blk-mq: don't insert passthrough request into sw queue
[linux-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
c7b23b68 14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
68ef169a 25#include <linux/kmsan.h>
81819f0f
CL
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
5cf909c5 30#include <linux/stackdepot.h>
3ac7fe5a 31#include <linux/debugobjects.h>
81819f0f 32#include <linux/kallsyms.h>
b89fb5ef 33#include <linux/kfence.h>
b9049e23 34#include <linux/memory.h>
f8bd2258 35#include <linux/math64.h>
773ff60e 36#include <linux/fault-inject.h>
bfa71457 37#include <linux/stacktrace.h>
4de900b4 38#include <linux/prefetch.h>
2633d7a0 39#include <linux/memcontrol.h>
2482ddec 40#include <linux/random.h>
1f9f78b1 41#include <kunit/test.h>
909c6475 42#include <kunit/test-bug.h>
553c0369 43#include <linux/sort.h>
81819f0f 44
64dd6849 45#include <linux/debugfs.h>
4a92379b
RK
46#include <trace/events/kmem.h>
47
072bb0aa
MG
48#include "internal.h"
49
81819f0f
CL
50/*
51 * Lock order:
18004c5d 52 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
41bec7c3 55 * 4. slab_lock(slab) (Only on some arches)
bd0e7491 56 * 5. object_map_lock (Only for debugging)
81819f0f 57 *
18004c5d 58 * slab_mutex
881db7fb 59 *
18004c5d 60 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 61 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
62 * Also synchronizes memory hotplug callbacks.
63 *
64 * slab_lock
65 *
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * spinlock.
881db7fb 68 *
41bec7c3
VB
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
71 *
c2092c12
VB
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
881db7fb 76 *
bd0e7491
VB
77 * Frozen slabs
78 *
881db7fb 79 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0 80 * on any list except per cpu partial list. The processor that froze the
c2092c12 81 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
c2092c12 84 * slab's freelist.
81819f0f 85 *
bd0e7491
VB
86 * list_lock
87 *
81819f0f
CL
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
93 *
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
98 * the list lock.
bd0e7491 99 *
41bec7c3
VB
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
102 *
bd0e7491
VB
103 * cpu_slab->lock local lock
104 *
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
1f04b07d
TG
109 *
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
bd0e7491
VB
114 *
115 * lockless fastpaths
116 *
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
122 * another cpu.
123 *
124 * irq, preemption, migration considerations
125 *
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
129 *
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
134 *
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
137 *
672bba3a
CL
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 140 * freed then the slab will show up again on the partial lists.
672bba3a
CL
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
81819f0f
CL
143 *
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
147 *
c2092c12 148 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
156 *
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
dfb4f096 160 * freelist that allows lockless access to
894b8788
CL
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
81819f0f 163 *
aed68148 164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 165 * options set. This moves slab handling out of
894b8788 166 * the fast path and disables lockless freelists.
81819f0f
CL
167 */
168
25c00c50
VB
169/*
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172 */
173#ifndef CONFIG_PREEMPT_RT
1f04b07d
TG
174#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176#define USE_LOCKLESS_FAST_PATH() (true)
25c00c50
VB
177#else
178#define slub_get_cpu_ptr(var) \
179({ \
180 migrate_disable(); \
181 this_cpu_ptr(var); \
182})
183#define slub_put_cpu_ptr(var) \
184do { \
185 (void)(var); \
186 migrate_enable(); \
187} while (0)
1f04b07d 188#define USE_LOCKLESS_FAST_PATH() (false)
25c00c50
VB
189#endif
190
be784ba8
VB
191#ifndef CONFIG_SLUB_TINY
192#define __fastpath_inline __always_inline
193#else
194#define __fastpath_inline
195#endif
196
ca0cab65
VB
197#ifdef CONFIG_SLUB_DEBUG
198#ifdef CONFIG_SLUB_DEBUG_ON
199DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200#else
201DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202#endif
79270291 203#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 204
6edf2576
FT
205/* Structure holding parameters for get_partial() call chain */
206struct partial_context {
207 struct slab **slab;
208 gfp_t flags;
209 unsigned int orig_size;
210};
211
59052e89
VB
212static inline bool kmem_cache_debug(struct kmem_cache *s)
213{
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 215}
5577bd8a 216
6edf2576
FT
217static inline bool slub_debug_orig_size(struct kmem_cache *s)
218{
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
221}
222
117d54df 223void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 224{
59052e89 225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
226 p += s->red_left_pad;
227
228 return p;
229}
230
345c905d
JK
231static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232{
233#ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
235#else
236 return false;
237#endif
238}
239
81819f0f
CL
240/*
241 * Issues still to be resolved:
242 *
81819f0f
CL
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244 *
81819f0f
CL
245 * - Variable sizing of the per node arrays
246 */
247
b789ef51
CL
248/* Enable to log cmpxchg failures */
249#undef SLUB_DEBUG_CMPXCHG
250
5a8a3c1f 251#ifndef CONFIG_SLUB_TINY
2086d26a 252/*
dc84207d 253 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
255 */
76be8950 256#define MIN_PARTIAL 5
e95eed57 257
2086d26a
CL
258/*
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 261 * sort the partial list by the number of objects in use.
2086d26a
CL
262 */
263#define MAX_PARTIAL 10
5a8a3c1f
VB
264#else
265#define MIN_PARTIAL 0
266#define MAX_PARTIAL 0
267#endif
2086d26a 268
becfda68 269#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 270 SLAB_POISON | SLAB_STORE_USER)
672bba3a 271
149daaf3
LA
272/*
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
275 */
276#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 SLAB_TRACE)
278
279
fa5ec8a1 280/*
3de47213
DR
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
283 * metadata.
fa5ec8a1 284 */
3de47213 285#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 286
210b5c06
CG
287#define OO_SHIFT 16
288#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 289#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 290
81819f0f 291/* Internal SLUB flags */
d50112ed 292/* Poison object */
4fd0b46e 293#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 294/* Use cmpxchg_double */
4fd0b46e 295#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 296
02cbc874
CL
297/*
298 * Tracking user of a slab.
299 */
d6543e39 300#define TRACK_ADDRS_COUNT 16
02cbc874 301struct track {
ce71e27c 302 unsigned long addr; /* Called from address */
5cf909c5
OG
303#ifdef CONFIG_STACKDEPOT
304 depot_stack_handle_t handle;
d6543e39 305#endif
02cbc874
CL
306 int cpu; /* Was running on cpu */
307 int pid; /* Pid context */
308 unsigned long when; /* When did the operation occur */
309};
310
311enum track_item { TRACK_ALLOC, TRACK_FREE };
312
b1a413a3 313#ifdef SLAB_SUPPORTS_SYSFS
81819f0f
CL
314static int sysfs_slab_add(struct kmem_cache *);
315static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 316#else
0c710013
CL
317static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
318static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
319 { return 0; }
81819f0f
CL
320#endif
321
64dd6849
FM
322#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
323static void debugfs_slab_add(struct kmem_cache *);
324#else
325static inline void debugfs_slab_add(struct kmem_cache *s) { }
326#endif
327
4fdccdfb 328static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
329{
330#ifdef CONFIG_SLUB_STATS
88da03a6
CL
331 /*
332 * The rmw is racy on a preemptible kernel but this is acceptable, so
333 * avoid this_cpu_add()'s irq-disable overhead.
334 */
335 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
336#endif
337}
338
7e1fa93d
VB
339/*
340 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
341 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
342 * differ during memory hotplug/hotremove operations.
343 * Protected by slab_mutex.
344 */
345static nodemask_t slab_nodes;
346
0af8489b 347#ifndef CONFIG_SLUB_TINY
e45cc288
ML
348/*
349 * Workqueue used for flush_cpu_slab().
350 */
351static struct workqueue_struct *flushwq;
0af8489b 352#endif
e45cc288 353
81819f0f
CL
354/********************************************************************
355 * Core slab cache functions
356 *******************************************************************/
357
2482ddec
KC
358/*
359 * Returns freelist pointer (ptr). With hardening, this is obfuscated
360 * with an XOR of the address where the pointer is held and a per-cache
361 * random number.
362 */
363static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
364 unsigned long ptr_addr)
365{
366#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 367 /*
aa1ef4d7 368 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
369 * Normally, this doesn't cause any issues, as both set_freepointer()
370 * and get_freepointer() are called with a pointer with the same tag.
371 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
372 * example, when __free_slub() iterates over objects in a cache, it
373 * passes untagged pointers to check_object(). check_object() in turns
374 * calls get_freepointer() with an untagged pointer, which causes the
375 * freepointer to be restored incorrectly.
376 */
377 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 378 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
379#else
380 return ptr;
381#endif
382}
383
384/* Returns the freelist pointer recorded at location ptr_addr. */
385static inline void *freelist_dereference(const struct kmem_cache *s,
386 void *ptr_addr)
387{
388 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
389 (unsigned long)ptr_addr);
390}
391
7656c72b
CL
392static inline void *get_freepointer(struct kmem_cache *s, void *object)
393{
aa1ef4d7 394 object = kasan_reset_tag(object);
2482ddec 395 return freelist_dereference(s, object + s->offset);
7656c72b
CL
396}
397
0af8489b 398#ifndef CONFIG_SLUB_TINY
0ad9500e
ED
399static void prefetch_freepointer(const struct kmem_cache *s, void *object)
400{
04b4b006 401 prefetchw(object + s->offset);
0ad9500e 402}
0af8489b 403#endif
0ad9500e 404
68ef169a
AP
405/*
406 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
407 * pointer value in the case the current thread loses the race for the next
408 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
409 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
410 * KMSAN will still check all arguments of cmpxchg because of imperfect
411 * handling of inline assembly.
412 * To work around this problem, we apply __no_kmsan_checks to ensure that
413 * get_freepointer_safe() returns initialized memory.
414 */
415__no_kmsan_checks
1393d9a1
CL
416static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
417{
2482ddec 418 unsigned long freepointer_addr;
1393d9a1
CL
419 void *p;
420
8e57f8ac 421 if (!debug_pagealloc_enabled_static())
922d566c
JK
422 return get_freepointer(s, object);
423
f70b0049 424 object = kasan_reset_tag(object);
2482ddec 425 freepointer_addr = (unsigned long)object + s->offset;
fe557319 426 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 427 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
428}
429
7656c72b
CL
430static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
431{
2482ddec
KC
432 unsigned long freeptr_addr = (unsigned long)object + s->offset;
433
ce6fa91b
AP
434#ifdef CONFIG_SLAB_FREELIST_HARDENED
435 BUG_ON(object == fp); /* naive detection of double free or corruption */
436#endif
437
aa1ef4d7 438 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 439 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
440}
441
442/* Loop over all objects in a slab */
224a88be 443#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
444 for (__p = fixup_red_left(__s, __addr); \
445 __p < (__addr) + (__objects) * (__s)->size; \
446 __p += (__s)->size)
7656c72b 447
9736d2a9 448static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 449{
9736d2a9 450 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
451}
452
19af27af 453static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 454 unsigned int size)
834f3d11
CL
455{
456 struct kmem_cache_order_objects x = {
9736d2a9 457 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
458 };
459
460 return x;
461}
462
19af27af 463static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 464{
210b5c06 465 return x.x >> OO_SHIFT;
834f3d11
CL
466}
467
19af27af 468static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 469{
210b5c06 470 return x.x & OO_MASK;
834f3d11
CL
471}
472
b47291ef
VB
473#ifdef CONFIG_SLUB_CPU_PARTIAL
474static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
475{
bb192ed9 476 unsigned int nr_slabs;
b47291ef
VB
477
478 s->cpu_partial = nr_objects;
479
480 /*
481 * We take the number of objects but actually limit the number of
c2092c12
VB
482 * slabs on the per cpu partial list, in order to limit excessive
483 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
484 * be half-full.
485 */
bb192ed9
VB
486 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
487 s->cpu_partial_slabs = nr_slabs;
b47291ef
VB
488}
489#else
490static inline void
491slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
492{
493}
494#endif /* CONFIG_SLUB_CPU_PARTIAL */
495
881db7fb
CL
496/*
497 * Per slab locking using the pagelock
498 */
5875e598 499static __always_inline void slab_lock(struct slab *slab)
881db7fb 500{
0393895b
VB
501 struct page *page = slab_page(slab);
502
48c935ad 503 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
504 bit_spin_lock(PG_locked, &page->flags);
505}
506
5875e598 507static __always_inline void slab_unlock(struct slab *slab)
881db7fb 508{
0393895b
VB
509 struct page *page = slab_page(slab);
510
48c935ad 511 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
512 __bit_spin_unlock(PG_locked, &page->flags);
513}
514
a2b4ae8b
VB
515/*
516 * Interrupts must be disabled (for the fallback code to work right), typically
5875e598
VB
517 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
518 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
519 * allocation/ free operation in hardirq context. Therefore nothing can
520 * interrupt the operation.
a2b4ae8b 521 */
bb192ed9 522static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
523 void *freelist_old, unsigned long counters_old,
524 void *freelist_new, unsigned long counters_new,
525 const char *n)
526{
1f04b07d 527 if (USE_LOCKLESS_FAST_PATH())
a2b4ae8b 528 lockdep_assert_irqs_disabled();
2565409f
HC
529#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
530 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 531 if (s->flags & __CMPXCHG_DOUBLE) {
bb192ed9 532 if (cmpxchg_double(&slab->freelist, &slab->counters,
0aa9a13d
DC
533 freelist_old, counters_old,
534 freelist_new, counters_new))
6f6528a1 535 return true;
1d07171c
CL
536 } else
537#endif
538 {
5875e598 539 slab_lock(slab);
bb192ed9
VB
540 if (slab->freelist == freelist_old &&
541 slab->counters == counters_old) {
542 slab->freelist = freelist_new;
543 slab->counters = counters_new;
5875e598 544 slab_unlock(slab);
6f6528a1 545 return true;
1d07171c 546 }
5875e598 547 slab_unlock(slab);
1d07171c
CL
548 }
549
550 cpu_relax();
551 stat(s, CMPXCHG_DOUBLE_FAIL);
552
553#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 554 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
555#endif
556
6f6528a1 557 return false;
1d07171c
CL
558}
559
bb192ed9 560static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
561 void *freelist_old, unsigned long counters_old,
562 void *freelist_new, unsigned long counters_new,
563 const char *n)
564{
2565409f
HC
565#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
566 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 567 if (s->flags & __CMPXCHG_DOUBLE) {
bb192ed9 568 if (cmpxchg_double(&slab->freelist, &slab->counters,
0aa9a13d
DC
569 freelist_old, counters_old,
570 freelist_new, counters_new))
6f6528a1 571 return true;
b789ef51
CL
572 } else
573#endif
574 {
1d07171c
CL
575 unsigned long flags;
576
577 local_irq_save(flags);
5875e598 578 slab_lock(slab);
bb192ed9
VB
579 if (slab->freelist == freelist_old &&
580 slab->counters == counters_old) {
581 slab->freelist = freelist_new;
582 slab->counters = counters_new;
5875e598 583 slab_unlock(slab);
1d07171c 584 local_irq_restore(flags);
6f6528a1 585 return true;
b789ef51 586 }
5875e598 587 slab_unlock(slab);
1d07171c 588 local_irq_restore(flags);
b789ef51
CL
589 }
590
591 cpu_relax();
592 stat(s, CMPXCHG_DOUBLE_FAIL);
593
594#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 595 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
596#endif
597
6f6528a1 598 return false;
b789ef51
CL
599}
600
41ecc55b 601#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 602static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
4ef3f5a3 603static DEFINE_SPINLOCK(object_map_lock);
90e9f6a6 604
b3fd64e1 605static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 606 struct slab *slab)
b3fd64e1 607{
bb192ed9 608 void *addr = slab_address(slab);
b3fd64e1
VB
609 void *p;
610
bb192ed9 611 bitmap_zero(obj_map, slab->objects);
b3fd64e1 612
bb192ed9 613 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
614 set_bit(__obj_to_index(s, addr, p), obj_map);
615}
616
1f9f78b1
OG
617#if IS_ENABLED(CONFIG_KUNIT)
618static bool slab_add_kunit_errors(void)
619{
620 struct kunit_resource *resource;
621
909c6475 622 if (!kunit_get_current_test())
1f9f78b1
OG
623 return false;
624
625 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
626 if (!resource)
627 return false;
628
629 (*(int *)resource->data)++;
630 kunit_put_resource(resource);
631 return true;
632}
633#else
634static inline bool slab_add_kunit_errors(void) { return false; }
635#endif
636
870b1fbb 637static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
638{
639 if (s->flags & SLAB_RED_ZONE)
640 return s->size - s->red_left_pad;
641
642 return s->size;
643}
644
645static inline void *restore_red_left(struct kmem_cache *s, void *p)
646{
647 if (s->flags & SLAB_RED_ZONE)
648 p -= s->red_left_pad;
649
650 return p;
651}
652
41ecc55b
CL
653/*
654 * Debug settings:
655 */
89d3c87e 656#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 657static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 658#else
d50112ed 659static slab_flags_t slub_debug;
f0630fff 660#endif
41ecc55b 661
e17f1dfb 662static char *slub_debug_string;
fa5ec8a1 663static int disable_higher_order_debug;
41ecc55b 664
a79316c6
AR
665/*
666 * slub is about to manipulate internal object metadata. This memory lies
667 * outside the range of the allocated object, so accessing it would normally
668 * be reported by kasan as a bounds error. metadata_access_enable() is used
669 * to tell kasan that these accesses are OK.
670 */
671static inline void metadata_access_enable(void)
672{
673 kasan_disable_current();
674}
675
676static inline void metadata_access_disable(void)
677{
678 kasan_enable_current();
679}
680
81819f0f
CL
681/*
682 * Object debugging
683 */
d86bd1be
JK
684
685/* Verify that a pointer has an address that is valid within a slab page */
686static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 687 struct slab *slab, void *object)
d86bd1be
JK
688{
689 void *base;
690
691 if (!object)
692 return 1;
693
bb192ed9 694 base = slab_address(slab);
338cfaad 695 object = kasan_reset_tag(object);
d86bd1be 696 object = restore_red_left(s, object);
bb192ed9 697 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
698 (object - base) % s->size) {
699 return 0;
700 }
701
702 return 1;
703}
704
aa2efd5e
DT
705static void print_section(char *level, char *text, u8 *addr,
706 unsigned int length)
81819f0f 707{
a79316c6 708 metadata_access_enable();
340caf17
KYL
709 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
710 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 711 metadata_access_disable();
81819f0f
CL
712}
713
cbfc35a4
WL
714/*
715 * See comment in calculate_sizes().
716 */
717static inline bool freeptr_outside_object(struct kmem_cache *s)
718{
719 return s->offset >= s->inuse;
720}
721
722/*
723 * Return offset of the end of info block which is inuse + free pointer if
724 * not overlapping with object.
725 */
726static inline unsigned int get_info_end(struct kmem_cache *s)
727{
728 if (freeptr_outside_object(s))
729 return s->inuse + sizeof(void *);
730 else
731 return s->inuse;
732}
733
81819f0f
CL
734static struct track *get_track(struct kmem_cache *s, void *object,
735 enum track_item alloc)
736{
737 struct track *p;
738
cbfc35a4 739 p = object + get_info_end(s);
81819f0f 740
aa1ef4d7 741 return kasan_reset_tag(p + alloc);
81819f0f
CL
742}
743
5cf909c5 744#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
745static noinline depot_stack_handle_t set_track_prepare(void)
746{
747 depot_stack_handle_t handle;
5cf909c5 748 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 749 unsigned int nr_entries;
ae14c63a 750
5cf909c5 751 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
752 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
753
754 return handle;
755}
756#else
757static inline depot_stack_handle_t set_track_prepare(void)
758{
759 return 0;
760}
d6543e39 761#endif
5cf909c5 762
c4cf6785
SAS
763static void set_track_update(struct kmem_cache *s, void *object,
764 enum track_item alloc, unsigned long addr,
765 depot_stack_handle_t handle)
766{
767 struct track *p = get_track(s, object, alloc);
768
769#ifdef CONFIG_STACKDEPOT
770 p->handle = handle;
771#endif
0cd1a029
VB
772 p->addr = addr;
773 p->cpu = smp_processor_id();
774 p->pid = current->pid;
775 p->when = jiffies;
81819f0f
CL
776}
777
c4cf6785
SAS
778static __always_inline void set_track(struct kmem_cache *s, void *object,
779 enum track_item alloc, unsigned long addr)
780{
781 depot_stack_handle_t handle = set_track_prepare();
782
783 set_track_update(s, object, alloc, addr, handle);
784}
785
81819f0f
CL
786static void init_tracking(struct kmem_cache *s, void *object)
787{
0cd1a029
VB
788 struct track *p;
789
24922684
CL
790 if (!(s->flags & SLAB_STORE_USER))
791 return;
792
0cd1a029
VB
793 p = get_track(s, object, TRACK_ALLOC);
794 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
795}
796
86609d33 797static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 798{
5cf909c5
OG
799 depot_stack_handle_t handle __maybe_unused;
800
81819f0f
CL
801 if (!t->addr)
802 return;
803
96b94abc 804 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 805 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
806#ifdef CONFIG_STACKDEPOT
807 handle = READ_ONCE(t->handle);
808 if (handle)
809 stack_depot_print(handle);
810 else
811 pr_err("object allocation/free stack trace missing\n");
d6543e39 812#endif
24922684
CL
813}
814
e42f174e 815void print_tracking(struct kmem_cache *s, void *object)
24922684 816{
86609d33 817 unsigned long pr_time = jiffies;
24922684
CL
818 if (!(s->flags & SLAB_STORE_USER))
819 return;
820
86609d33
CP
821 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
822 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
823}
824
fb012e27 825static void print_slab_info(const struct slab *slab)
24922684 826{
fb012e27 827 struct folio *folio = (struct folio *)slab_folio(slab);
24922684 828
fb012e27
MWO
829 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
830 slab, slab->objects, slab->inuse, slab->freelist,
831 folio_flags(folio, 0));
24922684
CL
832}
833
6edf2576
FT
834/*
835 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
836 * family will round up the real request size to these fixed ones, so
837 * there could be an extra area than what is requested. Save the original
838 * request size in the meta data area, for better debug and sanity check.
839 */
840static inline void set_orig_size(struct kmem_cache *s,
841 void *object, unsigned int orig_size)
842{
843 void *p = kasan_reset_tag(object);
844
845 if (!slub_debug_orig_size(s))
846 return;
847
946fa0db
FT
848#ifdef CONFIG_KASAN_GENERIC
849 /*
850 * KASAN could save its free meta data in object's data area at
851 * offset 0, if the size is larger than 'orig_size', it will
852 * overlap the data redzone in [orig_size+1, object_size], and
853 * the check should be skipped.
854 */
855 if (kasan_metadata_size(s, true) > orig_size)
856 orig_size = s->object_size;
857#endif
858
6edf2576
FT
859 p += get_info_end(s);
860 p += sizeof(struct track) * 2;
861
862 *(unsigned int *)p = orig_size;
863}
864
865static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
866{
867 void *p = kasan_reset_tag(object);
868
869 if (!slub_debug_orig_size(s))
870 return s->object_size;
871
872 p += get_info_end(s);
873 p += sizeof(struct track) * 2;
874
875 return *(unsigned int *)p;
876}
877
946fa0db
FT
878void skip_orig_size_check(struct kmem_cache *s, const void *object)
879{
880 set_orig_size(s, (void *)object, s->object_size);
881}
882
24922684
CL
883static void slab_bug(struct kmem_cache *s, char *fmt, ...)
884{
ecc42fbe 885 struct va_format vaf;
24922684 886 va_list args;
24922684
CL
887
888 va_start(args, fmt);
ecc42fbe
FF
889 vaf.fmt = fmt;
890 vaf.va = &args;
f9f58285 891 pr_err("=============================================================================\n");
ecc42fbe 892 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 893 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 894 va_end(args);
81819f0f
CL
895}
896
582d1212 897__printf(2, 3)
24922684
CL
898static void slab_fix(struct kmem_cache *s, char *fmt, ...)
899{
ecc42fbe 900 struct va_format vaf;
24922684 901 va_list args;
24922684 902
1f9f78b1
OG
903 if (slab_add_kunit_errors())
904 return;
905
24922684 906 va_start(args, fmt);
ecc42fbe
FF
907 vaf.fmt = fmt;
908 vaf.va = &args;
909 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 910 va_end(args);
24922684
CL
911}
912
bb192ed9 913static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
914{
915 unsigned int off; /* Offset of last byte */
bb192ed9 916 u8 *addr = slab_address(slab);
24922684
CL
917
918 print_tracking(s, p);
919
bb192ed9 920 print_slab_info(slab);
24922684 921
96b94abc 922 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 923 p, p - addr, get_freepointer(s, p));
24922684 924
d86bd1be 925 if (s->flags & SLAB_RED_ZONE)
8669dbab 926 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 927 s->red_left_pad);
d86bd1be 928 else if (p > addr + 16)
aa2efd5e 929 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 930
8669dbab 931 print_section(KERN_ERR, "Object ", p,
1b473f29 932 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 933 if (s->flags & SLAB_RED_ZONE)
8669dbab 934 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 935 s->inuse - s->object_size);
81819f0f 936
cbfc35a4 937 off = get_info_end(s);
81819f0f 938
24922684 939 if (s->flags & SLAB_STORE_USER)
81819f0f 940 off += 2 * sizeof(struct track);
81819f0f 941
6edf2576
FT
942 if (slub_debug_orig_size(s))
943 off += sizeof(unsigned int);
944
5d1ba310 945 off += kasan_metadata_size(s, false);
80a9201a 946
d86bd1be 947 if (off != size_from_object(s))
81819f0f 948 /* Beginning of the filler is the free pointer */
8669dbab 949 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 950 size_from_object(s) - off);
24922684
CL
951
952 dump_stack();
81819f0f
CL
953}
954
bb192ed9 955static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
956 u8 *object, char *reason)
957{
1f9f78b1
OG
958 if (slab_add_kunit_errors())
959 return;
960
3dc50637 961 slab_bug(s, "%s", reason);
bb192ed9 962 print_trailer(s, slab, object);
65ebdeef 963 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
964}
965
bb192ed9 966static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
967 void **freelist, void *nextfree)
968{
969 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
970 !check_valid_pointer(s, slab, nextfree) && freelist) {
971 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
972 *freelist = NULL;
973 slab_fix(s, "Isolate corrupted freechain");
974 return true;
975 }
976
977 return false;
978}
979
bb192ed9 980static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 981 const char *fmt, ...)
