Merge tag 'powerpc-6.5-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
c7b23b68 14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
68ef169a 25#include <linux/kmsan.h>
81819f0f
CL
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
5cf909c5 30#include <linux/stackdepot.h>
3ac7fe5a 31#include <linux/debugobjects.h>
81819f0f 32#include <linux/kallsyms.h>
b89fb5ef 33#include <linux/kfence.h>
b9049e23 34#include <linux/memory.h>
f8bd2258 35#include <linux/math64.h>
773ff60e 36#include <linux/fault-inject.h>
bfa71457 37#include <linux/stacktrace.h>
4de900b4 38#include <linux/prefetch.h>
2633d7a0 39#include <linux/memcontrol.h>
2482ddec 40#include <linux/random.h>
1f9f78b1 41#include <kunit/test.h>
909c6475 42#include <kunit/test-bug.h>
553c0369 43#include <linux/sort.h>
81819f0f 44
64dd6849 45#include <linux/debugfs.h>
4a92379b
RK
46#include <trace/events/kmem.h>
47
072bb0aa
MG
48#include "internal.h"
49
81819f0f
CL
50/*
51 * Lock order:
18004c5d 52 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
41bec7c3 55 * 4. slab_lock(slab) (Only on some arches)
bd0e7491 56 * 5. object_map_lock (Only for debugging)
81819f0f 57 *
18004c5d 58 * slab_mutex
881db7fb 59 *
18004c5d 60 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 61 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
62 * Also synchronizes memory hotplug callbacks.
63 *
64 * slab_lock
65 *
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * spinlock.
881db7fb 68 *
41bec7c3
VB
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
71 *
c2092c12
VB
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
881db7fb 76 *
bd0e7491
VB
77 * Frozen slabs
78 *
881db7fb 79 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0 80 * on any list except per cpu partial list. The processor that froze the
c2092c12 81 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
c2092c12 84 * slab's freelist.
81819f0f 85 *
bd0e7491
VB
86 * list_lock
87 *
81819f0f
CL
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
93 *
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
98 * the list lock.
bd0e7491 99 *
41bec7c3
VB
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
102 *
bd0e7491
VB
103 * cpu_slab->lock local lock
104 *
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
1f04b07d
TG
109 *
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
bd0e7491
VB
114 *
115 * lockless fastpaths
116 *
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
122 * another cpu.
123 *
124 * irq, preemption, migration considerations
125 *
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
129 *
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
134 *
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
137 *
672bba3a
CL
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 140 * freed then the slab will show up again on the partial lists.
672bba3a
CL
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
81819f0f
CL
143 *
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
147 *
c2092c12 148 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
156 *
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
dfb4f096 160 * freelist that allows lockless access to
894b8788
CL
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
81819f0f 163 *
aed68148 164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 165 * options set. This moves slab handling out of
894b8788 166 * the fast path and disables lockless freelists.
81819f0f
CL
167 */
168
25c00c50
VB
169/*
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172 */
173#ifndef CONFIG_PREEMPT_RT
1f04b07d
TG
174#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176#define USE_LOCKLESS_FAST_PATH() (true)
25c00c50
VB
177#else
178#define slub_get_cpu_ptr(var) \
179({ \
180 migrate_disable(); \
181 this_cpu_ptr(var); \
182})
183#define slub_put_cpu_ptr(var) \
184do { \
185 (void)(var); \
186 migrate_enable(); \
187} while (0)
1f04b07d 188#define USE_LOCKLESS_FAST_PATH() (false)
25c00c50
VB
189#endif
190
be784ba8
VB
191#ifndef CONFIG_SLUB_TINY
192#define __fastpath_inline __always_inline
193#else
194#define __fastpath_inline
195#endif
196
ca0cab65
VB
197#ifdef CONFIG_SLUB_DEBUG
198#ifdef CONFIG_SLUB_DEBUG_ON
199DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200#else
201DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202#endif
79270291 203#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 204
6edf2576
FT
205/* Structure holding parameters for get_partial() call chain */
206struct partial_context {
207 struct slab **slab;
208 gfp_t flags;
209 unsigned int orig_size;
210};
211
59052e89
VB
212static inline bool kmem_cache_debug(struct kmem_cache *s)
213{
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 215}
5577bd8a 216
6edf2576
FT
217static inline bool slub_debug_orig_size(struct kmem_cache *s)
218{
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
221}
222
117d54df 223void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 224{
59052e89 225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
226 p += s->red_left_pad;
227
228 return p;
229}
230
345c905d
JK
231static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232{
233#ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
235#else
236 return false;
237#endif
238}
239
81819f0f
CL
240/*
241 * Issues still to be resolved:
242 *
81819f0f
CL
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244 *
81819f0f
CL
245 * - Variable sizing of the per node arrays
246 */
247
b789ef51
CL
248/* Enable to log cmpxchg failures */
249#undef SLUB_DEBUG_CMPXCHG
250
5a8a3c1f 251#ifndef CONFIG_SLUB_TINY
2086d26a 252/*
dc84207d 253 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
255 */
76be8950 256#define MIN_PARTIAL 5
e95eed57 257
2086d26a
CL
258/*
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 261 * sort the partial list by the number of objects in use.
2086d26a
CL
262 */
263#define MAX_PARTIAL 10
5a8a3c1f
VB
264#else
265#define MIN_PARTIAL 0
266#define MAX_PARTIAL 0
267#endif
2086d26a 268
becfda68 269#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 270 SLAB_POISON | SLAB_STORE_USER)
672bba3a 271
149daaf3
LA
272/*
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
275 */
276#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 SLAB_TRACE)
278
279
fa5ec8a1 280/*
3de47213
DR
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
283 * metadata.
fa5ec8a1 284 */
3de47213 285#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 286
210b5c06
CG
287#define OO_SHIFT 16
288#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 289#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 290
81819f0f 291/* Internal SLUB flags */
d50112ed 292/* Poison object */
4fd0b46e 293#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 294/* Use cmpxchg_double */
6801be4f
PZ
295
296#ifdef system_has_freelist_aba
4fd0b46e 297#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
6801be4f
PZ
298#else
299#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U)
300#endif
81819f0f 301
02cbc874
CL
302/*
303 * Tracking user of a slab.
304 */
d6543e39 305#define TRACK_ADDRS_COUNT 16
02cbc874 306struct track {
ce71e27c 307 unsigned long addr; /* Called from address */
5cf909c5
OG
308#ifdef CONFIG_STACKDEPOT
309 depot_stack_handle_t handle;
d6543e39 310#endif
02cbc874
CL
311 int cpu; /* Was running on cpu */
312 int pid; /* Pid context */
313 unsigned long when; /* When did the operation occur */
314};
315
316enum track_item { TRACK_ALLOC, TRACK_FREE };
317
b1a413a3 318#ifdef SLAB_SUPPORTS_SYSFS
81819f0f
CL
319static int sysfs_slab_add(struct kmem_cache *);
320static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 321#else
0c710013
CL
322static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 { return 0; }
81819f0f
CL
325#endif
326
64dd6849
FM
327#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328static void debugfs_slab_add(struct kmem_cache *);
329#else
330static inline void debugfs_slab_add(struct kmem_cache *s) { }
331#endif
332
4fdccdfb 333static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
334{
335#ifdef CONFIG_SLUB_STATS
88da03a6
CL
336 /*
337 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 * avoid this_cpu_add()'s irq-disable overhead.
339 */
340 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
341#endif
342}
343
7e1fa93d
VB
344/*
345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347 * differ during memory hotplug/hotremove operations.
348 * Protected by slab_mutex.
349 */
350static nodemask_t slab_nodes;
351
0af8489b 352#ifndef CONFIG_SLUB_TINY
e45cc288
ML
353/*
354 * Workqueue used for flush_cpu_slab().
355 */
356static struct workqueue_struct *flushwq;
0af8489b 357#endif
e45cc288 358
81819f0f
CL
359/********************************************************************
360 * Core slab cache functions
361 *******************************************************************/
362
2482ddec
KC
363/*
364 * Returns freelist pointer (ptr). With hardening, this is obfuscated
365 * with an XOR of the address where the pointer is held and a per-cache
366 * random number.
367 */
368static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
369 unsigned long ptr_addr)
370{
371#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 372 /*
aa1ef4d7 373 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
374 * Normally, this doesn't cause any issues, as both set_freepointer()
375 * and get_freepointer() are called with a pointer with the same tag.
376 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
377 * example, when __free_slub() iterates over objects in a cache, it
378 * passes untagged pointers to check_object(). check_object() in turns
379 * calls get_freepointer() with an untagged pointer, which causes the
380 * freepointer to be restored incorrectly.
381 */
382 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 383 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
384#else
385 return ptr;
386#endif
387}
388
389/* Returns the freelist pointer recorded at location ptr_addr. */
390static inline void *freelist_dereference(const struct kmem_cache *s,
391 void *ptr_addr)
392{
393 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
394 (unsigned long)ptr_addr);
395}
396
7656c72b
CL
397static inline void *get_freepointer(struct kmem_cache *s, void *object)
398{
aa1ef4d7 399 object = kasan_reset_tag(object);
2482ddec 400 return freelist_dereference(s, object + s->offset);
7656c72b
CL
401}
402
0af8489b 403#ifndef CONFIG_SLUB_TINY
0ad9500e
ED
404static void prefetch_freepointer(const struct kmem_cache *s, void *object)
405{
04b4b006 406 prefetchw(object + s->offset);
0ad9500e 407}
0af8489b 408#endif
0ad9500e 409
68ef169a
AP
410/*
411 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
412 * pointer value in the case the current thread loses the race for the next
413 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
414 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
415 * KMSAN will still check all arguments of cmpxchg because of imperfect
416 * handling of inline assembly.
417 * To work around this problem, we apply __no_kmsan_checks to ensure that
418 * get_freepointer_safe() returns initialized memory.
419 */
420__no_kmsan_checks
1393d9a1
CL
421static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
422{
2482ddec 423 unsigned long freepointer_addr;
1393d9a1
CL
424 void *p;
425
8e57f8ac 426 if (!debug_pagealloc_enabled_static())
922d566c
JK
427 return get_freepointer(s, object);
428
f70b0049 429 object = kasan_reset_tag(object);
2482ddec 430 freepointer_addr = (unsigned long)object + s->offset;
fe557319 431 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 432 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
433}
434
7656c72b
CL
435static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
436{
2482ddec
KC
437 unsigned long freeptr_addr = (unsigned long)object + s->offset;
438
ce6fa91b
AP
439#ifdef CONFIG_SLAB_FREELIST_HARDENED
440 BUG_ON(object == fp); /* naive detection of double free or corruption */
441#endif
442
aa1ef4d7 443 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 444 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
445}
446
447/* Loop over all objects in a slab */
224a88be 448#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
449 for (__p = fixup_red_left(__s, __addr); \
450 __p < (__addr) + (__objects) * (__s)->size; \
451 __p += (__s)->size)
7656c72b 452
9736d2a9 453static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 454{
9736d2a9 455 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
456}
457
19af27af 458static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 459 unsigned int size)
834f3d11
CL
460{
461 struct kmem_cache_order_objects x = {
9736d2a9 462 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
463 };
464
465 return x;
466}
467
19af27af 468static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 469{
210b5c06 470 return x.x >> OO_SHIFT;
834f3d11
CL
471}
472
19af27af 473static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 474{
210b5c06 475 return x.x & OO_MASK;
834f3d11
CL
476}
477
b47291ef
VB
478#ifdef CONFIG_SLUB_CPU_PARTIAL
479static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
480{
bb192ed9 481 unsigned int nr_slabs;
b47291ef
VB
482
483 s->cpu_partial = nr_objects;
484
485 /*
486 * We take the number of objects but actually limit the number of
c2092c12
VB
487 * slabs on the per cpu partial list, in order to limit excessive
488 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
489 * be half-full.
490 */
bb192ed9
VB
491 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
492 s->cpu_partial_slabs = nr_slabs;
b47291ef
VB
493}
494#else
495static inline void
496slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
497{
498}
499#endif /* CONFIG_SLUB_CPU_PARTIAL */
500
881db7fb
CL
501/*
502 * Per slab locking using the pagelock
503 */
5875e598 504static __always_inline void slab_lock(struct slab *slab)
881db7fb 505{
0393895b
VB
506 struct page *page = slab_page(slab);
507
48c935ad 508 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
509 bit_spin_lock(PG_locked, &page->flags);
510}
511
5875e598 512static __always_inline void slab_unlock(struct slab *slab)
881db7fb 513{
0393895b
VB
514 struct page *page = slab_page(slab);
515
48c935ad 516 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
517 __bit_spin_unlock(PG_locked, &page->flags);
518}
519
6801be4f
PZ
520static inline bool
521__update_freelist_fast(struct slab *slab,
522 void *freelist_old, unsigned long counters_old,
523 void *freelist_new, unsigned long counters_new)
524{
525#ifdef system_has_freelist_aba
526 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
527 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
528
529 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
530#else
531 return false;
532#endif
533}
534
535static inline bool
536__update_freelist_slow(struct slab *slab,
537 void *freelist_old, unsigned long counters_old,
538 void *freelist_new, unsigned long counters_new)
539{
540 bool ret = false;
541
542 slab_lock(slab);
543 if (slab->freelist == freelist_old &&
544 slab->counters == counters_old) {
545 slab->freelist = freelist_new;
546 slab->counters = counters_new;
547 ret = true;
548 }
549 slab_unlock(slab);
550
551 return ret;
552}
553
a2b4ae8b
VB
554/*
555 * Interrupts must be disabled (for the fallback code to work right), typically
5875e598
VB
556 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
557 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
558 * allocation/ free operation in hardirq context. Therefore nothing can
559 * interrupt the operation.
a2b4ae8b 560 */
6801be4f 561static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
562 void *freelist_old, unsigned long counters_old,
563 void *freelist_new, unsigned long counters_new,
564 const char *n)
565{
6801be4f
PZ
566 bool ret;
567
1f04b07d 568 if (USE_LOCKLESS_FAST_PATH())
a2b4ae8b 569 lockdep_assert_irqs_disabled();
6801be4f 570
1d07171c 571 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
572 ret = __update_freelist_fast(slab, freelist_old, counters_old,
573 freelist_new, counters_new);
574 } else {
575 ret = __update_freelist_slow(slab, freelist_old, counters_old,
576 freelist_new, counters_new);
1d07171c 577 }
6801be4f
PZ
578 if (likely(ret))
579 return true;
1d07171c
CL
580
581 cpu_relax();
582 stat(s, CMPXCHG_DOUBLE_FAIL);
583
584#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 585 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
586#endif
587
6f6528a1 588 return false;
1d07171c
CL
589}
590
6801be4f 591static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
592 void *freelist_old, unsigned long counters_old,
593 void *freelist_new, unsigned long counters_new,
594 const char *n)
595{
6801be4f
PZ
596 bool ret;
597
b789ef51 598 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
599 ret = __update_freelist_fast(slab, freelist_old, counters_old,
600 freelist_new, counters_new);
601 } else {
1d07171c
CL
602 unsigned long flags;
603
604 local_irq_save(flags);
6801be4f
PZ
605 ret = __update_freelist_slow(slab, freelist_old, counters_old,
606 freelist_new, counters_new);
1d07171c 607 local_irq_restore(flags);
b789ef51 608 }
6801be4f
PZ
609 if (likely(ret))
610 return true;
b789ef51
CL
611
612 cpu_relax();
613 stat(s, CMPXCHG_DOUBLE_FAIL);
614
615#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 616 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
617#endif
618
6f6528a1 619 return false;
b789ef51
CL
620}
621
41ecc55b 622#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 623static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
4ef3f5a3 624static DEFINE_SPINLOCK(object_map_lock);
90e9f6a6 625
b3fd64e1 626static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 627 struct slab *slab)
b3fd64e1 628{
bb192ed9 629 void *addr = slab_address(slab);
b3fd64e1
VB
630 void *p;
631
bb192ed9 632 bitmap_zero(obj_map, slab->objects);
b3fd64e1 633
bb192ed9 634 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
635 set_bit(__obj_to_index(s, addr, p), obj_map);
636}
637
1f9f78b1
OG
638#if IS_ENABLED(CONFIG_KUNIT)
639static bool slab_add_kunit_errors(void)
640{
641 struct kunit_resource *resource;
642
909c6475 643 if (!kunit_get_current_test())
1f9f78b1
OG
644 return false;
645
646 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
647 if (!resource)
648 return false;
649
650 (*(int *)resource->data)++;
651 kunit_put_resource(resource);
652 return true;
653}
654#else
655static inline bool slab_add_kunit_errors(void) { return false; }
656#endif
657
870b1fbb 658static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
659{
660 if (s->flags & SLAB_RED_ZONE)
661 return s->size - s->red_left_pad;
662
663 return s->size;
664}
665
666static inline void *restore_red_left(struct kmem_cache *s, void *p)
667{
668 if (s->flags & SLAB_RED_ZONE)
669 p -= s->red_left_pad;
670
671 return p;
672}
673
41ecc55b
CL
674/*
675 * Debug settings:
676 */
89d3c87e 677#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 678static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 679#else
d50112ed 680static slab_flags_t slub_debug;
f0630fff 681#endif
41ecc55b 682
e17f1dfb 683static char *slub_debug_string;
fa5ec8a1 684static int disable_higher_order_debug;
41ecc55b 685
a79316c6
AR
686/*
687 * slub is about to manipulate internal object metadata. This memory lies
688 * outside the range of the allocated object, so accessing it would normally
689 * be reported by kasan as a bounds error. metadata_access_enable() is used
690 * to tell kasan that these accesses are OK.
691 */
692static inline void metadata_access_enable(void)
693{
694 kasan_disable_current();
695}
696
697static inline void metadata_access_disable(void)
698{
699 kasan_enable_current();
700}
701
81819f0f
CL
702/*
703 * Object debugging
704 */
d86bd1be
JK
705
706/* Verify that a pointer has an address that is valid within a slab page */
707static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 708 struct slab *slab, void *object)
d86bd1be
JK
709{
710 void *base;
711
712 if (!object)
713 return 1;
714
bb192ed9 715 base = slab_address(slab);
338cfaad 716 object = kasan_reset_tag(object);
d86bd1be 717 object = restore_red_left(s, object);
bb192ed9 718 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
719 (object - base) % s->size) {
720 return 0;
721 }
722
723 return 1;
724}
725
aa2efd5e
DT
726static void print_section(char *level, char *text, u8 *addr,
727 unsigned int length)
81819f0f 728{
a79316c6 729 metadata_access_enable();
340caf17
KYL
730 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
731 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 732 metadata_access_disable();
81819f0f
CL
733}
734
cbfc35a4
WL
735/*
736 * See comment in calculate_sizes().
737 */
738static inline bool freeptr_outside_object(struct kmem_cache *s)
739{
740 return s->offset >= s->inuse;
741}
742
743/*
744 * Return offset of the end of info block which is inuse + free pointer if
745 * not overlapping with object.
746 */
747static inline unsigned int get_info_end(struct kmem_cache *s)
748{
749 if (freeptr_outside_object(s))
750 return s->inuse + sizeof(void *);
751 else
752 return s->inuse;
753}
754
81819f0f
CL
755static struct track *get_track(struct kmem_cache *s, void *object,
756 enum track_item alloc)
757{
758 struct track *p;
759
cbfc35a4 760 p = object + get_info_end(s);
81819f0f 761
aa1ef4d7 762 return kasan_reset_tag(p + alloc);
81819f0f
CL
763}
764
5cf909c5 765#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
766static noinline depot_stack_handle_t set_track_prepare(void)
767{
768 depot_stack_handle_t handle;
5cf909c5 769 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 770 unsigned int nr_entries;
ae14c63a 771
5cf909c5 772 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
773 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
774
775 return handle;
776}
777#else
778static inline depot_stack_handle_t set_track_prepare(void)
779{
780 return 0;
781}
d6543e39 782#endif
5cf909c5 783
c4cf6785
SAS
784static void set_track_update(struct kmem_cache *s, void *object,
785 enum track_item alloc, unsigned long addr,
786 depot_stack_handle_t handle)
787{
788 struct track *p = get_track(s, object, alloc);
789
790#ifdef CONFIG_STACKDEPOT
791 p->handle = handle;
792#endif
0cd1a029
VB
793 p->addr = addr;
794 p->cpu = smp_processor_id();
795 p->pid = current->pid;
796 p->when = jiffies;
81819f0f
CL
797}
798
c4cf6785
SAS
799static __always_inline void set_track(struct kmem_cache *s, void *object,
800 enum track_item alloc, unsigned long addr)
801{
802 depot_stack_handle_t handle = set_track_prepare();
803
804 set_track_update(s, object, alloc, addr, handle);
805}
806
81819f0f
CL
807static void init_tracking(struct kmem_cache *s, void *object)
808{
0cd1a029
VB
809 struct track *p;
810
24922684
CL
811 if (!(s->flags & SLAB_STORE_USER))
812 return;
813
0cd1a029
VB
814 p = get_track(s, object, TRACK_ALLOC);
815 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
816}
817
86609d33 818static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 819{
5cf909c5
OG
820 depot_stack_handle_t handle __maybe_unused;
821
81819f0f
CL
822 if (!t->addr)
823 return;
824
96b94abc 825 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 826 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
827#ifdef CONFIG_STACKDEPOT
828 handle = READ_ONCE(t->handle);
829 if (handle)
830 stack_depot_print(handle);
831 else
832 pr_err("object allocation/free stack trace missing\n");
d6543e39 833#endif
24922684
CL
834}
835
e42f174e 836void print_tracking(struct kmem_cache *s, void *object)
24922684 837{
86609d33 838 unsigned long pr_time = jiffies;
24922684
CL
839 if (!(s->flags & SLAB_STORE_USER))
840 return;
841
86609d33
CP
842 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
843 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
844}
845
fb012e27 846static void print_slab_info(const struct slab *slab)
24922684 847{
fb012e27 848 struct folio *folio = (struct folio *)slab_folio(slab);
24922684 849
fb012e27
MWO
850 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
851 slab, slab->objects, slab->inuse, slab->freelist,
852 folio_flags(folio, 0));
24922684
CL
853}
854
6edf2576
FT
855/*
856 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
857 * family will round up the real request size to these fixed ones, so
858 * there could be an extra area than what is requested. Save the original
859 * request size in the meta data area, for better debug and sanity check.
860 */
861static inline void set_orig_size(struct kmem_cache *s,
862 void *object, unsigned int orig_size)
863{
864 void *p = kasan_reset_tag(object);
865
866 if (!slub_debug_orig_size(s))
867 return;
868
946fa0db
FT
869#ifdef CONFIG_KASAN_GENERIC
870 /*
871 * KASAN could save its free meta data in object's data area at
872 * offset 0, if the size is larger than 'orig_size', it will
873 * overlap the data redzone in [orig_size+1, object_size], and
874 * the check should be skipped.
875 */
876 if (kasan_metadata_size(s, true) > orig_size)
877 orig_size = s->object_size;
878#endif
879
6edf2576
FT
880 p += get_info_end(s);
881 p += sizeof(struct track) * 2;
882
883 *(unsigned int *)p = orig_size;
884}
885
886static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
887{
888 void *p = kasan_reset_tag(object);
889
890 if (!slub_debug_orig_size(s))
891 return s->object_size;
892
893 p += get_info_end(s);
894 p += sizeof(struct track) * 2;
895
896 return *(unsigned int *)p;
897}
898
946fa0db
FT
899void skip_orig_size_check(struct kmem_cache *s, const void *object)
900{
901 set_orig_size(s, (void *)object, s->object_size);
902}
903
24922684
CL
904static void slab_bug(struct kmem_cache *s, char *fmt, ...)
905{
ecc42fbe 906 struct va_format vaf;
24922684 907 va_list args;
24922684
CL
908
909 va_start(args, fmt);
ecc42fbe
FF
910 vaf.fmt = fmt;
911 vaf.va = &args;
f9f58285 912 pr_err("=============================================================================\n");
ecc42fbe 913 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 914 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 915 va_end(args);
81819f0f
CL
916}
917
582d1212 918__printf(2, 3)
24922684
CL
919static void slab_fix(struct kmem_cache *s, char *fmt, ...)
920{
ecc42fbe 921 struct va_format vaf;
24922684 922 va_list args;
24922684 923
1f9f78b1
OG
924 if (slab_add_kunit_errors())
925 return;
926
24922684 927 va_start(args, fmt);
ecc42fbe
FF
928 vaf.fmt = fmt;
929 vaf.va = &args;
930 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 931 va_end(args);
24922684
CL
932}
933
bb192ed9 934static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
935{
936 unsigned int off; /* Offset of last byte */
bb192ed9 937 u8 *addr = slab_address(slab);
24922684
CL
938
939 print_tracking(s, p);
940
bb192ed9 941 print_slab_info(slab);
24922684 942
96b94abc 943 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 944 p, p - addr, get_freepointer(s, p));
24922684 945
d86bd1be 946 if (s->flags & SLAB_RED_ZONE)
8669dbab 947 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 948 s->red_left_pad);
d86bd1be 949 else if (p > addr + 16)
aa2efd5e 950 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 951
8669dbab 952 print_section(KERN_ERR, "Object ", p,
1b473f29 953 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 954 if (s->flags & SLAB_RED_ZONE)
8669dbab 955 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 956 s->inuse - s->object_size);
81819f0f 957
cbfc35a4 958 off = get_info_end(s);
81819f0f 959
24922684 960 if (s->flags & SLAB_STORE_USER)
81819f0f 961 off += 2 * sizeof(struct track);
81819f0f 962
6edf2576
FT
963 if (slub_debug_orig_size(s))
964 off += sizeof(unsigned int);
965
5d1ba310 966 off += kasan_metadata_size(s, false);
80a9201a 967
d86bd1be 968 if (off != size_from_object(s))
81819f0f 969 /* Beginning of the filler is the free pointer */
8669dbab 970 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 971 size_from_object(s) - off);
24922684
CL
972
973 dump_stack();
81819f0f
CL
974}
975
bb192ed9 976static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
977 u8 *object, char *reason)
978{
1f9f78b1
OG
979 if (slab_add_kunit_errors())
980 return;
981
3dc50637 982 slab_bug(s, "%s", reason);
bb192ed9 983 print_trailer(s, slab, object);
65ebdeef 984 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
985}
986
bb192ed9 987static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
988 void **freelist, void *nextfree)
989{
990 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
991 !check_valid_pointer(s, slab, nextfree) && freelist) {
992 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
993 *freelist = NULL;
994 slab_fix(s, "Isolate corrupted freechain");
995 return true;
996 }
997
998 return false;
999}
1000
bb192ed9 1001static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 1002 const char *fmt, ...)
