mm/page_counter: remove an incorrect call to propagate_protected_usage()
[linux-2.6-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b89fb5ef 31#include <linux/kfence.h>
b9049e23 32#include <linux/memory.h>
f8bd2258 33#include <linux/math64.h>
773ff60e 34#include <linux/fault-inject.h>
bfa71457 35#include <linux/stacktrace.h>
4de900b4 36#include <linux/prefetch.h>
2633d7a0 37#include <linux/memcontrol.h>
2482ddec 38#include <linux/random.h>
1f9f78b1 39#include <kunit/test.h>
81819f0f 40
64dd6849 41#include <linux/debugfs.h>
4a92379b
RK
42#include <trace/events/kmem.h>
43
072bb0aa
MG
44#include "internal.h"
45
81819f0f
CL
46/*
47 * Lock order:
18004c5d 48 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
49 * 2. node->list_lock (Spinlock)
50 * 3. kmem_cache->cpu_slab->lock (Local lock)
51 * 4. slab_lock(page) (Only on some arches or for debugging)
52 * 5. object_map_lock (Only for debugging)
81819f0f 53 *
18004c5d 54 * slab_mutex
881db7fb 55 *
18004c5d 56 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 57 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
58 * Also synchronizes memory hotplug callbacks.
59 *
60 * slab_lock
61 *
62 * The slab_lock is a wrapper around the page lock, thus it is a bit
63 * spinlock.
881db7fb
CL
64 *
65 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 66 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 67 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
68 * B. page->inuse -> Number of objects in use
69 * C. page->objects -> Number of objects in page
70 * D. page->frozen -> frozen state
881db7fb 71 *
bd0e7491
VB
72 * Frozen slabs
73 *
881db7fb 74 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
75 * on any list except per cpu partial list. The processor that froze the
76 * slab is the one who can perform list operations on the page. Other
77 * processors may put objects onto the freelist but the processor that
78 * froze the slab is the only one that can retrieve the objects from the
79 * page's freelist.
81819f0f 80 *
bd0e7491
VB
81 * list_lock
82 *
81819f0f
CL
83 * The list_lock protects the partial and full list on each node and
84 * the partial slab counter. If taken then no new slabs may be added or
85 * removed from the lists nor make the number of partial slabs be modified.
86 * (Note that the total number of slabs is an atomic value that may be
87 * modified without taking the list lock).
88 *
89 * The list_lock is a centralized lock and thus we avoid taking it as
90 * much as possible. As long as SLUB does not have to handle partial
91 * slabs, operations can continue without any centralized lock. F.e.
92 * allocating a long series of objects that fill up slabs does not require
93 * the list lock.
bd0e7491
VB
94 *
95 * cpu_slab->lock local lock
96 *
97 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
98 * except the stat counters. This is a percpu structure manipulated only by
99 * the local cpu, so the lock protects against being preempted or interrupted
100 * by an irq. Fast path operations rely on lockless operations instead.
101 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
102 * prevent the lockless operations), so fastpath operations also need to take
103 * the lock and are no longer lockless.
104 *
105 * lockless fastpaths
106 *
107 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
108 * are fully lockless when satisfied from the percpu slab (and when
109 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
110 * They also don't disable preemption or migration or irqs. They rely on
111 * the transaction id (tid) field to detect being preempted or moved to
112 * another cpu.
113 *
114 * irq, preemption, migration considerations
115 *
116 * Interrupts are disabled as part of list_lock or local_lock operations, or
117 * around the slab_lock operation, in order to make the slab allocator safe
118 * to use in the context of an irq.
119 *
120 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
121 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
122 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
123 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
124 *
125 * SLUB assigns one slab for allocation to each processor.
126 * Allocations only occur from these slabs called cpu slabs.
127 *
672bba3a
CL
128 * Slabs with free elements are kept on a partial list and during regular
129 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 130 * freed then the slab will show up again on the partial lists.
672bba3a
CL
131 * We track full slabs for debugging purposes though because otherwise we
132 * cannot scan all objects.
81819f0f
CL
133 *
134 * Slabs are freed when they become empty. Teardown and setup is
135 * minimal so we rely on the page allocators per cpu caches for
136 * fast frees and allocs.
137 *
aed68148 138 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
139 * This means that the slab is dedicated to a purpose
140 * such as satisfying allocations for a specific
141 * processor. Objects may be freed in the slab while
142 * it is frozen but slab_free will then skip the usual
143 * list operations. It is up to the processor holding
144 * the slab to integrate the slab into the slab lists
145 * when the slab is no longer needed.
146 *
147 * One use of this flag is to mark slabs that are
148 * used for allocations. Then such a slab becomes a cpu
149 * slab. The cpu slab may be equipped with an additional
dfb4f096 150 * freelist that allows lockless access to
894b8788
CL
151 * free objects in addition to the regular freelist
152 * that requires the slab lock.