81819f0f
CL
982{
983 va_list args;
984 char buf[100];
985
1f9f78b1
OG
986 if (slab_add_kunit_errors())
987 return;
988
24922684
CL
989 va_start(args, fmt);
990 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 991 va_end(args);
3dc50637 992 slab_bug(s, "%s", buf);
bb192ed9 993 print_slab_info(slab);
81819f0f 994 dump_stack();
65ebdeef 995 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
996}
997
f7cb1933 998static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 999{
aa1ef4d7 1000 u8 *p = kasan_reset_tag(object);
946fa0db 1001 unsigned int poison_size = s->object_size;
81819f0f 1002
946fa0db 1003 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
1004 memset(p - s->red_left_pad, val, s->red_left_pad);
1005
946fa0db
FT
1006 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1007 /*
1008 * Redzone the extra allocated space by kmalloc than
1009 * requested, and the poison size will be limited to
1010 * the original request size accordingly.
1011 */
1012 poison_size = get_orig_size(s, object);
1013 }
1014 }
1015
81819f0f 1016 if (s->flags & __OBJECT_POISON) {
946fa0db
FT
1017 memset(p, POISON_FREE, poison_size - 1);
1018 p[poison_size - 1] = POISON_END;
81819f0f
CL
1019 }
1020
1021 if (s->flags & SLAB_RED_ZONE)
946fa0db 1022 memset(p + poison_size, val, s->inuse - poison_size);
81819f0f
CL
1023}
1024
24922684
CL
1025static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1026 void *from, void *to)
1027{
582d1212 1028 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
1029 memset(from, data, to - from);
1030}
1031
bb192ed9 1032static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
24922684 1033 u8 *object, char *what,
06428780 1034 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
1035{
1036 u8 *fault;
1037 u8 *end;
bb192ed9 1038 u8 *addr = slab_address(slab);
24922684 1039
a79316c6 1040 metadata_access_enable();
aa1ef4d7 1041 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 1042 metadata_access_disable();
24922684
CL
1043 if (!fault)
1044 return 1;
1045
1046 end = start + bytes;
1047 while (end > fault && end[-1] == value)
1048 end--;
1049
1f9f78b1
OG
1050 if (slab_add_kunit_errors())
1051 goto skip_bug_print;
1052
24922684 1053 slab_bug(s, "%s overwritten", what);
96b94abc 1054 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
1055 fault, end - 1, fault - addr,
1056 fault[0], value);
bb192ed9 1057 print_trailer(s, slab, object);
65ebdeef 1058 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 1059
1f9f78b1 1060skip_bug_print:
24922684
CL
1061 restore_bytes(s, what, value, fault, end);
1062 return 0;
81819f0f
CL
1063}
1064
81819f0f
CL
1065/*
1066 * Object layout:
1067 *
1068 * object address
1069 * Bytes of the object to be managed.
1070 * If the freepointer may overlay the object then the free
cbfc35a4 1071 * pointer is at the middle of the object.
672bba3a 1072 *
81819f0f
CL
1073 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1074 * 0xa5 (POISON_END)
1075 *
3b0efdfa 1076 * object + s->object_size
81819f0f 1077 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1078 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1079 * object_size == inuse.
672bba3a 1080 *
81819f0f
CL
1081 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1082 * 0xcc (RED_ACTIVE) for objects in use.
1083 *
1084 * object + s->inuse
672bba3a
CL
1085 * Meta data starts here.
1086 *
81819f0f
CL
1087 * A. Free pointer (if we cannot overwrite object on free)
1088 * B. Tracking data for SLAB_STORE_USER
6edf2576
FT
1089 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1090 * D. Padding to reach required alignment boundary or at minimum
6446faa2 1091 * one word if debugging is on to be able to detect writes
672bba3a
CL
1092 * before the word boundary.
1093 *
1094 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1095 *
1096 * object + s->size
672bba3a 1097 * Nothing is used beyond s->size.
81819f0f 1098 *
3b0efdfa 1099 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1100 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1101 * may be used with merged slabcaches.
1102 */
1103
bb192ed9 1104static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1105{
cbfc35a4 1106 unsigned long off = get_info_end(s); /* The end of info */
81819f0f 1107
6edf2576 1108 if (s->flags & SLAB_STORE_USER) {
81819f0f
CL
1109 /* We also have user information there */
1110 off += 2 * sizeof(struct track);
1111
6edf2576
FT
1112 if (s->flags & SLAB_KMALLOC)
1113 off += sizeof(unsigned int);
1114 }
1115
5d1ba310 1116 off += kasan_metadata_size(s, false);
80a9201a 1117
d86bd1be 1118 if (size_from_object(s) == off)
81819f0f
CL
1119 return 1;
1120
bb192ed9 1121 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1122 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1123}
1124
39b26464 1125/* Check the pad bytes at the end of a slab page */
a204e6d6 1126static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1127{
24922684
CL
1128 u8 *start;
1129 u8 *fault;
1130 u8 *end;
5d682681 1131 u8 *pad;
24922684
CL
1132 int length;
1133 int remainder;
81819f0f
CL
1134
1135 if (!(s->flags & SLAB_POISON))
a204e6d6 1136 return;
81819f0f 1137
bb192ed9
VB
1138 start = slab_address(slab);
1139 length = slab_size(slab);
39b26464
CL
1140 end = start + length;
1141 remainder = length % s->size;
81819f0f 1142 if (!remainder)
a204e6d6 1143 return;
81819f0f 1144
5d682681 1145 pad = end - remainder;
a79316c6 1146 metadata_access_enable();
aa1ef4d7 1147 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1148 metadata_access_disable();
24922684 1149 if (!fault)
a204e6d6 1150 return;
24922684
CL
1151 while (end > fault && end[-1] == POISON_INUSE)
1152 end--;
1153
bb192ed9 1154 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1155 fault, end - 1, fault - start);
5d682681 1156 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1157
5d682681 1158 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1159}
1160
bb192ed9 1161static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1162 void *object, u8 val)
81819f0f
CL
1163{
1164 u8 *p = object;
3b0efdfa 1165 u8 *endobject = object + s->object_size;
946fa0db 1166 unsigned int orig_size;
81819f0f
CL
1167
1168 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1169 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be
JK
1170 object - s->red_left_pad, val, s->red_left_pad))
1171 return 0;
1172
bb192ed9 1173 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1174 endobject, val, s->inuse - s->object_size))
81819f0f 1175 return 0;
946fa0db
FT
1176
1177 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1178 orig_size = get_orig_size(s, object);
1179
1180 if (s->object_size > orig_size &&
1181 !check_bytes_and_report(s, slab, object,
1182 "kmalloc Redzone", p + orig_size,
1183 val, s->object_size - orig_size)) {
1184 return 0;
1185 }
1186 }
81819f0f 1187 } else {
3b0efdfa 1188 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
bb192ed9 1189 check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97
CG
1190 endobject, POISON_INUSE,
1191 s->inuse - s->object_size);
3adbefee 1192 }
81819f0f
CL
1193 }
1194
1195 if (s->flags & SLAB_POISON) {
f7cb1933 1196 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
bb192ed9 1197 (!check_bytes_and_report(s, slab, p, "Poison", p,
3b0efdfa 1198 POISON_FREE, s->object_size - 1) ||
bb192ed9 1199 !check_bytes_and_report(s, slab, p, "End Poison",
3b0efdfa 1200 p + s->object_size - 1, POISON_END, 1)))
81819f0f 1201 return 0;
81819f0f
CL
1202 /*
1203 * check_pad_bytes cleans up on its own.
1204 */
bb192ed9 1205 check_pad_bytes(s, slab, p);
81819f0f
CL
1206 }
1207
cbfc35a4 1208 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1209 /*
1210 * Object and freepointer overlap. Cannot check
1211 * freepointer while object is allocated.
1212 */
1213 return 1;
1214
1215 /* Check free pointer validity */
bb192ed9
VB
1216 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1217 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1218 /*
9f6c708e 1219 * No choice but to zap it and thus lose the remainder
81819f0f 1220 * of the free objects in this slab. May cause
672bba3a 1221 * another error because the object count is now wrong.
81819f0f 1222 */
a973e9dd 1223 set_freepointer(s, p, NULL);
81819f0f
CL
1224 return 0;
1225 }
1226 return 1;
1227}
1228
bb192ed9 1229static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1230{
39b26464
CL
1231 int maxobj;
1232
bb192ed9
VB
1233 if (!folio_test_slab(slab_folio(slab))) {
1234 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1235 return 0;
1236 }
39b26464 1237
bb192ed9
VB
1238 maxobj = order_objects(slab_order(slab), s->size);
1239 if (slab->objects > maxobj) {
1240 slab_err(s, slab, "objects %u > max %u",
1241 slab->objects, maxobj);
39b26464
CL
1242 return 0;
1243 }
bb192ed9
VB
1244 if (slab->inuse > slab->objects) {
1245 slab_err(s, slab, "inuse %u > max %u",
1246 slab->inuse, slab->objects);
81819f0f
CL
1247 return 0;
1248 }
1249 /* Slab_pad_check fixes things up after itself */
bb192ed9 1250 slab_pad_check(s, slab);
81819f0f
CL
1251 return 1;
1252}
1253
1254/*
c2092c12 1255 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1256 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1257 */
bb192ed9 1258static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1259{
1260 int nr = 0;
881db7fb 1261 void *fp;
81819f0f 1262 void *object = NULL;
f6edde9c 1263 int max_objects;
81819f0f 1264
bb192ed9
VB
1265 fp = slab->freelist;
1266 while (fp && nr <= slab->objects) {
81819f0f
CL
1267 if (fp == search)
1268 return 1;
bb192ed9 1269 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1270 if (object) {
bb192ed9 1271 object_err(s, slab, object,
81819f0f 1272 "Freechain corrupt");
a973e9dd 1273 set_freepointer(s, object, NULL);
81819f0f 1274 } else {
bb192ed9
VB
1275 slab_err(s, slab, "Freepointer corrupt");
1276 slab->freelist = NULL;
1277 slab->inuse = slab->objects;
24922684 1278 slab_fix(s, "Freelist cleared");
81819f0f
CL
1279 return 0;
1280 }
1281 break;
1282 }
1283 object = fp;
1284 fp = get_freepointer(s, object);
1285 nr++;
1286 }
1287
bb192ed9 1288 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1289 if (max_objects > MAX_OBJS_PER_PAGE)
1290 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1291
bb192ed9
VB
1292 if (slab->objects != max_objects) {
1293 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1294 slab->objects, max_objects);
1295 slab->objects = max_objects;
582d1212 1296 slab_fix(s, "Number of objects adjusted");
224a88be 1297 }
bb192ed9
VB
1298 if (slab->inuse != slab->objects - nr) {
1299 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1300 slab->inuse, slab->objects - nr);
1301 slab->inuse = slab->objects - nr;
582d1212 1302 slab_fix(s, "Object count adjusted");
81819f0f
CL
1303 }
1304 return search == NULL;
1305}
1306
bb192ed9 1307static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1308 int alloc)
3ec09742
CL
1309{
1310 if (s->flags & SLAB_TRACE) {
f9f58285 1311 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1312 s->name,
1313 alloc ? "alloc" : "free",
bb192ed9
VB
1314 object, slab->inuse,
1315 slab->freelist);
3ec09742
CL
1316
1317 if (!alloc)
aa2efd5e 1318 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1319 s->object_size);
3ec09742
CL
1320
1321 dump_stack();
1322 }
1323}
1324
643b1138 1325/*
672bba3a 1326 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1327 */
5cc6eee8 1328static void add_full(struct kmem_cache *s,
bb192ed9 1329 struct kmem_cache_node *n, struct slab *slab)
643b1138 1330{
5cc6eee8
CL
1331 if (!(s->flags & SLAB_STORE_USER))
1332 return;
1333
255d0884 1334 lockdep_assert_held(&n->list_lock);
bb192ed9 1335 list_add(&slab->slab_list, &n->full);
643b1138
CL
1336}
1337
bb192ed9 1338static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1339{
643b1138
CL
1340 if (!(s->flags & SLAB_STORE_USER))
1341 return;
1342
255d0884 1343 lockdep_assert_held(&n->list_lock);
bb192ed9 1344 list_del(&slab->slab_list);
643b1138
CL
1345}
1346
0f389ec6
CL
1347/* Tracking of the number of slabs for debugging purposes */
1348static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1349{
1350 struct kmem_cache_node *n = get_node(s, node);
1351
1352 return atomic_long_read(&n->nr_slabs);
1353}
1354
26c02cf0
AB
1355static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1356{
1357 return atomic_long_read(&n->nr_slabs);
1358}
1359
205ab99d 1360static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1361{
1362 struct kmem_cache_node *n = get_node(s, node);
1363
1364 /*
1365 * May be called early in order to allocate a slab for the
1366 * kmem_cache_node structure. Solve the chicken-egg
1367 * dilemma by deferring the increment of the count during
1368 * bootstrap (see early_kmem_cache_node_alloc).
1369 */
338b2642 1370 if (likely(n)) {
0f389ec6 1371 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1372 atomic_long_add(objects, &n->total_objects);
1373 }
0f389ec6 1374}
205ab99d 1375static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1376{
1377 struct kmem_cache_node *n = get_node(s, node);
1378
1379 atomic_long_dec(&n->nr_slabs);
205ab99d 1380 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1381}
1382
1383/* Object debug checks for alloc/free paths */
c0f81a94 1384static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1385{
8fc8d666 1386 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1387 return;
1388
f7cb1933 1389 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1390 init_tracking(s, object);
1391}
1392
a50b854e 1393static
bb192ed9 1394void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1395{
8fc8d666 1396 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1397 return;
1398
1399 metadata_access_enable();
bb192ed9 1400 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1401 metadata_access_disable();
1402}
1403
becfda68 1404static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1405 struct slab *slab, void *object)
81819f0f 1406{
bb192ed9 1407 if (!check_slab(s, slab))
becfda68 1408 return 0;
81819f0f 1409
bb192ed9
VB
1410 if (!check_valid_pointer(s, slab, object)) {
1411 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1412 return 0;
81819f0f
CL
1413 }
1414
bb192ed9 1415 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1416 return 0;
1417
1418 return 1;
1419}
1420
fa9b88e4 1421static noinline bool alloc_debug_processing(struct kmem_cache *s,
6edf2576 1422 struct slab *slab, void *object, int orig_size)
becfda68
LA
1423{
1424 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1425 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1426 goto bad;
1427 }
81819f0f 1428
c7323a5a 1429 /* Success. Perform special debug activities for allocs */
bb192ed9 1430 trace(s, slab, object, 1);
6edf2576 1431 set_orig_size(s, object, orig_size);
f7cb1933 1432 init_object(s, object, SLUB_RED_ACTIVE);
fa9b88e4 1433 return true;
3ec09742 1434
81819f0f 1435bad:
bb192ed9 1436 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1437 /*
1438 * If this is a slab page then lets do the best we can
1439 * to avoid issues in the future. Marking all objects
672bba3a 1440 * as used avoids touching the remaining objects.
81819f0f 1441 */
24922684 1442 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1443 slab->inuse = slab->objects;
1444 slab->freelist = NULL;
81819f0f 1445 }
fa9b88e4 1446 return false;
81819f0f
CL
1447}
1448
becfda68 1449static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1450 struct slab *slab, void *object, unsigned long addr)
81819f0f 1451{
bb192ed9
VB
1452 if (!check_valid_pointer(s, slab, object)) {
1453 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1454 return 0;
81819f0f
CL
1455 }
1456
bb192ed9
VB
1457 if (on_freelist(s, slab, object)) {
1458 object_err(s, slab, object, "Object already free");
becfda68 1459 return 0;
81819f0f
CL
1460 }
1461
bb192ed9 1462 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1463 return 0;
81819f0f 1464
bb192ed9
VB
1465 if (unlikely(s != slab->slab_cache)) {
1466 if (!folio_test_slab(slab_folio(slab))) {
1467 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1468 object);
bb192ed9 1469 } else if (!slab->slab_cache) {
f9f58285
FF
1470 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1471 object);
70d71228 1472 dump_stack();
06428780 1473 } else
bb192ed9 1474 object_err(s, slab, object,
24922684 1475 "page slab pointer corrupt.");
becfda68
LA
1476 return 0;
1477 }
1478 return 1;
1479}
1480
e17f1dfb
VB
1481/*
1482 * Parse a block of slub_debug options. Blocks are delimited by ';'
1483 *
1484 * @str: start of block
1485 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1486 * @slabs: return start of list of slabs, or NULL when there's no list
1487 * @init: assume this is initial parsing and not per-kmem-create parsing
1488 *
1489 * returns the start of next block if there's any, or NULL
1490 */
1491static char *
1492parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1493{
e17f1dfb 1494 bool higher_order_disable = false;
f0630fff 1495
e17f1dfb
VB
1496 /* Skip any completely empty blocks */
1497 while (*str && *str == ';')
1498 str++;
1499
1500 if (*str == ',') {
f0630fff
CL
1501 /*
1502 * No options but restriction on slabs. This means full
1503 * debugging for slabs matching a pattern.
1504 */
e17f1dfb 1505 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1506 goto check_slabs;
e17f1dfb
VB
1507 }
1508 *flags = 0;
f0630fff 1509
e17f1dfb
VB
1510 /* Determine which debug features should be switched on */
1511 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1512 switch (tolower(*str)) {
e17f1dfb
VB
1513 case '-':
1514 *flags = 0;
1515 break;
f0630fff 1516 case 'f':
e17f1dfb 1517 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1518 break;
1519 case 'z':
e17f1dfb 1520 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1521 break;
1522 case 'p':
e17f1dfb 1523 *flags |= SLAB_POISON;
f0630fff
CL
1524 break;
1525 case 'u':
e17f1dfb 1526 *flags |= SLAB_STORE_USER;
f0630fff
CL
1527 break;
1528 case 't':
e17f1dfb 1529 *flags |= SLAB_TRACE;
f0630fff 1530 break;
4c13dd3b 1531 case 'a':
e17f1dfb 1532 *flags |= SLAB_FAILSLAB;
4c13dd3b 1533 break;
08303a73
CA
1534 case 'o':
1535 /*
1536 * Avoid enabling debugging on caches if its minimum
1537 * order would increase as a result.
1538 */
e17f1dfb 1539 higher_order_disable = true;
08303a73 1540 break;
f0630fff 1541 default:
e17f1dfb
VB
1542 if (init)
1543 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1544 }
41ecc55b 1545 }
f0630fff 1546check_slabs:
41ecc55b 1547 if (*str == ',')
e17f1dfb
VB
1548 *slabs = ++str;
1549 else
1550 *slabs = NULL;
1551
1552 /* Skip over the slab list */
1553 while (*str && *str != ';')
1554 str++;
1555
1556 /* Skip any completely empty blocks */
1557 while (*str && *str == ';')
1558 str++;
1559
1560 if (init && higher_order_disable)
1561 disable_higher_order_debug = 1;
1562
1563 if (*str)
1564 return str;
1565 else
1566 return NULL;
1567}
1568
1569static int __init setup_slub_debug(char *str)
1570{
1571 slab_flags_t flags;
a7f1d485 1572 slab_flags_t global_flags;
e17f1dfb
VB
1573 char *saved_str;
1574 char *slab_list;
1575 bool global_slub_debug_changed = false;
1576 bool slab_list_specified = false;
1577
a7f1d485 1578 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1579 if (*str++ != '=' || !*str)
1580 /*
1581 * No options specified. Switch on full debugging.
1582 */
1583 goto out;
1584
1585 saved_str = str;
1586 while (str) {
1587 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1588
1589 if (!slab_list) {
a7f1d485 1590 global_flags = flags;
e17f1dfb
VB
1591 global_slub_debug_changed = true;
1592 } else {
1593 slab_list_specified = true;
5cf909c5 1594 if (flags & SLAB_STORE_USER)
1c0310ad 1595 stack_depot_request_early_init();
e17f1dfb
VB
1596 }
1597 }
1598
1599 /*
1600 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1601 * slabs means debugging is only changed for those slabs, so the global
1602 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1603 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1604 * long as there is no option specifying flags without a slab list.
1605 */
1606 if (slab_list_specified) {
1607 if (!global_slub_debug_changed)
a7f1d485 1608 global_flags = slub_debug;
e17f1dfb
VB
1609 slub_debug_string = saved_str;
1610 }
f0630fff 1611out:
a7f1d485 1612 slub_debug = global_flags;
5cf909c5 1613 if (slub_debug & SLAB_STORE_USER)
1c0310ad 1614 stack_depot_request_early_init();
ca0cab65
VB
1615 if (slub_debug != 0 || slub_debug_string)
1616 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1617 else
1618 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1619 if ((static_branch_unlikely(&init_on_alloc) ||
1620 static_branch_unlikely(&init_on_free)) &&
1621 (slub_debug & SLAB_POISON))
1622 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1623 return 1;
1624}
1625
1626__setup("slub_debug", setup_slub_debug);
1627
c5fd3ca0
AT
1628/*
1629 * kmem_cache_flags - apply debugging options to the cache
1630 * @object_size: the size of an object without meta data
1631 * @flags: flags to set
1632 * @name: name of the cache
c5fd3ca0
AT
1633 *
1634 * Debug option(s) are applied to @flags. In addition to the debug
1635 * option(s), if a slab name (or multiple) is specified i.e.
1636 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1637 * then only the select slabs will receive the debug option(s).
1638 */
0293d1fd 1639slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1640 slab_flags_t flags, const char *name)
41ecc55b 1641{
c5fd3ca0
AT
1642 char *iter;
1643 size_t len;
e17f1dfb
VB
1644 char *next_block;
1645 slab_flags_t block_flags;
ca220593
JB
1646 slab_flags_t slub_debug_local = slub_debug;
1647
a285909f
HY
1648 if (flags & SLAB_NO_USER_FLAGS)
1649 return flags;
1650
ca220593
JB
1651 /*
1652 * If the slab cache is for debugging (e.g. kmemleak) then
1653 * don't store user (stack trace) information by default,
1654 * but let the user enable it via the command line below.
1655 */
1656 if (flags & SLAB_NOLEAKTRACE)
1657 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1658
c5fd3ca0 1659 len = strlen(name);
e17f1dfb
VB
1660 next_block = slub_debug_string;
1661 /* Go through all blocks of debug options, see if any matches our slab's name */
1662 while (next_block) {
1663 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1664 if (!iter)
1665 continue;
1666 /* Found a block that has a slab list, search it */
1667 while (*iter) {
1668 char *end, *glob;
1669 size_t cmplen;
1670
1671 end = strchrnul(iter, ',');
1672 if (next_block && next_block < end)
1673 end = next_block - 1;
1674
1675 glob = strnchr(iter, end - iter, '*');
1676 if (glob)
1677 cmplen = glob - iter;
1678 else
1679 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1680
e17f1dfb
VB
1681 if (!strncmp(name, iter, cmplen)) {
1682 flags |= block_flags;
1683 return flags;
1684 }
c5fd3ca0 1685
e17f1dfb
VB
1686 if (!*end || *end == ';')
1687 break;
1688 iter = end + 1;
c5fd3ca0 1689 }
c5fd3ca0 1690 }
ba0268a8 1691
ca220593 1692 return flags | slub_debug_local;
41ecc55b 1693}
b4a64718 1694#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1695static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1696static inline
bb192ed9 1697void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1698
fa9b88e4
VB
1699static inline bool alloc_debug_processing(struct kmem_cache *s,
1700 struct slab *slab, void *object, int orig_size) { return true; }
41ecc55b 1701
fa9b88e4
VB
1702static inline bool free_debug_processing(struct kmem_cache *s,
1703 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1704 unsigned long addr, depot_stack_handle_t handle) { return true; }
41ecc55b 1705
a204e6d6 1706static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1707static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1708 void *object, u8 val) { return 1; }
fa9b88e4 1709static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
c7323a5a
VB
1710static inline void set_track(struct kmem_cache *s, void *object,
1711 enum track_item alloc, unsigned long addr) {}
5cc6eee8 1712static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1713 struct slab *slab) {}
c65c1877 1714static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1715 struct slab *slab) {}
0293d1fd 1716slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1717 slab_flags_t flags, const char *name)
ba0268a8
CL
1718{
1719 return flags;
1720}
41ecc55b 1721#define slub_debug 0
0f389ec6 1722
fdaa45e9
IM
1723#define disable_higher_order_debug 0
1724
0f389ec6
CL
1725static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1726 { return 0; }
26c02cf0
AB
1727static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1728 { return 0; }
205ab99d
CL
1729static inline void inc_slabs_node(struct kmem_cache *s, int node,
1730 int objects) {}
1731static inline void dec_slabs_node(struct kmem_cache *s, int node,
1732 int objects) {}
7d550c56 1733
0af8489b 1734#ifndef CONFIG_SLUB_TINY
bb192ed9 1735static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1736 void **freelist, void *nextfree)
52f23478
DZ
1737{
1738 return false;
1739}
0af8489b 1740#endif
02e72cc6
AR
1741#endif /* CONFIG_SLUB_DEBUG */
1742
1743/*
1744 * Hooks for other subsystems that check memory allocations. In a typical
1745 * production configuration these hooks all should produce no code at all.
1746 */
d57a964e
AK
1747static __always_inline bool slab_free_hook(struct kmem_cache *s,
1748 void *x, bool init)
d56791b3
RB
1749{
1750 kmemleak_free_recursive(x, s->flags);
68ef169a 1751 kmsan_slab_free(s, x);
7d550c56 1752
84048039 1753 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1754
02e72cc6
AR
1755 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1756 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1757
cfbe1636
ME
1758 /* Use KCSAN to help debug racy use-after-free. */
1759 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1760 __kcsan_check_access(x, s->object_size,
1761 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1762
d57a964e
AK
1763 /*
1764 * As memory initialization might be integrated into KASAN,
1765 * kasan_slab_free and initialization memset's must be
1766 * kept together to avoid discrepancies in behavior.
1767 *
1768 * The initialization memset's clear the object and the metadata,
1769 * but don't touch the SLAB redzone.