81819f0f
CL
1003{
1004 va_list args;
1005 char buf[100];
1006
1f9f78b1
OG
1007 if (slab_add_kunit_errors())
1008 return;
1009
24922684
CL
1010 va_start(args, fmt);
1011 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 1012 va_end(args);
3dc50637 1013 slab_bug(s, "%s", buf);
bb192ed9 1014 print_slab_info(slab);
81819f0f 1015 dump_stack();
65ebdeef 1016 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1017}
1018
f7cb1933 1019static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 1020{
aa1ef4d7 1021 u8 *p = kasan_reset_tag(object);
946fa0db 1022 unsigned int poison_size = s->object_size;
81819f0f 1023
946fa0db 1024 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
1025 memset(p - s->red_left_pad, val, s->red_left_pad);
1026
946fa0db
FT
1027 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1028 /*
1029 * Redzone the extra allocated space by kmalloc than
1030 * requested, and the poison size will be limited to
1031 * the original request size accordingly.
1032 */
1033 poison_size = get_orig_size(s, object);
1034 }
1035 }
1036
81819f0f 1037 if (s->flags & __OBJECT_POISON) {
946fa0db
FT
1038 memset(p, POISON_FREE, poison_size - 1);
1039 p[poison_size - 1] = POISON_END;
81819f0f
CL
1040 }
1041
1042 if (s->flags & SLAB_RED_ZONE)
946fa0db 1043 memset(p + poison_size, val, s->inuse - poison_size);
81819f0f
CL
1044}
1045
24922684
CL
1046static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1047 void *from, void *to)
1048{
582d1212 1049 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
1050 memset(from, data, to - from);
1051}
1052
bb192ed9 1053static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
24922684 1054 u8 *object, char *what,
06428780 1055 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
1056{
1057 u8 *fault;
1058 u8 *end;
bb192ed9 1059 u8 *addr = slab_address(slab);
24922684 1060
a79316c6 1061 metadata_access_enable();
aa1ef4d7 1062 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 1063 metadata_access_disable();
24922684
CL
1064 if (!fault)
1065 return 1;
1066
1067 end = start + bytes;
1068 while (end > fault && end[-1] == value)
1069 end--;
1070
1f9f78b1
OG
1071 if (slab_add_kunit_errors())
1072 goto skip_bug_print;
1073
24922684 1074 slab_bug(s, "%s overwritten", what);
96b94abc 1075 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
1076 fault, end - 1, fault - addr,
1077 fault[0], value);
bb192ed9 1078 print_trailer(s, slab, object);
65ebdeef 1079 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 1080
1f9f78b1 1081skip_bug_print:
24922684
CL
1082 restore_bytes(s, what, value, fault, end);
1083 return 0;
81819f0f
CL
1084}
1085
81819f0f
CL
1086/*
1087 * Object layout:
1088 *
1089 * object address
1090 * Bytes of the object to be managed.
1091 * If the freepointer may overlay the object then the free
cbfc35a4 1092 * pointer is at the middle of the object.
672bba3a 1093 *
81819f0f
CL
1094 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1095 * 0xa5 (POISON_END)
1096 *
3b0efdfa 1097 * object + s->object_size
81819f0f 1098 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1099 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1100 * object_size == inuse.
672bba3a 1101 *
81819f0f
CL
1102 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1103 * 0xcc (RED_ACTIVE) for objects in use.
1104 *
1105 * object + s->inuse
672bba3a
CL
1106 * Meta data starts here.
1107 *
81819f0f
CL
1108 * A. Free pointer (if we cannot overwrite object on free)
1109 * B. Tracking data for SLAB_STORE_USER
6edf2576
FT
1110 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1111 * D. Padding to reach required alignment boundary or at minimum
6446faa2 1112 * one word if debugging is on to be able to detect writes
672bba3a
CL
1113 * before the word boundary.
1114 *
1115 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1116 *
1117 * object + s->size
672bba3a 1118 * Nothing is used beyond s->size.
81819f0f 1119 *
3b0efdfa 1120 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1121 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1122 * may be used with merged slabcaches.
1123 */
1124
bb192ed9 1125static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1126{
cbfc35a4 1127 unsigned long off = get_info_end(s); /* The end of info */
81819f0f 1128
6edf2576 1129 if (s->flags & SLAB_STORE_USER) {
81819f0f
CL
1130 /* We also have user information there */
1131 off += 2 * sizeof(struct track);
1132
6edf2576
FT
1133 if (s->flags & SLAB_KMALLOC)
1134 off += sizeof(unsigned int);
1135 }
1136
5d1ba310 1137 off += kasan_metadata_size(s, false);
80a9201a 1138
d86bd1be 1139 if (size_from_object(s) == off)
81819f0f
CL
1140 return 1;
1141
bb192ed9 1142 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1143 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1144}
1145
39b26464 1146/* Check the pad bytes at the end of a slab page */
a204e6d6 1147static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1148{
24922684
CL
1149 u8 *start;
1150 u8 *fault;
1151 u8 *end;
5d682681 1152 u8 *pad;
24922684
CL
1153 int length;
1154 int remainder;
81819f0f
CL
1155
1156 if (!(s->flags & SLAB_POISON))
a204e6d6 1157 return;
81819f0f 1158
bb192ed9
VB
1159 start = slab_address(slab);
1160 length = slab_size(slab);
39b26464
CL
1161 end = start + length;
1162 remainder = length % s->size;
81819f0f 1163 if (!remainder)
a204e6d6 1164 return;
81819f0f 1165
5d682681 1166 pad = end - remainder;
a79316c6 1167 metadata_access_enable();
aa1ef4d7 1168 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1169 metadata_access_disable();
24922684 1170 if (!fault)
a204e6d6 1171 return;
24922684
CL
1172 while (end > fault && end[-1] == POISON_INUSE)
1173 end--;
1174
bb192ed9 1175 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1176 fault, end - 1, fault - start);
5d682681 1177 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1178
5d682681 1179 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1180}
1181
bb192ed9 1182static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1183 void *object, u8 val)
81819f0f
CL
1184{
1185 u8 *p = object;
3b0efdfa 1186 u8 *endobject = object + s->object_size;
946fa0db 1187 unsigned int orig_size;
81819f0f
CL
1188
1189 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1190 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be
JK
1191 object - s->red_left_pad, val, s->red_left_pad))
1192 return 0;
1193
bb192ed9 1194 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1195 endobject, val, s->inuse - s->object_size))
81819f0f 1196 return 0;
946fa0db
FT
1197
1198 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1199 orig_size = get_orig_size(s, object);
1200
1201 if (s->object_size > orig_size &&
1202 !check_bytes_and_report(s, slab, object,
1203 "kmalloc Redzone", p + orig_size,
1204 val, s->object_size - orig_size)) {
1205 return 0;
1206 }
1207 }
81819f0f 1208 } else {
3b0efdfa 1209 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
bb192ed9 1210 check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97
CG
1211 endobject, POISON_INUSE,
1212 s->inuse - s->object_size);
3adbefee 1213 }
81819f0f
CL
1214 }
1215
1216 if (s->flags & SLAB_POISON) {
f7cb1933 1217 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
bb192ed9 1218 (!check_bytes_and_report(s, slab, p, "Poison", p,
3b0efdfa 1219 POISON_FREE, s->object_size - 1) ||
bb192ed9 1220 !check_bytes_and_report(s, slab, p, "End Poison",
3b0efdfa 1221 p + s->object_size - 1, POISON_END, 1)))
81819f0f 1222 return 0;
81819f0f
CL
1223 /*
1224 * check_pad_bytes cleans up on its own.
1225 */
bb192ed9 1226 check_pad_bytes(s, slab, p);
81819f0f
CL
1227 }
1228
cbfc35a4 1229 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1230 /*
1231 * Object and freepointer overlap. Cannot check
1232 * freepointer while object is allocated.
1233 */
1234 return 1;
1235
1236 /* Check free pointer validity */
bb192ed9
VB
1237 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1238 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1239 /*
9f6c708e 1240 * No choice but to zap it and thus lose the remainder
81819f0f 1241 * of the free objects in this slab. May cause
672bba3a 1242 * another error because the object count is now wrong.
81819f0f 1243 */
a973e9dd 1244 set_freepointer(s, p, NULL);
81819f0f
CL
1245 return 0;
1246 }
1247 return 1;
1248}
1249
bb192ed9 1250static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1251{
39b26464
CL
1252 int maxobj;
1253
bb192ed9
VB
1254 if (!folio_test_slab(slab_folio(slab))) {
1255 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1256 return 0;
1257 }
39b26464 1258
bb192ed9
VB
1259 maxobj = order_objects(slab_order(slab), s->size);
1260 if (slab->objects > maxobj) {
1261 slab_err(s, slab, "objects %u > max %u",
1262 slab->objects, maxobj);
39b26464
CL
1263 return 0;
1264 }
bb192ed9
VB
1265 if (slab->inuse > slab->objects) {
1266 slab_err(s, slab, "inuse %u > max %u",
1267 slab->inuse, slab->objects);
81819f0f
CL
1268 return 0;
1269 }
1270 /* Slab_pad_check fixes things up after itself */
bb192ed9 1271 slab_pad_check(s, slab);
81819f0f
CL
1272 return 1;
1273}
1274
1275/*
c2092c12 1276 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1277 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1278 */
bb192ed9 1279static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1280{
1281 int nr = 0;
881db7fb 1282 void *fp;
81819f0f 1283 void *object = NULL;
f6edde9c 1284 int max_objects;
81819f0f 1285
bb192ed9
VB
1286 fp = slab->freelist;
1287 while (fp && nr <= slab->objects) {
81819f0f
CL
1288 if (fp == search)
1289 return 1;
bb192ed9 1290 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1291 if (object) {
bb192ed9 1292 object_err(s, slab, object,
81819f0f 1293 "Freechain corrupt");
a973e9dd 1294 set_freepointer(s, object, NULL);
81819f0f 1295 } else {
bb192ed9
VB
1296 slab_err(s, slab, "Freepointer corrupt");
1297 slab->freelist = NULL;
1298 slab->inuse = slab->objects;
24922684 1299 slab_fix(s, "Freelist cleared");
81819f0f
CL
1300 return 0;
1301 }
1302 break;
1303 }
1304 object = fp;
1305 fp = get_freepointer(s, object);
1306 nr++;
1307 }
1308
bb192ed9 1309 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1310 if (max_objects > MAX_OBJS_PER_PAGE)
1311 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1312
bb192ed9
VB
1313 if (slab->objects != max_objects) {
1314 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1315 slab->objects, max_objects);
1316 slab->objects = max_objects;
582d1212 1317 slab_fix(s, "Number of objects adjusted");
224a88be 1318 }
bb192ed9
VB
1319 if (slab->inuse != slab->objects - nr) {
1320 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1321 slab->inuse, slab->objects - nr);
1322 slab->inuse = slab->objects - nr;
582d1212 1323 slab_fix(s, "Object count adjusted");
81819f0f
CL
1324 }
1325 return search == NULL;
1326}
1327
bb192ed9 1328static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1329 int alloc)
3ec09742
CL
1330{
1331 if (s->flags & SLAB_TRACE) {
f9f58285 1332 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1333 s->name,
1334 alloc ? "alloc" : "free",
bb192ed9
VB
1335 object, slab->inuse,
1336 slab->freelist);
3ec09742
CL
1337
1338 if (!alloc)
aa2efd5e 1339 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1340 s->object_size);
3ec09742
CL
1341
1342 dump_stack();
1343 }
1344}
1345
643b1138 1346/*
672bba3a 1347 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1348 */
5cc6eee8 1349static void add_full(struct kmem_cache *s,
bb192ed9 1350 struct kmem_cache_node *n, struct slab *slab)
643b1138 1351{
5cc6eee8
CL
1352 if (!(s->flags & SLAB_STORE_USER))
1353 return;
1354
255d0884 1355 lockdep_assert_held(&n->list_lock);
bb192ed9 1356 list_add(&slab->slab_list, &n->full);
643b1138
CL
1357}
1358
bb192ed9 1359static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1360{
643b1138
CL
1361 if (!(s->flags & SLAB_STORE_USER))
1362 return;
1363
255d0884 1364 lockdep_assert_held(&n->list_lock);
bb192ed9 1365 list_del(&slab->slab_list);
643b1138
CL
1366}
1367
26c02cf0
AB
1368static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1369{
1370 return atomic_long_read(&n->nr_slabs);
1371}
1372
205ab99d 1373static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1374{
1375 struct kmem_cache_node *n = get_node(s, node);
1376
1377 /*
1378 * May be called early in order to allocate a slab for the
1379 * kmem_cache_node structure. Solve the chicken-egg
1380 * dilemma by deferring the increment of the count during
1381 * bootstrap (see early_kmem_cache_node_alloc).
1382 */
338b2642 1383 if (likely(n)) {
0f389ec6 1384 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1385 atomic_long_add(objects, &n->total_objects);
1386 }
0f389ec6 1387}
205ab99d 1388static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1389{
1390 struct kmem_cache_node *n = get_node(s, node);
1391
1392 atomic_long_dec(&n->nr_slabs);
205ab99d 1393 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1394}
1395
1396/* Object debug checks for alloc/free paths */
c0f81a94 1397static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1398{
8fc8d666 1399 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1400 return;
1401
f7cb1933 1402 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1403 init_tracking(s, object);
1404}
1405
a50b854e 1406static
bb192ed9 1407void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1408{
8fc8d666 1409 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1410 return;
1411
1412 metadata_access_enable();
bb192ed9 1413 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1414 metadata_access_disable();
1415}
1416
becfda68 1417static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1418 struct slab *slab, void *object)
81819f0f 1419{
bb192ed9 1420 if (!check_slab(s, slab))
becfda68 1421 return 0;
81819f0f 1422
bb192ed9
VB
1423 if (!check_valid_pointer(s, slab, object)) {
1424 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1425 return 0;
81819f0f
CL
1426 }
1427
bb192ed9 1428 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1429 return 0;
1430
1431 return 1;
1432}
1433
fa9b88e4 1434static noinline bool alloc_debug_processing(struct kmem_cache *s,
6edf2576 1435 struct slab *slab, void *object, int orig_size)
becfda68
LA
1436{
1437 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1438 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1439 goto bad;
1440 }
81819f0f 1441
c7323a5a 1442 /* Success. Perform special debug activities for allocs */
bb192ed9 1443 trace(s, slab, object, 1);
6edf2576 1444 set_orig_size(s, object, orig_size);
f7cb1933 1445 init_object(s, object, SLUB_RED_ACTIVE);
fa9b88e4 1446 return true;
3ec09742 1447
81819f0f 1448bad:
bb192ed9 1449 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1450 /*
1451 * If this is a slab page then lets do the best we can
1452 * to avoid issues in the future. Marking all objects
672bba3a 1453 * as used avoids touching the remaining objects.
81819f0f 1454 */
24922684 1455 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1456 slab->inuse = slab->objects;
1457 slab->freelist = NULL;
81819f0f 1458 }
fa9b88e4 1459 return false;
81819f0f
CL
1460}
1461
becfda68 1462static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1463 struct slab *slab, void *object, unsigned long addr)
81819f0f 1464{
bb192ed9
VB
1465 if (!check_valid_pointer(s, slab, object)) {
1466 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1467 return 0;
81819f0f
CL
1468 }
1469
bb192ed9
VB
1470 if (on_freelist(s, slab, object)) {
1471 object_err(s, slab, object, "Object already free");
becfda68 1472 return 0;
81819f0f
CL
1473 }
1474
bb192ed9 1475 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1476 return 0;
81819f0f 1477
bb192ed9
VB
1478 if (unlikely(s != slab->slab_cache)) {
1479 if (!folio_test_slab(slab_folio(slab))) {
1480 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1481 object);
bb192ed9 1482 } else if (!slab->slab_cache) {
f9f58285
FF
1483 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1484 object);
70d71228 1485 dump_stack();
06428780 1486 } else
bb192ed9 1487 object_err(s, slab, object,
24922684 1488 "page slab pointer corrupt.");
becfda68
LA
1489 return 0;
1490 }
1491 return 1;
1492}
1493
e17f1dfb
VB
1494/*
1495 * Parse a block of slub_debug options. Blocks are delimited by ';'
1496 *
1497 * @str: start of block
1498 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1499 * @slabs: return start of list of slabs, or NULL when there's no list
1500 * @init: assume this is initial parsing and not per-kmem-create parsing
1501 *
1502 * returns the start of next block if there's any, or NULL
1503 */
1504static char *
1505parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1506{
e17f1dfb 1507 bool higher_order_disable = false;
f0630fff 1508
e17f1dfb
VB
1509 /* Skip any completely empty blocks */
1510 while (*str && *str == ';')
1511 str++;
1512
1513 if (*str == ',') {
f0630fff
CL
1514 /*
1515 * No options but restriction on slabs. This means full
1516 * debugging for slabs matching a pattern.
1517 */
e17f1dfb 1518 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1519 goto check_slabs;
e17f1dfb
VB
1520 }
1521 *flags = 0;
f0630fff 1522
e17f1dfb
VB
1523 /* Determine which debug features should be switched on */
1524 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1525 switch (tolower(*str)) {
e17f1dfb
VB
1526 case '-':
1527 *flags = 0;
1528 break;
f0630fff 1529 case 'f':
e17f1dfb 1530 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1531 break;
1532 case 'z':
e17f1dfb 1533 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1534 break;
1535 case 'p':
e17f1dfb 1536 *flags |= SLAB_POISON;
f0630fff
CL
1537 break;
1538 case 'u':
e17f1dfb 1539 *flags |= SLAB_STORE_USER;
f0630fff
CL
1540 break;
1541 case 't':
e17f1dfb 1542 *flags |= SLAB_TRACE;
f0630fff 1543 break;
4c13dd3b 1544 case 'a':
e17f1dfb 1545 *flags |= SLAB_FAILSLAB;
4c13dd3b 1546 break;
08303a73
CA
1547 case 'o':
1548 /*
1549 * Avoid enabling debugging on caches if its minimum
1550 * order would increase as a result.
1551 */
e17f1dfb 1552 higher_order_disable = true;
08303a73 1553 break;
f0630fff 1554 default:
e17f1dfb
VB
1555 if (init)
1556 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1557 }
41ecc55b 1558 }
f0630fff 1559check_slabs:
41ecc55b 1560 if (*str == ',')
e17f1dfb
VB
1561 *slabs = ++str;
1562 else
1563 *slabs = NULL;
1564
1565 /* Skip over the slab list */
1566 while (*str && *str != ';')
1567 str++;
1568
1569 /* Skip any completely empty blocks */
1570 while (*str && *str == ';')
1571 str++;
1572
1573 if (init && higher_order_disable)
1574 disable_higher_order_debug = 1;
1575
1576 if (*str)
1577 return str;
1578 else
1579 return NULL;
1580}
1581
1582static int __init setup_slub_debug(char *str)
1583{
1584 slab_flags_t flags;
a7f1d485 1585 slab_flags_t global_flags;
e17f1dfb
VB
1586 char *saved_str;
1587 char *slab_list;
1588 bool global_slub_debug_changed = false;
1589 bool slab_list_specified = false;
1590
a7f1d485 1591 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1592 if (*str++ != '=' || !*str)
1593 /*
1594 * No options specified. Switch on full debugging.
1595 */
1596 goto out;
1597
1598 saved_str = str;
1599 while (str) {
1600 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1601
1602 if (!slab_list) {
a7f1d485 1603 global_flags = flags;
e17f1dfb
VB
1604 global_slub_debug_changed = true;
1605 } else {
1606 slab_list_specified = true;
5cf909c5 1607 if (flags & SLAB_STORE_USER)
1c0310ad 1608 stack_depot_request_early_init();
e17f1dfb
VB
1609 }
1610 }
1611
1612 /*
1613 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1614 * slabs means debugging is only changed for those slabs, so the global
1615 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1616 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1617 * long as there is no option specifying flags without a slab list.
1618 */
1619 if (slab_list_specified) {
1620 if (!global_slub_debug_changed)
a7f1d485 1621 global_flags = slub_debug;
e17f1dfb
VB
1622 slub_debug_string = saved_str;
1623 }
f0630fff 1624out:
a7f1d485 1625 slub_debug = global_flags;
5cf909c5 1626 if (slub_debug & SLAB_STORE_USER)
1c0310ad 1627 stack_depot_request_early_init();
ca0cab65
VB
1628 if (slub_debug != 0 || slub_debug_string)
1629 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1630 else
1631 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1632 if ((static_branch_unlikely(&init_on_alloc) ||
1633 static_branch_unlikely(&init_on_free)) &&
1634 (slub_debug & SLAB_POISON))
1635 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1636 return 1;
1637}
1638
1639__setup("slub_debug", setup_slub_debug);
1640
c5fd3ca0
AT
1641/*
1642 * kmem_cache_flags - apply debugging options to the cache
1643 * @object_size: the size of an object without meta data
1644 * @flags: flags to set
1645 * @name: name of the cache
c5fd3ca0
AT
1646 *
1647 * Debug option(s) are applied to @flags. In addition to the debug
1648 * option(s), if a slab name (or multiple) is specified i.e.
1649 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1650 * then only the select slabs will receive the debug option(s).
1651 */
0293d1fd 1652slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1653 slab_flags_t flags, const char *name)
41ecc55b 1654{
c5fd3ca0
AT
1655 char *iter;
1656 size_t len;
e17f1dfb
VB
1657 char *next_block;
1658 slab_flags_t block_flags;
ca220593
JB
1659 slab_flags_t slub_debug_local = slub_debug;
1660
a285909f
HY
1661 if (flags & SLAB_NO_USER_FLAGS)
1662 return flags;
1663
ca220593
JB
1664 /*
1665 * If the slab cache is for debugging (e.g. kmemleak) then
1666 * don't store user (stack trace) information by default,
1667 * but let the user enable it via the command line below.
1668 */
1669 if (flags & SLAB_NOLEAKTRACE)
1670 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1671
c5fd3ca0 1672 len = strlen(name);
e17f1dfb
VB
1673 next_block = slub_debug_string;
1674 /* Go through all blocks of debug options, see if any matches our slab's name */
1675 while (next_block) {
1676 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1677 if (!iter)
1678 continue;
1679 /* Found a block that has a slab list, search it */
1680 while (*iter) {
1681 char *end, *glob;
1682 size_t cmplen;
1683
1684 end = strchrnul(iter, ',');
1685 if (next_block && next_block < end)
1686 end = next_block - 1;
1687
1688 glob = strnchr(iter, end - iter, '*');
1689 if (glob)
1690 cmplen = glob - iter;
1691 else
1692 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1693
e17f1dfb
VB
1694 if (!strncmp(name, iter, cmplen)) {
1695 flags |= block_flags;
1696 return flags;
1697 }
c5fd3ca0 1698
e17f1dfb
VB
1699 if (!*end || *end == ';')
1700 break;
1701 iter = end + 1;
c5fd3ca0 1702 }
c5fd3ca0 1703 }
ba0268a8 1704
ca220593 1705 return flags | slub_debug_local;
41ecc55b 1706}
b4a64718 1707#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1708static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1709static inline
bb192ed9 1710void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1711
fa9b88e4
VB
1712static inline bool alloc_debug_processing(struct kmem_cache *s,
1713 struct slab *slab, void *object, int orig_size) { return true; }
41ecc55b 1714
fa9b88e4
VB
1715static inline bool free_debug_processing(struct kmem_cache *s,
1716 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1717 unsigned long addr, depot_stack_handle_t handle) { return true; }
41ecc55b 1718
a204e6d6 1719static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1720static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1721 void *object, u8 val) { return 1; }
fa9b88e4 1722static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
c7323a5a
VB
1723static inline void set_track(struct kmem_cache *s, void *object,
1724 enum track_item alloc, unsigned long addr) {}
5cc6eee8 1725static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1726 struct slab *slab) {}
c65c1877 1727static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1728 struct slab *slab) {}
0293d1fd 1729slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1730 slab_flags_t flags, const char *name)
ba0268a8
CL
1731{
1732 return flags;
1733}
41ecc55b 1734#define slub_debug 0
0f389ec6 1735
fdaa45e9
IM
1736#define disable_higher_order_debug 0
1737
26c02cf0
AB
1738static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1739 { return 0; }
205ab99d
CL
1740static inline void inc_slabs_node(struct kmem_cache *s, int node,
1741 int objects) {}
1742static inline void dec_slabs_node(struct kmem_cache *s, int node,
1743 int objects) {}
7d550c56 1744
0af8489b 1745#ifndef CONFIG_SLUB_TINY
bb192ed9 1746static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1747 void **freelist, void *nextfree)
52f23478
DZ
1748{
1749 return false;
1750}
0af8489b 1751#endif
02e72cc6
AR
1752#endif /* CONFIG_SLUB_DEBUG */
1753
1754/*
1755 * Hooks for other subsystems that check memory allocations. In a typical
1756 * production configuration these hooks all should produce no code at all.
1757 */
d57a964e
AK
1758static __always_inline bool slab_free_hook(struct kmem_cache *s,
1759 void *x, bool init)
d56791b3
RB
1760{
1761 kmemleak_free_recursive(x, s->flags);
68ef169a 1762 kmsan_slab_free(s, x);
7d550c56 1763
84048039 1764 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1765
02e72cc6
AR
1766 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1767 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1768
cfbe1636
ME
1769 /* Use KCSAN to help debug racy use-after-free. */
1770 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1771 __kcsan_check_access(x, s->object_size,
1772 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1773
d57a964e
AK
1774 /*
1775 * As memory initialization might be integrated into KASAN,
1776 * kasan_slab_free and initialization memset's must be
1777 * kept together to avoid discrepancies in behavior.
1778 *
1779 * The initialization memset's clear the object and the metadata,
1780 * but don't touch the SLAB redzone.
