_partial;
4642 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4643 nr_objs += atomic_long_read(&n->total_objects);
4644 nr_free += count_partial(n, count_free);
57ed3eda
PE
4645 }
4646
205ab99d 4647 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4648
4649 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4650 nr_objs, s->size, oo_objects(s->oo),
4651 (1 << oo_order(s->oo)));
57ed3eda
PE
4652 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4653 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4654 0UL);
4655 seq_putc(m, '\n');
4656 return 0;
4657}
4658
7b3c3a50 4659static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4660 .start = s_start,
4661 .next = s_next,
4662 .stop = s_stop,
4663 .show = s_show,
4664};
4665
7b3c3a50
AD
4666static int slabinfo_open(struct inode *inode, struct file *file)
4667{
4668 return seq_open(file, &slabinfo_op);
4669}
4670
4671static const struct file_operations proc_slabinfo_operations = {
4672 .open = slabinfo_open,
4673 .read = seq_read,
4674 .llseek = seq_lseek,
4675 .release = seq_release,
4676};
4677
4678static int __init slab_proc_init(void)
4679{
cf5d1131 4680 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4681 return 0;
4682}
4683module_init(slab_proc_init);
158a9624 4684#endif /* CONFIG_SLABINFO */