1770 */
1771 if (init) {
1772 int rsize;
1773
1774 if (!kasan_has_integrated_init())
1775 memset(kasan_reset_tag(x), 0, s->object_size);
1776 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1777 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1778 s->size - s->inuse - rsize);
1779 }
1780 /* KASAN might put x into memory quarantine, delaying its reuse. */
1781 return kasan_slab_free(s, x, init);
02e72cc6 1782}
205ab99d 1783
c3895391 1784static inline bool slab_free_freelist_hook(struct kmem_cache *s,
899447f6
ML
1785 void **head, void **tail,
1786 int *cnt)
81084651 1787{
6471384a
AP
1788
1789 void *object;
1790 void *next = *head;
1791 void *old_tail = *tail ? *tail : *head;
6471384a 1792
b89fb5ef 1793 if (is_kfence_address(next)) {
d57a964e 1794 slab_free_hook(s, next, false);
b89fb5ef
AP
1795 return true;
1796 }
1797
aea4df4c
LA
1798 /* Head and tail of the reconstructed freelist */
1799 *head = NULL;
1800 *tail = NULL;
1b7e816f 1801
aea4df4c
LA
1802 do {
1803 object = next;
1804 next = get_freepointer(s, object);
1805
c3895391 1806 /* If object's reuse doesn't have to be delayed */
d57a964e 1807 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1808 /* Move object to the new freelist */
1809 set_freepointer(s, object, *head);
1810 *head = object;
1811 if (!*tail)
1812 *tail = object;
899447f6
ML
1813 } else {
1814 /*
1815 * Adjust the reconstructed freelist depth
1816 * accordingly if object's reuse is delayed.
1817 */
1818 --(*cnt);
c3895391
AK
1819 }
1820 } while (object != old_tail);
1821
1822 if (*head == *tail)
1823 *tail = NULL;
1824
1825 return *head != NULL;
81084651
JDB
1826}
1827
c0f81a94 1828static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 1829{
c0f81a94 1830 setup_object_debug(s, object);
4d176711 1831 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1832 if (unlikely(s->ctor)) {
1833 kasan_unpoison_object_data(s, object);
1834 s->ctor(object);
1835 kasan_poison_object_data(s, object);
1836 }
4d176711 1837 return object;
588f8ba9
TG
1838}
1839
81819f0f
CL
1840/*
1841 * Slab allocation and freeing
1842 */
a485e1da
XS
1843static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1844 struct kmem_cache_order_objects oo)
65c3376a 1845{
45387b8c
VB
1846 struct folio *folio;
1847 struct slab *slab;
19af27af 1848 unsigned int order = oo_order(oo);
65c3376a 1849
2154a336 1850 if (node == NUMA_NO_NODE)
45387b8c 1851 folio = (struct folio *)alloc_pages(flags, order);
65c3376a 1852 else
45387b8c 1853 folio = (struct folio *)__alloc_pages_node(node, flags, order);
5dfb4175 1854
45387b8c
VB
1855 if (!folio)
1856 return NULL;
1857
1858 slab = folio_slab(folio);
1859 __folio_set_slab(folio);
8b881763
VB
1860 /* Make the flag visible before any changes to folio->mapping */
1861 smp_wmb();
02d65d6f 1862 if (folio_is_pfmemalloc(folio))
45387b8c
VB
1863 slab_set_pfmemalloc(slab);
1864
1865 return slab;
65c3376a
CL
1866}
1867
210e7a43
TG
1868#ifdef CONFIG_SLAB_FREELIST_RANDOM
1869/* Pre-initialize the random sequence cache */
1870static int init_cache_random_seq(struct kmem_cache *s)
1871{
19af27af 1872 unsigned int count = oo_objects(s->oo);
210e7a43 1873 int err;
210e7a43 1874
a810007a
SR
1875 /* Bailout if already initialised */
1876 if (s->random_seq)
1877 return 0;
1878
210e7a43
TG
1879 err = cache_random_seq_create(s, count, GFP_KERNEL);
1880 if (err) {
1881 pr_err("SLUB: Unable to initialize free list for %s\n",
1882 s->name);
1883 return err;
1884 }
1885
1886 /* Transform to an offset on the set of pages */
1887 if (s->random_seq) {
19af27af
AD
1888 unsigned int i;
1889
210e7a43
TG
1890 for (i = 0; i < count; i++)
1891 s->random_seq[i] *= s->size;
1892 }
1893 return 0;
1894}
1895
1896/* Initialize each random sequence freelist per cache */
1897static void __init init_freelist_randomization(void)
1898{
1899 struct kmem_cache *s;
1900
1901 mutex_lock(&slab_mutex);
1902
1903 list_for_each_entry(s, &slab_caches, list)
1904 init_cache_random_seq(s);
1905
1906 mutex_unlock(&slab_mutex);
1907}
1908
1909/* Get the next entry on the pre-computed freelist randomized */
bb192ed9 1910static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
210e7a43
TG
1911 unsigned long *pos, void *start,
1912 unsigned long page_limit,
1913 unsigned long freelist_count)
1914{
1915 unsigned int idx;
1916
1917 /*
1918 * If the target page allocation failed, the number of objects on the
1919 * page might be smaller than the usual size defined by the cache.
1920 */
1921 do {
1922 idx = s->random_seq[*pos];
1923 *pos += 1;
1924 if (*pos >= freelist_count)
1925 *pos = 0;
1926 } while (unlikely(idx >= page_limit));
1927
1928 return (char *)start + idx;
1929}
1930
1931/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 1932static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1933{
1934 void *start;
1935 void *cur;
1936 void *next;
1937 unsigned long idx, pos, page_limit, freelist_count;
1938
bb192ed9 1939 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
1940 return false;
1941
1942 freelist_count = oo_objects(s->oo);
8032bf12 1943 pos = get_random_u32_below(freelist_count);
210e7a43 1944
bb192ed9
VB
1945 page_limit = slab->objects * s->size;
1946 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
1947
1948 /* First entry is used as the base of the freelist */
bb192ed9 1949 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1950 freelist_count);
c0f81a94 1951 cur = setup_object(s, cur);
bb192ed9 1952 slab->freelist = cur;
210e7a43 1953
bb192ed9
VB
1954 for (idx = 1; idx < slab->objects; idx++) {
1955 next = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 1956 freelist_count);
c0f81a94 1957 next = setup_object(s, next);
210e7a43
TG
1958 set_freepointer(s, cur, next);
1959 cur = next;
1960 }
210e7a43
TG
1961 set_freepointer(s, cur, NULL);
1962
1963 return true;
1964}
1965#else
1966static inline int init_cache_random_seq(struct kmem_cache *s)
1967{
1968 return 0;
1969}
1970static inline void init_freelist_randomization(void) { }
bb192ed9 1971static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
1972{
1973 return false;
1974}
1975#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1976
bb192ed9 1977static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 1978{
bb192ed9 1979 struct slab *slab;
834f3d11 1980 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1981 gfp_t alloc_gfp;
4d176711 1982 void *start, *p, *next;
a50b854e 1983 int idx;
210e7a43 1984 bool shuffle;
81819f0f 1985
7e0528da
CL
1986 flags &= gfp_allowed_mask;
1987
b7a49f0d 1988 flags |= s->allocflags;
e12ba74d 1989
ba52270d
PE
1990 /*
1991 * Let the initial higher-order allocation fail under memory pressure
1992 * so we fall-back to the minimum order allocation.
1993 */
1994 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1995 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 1996 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 1997
a485e1da 1998 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 1999 if (unlikely(!slab)) {
65c3376a 2000 oo = s->min;
80c3a998 2001 alloc_gfp = flags;
65c3376a
CL
2002 /*
2003 * Allocation may have failed due to fragmentation.
2004 * Try a lower order alloc if possible
2005 */
a485e1da 2006 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2007 if (unlikely(!slab))
c7323a5a 2008 return NULL;
588f8ba9 2009 stat(s, ORDER_FALLBACK);
65c3376a 2010 }
5a896d9e 2011
bb192ed9 2012 slab->objects = oo_objects(oo);
c7323a5a
VB
2013 slab->inuse = 0;
2014 slab->frozen = 0;
81819f0f 2015
bb192ed9 2016 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 2017
bb192ed9 2018 slab->slab_cache = s;
81819f0f 2019
6e48a966 2020 kasan_poison_slab(slab);
81819f0f 2021
bb192ed9 2022 start = slab_address(slab);
81819f0f 2023
bb192ed9 2024 setup_slab_debug(s, slab, start);
0316bec2 2025
bb192ed9 2026 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
2027
2028 if (!shuffle) {
4d176711 2029 start = fixup_red_left(s, start);
c0f81a94 2030 start = setup_object(s, start);
bb192ed9
VB
2031 slab->freelist = start;
2032 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 2033 next = p + s->size;
c0f81a94 2034 next = setup_object(s, next);
18e50661
AK
2035 set_freepointer(s, p, next);
2036 p = next;
2037 }
2038 set_freepointer(s, p, NULL);
81819f0f 2039 }
81819f0f 2040
bb192ed9 2041 return slab;
81819f0f
CL
2042}
2043
bb192ed9 2044static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2045{
44405099
LL
2046 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2047 flags = kmalloc_fix_flags(flags);
588f8ba9 2048
53a0de06
VB
2049 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2050
588f8ba9
TG
2051 return allocate_slab(s,
2052 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2053}
2054
4020b4a2 2055static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2056{
4020b4a2
VB
2057 struct folio *folio = slab_folio(slab);
2058 int order = folio_order(folio);
834f3d11 2059 int pages = 1 << order;
81819f0f 2060
4020b4a2 2061 __slab_clear_pfmemalloc(slab);
4020b4a2 2062 folio->mapping = NULL;
8b881763
VB
2063 /* Make the mapping reset visible before clearing the flag */
2064 smp_wmb();
2065 __folio_clear_slab(folio);
c7b23b68 2066 mm_account_reclaimed_pages(pages);
4020b4a2 2067 unaccount_slab(slab, order, s);
c034c6a4 2068 __free_pages(&folio->page, order);
81819f0f
CL
2069}
2070
2071static void rcu_free_slab(struct rcu_head *h)
2072{
bb192ed9 2073 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2074
bb192ed9 2075 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2076}
2077
bb192ed9 2078static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2079{
bc29d5bd
VB
2080 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2081 void *p;
2082
2083 slab_pad_check(s, slab);
2084 for_each_object(p, s, slab_address(slab), slab->objects)
2085 check_object(s, slab, p, SLUB_RED_INACTIVE);
2086 }
2087
2088 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
bb192ed9 2089 call_rcu(&slab->rcu_head, rcu_free_slab);
bc29d5bd 2090 else
bb192ed9 2091 __free_slab(s, slab);
81819f0f
CL
2092}
2093
bb192ed9 2094static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2095{
bb192ed9
VB
2096 dec_slabs_node(s, slab_nid(slab), slab->objects);
2097 free_slab(s, slab);
81819f0f
CL
2098}
2099
2100/*
5cc6eee8 2101 * Management of partially allocated slabs.
81819f0f 2102 */
1e4dd946 2103static inline void
bb192ed9 2104__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2105{
e95eed57 2106 n->nr_partial++;
136333d1 2107 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2108 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2109 else
bb192ed9 2110 list_add(&slab->slab_list, &n->partial);
81819f0f
CL
2111}
2112
1e4dd946 2113static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2114 struct slab *slab, int tail)
62e346a8 2115{
c65c1877 2116 lockdep_assert_held(&n->list_lock);
bb192ed9 2117 __add_partial(n, slab, tail);
1e4dd946 2118}
c65c1877 2119
1e4dd946 2120static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2121 struct slab *slab)
1e4dd946
SR
2122{
2123 lockdep_assert_held(&n->list_lock);
bb192ed9 2124 list_del(&slab->slab_list);
52b4b950 2125 n->nr_partial--;
1e4dd946
SR
2126}
2127
c7323a5a
VB
2128/*
2129 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2130 * slab from the n->partial list. Remove only a single object from the slab, do
2131 * the alloc_debug_processing() checks and leave the slab on the list, or move
2132 * it to full list if it was the last free object.
2133 */
2134static void *alloc_single_from_partial(struct kmem_cache *s,
6edf2576 2135 struct kmem_cache_node *n, struct slab *slab, int orig_size)
c7323a5a
VB
2136{
2137 void *object;
2138
2139 lockdep_assert_held(&n->list_lock);
2140
2141 object = slab->freelist;
2142 slab->freelist = get_freepointer(s, object);
2143 slab->inuse++;
2144
6edf2576 2145 if (!alloc_debug_processing(s, slab, object, orig_size)) {
c7323a5a
VB
2146 remove_partial(n, slab);
2147 return NULL;
2148 }
2149
2150 if (slab->inuse == slab->objects) {
2151 remove_partial(n, slab);
2152 add_full(s, n, slab);
2153 }
2154
2155 return object;
2156}
2157
2158/*
2159 * Called only for kmem_cache_debug() caches to allocate from a freshly
2160 * allocated slab. Allocate a single object instead of whole freelist
2161 * and put the slab to the partial (or full) list.
2162 */
2163static void *alloc_single_from_new_slab(struct kmem_cache *s,
6edf2576 2164 struct slab *slab, int orig_size)
c7323a5a
VB
2165{
2166 int nid = slab_nid(slab);
2167 struct kmem_cache_node *n = get_node(s, nid);
2168 unsigned long flags;
2169 void *object;
2170
2171
2172 object = slab->freelist;
2173 slab->freelist = get_freepointer(s, object);
2174 slab->inuse = 1;
2175
6edf2576 2176 if (!alloc_debug_processing(s, slab, object, orig_size))
c7323a5a
VB
2177 /*
2178 * It's not really expected that this would fail on a
2179 * freshly allocated slab, but a concurrent memory
2180 * corruption in theory could cause that.
2181 */
2182 return NULL;
2183
2184 spin_lock_irqsave(&n->list_lock, flags);
2185
2186 if (slab->inuse == slab->objects)
2187 add_full(s, n, slab);
2188 else
2189 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2190
2191 inc_slabs_node(s, nid, slab->objects);
2192 spin_unlock_irqrestore(&n->list_lock, flags);
2193
2194 return object;
2195}
2196
81819f0f 2197/*
7ced3719
CL
2198 * Remove slab from the partial list, freeze it and
2199 * return the pointer to the freelist.
81819f0f 2200 *
497b66f2 2201 * Returns a list of objects or NULL if it fails.
81819f0f 2202 */
497b66f2 2203static inline void *acquire_slab(struct kmem_cache *s,
bb192ed9 2204 struct kmem_cache_node *n, struct slab *slab,
b47291ef 2205 int mode)
81819f0f 2206{
2cfb7455
CL
2207 void *freelist;
2208 unsigned long counters;
bb192ed9 2209 struct slab new;
2cfb7455 2210
c65c1877
PZ
2211 lockdep_assert_held(&n->list_lock);
2212
2cfb7455
CL
2213 /*
2214 * Zap the freelist and set the frozen bit.
2215 * The old freelist is the list of objects for the
2216 * per cpu allocation list.
2217 */
bb192ed9
VB
2218 freelist = slab->freelist;
2219 counters = slab->counters;
7ced3719 2220 new.counters = counters;
23910c50 2221 if (mode) {
bb192ed9 2222 new.inuse = slab->objects;
23910c50
PE
2223 new.freelist = NULL;
2224 } else {
2225 new.freelist = freelist;
2226 }
2cfb7455 2227
a0132ac0 2228 VM_BUG_ON(new.frozen);
7ced3719 2229 new.frozen = 1;
2cfb7455 2230
bb192ed9 2231 if (!__cmpxchg_double_slab(s, slab,
2cfb7455 2232 freelist, counters,
02d7633f 2233 new.freelist, new.counters,
7ced3719 2234 "acquire_slab"))
7ced3719 2235 return NULL;
2cfb7455 2236
bb192ed9 2237 remove_partial(n, slab);
7ced3719 2238 WARN_ON(!freelist);
49e22585 2239 return freelist;
81819f0f
CL
2240}
2241
e0a043aa 2242#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2243static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2244#else
bb192ed9 2245static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2246 int drain) { }
2247#endif
01b34d16 2248static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2249
81819f0f 2250/*
672bba3a 2251 * Try to allocate a partial slab from a specific node.
81819f0f 2252 */
8ba00bb6 2253static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
6edf2576 2254 struct partial_context *pc)
81819f0f 2255{
bb192ed9 2256 struct slab *slab, *slab2;
49e22585 2257 void *object = NULL;
4b1f449d 2258 unsigned long flags;
bb192ed9 2259 unsigned int partial_slabs = 0;
81819f0f
CL
2260
2261 /*
2262 * Racy check. If we mistakenly see no partial slabs then we
2263 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2264 * partial slab and there is none available then get_partial()
672bba3a 2265 * will return NULL.
81819f0f
CL
2266 */
2267 if (!n || !n->nr_partial)
2268 return NULL;
2269
4b1f449d 2270 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2271 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
8ba00bb6 2272 void *t;
49e22585 2273
6edf2576 2274 if (!pfmemalloc_match(slab, pc->flags))
8ba00bb6
JK
2275 continue;
2276
0af8489b 2277 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
6edf2576
FT
2278 object = alloc_single_from_partial(s, n, slab,
2279 pc->orig_size);
c7323a5a
VB
2280 if (object)
2281 break;
2282 continue;
2283 }
2284
bb192ed9 2285 t = acquire_slab(s, n, slab, object == NULL);
49e22585 2286 if (!t)
9b1ea29b 2287 break;
49e22585 2288
12d79634 2289 if (!object) {
6edf2576 2290 *pc->slab = slab;
49e22585 2291 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2292 object = t;
49e22585 2293 } else {
bb192ed9 2294 put_cpu_partial(s, slab, 0);
8028dcea 2295 stat(s, CPU_PARTIAL_NODE);
bb192ed9 2296 partial_slabs++;
49e22585 2297 }
b47291ef 2298#ifdef CONFIG_SLUB_CPU_PARTIAL
345c905d 2299 if (!kmem_cache_has_cpu_partial(s)
bb192ed9 2300 || partial_slabs > s->cpu_partial_slabs / 2)
49e22585 2301 break;
b47291ef
VB
2302#else
2303 break;
2304#endif
49e22585 2305
497b66f2 2306 }
4b1f449d 2307 spin_unlock_irqrestore(&n->list_lock, flags);
497b66f2 2308 return object;
81819f0f
CL
2309}
2310
2311/*
c2092c12 2312 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2313 */
6edf2576 2314static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
81819f0f
CL
2315{
2316#ifdef CONFIG_NUMA
2317 struct zonelist *zonelist;
dd1a239f 2318 struct zoneref *z;
54a6eb5c 2319 struct zone *zone;
6edf2576 2320 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
497b66f2 2321 void *object;
cc9a6c87 2322 unsigned int cpuset_mems_cookie;
81819f0f
CL
2323
2324 /*
672bba3a
CL
2325 * The defrag ratio allows a configuration of the tradeoffs between
2326 * inter node defragmentation and node local allocations. A lower
2327 * defrag_ratio increases the tendency to do local allocations
2328 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2329 *
672bba3a
CL
2330 * If the defrag_ratio is set to 0 then kmalloc() always
2331 * returns node local objects. If the ratio is higher then kmalloc()
2332 * may return off node objects because partial slabs are obtained
2333 * from other nodes and filled up.
81819f0f 2334 *
43efd3ea
LP
2335 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2336 * (which makes defrag_ratio = 1000) then every (well almost)
2337 * allocation will first attempt to defrag slab caches on other nodes.
2338 * This means scanning over all nodes to look for partial slabs which
2339 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2340 * with available objects.
81819f0f 2341 */
9824601e
CL
2342 if (!s->remote_node_defrag_ratio ||
2343 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2344 return NULL;
2345
cc9a6c87 2346 do {
d26914d1 2347 cpuset_mems_cookie = read_mems_allowed_begin();
6edf2576 2348 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
97a225e6 2349 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2350 struct kmem_cache_node *n;
2351
2352 n = get_node(s, zone_to_nid(zone));
2353
6edf2576 2354 if (n && cpuset_zone_allowed(zone, pc->flags) &&
cc9a6c87 2355 n->nr_partial > s->min_partial) {
6edf2576 2356 object = get_partial_node(s, n, pc);
cc9a6c87
MG
2357 if (object) {
2358 /*
d26914d1
MG
2359 * Don't check read_mems_allowed_retry()
2360 * here - if mems_allowed was updated in
2361 * parallel, that was a harmless race
2362 * between allocation and the cpuset
2363 * update
cc9a6c87 2364 */
cc9a6c87
MG
2365 return object;
2366 }
c0ff7453 2367 }
81819f0f 2368 }
d26914d1 2369 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2370#endif /* CONFIG_NUMA */
81819f0f
CL
2371 return NULL;
2372}
2373
2374/*
c2092c12 2375 * Get a partial slab, lock it and return it.
81819f0f 2376 */
6edf2576 2377static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
81819f0f 2378{
497b66f2 2379 void *object;
a561ce00
JK
2380 int searchnode = node;
2381
2382 if (node == NUMA_NO_NODE)
2383 searchnode = numa_mem_id();
81819f0f 2384
6edf2576 2385 object = get_partial_node(s, get_node(s, searchnode), pc);
497b66f2
CL
2386 if (object || node != NUMA_NO_NODE)
2387 return object;
81819f0f 2388
6edf2576 2389 return get_any_partial(s, pc);
81819f0f
CL
2390}
2391
0af8489b
VB
2392#ifndef CONFIG_SLUB_TINY
2393
923717cb 2394#ifdef CONFIG_PREEMPTION
8a5ec0ba 2395/*
0d645ed1 2396 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2397 * during cmpxchg. The transactions start with the cpu number and are then
2398 * incremented by CONFIG_NR_CPUS.
2399 */
2400#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2401#else
2402/*
2403 * No preemption supported therefore also no need to check for
2404 * different cpus.
2405 */
2406#define TID_STEP 1
0af8489b 2407#endif /* CONFIG_PREEMPTION */
8a5ec0ba
CL
2408
2409static inline unsigned long next_tid(unsigned long tid)
2410{
2411 return tid + TID_STEP;
2412}
2413
9d5f0be0 2414#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2415static inline unsigned int tid_to_cpu(unsigned long tid)
2416{
2417 return tid % TID_STEP;
2418}
2419
2420static inline unsigned long tid_to_event(unsigned long tid)
2421{
2422 return tid / TID_STEP;
2423}
9d5f0be0 2424#endif
8a5ec0ba
CL
2425
2426static inline unsigned int init_tid(int cpu)
2427{
2428 return cpu;
2429}
2430
2431static inline void note_cmpxchg_failure(const char *n,
2432 const struct kmem_cache *s, unsigned long tid)
2433{
2434#ifdef SLUB_DEBUG_CMPXCHG
2435 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2436
f9f58285 2437 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2438
923717cb 2439#ifdef CONFIG_PREEMPTION
8a5ec0ba 2440 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2441 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2442 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2443 else
2444#endif
2445 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2446 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2447 tid_to_event(tid), tid_to_event(actual_tid));
2448 else
f9f58285 2449 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2450 actual_tid, tid, next_tid(tid));
2451#endif
4fdccdfb 2452 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2453}
2454
788e1aad 2455static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2456{
8a5ec0ba 2457 int cpu;
bd0e7491 2458 struct kmem_cache_cpu *c;
8a5ec0ba 2459
bd0e7491
VB
2460 for_each_possible_cpu(cpu) {
2461 c = per_cpu_ptr(s->cpu_slab, cpu);
2462 local_lock_init(&c->lock);
2463 c->tid = init_tid(cpu);
2464 }
8a5ec0ba 2465}
2cfb7455 2466
81819f0f 2467/*
c2092c12 2468 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2469 * unfreezes the slabs and puts it on the proper list.
2470 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2471 * by the caller.
81819f0f 2472 */
bb192ed9 2473static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2474 void *freelist)
81819f0f 2475{
a8e53869 2476 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
bb192ed9 2477 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0
HY
2478 int free_delta = 0;
2479 enum slab_modes mode = M_NONE;
d930ff03 2480 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2481 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2482 unsigned long flags = 0;
bb192ed9
VB
2483 struct slab new;
2484 struct slab old;
2cfb7455 2485
bb192ed9 2486 if (slab->freelist) {
84e554e6 2487 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2488 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2489 }
2490
894b8788 2491 /*
d930ff03
VB
2492 * Stage one: Count the objects on cpu's freelist as free_delta and
2493 * remember the last object in freelist_tail for later splicing.
2cfb7455 2494 */
d930ff03
VB
2495 freelist_tail = NULL;
2496 freelist_iter = freelist;
2497 while (freelist_iter) {
2498 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2499
52f23478
DZ
2500 /*
2501 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2502 * 'freelist_iter' is already corrupted. So isolate all objects
2503 * starting at 'freelist_iter' by skipping them.
52f23478 2504 */
bb192ed9 2505 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2506 break;
2507
d930ff03
VB
2508 freelist_tail = freelist_iter;
2509 free_delta++;
2cfb7455 2510
d930ff03 2511 freelist_iter = nextfree;
2cfb7455
CL
2512 }
2513
894b8788 2514 /*
c2092c12
VB
2515 * Stage two: Unfreeze the slab while splicing the per-cpu
2516 * freelist to the head of slab's freelist.
d930ff03 2517 *
c2092c12 2518 * Ensure that the slab is unfrozen while the list presence
d930ff03 2519 * reflects the actual number of objects during unfreeze.
2cfb7455 2520 *
6d3a16d0
HY
2521 * We first perform cmpxchg holding lock and insert to list
2522 * when it succeed. If there is mismatch then the slab is not
2523 * unfrozen and number of objects in the slab may have changed.
2524 * Then release lock and retry cmpxchg again.