1781 */
1782 if (init) {
1783 int rsize;
1784
1785 if (!kasan_has_integrated_init())
1786 memset(kasan_reset_tag(x), 0, s->object_size);
1787 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1788 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1789 s->size - s->inuse - rsize);
1790 }
1791 /* KASAN might put x into memory quarantine, delaying its reuse. */
1792 return kasan_slab_free(s, x, init);
02e72cc6 1793}
205ab99d 1794
c3895391 1795static inline bool slab_free_freelist_hook(struct kmem_cache *s,
899447f6
ML
1796 void **head, void **tail,
1797 int *cnt)
81084651 1798{
6471384a
AP
1799
1800 void *object;
1801 void *next = *head;
1802 void *old_tail = *tail ? *tail : *head;
6471384a 1803
b89fb5ef 1804 if (is_kfence_address(next)) {
d57a964e 1805 slab_free_hook(s, next, false);
b89fb5ef
AP
1806 return true;
1807 }
1808
aea4df4c
LA
1809 /* Head and tail of the reconstructed freelist */
1810 *head = NULL;
1811 *tail = NULL;
1b7e816f 1812
aea4df4c
LA
1813 do {
1814 object = next;
1815 next = get_freepointer(s, object);
1816
c3895391 1817 /* If object's reuse doesn't have to be delayed */
d57a964e 1818 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1819 /* Move object to the new freelist */
1820 set_freepointer(s, object, *head);
1821 *head = object;
1822 if (!*tail)
1823 *tail = object;
899447f6
ML
1824 } else {
1825 /*
1826 * Adjust the reconstructed freelist depth
1827 * accordingly if object's reuse is delayed.
1828 */
1829 --(*cnt);
c3895391
AK
1830 }
1831 } while (object != old_tail);
1832
1833 if (*head == *tail)
1834 *tail = NULL;
1835
1836 return *head != NULL;
81084651
JDB
1837}
1838
c0f81a94 1839static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 1840{
c0f81a94 1841 setup_object_debug(s, object);
4d176711 1842 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1843 if (unlikely(s->ctor)) {
1844 kasan_unpoison_object_data(s, object);
1845 s->ctor(object);
1846 kasan_poison_object_data(s, object);
1847 }
4d176711 1848 return object;
588f8ba9
TG
1849}
1850
81819f0f
CL
1851/*
1852 * Slab allocation and freeing
1853 */
a485e1da
XS
1854static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1855 struct kmem_cache_order_objects oo)
65c3376a 1856{
45387b8c
VB
1857 struct folio *folio;
1858 struct slab *slab;
19af27af 1859 unsigned int order = oo_order(oo);
65c3376a 1860
2154a336 1861 if (node == NUMA_NO_NODE)
45387b8c 1862 folio = (struct folio *)alloc_pages(flags, order);
65c3376a 1863 else
45387b8c 1864 folio = (struct folio *)__alloc_pages_node(node, flags, order);
5dfb4175 1865
45387b8c
VB
1866 if (!folio)
1867 return NULL;
1868
1869 slab = folio_slab(folio);
1870 __folio_set_slab(folio);
8b881763
VB
1871 /* Make the flag visible before any changes to folio->mapping */
1872 smp_wmb();
02d65d6f 1873 if (folio_is_pfmemalloc(folio))
45387b8c
VB
1874 slab_set_pfmemalloc(slab);
1875
1876 return slab;
65c3376a
CL
1877}
1878
210e7a43
TG
1879#ifdef CONFIG_SLAB_FREELIST_RANDOM
1880/* Pre-initialize the random sequence cache */
1881static int init_cache_random_seq(struct kmem_cache *s)
1882{
19af27af 1883 unsigned int count = oo_objects(s->oo);
210e7a43 1884 int err;
210e7a43 1885
a810007a
SR
1886 /* Bailout if already initialised */
1887 if (s->random_seq)
1888 return 0;
1889
210e7a43
TG
1890 err = cache_random_seq_create(s, count, GFP_KERNEL);
1891 if (err) {
1892 pr_err("SLUB: Unable to initialize free list for %s\n",
1893 s->name);
1894 return err;
1895 }
1896
1897 /* Transform to an offset on the set of pages */
1898 if (s->random_seq) {
19af27af
AD
1899 unsigned int i;
1900
210e7a43
TG
1901 for (i = 0; i < count; i++)
1902 s->random_seq[i] *= s->size;
1903 }
1904 return 0;
1905}
1906
1907/* Initialize each random sequence freelist per cache */
1908static void __init init_freelist_randomization(void)
1909{
1910 struct kmem_cache *s;
1911
1912 mutex_lock(&slab_mutex);
1913
1914 list_for_each_entry(s, &slab_caches, list)
1915 init_cache_random_seq(s);
1916
1917 mutex_unlock(&slab_mutex);
1918}
1919
1920/* Get the next entry on the pre-computed freelist randomized */
bb192ed9 1921static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
210e7a43
TG
1922 unsigned long *pos, void *start,
1923 unsigned long page_limit,
1924 unsigned long freelist_count)
1925{
1926 unsigned int idx;
1927
1928 /*
1929 * If the target page allocation failed, the number of objects on the
1930 * page might be smaller than the usual size defined by the cache.
1931 */
1932 do {
1933 idx = s->random_seq[*pos];
1934 *pos += 1;
1935 if (*pos >= freelist_count)
1936 *pos = 0;
1937 } while (unlikely(idx >= page_limit));
1938
1939 return (char *)start + idx;
1940}
1941
1942/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 1943static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1944{
1945 void *start;
1946 void *cur;
1947 void *next;
1948 unsigned long idx, pos, page_limit, freelist_count;
1949
bb192ed9 1950 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
1951 return false;
1952
1953 freelist_count = oo_objects(s->oo);
8032bf12 1954 pos = get_random_u32_below(freelist_count);
210e7a43 1955
bb192ed9
VB
1956 page_limit = slab->objects * s->size;
1957 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
1958
1959 /* First entry is used as the base of the freelist */
bb192ed9 1960 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1961 freelist_count);
c0f81a94 1962 cur = setup_object(s, cur);
bb192ed9 1963 slab->freelist = cur;
210e7a43 1964
bb192ed9
VB
1965 for (idx = 1; idx < slab->objects; idx++) {
1966 next = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1967 freelist_count);
c0f81a94 1968 next = setup_object(s, next);
210e7a43
TG
1969 set_freepointer(s, cur, next);
1970 cur = next;
1971 }
210e7a43
TG
1972 set_freepointer(s, cur, NULL);
1973
1974 return true;
1975}
1976#else
1977static inline int init_cache_random_seq(struct kmem_cache *s)
1978{
1979 return 0;
1980}
1981static inline void init_freelist_randomization(void) { }
bb192ed9 1982static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1983{
1984 return false;
1985}
1986#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1987
bb192ed9 1988static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 1989{
bb192ed9 1990 struct slab *slab;
834f3d11 1991 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1992 gfp_t alloc_gfp;
4d176711 1993 void *start, *p, *next;
a50b854e 1994 int idx;
210e7a43 1995 bool shuffle;
81819f0f 1996
7e0528da
CL
1997 flags &= gfp_allowed_mask;
1998
b7a49f0d 1999 flags |= s->allocflags;
e12ba74d 2000
ba52270d
PE
2001 /*
2002 * Let the initial higher-order allocation fail under memory pressure
2003 * so we fall-back to the minimum order allocation.
2004 */
2005 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 2006 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 2007 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 2008
a485e1da 2009 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2010 if (unlikely(!slab)) {
65c3376a 2011 oo = s->min;
80c3a998 2012 alloc_gfp = flags;
65c3376a
CL
2013 /*
2014 * Allocation may have failed due to fragmentation.
2015 * Try a lower order alloc if possible
2016 */
a485e1da 2017 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2018 if (unlikely(!slab))
c7323a5a 2019 return NULL;
588f8ba9 2020 stat(s, ORDER_FALLBACK);
65c3376a 2021 }
5a896d9e 2022
bb192ed9 2023 slab->objects = oo_objects(oo);
c7323a5a
VB
2024 slab->inuse = 0;
2025 slab->frozen = 0;
81819f0f 2026
bb192ed9 2027 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 2028
bb192ed9 2029 slab->slab_cache = s;
81819f0f 2030
6e48a966 2031 kasan_poison_slab(slab);
81819f0f 2032
bb192ed9 2033 start = slab_address(slab);
81819f0f 2034
bb192ed9 2035 setup_slab_debug(s, slab, start);
0316bec2 2036
bb192ed9 2037 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
2038
2039 if (!shuffle) {
4d176711 2040 start = fixup_red_left(s, start);
c0f81a94 2041 start = setup_object(s, start);
bb192ed9
VB
2042 slab->freelist = start;
2043 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 2044 next = p + s->size;
c0f81a94 2045 next = setup_object(s, next);
18e50661
AK
2046 set_freepointer(s, p, next);
2047 p = next;
2048 }
2049 set_freepointer(s, p, NULL);
81819f0f 2050 }
81819f0f 2051
bb192ed9 2052 return slab;
81819f0f
CL
2053}
2054
bb192ed9 2055static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2056{
44405099
LL
2057 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2058 flags = kmalloc_fix_flags(flags);
588f8ba9 2059
53a0de06
VB
2060 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2061
588f8ba9
TG
2062 return allocate_slab(s,
2063 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2064}
2065
4020b4a2 2066static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2067{
4020b4a2
VB
2068 struct folio *folio = slab_folio(slab);
2069 int order = folio_order(folio);
834f3d11 2070 int pages = 1 << order;
81819f0f 2071
4020b4a2 2072 __slab_clear_pfmemalloc(slab);
4020b4a2 2073 folio->mapping = NULL;
8b881763
VB
2074 /* Make the mapping reset visible before clearing the flag */
2075 smp_wmb();
2076 __folio_clear_slab(folio);
c7b23b68 2077 mm_account_reclaimed_pages(pages);
4020b4a2 2078 unaccount_slab(slab, order, s);
c034c6a4 2079 __free_pages(&folio->page, order);
81819f0f
CL
2080}
2081
2082static void rcu_free_slab(struct rcu_head *h)
2083{
bb192ed9 2084 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2085
bb192ed9 2086 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2087}
2088
bb192ed9 2089static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2090{
bc29d5bd
VB
2091 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2092 void *p;
2093
2094 slab_pad_check(s, slab);
2095 for_each_object(p, s, slab_address(slab), slab->objects)
2096 check_object(s, slab, p, SLUB_RED_INACTIVE);
2097 }
2098
2099 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
bb192ed9 2100 call_rcu(&slab->rcu_head, rcu_free_slab);
bc29d5bd 2101 else
bb192ed9 2102 __free_slab(s, slab);
81819f0f
CL
2103}
2104
bb192ed9 2105static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2106{
bb192ed9
VB
2107 dec_slabs_node(s, slab_nid(slab), slab->objects);
2108 free_slab(s, slab);
81819f0f
CL
2109}
2110
2111/*
5cc6eee8 2112 * Management of partially allocated slabs.
81819f0f 2113 */
1e4dd946 2114static inline void
bb192ed9 2115__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2116{
e95eed57 2117 n->nr_partial++;
136333d1 2118 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2119 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2120 else
bb192ed9 2121 list_add(&slab->slab_list, &n->partial);
81819f0f
CL
2122}
2123
1e4dd946 2124static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2125 struct slab *slab, int tail)
62e346a8 2126{
c65c1877 2127 lockdep_assert_held(&n->list_lock);
bb192ed9 2128 __add_partial(n, slab, tail);
1e4dd946 2129}
c65c1877 2130
1e4dd946 2131static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2132 struct slab *slab)
1e4dd946
SR
2133{
2134 lockdep_assert_held(&n->list_lock);
bb192ed9 2135 list_del(&slab->slab_list);
52b4b950 2136 n->nr_partial--;
1e4dd946
SR
2137}
2138
c7323a5a
VB
2139/*
2140 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2141 * slab from the n->partial list. Remove only a single object from the slab, do
2142 * the alloc_debug_processing() checks and leave the slab on the list, or move
2143 * it to full list if it was the last free object.
2144 */
2145static void *alloc_single_from_partial(struct kmem_cache *s,
6edf2576 2146 struct kmem_cache_node *n, struct slab *slab, int orig_size)
c7323a5a
VB
2147{
2148 void *object;
2149
2150 lockdep_assert_held(&n->list_lock);
2151
2152 object = slab->freelist;
2153 slab->freelist = get_freepointer(s, object);
2154 slab->inuse++;
2155
6edf2576 2156 if (!alloc_debug_processing(s, slab, object, orig_size)) {
c7323a5a
VB
2157 remove_partial(n, slab);
2158 return NULL;
2159 }
2160
2161 if (slab->inuse == slab->objects) {
2162 remove_partial(n, slab);
2163 add_full(s, n, slab);
2164 }
2165
2166 return object;
2167}
2168
2169/*
2170 * Called only for kmem_cache_debug() caches to allocate from a freshly
2171 * allocated slab. Allocate a single object instead of whole freelist
2172 * and put the slab to the partial (or full) list.
2173 */
2174static void *alloc_single_from_new_slab(struct kmem_cache *s,
6edf2576 2175 struct slab *slab, int orig_size)
c7323a5a
VB
2176{
2177 int nid = slab_nid(slab);
2178 struct kmem_cache_node *n = get_node(s, nid);
2179 unsigned long flags;
2180 void *object;
2181
2182
2183 object = slab->freelist;
2184 slab->freelist = get_freepointer(s, object);
2185 slab->inuse = 1;
2186
6edf2576 2187 if (!alloc_debug_processing(s, slab, object, orig_size))
c7323a5a
VB
2188 /*
2189 * It's not really expected that this would fail on a
2190 * freshly allocated slab, but a concurrent memory
2191 * corruption in theory could cause that.
2192 */
2193 return NULL;
2194
2195 spin_lock_irqsave(&n->list_lock, flags);
2196
2197 if (slab->inuse == slab->objects)
2198 add_full(s, n, slab);
2199 else
2200 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2201
2202 inc_slabs_node(s, nid, slab->objects);
2203 spin_unlock_irqrestore(&n->list_lock, flags);
2204
2205 return object;
2206}
2207
81819f0f 2208/*
7ced3719
CL
2209 * Remove slab from the partial list, freeze it and
2210 * return the pointer to the freelist.
81819f0f 2211 *
497b66f2 2212 * Returns a list of objects or NULL if it fails.
81819f0f 2213 */
497b66f2 2214static inline void *acquire_slab(struct kmem_cache *s,
bb192ed9 2215 struct kmem_cache_node *n, struct slab *slab,
b47291ef 2216 int mode)
81819f0f 2217{
2cfb7455
CL
2218 void *freelist;
2219 unsigned long counters;
bb192ed9 2220 struct slab new;
2cfb7455 2221
c65c1877
PZ
2222 lockdep_assert_held(&n->list_lock);
2223
2cfb7455
CL
2224 /*
2225 * Zap the freelist and set the frozen bit.
2226 * The old freelist is the list of objects for the
2227 * per cpu allocation list.
2228 */
bb192ed9
VB
2229 freelist = slab->freelist;
2230 counters = slab->counters;
7ced3719 2231 new.counters = counters;
23910c50 2232 if (mode) {
bb192ed9 2233 new.inuse = slab->objects;
23910c50
PE
2234 new.freelist = NULL;
2235 } else {
2236 new.freelist = freelist;
2237 }
2cfb7455 2238
a0132ac0 2239 VM_BUG_ON(new.frozen);
7ced3719 2240 new.frozen = 1;
2cfb7455 2241
6801be4f 2242 if (!__slab_update_freelist(s, slab,
2cfb7455 2243 freelist, counters,
02d7633f 2244 new.freelist, new.counters,
7ced3719 2245 "acquire_slab"))
7ced3719 2246 return NULL;
2cfb7455 2247
bb192ed9 2248 remove_partial(n, slab);
7ced3719 2249 WARN_ON(!freelist);
49e22585 2250 return freelist;
81819f0f
CL
2251}
2252
e0a043aa 2253#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2254static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2255#else
bb192ed9 2256static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2257 int drain) { }
2258#endif
01b34d16 2259static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2260
81819f0f 2261/*
672bba3a 2262 * Try to allocate a partial slab from a specific node.
81819f0f 2263 */
8ba00bb6 2264static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
6edf2576 2265 struct partial_context *pc)
81819f0f 2266{
bb192ed9 2267 struct slab *slab, *slab2;
49e22585 2268 void *object = NULL;
4b1f449d 2269 unsigned long flags;
bb192ed9 2270 unsigned int partial_slabs = 0;
81819f0f
CL
2271
2272 /*
2273 * Racy check. If we mistakenly see no partial slabs then we
2274 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2275 * partial slab and there is none available then get_partial()
672bba3a 2276 * will return NULL.
81819f0f
CL
2277 */
2278 if (!n || !n->nr_partial)
2279 return NULL;
2280
4b1f449d 2281 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2282 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
8ba00bb6 2283 void *t;
49e22585 2284
6edf2576 2285 if (!pfmemalloc_match(slab, pc->flags))
8ba00bb6
JK
2286 continue;
2287
0af8489b 2288 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
6edf2576
FT
2289 object = alloc_single_from_partial(s, n, slab,
2290 pc->orig_size);
c7323a5a
VB
2291 if (object)
2292 break;
2293 continue;
2294 }
2295
bb192ed9 2296 t = acquire_slab(s, n, slab, object == NULL);
49e22585 2297 if (!t)
9b1ea29b 2298 break;
49e22585 2299
12d79634 2300 if (!object) {
6edf2576 2301 *pc->slab = slab;
49e22585 2302 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2303 object = t;
49e22585 2304 } else {
bb192ed9 2305 put_cpu_partial(s, slab, 0);
8028dcea 2306 stat(s, CPU_PARTIAL_NODE);
bb192ed9 2307 partial_slabs++;
49e22585 2308 }
b47291ef 2309#ifdef CONFIG_SLUB_CPU_PARTIAL
345c905d 2310 if (!kmem_cache_has_cpu_partial(s)
bb192ed9 2311 || partial_slabs > s->cpu_partial_slabs / 2)
49e22585 2312 break;
b47291ef
VB
2313#else
2314 break;
2315#endif
49e22585 2316
497b66f2 2317 }
4b1f449d 2318 spin_unlock_irqrestore(&n->list_lock, flags);
497b66f2 2319 return object;
81819f0f
CL
2320}
2321
2322/*
c2092c12 2323 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2324 */
6edf2576 2325static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
81819f0f
CL
2326{
2327#ifdef CONFIG_NUMA
2328 struct zonelist *zonelist;
dd1a239f 2329 struct zoneref *z;
54a6eb5c 2330 struct zone *zone;
6edf2576 2331 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
497b66f2 2332 void *object;
cc9a6c87 2333 unsigned int cpuset_mems_cookie;
81819f0f
CL
2334
2335 /*
672bba3a
CL
2336 * The defrag ratio allows a configuration of the tradeoffs between
2337 * inter node defragmentation and node local allocations. A lower
2338 * defrag_ratio increases the tendency to do local allocations
2339 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2340 *
672bba3a
CL
2341 * If the defrag_ratio is set to 0 then kmalloc() always
2342 * returns node local objects. If the ratio is higher then kmalloc()
2343 * may return off node objects because partial slabs are obtained
2344 * from other nodes and filled up.
81819f0f 2345 *
43efd3ea
LP
2346 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2347 * (which makes defrag_ratio = 1000) then every (well almost)
2348 * allocation will first attempt to defrag slab caches on other nodes.
2349 * This means scanning over all nodes to look for partial slabs which
2350 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2351 * with available objects.
81819f0f 2352 */
9824601e
CL
2353 if (!s->remote_node_defrag_ratio ||
2354 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2355 return NULL;
2356
cc9a6c87 2357 do {
d26914d1 2358 cpuset_mems_cookie = read_mems_allowed_begin();
6edf2576 2359 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
97a225e6 2360 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2361 struct kmem_cache_node *n;
2362
2363 n = get_node(s, zone_to_nid(zone));
2364
6edf2576 2365 if (n && cpuset_zone_allowed(zone, pc->flags) &&
cc9a6c87 2366 n->nr_partial > s->min_partial) {
6edf2576 2367 object = get_partial_node(s, n, pc);
cc9a6c87
MG
2368 if (object) {
2369 /*
d26914d1
MG
2370 * Don't check read_mems_allowed_retry()
2371 * here - if mems_allowed was updated in
2372 * parallel, that was a harmless race
2373 * between allocation and the cpuset
2374 * update
cc9a6c87 2375 */
cc9a6c87
MG
2376 return object;
2377 }
c0ff7453 2378 }
81819f0f 2379 }
d26914d1 2380 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2381#endif /* CONFIG_NUMA */
81819f0f
CL
2382 return NULL;
2383}
2384
2385/*
c2092c12 2386 * Get a partial slab, lock it and return it.
81819f0f 2387 */
6edf2576 2388static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
81819f0f 2389{
497b66f2 2390 void *object;
a561ce00
JK
2391 int searchnode = node;
2392
2393 if (node == NUMA_NO_NODE)
2394 searchnode = numa_mem_id();
81819f0f 2395
6edf2576 2396 object = get_partial_node(s, get_node(s, searchnode), pc);
497b66f2
CL
2397 if (object || node != NUMA_NO_NODE)
2398 return object;
81819f0f 2399
6edf2576 2400 return get_any_partial(s, pc);
81819f0f
CL
2401}
2402
0af8489b
VB
2403#ifndef CONFIG_SLUB_TINY
2404
923717cb 2405#ifdef CONFIG_PREEMPTION
8a5ec0ba 2406/*
0d645ed1 2407 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2408 * during cmpxchg. The transactions start with the cpu number and are then
2409 * incremented by CONFIG_NR_CPUS.
2410 */
2411#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2412#else
2413/*
2414 * No preemption supported therefore also no need to check for
2415 * different cpus.
2416 */
2417#define TID_STEP 1
0af8489b 2418#endif /* CONFIG_PREEMPTION */
8a5ec0ba
CL
2419
2420static inline unsigned long next_tid(unsigned long tid)
2421{
2422 return tid + TID_STEP;
2423}
2424
9d5f0be0 2425#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2426static inline unsigned int tid_to_cpu(unsigned long tid)
2427{
2428 return tid % TID_STEP;
2429}
2430
2431static inline unsigned long tid_to_event(unsigned long tid)
2432{
2433 return tid / TID_STEP;
2434}
9d5f0be0 2435#endif
8a5ec0ba
CL
2436
2437static inline unsigned int init_tid(int cpu)
2438{
2439 return cpu;
2440}
2441
2442static inline void note_cmpxchg_failure(const char *n,
2443 const struct kmem_cache *s, unsigned long tid)
2444{
2445#ifdef SLUB_DEBUG_CMPXCHG
2446 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2447
f9f58285 2448 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2449
923717cb 2450#ifdef CONFIG_PREEMPTION
8a5ec0ba 2451 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2452 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2453 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2454 else
2455#endif
2456 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2457 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2458 tid_to_event(tid), tid_to_event(actual_tid));
2459 else
f9f58285 2460 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2461 actual_tid, tid, next_tid(tid));
2462#endif
4fdccdfb 2463 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2464}
2465
788e1aad 2466static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2467{
8a5ec0ba 2468 int cpu;
bd0e7491 2469 struct kmem_cache_cpu *c;
8a5ec0ba 2470
bd0e7491
VB
2471 for_each_possible_cpu(cpu) {
2472 c = per_cpu_ptr(s->cpu_slab, cpu);
2473 local_lock_init(&c->lock);
2474 c->tid = init_tid(cpu);
2475 }
8a5ec0ba 2476}
2cfb7455 2477
81819f0f 2478/*
c2092c12 2479 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2480 * unfreezes the slabs and puts it on the proper list.
2481 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2482 * by the caller.
81819f0f 2483 */
bb192ed9 2484static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2485 void *freelist)
81819f0f 2486{
a8e53869 2487 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
bb192ed9 2488 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0
HY
2489 int free_delta = 0;
2490 enum slab_modes mode = M_NONE;
d930ff03 2491 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2492 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2493 unsigned long flags = 0;
bb192ed9
VB
2494 struct slab new;
2495 struct slab old;
2cfb7455 2496
bb192ed9 2497 if (slab->freelist) {
84e554e6 2498 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2499 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2500 }
2501
894b8788 2502 /*
d930ff03
VB
2503 * Stage one: Count the objects on cpu's freelist as free_delta and
2504 * remember the last object in freelist_tail for later splicing.
2cfb7455 2505 */
d930ff03
VB
2506 freelist_tail = NULL;
2507 freelist_iter = freelist;
2508 while (freelist_iter) {
2509 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2510
52f23478
DZ
2511 /*
2512 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2513 * 'freelist_iter' is already corrupted. So isolate all objects
2514 * starting at 'freelist_iter' by skipping them.
52f23478 2515 */
bb192ed9 2516 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2517 break;
2518
d930ff03
VB
2519 freelist_tail = freelist_iter;
2520 free_delta++;
2cfb7455 2521
d930ff03 2522 freelist_iter = nextfree;
2cfb7455
CL
2523 }
2524
894b8788 2525 /*
c2092c12
VB
2526 * Stage two: Unfreeze the slab while splicing the per-cpu
2527 * freelist to the head of slab's freelist.
d930ff03 2528 *
c2092c12 2529 * Ensure that the slab is unfrozen while the list presence
d930ff03 2530 * reflects the actual number of objects during unfreeze.
2cfb7455 2531 *
6d3a16d0
HY
2532 * We first perform cmpxchg holding lock and insert to list
2533 * when it succeed. If there is mismatch then the slab is not
2534 * unfrozen and number of objects in the slab may have changed.
2535 * Then release lock and retry cmpxchg again.
894b8788 2536 */
2cfb7455 2537redo:
894b8788 2538
bb192ed9
VB
2539 old.freelist = READ_ONCE(slab->freelist);
2540 old.counters = READ_ONCE(slab->counters);
a0132ac0 2541 VM_BUG_ON(!old.frozen);
7c2e132c 2542
2cfb7455
CL
2543 /* Determine target state of the slab */
2544 new.counters = old.counters;
d930ff03
VB
2545 if (freelist_tail) {
2546 new.inuse -= free_delta;
2547 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2548 new.freelist = freelist;
2549 } else
2550 new.freelist = old.freelist;
2551
2552 new.frozen = 0;
2553
6d3a16d0
HY
2554 if (!new.inuse && n->nr_partial >= s->min_partial) {
2555 mode = M_FREE;
2556 } else if (new.freelist) {
2557 mode = M_PARTIAL;
2558 /*
2559 * Taking the spinlock removes the possibility that
2560 * acquire_slab() will see a slab that is frozen
2561 */
2562 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455 2563 } else {
6d3a16d0 2564 mode = M_FULL_NOLIST;
2cfb7455
CL
2565 }
2566
2cfb7455 2567
6801be4f 2568 if (!slab_update_freelist(s, slab,
2cfb7455
CL
2569 old.freelist, old.counters,
2570 new.freelist, new.counters,
6d3a16d0 2571 "unfreezing slab")) {
a8e53869 2572 if (mode == M_PARTIAL)
6d3a16d0 2573 spin_unlock_irqrestore(&n->list_lock, flags);
2cfb7455 2574 goto redo;
6d3a16d0 2575 }
2cfb7455 2576
2cfb7455 2577
6d3a16d0
HY
2578 if (mode == M_PARTIAL) {
2579 add_partial(n, slab, tail);
2580 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 2581 stat(s, tail);
6d3a16d0 2582 } else if (mode == M_FREE) {
2cfb7455 2583 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2584 discard_slab(s, slab);
2cfb7455 2585 stat(s, FREE_SLAB);
6d3a16d0
HY
2586 } else if (mode == M_FULL_NOLIST) {
2587 stat(s, DEACTIVATE_FULL);
894b8788 2588 }
81819f0f
CL
2589}
2590
345c905d 2591#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2592static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 2593{
43d77867 2594 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 2595 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 2596 unsigned long flags = 0;
49e22585 2597
bb192ed9
VB
2598 while (partial_slab) {
2599 struct slab new;
2600 struct slab old;
49e22585 2601
bb192ed9
VB
2602 slab = partial_slab;
2603 partial_slab = slab->next;
43d77867 2604
bb192ed9 2605 n2 = get_node(s, slab_nid(slab));
43d77867
JK
2606 if (n != n2) {
2607 if (n)
7cf9f3ba 2608 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2609
2610 n = n2;
7cf9f3ba 2611 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2612 }
49e22585
CL
2613
2614 do {
2615
bb192ed9
VB
2616 old.freelist = slab->freelist;
2617 old.counters = slab->counters;
a0132ac0 2618 VM_BUG_ON(!old.frozen);
49e22585
CL
2619
2620 new.counters = old.counters;
2621 new.freelist = old.freelist;
2622
2623 new.frozen = 0;
2624
6801be4f 2625 } while (!__slab_update_freelist(s, slab,
49e22585
CL
2626 old.freelist, old.counters,
2627 new.freelist, new.counters,
2628 "unfreezing slab"));
2629
8a5b20ae 2630 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
2631 slab->next = slab_to_discard;
2632 slab_to_discard = slab;
43d77867 2633 } else {
bb192ed9 2634 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 2635 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2636 }
2637 }
2638
2639 if (n)
7cf9f3ba 2640 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2641
bb192ed9
VB
2642 while (slab_to_discard) {
2643 slab = slab_to_discard;
2644 slab_to_discard = slab_to_discard->next;
9ada1934
SL
2645
2646 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2647 discard_slab(s, slab);
9ada1934
SL
2648 stat(s, FREE_SLAB);
2649 }
fc1455f4 2650}
f3ab8b6b 2651
fc1455f4
VB
2652/*
2653 * Unfreeze all the cpu partial slabs.
2654 */
2655static void unfreeze_partials(struct kmem_cache *s)
2656{
bb192ed9 2657 struct slab *partial_slab;
fc1455f4
VB
2658 unsigned long flags;
2659
bd0e7491 2660 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2661 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 2662 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 2663 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 2664
bb192ed9
VB
2665 if (partial_slab)
2666 __unfreeze_partials(s, partial_slab);
fc1455f4
VB
2667}
2668
2669static void unfreeze_partials_cpu(struct kmem_cache *s,
2670 struct kmem_cache_cpu *c)
2671{
bb192ed9 2672 struct slab *partial_slab;
fc1455f4 2673
bb192ed9 2674 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
2675 c->partial = NULL;
2676
bb192ed9
VB
2677 if (partial_slab)
2678 __unfreeze_partials(s, partial_slab);
49e22585
CL
2679}
2680
2681/*
c2092c12
VB
2682 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2683 * partial slab slot if available.
49e22585
CL
2684 *
2685 * If we did not find a slot then simply move all the partials to the
2686 * per node partial list.
2687 */
bb192ed9 2688static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 2689{
bb192ed9
VB
2690 struct slab *oldslab;
2691 struct slab *slab_to_unfreeze = NULL;
e0a043aa 2692 unsigned long flags;
bb192ed9 2693 int slabs = 0;
49e22585 2694
bd0e7491 2695 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 2696
bb192ed9 2697 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 2698
bb192ed9
VB
2699 if (oldslab) {
2700 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
2701 /*
2702 * Partial array is full. Move the existing set to the
2703 * per node partial list. Postpone the actual unfreezing
2704 * outside of the critical section.
2705 */
bb192ed9
VB
2706 slab_to_unfreeze = oldslab;
2707 oldslab = NULL;
e0a043aa 2708 } else {
bb192ed9 2709 slabs = oldslab->slabs;
49e22585 2710 }
e0a043aa 2711 }
49e22585 2712
bb192ed9 2713 slabs++;
49e22585 2714
bb192ed9
VB
2715 slab->slabs = slabs;
2716 slab->next = oldslab;
49e22585 2717
bb192ed9 2718 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 2719
bd0e7491 2720 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 2721
bb192ed9
VB
2722 if (slab_to_unfreeze) {
2723 __unfreeze_partials(s, slab_to_unfreeze);
e0a043aa
VB
2724 stat(s, CPU_PARTIAL_DRAIN);
2725 }
49e22585
CL
2726}
2727
e0a043aa
VB
2728#else /* CONFIG_SLUB_CPU_PARTIAL */
2729
2730static inline void unfreeze_partials(struct kmem_cache *s) { }
2731static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2732 struct kmem_cache_cpu *c) { }
2733
2734#endif /* CONFIG_SLUB_CPU_PARTIAL */
2735
dfb4f096 2736static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2737{
5a836bf6 2738 unsigned long flags;
bb192ed9 2739 struct slab *slab;
5a836bf6
SAS
2740 void *freelist;
2741
bd0e7491 2742 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 2743
bb192ed9 2744 slab = c->slab;
5a836bf6 2745 freelist = c->freelist;
c17dda40 2746
bb192ed9 2747 c->slab = NULL;
a019d201 2748 c->freelist = NULL;
c17dda40 2749 c->tid = next_tid(c->tid);
a019d201 2750
bd0e7491 2751 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 2752
bb192ed9
VB
2753 if (slab) {
2754 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
2755 stat(s, CPUSLAB_FLUSH);
2756 }
81819f0f
CL
2757}
2758
0c710013 2759static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2760{
9dfc6e68 2761 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 2762 void *freelist = c->freelist;
bb192ed9 2763 struct slab *slab = c->slab;
81819f0f 2764
bb192ed9 2765 c->slab = NULL;
08beb547
VB
2766 c->freelist = NULL;
2767 c->tid = next_tid(c->tid);
2768
bb192ed9
VB
2769 if (slab) {
2770 deactivate_slab(s, slab, freelist);
08beb547
VB
2771 stat(s, CPUSLAB_FLUSH);
2772 }
49e22585 2773
fc1455f4 2774 unfreeze_partials_cpu(s, c);
81819f0f
CL
2775}
2776
5a836bf6
SAS
2777struct slub_flush_work {
2778 struct work_struct work;
2779 struct kmem_cache *s;
2780 bool skip;
2781};
2782
fc1455f4
VB
2783/*
2784 * Flush cpu slab.
2785 *
5a836bf6 2786 * Called from CPU work handler with migration disabled.
fc1455f4 2787 */
5a836bf6 2788static void flush_cpu_slab(struct work_struct *w)
81819f0f 2789{
5a836bf6
SAS
2790 struct kmem_cache *s;
2791 struct kmem_cache_cpu *c;
2792 struct slub_flush_work *sfw;
2793
2794 sfw = container_of(w, struct slub_flush_work, work);
2795
2796 s = sfw->s;
2797 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 2798
bb192ed9 2799 if (c->slab)
fc1455f4 2800 flush_slab(s, c);
81819f0f 2801
fc1455f4 2802 unfreeze_partials(s);
81819f0f
CL
2803}
2804
5a836bf6 2805static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 2806{
a8364d55
GBY
2807 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2808
bb192ed9 2809 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
2810}
2811
5a836bf6
SAS
2812static DEFINE_MUTEX(flush_lock);
2813static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2814
2815static void flush_all_cpus_locked(struct kmem_cache *s)
2816{
2817 struct slub_flush_work *sfw;
2818 unsigned int cpu;
2819
2820 lockdep_assert_cpus_held();
2821 mutex_lock(&flush_lock);
2822
2823 for_each_online_cpu(cpu) {
2824 sfw = &per_cpu(slub_flush, cpu);
2825 if (!has_cpu_slab(cpu, s)) {
2826 sfw->skip = true;
2827 continue;
2828 }
2829 INIT_WORK(&sfw->work, flush_cpu_slab);
2830 sfw->skip = false;
2831 sfw->s = s;
e45cc288 2832 queue_work_on(cpu, flushwq, &sfw->work);
5a836bf6
SAS
2833 }
2834
2835 for_each_online_cpu(cpu) {
2836 sfw = &per_cpu(slub_flush, cpu);
2837 if (sfw->skip)
2838 continue;
2839 flush_work(&sfw->work);
2840 }
2841
2842 mutex_unlock(&flush_lock);
2843}
2844
81819f0f
CL
2845static void flush_all(struct kmem_cache *s)
2846{
5a836bf6
SAS
2847 cpus_read_lock();
2848 flush_all_cpus_locked(s);
2849 cpus_read_unlock();
81819f0f
CL
2850}
2851
a96a87bf
SAS
2852/*
2853 * Use the cpu notifier to insure that the cpu slabs are flushed when
2854 * necessary.
2855 */
2856static int slub_cpu_dead(unsigned int cpu)
2857{
2858 struct kmem_cache *s;
a96a87bf
SAS
2859
2860 mutex_lock(&slab_mutex);
0e7ac738 2861 list_for_each_entry(s, &slab_caches, list)
a96a87bf 2862 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
2863 mutex_unlock(&slab_mutex);
2864 return 0;
2865}
2866
0af8489b
VB
2867#else /* CONFIG_SLUB_TINY */
2868static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2869static inline void flush_all(struct kmem_cache *s) { }
2870static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2871static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2872#endif /* CONFIG_SLUB_TINY */
2873
dfb4f096
CL
2874/*
2875 * Check if the objects in a per cpu structure fit numa
2876 * locality expectations.
2877 */
bb192ed9 2878static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
2879{
2880#ifdef CONFIG_NUMA
bb192ed9 2881 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
2882 return 0;
2883#endif
2884 return 1;
2885}
2886
9a02d699 2887#ifdef CONFIG_SLUB_DEBUG
bb192ed9 2888static int count_free(struct slab *slab)
781b2ba6 2889{
bb192ed9 2890 return slab->objects - slab->inuse;
781b2ba6
PE
2891}
2892
9a02d699
DR
2893static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2894{
2895 return atomic_long_read(&n->total_objects);
2896}
a579b056
VB
2897
2898/* Supports checking bulk free of a constructed freelist */
fa9b88e4
VB
2899static inline bool free_debug_processing(struct kmem_cache *s,
2900 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2901 unsigned long addr, depot_stack_handle_t handle)
a579b056 2902{
fa9b88e4 2903 bool checks_ok = false;
a579b056
VB
2904 void *object = head;
2905 int cnt = 0;
a579b056
VB
2906
2907 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2908 if (!check_slab(s, slab))
2909 goto out;
2910 }
2911
fa9b88e4 2912 if (slab->inuse < *bulk_cnt) {
c7323a5a 2913 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
fa9b88e4 2914 slab->inuse, *bulk_cnt);
c7323a5a
VB
2915 goto out;
2916 }
2917
a579b056 2918next_object:
c7323a5a 2919
fa9b88e4 2920 if (++cnt > *bulk_cnt)
c7323a5a 2921 goto out_cnt;
a579b056
VB
2922
2923 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2924 if (!free_consistency_checks(s, slab, object, addr))
2925 goto out;
2926 }
2927
2928 if (s->flags & SLAB_STORE_USER)
2929 set_track_update(s, object, TRACK_FREE, addr, handle);
2930 trace(s, slab, object, 0);
2931 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2932 init_object(s, object, SLUB_RED_INACTIVE);
2933
2934 /* Reached end of constructed freelist yet? */
2935 if (object != tail) {
2936 object = get_freepointer(s, object);
2937 goto next_object;
2938 }
c7323a5a 2939 checks_ok = true;
a579b056 2940
c7323a5a 2941out_cnt:
fa9b88e4 2942 if (cnt != *bulk_cnt) {
c7323a5a 2943 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
fa9b88e4
VB
2944 *bulk_cnt, cnt);
2945 *bulk_cnt = cnt;
c7323a5a
VB
2946 }
2947
fa9b88e4 2948out:
c7323a5a
VB
2949
2950 if (!checks_ok)
a579b056 2951 slab_fix(s, "Object at 0x%p not freed", object);
c7323a5a 2952
fa9b88e4 2953 return checks_ok;
a579b056 2954}
9a02d699
DR
2955#endif /* CONFIG_SLUB_DEBUG */
2956
b1a413a3 2957#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
781b2ba6 2958static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 2959 int (*get_count)(struct slab *))
781b2ba6
PE
2960{
2961 unsigned long flags;
2962 unsigned long x = 0;
bb192ed9 2963 struct slab *slab;
781b2ba6
PE
2964
2965 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
2966 list_for_each_entry(slab, &n->partial, slab_list)
2967 x += get_count(slab);
781b2ba6
PE
2968 spin_unlock_irqrestore(&n->list_lock, flags);
2969 return x;
2970}
b1a413a3 2971#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
26c02cf0 2972
56d5a2b9 2973#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2974static noinline void
2975slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2976{
9a02d699
DR
2977 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2978 DEFAULT_RATELIMIT_BURST);
781b2ba6 2979 int node;
fa45dc25 2980 struct kmem_cache_node *n;
781b2ba6 2981
9a02d699
DR
2982 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2983 return;
2984
5b3810e5
VB
2985 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2986 nid, gfpflags, &gfpflags);
19af27af 2987 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2988 s->name, s->object_size, s->size, oo_order(s->oo),
2989 oo_order(s->min));
781b2ba6 2990
3b0efdfa 2991 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2992 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2993 s->name);
fa5ec8a1 2994
fa45dc25 2995 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2996 unsigned long nr_slabs;
2997 unsigned long nr_objs;
2998 unsigned long nr_free;
2999
26c02cf0
AB
3000 nr_free = count_partial(n, count_free);
3001 nr_slabs = node_nr_slabs(n);
3002 nr_objs = node_nr_objs(n);
781b2ba6 3003
f9f58285 3004 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
3005 node, nr_slabs, nr_objs, nr_free);
3006 }
3007}
56d5a2b9
VB
3008#else /* CONFIG_SLUB_DEBUG */
3009static inline void
3010slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3011#endif
781b2ba6 3012
01b34d16 3013static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 3014{
01b34d16 3015 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
3016 return gfp_pfmemalloc_allowed(gfpflags);
3017
3018 return true;
3019}
3020
0af8489b 3021#ifndef CONFIG_SLUB_TINY
6801be4f
PZ
3022static inline bool
3023__update_cpu_freelist_fast(struct kmem_cache *s,
3024 void *freelist_old, void *freelist_new,
3025 unsigned long tid)
3026{
3027 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3028 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3029
3030 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3031 &old.full, new.full);
3032}
3033
213eeb9f 3034/*
c2092c12
VB
3035 * Check the slab->freelist and either transfer the freelist to the
3036 * per cpu freelist or deactivate the slab.
213eeb9f 3037 *
c2092c12 3038 * The slab is still frozen if the return value is not NULL.
213eeb9f 3039 *
c2092c12 3040 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 3041 */
bb192ed9 3042static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 3043{
bb192ed9 3044 struct slab new;
213eeb9f
CL
3045 unsigned long counters;
3046 void *freelist;
3047
bd0e7491
VB
3048 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3049
213eeb9f 3050 do {
bb192ed9
VB
3051 freelist = slab->freelist;
3052 counters = slab->counters;
6faa6833 3053
213eeb9f 3054 new.counters = counters;
a0132ac0 3055 VM_BUG_ON(!new.frozen);
213eeb9f 3056
bb192ed9 3057 new.inuse = slab->objects;
213eeb9f
CL
3058 new.frozen = freelist != NULL;
3059
6801be4f 3060 } while (!__slab_update_freelist(s, slab,
213eeb9f
CL
3061 freelist, counters,
3062 NULL, new.counters,
3063 "get_freelist"));
3064
3065 return freelist;
3066}
3067
81819f0f 3068/*
894b8788
CL
3069 * Slow path. The lockless freelist is empty or we need to perform
3070 * debugging duties.
3071 *
894b8788
CL
3072 * Processing is still very fast if new objects have been freed to the
3073 * regular freelist. In that case we simply take over the regular freelist
3074 * as the lockless freelist and zap the regular freelist.
81819f0f 3075 *
894b8788
CL
3076 * If that is not working then we fall back to the partial lists. We take the
3077 * first element of the freelist as the object to allocate now and move the
3078 * rest of the freelist to the lockless freelist.
81819f0f 3079 *
894b8788 3080 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
3081 * we need to allocate a new slab. This is the slowest path since it involves
3082 * a call to the page allocator and the setup of a new slab.
a380a3c7 3083 *
e500059b 3084 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 3085 * already disabled (which is the case for bulk allocation).
81819f0f 3086 */
a380a3c7 3087static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3088 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
81819f0f 3089{
6faa6833 3090 void *freelist;
bb192ed9 3091 struct slab *slab;
e500059b 3092 unsigned long flags;
6edf2576 3093 struct partial_context pc;
81819f0f 3094
9f986d99
AW
3095 stat(s, ALLOC_SLOWPATH);
3096
c2092c12 3097reread_slab:
0b303fb4 3098
bb192ed9
VB
3099 slab = READ_ONCE(c->slab);
3100 if (!slab) {
0715e6c5
VB
3101 /*
3102 * if the node is not online or has no normal memory, just
3103 * ignore the node constraint
3104 */
3105 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 3106 !node_isset(node, slab_nodes)))
0715e6c5 3107 node = NUMA_NO_NODE;
81819f0f 3108 goto new_slab;
0715e6c5 3109 }
49e22585 3110redo:
6faa6833 3111
bb192ed9 3112 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
3113 /*
3114 * same as above but node_match() being false already
3115 * implies node != NUMA_NO_NODE
3116 */
7e1fa93d 3117 if (!node_isset(node, slab_nodes)) {
0715e6c5 3118 node = NUMA_NO_NODE;
0715e6c5 3119 } else {
a561ce00 3120 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 3121 goto deactivate_slab;
a561ce00 3122 }
fc59c053 3123 }
6446faa2 3124
072bb0aa
MG
3125 /*
3126 * By rights, we should be searching for a slab page that was
3127 * PFMEMALLOC but right now, we are losing the pfmemalloc
3128 * information when the page leaves the per-cpu allocator
3129 */
bb192ed9 3130 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 3131 goto deactivate_slab;
072bb0aa 3132
c2092c12 3133 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 3134 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3135 if (unlikely(slab != c->slab)) {
bd0e7491 3136 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3137 goto reread_slab;
0b303fb4 3138 }
6faa6833
CL
3139 freelist = c->freelist;
3140 if (freelist)
73736e03 3141 goto load_freelist;
03e404af 3142
bb192ed9 3143 freelist = get_freelist(s, slab);
6446faa2 3144
6faa6833 3145 if (!freelist) {
bb192ed9 3146 c->slab = NULL;
eeaa345e 3147 c->tid = next_tid(c->tid);
bd0e7491 3148 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 3149 stat(s, DEACTIVATE_BYPASS);
fc59c053 3150 goto new_slab;
03e404af 3151 }
6446faa2 3152
84e554e6 3153 stat(s, ALLOC_REFILL);
6446faa2 3154
894b8788 3155load_freelist:
0b303fb4 3156
bd0e7491 3157 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 3158
507effea
CL
3159 /*
3160 * freelist is pointing to the list of objects to be used.
c2092c12
VB
3161 * slab is pointing to the slab from which the objects are obtained.
3162 * That slab must be frozen for per cpu allocations to work.
507effea 3163 */
bb192ed9 3164 VM_BUG_ON(!c->slab->frozen);
6faa6833 3165 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 3166 c->tid = next_tid(c->tid);
bd0e7491 3167 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 3168 return freelist;
81819f0f 3169
0b303fb4
VB
3170deactivate_slab:
3171
bd0e7491 3172 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3173 if (slab != c->slab) {
bd0e7491 3174 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3175 goto reread_slab;
0b303fb4 3176 }
a019d201 3177 freelist = c->freelist;
bb192ed9 3178 c->slab = NULL;
a019d201 3179 c->freelist = NULL;
eeaa345e 3180 c->tid = next_tid(c->tid);
bd0e7491 3181 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 3182 deactivate_slab(s, slab, freelist);
0b303fb4 3183
81819f0f 3184new_slab:
2cfb7455 3185
a93cf07b 3186 if (slub_percpu_partial(c)) {
bd0e7491 3187 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3188 if (unlikely(c->slab)) {
bd0e7491 3189 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3190 goto reread_slab;
fa417ab7 3191 }
4b1f449d 3192 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3193 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3194 /* we were preempted and partial list got empty */
3195 goto new_objects;
4b1f449d 3196 }
fa417ab7 3197
bb192ed9
VB
3198 slab = c->slab = slub_percpu_partial(c);
3199 slub_set_percpu_partial(c, slab);
bd0e7491 3200 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
49e22585 3201 stat(s, CPU_PARTIAL_ALLOC);
49e22585 3202 goto redo;
81819f0f
CL
3203 }
3204
fa417ab7
VB
3205new_objects:
3206
6edf2576
FT
3207 pc.flags = gfpflags;
3208 pc.slab = &slab;
3209 pc.orig_size = orig_size;
3210 freelist = get_partial(s, node, &pc);
3f2b77e3 3211 if (freelist)
c2092c12 3212 goto check_new_slab;
2a904905 3213
25c00c50 3214 slub_put_cpu_ptr(s->cpu_slab);
bb192ed9 3215 slab = new_slab(s, gfpflags, node);
25c00c50 3216 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3217
bb192ed9 3218 if (unlikely(!slab)) {
9a02d699 3219 slab_out_of_memory(s, gfpflags, node);
f4697436 3220 return NULL;
81819f0f 3221 }
2cfb7455 3222
c7323a5a
VB
3223 stat(s, ALLOC_SLAB);
3224
3225 if (kmem_cache_debug(s)) {
6edf2576 3226 freelist = alloc_single_from_new_slab(s, slab, orig_size);
c7323a5a
VB
3227
3228 if (unlikely(!freelist))
3229 goto new_objects;
3230
3231 if (s->flags & SLAB_STORE_USER)
3232 set_track(s, freelist, TRACK_ALLOC, addr);
3233
3234 return freelist;
3235 }
3236
53a0de06 3237 /*
c2092c12 3238 * No other reference to the slab yet so we can
53a0de06
VB
3239 * muck around with it freely without cmpxchg
3240 */
bb192ed9
VB
3241 freelist = slab->freelist;
3242 slab->freelist = NULL;
c7323a5a
VB
3243 slab->inuse = slab->objects;
3244 slab->frozen = 1;
53a0de06 3245
c7323a5a 3246 inc_slabs_node(s, slab_nid(slab), slab->objects);
53a0de06 3247
c2092c12 3248check_new_slab:
2cfb7455 3249
1572df7c 3250 if (kmem_cache_debug(s)) {
c7323a5a
VB
3251 /*
3252 * For debug caches here we had to go through
3253 * alloc_single_from_partial() so just store the tracking info
3254 * and return the object
3255 */
3256 if (s->flags & SLAB_STORE_USER)
3257 set_track(s, freelist, TRACK_ALLOC, addr);
6edf2576 3258
c7323a5a 3259 return freelist;
1572df7c
VB
3260 }
3261
c7323a5a 3262 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
1572df7c
VB
3263 /*
3264 * For !pfmemalloc_match() case we don't load freelist so that
3265 * we don't make further mismatched allocations easier.
3266 */
c7323a5a
VB
3267 deactivate_slab(s, slab, get_freepointer(s, freelist));
3268 return freelist;
3269 }
1572df7c 3270
c2092c12 3271retry_load_slab:
cfdf836e 3272
bd0e7491 3273 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3274 if (unlikely(c->slab)) {
cfdf836e 3275 void *flush_freelist = c->freelist;
bb192ed9 3276 struct slab *flush_slab = c->slab;
cfdf836e 3277
bb192ed9 3278 c->slab = NULL;
cfdf836e
VB
3279 c->freelist = NULL;
3280 c->tid = next_tid(c->tid);
3281
bd0e7491 3282 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3283
bb192ed9 3284 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3285
3286 stat(s, CPUSLAB_FLUSH);
3287
c2092c12 3288 goto retry_load_slab;
cfdf836e 3289 }
bb192ed9 3290 c->slab = slab;
3f2b77e3 3291
1572df7c 3292 goto load_freelist;
894b8788
CL
3293}
3294
a380a3c7 3295/*
e500059b
VB
3296 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3297 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3298 * pointer.
a380a3c7
CL
3299 */
3300static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3301 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
a380a3c7
CL
3302{
3303 void *p;
a380a3c7 3304
e500059b 3305#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3306 /*
3307 * We may have been preempted and rescheduled on a different
e500059b 3308 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3309 * pointer.
3310 */
25c00c50 3311 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3312#endif
3313
6edf2576 3314 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
e500059b 3315#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3316 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3317#endif
a380a3c7
CL
3318 return p;
3319}
3320
56d5a2b9 3321static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3322 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3323{
dfb4f096 3324 struct kmem_cache_cpu *c;
bb192ed9 3325 struct slab *slab;
8a5ec0ba 3326 unsigned long tid;
56d5a2b9 3327 void *object;
b89fb5ef 3328
8a5ec0ba 3329redo:
8a5ec0ba
CL
3330 /*
3331 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3332 * enabled. We may switch back and forth between cpus while
3333 * reading from one cpu area. That does not matter as long
3334 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3335 *
9b4bc85a
VB
3336 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3337 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3338 * the tid. If we are preempted and switched to another cpu between the
3339 * two reads, it's OK as the two are still associated with the same cpu
3340 * and cmpxchg later will validate the cpu.