894b8788 2525 */
2cfb7455 2526redo:
894b8788 2527
bb192ed9
VB
2528 old.freelist = READ_ONCE(slab->freelist);
2529 old.counters = READ_ONCE(slab->counters);
a0132ac0 2530 VM_BUG_ON(!old.frozen);
7c2e132c 2531
2cfb7455
CL
2532 /* Determine target state of the slab */
2533 new.counters = old.counters;
d930ff03
VB
2534 if (freelist_tail) {
2535 new.inuse -= free_delta;
2536 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2537 new.freelist = freelist;
2538 } else
2539 new.freelist = old.freelist;
2540
2541 new.frozen = 0;
2542
6d3a16d0
HY
2543 if (!new.inuse && n->nr_partial >= s->min_partial) {
2544 mode = M_FREE;
2545 } else if (new.freelist) {
2546 mode = M_PARTIAL;
2547 /*
2548 * Taking the spinlock removes the possibility that
2549 * acquire_slab() will see a slab that is frozen
2550 */
2551 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455 2552 } else {
6d3a16d0 2553 mode = M_FULL_NOLIST;
2cfb7455
CL
2554 }
2555
2cfb7455 2556
bb192ed9 2557 if (!cmpxchg_double_slab(s, slab,
2cfb7455
CL
2558 old.freelist, old.counters,
2559 new.freelist, new.counters,
6d3a16d0 2560 "unfreezing slab")) {
a8e53869 2561 if (mode == M_PARTIAL)
6d3a16d0 2562 spin_unlock_irqrestore(&n->list_lock, flags);
2cfb7455 2563 goto redo;
6d3a16d0 2564 }
2cfb7455 2565
2cfb7455 2566
6d3a16d0
HY
2567 if (mode == M_PARTIAL) {
2568 add_partial(n, slab, tail);
2569 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 2570 stat(s, tail);
6d3a16d0 2571 } else if (mode == M_FREE) {
2cfb7455 2572 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2573 discard_slab(s, slab);
2cfb7455 2574 stat(s, FREE_SLAB);
6d3a16d0
HY
2575 } else if (mode == M_FULL_NOLIST) {
2576 stat(s, DEACTIVATE_FULL);
894b8788 2577 }
81819f0f
CL
2578}
2579
345c905d 2580#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2581static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 2582{
43d77867 2583 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 2584 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 2585 unsigned long flags = 0;
49e22585 2586
bb192ed9
VB
2587 while (partial_slab) {
2588 struct slab new;
2589 struct slab old;
49e22585 2590
bb192ed9
VB
2591 slab = partial_slab;
2592 partial_slab = slab->next;
43d77867 2593
bb192ed9 2594 n2 = get_node(s, slab_nid(slab));
43d77867
JK
2595 if (n != n2) {
2596 if (n)
7cf9f3ba 2597 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2598
2599 n = n2;
7cf9f3ba 2600 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2601 }
49e22585
CL
2602
2603 do {
2604
bb192ed9
VB
2605 old.freelist = slab->freelist;
2606 old.counters = slab->counters;
a0132ac0 2607 VM_BUG_ON(!old.frozen);
49e22585
CL
2608
2609 new.counters = old.counters;
2610 new.freelist = old.freelist;
2611
2612 new.frozen = 0;
2613
bb192ed9 2614 } while (!__cmpxchg_double_slab(s, slab,
49e22585
CL
2615 old.freelist, old.counters,
2616 new.freelist, new.counters,
2617 "unfreezing slab"));
2618
8a5b20ae 2619 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
2620 slab->next = slab_to_discard;
2621 slab_to_discard = slab;
43d77867 2622 } else {
bb192ed9 2623 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 2624 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2625 }
2626 }
2627
2628 if (n)
7cf9f3ba 2629 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2630
bb192ed9
VB
2631 while (slab_to_discard) {
2632 slab = slab_to_discard;
2633 slab_to_discard = slab_to_discard->next;
9ada1934
SL
2634
2635 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2636 discard_slab(s, slab);
9ada1934
SL
2637 stat(s, FREE_SLAB);
2638 }
fc1455f4 2639}
f3ab8b6b 2640
fc1455f4
VB
2641/*
2642 * Unfreeze all the cpu partial slabs.
2643 */
2644static void unfreeze_partials(struct kmem_cache *s)
2645{
bb192ed9 2646 struct slab *partial_slab;
fc1455f4
VB
2647 unsigned long flags;
2648
bd0e7491 2649 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2650 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 2651 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 2652 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 2653
bb192ed9
VB
2654 if (partial_slab)
2655 __unfreeze_partials(s, partial_slab);
fc1455f4
VB
2656}
2657
2658static void unfreeze_partials_cpu(struct kmem_cache *s,
2659 struct kmem_cache_cpu *c)
2660{
bb192ed9 2661 struct slab *partial_slab;
fc1455f4 2662
bb192ed9 2663 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
2664 c->partial = NULL;
2665
bb192ed9
VB
2666 if (partial_slab)
2667 __unfreeze_partials(s, partial_slab);
49e22585
CL
2668}
2669
2670/*
c2092c12
VB
2671 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2672 * partial slab slot if available.
49e22585
CL
2673 *
2674 * If we did not find a slot then simply move all the partials to the
2675 * per node partial list.
2676 */
bb192ed9 2677static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 2678{
bb192ed9
VB
2679 struct slab *oldslab;
2680 struct slab *slab_to_unfreeze = NULL;
e0a043aa 2681 unsigned long flags;
bb192ed9 2682 int slabs = 0;
49e22585 2683
bd0e7491 2684 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 2685
bb192ed9 2686 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 2687
bb192ed9
VB
2688 if (oldslab) {
2689 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
2690 /*
2691 * Partial array is full. Move the existing set to the
2692 * per node partial list. Postpone the actual unfreezing
2693 * outside of the critical section.
2694 */
bb192ed9
VB
2695 slab_to_unfreeze = oldslab;
2696 oldslab = NULL;
e0a043aa 2697 } else {
bb192ed9 2698 slabs = oldslab->slabs;
49e22585 2699 }
e0a043aa 2700 }
49e22585 2701
bb192ed9 2702 slabs++;
49e22585 2703
bb192ed9
VB
2704 slab->slabs = slabs;
2705 slab->next = oldslab;
49e22585 2706
bb192ed9 2707 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 2708
bd0e7491 2709 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 2710
bb192ed9
VB
2711 if (slab_to_unfreeze) {
2712 __unfreeze_partials(s, slab_to_unfreeze);
e0a043aa
VB
2713 stat(s, CPU_PARTIAL_DRAIN);
2714 }
49e22585
CL
2715}
2716
e0a043aa
VB
2717#else /* CONFIG_SLUB_CPU_PARTIAL */
2718
2719static inline void unfreeze_partials(struct kmem_cache *s) { }
2720static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2721 struct kmem_cache_cpu *c) { }
2722
2723#endif /* CONFIG_SLUB_CPU_PARTIAL */
2724
dfb4f096 2725static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2726{
5a836bf6 2727 unsigned long flags;
bb192ed9 2728 struct slab *slab;
5a836bf6
SAS
2729 void *freelist;
2730
bd0e7491 2731 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 2732
bb192ed9 2733 slab = c->slab;
5a836bf6 2734 freelist = c->freelist;
c17dda40 2735
bb192ed9 2736 c->slab = NULL;
a019d201 2737 c->freelist = NULL;
c17dda40 2738 c->tid = next_tid(c->tid);
a019d201 2739
bd0e7491 2740 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 2741
bb192ed9
VB
2742 if (slab) {
2743 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
2744 stat(s, CPUSLAB_FLUSH);
2745 }
81819f0f
CL
2746}
2747
0c710013 2748static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2749{
9dfc6e68 2750 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 2751 void *freelist = c->freelist;
bb192ed9 2752 struct slab *slab = c->slab;
81819f0f 2753
bb192ed9 2754 c->slab = NULL;
08beb547
VB
2755 c->freelist = NULL;
2756 c->tid = next_tid(c->tid);
2757
bb192ed9
VB
2758 if (slab) {
2759 deactivate_slab(s, slab, freelist);
08beb547
VB
2760 stat(s, CPUSLAB_FLUSH);
2761 }
49e22585 2762
fc1455f4 2763 unfreeze_partials_cpu(s, c);
81819f0f
CL
2764}
2765
5a836bf6
SAS
2766struct slub_flush_work {
2767 struct work_struct work;
2768 struct kmem_cache *s;
2769 bool skip;
2770};
2771
fc1455f4
VB
2772/*
2773 * Flush cpu slab.
2774 *
5a836bf6 2775 * Called from CPU work handler with migration disabled.
fc1455f4 2776 */
5a836bf6 2777static void flush_cpu_slab(struct work_struct *w)
81819f0f 2778{
5a836bf6
SAS
2779 struct kmem_cache *s;
2780 struct kmem_cache_cpu *c;
2781 struct slub_flush_work *sfw;
2782
2783 sfw = container_of(w, struct slub_flush_work, work);
2784
2785 s = sfw->s;
2786 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 2787
bb192ed9 2788 if (c->slab)
fc1455f4 2789 flush_slab(s, c);
81819f0f 2790
fc1455f4 2791 unfreeze_partials(s);
81819f0f
CL
2792}
2793
5a836bf6 2794static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 2795{
a8364d55
GBY
2796 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2797
bb192ed9 2798 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
2799}
2800
5a836bf6
SAS
2801static DEFINE_MUTEX(flush_lock);
2802static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2803
2804static void flush_all_cpus_locked(struct kmem_cache *s)
2805{
2806 struct slub_flush_work *sfw;
2807 unsigned int cpu;
2808
2809 lockdep_assert_cpus_held();
2810 mutex_lock(&flush_lock);
2811
2812 for_each_online_cpu(cpu) {
2813 sfw = &per_cpu(slub_flush, cpu);
2814 if (!has_cpu_slab(cpu, s)) {
2815 sfw->skip = true;
2816 continue;
2817 }
2818 INIT_WORK(&sfw->work, flush_cpu_slab);
2819 sfw->skip = false;
2820 sfw->s = s;
e45cc288 2821 queue_work_on(cpu, flushwq, &sfw->work);
5a836bf6
SAS
2822 }
2823
2824 for_each_online_cpu(cpu) {
2825 sfw = &per_cpu(slub_flush, cpu);
2826 if (sfw->skip)
2827 continue;
2828 flush_work(&sfw->work);
2829 }
2830
2831 mutex_unlock(&flush_lock);
2832}
2833
81819f0f
CL
2834static void flush_all(struct kmem_cache *s)
2835{
5a836bf6
SAS
2836 cpus_read_lock();
2837 flush_all_cpus_locked(s);
2838 cpus_read_unlock();
81819f0f
CL
2839}
2840
a96a87bf
SAS
2841/*
2842 * Use the cpu notifier to insure that the cpu slabs are flushed when
2843 * necessary.
2844 */
2845static int slub_cpu_dead(unsigned int cpu)
2846{
2847 struct kmem_cache *s;
a96a87bf
SAS
2848
2849 mutex_lock(&slab_mutex);
0e7ac738 2850 list_for_each_entry(s, &slab_caches, list)
a96a87bf 2851 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
2852 mutex_unlock(&slab_mutex);
2853 return 0;
2854}
2855
0af8489b
VB
2856#else /* CONFIG_SLUB_TINY */
2857static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2858static inline void flush_all(struct kmem_cache *s) { }
2859static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2860static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2861#endif /* CONFIG_SLUB_TINY */
2862
dfb4f096
CL
2863/*
2864 * Check if the objects in a per cpu structure fit numa
2865 * locality expectations.
2866 */
bb192ed9 2867static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
2868{
2869#ifdef CONFIG_NUMA
bb192ed9 2870 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
2871 return 0;
2872#endif
2873 return 1;
2874}
2875
9a02d699 2876#ifdef CONFIG_SLUB_DEBUG
bb192ed9 2877static int count_free(struct slab *slab)
781b2ba6 2878{
bb192ed9 2879 return slab->objects - slab->inuse;
781b2ba6
PE
2880}
2881
9a02d699
DR
2882static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2883{
2884 return atomic_long_read(&n->total_objects);
2885}
a579b056
VB
2886
2887/* Supports checking bulk free of a constructed freelist */
fa9b88e4
VB
2888static inline bool free_debug_processing(struct kmem_cache *s,
2889 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2890 unsigned long addr, depot_stack_handle_t handle)
a579b056 2891{
fa9b88e4 2892 bool checks_ok = false;
a579b056
VB
2893 void *object = head;
2894 int cnt = 0;
a579b056
VB
2895
2896 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2897 if (!check_slab(s, slab))
2898 goto out;
2899 }
2900
fa9b88e4 2901 if (slab->inuse < *bulk_cnt) {
c7323a5a 2902 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
fa9b88e4 2903 slab->inuse, *bulk_cnt);
c7323a5a
VB
2904 goto out;
2905 }
2906
a579b056 2907next_object:
c7323a5a 2908
fa9b88e4 2909 if (++cnt > *bulk_cnt)
c7323a5a 2910 goto out_cnt;
a579b056
VB
2911
2912 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2913 if (!free_consistency_checks(s, slab, object, addr))
2914 goto out;
2915 }
2916
2917 if (s->flags & SLAB_STORE_USER)
2918 set_track_update(s, object, TRACK_FREE, addr, handle);
2919 trace(s, slab, object, 0);
2920 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2921 init_object(s, object, SLUB_RED_INACTIVE);
2922
2923 /* Reached end of constructed freelist yet? */
2924 if (object != tail) {
2925 object = get_freepointer(s, object);
2926 goto next_object;
2927 }
c7323a5a 2928 checks_ok = true;
a579b056 2929
c7323a5a 2930out_cnt:
fa9b88e4 2931 if (cnt != *bulk_cnt) {
c7323a5a 2932 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
fa9b88e4
VB
2933 *bulk_cnt, cnt);
2934 *bulk_cnt = cnt;
c7323a5a
VB
2935 }
2936
fa9b88e4 2937out:
c7323a5a
VB
2938
2939 if (!checks_ok)
a579b056 2940 slab_fix(s, "Object at 0x%p not freed", object);
c7323a5a 2941
fa9b88e4 2942 return checks_ok;
a579b056 2943}
9a02d699
DR
2944#endif /* CONFIG_SLUB_DEBUG */
2945
b1a413a3 2946#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
781b2ba6 2947static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 2948 int (*get_count)(struct slab *))
781b2ba6
PE
2949{
2950 unsigned long flags;
2951 unsigned long x = 0;
bb192ed9 2952 struct slab *slab;
781b2ba6
PE
2953
2954 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
2955 list_for_each_entry(slab, &n->partial, slab_list)
2956 x += get_count(slab);
781b2ba6
PE
2957 spin_unlock_irqrestore(&n->list_lock, flags);
2958 return x;
2959}
b1a413a3 2960#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
26c02cf0 2961
56d5a2b9 2962#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2963static noinline void
2964slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2965{
9a02d699
DR
2966 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2967 DEFAULT_RATELIMIT_BURST);
781b2ba6 2968 int node;
fa45dc25 2969 struct kmem_cache_node *n;
781b2ba6 2970
9a02d699
DR
2971 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2972 return;
2973
5b3810e5
VB
2974 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2975 nid, gfpflags, &gfpflags);
19af27af 2976 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2977 s->name, s->object_size, s->size, oo_order(s->oo),
2978 oo_order(s->min));
781b2ba6 2979
3b0efdfa 2980 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2981 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2982 s->name);
fa5ec8a1 2983
fa45dc25 2984 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2985 unsigned long nr_slabs;
2986 unsigned long nr_objs;
2987 unsigned long nr_free;
2988
26c02cf0
AB
2989 nr_free = count_partial(n, count_free);
2990 nr_slabs = node_nr_slabs(n);
2991 nr_objs = node_nr_objs(n);
781b2ba6 2992
f9f58285 2993 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2994 node, nr_slabs, nr_objs, nr_free);
2995 }
2996}
56d5a2b9
VB
2997#else /* CONFIG_SLUB_DEBUG */
2998static inline void
2999slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3000#endif
781b2ba6 3001
01b34d16 3002static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 3003{
01b34d16 3004 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
3005 return gfp_pfmemalloc_allowed(gfpflags);
3006
3007 return true;
3008}
3009
0af8489b 3010#ifndef CONFIG_SLUB_TINY
213eeb9f 3011/*
c2092c12
VB
3012 * Check the slab->freelist and either transfer the freelist to the
3013 * per cpu freelist or deactivate the slab.
213eeb9f 3014 *
c2092c12 3015 * The slab is still frozen if the return value is not NULL.
213eeb9f 3016 *
c2092c12 3017 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 3018 */
bb192ed9 3019static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 3020{
bb192ed9 3021 struct slab new;
213eeb9f
CL
3022 unsigned long counters;
3023 void *freelist;
3024
bd0e7491
VB
3025 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3026
213eeb9f 3027 do {
bb192ed9
VB
3028 freelist = slab->freelist;
3029 counters = slab->counters;
6faa6833 3030
213eeb9f 3031 new.counters = counters;
a0132ac0 3032 VM_BUG_ON(!new.frozen);
213eeb9f 3033
bb192ed9 3034 new.inuse = slab->objects;
213eeb9f
CL
3035 new.frozen = freelist != NULL;
3036
bb192ed9 3037 } while (!__cmpxchg_double_slab(s, slab,
213eeb9f
CL
3038 freelist, counters,
3039 NULL, new.counters,
3040 "get_freelist"));
3041
3042 return freelist;
3043}
3044
81819f0f 3045/*
894b8788
CL
3046 * Slow path. The lockless freelist is empty or we need to perform
3047 * debugging duties.
3048 *
894b8788
CL
3049 * Processing is still very fast if new objects have been freed to the
3050 * regular freelist. In that case we simply take over the regular freelist
3051 * as the lockless freelist and zap the regular freelist.
81819f0f 3052 *
894b8788
CL
3053 * If that is not working then we fall back to the partial lists. We take the
3054 * first element of the freelist as the object to allocate now and move the
3055 * rest of the freelist to the lockless freelist.
81819f0f 3056 *
894b8788 3057 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
3058 * we need to allocate a new slab. This is the slowest path since it involves
3059 * a call to the page allocator and the setup of a new slab.
a380a3c7 3060 *
e500059b 3061 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 3062 * already disabled (which is the case for bulk allocation).
81819f0f 3063 */
a380a3c7 3064static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3065 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
81819f0f 3066{
6faa6833 3067 void *freelist;
bb192ed9 3068 struct slab *slab;
e500059b 3069 unsigned long flags;
6edf2576 3070 struct partial_context pc;
81819f0f 3071
9f986d99
AW
3072 stat(s, ALLOC_SLOWPATH);
3073
c2092c12 3074reread_slab:
0b303fb4 3075
bb192ed9
VB
3076 slab = READ_ONCE(c->slab);
3077 if (!slab) {
0715e6c5
VB
3078 /*
3079 * if the node is not online or has no normal memory, just
3080 * ignore the node constraint
3081 */
3082 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 3083 !node_isset(node, slab_nodes)))
0715e6c5 3084 node = NUMA_NO_NODE;
81819f0f 3085 goto new_slab;
0715e6c5 3086 }
49e22585 3087redo:
6faa6833 3088
bb192ed9 3089 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
3090 /*
3091 * same as above but node_match() being false already
3092 * implies node != NUMA_NO_NODE
3093 */
7e1fa93d 3094 if (!node_isset(node, slab_nodes)) {
0715e6c5 3095 node = NUMA_NO_NODE;
0715e6c5 3096 } else {
a561ce00 3097 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 3098 goto deactivate_slab;
a561ce00 3099 }
fc59c053 3100 }
6446faa2 3101
072bb0aa
MG
3102 /*
3103 * By rights, we should be searching for a slab page that was
3104 * PFMEMALLOC but right now, we are losing the pfmemalloc
3105 * information when the page leaves the per-cpu allocator
3106 */
bb192ed9 3107 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 3108 goto deactivate_slab;
072bb0aa 3109
c2092c12 3110 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 3111 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3112 if (unlikely(slab != c->slab)) {
bd0e7491 3113 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3114 goto reread_slab;
0b303fb4 3115 }
6faa6833
CL
3116 freelist = c->freelist;
3117 if (freelist)
73736e03 3118 goto load_freelist;
03e404af 3119
bb192ed9 3120 freelist = get_freelist(s, slab);
6446faa2 3121
6faa6833 3122 if (!freelist) {
bb192ed9 3123 c->slab = NULL;
eeaa345e 3124 c->tid = next_tid(c->tid);
bd0e7491 3125 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 3126 stat(s, DEACTIVATE_BYPASS);
fc59c053 3127 goto new_slab;
03e404af 3128 }
6446faa2 3129
84e554e6 3130 stat(s, ALLOC_REFILL);
6446faa2 3131
894b8788 3132load_freelist:
0b303fb4 3133
bd0e7491 3134 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 3135
507effea
CL
3136 /*
3137 * freelist is pointing to the list of objects to be used.
c2092c12
VB
3138 * slab is pointing to the slab from which the objects are obtained.
3139 * That slab must be frozen for per cpu allocations to work.
507effea 3140 */
bb192ed9 3141 VM_BUG_ON(!c->slab->frozen);
6faa6833 3142 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 3143 c->tid = next_tid(c->tid);
bd0e7491 3144 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 3145 return freelist;
81819f0f 3146
0b303fb4
VB
3147deactivate_slab:
3148
bd0e7491 3149 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3150 if (slab != c->slab) {
bd0e7491 3151 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3152 goto reread_slab;
0b303fb4 3153 }
a019d201 3154 freelist = c->freelist;
bb192ed9 3155 c->slab = NULL;
a019d201 3156 c->freelist = NULL;
eeaa345e 3157 c->tid = next_tid(c->tid);
bd0e7491 3158 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 3159 deactivate_slab(s, slab, freelist);
0b303fb4 3160
81819f0f 3161new_slab:
2cfb7455 3162
a93cf07b 3163 if (slub_percpu_partial(c)) {
bd0e7491 3164 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3165 if (unlikely(c->slab)) {
bd0e7491 3166 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3167 goto reread_slab;
fa417ab7 3168 }
4b1f449d 3169 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3170 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3171 /* we were preempted and partial list got empty */
3172 goto new_objects;
4b1f449d 3173 }
fa417ab7 3174
bb192ed9
VB
3175 slab = c->slab = slub_percpu_partial(c);
3176 slub_set_percpu_partial(c, slab);
bd0e7491 3177 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
49e22585 3178 stat(s, CPU_PARTIAL_ALLOC);
49e22585 3179 goto redo;
81819f0f
CL
3180 }
3181
fa417ab7
VB
3182new_objects:
3183
6edf2576
FT
3184 pc.flags = gfpflags;
3185 pc.slab = &slab;
3186 pc.orig_size = orig_size;
3187 freelist = get_partial(s, node, &pc);
3f2b77e3 3188 if (freelist)
c2092c12 3189 goto check_new_slab;
2a904905 3190
25c00c50 3191 slub_put_cpu_ptr(s->cpu_slab);
bb192ed9 3192 slab = new_slab(s, gfpflags, node);
25c00c50 3193 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3194
bb192ed9 3195 if (unlikely(!slab)) {
9a02d699 3196 slab_out_of_memory(s, gfpflags, node);
f4697436 3197 return NULL;
81819f0f 3198 }
2cfb7455 3199
c7323a5a
VB
3200 stat(s, ALLOC_SLAB);
3201
3202 if (kmem_cache_debug(s)) {
6edf2576 3203 freelist = alloc_single_from_new_slab(s, slab, orig_size);
c7323a5a
VB
3204
3205 if (unlikely(!freelist))
3206 goto new_objects;
3207
3208 if (s->flags & SLAB_STORE_USER)
3209 set_track(s, freelist, TRACK_ALLOC, addr);
3210
3211 return freelist;
3212 }
3213
53a0de06 3214 /*
c2092c12 3215 * No other reference to the slab yet so we can
53a0de06
VB
3216 * muck around with it freely without cmpxchg
3217 */
bb192ed9
VB
3218 freelist = slab->freelist;
3219 slab->freelist = NULL;
c7323a5a
VB
3220 slab->inuse = slab->objects;
3221 slab->frozen = 1;
53a0de06 3222
c7323a5a 3223 inc_slabs_node(s, slab_nid(slab), slab->objects);
53a0de06 3224
c2092c12 3225check_new_slab:
2cfb7455 3226
1572df7c 3227 if (kmem_cache_debug(s)) {
c7323a5a
VB
3228 /*
3229 * For debug caches here we had to go through
3230 * alloc_single_from_partial() so just store the tracking info
3231 * and return the object
3232 */
3233 if (s->flags & SLAB_STORE_USER)
3234 set_track(s, freelist, TRACK_ALLOC, addr);
6edf2576 3235
c7323a5a 3236 return freelist;
1572df7c
VB
3237 }
3238
c7323a5a 3239 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
1572df7c
VB
3240 /*
3241 * For !pfmemalloc_match() case we don't load freelist so that
3242 * we don't make further mismatched allocations easier.
3243 */
c7323a5a
VB
3244 deactivate_slab(s, slab, get_freepointer(s, freelist));
3245 return freelist;
3246 }
1572df7c 3247
c2092c12 3248retry_load_slab:
cfdf836e 3249
bd0e7491 3250 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3251 if (unlikely(c->slab)) {
cfdf836e 3252 void *flush_freelist = c->freelist;
bb192ed9 3253 struct slab *flush_slab = c->slab;
cfdf836e 3254
bb192ed9 3255 c->slab = NULL;
cfdf836e
VB
3256 c->freelist = NULL;
3257 c->tid = next_tid(c->tid);
3258
bd0e7491 3259 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3260
bb192ed9 3261 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3262
3263 stat(s, CPUSLAB_FLUSH);
3264
c2092c12 3265 goto retry_load_slab;
cfdf836e 3266 }
bb192ed9 3267 c->slab = slab;
3f2b77e3 3268
1572df7c 3269 goto load_freelist;
894b8788
CL
3270}
3271
a380a3c7 3272/*
e500059b
VB
3273 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3274 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3275 * pointer.
a380a3c7
CL
3276 */
3277static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3278 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
a380a3c7
CL
3279{
3280 void *p;
a380a3c7 3281
e500059b 3282#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3283 /*
3284 * We may have been preempted and rescheduled on a different
e500059b 3285 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3286 * pointer.
3287 */
25c00c50 3288 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3289#endif
3290
6edf2576 3291 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
e500059b 3292#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3293 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3294#endif
a380a3c7
CL
3295 return p;
3296}
3297
56d5a2b9 3298static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3299 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3300{
dfb4f096 3301 struct kmem_cache_cpu *c;
bb192ed9 3302 struct slab *slab;
8a5ec0ba 3303 unsigned long tid;
56d5a2b9 3304 void *object;
b89fb5ef 3305
8a5ec0ba 3306redo:
8a5ec0ba
CL
3307 /*
3308 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3309 * enabled. We may switch back and forth between cpus while
3310 * reading from one cpu area. That does not matter as long
3311 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3312 *
9b4bc85a
VB
3313 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3314 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3315 * the tid. If we are preempted and switched to another cpu between the
3316 * two reads, it's OK as the two are still associated with the same cpu
3317 * and cmpxchg later will validate the cpu.