8a5ec0ba 3341 */
9b4bc85a
VB
3342 c = raw_cpu_ptr(s->cpu_slab);
3343 tid = READ_ONCE(c->tid);
9aabf810
JK
3344
3345 /*
3346 * Irqless object alloc/free algorithm used here depends on sequence
3347 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3348 * on c to guarantee that object and slab associated with previous tid
9aabf810 3349 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3350 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3351 * request will be failed. In this case, we will retry. So, no problem.
3352 */
3353 barrier();
8a5ec0ba 3354
8a5ec0ba
CL
3355 /*
3356 * The transaction ids are globally unique per cpu and per operation on
3357 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3358 * occurs on the right processor and that there was no operation on the
3359 * linked list in between.
3360 */
8a5ec0ba 3361
9dfc6e68 3362 object = c->freelist;
bb192ed9 3363 slab = c->slab;
1f04b07d
TG
3364
3365 if (!USE_LOCKLESS_FAST_PATH() ||
bb192ed9 3366 unlikely(!object || !slab || !node_match(slab, node))) {
6edf2576 3367 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
8eae1492 3368 } else {
0ad9500e
ED
3369 void *next_object = get_freepointer_safe(s, object);
3370
8a5ec0ba 3371 /*
25985edc 3372 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3373 * operation and if we are on the right processor.
3374 *
d0e0ac97
CG
3375 * The cmpxchg does the following atomically (without lock
3376 * semantics!)
8a5ec0ba
CL
3377 * 1. Relocate first pointer to the current per cpu area.
3378 * 2. Verify that tid and freelist have not been changed
3379 * 3. If they were not changed replace tid and freelist
3380 *
d0e0ac97
CG
3381 * Since this is without lock semantics the protection is only
3382 * against code executing on this cpu *not* from access by
3383 * other cpus.
8a5ec0ba 3384 */
6801be4f 3385 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
8a5ec0ba
CL
3386 note_cmpxchg_failure("slab_alloc", s, tid);
3387 goto redo;
3388 }
0ad9500e 3389 prefetch_freepointer(s, next_object);
84e554e6 3390 stat(s, ALLOC_FASTPATH);
894b8788 3391 }
0f181f9f 3392
56d5a2b9
VB
3393 return object;
3394}
0af8489b
VB
3395#else /* CONFIG_SLUB_TINY */
3396static void *__slab_alloc_node(struct kmem_cache *s,
3397 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3398{
3399 struct partial_context pc;
3400 struct slab *slab;
3401 void *object;
3402
3403 pc.flags = gfpflags;
3404 pc.slab = &slab;
3405 pc.orig_size = orig_size;
3406 object = get_partial(s, node, &pc);
3407
3408 if (object)
3409 return object;
3410
3411 slab = new_slab(s, gfpflags, node);
3412 if (unlikely(!slab)) {
3413 slab_out_of_memory(s, gfpflags, node);
3414 return NULL;
3415 }
3416
3417 object = alloc_single_from_new_slab(s, slab, orig_size);
3418
3419 return object;
3420}
3421#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
3422
3423/*
3424 * If the object has been wiped upon free, make sure it's fully initialized by
3425 * zeroing out freelist pointer.
3426 */
3427static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3428 void *obj)
3429{
3430 if (unlikely(slab_want_init_on_free(s)) && obj)
3431 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3432 0, sizeof(void *));
3433}
3434
3435/*
3436 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3437 * have the fastpath folded into their functions. So no function call
3438 * overhead for requests that can be satisfied on the fastpath.
3439 *
3440 * The fastpath works by first checking if the lockless freelist can be used.
3441 * If not then __slab_alloc is called for slow processing.
3442 *
3443 * Otherwise we can simply pick the next object from the lockless free list.
3444 */
be784ba8 3445static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
56d5a2b9
VB
3446 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3447{
3448 void *object;
3449 struct obj_cgroup *objcg = NULL;
3450 bool init = false;
3451
3452 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3453 if (!s)
3454 return NULL;
3455
3456 object = kfence_alloc(s, orig_size, gfpflags);
3457 if (unlikely(object))
3458 goto out;
3459
3460 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3461
ce5716c6 3462 maybe_wipe_obj_freeptr(s, object);
da844b78 3463 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3464
b89fb5ef 3465out:
9ce67395
FT
3466 /*
3467 * When init equals 'true', like for kzalloc() family, only
3468 * @orig_size bytes might be zeroed instead of s->object_size
3469 */
3470 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
5a896d9e 3471
894b8788 3472 return object;
81819f0f
CL
3473}
3474
be784ba8 3475static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
b89fb5ef 3476 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 3477{
88f2ef73 3478 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
3479}
3480
be784ba8 3481static __fastpath_inline
88f2ef73
MS
3482void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3483 gfp_t gfpflags)
81819f0f 3484{
88f2ef73 3485 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
5b882be4 3486
2c1d697f 3487 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
3488
3489 return ret;
81819f0f 3490}
88f2ef73
MS
3491
3492void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3493{
3494 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3495}
81819f0f
CL
3496EXPORT_SYMBOL(kmem_cache_alloc);
3497
88f2ef73
MS
3498void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3499 gfp_t gfpflags)
3500{
3501 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3502}
3503EXPORT_SYMBOL(kmem_cache_alloc_lru);
3504
ed4cd17e
HY
3505void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3506 int node, size_t orig_size,
3507 unsigned long caller)
4a92379b 3508{
ed4cd17e
HY
3509 return slab_alloc_node(s, NULL, gfpflags, node,
3510 caller, orig_size);
4a92379b 3511}
5b882be4 3512
81819f0f
CL
3513void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3514{
88f2ef73 3515 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3516
2c1d697f 3517 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5b882be4
EGM
3518
3519 return ret;
81819f0f
CL
3520}
3521EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3522
fa9b88e4
VB
3523static noinline void free_to_partial_list(
3524 struct kmem_cache *s, struct slab *slab,
3525 void *head, void *tail, int bulk_cnt,
3526 unsigned long addr)
3527{
3528 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3529 struct slab *slab_free = NULL;
3530 int cnt = bulk_cnt;
3531 unsigned long flags;
3532 depot_stack_handle_t handle = 0;
3533
3534 if (s->flags & SLAB_STORE_USER)
3535 handle = set_track_prepare();
3536
3537 spin_lock_irqsave(&n->list_lock, flags);
3538
3539 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3540 void *prior = slab->freelist;
3541
3542 /* Perform the actual freeing while we still hold the locks */
3543 slab->inuse -= cnt;
3544 set_freepointer(s, tail, prior);
3545 slab->freelist = head;
3546
3547 /*
3548 * If the slab is empty, and node's partial list is full,
3549 * it should be discarded anyway no matter it's on full or
3550 * partial list.
3551 */
3552 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3553 slab_free = slab;
3554
3555 if (!prior) {
3556 /* was on full list */
3557 remove_full(s, n, slab);
3558 if (!slab_free) {
3559 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3560 stat(s, FREE_ADD_PARTIAL);
3561 }
3562 } else if (slab_free) {
3563 remove_partial(n, slab);
3564 stat(s, FREE_REMOVE_PARTIAL);
3565 }
3566 }
3567
3568 if (slab_free) {
3569 /*
3570 * Update the counters while still holding n->list_lock to
3571 * prevent spurious validation warnings
3572 */
3573 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3574 }
3575
3576 spin_unlock_irqrestore(&n->list_lock, flags);
3577
3578 if (slab_free) {
3579 stat(s, FREE_SLAB);
3580 free_slab(s, slab_free);
3581 }
3582}
3583
81819f0f 3584/*
94e4d712 3585 * Slow path handling. This may still be called frequently since objects
894b8788 3586 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3587 *
894b8788 3588 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 3589 * lock and free the item. If there is no additional partial slab
894b8788 3590 * handling required then we can return immediately.
81819f0f 3591 */
bb192ed9 3592static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
3593 void *head, void *tail, int cnt,
3594 unsigned long addr)
3595
81819f0f
CL
3596{
3597 void *prior;
2cfb7455 3598 int was_frozen;
bb192ed9 3599 struct slab new;
2cfb7455
CL
3600 unsigned long counters;
3601 struct kmem_cache_node *n = NULL;
3f649ab7 3602 unsigned long flags;
81819f0f 3603
8a5ec0ba 3604 stat(s, FREE_SLOWPATH);
81819f0f 3605
b89fb5ef
AP
3606 if (kfence_free(head))
3607 return;
3608
0af8489b 3609 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
fa9b88e4 3610 free_to_partial_list(s, slab, head, tail, cnt, addr);
80f08c19 3611 return;
c7323a5a 3612 }
6446faa2 3613
2cfb7455 3614 do {
837d678d
JK
3615 if (unlikely(n)) {
3616 spin_unlock_irqrestore(&n->list_lock, flags);
3617 n = NULL;
3618 }
bb192ed9
VB
3619 prior = slab->freelist;
3620 counters = slab->counters;
81084651 3621 set_freepointer(s, tail, prior);
2cfb7455
CL
3622 new.counters = counters;
3623 was_frozen = new.frozen;
81084651 3624 new.inuse -= cnt;
837d678d 3625 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3626
c65c1877 3627 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3628
3629 /*
d0e0ac97
CG
3630 * Slab was on no list before and will be
3631 * partially empty
3632 * We can defer the list move and instead
3633 * freeze it.
49e22585
CL
3634 */
3635 new.frozen = 1;
3636
c65c1877 3637 } else { /* Needs to be taken off a list */
49e22585 3638
bb192ed9 3639 n = get_node(s, slab_nid(slab));
49e22585
CL
3640 /*
3641 * Speculatively acquire the list_lock.
3642 * If the cmpxchg does not succeed then we may
3643 * drop the list_lock without any processing.
3644 *
3645 * Otherwise the list_lock will synchronize with
3646 * other processors updating the list of slabs.
3647 */
3648 spin_lock_irqsave(&n->list_lock, flags);
3649
3650 }
2cfb7455 3651 }
81819f0f 3652
6801be4f 3653 } while (!slab_update_freelist(s, slab,
2cfb7455 3654 prior, counters,
81084651 3655 head, new.counters,
2cfb7455 3656 "__slab_free"));
81819f0f 3657
2cfb7455 3658 if (likely(!n)) {
49e22585 3659
c270cf30
AW
3660 if (likely(was_frozen)) {
3661 /*
3662 * The list lock was not taken therefore no list
3663 * activity can be necessary.
3664 */
3665 stat(s, FREE_FROZEN);
3666 } else if (new.frozen) {
3667 /*
c2092c12 3668 * If we just froze the slab then put it onto the
c270cf30
AW
3669 * per cpu partial list.
3670 */
bb192ed9 3671 put_cpu_partial(s, slab, 1);
8028dcea
AS
3672 stat(s, CPU_PARTIAL_FREE);
3673 }
c270cf30 3674
b455def2
L
3675 return;
3676 }
81819f0f 3677
8a5b20ae 3678 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3679 goto slab_empty;
3680
81819f0f 3681 /*
837d678d
JK
3682 * Objects left in the slab. If it was not on the partial list before
3683 * then add it.
81819f0f 3684 */
345c905d 3685 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9
VB
3686 remove_full(s, n, slab);
3687 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 3688 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3689 }
80f08c19 3690 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3691 return;
3692
3693slab_empty:
a973e9dd 3694 if (prior) {
81819f0f 3695 /*
6fbabb20 3696 * Slab on the partial list.
81819f0f 3697 */
bb192ed9 3698 remove_partial(n, slab);
84e554e6 3699 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3700 } else {
6fbabb20 3701 /* Slab must be on the full list */
bb192ed9 3702 remove_full(s, n, slab);
c65c1877 3703 }
2cfb7455 3704
80f08c19 3705 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3706 stat(s, FREE_SLAB);
bb192ed9 3707 discard_slab(s, slab);
81819f0f
CL
3708}
3709
0af8489b 3710#ifndef CONFIG_SLUB_TINY
894b8788
CL
3711/*
3712 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3713 * can perform fastpath freeing without additional function calls.
3714 *
3715 * The fastpath is only possible if we are freeing to the current cpu slab
3716 * of this processor. This typically the case if we have just allocated
3717 * the item before.
3718 *
3719 * If fastpath is not possible then fall back to __slab_free where we deal
3720 * with all sorts of special processing.
81084651
JDB
3721 *
3722 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 3723 * same slab) possible by specifying head and tail ptr, plus objects
81084651 3724 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3725 */
80a9201a 3726static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 3727 struct slab *slab, void *head, void *tail,
80a9201a 3728 int cnt, unsigned long addr)
894b8788 3729{
81084651 3730 void *tail_obj = tail ? : head;
dfb4f096 3731 struct kmem_cache_cpu *c;
8a5ec0ba 3732 unsigned long tid;
1f04b07d 3733 void **freelist;
964d4bd3 3734
8a5ec0ba
CL
3735redo:
3736 /*
3737 * Determine the currently cpus per cpu slab.
3738 * The cpu may change afterward. However that does not matter since
3739 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3740 * during the cmpxchg then the free will succeed.
8a5ec0ba 3741 */
9b4bc85a
VB
3742 c = raw_cpu_ptr(s->cpu_slab);
3743 tid = READ_ONCE(c->tid);
c016b0bd 3744
9aabf810
JK
3745 /* Same with comment on barrier() in slab_alloc_node() */
3746 barrier();
c016b0bd 3747
1f04b07d
TG
3748 if (unlikely(slab != c->slab)) {
3749 __slab_free(s, slab, head, tail_obj, cnt, addr);
3750 return;
3751 }
3752
3753 if (USE_LOCKLESS_FAST_PATH()) {
3754 freelist = READ_ONCE(c->freelist);
5076190d
LT
3755
3756 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3757
6801be4f 3758 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
8a5ec0ba
CL
3759 note_cmpxchg_failure("slab_free", s, tid);
3760 goto redo;
3761 }
1f04b07d
TG
3762 } else {
3763 /* Update the free list under the local lock */
bd0e7491
VB
3764 local_lock(&s->cpu_slab->lock);
3765 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 3766 if (unlikely(slab != c->slab)) {
bd0e7491
VB
3767 local_unlock(&s->cpu_slab->lock);
3768 goto redo;
3769 }
3770 tid = c->tid;
3771 freelist = c->freelist;
3772
3773 set_freepointer(s, tail_obj, freelist);
3774 c->freelist = head;
3775 c->tid = next_tid(tid);
3776
3777 local_unlock(&s->cpu_slab->lock);
1f04b07d
TG
3778 }
3779 stat(s, FREE_FASTPATH);
894b8788 3780}
0af8489b
VB
3781#else /* CONFIG_SLUB_TINY */
3782static void do_slab_free(struct kmem_cache *s,
3783 struct slab *slab, void *head, void *tail,
3784 int cnt, unsigned long addr)
3785{
3786 void *tail_obj = tail ? : head;
894b8788 3787
0af8489b
VB
3788 __slab_free(s, slab, head, tail_obj, cnt, addr);
3789}
3790#endif /* CONFIG_SLUB_TINY */
894b8788 3791
be784ba8 3792static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
b77d5b1b 3793 void *head, void *tail, void **p, int cnt,
80a9201a
AP
3794 unsigned long addr)
3795{
b77d5b1b 3796 memcg_slab_free_hook(s, slab, p, cnt);
80a9201a 3797 /*
c3895391
AK
3798 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3799 * to remove objects, whose reuse must be delayed.
80a9201a 3800 */
899447f6 3801 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
bb192ed9 3802 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
3803}
3804
2bd926b4 3805#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3806void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3807{
bb192ed9 3808 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
80a9201a
AP
3809}
3810#endif
3811
ed4cd17e
HY
3812void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3813{
3814 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3815}
3816
81819f0f
CL
3817void kmem_cache_free(struct kmem_cache *s, void *x)
3818{
b9ce5ef4
GC
3819 s = cache_from_obj(s, x);
3820 if (!s)
79576102 3821 return;
2c1d697f 3822 trace_kmem_cache_free(_RET_IP_, x, s);
b77d5b1b 3823 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
81819f0f
CL
3824}
3825EXPORT_SYMBOL(kmem_cache_free);
3826
d0ecd894 3827struct detached_freelist {
cc465c3b 3828 struct slab *slab;
d0ecd894
JDB
3829 void *tail;
3830 void *freelist;
3831 int cnt;
376bf125 3832 struct kmem_cache *s;
d0ecd894 3833};
fbd02630 3834
d0ecd894
JDB
3835/*
3836 * This function progressively scans the array with free objects (with
3837 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
3838 * slab. It builds a detached freelist directly within the given
3839 * slab/objects. This can happen without any need for
d0ecd894
JDB
3840 * synchronization, because the objects are owned by running process.
3841 * The freelist is build up as a single linked list in the objects.
3842 * The idea is, that this detached freelist can then be bulk
3843 * transferred to the real freelist(s), but only requiring a single
3844 * synchronization primitive. Look ahead in the array is limited due
3845 * to performance reasons.
3846 */
376bf125
JDB
3847static inline
3848int build_detached_freelist(struct kmem_cache *s, size_t size,
3849 void **p, struct detached_freelist *df)
d0ecd894 3850{
d0ecd894
JDB
3851 int lookahead = 3;
3852 void *object;
cc465c3b 3853 struct folio *folio;
b77d5b1b 3854 size_t same;
fbd02630 3855
b77d5b1b 3856 object = p[--size];
cc465c3b 3857 folio = virt_to_folio(object);
ca257195
JDB
3858 if (!s) {
3859 /* Handle kalloc'ed objects */
cc465c3b 3860 if (unlikely(!folio_test_slab(folio))) {
d835eef4 3861 free_large_kmalloc(folio, object);
b77d5b1b 3862 df->slab = NULL;
ca257195
JDB
3863 return size;
3864 }
3865 /* Derive kmem_cache from object */
b77d5b1b
MS
3866 df->slab = folio_slab(folio);
3867 df->s = df->slab->slab_cache;
ca257195 3868 } else {
b77d5b1b 3869 df->slab = folio_slab(folio);
ca257195
JDB
3870 df->s = cache_from_obj(s, object); /* Support for memcg */
3871 }
376bf125 3872
d0ecd894 3873 /* Start new detached freelist */
d0ecd894
JDB
3874 df->tail = object;
3875 df->freelist = object;
d0ecd894
JDB
3876 df->cnt = 1;
3877
b77d5b1b
MS
3878 if (is_kfence_address(object))
3879 return size;
3880
3881 set_freepointer(df->s, object, NULL);
3882
3883 same = size;
d0ecd894
JDB
3884 while (size) {
3885 object = p[--size];
cc465c3b
MWO
3886 /* df->slab is always set at this point */
3887 if (df->slab == virt_to_slab(object)) {
d0ecd894 3888 /* Opportunity build freelist */
376bf125 3889 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3890 df->freelist = object;
3891 df->cnt++;
b77d5b1b
MS
3892 same--;
3893 if (size != same)
3894 swap(p[size], p[same]);
d0ecd894 3895 continue;
fbd02630 3896 }
d0ecd894
JDB
3897
3898 /* Limit look ahead search */
3899 if (!--lookahead)
3900 break;
fbd02630 3901 }
d0ecd894 3902
b77d5b1b 3903 return same;
d0ecd894
JDB
3904}
3905
d0ecd894 3906/* Note that interrupts must be enabled when calling this function. */
376bf125 3907void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 3908{
2055e67b 3909 if (!size)
d0ecd894
JDB
3910 return;
3911
3912 do {
3913 struct detached_freelist df;
3914
3915 size = build_detached_freelist(s, size, p, &df);
cc465c3b 3916 if (!df.slab)
d0ecd894
JDB
3917 continue;
3918
b77d5b1b
MS
3919 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3920 _RET_IP_);
d0ecd894 3921 } while (likely(size));
484748f0
CL
3922}
3923EXPORT_SYMBOL(kmem_cache_free_bulk);
3924
0af8489b 3925#ifndef CONFIG_SLUB_TINY
56d5a2b9
VB
3926static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3927 size_t size, void **p, struct obj_cgroup *objcg)
484748f0 3928{
994eb764 3929 struct kmem_cache_cpu *c;
f5451547 3930 unsigned long irqflags;
994eb764
JDB
3931 int i;
3932
994eb764
JDB
3933 /*
3934 * Drain objects in the per cpu slab, while disabling local
3935 * IRQs, which protects against PREEMPT and interrupts
3936 * handlers invoking normal fastpath.
3937 */
25c00c50 3938 c = slub_get_cpu_ptr(s->cpu_slab);
f5451547 3939 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
994eb764
JDB
3940
3941 for (i = 0; i < size; i++) {
b89fb5ef 3942 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3943
b89fb5ef
AP
3944 if (unlikely(object)) {
3945 p[i] = object;
3946 continue;
3947 }
3948
3949 object = c->freelist;
ebe909e0 3950 if (unlikely(!object)) {
fd4d9c7d
JH
3951 /*
3952 * We may have removed an object from c->freelist using
3953 * the fastpath in the previous iteration; in that case,
3954 * c->tid has not been bumped yet.
3955 * Since ___slab_alloc() may reenable interrupts while
3956 * allocating memory, we should bump c->tid now.
3957 */
3958 c->tid = next_tid(c->tid);
3959
f5451547 3960 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
e500059b 3961
ebe909e0
JDB
3962 /*
3963 * Invoking slow path likely have side-effect
3964 * of re-populating per CPU c->freelist
3965 */
87098373 3966 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
6edf2576 3967 _RET_IP_, c, s->object_size);
87098373
CL
3968 if (unlikely(!p[i]))
3969 goto error;
3970
ebe909e0 3971 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3972 maybe_wipe_obj_freeptr(s, p[i]);
3973
f5451547 3974 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
e500059b 3975
ebe909e0
JDB
3976 continue; /* goto for-loop */
3977 }
994eb764
JDB
3978 c->freelist = get_freepointer(s, object);
3979 p[i] = object;
0f181f9f 3980 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3981 }
3982 c->tid = next_tid(c->tid);
f5451547 3983 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
25c00c50 3984 slub_put_cpu_ptr(s->cpu_slab);
994eb764 3985
865762a8 3986 return i;
56d5a2b9 3987
87098373 3988error:
25c00c50 3989 slub_put_cpu_ptr(s->cpu_slab);
9ce67395 3990 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
2055e67b 3991 kmem_cache_free_bulk(s, i, p);
865762a8 3992 return 0;
56d5a2b9
VB
3993
3994}
0af8489b
VB
3995#else /* CONFIG_SLUB_TINY */
3996static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3997 size_t size, void **p, struct obj_cgroup *objcg)
3998{
3999 int i;
4000
4001 for (i = 0; i < size; i++) {
4002 void *object = kfence_alloc(s, s->object_size, flags);
4003
4004 if (unlikely(object)) {
4005 p[i] = object;
4006 continue;
4007 }
4008
4009 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4010 _RET_IP_, s->object_size);
4011 if (unlikely(!p[i]))
4012 goto error;
4013
4014 maybe_wipe_obj_freeptr(s, p[i]);
4015 }
4016
4017 return i;
4018
4019error:
dc19745a 4020 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
0af8489b
VB
4021 kmem_cache_free_bulk(s, i, p);
4022 return 0;
4023}
4024#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
4025
4026/* Note that interrupts must be enabled when calling this function. */
4027int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4028 void **p)
4029{
4030 int i;
4031 struct obj_cgroup *objcg = NULL;
4032
4033 if (!size)
4034 return 0;
4035
4036 /* memcg and kmem_cache debug support */
4037 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4038 if (unlikely(!s))
4039 return 0;
4040
4041 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4042
4043 /*
4044 * memcg and kmem_cache debug support and memory initialization.
4045 * Done outside of the IRQ disabled fastpath loop.
4046 */
4047 if (i != 0)
4048 slab_post_alloc_hook(s, objcg, flags, size, p,
dc19745a 4049 slab_want_init_on_alloc(flags, s), s->object_size);
56d5a2b9 4050 return i;
484748f0
CL
4051}
4052EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4053
4054
81819f0f 4055/*
672bba3a
CL
4056 * Object placement in a slab is made very easy because we always start at
4057 * offset 0. If we tune the size of the object to the alignment then we can
4058 * get the required alignment by putting one properly sized object after
4059 * another.
81819f0f
CL
4060 *
4061 * Notice that the allocation order determines the sizes of the per cpu
4062 * caches. Each processor has always one slab available for allocations.
4063 * Increasing the allocation order reduces the number of times that slabs
672bba3a 4064 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 4065 * locking overhead.
81819f0f
CL
4066 */
4067
4068/*
f0953a1b 4069 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
4070 * and slab fragmentation. A higher order reduces the number of partial slabs
4071 * and increases the number of allocations possible without having to
4072 * take the list_lock.
4073 */
19af27af 4074static unsigned int slub_min_order;
90ce872c
VB
4075static unsigned int slub_max_order =
4076 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
19af27af 4077static unsigned int slub_min_objects;
81819f0f 4078
81819f0f
CL
4079/*
4080 * Calculate the order of allocation given an slab object size.
4081 *
672bba3a
CL
4082 * The order of allocation has significant impact on performance and other
4083 * system components. Generally order 0 allocations should be preferred since
4084 * order 0 does not cause fragmentation in the page allocator. Larger objects
4085 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 4086 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
4087 * would be wasted.
4088 *
4089 * In order to reach satisfactory performance we must ensure that a minimum
4090 * number of objects is in one slab. Otherwise we may generate too much
4091 * activity on the partial lists which requires taking the list_lock. This is
4092 * less a concern for large slabs though which are rarely used.
81819f0f 4093 *
672bba3a
CL
4094 * slub_max_order specifies the order where we begin to stop considering the
4095 * number of objects in a slab as critical. If we reach slub_max_order then
4096 * we try to keep the page order as low as possible. So we accept more waste
4097 * of space in favor of a small page order.
81819f0f 4098 *
672bba3a
CL
4099 * Higher order allocations also allow the placement of more objects in a
4100 * slab and thereby reduce object handling overhead. If the user has
dc84207d 4101 * requested a higher minimum order then we start with that one instead of
672bba3a 4102 * the smallest order which will fit the object.
81819f0f 4103 */
d122019b 4104static inline unsigned int calc_slab_order(unsigned int size,
19af27af 4105 unsigned int min_objects, unsigned int max_order,
9736d2a9 4106 unsigned int fract_leftover)
81819f0f 4107{
19af27af
AD
4108 unsigned int min_order = slub_min_order;
4109 unsigned int order;
81819f0f 4110
9736d2a9 4111 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 4112 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 4113
9736d2a9 4114 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 4115 order <= max_order; order++) {
81819f0f 4116
19af27af
AD
4117 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4118 unsigned int rem;
81819f0f 4119
9736d2a9 4120 rem = slab_size % size;
81819f0f 4121
5e6d444e 4122 if (rem <= slab_size / fract_leftover)
81819f0f 4123 break;
81819f0f 4124 }
672bba3a 4125
81819f0f
CL
4126 return order;
4127}
4128
9736d2a9 4129static inline int calculate_order(unsigned int size)
5e6d444e 4130{
19af27af
AD
4131 unsigned int order;
4132 unsigned int min_objects;
4133 unsigned int max_objects;
3286222f 4134 unsigned int nr_cpus;
5e6d444e
CL
4135
4136 /*
4137 * Attempt to find best configuration for a slab. This
4138 * works by first attempting to generate a layout with
4139 * the best configuration and backing off gradually.
4140 *
422ff4d7 4141 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
4142 * we reduce the minimum objects required in a slab.
4143 */
4144 min_objects = slub_min_objects;
3286222f
VB
4145 if (!min_objects) {
4146 /*
4147 * Some architectures will only update present cpus when
4148 * onlining them, so don't trust the number if it's just 1. But
4149 * we also don't want to use nr_cpu_ids always, as on some other
4150 * architectures, there can be many possible cpus, but never
4151 * onlined. Here we compromise between trying to avoid too high
4152 * order on systems that appear larger than they are, and too
4153 * low order on systems that appear smaller than they are.
4154 */
4155 nr_cpus = num_present_cpus();
4156 if (nr_cpus <= 1)
4157 nr_cpus = nr_cpu_ids;
4158 min_objects = 4 * (fls(nr_cpus) + 1);
4159 }
9736d2a9 4160 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
4161 min_objects = min(min_objects, max_objects);
4162
5e6d444e 4163 while (min_objects > 1) {
19af27af
AD
4164 unsigned int fraction;
4165
c124f5b5 4166 fraction = 16;
5e6d444e 4167 while (fraction >= 4) {
d122019b 4168 order = calc_slab_order(size, min_objects,
9736d2a9 4169 slub_max_order, fraction);
5e6d444e
CL
4170 if (order <= slub_max_order)
4171 return order;
4172 fraction /= 2;
4173 }
5086c389 4174 min_objects--;
5e6d444e
CL
4175 }
4176
4177 /*
4178 * We were unable to place multiple objects in a slab. Now
4179 * lets see if we can place a single object there.
4180 */
d122019b 4181 order = calc_slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
4182 if (order <= slub_max_order)
4183 return order;
4184
4185 /*
4186 * Doh this slab cannot be placed using slub_max_order.
4187 */
d122019b 4188 order = calc_slab_order(size, 1, MAX_ORDER, 1);
23baf831 4189 if (order <= MAX_ORDER)
5e6d444e
CL
4190 return order;
4191 return -ENOSYS;
4192}
4193
5595cffc 4194static void
4053497d 4195init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
4196{
4197 n->nr_partial = 0;
81819f0f
CL
4198 spin_lock_init(&n->list_lock);
4199 INIT_LIST_HEAD(&n->partial);
8ab1372f 4200#ifdef CONFIG_SLUB_DEBUG
0f389ec6 4201 atomic_long_set(&n->nr_slabs, 0);
02b71b70 4202 atomic_long_set(&n->total_objects, 0);
643b1138 4203 INIT_LIST_HEAD(&n->full);
8ab1372f 4204#endif
81819f0f
CL
4205}
4206
0af8489b 4207#ifndef CONFIG_SLUB_TINY
55136592 4208static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 4209{
6c182dc0 4210 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
a0dc161a
BH
4211 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4212 sizeof(struct kmem_cache_cpu));
4c93c355 4213
8a5ec0ba 4214 /*
d4d84fef
CM
4215 * Must align to double word boundary for the double cmpxchg
4216 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 4217 */
d4d84fef
CM
4218 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4219 2 * sizeof(void *));
8a5ec0ba
CL
4220
4221 if (!s->cpu_slab)
4222 return 0;
4223
4224 init_kmem_cache_cpus(s);
4c93c355 4225
8a5ec0ba 4226 return 1;
4c93c355 4227}
0af8489b
VB
4228#else
4229static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4230{
4231 return 1;
4232}
4233#endif /* CONFIG_SLUB_TINY */
4c93c355 4234
51df1142
CL
4235static struct kmem_cache *kmem_cache_node;
4236
81819f0f
CL
4237/*
4238 * No kmalloc_node yet so do it by hand. We know that this is the first
4239 * slab on the node for this slabcache. There are no concurrent accesses
4240 * possible.
4241 *
721ae22a
ZYW
4242 * Note that this function only works on the kmem_cache_node
4243 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 4244 * memory on a fresh node that has no slab structures yet.
81819f0f 4245 */
55136592 4246static void early_kmem_cache_node_alloc(int node)
81819f0f 4247{
bb192ed9 4248 struct slab *slab;
81819f0f
CL
4249 struct kmem_cache_node *n;
4250
51df1142 4251 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 4252
bb192ed9 4253 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 4254
bb192ed9 4255 BUG_ON(!slab);
c7323a5a 4256 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
bb192ed9 4257 if (slab_nid(slab) != node) {
f9f58285
FF
4258 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4259 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
4260 }
4261
bb192ed9 4262 n = slab->freelist;
81819f0f 4263 BUG_ON(!n);
8ab1372f 4264#ifdef CONFIG_SLUB_DEBUG
f7cb1933 4265 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 4266 init_tracking(kmem_cache_node, n);
8ab1372f 4267#endif
da844b78 4268 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
4269 slab->freelist = get_freepointer(kmem_cache_node, n);
4270 slab->inuse = 1;
12b22386 4271 kmem_cache_node->node[node] = n;
4053497d 4272 init_kmem_cache_node(n);
bb192ed9 4273 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 4274
67b6c900 4275 /*
1e4dd946
SR
4276 * No locks need to be taken here as it has just been
4277 * initialized and there is no concurrent access.
67b6c900 4278 */
bb192ed9 4279 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
4280}
4281
4282static void free_kmem_cache_nodes(struct kmem_cache *s)
4283{
4284 int node;
fa45dc25 4285 struct kmem_cache_node *n;
81819f0f 4286
fa45dc25 4287 for_each_kmem_cache_node(s, node, n) {
81819f0f 4288 s->node[node] = NULL;
ea37df54 4289 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
4290 }
4291}
4292
52b4b950
DS
4293void __kmem_cache_release(struct kmem_cache *s)
4294{
210e7a43 4295 cache_random_seq_destroy(s);
0af8489b 4296#ifndef CONFIG_SLUB_TINY
52b4b950 4297 free_percpu(s->cpu_slab);
0af8489b 4298#endif
52b4b950
DS
4299 free_kmem_cache_nodes(s);
4300}
4301
55136592 4302static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
4303{
4304 int node;
81819f0f 4305
7e1fa93d 4306 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
4307 struct kmem_cache_node *n;
4308
73367bd8 4309 if (slab_state == DOWN) {
55136592 4310 early_kmem_cache_node_alloc(node);
73367bd8
AD
4311 continue;
4312 }
51df1142 4313 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 4314 GFP_KERNEL, node);
81819f0f 4315
73367bd8
AD
4316 if (!n) {
4317 free_kmem_cache_nodes(s);
4318 return 0;
81819f0f 4319 }
73367bd8 4320
4053497d 4321 init_kmem_cache_node(n);
ea37df54 4322 s->node[node] = n;
81819f0f
CL
4323 }
4324 return 1;
4325}
81819f0f 4326
e6d0e1dc
WY
4327static void set_cpu_partial(struct kmem_cache *s)
4328{
4329#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
4330 unsigned int nr_objects;
4331
e6d0e1dc
WY
4332 /*
4333 * cpu_partial determined the maximum number of objects kept in the
4334 * per cpu partial lists of a processor.
4335 *
4336 * Per cpu partial lists mainly contain slabs that just have one
4337 * object freed. If they are used for allocation then they can be
4338 * filled up again with minimal effort. The slab will never hit the
4339 * per node partial lists and therefore no locking will be required.
4340 *
b47291ef
VB
4341 * For backwards compatibility reasons, this is determined as number
4342 * of objects, even though we now limit maximum number of pages, see
4343 * slub_set_cpu_partial()
e6d0e1dc
WY
4344 */
4345 if (!kmem_cache_has_cpu_partial(s))
b47291ef 4346 nr_objects = 0;
e6d0e1dc 4347 else if (s->size >= PAGE_SIZE)
b47291ef 4348 nr_objects = 6;
e6d0e1dc 4349 else if (s->size >= 1024)
23e98ad1 4350 nr_objects = 24;
e6d0e1dc 4351 else if (s->size >= 256)
23e98ad1 4352 nr_objects = 52;
e6d0e1dc 4353 else
23e98ad1 4354 nr_objects = 120;
b47291ef
VB
4355
4356 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
4357#endif
4358}
4359
81819f0f
CL
4360/*
4361 * calculate_sizes() determines the order and the distribution of data within
4362 * a slab object.
4363 */
ae44d81d 4364static int calculate_sizes(struct kmem_cache *s)
81819f0f 4365{
d50112ed 4366 slab_flags_t flags = s->flags;
be4a7988 4367 unsigned int size = s->object_size;
19af27af 4368 unsigned int order;
81819f0f 4369
d8b42bf5
CL
4370 /*
4371 * Round up object size to the next word boundary. We can only
4372 * place the free pointer at word boundaries and this determines
4373 * the possible location of the free pointer.
4374 */
4375 size = ALIGN(size, sizeof(void *));
4376
4377#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4378 /*
4379 * Determine if we can poison the object itself. If the user of
4380 * the slab may touch the object after free or before allocation
4381 * then we should never poison the object itself.
4382 */
5f0d5a3a 4383 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 4384 !s->ctor)
81819f0f
CL
4385 s->flags |= __OBJECT_POISON;
4386 else
4387 s->flags &= ~__OBJECT_POISON;
4388
81819f0f
CL
4389
4390 /*
672bba3a 4391 * If we are Redzoning then check if there is some space between the
81819f0f 4392 * end of the object and the free pointer. If not then add an
672bba3a 4393 * additional word to have some bytes to store Redzone information.
81819f0f 4394 */
3b0efdfa 4395 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 4396 size += sizeof(void *);
41ecc55b 4397#endif
81819f0f
CL
4398
4399 /*
672bba3a 4400 * With that we have determined the number of bytes in actual use
e41a49fa 4401 * by the object and redzoning.
81819f0f
CL
4402 */
4403 s->inuse = size;
4404
946fa0db
FT
4405 if (slub_debug_orig_size(s) ||
4406 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
74c1d3e0
KC
4407 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4408 s->ctor) {
81819f0f
CL
4409 /*
4410 * Relocate free pointer after the object if it is not
4411 * permitted to overwrite the first word of the object on
4412 * kmem_cache_free.
4413 *
4414 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
4415 * destructor, are poisoning the objects, or are
4416 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
4417 *
4418 * The assumption that s->offset >= s->inuse means free
4419 * pointer is outside of the object is used in the
4420 * freeptr_outside_object() function. If that is no
4421 * longer true, the function needs to be modified.
81819f0f
CL
4422 */
4423 s->offset = size;
4424 size += sizeof(void *);
e41a49fa 4425 } else {
3202fa62
KC
4426 /*
4427 * Store freelist pointer near middle of object to keep
4428 * it away from the edges of the object to avoid small
4429 * sized over/underflows from neighboring allocations.
4430 */
e41a49fa 4431 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
4432 }
4433
c12b3c62 4434#ifdef CONFIG_SLUB_DEBUG
6edf2576 4435 if (flags & SLAB_STORE_USER) {
81819f0f
CL
4436 /*
4437 * Need to store information about allocs and frees after
4438 * the object.
4439 */
4440 size += 2 * sizeof(struct track);
6edf2576
FT
4441
4442 /* Save the original kmalloc request size */
4443 if (flags & SLAB_KMALLOC)
4444 size += sizeof(unsigned int);
4445 }
80a9201a 4446#endif
81819f0f 4447
80a9201a
AP
4448 kasan_cache_create(s, &size, &s->flags);
4449#ifdef CONFIG_SLUB_DEBUG
d86bd1be 4450 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
4451 /*
4452 * Add some empty padding so that we can catch
4453 * overwrites from earlier objects rather than let
4454 * tracking information or the free pointer be
0211a9c8 4455 * corrupted if a user writes before the start
81819f0f
CL
4456 * of the object.
4457 */
4458 size += sizeof(void *);
d86bd1be
JK
4459
4460 s->red_left_pad = sizeof(void *);
4461 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4462 size += s->red_left_pad;
4463 }
41ecc55b 4464#endif
672bba3a 4465
81819f0f
CL
4466 /*
4467 * SLUB stores one object immediately after another beginning from
4468 * offset 0. In order to align the objects we have to simply size
4469 * each object to conform to the alignment.
4470 */
45906855 4471 size = ALIGN(size, s->align);
81819f0f 4472 s->size = size;
4138fdfc 4473 s->reciprocal_size = reciprocal_value(size);
ae44d81d 4474 order = calculate_order(size);
81819f0f 4475
19af27af 4476 if ((int)order < 0)
81819f0f
CL
4477 return 0;
4478
b7a49f0d 4479 s->allocflags = 0;
834f3d11 4480 if (order)
b7a49f0d
CL
4481 s->allocflags |= __GFP_COMP;
4482
4483 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 4484 s->allocflags |= GFP_DMA;
b7a49f0d 4485
6d6ea1e9
NB
4486 if (s->flags & SLAB_CACHE_DMA32)
4487 s->allocflags |= GFP_DMA32;
4488
b7a49f0d
CL
4489 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4490 s->allocflags |= __GFP_RECLAIMABLE;
4491
81819f0f
CL
4492 /*
4493 * Determine the number of objects per slab
4494 */
9736d2a9
MW
4495 s->oo = oo_make(order, size);
4496 s->min = oo_make(get_order(size), size);
81819f0f 4497
834f3d11 4498 return !!oo_objects(s->oo);
81819f0f
CL
4499}
4500
d50112ed 4501static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 4502{
37540008 4503 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
4504#ifdef CONFIG_SLAB_FREELIST_HARDENED
4505 s->random = get_random_long();
4506#endif
81819f0f 4507
ae44d81d 4508 if (!calculate_sizes(s))
81819f0f 4509 goto error;
3de47213
DR
4510 if (disable_higher_order_debug) {
4511 /*
4512 * Disable debugging flags that store metadata if the min slab
4513 * order increased.
4514 */
3b0efdfa 4515 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
4516 s->flags &= ~DEBUG_METADATA_FLAGS;
4517 s->offset = 0;
ae44d81d 4518 if (!calculate_sizes(s))
3de47213
DR
4519 goto error;
4520 }
4521 }
81819f0f 4522
6801be4f
PZ
4523#ifdef system_has_freelist_aba
4524 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
b789ef51
CL
4525 /* Enable fast mode */
4526 s->flags |= __CMPXCHG_DOUBLE;
6801be4f 4527 }
b789ef51
CL
4528#endif
4529
3b89d7d8 4530 /*
c2092c12 4531 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
4532 * list to avoid pounding the page allocator excessively.
4533 */
5182f3c9
HY
4534 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4535 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 4536
e6d0e1dc 4537 set_cpu_partial(s);
49e22585 4538
81819f0f 4539#ifdef CONFIG_NUMA
e2cb96b7 4540 s->remote_node_defrag_ratio = 1000;
81819f0f 4541#endif
210e7a43
TG
4542
4543 /* Initialize the pre-computed randomized freelist if slab is up */
4544 if (slab_state >= UP) {
4545 if (init_cache_random_seq(s))
4546 goto error;
4547 }
4548
55136592 4549 if (!init_kmem_cache_nodes(s))
dfb4f096 4550 goto error;
81819f0f 4551
55136592 4552 if (alloc_kmem_cache_cpus(s))
278b1bb1 4553 return 0;
ff12059e 4554
81819f0f 4555error:
9037c576 4556 __kmem_cache_release(s);
278b1bb1 4557 return -EINVAL;
81819f0f 4558}
81819f0f 4559
bb192ed9 4560static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 4561 const char *text)
33b12c38
CL
4562{
4563#ifdef CONFIG_SLUB_DEBUG
bb192ed9 4564 void *addr = slab_address(slab);
33b12c38 4565 void *p;
aa456c7a 4566
bb192ed9 4567 slab_err(s, slab, text, s->name);
33b12c38 4568
4ef3f5a3
VB
4569 spin_lock(&object_map_lock);
4570 __fill_map(object_map, s, slab);
4571
bb192ed9 4572 for_each_object(p, s, addr, slab->objects) {
33b12c38 4573
4ef3f5a3 4574 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
96b94abc 4575 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
4576 print_tracking(s, p);
4577 }
4578 }
4ef3f5a3 4579 spin_unlock(&object_map_lock);
33b12c38
CL
4580#endif
4581}
4582
81819f0f 4583/*
599870b1 4584 * Attempt to free all partial slabs on a node.
52b4b950
DS
4585 * This is called from __kmem_cache_shutdown(). We must take list_lock
4586 * because sysfs file might still access partial list after the shutdowning.
81819f0f 4587 */
599870b1 4588static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 4589{
60398923 4590 LIST_HEAD(discard);
bb192ed9 4591 struct slab *slab, *h;
81819f0f 4592
52b4b950
DS
4593 BUG_ON(irqs_disabled());
4594 spin_lock_irq(&n->list_lock);
bb192ed9
VB
4595 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4596 if (!slab->inuse) {
4597 remove_partial(n, slab);
4598 list_add(&slab->slab_list, &discard);
33b12c38 4599 } else {
bb192ed9 4600 list_slab_objects(s, slab,
55860d96 4601 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 4602 }
33b12c38 4603 }
52b4b950 4604 spin_unlock_irq(&n->list_lock);
60398923 4605
bb192ed9
VB
4606 list_for_each_entry_safe(slab, h, &discard, slab_list)
4607 discard_slab(s, slab);
81819f0f
CL
4608}
4609
f9e13c0a
SB
4610bool __kmem_cache_empty(struct kmem_cache *s)
4611{
4612 int node;
4613 struct kmem_cache_node *n;
4614
4615 for_each_kmem_cache_node(s, node, n)
4f174a8b 4616 if (n->nr_partial || node_nr_slabs(n))
f9e13c0a
SB
4617 return false;
4618 return true;
4619}
4620
81819f0f 4621/*
672bba3a 4622 * Release all resources used by a slab cache.
81819f0f 4623 */
52b4b950 4624int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4625{
4626 int node;
fa45dc25 4627 struct kmem_cache_node *n;
81819f0f 4628
5a836bf6 4629 flush_all_cpus_locked(s);
81819f0f 4630 /* Attempt to free all objects */
fa45dc25 4631 for_each_kmem_cache_node(s, node, n) {
599870b1 4632 free_partial(s, n);
4f174a8b 4633 if (n->nr_partial || node_nr_slabs(n))
81819f0f
CL
4634 return 1;
4635 }
81819f0f
CL
4636 return 0;
4637}
4638
5bb1bb35 4639#ifdef CONFIG_PRINTK
2dfe63e6 4640void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
4641{
4642 void *base;
4643 int __maybe_unused i;
4644 unsigned int objnr;
4645 void *objp;
4646 void *objp0;
7213230a 4647 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
4648 struct track __maybe_unused *trackp;
4649
4650 kpp->kp_ptr = object;
7213230a 4651 kpp->kp_slab = slab;
8e7f37f2 4652 kpp->kp_slab_cache = s;
7213230a 4653 base = slab_address(slab);
8e7f37f2
PM
4654 objp0 = kasan_reset_tag(object);
4655#ifdef CONFIG_SLUB_DEBUG
4656 objp = restore_red_left(s, objp0);
4657#else
4658 objp = objp0;
4659#endif
40f3bf0c 4660 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
4661 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4662 objp = base + s->size * objnr;
4663 kpp->kp_objp = objp;
7213230a
MWO
4664 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4665 || (objp - base) % s->size) ||
8e7f37f2
PM
4666 !(s->flags & SLAB_STORE_USER))
4667 return;
4668#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4669 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4670 trackp = get_track(s, objp, TRACK_ALLOC);
4671 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
4672#ifdef CONFIG_STACKDEPOT
4673 {
4674 depot_stack_handle_t handle;
4675 unsigned long *entries;
4676 unsigned int nr_entries;
78869146 4677
5cf909c5
OG
4678 handle = READ_ONCE(trackp->handle);
4679 if (handle) {
4680 nr_entries = stack_depot_fetch(handle, &entries);
4681 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4682 kpp->kp_stack[i] = (void *)entries[i];
4683 }
78869146 4684
5cf909c5
OG
4685 trackp = get_track(s, objp, TRACK_FREE);
4686 handle = READ_ONCE(trackp->handle);
4687 if (handle) {
4688 nr_entries = stack_depot_fetch(handle, &entries);
4689 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4690 kpp->kp_free_stack[i] = (void *)entries[i];
4691 }
e548eaa1 4692 }
8e7f37f2
PM
4693#endif
4694#endif
4695}
5bb1bb35 4696#endif
8e7f37f2 4697
81819f0f
CL
4698/********************************************************************
4699 * Kmalloc subsystem
4700 *******************************************************************/
4701
81819f0f
CL
4702static int __init setup_slub_min_order(char *str)
4703{
19af27af 4704 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4705
4706 return 1;
4707}
4708
4709__setup("slub_min_order=", setup_slub_min_order);
4710
4711static int __init setup_slub_max_order(char *str)
4712{
19af27af 4713 get_option(&str, (int *)&slub_max_order);
23baf831 4714 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
81819f0f
CL
4715
4716 return 1;
4717}
4718
4719__setup("slub_max_order=", setup_slub_max_order);
4720
4721static int __init setup_slub_min_objects(char *str)
4722{
19af27af 4723 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4724
4725 return 1;
4726}
4727
4728__setup("slub_min_objects=", setup_slub_min_objects);
4729
ed18adc1
KC
4730#ifdef CONFIG_HARDENED_USERCOPY
4731/*
afcc90f8
KC
4732 * Rejects incorrectly sized objects and objects that are to be copied
4733 * to/from userspace but do not fall entirely within the containing slab
4734 * cache's usercopy region.
ed18adc1
KC
4735 *
4736 * Returns NULL if check passes, otherwise const char * to name of cache
4737 * to indicate an error.
4738 */
0b3eb091
MWO
4739void __check_heap_object(const void *ptr, unsigned long n,
4740 const struct slab *slab, bool to_user)
ed18adc1
KC
4741{
4742 struct kmem_cache *s;
44065b2e 4743 unsigned int offset;
b89fb5ef 4744 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4745
96fedce2
AK
4746 ptr = kasan_reset_tag(ptr);
4747
ed18adc1 4748 /* Find object and usable object size. */
0b3eb091 4749 s = slab->slab_cache;
ed18adc1
KC
4750
4751 /* Reject impossible pointers. */
0b3eb091 4752 if (ptr < slab_address(slab))
f4e6e289
KC
4753 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4754 to_user, 0, n);
ed18adc1
KC
4755
4756 /* Find offset within object. */
b89fb5ef
AP
4757 if (is_kfence)
4758 offset = ptr - kfence_object_start(ptr);
4759 else
0b3eb091 4760 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
4761
4762 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4763 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4764 if (offset < s->red_left_pad)
f4e6e289
KC
4765 usercopy_abort("SLUB object in left red zone",
4766 s->name, to_user, offset, n);
ed18adc1
KC
4767 offset -= s->red_left_pad;
4768 }
4769
afcc90f8
KC
4770 /* Allow address range falling entirely within usercopy region. */
4771 if (offset >= s->useroffset &&
4772 offset - s->useroffset <= s->usersize &&
4773 n <= s->useroffset - offset + s->usersize)
f4e6e289 4774 return;
ed18adc1 4775
f4e6e289 4776 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4777}
4778#endif /* CONFIG_HARDENED_USERCOPY */
4779
832f37f5
VD
4780#define SHRINK_PROMOTE_MAX 32
4781
2086d26a 4782/*
832f37f5
VD
4783 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4784 * up most to the head of the partial lists. New allocations will then
4785 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4786 *
4787 * The slabs with the least items are placed last. This results in them
4788 * being allocated from last increasing the chance that the last objects
4789 * are freed in them.
2086d26a 4790 */
5a836bf6 4791static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
4792{
4793 int node;
4794 int i;
4795 struct kmem_cache_node *n;
bb192ed9
VB
4796 struct slab *slab;
4797 struct slab *t;
832f37f5
VD
4798 struct list_head discard;
4799 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4800 unsigned long flags;
ce3712d7 4801 int ret = 0;
2086d26a 4802
fa45dc25 4803 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4804 INIT_LIST_HEAD(&discard);
4805 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4806 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4807
4808 spin_lock_irqsave(&n->list_lock, flags);
4809
4810 /*
832f37f5 4811 * Build lists of slabs to discard or promote.
2086d26a 4812 *
672bba3a 4813 * Note that concurrent frees may occur while we hold the
c2092c12 4814 * list_lock. slab->inuse here is the upper limit.
2086d26a 4815 */
bb192ed9
VB
4816 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4817 int free = slab->objects - slab->inuse;
832f37f5 4818
c2092c12 4819 /* Do not reread slab->inuse */
832f37f5
VD
4820 barrier();
4821
4822 /* We do not keep full slabs on the list */
4823 BUG_ON(free <= 0);
4824
bb192ed9
VB
4825 if (free == slab->objects) {
4826 list_move(&slab->slab_list, &discard);
69cb8e6b 4827 n->nr_partial--;
c7323a5a 4828 dec_slabs_node(s, node, slab->objects);
832f37f5 4829 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 4830 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
4831 }
4832
2086d26a 4833 /*
832f37f5
VD
4834 * Promote the slabs filled up most to the head of the
4835 * partial list.