8a5ec0ba 3318 */
9b4bc85a
VB
3319 c = raw_cpu_ptr(s->cpu_slab);
3320 tid = READ_ONCE(c->tid);
9aabf810
JK
3321
3322 /*
3323 * Irqless object alloc/free algorithm used here depends on sequence
3324 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3325 * on c to guarantee that object and slab associated with previous tid
9aabf810 3326 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3327 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3328 * request will be failed. In this case, we will retry. So, no problem.
3329 */
3330 barrier();
8a5ec0ba 3331
8a5ec0ba
CL
3332 /*
3333 * The transaction ids are globally unique per cpu and per operation on
3334 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3335 * occurs on the right processor and that there was no operation on the
3336 * linked list in between.
3337 */
8a5ec0ba 3338
9dfc6e68 3339 object = c->freelist;
bb192ed9 3340 slab = c->slab;
1f04b07d
TG
3341
3342 if (!USE_LOCKLESS_FAST_PATH() ||
bb192ed9 3343 unlikely(!object || !slab || !node_match(slab, node))) {
6edf2576 3344 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
8eae1492 3345 } else {
0ad9500e
ED
3346 void *next_object = get_freepointer_safe(s, object);
3347
8a5ec0ba 3348 /*
25985edc 3349 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3350 * operation and if we are on the right processor.
3351 *
d0e0ac97
CG
3352 * The cmpxchg does the following atomically (without lock
3353 * semantics!)
8a5ec0ba
CL
3354 * 1. Relocate first pointer to the current per cpu area.
3355 * 2. Verify that tid and freelist have not been changed
3356 * 3. If they were not changed replace tid and freelist
3357 *
d0e0ac97
CG
3358 * Since this is without lock semantics the protection is only
3359 * against code executing on this cpu *not* from access by
3360 * other cpus.
8a5ec0ba 3361 */
933393f5 3362 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
3363 s->cpu_slab->freelist, s->cpu_slab->tid,
3364 object, tid,
0ad9500e 3365 next_object, next_tid(tid)))) {
8a5ec0ba
CL
3366
3367 note_cmpxchg_failure("slab_alloc", s, tid);
3368 goto redo;
3369 }
0ad9500e 3370 prefetch_freepointer(s, next_object);
84e554e6 3371 stat(s, ALLOC_FASTPATH);
894b8788 3372 }
0f181f9f 3373
56d5a2b9
VB
3374 return object;
3375}
0af8489b
VB
3376#else /* CONFIG_SLUB_TINY */
3377static void *__slab_alloc_node(struct kmem_cache *s,
3378 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3379{
3380 struct partial_context pc;
3381 struct slab *slab;
3382 void *object;
3383
3384 pc.flags = gfpflags;
3385 pc.slab = &slab;
3386 pc.orig_size = orig_size;
3387 object = get_partial(s, node, &pc);
3388
3389 if (object)
3390 return object;
3391
3392 slab = new_slab(s, gfpflags, node);
3393 if (unlikely(!slab)) {
3394 slab_out_of_memory(s, gfpflags, node);
3395 return NULL;
3396 }
3397
3398 object = alloc_single_from_new_slab(s, slab, orig_size);
3399
3400 return object;
3401}
3402#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
3403
3404/*
3405 * If the object has been wiped upon free, make sure it's fully initialized by
3406 * zeroing out freelist pointer.
3407 */
3408static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3409 void *obj)
3410{
3411 if (unlikely(slab_want_init_on_free(s)) && obj)
3412 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3413 0, sizeof(void *));
3414}
3415
3416/*
3417 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3418 * have the fastpath folded into their functions. So no function call
3419 * overhead for requests that can be satisfied on the fastpath.
3420 *
3421 * The fastpath works by first checking if the lockless freelist can be used.
3422 * If not then __slab_alloc is called for slow processing.
3423 *
3424 * Otherwise we can simply pick the next object from the lockless free list.
3425 */
be784ba8 3426static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
56d5a2b9
VB
3427 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3428{
3429 void *object;
3430 struct obj_cgroup *objcg = NULL;
3431 bool init = false;
3432
3433 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3434 if (!s)
3435 return NULL;
3436
3437 object = kfence_alloc(s, orig_size, gfpflags);
3438 if (unlikely(object))
3439 goto out;
3440
3441 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3442
ce5716c6 3443 maybe_wipe_obj_freeptr(s, object);
da844b78 3444 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3445
b89fb5ef 3446out:
9ce67395
FT
3447 /*
3448 * When init equals 'true', like for kzalloc() family, only
3449 * @orig_size bytes might be zeroed instead of s->object_size
3450 */
3451 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
5a896d9e 3452
894b8788 3453 return object;
81819f0f
CL
3454}
3455
be784ba8 3456static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
b89fb5ef 3457 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 3458{
88f2ef73 3459 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
3460}
3461
be784ba8 3462static __fastpath_inline
88f2ef73
MS
3463void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3464 gfp_t gfpflags)
81819f0f 3465{
88f2ef73 3466 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
5b882be4 3467
2c1d697f 3468 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
3469
3470 return ret;
81819f0f 3471}
88f2ef73
MS
3472
3473void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3474{
3475 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3476}
81819f0f
CL
3477EXPORT_SYMBOL(kmem_cache_alloc);
3478
88f2ef73
MS
3479void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3480 gfp_t gfpflags)
3481{
3482 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3483}
3484EXPORT_SYMBOL(kmem_cache_alloc_lru);
3485
ed4cd17e
HY
3486void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3487 int node, size_t orig_size,
3488 unsigned long caller)
4a92379b 3489{
ed4cd17e
HY
3490 return slab_alloc_node(s, NULL, gfpflags, node,
3491 caller, orig_size);
4a92379b 3492}
5b882be4 3493
81819f0f
CL
3494void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3495{
88f2ef73 3496 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3497
2c1d697f 3498 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5b882be4
EGM
3499
3500 return ret;
81819f0f
CL
3501}
3502EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3503
fa9b88e4
VB
3504static noinline void free_to_partial_list(
3505 struct kmem_cache *s, struct slab *slab,
3506 void *head, void *tail, int bulk_cnt,
3507 unsigned long addr)
3508{
3509 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3510 struct slab *slab_free = NULL;
3511 int cnt = bulk_cnt;
3512 unsigned long flags;
3513 depot_stack_handle_t handle = 0;
3514
3515 if (s->flags & SLAB_STORE_USER)
3516 handle = set_track_prepare();
3517
3518 spin_lock_irqsave(&n->list_lock, flags);
3519
3520 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3521 void *prior = slab->freelist;
3522
3523 /* Perform the actual freeing while we still hold the locks */
3524 slab->inuse -= cnt;
3525 set_freepointer(s, tail, prior);
3526 slab->freelist = head;
3527
3528 /*
3529 * If the slab is empty, and node's partial list is full,
3530 * it should be discarded anyway no matter it's on full or
3531 * partial list.
3532 */
3533 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3534 slab_free = slab;
3535
3536 if (!prior) {
3537 /* was on full list */
3538 remove_full(s, n, slab);
3539 if (!slab_free) {
3540 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3541 stat(s, FREE_ADD_PARTIAL);
3542 }
3543 } else if (slab_free) {
3544 remove_partial(n, slab);
3545 stat(s, FREE_REMOVE_PARTIAL);
3546 }
3547 }
3548
3549 if (slab_free) {
3550 /*
3551 * Update the counters while still holding n->list_lock to
3552 * prevent spurious validation warnings
3553 */
3554 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3555 }
3556
3557 spin_unlock_irqrestore(&n->list_lock, flags);
3558
3559 if (slab_free) {
3560 stat(s, FREE_SLAB);
3561 free_slab(s, slab_free);
3562 }
3563}
3564
81819f0f 3565/*
94e4d712 3566 * Slow path handling. This may still be called frequently since objects
894b8788 3567 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3568 *
894b8788 3569 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 3570 * lock and free the item. If there is no additional partial slab
894b8788 3571 * handling required then we can return immediately.
81819f0f 3572 */
bb192ed9 3573static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
3574 void *head, void *tail, int cnt,
3575 unsigned long addr)
3576
81819f0f
CL
3577{
3578 void *prior;
2cfb7455 3579 int was_frozen;
bb192ed9 3580 struct slab new;
2cfb7455
CL
3581 unsigned long counters;
3582 struct kmem_cache_node *n = NULL;
3f649ab7 3583 unsigned long flags;
81819f0f 3584
8a5ec0ba 3585 stat(s, FREE_SLOWPATH);
81819f0f 3586
b89fb5ef
AP
3587 if (kfence_free(head))
3588 return;
3589
0af8489b 3590 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
fa9b88e4 3591 free_to_partial_list(s, slab, head, tail, cnt, addr);
80f08c19 3592 return;
c7323a5a 3593 }
6446faa2 3594
2cfb7455 3595 do {
837d678d
JK
3596 if (unlikely(n)) {
3597 spin_unlock_irqrestore(&n->list_lock, flags);
3598 n = NULL;
3599 }
bb192ed9
VB
3600 prior = slab->freelist;
3601 counters = slab->counters;
81084651 3602 set_freepointer(s, tail, prior);
2cfb7455
CL
3603 new.counters = counters;
3604 was_frozen = new.frozen;
81084651 3605 new.inuse -= cnt;
837d678d 3606 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3607
c65c1877 3608 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3609
3610 /*
d0e0ac97
CG
3611 * Slab was on no list before and will be
3612 * partially empty
3613 * We can defer the list move and instead
3614 * freeze it.
49e22585
CL
3615 */
3616 new.frozen = 1;
3617
c65c1877 3618 } else { /* Needs to be taken off a list */
49e22585 3619
bb192ed9 3620 n = get_node(s, slab_nid(slab));
49e22585
CL
3621 /*
3622 * Speculatively acquire the list_lock.
3623 * If the cmpxchg does not succeed then we may
3624 * drop the list_lock without any processing.
3625 *
3626 * Otherwise the list_lock will synchronize with
3627 * other processors updating the list of slabs.
3628 */
3629 spin_lock_irqsave(&n->list_lock, flags);
3630
3631 }
2cfb7455 3632 }
81819f0f 3633
bb192ed9 3634 } while (!cmpxchg_double_slab(s, slab,
2cfb7455 3635 prior, counters,
81084651 3636 head, new.counters,
2cfb7455 3637 "__slab_free"));
81819f0f 3638
2cfb7455 3639 if (likely(!n)) {
49e22585 3640
c270cf30
AW
3641 if (likely(was_frozen)) {
3642 /*
3643 * The list lock was not taken therefore no list
3644 * activity can be necessary.
3645 */
3646 stat(s, FREE_FROZEN);
3647 } else if (new.frozen) {
3648 /*
c2092c12 3649 * If we just froze the slab then put it onto the
c270cf30
AW
3650 * per cpu partial list.
3651 */
bb192ed9 3652 put_cpu_partial(s, slab, 1);
8028dcea
AS
3653 stat(s, CPU_PARTIAL_FREE);
3654 }
c270cf30 3655
b455def2
L
3656 return;
3657 }
81819f0f 3658
8a5b20ae 3659 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3660 goto slab_empty;
3661
81819f0f 3662 /*
837d678d
JK
3663 * Objects left in the slab. If it was not on the partial list before
3664 * then add it.
81819f0f 3665 */
345c905d 3666 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9
VB
3667 remove_full(s, n, slab);
3668 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 3669 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3670 }
80f08c19 3671 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3672 return;
3673
3674slab_empty:
a973e9dd 3675 if (prior) {
81819f0f 3676 /*
6fbabb20 3677 * Slab on the partial list.
81819f0f 3678 */
bb192ed9 3679 remove_partial(n, slab);
84e554e6 3680 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3681 } else {
6fbabb20 3682 /* Slab must be on the full list */
bb192ed9 3683 remove_full(s, n, slab);
c65c1877 3684 }
2cfb7455 3685
80f08c19 3686 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3687 stat(s, FREE_SLAB);
bb192ed9 3688 discard_slab(s, slab);
81819f0f
CL
3689}
3690
0af8489b 3691#ifndef CONFIG_SLUB_TINY
894b8788
CL
3692/*
3693 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3694 * can perform fastpath freeing without additional function calls.
3695 *
3696 * The fastpath is only possible if we are freeing to the current cpu slab
3697 * of this processor. This typically the case if we have just allocated
3698 * the item before.
3699 *
3700 * If fastpath is not possible then fall back to __slab_free where we deal
3701 * with all sorts of special processing.
81084651
JDB
3702 *
3703 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 3704 * same slab) possible by specifying head and tail ptr, plus objects
81084651 3705 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3706 */
80a9201a 3707static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 3708 struct slab *slab, void *head, void *tail,
80a9201a 3709 int cnt, unsigned long addr)
894b8788 3710{
81084651 3711 void *tail_obj = tail ? : head;
dfb4f096 3712 struct kmem_cache_cpu *c;
8a5ec0ba 3713 unsigned long tid;
1f04b07d 3714 void **freelist;
964d4bd3 3715
8a5ec0ba
CL
3716redo:
3717 /*
3718 * Determine the currently cpus per cpu slab.
3719 * The cpu may change afterward. However that does not matter since
3720 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3721 * during the cmpxchg then the free will succeed.
8a5ec0ba 3722 */
9b4bc85a
VB
3723 c = raw_cpu_ptr(s->cpu_slab);
3724 tid = READ_ONCE(c->tid);
c016b0bd 3725
9aabf810
JK
3726 /* Same with comment on barrier() in slab_alloc_node() */
3727 barrier();
c016b0bd 3728
1f04b07d
TG
3729 if (unlikely(slab != c->slab)) {
3730 __slab_free(s, slab, head, tail_obj, cnt, addr);
3731 return;
3732 }
3733
3734 if (USE_LOCKLESS_FAST_PATH()) {
3735 freelist = READ_ONCE(c->freelist);
5076190d
LT
3736
3737 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3738
933393f5 3739 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3740 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3741 freelist, tid,
81084651 3742 head, next_tid(tid)))) {
8a5ec0ba
CL
3743
3744 note_cmpxchg_failure("slab_free", s, tid);
3745 goto redo;
3746 }
1f04b07d
TG
3747 } else {
3748 /* Update the free list under the local lock */
bd0e7491
VB
3749 local_lock(&s->cpu_slab->lock);
3750 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 3751 if (unlikely(slab != c->slab)) {
bd0e7491
VB
3752 local_unlock(&s->cpu_slab->lock);
3753 goto redo;
3754 }
3755 tid = c->tid;
3756 freelist = c->freelist;
3757
3758 set_freepointer(s, tail_obj, freelist);
3759 c->freelist = head;
3760 c->tid = next_tid(tid);
3761
3762 local_unlock(&s->cpu_slab->lock);
1f04b07d
TG
3763 }
3764 stat(s, FREE_FASTPATH);
894b8788 3765}
0af8489b
VB
3766#else /* CONFIG_SLUB_TINY */
3767static void do_slab_free(struct kmem_cache *s,
3768 struct slab *slab, void *head, void *tail,
3769 int cnt, unsigned long addr)
3770{
3771 void *tail_obj = tail ? : head;
894b8788 3772
0af8489b
VB
3773 __slab_free(s, slab, head, tail_obj, cnt, addr);
3774}
3775#endif /* CONFIG_SLUB_TINY */
894b8788 3776
be784ba8 3777static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
b77d5b1b 3778 void *head, void *tail, void **p, int cnt,
80a9201a
AP
3779 unsigned long addr)
3780{
b77d5b1b 3781 memcg_slab_free_hook(s, slab, p, cnt);
80a9201a 3782 /*
c3895391
AK
3783 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3784 * to remove objects, whose reuse must be delayed.
80a9201a 3785 */
899447f6 3786 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
bb192ed9 3787 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
3788}
3789
2bd926b4 3790#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3791void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3792{
bb192ed9 3793 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
80a9201a
AP
3794}
3795#endif
3796
ed4cd17e
HY
3797void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3798{
3799 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3800}
3801
81819f0f
CL
3802void kmem_cache_free(struct kmem_cache *s, void *x)
3803{
b9ce5ef4
GC
3804 s = cache_from_obj(s, x);
3805 if (!s)
79576102 3806 return;
2c1d697f 3807 trace_kmem_cache_free(_RET_IP_, x, s);
b77d5b1b 3808 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
81819f0f
CL
3809}
3810EXPORT_SYMBOL(kmem_cache_free);
3811
d0ecd894 3812struct detached_freelist {
cc465c3b 3813 struct slab *slab;
d0ecd894
JDB
3814 void *tail;
3815 void *freelist;
3816 int cnt;
376bf125 3817 struct kmem_cache *s;
d0ecd894 3818};
fbd02630 3819
d0ecd894
JDB
3820/*
3821 * This function progressively scans the array with free objects (with
3822 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
3823 * slab. It builds a detached freelist directly within the given
3824 * slab/objects. This can happen without any need for
d0ecd894
JDB
3825 * synchronization, because the objects are owned by running process.
3826 * The freelist is build up as a single linked list in the objects.
3827 * The idea is, that this detached freelist can then be bulk
3828 * transferred to the real freelist(s), but only requiring a single
3829 * synchronization primitive. Look ahead in the array is limited due
3830 * to performance reasons.
3831 */
376bf125
JDB
3832static inline
3833int build_detached_freelist(struct kmem_cache *s, size_t size,
3834 void **p, struct detached_freelist *df)
d0ecd894 3835{
d0ecd894
JDB
3836 int lookahead = 3;
3837 void *object;
cc465c3b 3838 struct folio *folio;
b77d5b1b 3839 size_t same;
fbd02630 3840
b77d5b1b 3841 object = p[--size];
cc465c3b 3842 folio = virt_to_folio(object);
ca257195
JDB
3843 if (!s) {
3844 /* Handle kalloc'ed objects */
cc465c3b 3845 if (unlikely(!folio_test_slab(folio))) {
d835eef4 3846 free_large_kmalloc(folio, object);
b77d5b1b 3847 df->slab = NULL;
ca257195
JDB
3848 return size;
3849 }
3850 /* Derive kmem_cache from object */
b77d5b1b
MS
3851 df->slab = folio_slab(folio);
3852 df->s = df->slab->slab_cache;
ca257195 3853 } else {
b77d5b1b 3854 df->slab = folio_slab(folio);
ca257195
JDB
3855 df->s = cache_from_obj(s, object); /* Support for memcg */
3856 }
376bf125 3857
d0ecd894 3858 /* Start new detached freelist */
d0ecd894
JDB
3859 df->tail = object;
3860 df->freelist = object;
d0ecd894
JDB
3861 df->cnt = 1;
3862
b77d5b1b
MS
3863 if (is_kfence_address(object))
3864 return size;
3865
3866 set_freepointer(df->s, object, NULL);
3867
3868 same = size;
d0ecd894
JDB
3869 while (size) {
3870 object = p[--size];
cc465c3b
MWO
3871 /* df->slab is always set at this point */
3872 if (df->slab == virt_to_slab(object)) {
d0ecd894 3873 /* Opportunity build freelist */
376bf125 3874 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3875 df->freelist = object;
3876 df->cnt++;
b77d5b1b
MS
3877 same--;
3878 if (size != same)
3879 swap(p[size], p[same]);
d0ecd894 3880 continue;
fbd02630 3881 }
d0ecd894
JDB
3882
3883 /* Limit look ahead search */
3884 if (!--lookahead)
3885 break;
fbd02630 3886 }
d0ecd894 3887
b77d5b1b 3888 return same;
d0ecd894
JDB
3889}
3890
d0ecd894 3891/* Note that interrupts must be enabled when calling this function. */
376bf125 3892void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 3893{
2055e67b 3894 if (!size)
d0ecd894
JDB
3895 return;
3896
3897 do {
3898 struct detached_freelist df;
3899
3900 size = build_detached_freelist(s, size, p, &df);
cc465c3b 3901 if (!df.slab)
d0ecd894
JDB
3902 continue;
3903
b77d5b1b
MS
3904 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3905 _RET_IP_);
d0ecd894 3906 } while (likely(size));
484748f0
CL
3907}
3908EXPORT_SYMBOL(kmem_cache_free_bulk);
3909
0af8489b 3910#ifndef CONFIG_SLUB_TINY
56d5a2b9
VB
3911static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3912 size_t size, void **p, struct obj_cgroup *objcg)
484748f0 3913{
994eb764 3914 struct kmem_cache_cpu *c;
f5451547 3915 unsigned long irqflags;
994eb764
JDB
3916 int i;
3917
994eb764
JDB
3918 /*
3919 * Drain objects in the per cpu slab, while disabling local
3920 * IRQs, which protects against PREEMPT and interrupts
3921 * handlers invoking normal fastpath.
3922 */
25c00c50 3923 c = slub_get_cpu_ptr(s->cpu_slab);
f5451547 3924 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
994eb764
JDB
3925
3926 for (i = 0; i < size; i++) {
b89fb5ef 3927 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3928
b89fb5ef
AP
3929 if (unlikely(object)) {
3930 p[i] = object;
3931 continue;
3932 }
3933
3934 object = c->freelist;
ebe909e0 3935 if (unlikely(!object)) {
fd4d9c7d
JH
3936 /*
3937 * We may have removed an object from c->freelist using
3938 * the fastpath in the previous iteration; in that case,
3939 * c->tid has not been bumped yet.
3940 * Since ___slab_alloc() may reenable interrupts while
3941 * allocating memory, we should bump c->tid now.
3942 */
3943 c->tid = next_tid(c->tid);
3944
f5451547 3945 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
e500059b 3946
ebe909e0
JDB
3947 /*
3948 * Invoking slow path likely have side-effect
3949 * of re-populating per CPU c->freelist
3950 */
87098373 3951 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
6edf2576 3952 _RET_IP_, c, s->object_size);
87098373
CL
3953 if (unlikely(!p[i]))
3954 goto error;
3955
ebe909e0 3956 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3957 maybe_wipe_obj_freeptr(s, p[i]);
3958
f5451547 3959 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
e500059b 3960
ebe909e0
JDB
3961 continue; /* goto for-loop */
3962 }
994eb764
JDB
3963 c->freelist = get_freepointer(s, object);
3964 p[i] = object;
0f181f9f 3965 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3966 }
3967 c->tid = next_tid(c->tid);
f5451547 3968 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
25c00c50 3969 slub_put_cpu_ptr(s->cpu_slab);
994eb764 3970
865762a8 3971 return i;
56d5a2b9 3972
87098373 3973error:
25c00c50 3974 slub_put_cpu_ptr(s->cpu_slab);
9ce67395 3975 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
2055e67b 3976 kmem_cache_free_bulk(s, i, p);
865762a8 3977 return 0;
56d5a2b9
VB
3978
3979}
0af8489b
VB
3980#else /* CONFIG_SLUB_TINY */
3981static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3982 size_t size, void **p, struct obj_cgroup *objcg)
3983{
3984 int i;
3985
3986 for (i = 0; i < size; i++) {
3987 void *object = kfence_alloc(s, s->object_size, flags);
3988
3989 if (unlikely(object)) {
3990 p[i] = object;
3991 continue;
3992 }
3993
3994 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
3995 _RET_IP_, s->object_size);
3996 if (unlikely(!p[i]))
3997 goto error;
3998
3999 maybe_wipe_obj_freeptr(s, p[i]);
4000 }
4001
4002 return i;
4003
4004error:
dc19745a 4005 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
0af8489b
VB
4006 kmem_cache_free_bulk(s, i, p);
4007 return 0;
4008}
4009#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
4010
4011/* Note that interrupts must be enabled when calling this function. */
4012int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4013 void **p)
4014{
4015 int i;
4016 struct obj_cgroup *objcg = NULL;
4017
4018 if (!size)
4019 return 0;
4020
4021 /* memcg and kmem_cache debug support */
4022 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4023 if (unlikely(!s))
4024 return 0;
4025
4026 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4027
4028 /*
4029 * memcg and kmem_cache debug support and memory initialization.
4030 * Done outside of the IRQ disabled fastpath loop.
4031 */
4032 if (i != 0)
4033 slab_post_alloc_hook(s, objcg, flags, size, p,
dc19745a 4034 slab_want_init_on_alloc(flags, s), s->object_size);
56d5a2b9 4035 return i;
484748f0
CL
4036}
4037EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4038
4039
81819f0f 4040/*
672bba3a
CL
4041 * Object placement in a slab is made very easy because we always start at
4042 * offset 0. If we tune the size of the object to the alignment then we can
4043 * get the required alignment by putting one properly sized object after
4044 * another.
81819f0f
CL
4045 *
4046 * Notice that the allocation order determines the sizes of the per cpu
4047 * caches. Each processor has always one slab available for allocations.
4048 * Increasing the allocation order reduces the number of times that slabs
672bba3a 4049 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 4050 * locking overhead.
81819f0f
CL
4051 */
4052
4053/*
f0953a1b 4054 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
4055 * and slab fragmentation. A higher order reduces the number of partial slabs
4056 * and increases the number of allocations possible without having to
4057 * take the list_lock.
4058 */
19af27af 4059static unsigned int slub_min_order;
90ce872c
VB
4060static unsigned int slub_max_order =
4061 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
19af27af 4062static unsigned int slub_min_objects;
81819f0f 4063
81819f0f
CL
4064/*
4065 * Calculate the order of allocation given an slab object size.
4066 *
672bba3a
CL
4067 * The order of allocation has significant impact on performance and other
4068 * system components. Generally order 0 allocations should be preferred since
4069 * order 0 does not cause fragmentation in the page allocator. Larger objects
4070 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 4071 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
4072 * would be wasted.
4073 *
4074 * In order to reach satisfactory performance we must ensure that a minimum
4075 * number of objects is in one slab. Otherwise we may generate too much
4076 * activity on the partial lists which requires taking the list_lock. This is
4077 * less a concern for large slabs though which are rarely used.
81819f0f 4078 *
672bba3a
CL
4079 * slub_max_order specifies the order where we begin to stop considering the
4080 * number of objects in a slab as critical. If we reach slub_max_order then
4081 * we try to keep the page order as low as possible. So we accept more waste
4082 * of space in favor of a small page order.
81819f0f 4083 *
672bba3a
CL
4084 * Higher order allocations also allow the placement of more objects in a
4085 * slab and thereby reduce object handling overhead. If the user has
dc84207d 4086 * requested a higher minimum order then we start with that one instead of
672bba3a 4087 * the smallest order which will fit the object.