2086d26a 4836 */
832f37f5
VD
4837 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4838 list_splice(promote + i, &n->partial);
2086d26a 4839
2086d26a 4840 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4841
4842 /* Release empty slabs */
bb192ed9 4843 list_for_each_entry_safe(slab, t, &discard, slab_list)
c7323a5a 4844 free_slab(s, slab);
ce3712d7 4845
4f174a8b 4846 if (node_nr_slabs(n))
ce3712d7 4847 ret = 1;
2086d26a
CL
4848 }
4849
ce3712d7 4850 return ret;
2086d26a 4851}
2086d26a 4852
5a836bf6
SAS
4853int __kmem_cache_shrink(struct kmem_cache *s)
4854{
4855 flush_all(s);
4856 return __kmem_cache_do_shrink(s);
4857}
4858
b9049e23
YG
4859static int slab_mem_going_offline_callback(void *arg)
4860{
4861 struct kmem_cache *s;
4862
18004c5d 4863 mutex_lock(&slab_mutex);
5a836bf6
SAS
4864 list_for_each_entry(s, &slab_caches, list) {
4865 flush_all_cpus_locked(s);
4866 __kmem_cache_do_shrink(s);
4867 }
18004c5d 4868 mutex_unlock(&slab_mutex);
b9049e23
YG
4869
4870 return 0;
4871}
4872
4873static void slab_mem_offline_callback(void *arg)
4874{
b9049e23
YG
4875 struct memory_notify *marg = arg;
4876 int offline_node;
4877
b9d5ab25 4878 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4879
4880 /*
4881 * If the node still has available memory. we need kmem_cache_node
4882 * for it yet.
4883 */
4884 if (offline_node < 0)
4885 return;
4886
18004c5d 4887 mutex_lock(&slab_mutex);
7e1fa93d 4888 node_clear(offline_node, slab_nodes);
666716fd
VB
4889 /*
4890 * We no longer free kmem_cache_node structures here, as it would be
4891 * racy with all get_node() users, and infeasible to protect them with
4892 * slab_mutex.
4893 */
18004c5d 4894 mutex_unlock(&slab_mutex);
b9049e23
YG
4895}
4896
4897static int slab_mem_going_online_callback(void *arg)
4898{
4899 struct kmem_cache_node *n;
4900 struct kmem_cache *s;
4901 struct memory_notify *marg = arg;
b9d5ab25 4902 int nid = marg->status_change_nid_normal;
b9049e23
YG
4903 int ret = 0;
4904
4905 /*
4906 * If the node's memory is already available, then kmem_cache_node is
4907 * already created. Nothing to do.
4908 */
4909 if (nid < 0)
4910 return 0;
4911
4912 /*
0121c619 4913 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4914 * allocate a kmem_cache_node structure in order to bring the node
4915 * online.
4916 */
18004c5d 4917 mutex_lock(&slab_mutex);
b9049e23 4918 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4919 /*
4920 * The structure may already exist if the node was previously
4921 * onlined and offlined.
4922 */
4923 if (get_node(s, nid))
4924 continue;
b9049e23
YG
4925 /*
4926 * XXX: kmem_cache_alloc_node will fallback to other nodes
4927 * since memory is not yet available from the node that
4928 * is brought up.
4929 */
8de66a0c 4930 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4931 if (!n) {
4932 ret = -ENOMEM;
4933 goto out;
4934 }
4053497d 4935 init_kmem_cache_node(n);
b9049e23
YG
4936 s->node[nid] = n;
4937 }
7e1fa93d
VB
4938 /*
4939 * Any cache created after this point will also have kmem_cache_node
4940 * initialized for the new node.
4941 */
4942 node_set(nid, slab_nodes);
b9049e23 4943out:
18004c5d 4944 mutex_unlock(&slab_mutex);
b9049e23
YG
4945 return ret;
4946}
4947
4948static int slab_memory_callback(struct notifier_block *self,
4949 unsigned long action, void *arg)
4950{
4951 int ret = 0;
4952
4953 switch (action) {
4954 case MEM_GOING_ONLINE:
4955 ret = slab_mem_going_online_callback(arg);
4956 break;
4957 case MEM_GOING_OFFLINE:
4958 ret = slab_mem_going_offline_callback(arg);
4959 break;
4960 case MEM_OFFLINE:
4961 case MEM_CANCEL_ONLINE:
4962 slab_mem_offline_callback(arg);
4963 break;
4964 case MEM_ONLINE:
4965 case MEM_CANCEL_OFFLINE:
4966 break;
4967 }
dc19f9db
KH
4968 if (ret)
4969 ret = notifier_from_errno(ret);
4970 else
4971 ret = NOTIFY_OK;
b9049e23
YG
4972 return ret;
4973}
4974
81819f0f
CL
4975/********************************************************************
4976 * Basic setup of slabs
4977 *******************************************************************/
4978
51df1142
CL
4979/*
4980 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4981 * the page allocator. Allocate them properly then fix up the pointers
4982 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4983 */
4984
dffb4d60 4985static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4986{
4987 int node;
dffb4d60 4988 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4989 struct kmem_cache_node *n;
51df1142 4990
dffb4d60 4991 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4992
7d557b3c
GC
4993 /*
4994 * This runs very early, and only the boot processor is supposed to be
4995 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4996 * IPIs around.
4997 */
4998 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4999 for_each_kmem_cache_node(s, node, n) {
bb192ed9 5000 struct slab *p;
51df1142 5001
916ac052 5002 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 5003 p->slab_cache = s;
51df1142 5004
607bf324 5005#ifdef CONFIG_SLUB_DEBUG
916ac052 5006 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 5007 p->slab_cache = s;
51df1142 5008#endif
51df1142 5009 }
dffb4d60
CL
5010 list_add(&s->list, &slab_caches);
5011 return s;
51df1142
CL
5012}
5013
81819f0f
CL
5014void __init kmem_cache_init(void)
5015{
dffb4d60
CL
5016 static __initdata struct kmem_cache boot_kmem_cache,
5017 boot_kmem_cache_node;
7e1fa93d 5018 int node;
51df1142 5019
fc8d8620
SG
5020 if (debug_guardpage_minorder())
5021 slub_max_order = 0;
5022
79270291
SB
5023 /* Print slub debugging pointers without hashing */
5024 if (__slub_debug_enabled())
5025 no_hash_pointers_enable(NULL);
5026
dffb4d60
CL
5027 kmem_cache_node = &boot_kmem_cache_node;
5028 kmem_cache = &boot_kmem_cache;
51df1142 5029
7e1fa93d
VB
5030 /*
5031 * Initialize the nodemask for which we will allocate per node
5032 * structures. Here we don't need taking slab_mutex yet.
5033 */
5034 for_each_node_state(node, N_NORMAL_MEMORY)
5035 node_set(node, slab_nodes);
5036
dffb4d60 5037 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 5038 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 5039
946d5f9c 5040 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
5041
5042 /* Able to allocate the per node structures */
5043 slab_state = PARTIAL;
5044
dffb4d60
CL
5045 create_boot_cache(kmem_cache, "kmem_cache",
5046 offsetof(struct kmem_cache, node) +
5047 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 5048 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 5049
dffb4d60 5050 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 5051 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
5052
5053 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 5054 setup_kmalloc_cache_index_table();
f97d5f63 5055 create_kmalloc_caches(0);
81819f0f 5056
210e7a43
TG
5057 /* Setup random freelists for each cache */
5058 init_freelist_randomization();
5059
a96a87bf
SAS
5060 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5061 slub_cpu_dead);
81819f0f 5062
b9726c26 5063 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 5064 cache_line_size(),
81819f0f
CL
5065 slub_min_order, slub_max_order, slub_min_objects,
5066 nr_cpu_ids, nr_node_ids);
5067}
5068
7e85ee0c
PE
5069void __init kmem_cache_init_late(void)
5070{
0af8489b 5071#ifndef CONFIG_SLUB_TINY
e45cc288
ML
5072 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5073 WARN_ON(!flushwq);
0af8489b 5074#endif
7e85ee0c
PE
5075}
5076
2633d7a0 5077struct kmem_cache *
f4957d5b 5078__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 5079 slab_flags_t flags, void (*ctor)(void *))
81819f0f 5080{
10befea9 5081 struct kmem_cache *s;
81819f0f 5082
a44cb944 5083 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 5084 if (s) {
efb93527
XS
5085 if (sysfs_slab_alias(s, name))
5086 return NULL;
5087
81819f0f 5088 s->refcount++;
84d0ddd6 5089
81819f0f
CL
5090 /*
5091 * Adjust the object sizes so that we clear
5092 * the complete object on kzalloc.
5093 */
1b473f29 5094 s->object_size = max(s->object_size, size);
52ee6d74 5095 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 5096 }
6446faa2 5097
cbb79694
CL
5098 return s;
5099}
84c1cf62 5100
d50112ed 5101int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 5102{
aac3a166
PE
5103 int err;
5104
5105 err = kmem_cache_open(s, flags);
5106 if (err)
5107 return err;
20cea968 5108
45530c44
CL
5109 /* Mutex is not taken during early boot */
5110 if (slab_state <= UP)
5111 return 0;
5112
aac3a166 5113 err = sysfs_slab_add(s);
67823a54 5114 if (err) {
52b4b950 5115 __kmem_cache_release(s);
67823a54
ML
5116 return err;
5117 }
20cea968 5118
64dd6849
FM
5119 if (s->flags & SLAB_STORE_USER)
5120 debugfs_slab_add(s);
5121
67823a54 5122 return 0;
81819f0f 5123}
81819f0f 5124
b1a413a3 5125#ifdef SLAB_SUPPORTS_SYSFS
bb192ed9 5126static int count_inuse(struct slab *slab)
205ab99d 5127{
bb192ed9 5128 return slab->inuse;
205ab99d
CL
5129}
5130
bb192ed9 5131static int count_total(struct slab *slab)
205ab99d 5132{
bb192ed9 5133 return slab->objects;
205ab99d 5134}
ab4d5ed5 5135#endif
205ab99d 5136
ab4d5ed5 5137#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5138static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 5139 unsigned long *obj_map)
53e15af0
CL
5140{
5141 void *p;
bb192ed9 5142 void *addr = slab_address(slab);
53e15af0 5143
bb192ed9 5144 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
41bec7c3 5145 return;
53e15af0
CL
5146
5147 /* Now we know that a valid freelist exists */
bb192ed9
VB
5148 __fill_map(obj_map, s, slab);
5149 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 5150 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 5151 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 5152
bb192ed9 5153 if (!check_object(s, slab, p, val))
dd98afd4
YZ
5154 break;
5155 }
53e15af0
CL
5156}
5157
434e245d 5158static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5159 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5160{
5161 unsigned long count = 0;
bb192ed9 5162 struct slab *slab;
53e15af0
CL
5163 unsigned long flags;
5164
5165 spin_lock_irqsave(&n->list_lock, flags);
5166
bb192ed9
VB
5167 list_for_each_entry(slab, &n->partial, slab_list) {
5168 validate_slab(s, slab, obj_map);
53e15af0
CL
5169 count++;
5170 }
1f9f78b1 5171 if (count != n->nr_partial) {
f9f58285
FF
5172 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5173 s->name, count, n->nr_partial);
1f9f78b1
OG
5174 slab_add_kunit_errors();
5175 }
53e15af0
CL
5176
5177 if (!(s->flags & SLAB_STORE_USER))
5178 goto out;
5179
bb192ed9
VB
5180 list_for_each_entry(slab, &n->full, slab_list) {
5181 validate_slab(s, slab, obj_map);
53e15af0
CL
5182 count++;
5183 }
8040cbf5 5184 if (count != node_nr_slabs(n)) {
f9f58285 5185 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8040cbf5 5186 s->name, count, node_nr_slabs(n));
1f9f78b1
OG
5187 slab_add_kunit_errors();
5188 }
53e15af0
CL
5189
5190out:
5191 spin_unlock_irqrestore(&n->list_lock, flags);
5192 return count;
5193}
5194
1f9f78b1 5195long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5196{
5197 int node;
5198 unsigned long count = 0;
fa45dc25 5199 struct kmem_cache_node *n;
0a19e7dd
VB
5200 unsigned long *obj_map;
5201
5202 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5203 if (!obj_map)
5204 return -ENOMEM;
53e15af0
CL
5205
5206 flush_all(s);
fa45dc25 5207 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
5208 count += validate_slab_node(s, n, obj_map);
5209
5210 bitmap_free(obj_map);
90e9f6a6 5211
53e15af0
CL
5212 return count;
5213}
1f9f78b1
OG
5214EXPORT_SYMBOL(validate_slab_cache);
5215
64dd6849 5216#ifdef CONFIG_DEBUG_FS
88a420e4 5217/*
672bba3a 5218 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
5219 * and freed.
5220 */
5221
5222struct location {
8ea9fb92 5223 depot_stack_handle_t handle;
88a420e4 5224 unsigned long count;
ce71e27c 5225 unsigned long addr;
6edf2576 5226 unsigned long waste;
45edfa58
CL
5227 long long sum_time;
5228 long min_time;
5229 long max_time;
5230 long min_pid;
5231 long max_pid;
174596a0 5232 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 5233 nodemask_t nodes;
88a420e4
CL
5234};
5235
5236struct loc_track {
5237 unsigned long max;
5238 unsigned long count;
5239 struct location *loc;
005a79e5 5240 loff_t idx;
88a420e4
CL
5241};
5242
64dd6849
FM
5243static struct dentry *slab_debugfs_root;
5244
88a420e4
CL
5245static void free_loc_track(struct loc_track *t)
5246{
5247 if (t->max)
5248 free_pages((unsigned long)t->loc,
5249 get_order(sizeof(struct location) * t->max));
5250}
5251
68dff6a9 5252static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
5253{
5254 struct location *l;
5255 int order;
5256
88a420e4
CL
5257 order = get_order(sizeof(struct location) * max);
5258
68dff6a9 5259 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
5260 if (!l)
5261 return 0;
5262
5263 if (t->count) {
5264 memcpy(l, t->loc, sizeof(struct location) * t->count);
5265 free_loc_track(t);
5266 }
5267 t->max = max;
5268 t->loc = l;
5269 return 1;
5270}
5271
5272static int add_location(struct loc_track *t, struct kmem_cache *s,
6edf2576
FT
5273 const struct track *track,
5274 unsigned int orig_size)
88a420e4
CL
5275{
5276 long start, end, pos;
5277 struct location *l;
6edf2576 5278 unsigned long caddr, chandle, cwaste;
45edfa58 5279 unsigned long age = jiffies - track->when;
8ea9fb92 5280 depot_stack_handle_t handle = 0;
6edf2576 5281 unsigned int waste = s->object_size - orig_size;
88a420e4 5282
8ea9fb92
OG
5283#ifdef CONFIG_STACKDEPOT
5284 handle = READ_ONCE(track->handle);
5285#endif
88a420e4
CL
5286 start = -1;
5287 end = t->count;
5288
5289 for ( ; ; ) {
5290 pos = start + (end - start + 1) / 2;
5291
5292 /*
5293 * There is nothing at "end". If we end up there
5294 * we need to add something to before end.
5295 */
5296 if (pos == end)
5297 break;
5298
6edf2576
FT
5299 l = &t->loc[pos];
5300 caddr = l->addr;
5301 chandle = l->handle;
5302 cwaste = l->waste;
5303 if ((track->addr == caddr) && (handle == chandle) &&
5304 (waste == cwaste)) {
45edfa58 5305
45edfa58
CL
5306 l->count++;
5307 if (track->when) {
5308 l->sum_time += age;
5309 if (age < l->min_time)
5310 l->min_time = age;
5311 if (age > l->max_time)
5312 l->max_time = age;
5313
5314 if (track->pid < l->min_pid)
5315 l->min_pid = track->pid;
5316 if (track->pid > l->max_pid)
5317 l->max_pid = track->pid;
5318
174596a0
RR
5319 cpumask_set_cpu(track->cpu,
5320 to_cpumask(l->cpus));
45edfa58
CL
5321 }
5322 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5323 return 1;
5324 }
5325
45edfa58 5326 if (track->addr < caddr)
88a420e4 5327 end = pos;
8ea9fb92
OG
5328 else if (track->addr == caddr && handle < chandle)
5329 end = pos;
6edf2576
FT
5330 else if (track->addr == caddr && handle == chandle &&
5331 waste < cwaste)
5332 end = pos;
88a420e4
CL
5333 else
5334 start = pos;
5335 }
5336
5337 /*
672bba3a 5338 * Not found. Insert new tracking element.
88a420e4 5339 */
68dff6a9 5340 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
5341 return 0;
5342
5343 l = t->loc + pos;
5344 if (pos < t->count)
5345 memmove(l + 1, l,
5346 (t->count - pos) * sizeof(struct location));
5347 t->count++;
5348 l->count = 1;
45edfa58
CL
5349 l->addr = track->addr;
5350 l->sum_time = age;
5351 l->min_time = age;
5352 l->max_time = age;
5353 l->min_pid = track->pid;
5354 l->max_pid = track->pid;
8ea9fb92 5355 l->handle = handle;
6edf2576 5356 l->waste = waste;
174596a0
RR
5357 cpumask_clear(to_cpumask(l->cpus));
5358 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
5359 nodes_clear(l->nodes);
5360 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5361 return 1;
5362}
5363
5364static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 5365 struct slab *slab, enum track_item alloc,
b3fd64e1 5366 unsigned long *obj_map)
88a420e4 5367{
bb192ed9 5368 void *addr = slab_address(slab);
6edf2576 5369 bool is_alloc = (alloc == TRACK_ALLOC);
88a420e4
CL
5370 void *p;
5371
bb192ed9 5372 __fill_map(obj_map, s, slab);
b3fd64e1 5373
bb192ed9 5374 for_each_object(p, s, addr, slab->objects)
b3fd64e1 5375 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6edf2576
FT
5376 add_location(t, s, get_track(s, p, alloc),
5377 is_alloc ? get_orig_size(s, p) :
5378 s->object_size);
88a420e4 5379}
64dd6849 5380#endif /* CONFIG_DEBUG_FS */
6dfd1b65 5381#endif /* CONFIG_SLUB_DEBUG */
88a420e4 5382
b1a413a3 5383#ifdef SLAB_SUPPORTS_SYSFS
81819f0f 5384enum slab_stat_type {
205ab99d
CL
5385 SL_ALL, /* All slabs */
5386 SL_PARTIAL, /* Only partially allocated slabs */
5387 SL_CPU, /* Only slabs used for cpu caches */
5388 SL_OBJECTS, /* Determine allocated objects not slabs */
5389 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
5390};
5391
205ab99d 5392#define SO_ALL (1 << SL_ALL)
81819f0f
CL
5393#define SO_PARTIAL (1 << SL_PARTIAL)
5394#define SO_CPU (1 << SL_CPU)
5395#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 5396#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 5397
62e5c4b4 5398static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 5399 char *buf, unsigned long flags)
81819f0f
CL
5400{
5401 unsigned long total = 0;
81819f0f
CL
5402 int node;
5403 int x;
5404 unsigned long *nodes;
bf16d19a 5405 int len = 0;
81819f0f 5406
6396bb22 5407 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5408 if (!nodes)
5409 return -ENOMEM;
81819f0f 5410
205ab99d
CL
5411 if (flags & SO_CPU) {
5412 int cpu;
81819f0f 5413
205ab99d 5414 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5415 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5416 cpu);
ec3ab083 5417 int node;
bb192ed9 5418 struct slab *slab;
dfb4f096 5419
bb192ed9
VB
5420 slab = READ_ONCE(c->slab);
5421 if (!slab)
ec3ab083 5422 continue;
205ab99d 5423
bb192ed9 5424 node = slab_nid(slab);
ec3ab083 5425 if (flags & SO_TOTAL)
bb192ed9 5426 x = slab->objects;
ec3ab083 5427 else if (flags & SO_OBJECTS)
bb192ed9 5428 x = slab->inuse;
ec3ab083
CL
5429 else
5430 x = 1;
49e22585 5431
ec3ab083
CL
5432 total += x;
5433 nodes[node] += x;
5434
9c01e9af 5435#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
5436 slab = slub_percpu_partial_read_once(c);
5437 if (slab) {
5438 node = slab_nid(slab);
8afb1474
LZ
5439 if (flags & SO_TOTAL)
5440 WARN_ON_ONCE(1);
5441 else if (flags & SO_OBJECTS)
5442 WARN_ON_ONCE(1);
5443 else
bb192ed9 5444 x = slab->slabs;
bc6697d8
ED
5445 total += x;
5446 nodes[node] += x;
49e22585 5447 }
9c01e9af 5448#endif
81819f0f
CL
5449 }
5450 }
5451
e4f8e513
QC
5452 /*
5453 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5454 * already held which will conflict with an existing lock order:
5455 *
5456 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5457 *
5458 * We don't really need mem_hotplug_lock (to hold off
5459 * slab_mem_going_offline_callback) here because slab's memory hot
5460 * unplug code doesn't destroy the kmem_cache->node[] data.
5461 */
5462
ab4d5ed5 5463#ifdef CONFIG_SLUB_DEBUG
205ab99d 5464 if (flags & SO_ALL) {
fa45dc25
CL
5465 struct kmem_cache_node *n;
5466
5467 for_each_kmem_cache_node(s, node, n) {
205ab99d 5468
d0e0ac97 5469 if (flags & SO_TOTAL)
8040cbf5 5470 x = node_nr_objs(n);
d0e0ac97 5471 else if (flags & SO_OBJECTS)
8040cbf5 5472 x = node_nr_objs(n) - count_partial(n, count_free);
81819f0f 5473 else
8040cbf5 5474 x = node_nr_slabs(n);
81819f0f
CL
5475 total += x;
5476 nodes[node] += x;
5477 }
5478
ab4d5ed5
CL
5479 } else
5480#endif
5481 if (flags & SO_PARTIAL) {
fa45dc25 5482 struct kmem_cache_node *n;
81819f0f 5483
fa45dc25 5484 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5485 if (flags & SO_TOTAL)
5486 x = count_partial(n, count_total);
5487 else if (flags & SO_OBJECTS)
5488 x = count_partial(n, count_inuse);
81819f0f 5489 else
205ab99d 5490 x = n->nr_partial;
81819f0f
CL
5491 total += x;
5492 nodes[node] += x;
5493 }
5494 }
bf16d19a
JP
5495
5496 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5497#ifdef CONFIG_NUMA
bf16d19a 5498 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5499 if (nodes[node])
bf16d19a
JP
5500 len += sysfs_emit_at(buf, len, " N%d=%lu",
5501 node, nodes[node]);
5502 }
81819f0f 5503#endif
bf16d19a 5504 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5505 kfree(nodes);
bf16d19a
JP
5506
5507 return len;
81819f0f
CL
5508}
5509
81819f0f 5510#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5511#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5512
5513struct slab_attribute {
5514 struct attribute attr;
5515 ssize_t (*show)(struct kmem_cache *s, char *buf);
5516 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5517};
5518
5519#define SLAB_ATTR_RO(_name) \
d1d28bd9 5520 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
5521
5522#define SLAB_ATTR(_name) \
d1d28bd9 5523 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 5524
81819f0f
CL
5525static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5526{
bf16d19a 5527 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5528}
5529SLAB_ATTR_RO(slab_size);
5530
5531static ssize_t align_show(struct kmem_cache *s, char *buf)
5532{
bf16d19a 5533 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5534}
5535SLAB_ATTR_RO(align);
5536
5537static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5538{
bf16d19a 5539 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5540}
5541SLAB_ATTR_RO(object_size);
5542
5543static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5544{
bf16d19a 5545 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5546}
5547SLAB_ATTR_RO(objs_per_slab);
5548
5549static ssize_t order_show(struct kmem_cache *s, char *buf)
5550{
bf16d19a 5551 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5552}
32a6f409 5553SLAB_ATTR_RO(order);
81819f0f 5554
73d342b1
DR
5555static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5556{
bf16d19a 5557 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5558}
5559
5560static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5561 size_t length)
5562{
5563 unsigned long min;
5564 int err;
5565
3dbb95f7 5566 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5567 if (err)
5568 return err;
5569
5182f3c9 5570 s->min_partial = min;
73d342b1
DR
5571 return length;
5572}
5573SLAB_ATTR(min_partial);
5574
49e22585
CL
5575static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5576{
b47291ef
VB
5577 unsigned int nr_partial = 0;
5578#ifdef CONFIG_SLUB_CPU_PARTIAL
5579 nr_partial = s->cpu_partial;
5580#endif
5581
5582 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
5583}
5584
5585static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5586 size_t length)
5587{
e5d9998f 5588 unsigned int objects;
49e22585
CL
5589 int err;
5590
e5d9998f 5591 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5592 if (err)
5593 return err;
345c905d 5594 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5595 return -EINVAL;
49e22585 5596
e6d0e1dc 5597 slub_set_cpu_partial(s, objects);
49e22585
CL
5598 flush_all(s);
5599 return length;
5600}
5601SLAB_ATTR(cpu_partial);
5602
81819f0f
CL
5603static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5604{
62c70bce
JP
5605 if (!s->ctor)
5606 return 0;
bf16d19a 5607 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5608}
5609SLAB_ATTR_RO(ctor);
5610
81819f0f
CL
5611static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5612{
bf16d19a 5613 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5614}
5615SLAB_ATTR_RO(aliases);
5616
81819f0f
CL
5617static ssize_t partial_show(struct kmem_cache *s, char *buf)
5618{
d9acf4b7 5619 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5620}
5621SLAB_ATTR_RO(partial);
5622
5623static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5624{
d9acf4b7 5625 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5626}
5627SLAB_ATTR_RO(cpu_slabs);
5628
205ab99d
CL
5629static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5630{
5631 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5632}
5633SLAB_ATTR_RO(objects_partial);
5634
49e22585
CL
5635static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5636{
5637 int objects = 0;
bb192ed9 5638 int slabs = 0;
9c01e9af 5639 int cpu __maybe_unused;
bf16d19a 5640 int len = 0;
49e22585 5641
9c01e9af 5642#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 5643 for_each_online_cpu(cpu) {
bb192ed9 5644 struct slab *slab;
a93cf07b 5645
bb192ed9 5646 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 5647
bb192ed9
VB
5648 if (slab)
5649 slabs += slab->slabs;
49e22585 5650 }
9c01e9af 5651#endif
49e22585 5652
c2092c12 5653 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
5654 objects = (slabs * oo_objects(s->oo)) / 2;
5655 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 5656
c6c17c4d 5657#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 5658 for_each_online_cpu(cpu) {
bb192ed9 5659 struct slab *slab;
a93cf07b 5660
bb192ed9
VB
5661 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5662 if (slab) {
5663 slabs = READ_ONCE(slab->slabs);
5664 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 5665 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 5666 cpu, objects, slabs);
b47291ef 5667 }
49e22585
CL
5668 }
5669#endif
bf16d19a
JP
5670 len += sysfs_emit_at(buf, len, "\n");
5671
5672 return len;
49e22585
CL
5673}
5674SLAB_ATTR_RO(slabs_cpu_partial);
5675
a5a84755
CL
5676static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5677{
bf16d19a 5678 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5679}
8f58119a 5680SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5681
5682static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5683{
bf16d19a 5684 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5685}
5686SLAB_ATTR_RO(hwcache_align);
5687
5688#ifdef CONFIG_ZONE_DMA
5689static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5690{
bf16d19a 5691 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5692}
5693SLAB_ATTR_RO(cache_dma);
5694#endif
5695
346907ce 5696#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
5697static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5698{
bf16d19a 5699 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5700}
5701SLAB_ATTR_RO(usersize);
346907ce 5702#endif
8eb8284b 5703
a5a84755
CL
5704static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5705{
bf16d19a 5706 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5707}
5708SLAB_ATTR_RO(destroy_by_rcu);
5709
ab4d5ed5 5710#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5711static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5712{
5713 return show_slab_objects(s, buf, SO_ALL);
5714}
5715SLAB_ATTR_RO(slabs);
5716
205ab99d
CL
5717static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5718{
5719 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5720}
5721SLAB_ATTR_RO(total_objects);
5722
81bd3179
XS
5723static ssize_t objects_show(struct kmem_cache *s, char *buf)
5724{
5725 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5726}
5727SLAB_ATTR_RO(objects);
5728
81819f0f
CL
5729static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5730{
bf16d19a 5731 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5732}
060807f8 5733SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5734
5735static ssize_t trace_show(struct kmem_cache *s, char *buf)
5736{
bf16d19a 5737 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5738}
060807f8 5739SLAB_ATTR_RO(trace);
81819f0f 5740
81819f0f
CL
5741static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5742{
bf16d19a 5743 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5744}
5745
ad38b5b1 5746SLAB_ATTR_RO(red_zone);
81819f0f
CL
5747
5748static ssize_t poison_show(struct kmem_cache *s, char *buf)
5749{
bf16d19a 5750 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5751}
5752
ad38b5b1 5753SLAB_ATTR_RO(poison);
81819f0f
CL
5754
5755static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5756{
bf16d19a 5757 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5758}
5759
ad38b5b1 5760SLAB_ATTR_RO(store_user);
81819f0f 5761
53e15af0
CL
5762static ssize_t validate_show(struct kmem_cache *s, char *buf)
5763{
5764 return 0;
5765}
5766
5767static ssize_t validate_store(struct kmem_cache *s,
5768 const char *buf, size_t length)
5769{
434e245d
CL
5770 int ret = -EINVAL;
5771
c7323a5a 5772 if (buf[0] == '1' && kmem_cache_debug(s)) {
434e245d
CL
5773 ret = validate_slab_cache(s);
5774 if (ret >= 0)
5775 ret = length;
5776 }
5777 return ret;
53e15af0
CL
5778}
5779SLAB_ATTR(validate);
a5a84755 5780
a5a84755
CL
5781#endif /* CONFIG_SLUB_DEBUG */
5782
5783#ifdef CONFIG_FAILSLAB
5784static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5785{
bf16d19a 5786 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5787}
7c82b3b3
AA
5788
5789static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5790 size_t length)
5791{
5792 if (s->refcount > 1)
5793 return -EINVAL;
5794
5795 if (buf[0] == '1')
5796 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5797 else
5798 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5799
5800 return length;
5801}
5802SLAB_ATTR(failslab);
ab4d5ed5 5803#endif
53e15af0 5804
2086d26a
CL
5805static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5806{
5807 return 0;
5808}
5809
5810static ssize_t shrink_store(struct kmem_cache *s,
5811 const char *buf, size_t length)
5812{
832f37f5 5813 if (buf[0] == '1')
10befea9 5814 kmem_cache_shrink(s);
832f37f5 5815 else
2086d26a
CL
5816 return -EINVAL;
5817 return length;
5818}
5819SLAB_ATTR(shrink);
5820
81819f0f 5821#ifdef CONFIG_NUMA
9824601e 5822static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5823{
bf16d19a 5824 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5825}
5826
9824601e 5827static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5828 const char *buf, size_t length)
5829{
eb7235eb 5830 unsigned int ratio;
0121c619
CL
5831 int err;
5832
eb7235eb 5833 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5834 if (err)
5835 return err;
eb7235eb
AD
5836 if (ratio > 100)
5837 return -ERANGE;
0121c619 5838
eb7235eb 5839 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5840
81819f0f
CL
5841 return length;
5842}
9824601e 5843SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5844#endif
5845
8ff12cfc 5846#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5847static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5848{
5849 unsigned long sum = 0;
5850 int cpu;
bf16d19a 5851 int len = 0;
6da2ec56 5852 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5853
5854 if (!data)
5855 return -ENOMEM;
5856
5857 for_each_online_cpu(cpu) {
9dfc6e68 5858 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5859
5860 data[cpu] = x;
5861 sum += x;
5862 }
5863
bf16d19a 5864 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5865
50ef37b9 5866#ifdef CONFIG_SMP
8ff12cfc 5867 for_each_online_cpu(cpu) {
bf16d19a
JP
5868 if (data[cpu])
5869 len += sysfs_emit_at(buf, len, " C%d=%u",
5870 cpu, data[cpu]);
8ff12cfc 5871 }
50ef37b9 5872#endif
8ff12cfc 5873 kfree(data);
bf16d19a
JP
5874 len += sysfs_emit_at(buf, len, "\n");
5875
5876 return len;
8ff12cfc
CL
5877}
5878
78eb00cc
DR
5879static void clear_stat(struct kmem_cache *s, enum stat_item si)
5880{
5881 int cpu;
5882
5883 for_each_online_cpu(cpu)
9dfc6e68 5884 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5885}
5886
8ff12cfc
CL
5887#define STAT_ATTR(si, text) \
5888static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5889{ \
5890 return show_stat(s, buf, si); \
5891} \
78eb00cc
DR
5892static ssize_t text##_store(struct kmem_cache *s, \
5893 const char *buf, size_t length) \
5894{ \
5895 if (buf[0] != '0') \
5896 return -EINVAL; \
5897 clear_stat(s, si); \
5898 return length; \
5899} \
5900SLAB_ATTR(text); \
8ff12cfc
CL
5901
5902STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5903STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5904STAT_ATTR(FREE_FASTPATH, free_fastpath);
5905STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5906STAT_ATTR(FREE_FROZEN, free_frozen);
5907STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5908STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5909STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5910STAT_ATTR(ALLOC_SLAB, alloc_slab);
5911STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5912STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5913STAT_ATTR(FREE_SLAB, free_slab);
5914STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5915STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5916STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5917STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5918STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5919STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5920STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5921STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5922STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5923STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5924STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5925STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5926STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5927STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5928#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5929
b84e04f1
IK
5930#ifdef CONFIG_KFENCE
5931static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5932{
5933 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5934}
5935
5936static ssize_t skip_kfence_store(struct kmem_cache *s,
5937 const char *buf, size_t length)
5938{
5939 int ret = length;
5940
5941 if (buf[0] == '0')
5942 s->flags &= ~SLAB_SKIP_KFENCE;
5943 else if (buf[0] == '1')
5944 s->flags |= SLAB_SKIP_KFENCE;
5945 else
5946 ret = -EINVAL;
5947
5948 return ret;
5949}
5950SLAB_ATTR(skip_kfence);
5951#endif
5952
06428780 5953static struct attribute *slab_attrs[] = {
81819f0f
CL
5954 &slab_size_attr.attr,
5955 &object_size_attr.attr,
5956 &objs_per_slab_attr.attr,
5957 &order_attr.attr,
73d342b1 5958 &min_partial_attr.attr,
49e22585 5959 &cpu_partial_attr.attr,
205ab99d 5960 &objects_partial_attr.attr,
81819f0f
CL
5961 &partial_attr.attr,
5962 &cpu_slabs_attr.attr,
5963 &ctor_attr.attr,
81819f0f
CL
5964 &aliases_attr.attr,
5965 &align_attr.attr,
81819f0f
CL
5966 &hwcache_align_attr.attr,
5967 &reclaim_account_attr.attr,
5968 &destroy_by_rcu_attr.attr,
a5a84755 5969 &shrink_attr.attr,
49e22585 5970 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5971#ifdef CONFIG_SLUB_DEBUG
a5a84755 5972 &total_objects_attr.attr,
81bd3179 5973 &objects_attr.attr,
a5a84755
CL
5974 &slabs_attr.attr,
5975 &sanity_checks_attr.attr,
5976 &trace_attr.attr,
81819f0f
CL
5977 &red_zone_attr.attr,
5978 &poison_attr.attr,
5979 &store_user_attr.attr,
53e15af0 5980 &validate_attr.attr,
ab4d5ed5 5981#endif
81819f0f
CL
5982#ifdef CONFIG_ZONE_DMA
5983 &cache_dma_attr.attr,
5984#endif
5985#ifdef CONFIG_NUMA
9824601e 5986 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5987#endif
5988#ifdef CONFIG_SLUB_STATS
5989 &alloc_fastpath_attr.attr,
5990 &alloc_slowpath_attr.attr,
5991 &free_fastpath_attr.attr,
5992 &free_slowpath_attr.attr,
5993 &free_frozen_attr.attr,
5994 &free_add_partial_attr.attr,
5995 &free_remove_partial_attr.attr,
5996 &alloc_from_partial_attr.attr,
5997 &alloc_slab_attr.attr,
5998 &alloc_refill_attr.attr,
e36a2652 5999 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
6000 &free_slab_attr.attr,
6001 &cpuslab_flush_attr.attr,
6002 &deactivate_full_attr.attr,
6003 &deactivate_empty_attr.attr,
6004 &deactivate_to_head_attr.attr,
6005 &deactivate_to_tail_attr.attr,
6006 &deactivate_remote_frees_attr.attr,
03e404af 6007 &deactivate_bypass_attr.attr,
65c3376a 6008 &order_fallback_attr.attr,
b789ef51
CL
6009 &cmpxchg_double_fail_attr.attr,
6010 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
6011 &cpu_partial_alloc_attr.attr,
6012 &cpu_partial_free_attr.attr,
8028dcea
AS
6013 &cpu_partial_node_attr.attr,
6014 &cpu_partial_drain_attr.attr,
81819f0f 6015#endif
4c13dd3b
DM
6016#ifdef CONFIG_FAILSLAB
6017 &failslab_attr.attr,
6018#endif
346907ce 6019#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b 6020 &usersize_attr.attr,
346907ce 6021#endif
b84e04f1
IK
6022#ifdef CONFIG_KFENCE
6023 &skip_kfence_attr.attr,
6024#endif
4c13dd3b 6025
81819f0f
CL
6026 NULL
6027};
6028
1fdaaa23 6029static const struct attribute_group slab_attr_group = {
81819f0f
CL
6030 .attrs = slab_attrs,
6031};
6032
6033static ssize_t slab_attr_show(struct kobject *kobj,
6034 struct attribute *attr,
6035 char *buf)
6036{
6037 struct slab_attribute *attribute;
6038 struct kmem_cache *s;
81819f0f
CL
6039
6040 attribute = to_slab_attr(attr);
6041 s = to_slab(kobj);
6042
6043 if (!attribute->show)
6044 return -EIO;
6045
2bfbb027 6046 return attribute->show(s, buf);
81819f0f
CL
6047}
6048
6049static ssize_t slab_attr_store(struct kobject *kobj,
6050 struct attribute *attr,
6051 const char *buf, size_t len)
6052{
6053 struct slab_attribute *attribute;
6054 struct kmem_cache *s;
81819f0f
CL
6055
6056 attribute = to_slab_attr(attr);
6057 s = to_slab(kobj);
6058
6059 if (!attribute->store)
6060 return -EIO;
6061
2bfbb027 6062 return attribute->store(s, buf, len);
81819f0f
CL
6063}
6064
41a21285
CL
6065static void kmem_cache_release(struct kobject *k)
6066{
6067 slab_kmem_cache_release(to_slab(k));
6068}
6069
52cf25d0 6070static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
6071 .show = slab_attr_show,
6072 .store = slab_attr_store,
6073};
6074
9ebe720e 6075static const struct kobj_type slab_ktype = {
81819f0f 6076 .sysfs_ops = &slab_sysfs_ops,
41a21285 6077 .release = kmem_cache_release,
81819f0f
CL
6078};
6079
27c3a314 6080static struct kset *slab_kset;
81819f0f 6081
9a41707b
VD
6082static inline struct kset *cache_kset(struct kmem_cache *s)
6083{
9a41707b
VD
6084 return slab_kset;
6085}
6086
d65360f2 6087#define ID_STR_LENGTH 32
81819f0f
CL
6088
6089/* Create a unique string id for a slab cache:
6446faa2
CL
6090 *
6091 * Format :[flags-]size
81819f0f
CL
6092 */
6093static char *create_unique_id(struct kmem_cache *s)
6094{
6095 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6096 char *p = name;
6097
7e9c323c
CY
6098 if (!name)
6099 return ERR_PTR(-ENOMEM);
81819f0f
CL
6100
6101 *p++ = ':';
6102 /*
6103 * First flags affecting slabcache operations. We will only
6104 * get here for aliasable slabs so we do not need to support
6105 * too many flags. The flags here must cover all flags that
6106 * are matched during merging to guarantee that the id is
6107 * unique.
6108 */
6109 if (s->flags & SLAB_CACHE_DMA)
6110 *p++ = 'd';
6d6ea1e9
NB
6111 if (s->flags & SLAB_CACHE_DMA32)
6112 *p++ = 'D';
81819f0f
CL
6113 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6114 *p++ = 'a';
becfda68 6115 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 6116 *p++ = 'F';
230e9fc2
VD
6117 if (s->flags & SLAB_ACCOUNT)
6118 *p++ = 'A';
81819f0f
CL
6119 if (p != name + 1)
6120 *p++ = '-';
d65360f2 6121 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
2633d7a0 6122
d65360f2
CY
6123 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6124 kfree(name);
6125 return ERR_PTR(-EINVAL);
6126 }
68ef169a 6127 kmsan_unpoison_memory(name, p - name);
81819f0f
CL
6128 return name;
6129}
6130
6131static int sysfs_slab_add(struct kmem_cache *s)
6132{
6133 int err;
6134 const char *name;
1663f26d 6135 struct kset *kset = cache_kset(s);
45530c44 6136 int unmergeable = slab_unmergeable(s);
81819f0f 6137
11066386
MC
6138 if (!unmergeable && disable_higher_order_debug &&
6139 (slub_debug & DEBUG_METADATA_FLAGS))
6140 unmergeable = 1;
6141
81819f0f
CL
6142 if (unmergeable) {
6143 /*
6144 * Slabcache can never be merged so we can use the name proper.
6145 * This is typically the case for debug situations. In that
6146 * case we can catch duplicate names easily.
6147 */
27c3a314 6148 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
6149 name = s->name;
6150 } else {
6151 /*
6152 * Create a unique name for the slab as a target
6153 * for the symlinks.
6154 */
6155 name = create_unique_id(s);
7e9c323c
CY
6156 if (IS_ERR(name))
6157 return PTR_ERR(name);
81819f0f
CL
6158 }
6159
1663f26d 6160 s->kobj.kset = kset;
26e4f205 6161 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 6162 if (err)
80da026a 6163 goto out;
81819f0f
CL
6164
6165 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
6166 if (err)
6167 goto out_del_kobj;
9a41707b 6168
81819f0f
CL
6169 if (!unmergeable) {
6170 /* Setup first alias */
6171 sysfs_slab_alias(s, s->name);
81819f0f 6172 }
54b6a731
DJ
6173out:
6174 if (!unmergeable)
6175 kfree(name);
6176 return err;
6177out_del_kobj:
6178 kobject_del(&s->kobj);
54b6a731 6179 goto out;
81819f0f
CL
6180}
6181
d50d82fa
MP
6182void sysfs_slab_unlink(struct kmem_cache *s)
6183{
6184 if (slab_state >= FULL)
6185 kobject_del(&s->kobj);
6186}
6187
bf5eb3de
TH
6188void sysfs_slab_release(struct kmem_cache *s)
6189{
6190 if (slab_state >= FULL)
6191 kobject_put(&s->kobj);
81819f0f
CL
6192}
6193
6194/*
6195 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 6196 * available lest we lose that information.
81819f0f
CL
6197 */
6198struct saved_alias {
6199 struct kmem_cache *s;
6200 const char *name;
6201 struct saved_alias *next;
6202};
6203
5af328a5 6204static struct saved_alias *alias_list;
81819f0f
CL
6205
6206static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6207{
6208 struct saved_alias *al;
6209
97d06609 6210 if (slab_state == FULL) {
81819f0f
CL
6211 /*
6212 * If we have a leftover link then remove it.
6213 */
27c3a314
GKH
6214 sysfs_remove_link(&slab_kset->kobj, name);
6215 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
6216 }
6217
6218 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6219 if (!al)
6220 return -ENOMEM;
6221
6222 al->s = s;
6223 al->name = name;
6224 al->next = alias_list;
6225 alias_list = al;
68ef169a 6226 kmsan_unpoison_memory(al, sizeof(*al));
81819f0f
CL
6227 return 0;
6228}
6229
6230static int __init slab_sysfs_init(void)
6231{
5b95a4ac 6232 struct kmem_cache *s;
81819f0f
CL
6233 int err;
6234
18004c5d 6235 mutex_lock(&slab_mutex);
2bce6485 6236
d7660ce5 6237 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 6238 if (!slab_kset) {
18004c5d 6239 mutex_unlock(&slab_mutex);
f9f58285 6240 pr_err("Cannot register slab subsystem.\n");
35973232 6241 return -ENOMEM;
81819f0f
CL
6242 }
6243
97d06609 6244 slab_state = FULL;
26a7bd03 6245
5b95a4ac 6246 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 6247 err = sysfs_slab_add(s);
5d540fb7 6248 if (err)
f9f58285
FF
6249 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6250 s->name);
26a7bd03 6251 }
81819f0f
CL
6252
6253 while (alias_list) {
6254 struct saved_alias *al = alias_list;
6255
6256 alias_list = alias_list->next;
6257 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 6258 if (err)
f9f58285
FF
6259 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6260 al->name);
81819f0f
CL
6261 kfree(al);
6262 }
6263
18004c5d 6264 mutex_unlock(&slab_mutex);
81819f0f
CL
6265 return 0;
6266}
1a5ad30b 6267late_initcall(slab_sysfs_init);
b1a413a3 6268#endif /* SLAB_SUPPORTS_SYSFS */
57ed3eda 6269
64dd6849
FM
6270#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6271static int slab_debugfs_show(struct seq_file *seq, void *v)
6272{
64dd6849 6273 struct loc_track *t = seq->private;
005a79e5
GS
6274 struct location *l;
6275 unsigned long idx;
64dd6849 6276
005a79e5 6277 idx = (unsigned long) t->idx;
64dd6849
FM
6278 if (idx < t->count) {
6279 l = &t->loc[idx];
6280
6281 seq_printf(seq, "%7ld ", l->count);
6282
6283 if (l->addr)
6284 seq_printf(seq, "%pS", (void *)l->addr);
6285 else
6286 seq_puts(seq, "<not-available>");
6287
6edf2576
FT
6288 if (l->waste)
6289 seq_printf(seq, " waste=%lu/%lu",
6290 l->count * l->waste, l->waste);
6291
64dd6849
FM
6292 if (l->sum_time != l->min_time) {
6293 seq_printf(seq, " age=%ld/%llu/%ld",
6294 l->min_time, div_u64(l->sum_time, l->count),
6295 l->max_time);
6296 } else
6297 seq_printf(seq, " age=%ld", l->min_time);
6298
6299 if (l->min_pid != l->max_pid)
6300 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6301 else
6302 seq_printf(seq, " pid=%ld",
6303 l->min_pid);
6304
6305 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6306 seq_printf(seq, " cpus=%*pbl",
6307 cpumask_pr_args(to_cpumask(l->cpus)));
6308
6309 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6310 seq_printf(seq, " nodes=%*pbl",
6311 nodemask_pr_args(&l->nodes));
6312
8ea9fb92
OG
6313#ifdef CONFIG_STACKDEPOT
6314 {
6315 depot_stack_handle_t handle;
6316 unsigned long *entries;
6317 unsigned int nr_entries, j;
6318
6319 handle = READ_ONCE(l->handle);
6320 if (handle) {
6321 nr_entries = stack_depot_fetch(handle, &entries);
6322 seq_puts(seq, "\n");
6323 for (j = 0; j < nr_entries; j++)
6324 seq_printf(seq, " %pS\n", (void *)entries[j]);
6325 }
6326 }
6327#endif
64dd6849
FM
6328 seq_puts(seq, "\n");
6329 }
6330
6331 if (!idx && !t->count)
6332 seq_puts(seq, "No data\n");
6333
6334 return 0;
6335}
6336
6337static void slab_debugfs_stop(struct seq_file *seq, void *v)
6338{
6339}
6340
6341static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6342{
6343 struct loc_track *t = seq->private;
6344
005a79e5 6345 t->idx = ++(*ppos);
64dd6849 6346 if (*ppos <= t->count)
005a79e5 6347 return ppos;
64dd6849
FM
6348
6349 return NULL;
6350}
6351
553c0369
OG
6352static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6353{
6354 struct location *loc1 = (struct location *)a;
6355 struct location *loc2 = (struct location *)b;
6356
6357 if (loc1->count > loc2->count)
6358 return -1;
6359 else
6360 return 1;
6361}
6362
64dd6849
FM
6363static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6364{
005a79e5
GS
6365 struct loc_track *t = seq->private;
6366
6367 t->idx = *ppos;
64dd6849
FM
6368 return ppos;
6369}
6370
6371static const struct seq_operations slab_debugfs_sops = {
6372 .start = slab_debugfs_start,
6373 .next = slab_debugfs_next,
6374 .stop = slab_debugfs_stop,
6375 .show = slab_debugfs_show,
6376};
6377
6378static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6379{
6380
6381 struct kmem_cache_node *n;
6382 enum track_item alloc;
6383 int node;
6384 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6385 sizeof(struct loc_track));
6386 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
6387 unsigned long *obj_map;
6388
2127d225
ML
6389 if (!t)
6390 return -ENOMEM;
6391
b3fd64e1 6392 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
6393 if (!obj_map) {
6394 seq_release_private(inode, filep);
b3fd64e1 6395 return -ENOMEM;
2127d225 6396 }
64dd6849
FM
6397
6398 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6399 alloc = TRACK_ALLOC;
6400 else
6401 alloc = TRACK_FREE;
6402
b3fd64e1
VB
6403 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6404 bitmap_free(obj_map);
2127d225 6405 seq_release_private(inode, filep);
64dd6849 6406 return -ENOMEM;
b3fd64e1 6407 }
64dd6849 6408
64dd6849
FM
6409 for_each_kmem_cache_node(s, node, n) {
6410 unsigned long flags;
bb192ed9 6411 struct slab *slab;
64dd6849 6412
8040cbf5 6413 if (!node_nr_slabs(n))
64dd6849
FM
6414 continue;
6415
6416 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
6417 list_for_each_entry(slab, &n->partial, slab_list)
6418 process_slab(t, s, slab, alloc, obj_map);
6419 list_for_each_entry(slab, &n->full, slab_list)
6420 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
6421 spin_unlock_irqrestore(&n->list_lock, flags);
6422 }
6423
553c0369
OG
6424 /* Sort locations by count */
6425 sort_r(t->loc, t->count, sizeof(struct location),
6426 cmp_loc_by_count, NULL, NULL);
6427
b3fd64e1 6428 bitmap_free(obj_map);
64dd6849
FM
6429 return 0;
6430}
6431
6432static int slab_debug_trace_release(struct inode *inode, struct file *file)
6433{
6434 struct seq_file *seq = file->private_data;
6435 struct loc_track *t = seq->private;
6436
6437 free_loc_track(t);
6438 return seq_release_private(inode, file);
6439}
6440
6441static const struct file_operations slab_debugfs_fops = {
6442 .open = slab_debug_trace_open,
6443 .read = seq_read,
6444 .llseek = seq_lseek,
6445 .release = slab_debug_trace_release,
6446};
6447
6448static void debugfs_slab_add(struct kmem_cache *s)
6449{
6450 struct dentry *slab_cache_dir;
6451
6452 if (unlikely(!slab_debugfs_root))
6453 return;
6454
6455 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6456
6457 debugfs_create_file("alloc_traces", 0400,
6458 slab_cache_dir, s, &slab_debugfs_fops);
6459
6460 debugfs_create_file("free_traces", 0400,
6461 slab_cache_dir, s, &slab_debugfs_fops);
6462}
6463
6464void debugfs_slab_release(struct kmem_cache *s)
6465{
aa4a8605 6466 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
64dd6849
FM
6467}
6468
6469static int __init slab_debugfs_init(void)
6470{
6471 struct kmem_cache *s;
6472
6473 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6474
6475 list_for_each_entry(s, &slab_caches, list)
6476 if (s->flags & SLAB_STORE_USER)
6477 debugfs_slab_add(s);
6478
6479 return 0;
6480
6481}
6482__initcall(slab_debugfs_init);
6483#endif
57ed3eda
PE
6484/*
6485 * The /proc/slabinfo ABI
6486 */
5b365771 6487#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6488void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6489{
57ed3eda 6490 unsigned long nr_slabs = 0;
205ab99d
CL
6491 unsigned long nr_objs = 0;
6492 unsigned long nr_free = 0;
57ed3eda 6493 int node;
fa45dc25 6494 struct kmem_cache_node *n;
57ed3eda 6495
fa45dc25 6496 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6497 nr_slabs += node_nr_slabs(n);
6498 nr_objs += node_nr_objs(n);
205ab99d 6499 nr_free += count_partial(n, count_free);
57ed3eda
PE
6500 }
6501
0d7561c6
GC
6502 sinfo->active_objs = nr_objs - nr_free;
6503 sinfo->num_objs = nr_objs;
6504 sinfo->active_slabs = nr_slabs;
6505 sinfo->num_slabs = nr_slabs;
6506 sinfo->objects_per_slab = oo_objects(s->oo);
6507 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6508}
6509
0d7561c6 6510void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6511{
7b3c3a50
AD
6512}
6513
b7454ad3
GC
6514ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6515 size_t count, loff_t *ppos)
7b3c3a50 6516{
b7454ad3 6517 return -EIO;
7b3c3a50 6518}
5b365771 6519#endif /* CONFIG_SLUB_DEBUG */