81819f0f 4088 */
d122019b 4089static inline unsigned int calc_slab_order(unsigned int size,
19af27af 4090 unsigned int min_objects, unsigned int max_order,
9736d2a9 4091 unsigned int fract_leftover)
81819f0f 4092{
19af27af
AD
4093 unsigned int min_order = slub_min_order;
4094 unsigned int order;
81819f0f 4095
9736d2a9 4096 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 4097 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 4098
9736d2a9 4099 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 4100 order <= max_order; order++) {
81819f0f 4101
19af27af
AD
4102 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4103 unsigned int rem;
81819f0f 4104
9736d2a9 4105 rem = slab_size % size;
81819f0f 4106
5e6d444e 4107 if (rem <= slab_size / fract_leftover)
81819f0f 4108 break;
81819f0f 4109 }
672bba3a 4110
81819f0f
CL
4111 return order;
4112}
4113
9736d2a9 4114static inline int calculate_order(unsigned int size)
5e6d444e 4115{
19af27af
AD
4116 unsigned int order;
4117 unsigned int min_objects;
4118 unsigned int max_objects;
3286222f 4119 unsigned int nr_cpus;
5e6d444e
CL
4120
4121 /*
4122 * Attempt to find best configuration for a slab. This
4123 * works by first attempting to generate a layout with
4124 * the best configuration and backing off gradually.
4125 *
422ff4d7 4126 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
4127 * we reduce the minimum objects required in a slab.
4128 */
4129 min_objects = slub_min_objects;
3286222f
VB
4130 if (!min_objects) {
4131 /*
4132 * Some architectures will only update present cpus when
4133 * onlining them, so don't trust the number if it's just 1. But
4134 * we also don't want to use nr_cpu_ids always, as on some other
4135 * architectures, there can be many possible cpus, but never
4136 * onlined. Here we compromise between trying to avoid too high
4137 * order on systems that appear larger than they are, and too
4138 * low order on systems that appear smaller than they are.
4139 */
4140 nr_cpus = num_present_cpus();
4141 if (nr_cpus <= 1)
4142 nr_cpus = nr_cpu_ids;
4143 min_objects = 4 * (fls(nr_cpus) + 1);
4144 }
9736d2a9 4145 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
4146 min_objects = min(min_objects, max_objects);
4147
5e6d444e 4148 while (min_objects > 1) {
19af27af
AD
4149 unsigned int fraction;
4150
c124f5b5 4151 fraction = 16;
5e6d444e 4152 while (fraction >= 4) {
d122019b 4153 order = calc_slab_order(size, min_objects,
9736d2a9 4154 slub_max_order, fraction);
5e6d444e
CL
4155 if (order <= slub_max_order)
4156 return order;
4157 fraction /= 2;
4158 }
5086c389 4159 min_objects--;
5e6d444e
CL
4160 }
4161
4162 /*
4163 * We were unable to place multiple objects in a slab. Now
4164 * lets see if we can place a single object there.
4165 */
d122019b 4166 order = calc_slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
4167 if (order <= slub_max_order)
4168 return order;
4169
4170 /*
4171 * Doh this slab cannot be placed using slub_max_order.
4172 */
d122019b 4173 order = calc_slab_order(size, 1, MAX_ORDER, 1);
23baf831 4174 if (order <= MAX_ORDER)
5e6d444e
CL
4175 return order;
4176 return -ENOSYS;
4177}
4178
5595cffc 4179static void
4053497d 4180init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
4181{
4182 n->nr_partial = 0;
81819f0f
CL
4183 spin_lock_init(&n->list_lock);
4184 INIT_LIST_HEAD(&n->partial);
8ab1372f 4185#ifdef CONFIG_SLUB_DEBUG
0f389ec6 4186 atomic_long_set(&n->nr_slabs, 0);
02b71b70 4187 atomic_long_set(&n->total_objects, 0);
643b1138 4188 INIT_LIST_HEAD(&n->full);
8ab1372f 4189#endif
81819f0f
CL
4190}
4191
0af8489b 4192#ifndef CONFIG_SLUB_TINY
55136592 4193static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 4194{
6c182dc0 4195 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
a0dc161a
BH
4196 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4197 sizeof(struct kmem_cache_cpu));
4c93c355 4198
8a5ec0ba 4199 /*
d4d84fef
CM
4200 * Must align to double word boundary for the double cmpxchg
4201 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 4202 */
d4d84fef
CM
4203 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4204 2 * sizeof(void *));
8a5ec0ba
CL
4205
4206 if (!s->cpu_slab)
4207 return 0;
4208
4209 init_kmem_cache_cpus(s);
4c93c355 4210
8a5ec0ba 4211 return 1;
4c93c355 4212}
0af8489b
VB
4213#else
4214static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4215{
4216 return 1;
4217}
4218#endif /* CONFIG_SLUB_TINY */
4c93c355 4219
51df1142
CL
4220static struct kmem_cache *kmem_cache_node;
4221
81819f0f
CL
4222/*
4223 * No kmalloc_node yet so do it by hand. We know that this is the first
4224 * slab on the node for this slabcache. There are no concurrent accesses
4225 * possible.
4226 *
721ae22a
ZYW
4227 * Note that this function only works on the kmem_cache_node
4228 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 4229 * memory on a fresh node that has no slab structures yet.
81819f0f 4230 */
55136592 4231static void early_kmem_cache_node_alloc(int node)
81819f0f 4232{
bb192ed9 4233 struct slab *slab;
81819f0f
CL
4234 struct kmem_cache_node *n;
4235
51df1142 4236 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 4237
bb192ed9 4238 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 4239
bb192ed9 4240 BUG_ON(!slab);
c7323a5a 4241 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
bb192ed9 4242 if (slab_nid(slab) != node) {
f9f58285
FF
4243 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4244 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
4245 }
4246
bb192ed9 4247 n = slab->freelist;
81819f0f 4248 BUG_ON(!n);
8ab1372f 4249#ifdef CONFIG_SLUB_DEBUG
f7cb1933 4250 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 4251 init_tracking(kmem_cache_node, n);
8ab1372f 4252#endif
da844b78 4253 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
4254 slab->freelist = get_freepointer(kmem_cache_node, n);
4255 slab->inuse = 1;
12b22386 4256 kmem_cache_node->node[node] = n;
4053497d 4257 init_kmem_cache_node(n);
bb192ed9 4258 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 4259
67b6c900 4260 /*
1e4dd946
SR
4261 * No locks need to be taken here as it has just been
4262 * initialized and there is no concurrent access.
67b6c900 4263 */
bb192ed9 4264 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
4265}
4266
4267static void free_kmem_cache_nodes(struct kmem_cache *s)
4268{
4269 int node;
fa45dc25 4270 struct kmem_cache_node *n;
81819f0f 4271
fa45dc25 4272 for_each_kmem_cache_node(s, node, n) {
81819f0f 4273 s->node[node] = NULL;
ea37df54 4274 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
4275 }
4276}
4277
52b4b950
DS
4278void __kmem_cache_release(struct kmem_cache *s)
4279{
210e7a43 4280 cache_random_seq_destroy(s);
0af8489b 4281#ifndef CONFIG_SLUB_TINY
52b4b950 4282 free_percpu(s->cpu_slab);
0af8489b 4283#endif
52b4b950
DS
4284 free_kmem_cache_nodes(s);
4285}
4286
55136592 4287static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
4288{
4289 int node;
81819f0f 4290
7e1fa93d 4291 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
4292 struct kmem_cache_node *n;
4293
73367bd8 4294 if (slab_state == DOWN) {
55136592 4295 early_kmem_cache_node_alloc(node);
73367bd8
AD
4296 continue;
4297 }
51df1142 4298 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 4299 GFP_KERNEL, node);
81819f0f 4300
73367bd8
AD
4301 if (!n) {
4302 free_kmem_cache_nodes(s);
4303 return 0;
81819f0f 4304 }
73367bd8 4305
4053497d 4306 init_kmem_cache_node(n);
ea37df54 4307 s->node[node] = n;
81819f0f
CL
4308 }
4309 return 1;
4310}
81819f0f 4311
e6d0e1dc
WY
4312static void set_cpu_partial(struct kmem_cache *s)
4313{
4314#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
4315 unsigned int nr_objects;
4316
e6d0e1dc
WY
4317 /*
4318 * cpu_partial determined the maximum number of objects kept in the
4319 * per cpu partial lists of a processor.
4320 *
4321 * Per cpu partial lists mainly contain slabs that just have one
4322 * object freed. If they are used for allocation then they can be
4323 * filled up again with minimal effort. The slab will never hit the
4324 * per node partial lists and therefore no locking will be required.
4325 *
b47291ef
VB
4326 * For backwards compatibility reasons, this is determined as number
4327 * of objects, even though we now limit maximum number of pages, see
4328 * slub_set_cpu_partial()
e6d0e1dc
WY
4329 */
4330 if (!kmem_cache_has_cpu_partial(s))
b47291ef 4331 nr_objects = 0;
e6d0e1dc 4332 else if (s->size >= PAGE_SIZE)
b47291ef 4333 nr_objects = 6;
e6d0e1dc 4334 else if (s->size >= 1024)
23e98ad1 4335 nr_objects = 24;
e6d0e1dc 4336 else if (s->size >= 256)
23e98ad1 4337 nr_objects = 52;
e6d0e1dc 4338 else
23e98ad1 4339 nr_objects = 120;
b47291ef
VB
4340
4341 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
4342#endif
4343}
4344
81819f0f
CL
4345/*
4346 * calculate_sizes() determines the order and the distribution of data within
4347 * a slab object.
4348 */
ae44d81d 4349static int calculate_sizes(struct kmem_cache *s)
81819f0f 4350{
d50112ed 4351 slab_flags_t flags = s->flags;
be4a7988 4352 unsigned int size = s->object_size;
19af27af 4353 unsigned int order;
81819f0f 4354
d8b42bf5
CL
4355 /*
4356 * Round up object size to the next word boundary. We can only
4357 * place the free pointer at word boundaries and this determines
4358 * the possible location of the free pointer.
4359 */
4360 size = ALIGN(size, sizeof(void *));
4361
4362#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4363 /*
4364 * Determine if we can poison the object itself. If the user of
4365 * the slab may touch the object after free or before allocation
4366 * then we should never poison the object itself.
4367 */
5f0d5a3a 4368 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 4369 !s->ctor)
81819f0f
CL
4370 s->flags |= __OBJECT_POISON;
4371 else
4372 s->flags &= ~__OBJECT_POISON;
4373
81819f0f
CL
4374
4375 /*
672bba3a 4376 * If we are Redzoning then check if there is some space between the
81819f0f 4377 * end of the object and the free pointer. If not then add an
672bba3a 4378 * additional word to have some bytes to store Redzone information.
81819f0f 4379 */
3b0efdfa 4380 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 4381 size += sizeof(void *);
41ecc55b 4382#endif
81819f0f
CL
4383
4384 /*
672bba3a 4385 * With that we have determined the number of bytes in actual use
e41a49fa 4386 * by the object and redzoning.
81819f0f
CL
4387 */
4388 s->inuse = size;
4389
946fa0db
FT
4390 if (slub_debug_orig_size(s) ||
4391 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
74c1d3e0
KC
4392 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4393 s->ctor) {
81819f0f
CL
4394 /*
4395 * Relocate free pointer after the object if it is not
4396 * permitted to overwrite the first word of the object on
4397 * kmem_cache_free.
4398 *
4399 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
4400 * destructor, are poisoning the objects, or are
4401 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
4402 *
4403 * The assumption that s->offset >= s->inuse means free
4404 * pointer is outside of the object is used in the
4405 * freeptr_outside_object() function. If that is no
4406 * longer true, the function needs to be modified.
81819f0f
CL
4407 */
4408 s->offset = size;
4409 size += sizeof(void *);
e41a49fa 4410 } else {
3202fa62
KC
4411 /*
4412 * Store freelist pointer near middle of object to keep
4413 * it away from the edges of the object to avoid small
4414 * sized over/underflows from neighboring allocations.
4415 */
e41a49fa 4416 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
4417 }
4418
c12b3c62 4419#ifdef CONFIG_SLUB_DEBUG
6edf2576 4420 if (flags & SLAB_STORE_USER) {
81819f0f
CL
4421 /*
4422 * Need to store information about allocs and frees after
4423 * the object.
4424 */
4425 size += 2 * sizeof(struct track);
6edf2576
FT
4426
4427 /* Save the original kmalloc request size */
4428 if (flags & SLAB_KMALLOC)
4429 size += sizeof(unsigned int);
4430 }
80a9201a 4431#endif
81819f0f 4432
80a9201a
AP
4433 kasan_cache_create(s, &size, &s->flags);
4434#ifdef CONFIG_SLUB_DEBUG
d86bd1be 4435 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
4436 /*
4437 * Add some empty padding so that we can catch
4438 * overwrites from earlier objects rather than let
4439 * tracking information or the free pointer be
0211a9c8 4440 * corrupted if a user writes before the start
81819f0f
CL
4441 * of the object.
4442 */
4443 size += sizeof(void *);
d86bd1be
JK
4444
4445 s->red_left_pad = sizeof(void *);
4446 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4447 size += s->red_left_pad;
4448 }
41ecc55b 4449#endif
672bba3a 4450
81819f0f
CL
4451 /*
4452 * SLUB stores one object immediately after another beginning from
4453 * offset 0. In order to align the objects we have to simply size
4454 * each object to conform to the alignment.
4455 */
45906855 4456 size = ALIGN(size, s->align);
81819f0f 4457 s->size = size;
4138fdfc 4458 s->reciprocal_size = reciprocal_value(size);
ae44d81d 4459 order = calculate_order(size);
81819f0f 4460
19af27af 4461 if ((int)order < 0)
81819f0f
CL
4462 return 0;
4463
b7a49f0d 4464 s->allocflags = 0;
834f3d11 4465 if (order)
b7a49f0d
CL
4466 s->allocflags |= __GFP_COMP;
4467
4468 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 4469 s->allocflags |= GFP_DMA;
b7a49f0d 4470
6d6ea1e9
NB
4471 if (s->flags & SLAB_CACHE_DMA32)
4472 s->allocflags |= GFP_DMA32;
4473
b7a49f0d
CL
4474 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4475 s->allocflags |= __GFP_RECLAIMABLE;
4476
81819f0f
CL
4477 /*
4478 * Determine the number of objects per slab
4479 */
9736d2a9
MW
4480 s->oo = oo_make(order, size);
4481 s->min = oo_make(get_order(size), size);
81819f0f 4482
834f3d11 4483 return !!oo_objects(s->oo);
81819f0f
CL
4484}
4485
d50112ed 4486static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 4487{
37540008 4488 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
4489#ifdef CONFIG_SLAB_FREELIST_HARDENED
4490 s->random = get_random_long();
4491#endif
81819f0f 4492
ae44d81d 4493 if (!calculate_sizes(s))
81819f0f 4494 goto error;
3de47213
DR
4495 if (disable_higher_order_debug) {
4496 /*
4497 * Disable debugging flags that store metadata if the min slab
4498 * order increased.
4499 */
3b0efdfa 4500 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
4501 s->flags &= ~DEBUG_METADATA_FLAGS;
4502 s->offset = 0;
ae44d81d 4503 if (!calculate_sizes(s))
3de47213
DR
4504 goto error;
4505 }
4506 }
81819f0f 4507
2565409f
HC
4508#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4509 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 4510 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
4511 /* Enable fast mode */
4512 s->flags |= __CMPXCHG_DOUBLE;
4513#endif
4514
3b89d7d8 4515 /*
c2092c12 4516 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
4517 * list to avoid pounding the page allocator excessively.
4518 */
5182f3c9
HY
4519 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4520 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 4521
e6d0e1dc 4522 set_cpu_partial(s);
49e22585 4523
81819f0f 4524#ifdef CONFIG_NUMA
e2cb96b7 4525 s->remote_node_defrag_ratio = 1000;
81819f0f 4526#endif
210e7a43
TG
4527
4528 /* Initialize the pre-computed randomized freelist if slab is up */
4529 if (slab_state >= UP) {
4530 if (init_cache_random_seq(s))
4531 goto error;
4532 }
4533
55136592 4534 if (!init_kmem_cache_nodes(s))
dfb4f096 4535 goto error;
81819f0f 4536
55136592 4537 if (alloc_kmem_cache_cpus(s))
278b1bb1 4538 return 0;
ff12059e 4539
81819f0f 4540error:
9037c576 4541 __kmem_cache_release(s);
278b1bb1 4542 return -EINVAL;
81819f0f 4543}
81819f0f 4544
bb192ed9 4545static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 4546 const char *text)
33b12c38
CL
4547{
4548#ifdef CONFIG_SLUB_DEBUG
bb192ed9 4549 void *addr = slab_address(slab);
33b12c38 4550 void *p;
aa456c7a 4551
bb192ed9 4552 slab_err(s, slab, text, s->name);
33b12c38 4553
4ef3f5a3
VB
4554 spin_lock(&object_map_lock);
4555 __fill_map(object_map, s, slab);
4556
bb192ed9 4557 for_each_object(p, s, addr, slab->objects) {
33b12c38 4558
4ef3f5a3 4559 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
96b94abc 4560 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
4561 print_tracking(s, p);
4562 }
4563 }
4ef3f5a3 4564 spin_unlock(&object_map_lock);
33b12c38
CL
4565#endif
4566}
4567
81819f0f 4568/*
599870b1 4569 * Attempt to free all partial slabs on a node.
52b4b950
DS
4570 * This is called from __kmem_cache_shutdown(). We must take list_lock
4571 * because sysfs file might still access partial list after the shutdowning.
81819f0f 4572 */
599870b1 4573static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 4574{
60398923 4575 LIST_HEAD(discard);
bb192ed9 4576 struct slab *slab, *h;
81819f0f 4577
52b4b950
DS
4578 BUG_ON(irqs_disabled());
4579 spin_lock_irq(&n->list_lock);
bb192ed9
VB
4580 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4581 if (!slab->inuse) {
4582 remove_partial(n, slab);
4583 list_add(&slab->slab_list, &discard);
33b12c38 4584 } else {
bb192ed9 4585 list_slab_objects(s, slab,
55860d96 4586 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 4587 }
33b12c38 4588 }
52b4b950 4589 spin_unlock_irq(&n->list_lock);
60398923 4590
bb192ed9
VB
4591 list_for_each_entry_safe(slab, h, &discard, slab_list)
4592 discard_slab(s, slab);
81819f0f
CL
4593}
4594
f9e13c0a
SB
4595bool __kmem_cache_empty(struct kmem_cache *s)
4596{
4597 int node;
4598 struct kmem_cache_node *n;
4599
4600 for_each_kmem_cache_node(s, node, n)
4601 if (n->nr_partial || slabs_node(s, node))
4602 return false;
4603 return true;
4604}
4605
81819f0f 4606/*
672bba3a 4607 * Release all resources used by a slab cache.
81819f0f 4608 */
52b4b950 4609int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4610{
4611 int node;
fa45dc25 4612 struct kmem_cache_node *n;
81819f0f 4613
5a836bf6 4614 flush_all_cpus_locked(s);
81819f0f 4615 /* Attempt to free all objects */
fa45dc25 4616 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
4617 free_partial(s, n);
4618 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4619 return 1;
4620 }
81819f0f
CL
4621 return 0;
4622}
4623
5bb1bb35 4624#ifdef CONFIG_PRINTK
2dfe63e6 4625void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
4626{
4627 void *base;
4628 int __maybe_unused i;
4629 unsigned int objnr;
4630 void *objp;
4631 void *objp0;
7213230a 4632 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
4633 struct track __maybe_unused *trackp;
4634
4635 kpp->kp_ptr = object;
7213230a 4636 kpp->kp_slab = slab;
8e7f37f2 4637 kpp->kp_slab_cache = s;
7213230a 4638 base = slab_address(slab);
8e7f37f2
PM
4639 objp0 = kasan_reset_tag(object);
4640#ifdef CONFIG_SLUB_DEBUG
4641 objp = restore_red_left(s, objp0);
4642#else
4643 objp = objp0;
4644#endif
40f3bf0c 4645 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
4646 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4647 objp = base + s->size * objnr;
4648 kpp->kp_objp = objp;
7213230a
MWO
4649 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4650 || (objp - base) % s->size) ||
8e7f37f2
PM
4651 !(s->flags & SLAB_STORE_USER))
4652 return;
4653#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4654 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4655 trackp = get_track(s, objp, TRACK_ALLOC);
4656 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
4657#ifdef CONFIG_STACKDEPOT
4658 {
4659 depot_stack_handle_t handle;
4660 unsigned long *entries;
4661 unsigned int nr_entries;
78869146 4662
5cf909c5
OG
4663 handle = READ_ONCE(trackp->handle);
4664 if (handle) {
4665 nr_entries = stack_depot_fetch(handle, &entries);
4666 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4667 kpp->kp_stack[i] = (void *)entries[i];
4668 }
78869146 4669
5cf909c5
OG
4670 trackp = get_track(s, objp, TRACK_FREE);
4671 handle = READ_ONCE(trackp->handle);
4672 if (handle) {
4673 nr_entries = stack_depot_fetch(handle, &entries);
4674 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4675 kpp->kp_free_stack[i] = (void *)entries[i];
4676 }
e548eaa1 4677 }
8e7f37f2
PM
4678#endif
4679#endif
4680}
5bb1bb35 4681#endif
8e7f37f2 4682
81819f0f
CL
4683/********************************************************************
4684 * Kmalloc subsystem
4685 *******************************************************************/
4686
81819f0f
CL
4687static int __init setup_slub_min_order(char *str)
4688{
19af27af 4689 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4690
4691 return 1;
4692}
4693
4694__setup("slub_min_order=", setup_slub_min_order);
4695
4696static int __init setup_slub_max_order(char *str)
4697{
19af27af 4698 get_option(&str, (int *)&slub_max_order);
23baf831 4699 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
81819f0f
CL
4700
4701 return 1;
4702}
4703
4704__setup("slub_max_order=", setup_slub_max_order);
4705
4706static int __init setup_slub_min_objects(char *str)
4707{
19af27af 4708 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4709
4710 return 1;
4711}
4712
4713__setup("slub_min_objects=", setup_slub_min_objects);
4714
ed18adc1
KC
4715#ifdef CONFIG_HARDENED_USERCOPY
4716/*
afcc90f8
KC
4717 * Rejects incorrectly sized objects and objects that are to be copied
4718 * to/from userspace but do not fall entirely within the containing slab
4719 * cache's usercopy region.
ed18adc1
KC
4720 *
4721 * Returns NULL if check passes, otherwise const char * to name of cache
4722 * to indicate an error.
4723 */
0b3eb091
MWO
4724void __check_heap_object(const void *ptr, unsigned long n,
4725 const struct slab *slab, bool to_user)
ed18adc1
KC
4726{
4727 struct kmem_cache *s;
44065b2e 4728 unsigned int offset;
b89fb5ef 4729 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4730
96fedce2
AK
4731 ptr = kasan_reset_tag(ptr);
4732
ed18adc1 4733 /* Find object and usable object size. */
0b3eb091 4734 s = slab->slab_cache;
ed18adc1
KC
4735
4736 /* Reject impossible pointers. */
0b3eb091 4737 if (ptr < slab_address(slab))
f4e6e289
KC
4738 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4739 to_user, 0, n);
ed18adc1
KC
4740
4741 /* Find offset within object. */
b89fb5ef
AP
4742 if (is_kfence)
4743 offset = ptr - kfence_object_start(ptr);
4744 else
0b3eb091 4745 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
4746
4747 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4748 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4749 if (offset < s->red_left_pad)
f4e6e289
KC
4750 usercopy_abort("SLUB object in left red zone",
4751 s->name, to_user, offset, n);
ed18adc1
KC
4752 offset -= s->red_left_pad;
4753 }
4754
afcc90f8
KC
4755 /* Allow address range falling entirely within usercopy region. */
4756 if (offset >= s->useroffset &&
4757 offset - s->useroffset <= s->usersize &&
4758 n <= s->useroffset - offset + s->usersize)
f4e6e289 4759 return;
ed18adc1 4760
f4e6e289 4761 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4762}
4763#endif /* CONFIG_HARDENED_USERCOPY */
4764
832f37f5
VD
4765#define SHRINK_PROMOTE_MAX 32
4766
2086d26a 4767/*
832f37f5
VD
4768 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4769 * up most to the head of the partial lists. New allocations will then
4770 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4771 *
4772 * The slabs with the least items are placed last. This results in them
4773 * being allocated from last increasing the chance that the last objects
4774 * are freed in them.
2086d26a 4775 */
5a836bf6 4776static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
4777{
4778 int node;
4779 int i;
4780 struct kmem_cache_node *n;
bb192ed9
VB
4781 struct slab *slab;
4782 struct slab *t;
832f37f5
VD
4783 struct list_head discard;
4784 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4785 unsigned long flags;
ce3712d7 4786 int ret = 0;
2086d26a 4787
fa45dc25 4788 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4789 INIT_LIST_HEAD(&discard);
4790 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4791 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4792
4793 spin_lock_irqsave(&n->list_lock, flags);
4794
4795 /*
832f37f5 4796 * Build lists of slabs to discard or promote.
2086d26a 4797 *
672bba3a 4798 * Note that concurrent frees may occur while we hold the
c2092c12 4799 * list_lock. slab->inuse here is the upper limit.
2086d26a 4800 */
bb192ed9
VB
4801 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4802 int free = slab->objects - slab->inuse;
832f37f5 4803
c2092c12 4804 /* Do not reread slab->inuse */
832f37f5
VD
4805 barrier();
4806
4807 /* We do not keep full slabs on the list */
4808 BUG_ON(free <= 0);
4809
bb192ed9
VB
4810 if (free == slab->objects) {
4811 list_move(&slab->slab_list, &discard);
69cb8e6b 4812 n->nr_partial--;
c7323a5a 4813 dec_slabs_node(s, node, slab->objects);
832f37f5 4814 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 4815 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
4816 }
4817
2086d26a 4818 /*
832f37f5
VD
4819 * Promote the slabs filled up most to the head of the
4820 * partial list.
2086d26a 4821 */
832f37f5
VD
4822 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4823 list_splice(promote + i, &n->partial);
2086d26a 4824
2086d26a 4825 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4826
4827 /* Release empty slabs */
bb192ed9 4828 list_for_each_entry_safe(slab, t, &discard, slab_list)
c7323a5a 4829 free_slab(s, slab);
ce3712d7
VD
4830
4831 if (slabs_node(s, node))
4832 ret = 1;
2086d26a
CL
4833 }
4834
ce3712d7 4835 return ret;
2086d26a 4836}
2086d26a 4837
5a836bf6
SAS
4838int __kmem_cache_shrink(struct kmem_cache *s)
4839{
4840 flush_all(s);
4841 return __kmem_cache_do_shrink(s);
4842}
4843
b9049e23
YG
4844static int slab_mem_going_offline_callback(void *arg)
4845{
4846 struct kmem_cache *s;
4847
18004c5d 4848 mutex_lock(&slab_mutex);
5a836bf6
SAS
4849 list_for_each_entry(s, &slab_caches, list) {
4850 flush_all_cpus_locked(s);
4851 __kmem_cache_do_shrink(s);
4852 }
18004c5d 4853 mutex_unlock(&slab_mutex);
b9049e23
YG
4854
4855 return 0;
4856}
4857
4858static void slab_mem_offline_callback(void *arg)
4859{
b9049e23
YG
4860 struct memory_notify *marg = arg;
4861 int offline_node;
4862
b9d5ab25 4863 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4864
4865 /*
4866 * If the node still has available memory. we need kmem_cache_node
4867 * for it yet.
4868 */
4869 if (offline_node < 0)
4870 return;
4871
18004c5d 4872 mutex_lock(&slab_mutex);
7e1fa93d 4873 node_clear(offline_node, slab_nodes);
666716fd
VB
4874 /*
4875 * We no longer free kmem_cache_node structures here, as it would be
4876 * racy with all get_node() users, and infeasible to protect them with
4877 * slab_mutex.
4878 */
18004c5d 4879 mutex_unlock(&slab_mutex);
b9049e23
YG
4880}
4881
4882static int slab_mem_going_online_callback(void *arg)
4883{
4884 struct kmem_cache_node *n;
4885 struct kmem_cache *s;
4886 struct memory_notify *marg = arg;
b9d5ab25 4887 int nid = marg->status_change_nid_normal;
b9049e23
YG
4888 int ret = 0;
4889
4890 /*
4891 * If the node's memory is already available, then kmem_cache_node is
4892 * already created. Nothing to do.
4893 */
4894 if (nid < 0)
4895 return 0;
4896
4897 /*
0121c619 4898 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4899 * allocate a kmem_cache_node structure in order to bring the node
4900 * online.
4901 */
18004c5d 4902 mutex_lock(&slab_mutex);
b9049e23 4903 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4904 /*
4905 * The structure may already exist if the node was previously
4906 * onlined and offlined.
4907 */
4908 if (get_node(s, nid))
4909 continue;
b9049e23
YG
4910 /*
4911 * XXX: kmem_cache_alloc_node will fallback to other nodes
4912 * since memory is not yet available from the node that
4913 * is brought up.
4914 */
8de66a0c 4915 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4916 if (!n) {
4917 ret = -ENOMEM;
4918 goto out;
4919 }
4053497d 4920 init_kmem_cache_node(n);
b9049e23
YG
4921 s->node[nid] = n;
4922 }
7e1fa93d
VB
4923 /*
4924 * Any cache created after this point will also have kmem_cache_node
4925 * initialized for the new node.
4926 */
4927 node_set(nid, slab_nodes);
b9049e23 4928out:
18004c5d 4929 mutex_unlock(&slab_mutex);
b9049e23
YG
4930 return ret;
4931}
4932
4933static int slab_memory_callback(struct notifier_block *self,
4934 unsigned long action, void *arg)
4935{
4936 int ret = 0;
4937
4938 switch (action) {
4939 case MEM_GOING_ONLINE:
4940 ret = slab_mem_going_online_callback(arg);
4941 break;
4942 case MEM_GOING_OFFLINE:
4943 ret = slab_mem_going_offline_callback(arg);
4944 break;
4945 case MEM_OFFLINE:
4946 case MEM_CANCEL_ONLINE:
4947 slab_mem_offline_callback(arg);
4948 break;
4949 case MEM_ONLINE:
4950 case MEM_CANCEL_OFFLINE:
4951 break;
4952 }
dc19f9db
KH
4953 if (ret)
4954 ret = notifier_from_errno(ret);
4955 else
4956 ret = NOTIFY_OK;
b9049e23
YG
4957 return ret;
4958}
4959
81819f0f
CL
4960/********************************************************************
4961 * Basic setup of slabs
4962 *******************************************************************/
4963
51df1142
CL
4964/*
4965 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4966 * the page allocator. Allocate them properly then fix up the pointers
4967 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4968 */
4969
dffb4d60 4970static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4971{
4972 int node;
dffb4d60 4973 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4974 struct kmem_cache_node *n;
51df1142 4975
dffb4d60 4976 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4977
7d557b3c
GC
4978 /*
4979 * This runs very early, and only the boot processor is supposed to be
4980 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4981 * IPIs around.
4982 */
4983 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4984 for_each_kmem_cache_node(s, node, n) {
bb192ed9 4985 struct slab *p;
51df1142 4986
916ac052 4987 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4988 p->slab_cache = s;
51df1142 4989
607bf324 4990#ifdef CONFIG_SLUB_DEBUG
916ac052 4991 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4992 p->slab_cache = s;
51df1142 4993#endif
51df1142 4994 }
dffb4d60
CL
4995 list_add(&s->list, &slab_caches);
4996 return s;
51df1142
CL
4997}
4998
81819f0f
CL
4999void __init kmem_cache_init(void)
5000{
dffb4d60
CL
5001 static __initdata struct kmem_cache boot_kmem_cache,
5002 boot_kmem_cache_node;
7e1fa93d 5003 int node;
51df1142 5004
fc8d8620
SG
5005 if (debug_guardpage_minorder())
5006 slub_max_order = 0;
5007
79270291
SB
5008 /* Print slub debugging pointers without hashing */
5009 if (__slub_debug_enabled())
5010 no_hash_pointers_enable(NULL);
5011
dffb4d60
CL
5012 kmem_cache_node = &boot_kmem_cache_node;
5013 kmem_cache = &boot_kmem_cache;
51df1142 5014
7e1fa93d
VB
5015 /*
5016 * Initialize the nodemask for which we will allocate per node
5017 * structures. Here we don't need taking slab_mutex yet.
5018 */
5019 for_each_node_state(node, N_NORMAL_MEMORY)
5020 node_set(node, slab_nodes);
5021
dffb4d60 5022 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 5023 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 5024
946d5f9c 5025 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
5026
5027 /* Able to allocate the per node structures */
5028 slab_state = PARTIAL;
5029
dffb4d60
CL
5030 create_boot_cache(kmem_cache, "kmem_cache",
5031 offsetof(struct kmem_cache, node) +
5032 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 5033 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 5034
dffb4d60 5035 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 5036 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
5037
5038 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 5039 setup_kmalloc_cache_index_table();
f97d5f63 5040 create_kmalloc_caches(0);
81819f0f 5041
210e7a43
TG
5042 /* Setup random freelists for each cache */
5043 init_freelist_randomization();
5044
a96a87bf
SAS
5045 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5046 slub_cpu_dead);
81819f0f 5047
b9726c26 5048 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 5049 cache_line_size(),
81819f0f
CL
5050 slub_min_order, slub_max_order, slub_min_objects,
5051 nr_cpu_ids, nr_node_ids);
5052}
5053
7e85ee0c
PE
5054void __init kmem_cache_init_late(void)
5055{
0af8489b 5056#ifndef CONFIG_SLUB_TINY
e45cc288
ML
5057 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5058 WARN_ON(!flushwq);
0af8489b 5059#endif
7e85ee0c
PE
5060}
5061
2633d7a0 5062struct kmem_cache *
f4957d5b 5063__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 5064 slab_flags_t flags, void (*ctor)(void *))
81819f0f 5065{
10befea9 5066 struct kmem_cache *s;
81819f0f 5067
a44cb944 5068 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 5069 if (s) {
efb93527
XS
5070 if (sysfs_slab_alias(s, name))
5071 return NULL;
5072
81819f0f 5073 s->refcount++;
84d0ddd6 5074
81819f0f
CL
5075 /*
5076 * Adjust the object sizes so that we clear
5077 * the complete object on kzalloc.
5078 */
1b473f29 5079 s->object_size = max(s->object_size, size);
52ee6d74 5080 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 5081 }
6446faa2 5082
cbb79694
CL
5083 return s;
5084}
84c1cf62 5085
d50112ed 5086int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 5087{
aac3a166
PE
5088 int err;
5089
5090 err = kmem_cache_open(s, flags);
5091 if (err)
5092 return err;
20cea968 5093
45530c44
CL
5094 /* Mutex is not taken during early boot */
5095 if (slab_state <= UP)
5096 return 0;
5097
aac3a166 5098 err = sysfs_slab_add(s);
67823a54 5099 if (err) {
52b4b950 5100 __kmem_cache_release(s);
67823a54
ML
5101 return err;
5102 }
20cea968 5103
64dd6849
FM
5104 if (s->flags & SLAB_STORE_USER)
5105 debugfs_slab_add(s);
5106
67823a54 5107 return 0;
81819f0f 5108}
81819f0f 5109
b1a413a3 5110#ifdef SLAB_SUPPORTS_SYSFS
bb192ed9 5111static int count_inuse(struct slab *slab)
205ab99d 5112{
bb192ed9 5113 return slab->inuse;
205ab99d
CL
5114}
5115
bb192ed9 5116static int count_total(struct slab *slab)
205ab99d 5117{
bb192ed9 5118 return slab->objects;
205ab99d 5119}
ab4d5ed5 5120#endif
205ab99d 5121
ab4d5ed5 5122#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5123static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 5124 unsigned long *obj_map)
53e15af0
CL
5125{
5126 void *p;
bb192ed9 5127 void *addr = slab_address(slab);
53e15af0 5128
bb192ed9 5129 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
41bec7c3 5130 return;
53e15af0
CL
5131
5132 /* Now we know that a valid freelist exists */
bb192ed9
VB
5133 __fill_map(obj_map, s, slab);
5134 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 5135 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 5136 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 5137
bb192ed9 5138 if (!check_object(s, slab, p, val))
dd98afd4
YZ
5139 break;
5140 }
53e15af0
CL
5141}
5142
434e245d 5143static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5144 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5145{
5146 unsigned long count = 0;
bb192ed9 5147 struct slab *slab;
53e15af0
CL
5148 unsigned long flags;
5149
5150 spin_lock_irqsave(&n->list_lock, flags);
5151
bb192ed9
VB
5152 list_for_each_entry(slab, &n->partial, slab_list) {
5153 validate_slab(s, slab, obj_map);
53e15af0
CL
5154 count++;
5155 }
1f9f78b1 5156 if (count != n->nr_partial) {
f9f58285
FF
5157 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5158 s->name, count, n->nr_partial);
1f9f78b1
OG
5159 slab_add_kunit_errors();
5160 }
53e15af0
CL
5161
5162 if (!(s->flags & SLAB_STORE_USER))
5163 goto out;
5164
bb192ed9
VB
5165 list_for_each_entry(slab, &n->full, slab_list) {
5166 validate_slab(s, slab, obj_map);
53e15af0
CL
5167 count++;
5168 }
1f9f78b1 5169 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
5170 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5171 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
5172 slab_add_kunit_errors();
5173 }
53e15af0
CL
5174
5175out:
5176 spin_unlock_irqrestore(&n->list_lock, flags);
5177 return count;
5178}
5179
1f9f78b1 5180long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5181{
5182 int node;
5183 unsigned long count = 0;
fa45dc25 5184 struct kmem_cache_node *n;
0a19e7dd
VB
5185 unsigned long *obj_map;
5186
5187 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5188 if (!obj_map)
5189 return -ENOMEM;
53e15af0
CL
5190
5191 flush_all(s);
fa45dc25 5192 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
5193 count += validate_slab_node(s, n, obj_map);
5194
5195 bitmap_free(obj_map);
90e9f6a6 5196
53e15af0
CL
5197 return count;
5198}
1f9f78b1
OG
5199EXPORT_SYMBOL(validate_slab_cache);
5200
64dd6849 5201#ifdef CONFIG_DEBUG_FS
88a420e4 5202/*
672bba3a 5203 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
5204 * and freed.
5205 */
5206
5207struct location {
8ea9fb92 5208 depot_stack_handle_t handle;
88a420e4 5209 unsigned long count;
ce71e27c 5210 unsigned long addr;
6edf2576 5211 unsigned long waste;
45edfa58
CL
5212 long long sum_time;
5213 long min_time;
5214 long max_time;
5215 long min_pid;
5216 long max_pid;
174596a0 5217 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 5218 nodemask_t nodes;
88a420e4
CL
5219};
5220
5221struct loc_track {
5222 unsigned long max;
5223 unsigned long count;
5224 struct location *loc;
005a79e5 5225 loff_t idx;
88a420e4
CL
5226};
5227
64dd6849
FM
5228static struct dentry *slab_debugfs_root;
5229
88a420e4
CL
5230static void free_loc_track(struct loc_track *t)
5231{
5232 if (t->max)
5233 free_pages((unsigned long)t->loc,
5234 get_order(sizeof(struct location) * t->max));
5235}
5236
68dff6a9 5237static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
5238{
5239 struct location *l;
5240 int order;
5241
88a420e4
CL
5242 order = get_order(sizeof(struct location) * max);
5243
68dff6a9 5244 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
5245 if (!l)
5246 return 0;
5247
5248 if (t->count) {
5249 memcpy(l, t->loc, sizeof(struct location) * t->count);
5250 free_loc_track(t);
5251 }
5252 t->max = max;
5253 t->loc = l;
5254 return 1;
5255}
5256
5257static int add_location(struct loc_track *t, struct kmem_cache *s,
6edf2576
FT
5258 const struct track *track,
5259 unsigned int orig_size)
88a420e4
CL
5260{
5261 long start, end, pos;
5262 struct location *l;
6edf2576 5263 unsigned long caddr, chandle, cwaste;
45edfa58 5264 unsigned long age = jiffies - track->when;
8ea9fb92 5265 depot_stack_handle_t handle = 0;
6edf2576 5266 unsigned int waste = s->object_size - orig_size;
88a420e4 5267
8ea9fb92
OG
5268#ifdef CONFIG_STACKDEPOT
5269 handle = READ_ONCE(track->handle);
5270#endif
88a420e4
CL
5271 start = -1;
5272 end = t->count;
5273
5274 for ( ; ; ) {
5275 pos = start + (end - start + 1) / 2;
5276
5277 /*
5278 * There is nothing at "end". If we end up there
5279 * we need to add something to before end.
5280 */
5281 if (pos == end)
5282 break;
5283
6edf2576
FT
5284 l = &t->loc[pos];
5285 caddr = l->addr;
5286 chandle = l->handle;
5287 cwaste = l->waste;
5288 if ((track->addr == caddr) && (handle == chandle) &&
5289 (waste == cwaste)) {
45edfa58 5290
45edfa58
CL
5291 l->count++;
5292 if (track->when) {
5293 l->sum_time += age;
5294 if (age < l->min_time)
5295 l->min_time = age;
5296 if (age > l->max_time)
5297 l->max_time = age;
5298
5299 if (track->pid < l->min_pid)
5300 l->min_pid = track->pid;
5301 if (track->pid > l->max_pid)
5302 l->max_pid = track->pid;
5303
174596a0
RR
5304 cpumask_set_cpu(track->cpu,
5305 to_cpumask(l->cpus));
45edfa58
CL
5306 }
5307 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5308 return 1;
5309 }
5310
45edfa58 5311 if (track->addr < caddr)
88a420e4 5312 end = pos;
8ea9fb92
OG
5313 else if (track->addr == caddr && handle < chandle)
5314 end = pos;
6edf2576
FT
5315 else if (track->addr == caddr && handle == chandle &&
5316 waste < cwaste)
5317 end = pos;
88a420e4
CL
5318 else
5319 start = pos;
5320 }
5321
5322 /*
672bba3a 5323 * Not found. Insert new tracking element.
88a420e4 5324 */
68dff6a9 5325 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
5326 return 0;
5327
5328 l = t->loc + pos;
5329 if (pos < t->count)
5330 memmove(l + 1, l,
5331 (t->count - pos) * sizeof(struct location));
5332 t->count++;
5333 l->count = 1;
45edfa58
CL
5334 l->addr = track->addr;
5335 l->sum_time = age;
5336 l->min_time = age;
5337 l->max_time = age;
5338 l->min_pid = track->pid;
5339 l->max_pid = track->pid;
8ea9fb92 5340 l->handle = handle;
6edf2576 5341 l->waste = waste;
174596a0
RR
5342 cpumask_clear(to_cpumask(l->cpus));
5343 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
5344 nodes_clear(l->nodes);
5345 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5346 return 1;
5347}
5348
5349static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 5350 struct slab *slab, enum track_item alloc,
b3fd64e1 5351 unsigned long *obj_map)
88a420e4 5352{
bb192ed9 5353 void *addr = slab_address(slab);
6edf2576 5354 bool is_alloc = (alloc == TRACK_ALLOC);
88a420e4
CL
5355 void *p;
5356
bb192ed9 5357 __fill_map(obj_map, s, slab);
b3fd64e1 5358
bb192ed9 5359 for_each_object(p, s, addr, slab->objects)
b3fd64e1 5360 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6edf2576
FT
5361 add_location(t, s, get_track(s, p, alloc),
5362 is_alloc ? get_orig_size(s, p) :
5363 s->object_size);
88a420e4 5364}
64dd6849 5365#endif /* CONFIG_DEBUG_FS */
6dfd1b65 5366#endif /* CONFIG_SLUB_DEBUG */
88a420e4 5367
b1a413a3 5368#ifdef SLAB_SUPPORTS_SYSFS
81819f0f 5369enum slab_stat_type {
205ab99d
CL
5370 SL_ALL, /* All slabs */
5371 SL_PARTIAL, /* Only partially allocated slabs */
5372 SL_CPU, /* Only slabs used for cpu caches */
5373 SL_OBJECTS, /* Determine allocated objects not slabs */
5374 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
5375};
5376
205ab99d 5377#define SO_ALL (1 << SL_ALL)
81819f0f
CL
5378#define SO_PARTIAL (1 << SL_PARTIAL)
5379#define SO_CPU (1 << SL_CPU)
5380#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 5381#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 5382
62e5c4b4 5383static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 5384 char *buf, unsigned long flags)
81819f0f
CL
5385{
5386 unsigned long total = 0;
81819f0f
CL
5387 int node;
5388 int x;
5389 unsigned long *nodes;
bf16d19a 5390 int len = 0;
81819f0f 5391
6396bb22 5392 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5393 if (!nodes)
5394 return -ENOMEM;
81819f0f 5395
205ab99d
CL
5396 if (flags & SO_CPU) {
5397 int cpu;
81819f0f 5398
205ab99d 5399 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5400 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5401 cpu);
ec3ab083 5402 int node;
bb192ed9 5403 struct slab *slab;
dfb4f096 5404
bb192ed9
VB
5405 slab = READ_ONCE(c->slab);
5406 if (!slab)
ec3ab083 5407 continue;
205ab99d 5408
bb192ed9 5409 node = slab_nid(slab);
ec3ab083 5410 if (flags & SO_TOTAL)
bb192ed9 5411 x = slab->objects;
ec3ab083 5412 else if (flags & SO_OBJECTS)
bb192ed9 5413 x = slab->inuse;
ec3ab083
CL
5414 else
5415 x = 1;
49e22585 5416
ec3ab083
CL
5417 total += x;
5418 nodes[node] += x;
5419
9c01e9af 5420#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
5421 slab = slub_percpu_partial_read_once(c);
5422 if (slab) {
5423 node = slab_nid(slab);
8afb1474
LZ
5424 if (flags & SO_TOTAL)
5425 WARN_ON_ONCE(1);
5426 else if (flags & SO_OBJECTS)
5427 WARN_ON_ONCE(1);
5428 else
bb192ed9 5429 x = slab->slabs;
bc6697d8
ED
5430 total += x;
5431 nodes[node] += x;
49e22585 5432 }
9c01e9af 5433#endif
81819f0f
CL
5434 }
5435 }
5436
e4f8e513
QC
5437 /*
5438 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5439 * already held which will conflict with an existing lock order:
5440 *
5441 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5442 *
5443 * We don't really need mem_hotplug_lock (to hold off
5444 * slab_mem_going_offline_callback) here because slab's memory hot
5445 * unplug code doesn't destroy the kmem_cache->node[] data.
5446 */
5447
ab4d5ed5 5448#ifdef CONFIG_SLUB_DEBUG
205ab99d 5449 if (flags & SO_ALL) {
fa45dc25
CL
5450 struct kmem_cache_node *n;
5451
5452 for_each_kmem_cache_node(s, node, n) {
205ab99d 5453
d0e0ac97
CG
5454 if (flags & SO_TOTAL)
5455 x = atomic_long_read(&n->total_objects);
5456 else if (flags & SO_OBJECTS)
5457 x = atomic_long_read(&n->total_objects) -
5458 count_partial(n, count_free);
81819f0f 5459 else
205ab99d 5460 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5461 total += x;
5462 nodes[node] += x;
5463 }
5464
ab4d5ed5
CL
5465 } else
5466#endif
5467 if (flags & SO_PARTIAL) {
fa45dc25 5468 struct kmem_cache_node *n;
81819f0f 5469
fa45dc25 5470 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5471 if (flags & SO_TOTAL)
5472 x = count_partial(n, count_total);
5473 else if (flags & SO_OBJECTS)
5474 x = count_partial(n, count_inuse);
81819f0f 5475 else
205ab99d 5476 x = n->nr_partial;
81819f0f
CL
5477 total += x;
5478 nodes[node] += x;
5479 }
5480 }
bf16d19a
JP
5481
5482 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5483#ifdef CONFIG_NUMA
bf16d19a 5484 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5485 if (nodes[node])
bf16d19a
JP
5486 len += sysfs_emit_at(buf, len, " N%d=%lu",
5487 node, nodes[node]);
5488 }
81819f0f 5489#endif
bf16d19a 5490 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5491 kfree(nodes);
bf16d19a
JP
5492
5493 return len;
81819f0f
CL
5494}
5495
81819f0f 5496#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5497#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5498
5499struct slab_attribute {
5500 struct attribute attr;
5501 ssize_t (*show)(struct kmem_cache *s, char *buf);
5502 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5503};
5504
5505#define SLAB_ATTR_RO(_name) \
d1d28bd9 5506 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
5507
5508#define SLAB_ATTR(_name) \
d1d28bd9 5509 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 5510
81819f0f
CL
5511static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5512{
bf16d19a 5513 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5514}
5515SLAB_ATTR_RO(slab_size);
5516
5517static ssize_t align_show(struct kmem_cache *s, char *buf)
5518{
bf16d19a 5519 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5520}
5521SLAB_ATTR_RO(align);
5522
5523static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5524{
bf16d19a 5525 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5526}
5527SLAB_ATTR_RO(object_size);
5528
5529static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5530{
bf16d19a 5531 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5532}
5533SLAB_ATTR_RO(objs_per_slab);
5534
5535static ssize_t order_show(struct kmem_cache *s, char *buf)
5536{
bf16d19a 5537 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5538}
32a6f409 5539SLAB_ATTR_RO(order);
81819f0f 5540
73d342b1
DR
5541static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5542{
bf16d19a 5543 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5544}
5545
5546static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5547 size_t length)
5548{
5549 unsigned long min;
5550 int err;
5551
3dbb95f7 5552 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5553 if (err)
5554 return err;
5555
5182f3c9 5556 s->min_partial = min;
73d342b1
DR
5557 return length;
5558}
5559SLAB_ATTR(min_partial);
5560
49e22585
CL
5561static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5562{
b47291ef
VB
5563 unsigned int nr_partial = 0;
5564#ifdef CONFIG_SLUB_CPU_PARTIAL
5565 nr_partial = s->cpu_partial;
5566#endif
5567
5568 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
5569}
5570
5571static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5572 size_t length)
5573{
e5d9998f 5574 unsigned int objects;
49e22585
CL
5575 int err;
5576
e5d9998f 5577 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5578 if (err)
5579 return err;
345c905d 5580 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5581 return -EINVAL;
49e22585 5582
e6d0e1dc 5583 slub_set_cpu_partial(s, objects);
49e22585
CL
5584 flush_all(s);
5585 return length;
5586}
5587SLAB_ATTR(cpu_partial);
5588
81819f0f
CL
5589static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5590{
62c70bce
JP
5591 if (!s->ctor)
5592 return 0;
bf16d19a 5593 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5594}
5595SLAB_ATTR_RO(ctor);
5596
81819f0f
CL
5597static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5598{
bf16d19a 5599 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5600}
5601SLAB_ATTR_RO(aliases);
5602
81819f0f
CL
5603static ssize_t partial_show(struct kmem_cache *s, char *buf)
5604{
d9acf4b7 5605 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5606}
5607SLAB_ATTR_RO(partial);
5608
5609static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5610{
d9acf4b7 5611 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5612}
5613SLAB_ATTR_RO(cpu_slabs);
5614
5615static ssize_t objects_show(struct kmem_cache *s, char *buf)
5616{
205ab99d 5617 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5618}
5619SLAB_ATTR_RO(objects);
5620
205ab99d
CL
5621static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5622{
5623 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5624}
5625SLAB_ATTR_RO(objects_partial);
5626
49e22585
CL
5627static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5628{
5629 int objects = 0;
bb192ed9 5630 int slabs = 0;
9c01e9af 5631 int cpu __maybe_unused;
bf16d19a 5632 int len = 0;
49e22585 5633
9c01e9af 5634#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 5635 for_each_online_cpu(cpu) {
bb192ed9 5636 struct slab *slab;
a93cf07b 5637
bb192ed9 5638 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 5639
bb192ed9
VB
5640 if (slab)
5641 slabs += slab->slabs;
49e22585 5642 }
9c01e9af 5643#endif
49e22585 5644
c2092c12 5645 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
5646 objects = (slabs * oo_objects(s->oo)) / 2;
5647 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 5648
9c01e9af 5649#if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
49e22585 5650 for_each_online_cpu(cpu) {
bb192ed9 5651 struct slab *slab;
a93cf07b 5652
bb192ed9
VB
5653 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5654 if (slab) {
5655 slabs = READ_ONCE(slab->slabs);
5656 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 5657 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 5658 cpu, objects, slabs);
b47291ef 5659 }
49e22585
CL
5660 }
5661#endif
bf16d19a
JP
5662 len += sysfs_emit_at(buf, len, "\n");
5663
5664 return len;
49e22585
CL
5665}
5666SLAB_ATTR_RO(slabs_cpu_partial);
5667
a5a84755
CL
5668static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5669{
bf16d19a 5670 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5671}
8f58119a 5672SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5673
5674static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5675{
bf16d19a 5676 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5677}
5678SLAB_ATTR_RO(hwcache_align);
5679
5680#ifdef CONFIG_ZONE_DMA
5681static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5682{
bf16d19a 5683 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5684}
5685SLAB_ATTR_RO(cache_dma);
5686#endif
5687
346907ce 5688#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
5689static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5690{
bf16d19a 5691 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5692}
5693SLAB_ATTR_RO(usersize);
346907ce 5694#endif
8eb8284b 5695
a5a84755
CL
5696static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5697{
bf16d19a 5698 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5699}
5700SLAB_ATTR_RO(destroy_by_rcu);
5701
ab4d5ed5 5702#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5703static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5704{
5705 return show_slab_objects(s, buf, SO_ALL);
5706}
5707SLAB_ATTR_RO(slabs);
5708
205ab99d
CL
5709static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5710{
5711 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5712}
5713SLAB_ATTR_RO(total_objects);
5714
81819f0f
CL
5715static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5716{
bf16d19a 5717 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5718}
060807f8 5719SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5720
5721static ssize_t trace_show(struct kmem_cache *s, char *buf)
5722{
bf16d19a 5723 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5724}
060807f8 5725SLAB_ATTR_RO(trace);
81819f0f 5726
81819f0f
CL
5727static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5728{
bf16d19a 5729 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5730}
5731
ad38b5b1 5732SLAB_ATTR_RO(red_zone);
81819f0f
CL
5733
5734static ssize_t poison_show(struct kmem_cache *s, char *buf)
5735{
bf16d19a 5736 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5737}
5738
ad38b5b1 5739SLAB_ATTR_RO(poison);
81819f0f
CL
5740
5741static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5742{
bf16d19a 5743 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5744}
5745
ad38b5b1 5746SLAB_ATTR_RO(store_user);
81819f0f 5747
53e15af0
CL
5748static ssize_t validate_show(struct kmem_cache *s, char *buf)
5749{
5750 return 0;
5751}
5752
5753static ssize_t validate_store(struct kmem_cache *s,
5754 const char *buf, size_t length)
5755{
434e245d
CL
5756 int ret = -EINVAL;
5757
c7323a5a 5758 if (buf[0] == '1' && kmem_cache_debug(s)) {
434e245d
CL
5759 ret = validate_slab_cache(s);
5760 if (ret >= 0)
5761 ret = length;
5762 }
5763 return ret;
53e15af0
CL
5764}
5765SLAB_ATTR(validate);
a5a84755 5766
a5a84755
CL
5767#endif /* CONFIG_SLUB_DEBUG */
5768
5769#ifdef CONFIG_FAILSLAB
5770static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5771{
bf16d19a 5772 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5773}
7c82b3b3
AA
5774
5775static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5776 size_t length)
5777{
5778 if (s->refcount > 1)
5779 return -EINVAL;
5780
5781 if (buf[0] == '1')
5782 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5783 else
5784 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5785
5786 return length;
5787}
5788SLAB_ATTR(failslab);
ab4d5ed5 5789#endif
53e15af0 5790
2086d26a
CL
5791static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5792{
5793 return 0;
5794}
5795
5796static ssize_t shrink_store(struct kmem_cache *s,
5797 const char *buf, size_t length)
5798{
832f37f5 5799 if (buf[0] == '1')
10befea9 5800 kmem_cache_shrink(s);
832f37f5 5801 else
2086d26a
CL
5802 return -EINVAL;
5803 return length;
5804}
5805SLAB_ATTR(shrink);
5806
81819f0f 5807#ifdef CONFIG_NUMA
9824601e 5808static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5809{
bf16d19a 5810 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5811}
5812
9824601e 5813static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5814 const char *buf, size_t length)
5815{
eb7235eb 5816 unsigned int ratio;
0121c619
CL
5817 int err;
5818
eb7235eb 5819 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5820 if (err)
5821 return err;
eb7235eb
AD
5822 if (ratio > 100)
5823 return -ERANGE;
0121c619 5824
eb7235eb 5825 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5826
81819f0f
CL
5827 return length;
5828}
9824601e 5829SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5830#endif
5831
8ff12cfc 5832#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5833static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5834{
5835 unsigned long sum = 0;
5836 int cpu;
bf16d19a 5837 int len = 0;
6da2ec56 5838 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5839
5840 if (!data)
5841 return -ENOMEM;
5842
5843 for_each_online_cpu(cpu) {
9dfc6e68 5844 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5845
5846 data[cpu] = x;
5847 sum += x;
5848 }
5849
bf16d19a 5850 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5851
50ef37b9 5852#ifdef CONFIG_SMP
8ff12cfc 5853 for_each_online_cpu(cpu) {
bf16d19a
JP
5854 if (data[cpu])
5855 len += sysfs_emit_at(buf, len, " C%d=%u",
5856 cpu, data[cpu]);
8ff12cfc 5857 }
50ef37b9 5858#endif
8ff12cfc 5859 kfree(data);
bf16d19a
JP
5860 len += sysfs_emit_at(buf, len, "\n");
5861
5862 return len;
8ff12cfc
CL
5863}
5864
78eb00cc
DR
5865static void clear_stat(struct kmem_cache *s, enum stat_item si)
5866{
5867 int cpu;
5868
5869 for_each_online_cpu(cpu)
9dfc6e68 5870 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5871}
5872
8ff12cfc
CL
5873#define STAT_ATTR(si, text) \
5874static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5875{ \
5876 return show_stat(s, buf, si); \
5877} \
78eb00cc
DR
5878static ssize_t text##_store(struct kmem_cache *s, \
5879 const char *buf, size_t length) \
5880{ \
5881 if (buf[0] != '0') \
5882 return -EINVAL; \
5883 clear_stat(s, si); \
5884 return length; \
5885} \
5886SLAB_ATTR(text); \
8ff12cfc
CL
5887
5888STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5889STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5890STAT_ATTR(FREE_FASTPATH, free_fastpath);
5891STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5892STAT_ATTR(FREE_FROZEN, free_frozen);
5893STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5894STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5895STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5896STAT_ATTR(ALLOC_SLAB, alloc_slab);
5897STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5898STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5899STAT_ATTR(FREE_SLAB, free_slab);
5900STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5901STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5902STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5903STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5904STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5905STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5906STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5907STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5908STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5909STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5910STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5911STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5912STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5913STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5914#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5915
b84e04f1
IK
5916#ifdef CONFIG_KFENCE
5917static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5918{
5919 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5920}
5921
5922static ssize_t skip_kfence_store(struct kmem_cache *s,
5923 const char *buf, size_t length)
5924{
5925 int ret = length;
5926
5927 if (buf[0] == '0')
5928 s->flags &= ~SLAB_SKIP_KFENCE;
5929 else if (buf[0] == '1')
5930 s->flags |= SLAB_SKIP_KFENCE;
5931 else
5932 ret = -EINVAL;
5933
5934 return ret;
5935}
5936SLAB_ATTR(skip_kfence);
5937#endif
5938
06428780 5939static struct attribute *slab_attrs[] = {
81819f0f
CL
5940 &slab_size_attr.attr,
5941 &object_size_attr.attr,
5942 &objs_per_slab_attr.attr,
5943 &order_attr.attr,
73d342b1 5944 &min_partial_attr.attr,
49e22585 5945 &cpu_partial_attr.attr,
81819f0f 5946 &objects_attr.attr,
205ab99d 5947 &objects_partial_attr.attr,
81819f0f
CL
5948 &partial_attr.attr,
5949 &cpu_slabs_attr.attr,
5950 &ctor_attr.attr,
81819f0f
CL
5951 &aliases_attr.attr,
5952 &align_attr.attr,
81819f0f
CL
5953 &hwcache_align_attr.attr,
5954 &reclaim_account_attr.attr,
5955 &destroy_by_rcu_attr.attr,
a5a84755 5956 &shrink_attr.attr,
49e22585 5957 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5958#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5959 &total_objects_attr.attr,
5960 &slabs_attr.attr,
5961 &sanity_checks_attr.attr,
5962 &trace_attr.attr,
81819f0f
CL
5963 &red_zone_attr.attr,
5964 &poison_attr.attr,
5965 &store_user_attr.attr,
53e15af0 5966 &validate_attr.attr,
ab4d5ed5 5967#endif
81819f0f
CL
5968#ifdef CONFIG_ZONE_DMA
5969 &cache_dma_attr.attr,
5970#endif
5971#ifdef CONFIG_NUMA
9824601e 5972 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5973#endif
5974#ifdef CONFIG_SLUB_STATS
5975 &alloc_fastpath_attr.attr,
5976 &alloc_slowpath_attr.attr,
5977 &free_fastpath_attr.attr,
5978 &free_slowpath_attr.attr,
5979 &free_frozen_attr.attr,
5980 &free_add_partial_attr.attr,
5981 &free_remove_partial_attr.attr,
5982 &alloc_from_partial_attr.attr,
5983 &alloc_slab_attr.attr,
5984 &alloc_refill_attr.attr,
e36a2652 5985 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5986 &free_slab_attr.attr,
5987 &cpuslab_flush_attr.attr,
5988 &deactivate_full_attr.attr,
5989 &deactivate_empty_attr.attr,
5990 &deactivate_to_head_attr.attr,
5991 &deactivate_to_tail_attr.attr,
5992 &deactivate_remote_frees_attr.attr,
03e404af 5993 &deactivate_bypass_attr.attr,
65c3376a 5994 &order_fallback_attr.attr,
b789ef51
CL
5995 &cmpxchg_double_fail_attr.attr,
5996 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5997 &cpu_partial_alloc_attr.attr,
5998 &cpu_partial_free_attr.attr,
8028dcea
AS
5999 &cpu_partial_node_attr.attr,
6000 &cpu_partial_drain_attr.attr,
81819f0f 6001#endif
4c13dd3b
DM
6002#ifdef CONFIG_FAILSLAB
6003 &failslab_attr.attr,
6004#endif
346907ce 6005#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b 6006 &usersize_attr.attr,
346907ce 6007#endif
b84e04f1
IK
6008#ifdef CONFIG_KFENCE
6009 &skip_kfence_attr.attr,
6010#endif
4c13dd3b 6011
81819f0f
CL
6012 NULL
6013};
6014
1fdaaa23 6015static const struct attribute_group slab_attr_group = {
81819f0f
CL
6016 .attrs = slab_attrs,
6017};
6018
6019static ssize_t slab_attr_show(struct kobject *kobj,
6020 struct attribute *attr,
6021 char *buf)
6022{
6023 struct slab_attribute *attribute;
6024 struct kmem_cache *s;
81819f0f
CL
6025
6026 attribute = to_slab_attr(attr);
6027 s = to_slab(kobj);
6028
6029 if (!attribute->show)
6030 return -EIO;
6031
2bfbb027 6032 return attribute->show(s, buf);
81819f0f
CL
6033}
6034
6035static ssize_t slab_attr_store(struct kobject *kobj,
6036 struct attribute *attr,
6037 const char *buf, size_t len)
6038{
6039 struct slab_attribute *attribute;
6040 struct kmem_cache *s;
81819f0f
CL
6041
6042 attribute = to_slab_attr(attr);
6043 s = to_slab(kobj);
6044
6045 if (!attribute->store)
6046 return -EIO;
6047
2bfbb027 6048 return attribute->store(s, buf, len);
81819f0f
CL
6049}
6050
41a21285
CL
6051static void kmem_cache_release(struct kobject *k)
6052{
6053 slab_kmem_cache_release(to_slab(k));
6054}
6055
52cf25d0 6056static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
6057 .show = slab_attr_show,
6058 .store = slab_attr_store,
6059};
6060
9ebe720e 6061static const struct kobj_type slab_ktype = {
81819f0f 6062 .sysfs_ops = &slab_sysfs_ops,
41a21285 6063 .release = kmem_cache_release,
81819f0f
CL
6064};
6065
27c3a314 6066static struct kset *slab_kset;
81819f0f 6067
9a41707b
VD
6068static inline struct kset *cache_kset(struct kmem_cache *s)
6069{
9a41707b
VD
6070 return slab_kset;
6071}
6072
d65360f2 6073#define ID_STR_LENGTH 32
81819f0f
CL
6074
6075/* Create a unique string id for a slab cache:
6446faa2
CL
6076 *
6077 * Format :[flags-]size
81819f0f
CL
6078 */
6079static char *create_unique_id(struct kmem_cache *s)
6080{
6081 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6082 char *p = name;
6083
7e9c323c
CY
6084 if (!name)
6085 return ERR_PTR(-ENOMEM);
81819f0f
CL
6086
6087 *p++ = ':';
6088 /*
6089 * First flags affecting slabcache operations. We will only
6090 * get here for aliasable slabs so we do not need to support
6091 * too many flags. The flags here must cover all flags that
6092 * are matched during merging to guarantee that the id is
6093 * unique.
6094 */
6095 if (s->flags & SLAB_CACHE_DMA)
6096 *p++ = 'd';
6d6ea1e9
NB
6097 if (s->flags & SLAB_CACHE_DMA32)
6098 *p++ = 'D';
81819f0f
CL
6099 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6100 *p++ = 'a';
becfda68 6101 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 6102 *p++ = 'F';
230e9fc2
VD
6103 if (s->flags & SLAB_ACCOUNT)
6104 *p++ = 'A';
81819f0f
CL
6105 if (p != name + 1)
6106 *p++ = '-';
d65360f2 6107 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
2633d7a0 6108
d65360f2
CY
6109 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6110 kfree(name);
6111 return ERR_PTR(-EINVAL);
6112 }
68ef169a 6113 kmsan_unpoison_memory(name, p - name);
81819f0f
CL
6114 return name;
6115}
6116
6117static int sysfs_slab_add(struct kmem_cache *s)
6118{
6119 int err;
6120 const char *name;
1663f26d 6121 struct kset *kset = cache_kset(s);
45530c44 6122 int unmergeable = slab_unmergeable(s);
81819f0f 6123
11066386
MC
6124 if (!unmergeable && disable_higher_order_debug &&
6125 (slub_debug & DEBUG_METADATA_FLAGS))
6126 unmergeable = 1;
6127
81819f0f
CL
6128 if (unmergeable) {
6129 /*
6130 * Slabcache can never be merged so we can use the name proper.
6131 * This is typically the case for debug situations. In that
6132 * case we can catch duplicate names easily.
6133 */
27c3a314 6134 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
6135 name = s->name;
6136 } else {
6137 /*
6138 * Create a unique name for the slab as a target
6139 * for the symlinks.
6140 */
6141 name = create_unique_id(s);
7e9c323c
CY
6142 if (IS_ERR(name))
6143 return PTR_ERR(name);
81819f0f
CL
6144 }
6145
1663f26d 6146 s->kobj.kset = kset;
26e4f205 6147 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 6148 if (err)
80da026a 6149 goto out;
81819f0f
CL
6150
6151 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
6152 if (err)
6153 goto out_del_kobj;
9a41707b 6154
81819f0f
CL
6155 if (!unmergeable) {
6156 /* Setup first alias */
6157 sysfs_slab_alias(s, s->name);
81819f0f 6158 }
54b6a731
DJ
6159out:
6160 if (!unmergeable)
6161 kfree(name);
6162 return err;
6163out_del_kobj:
6164 kobject_del(&s->kobj);
54b6a731 6165 goto out;
81819f0f
CL
6166}
6167
d50d82fa
MP
6168void sysfs_slab_unlink(struct kmem_cache *s)
6169{
6170 if (slab_state >= FULL)
6171 kobject_del(&s->kobj);
6172}
6173
bf5eb3de
TH
6174void sysfs_slab_release(struct kmem_cache *s)
6175{
6176 if (slab_state >= FULL)
6177 kobject_put(&s->kobj);
81819f0f
CL
6178}
6179
6180/*
6181 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 6182 * available lest we lose that information.
81819f0f
CL
6183 */
6184struct saved_alias {
6185 struct kmem_cache *s;
6186 const char *name;
6187 struct saved_alias *next;
6188};
6189
5af328a5 6190static struct saved_alias *alias_list;
81819f0f
CL
6191
6192static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6193{
6194 struct saved_alias *al;
6195
97d06609 6196 if (slab_state == FULL) {
81819f0f
CL
6197 /*
6198 * If we have a leftover link then remove it.
6199 */
27c3a314
GKH
6200 sysfs_remove_link(&slab_kset->kobj, name);
6201 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
6202 }
6203
6204 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6205 if (!al)
6206 return -ENOMEM;
6207
6208 al->s = s;
6209 al->name = name;
6210 al->next = alias_list;
6211 alias_list = al;
68ef169a 6212 kmsan_unpoison_memory(al, sizeof(*al));
81819f0f
CL
6213 return 0;
6214}
6215
6216static int __init slab_sysfs_init(void)
6217{
5b95a4ac 6218 struct kmem_cache *s;
81819f0f
CL
6219 int err;
6220
18004c5d 6221 mutex_lock(&slab_mutex);
2bce6485 6222
d7660ce5 6223 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 6224 if (!slab_kset) {
18004c5d 6225 mutex_unlock(&slab_mutex);
f9f58285 6226 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
6227 return -ENOSYS;
6228 }
6229
97d06609 6230 slab_state = FULL;
26a7bd03 6231
5b95a4ac 6232 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 6233 err = sysfs_slab_add(s);
5d540fb7 6234 if (err)
f9f58285
FF
6235 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6236 s->name);
26a7bd03 6237 }
81819f0f
CL
6238
6239 while (alias_list) {
6240 struct saved_alias *al = alias_list;
6241
6242 alias_list = alias_list->next;
6243 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 6244 if (err)
f9f58285
FF
6245 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6246 al->name);
81819f0f
CL
6247 kfree(al);
6248 }
6249
18004c5d 6250 mutex_unlock(&slab_mutex);
81819f0f
CL
6251 return 0;
6252}
1a5ad30b 6253late_initcall(slab_sysfs_init);
b1a413a3 6254#endif /* SLAB_SUPPORTS_SYSFS */
57ed3eda 6255
64dd6849
FM
6256#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6257static int slab_debugfs_show(struct seq_file *seq, void *v)
6258{
64dd6849 6259 struct loc_track *t = seq->private;
005a79e5
GS
6260 struct location *l;
6261 unsigned long idx;
64dd6849 6262
005a79e5 6263 idx = (unsigned long) t->idx;
64dd6849
FM
6264 if (idx < t->count) {
6265 l = &t->loc[idx];
6266
6267 seq_printf(seq, "%7ld ", l->count);
6268
6269 if (l->addr)
6270 seq_printf(seq, "%pS", (void *)l->addr);
6271 else
6272 seq_puts(seq, "<not-available>");
6273
6edf2576
FT
6274 if (l->waste)
6275 seq_printf(seq, " waste=%lu/%lu",
6276 l->count * l->waste, l->waste);
6277
64dd6849
FM
6278 if (l->sum_time != l->min_time) {
6279 seq_printf(seq, " age=%ld/%llu/%ld",
6280 l->min_time, div_u64(l->sum_time, l->count),
6281 l->max_time);
6282 } else
6283 seq_printf(seq, " age=%ld", l->min_time);
6284
6285 if (l->min_pid != l->max_pid)
6286 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6287 else
6288 seq_printf(seq, " pid=%ld",
6289 l->min_pid);
6290
6291 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6292 seq_printf(seq, " cpus=%*pbl",
6293 cpumask_pr_args(to_cpumask(l->cpus)));
6294
6295 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6296 seq_printf(seq, " nodes=%*pbl",
6297 nodemask_pr_args(&l->nodes));
6298
8ea9fb92
OG
6299#ifdef CONFIG_STACKDEPOT
6300 {
6301 depot_stack_handle_t handle;
6302 unsigned long *entries;
6303 unsigned int nr_entries, j;
6304
6305 handle = READ_ONCE(l->handle);
6306 if (handle) {
6307 nr_entries = stack_depot_fetch(handle, &entries);
6308 seq_puts(seq, "\n");
6309 for (j = 0; j < nr_entries; j++)
6310 seq_printf(seq, " %pS\n", (void *)entries[j]);
6311 }
6312 }
6313#endif
64dd6849
FM
6314 seq_puts(seq, "\n");
6315 }
6316
6317 if (!idx && !t->count)
6318 seq_puts(seq, "No data\n");
6319
6320 return 0;
6321}
6322
6323static void slab_debugfs_stop(struct seq_file *seq, void *v)
6324{
6325}
6326
6327static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6328{
6329 struct loc_track *t = seq->private;
6330
005a79e5 6331 t->idx = ++(*ppos);
64dd6849 6332 if (*ppos <= t->count)
005a79e5 6333 return ppos;
64dd6849
FM
6334
6335 return NULL;
6336}
6337
553c0369
OG
6338static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6339{
6340 struct location *loc1 = (struct location *)a;
6341 struct location *loc2 = (struct location *)b;
6342
6343 if (loc1->count > loc2->count)
6344 return -1;
6345 else
6346 return 1;
6347}
6348
64dd6849
FM
6349static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6350{
005a79e5
GS
6351 struct loc_track *t = seq->private;
6352
6353 t->idx = *ppos;
64dd6849
FM
6354 return ppos;
6355}
6356
6357static const struct seq_operations slab_debugfs_sops = {
6358 .start = slab_debugfs_start,
6359 .next = slab_debugfs_next,
6360 .stop = slab_debugfs_stop,
6361 .show = slab_debugfs_show,
6362};
6363
6364static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6365{
6366
6367 struct kmem_cache_node *n;
6368 enum track_item alloc;
6369 int node;
6370 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6371 sizeof(struct loc_track));
6372 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
6373 unsigned long *obj_map;
6374
2127d225
ML
6375 if (!t)
6376 return -ENOMEM;
6377
b3fd64e1 6378 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
6379 if (!obj_map) {
6380 seq_release_private(inode, filep);
b3fd64e1 6381 return -ENOMEM;
2127d225 6382 }
64dd6849
FM
6383
6384 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6385 alloc = TRACK_ALLOC;
6386 else
6387 alloc = TRACK_FREE;
6388
b3fd64e1
VB
6389 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6390 bitmap_free(obj_map);
2127d225 6391 seq_release_private(inode, filep);
64dd6849 6392 return -ENOMEM;
b3fd64e1 6393 }
64dd6849 6394
64dd6849
FM
6395 for_each_kmem_cache_node(s, node, n) {
6396 unsigned long flags;
bb192ed9 6397 struct slab *slab;
64dd6849
FM
6398
6399 if (!atomic_long_read(&n->nr_slabs))
6400 continue;
6401
6402 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
6403 list_for_each_entry(slab, &n->partial, slab_list)
6404 process_slab(t, s, slab, alloc, obj_map);
6405 list_for_each_entry(slab, &n->full, slab_list)
6406 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
6407 spin_unlock_irqrestore(&n->list_lock, flags);
6408 }
6409
553c0369
OG
6410 /* Sort locations by count */
6411 sort_r(t->loc, t->count, sizeof(struct location),
6412 cmp_loc_by_count, NULL, NULL);
6413
b3fd64e1 6414 bitmap_free(obj_map);
64dd6849
FM
6415 return 0;
6416}
6417
6418static int slab_debug_trace_release(struct inode *inode, struct file *file)
6419{
6420 struct seq_file *seq = file->private_data;
6421 struct loc_track *t = seq->private;
6422
6423 free_loc_track(t);
6424 return seq_release_private(inode, file);
6425}
6426
6427static const struct file_operations slab_debugfs_fops = {
6428 .open = slab_debug_trace_open,
6429 .read = seq_read,
6430 .llseek = seq_lseek,
6431 .release = slab_debug_trace_release,
6432};
6433
6434static void debugfs_slab_add(struct kmem_cache *s)
6435{
6436 struct dentry *slab_cache_dir;
6437
6438 if (unlikely(!slab_debugfs_root))
6439 return;
6440
6441 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6442
6443 debugfs_create_file("alloc_traces", 0400,
6444 slab_cache_dir, s, &slab_debugfs_fops);
6445
6446 debugfs_create_file("free_traces", 0400,
6447 slab_cache_dir, s, &slab_debugfs_fops);
6448}
6449
6450void debugfs_slab_release(struct kmem_cache *s)
6451{
aa4a8605 6452 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
64dd6849
FM
6453}
6454
6455static int __init slab_debugfs_init(void)
6456{
6457 struct kmem_cache *s;
6458
6459 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6460
6461 list_for_each_entry(s, &slab_caches, list)
6462 if (s->flags & SLAB_STORE_USER)
6463 debugfs_slab_add(s);
6464
6465 return 0;
6466
6467}
6468__initcall(slab_debugfs_init);
6469#endif
57ed3eda
PE
6470/*
6471 * The /proc/slabinfo ABI
6472 */
5b365771 6473#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6474void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6475{
57ed3eda 6476 unsigned long nr_slabs = 0;
205ab99d
CL
6477 unsigned long nr_objs = 0;
6478 unsigned long nr_free = 0;
57ed3eda 6479 int node;
fa45dc25 6480 struct kmem_cache_node *n;
57ed3eda 6481
fa45dc25 6482 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6483 nr_slabs += node_nr_slabs(n);
6484 nr_objs += node_nr_objs(n);
205ab99d 6485 nr_free += count_partial(n, count_free);
57ed3eda
PE
6486 }
6487
0d7561c6
GC
6488 sinfo->active_objs = nr_objs - nr_free;
6489 sinfo->num_objs = nr_objs;
6490 sinfo->active_slabs = nr_slabs;
6491 sinfo->num_slabs = nr_slabs;
6492 sinfo->objects_per_slab = oo_objects(s->oo);
6493 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6494}
6495
0d7561c6 6496void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6497{
7b3c3a50
AD
6498}
6499
b7454ad3
GC
6500ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6501 size_t count, loff_t *ppos)
7b3c3a50 6502{
b7454ad3 6503 return -EIO;
7b3c3a50 6504}
5b365771 6505#endif /* CONFIG_SLUB_DEBUG */