81819f0f 153 *
aed68148 154 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 155 * options set. This moves slab handling out of
894b8788 156 * the fast path and disables lockless freelists.
81819f0f
CL
157 */
158
25c00c50
VB
159/*
160 * We could simply use migrate_disable()/enable() but as long as it's a
161 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
162 */
163#ifndef CONFIG_PREEMPT_RT
164#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
165#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
166#else
167#define slub_get_cpu_ptr(var) \
168({ \
169 migrate_disable(); \
170 this_cpu_ptr(var); \
171})
172#define slub_put_cpu_ptr(var) \
173do { \
174 (void)(var); \
175 migrate_enable(); \
176} while (0)
177#endif
178
ca0cab65
VB
179#ifdef CONFIG_SLUB_DEBUG
180#ifdef CONFIG_SLUB_DEBUG_ON
181DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
182#else
183DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
184#endif
79270291 185#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 186
59052e89
VB
187static inline bool kmem_cache_debug(struct kmem_cache *s)
188{
189 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 190}
5577bd8a 191
117d54df 192void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 193{
59052e89 194 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
195 p += s->red_left_pad;
196
197 return p;
198}
199
345c905d
JK
200static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
201{
202#ifdef CONFIG_SLUB_CPU_PARTIAL
203 return !kmem_cache_debug(s);
204#else
205 return false;
206#endif
207}
208
81819f0f
CL
209/*
210 * Issues still to be resolved:
211 *
81819f0f
CL
212 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
213 *
81819f0f
CL
214 * - Variable sizing of the per node arrays
215 */
216
b789ef51
CL
217/* Enable to log cmpxchg failures */
218#undef SLUB_DEBUG_CMPXCHG
219
2086d26a 220/*
dc84207d 221 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
222 * lists even if they are empty. kmem_cache_shrink may reclaim them.
223 */
76be8950 224#define MIN_PARTIAL 5
e95eed57 225
2086d26a
CL
226/*
227 * Maximum number of desirable partial slabs.
228 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 229 * sort the partial list by the number of objects in use.
2086d26a
CL
230 */
231#define MAX_PARTIAL 10
232
becfda68 233#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 234 SLAB_POISON | SLAB_STORE_USER)
672bba3a 235
149daaf3
LA
236/*
237 * These debug flags cannot use CMPXCHG because there might be consistency
238 * issues when checking or reading debug information
239 */
240#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
241 SLAB_TRACE)
242
243
fa5ec8a1 244/*
3de47213
DR
245 * Debugging flags that require metadata to be stored in the slab. These get
246 * disabled when slub_debug=O is used and a cache's min order increases with
247 * metadata.
fa5ec8a1 248 */
3de47213 249#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 250
210b5c06
CG
251#define OO_SHIFT 16
252#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 253#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 254
81819f0f 255/* Internal SLUB flags */
d50112ed 256/* Poison object */
4fd0b46e 257#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 258/* Use cmpxchg_double */
4fd0b46e 259#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 260
02cbc874
CL
261/*
262 * Tracking user of a slab.
263 */
d6543e39 264#define TRACK_ADDRS_COUNT 16
02cbc874 265struct track {
ce71e27c 266 unsigned long addr; /* Called from address */
ae14c63a
LT
267#ifdef CONFIG_STACKTRACE
268 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
d6543e39 269#endif
02cbc874
CL
270 int cpu; /* Was running on cpu */
271 int pid; /* Pid context */
272 unsigned long when; /* When did the operation occur */
273};
274
275enum track_item { TRACK_ALLOC, TRACK_FREE };
276
ab4d5ed5 277#ifdef CONFIG_SYSFS
81819f0f
CL
278static int sysfs_slab_add(struct kmem_cache *);
279static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 280#else
0c710013
CL
281static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
282static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
283 { return 0; }
81819f0f
CL
284#endif
285
64dd6849
FM
286#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
287static void debugfs_slab_add(struct kmem_cache *);
288#else
289static inline void debugfs_slab_add(struct kmem_cache *s) { }
290#endif
291
4fdccdfb 292static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
293{
294#ifdef CONFIG_SLUB_STATS
88da03a6
CL
295 /*
296 * The rmw is racy on a preemptible kernel but this is acceptable, so
297 * avoid this_cpu_add()'s irq-disable overhead.
298 */
299 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
300#endif
301}
302
7e1fa93d
VB
303/*
304 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
305 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
306 * differ during memory hotplug/hotremove operations.
307 * Protected by slab_mutex.
308 */
309static nodemask_t slab_nodes;
310
81819f0f
CL
311/********************************************************************
312 * Core slab cache functions
313 *******************************************************************/
314
2482ddec
KC
315/*
316 * Returns freelist pointer (ptr). With hardening, this is obfuscated
317 * with an XOR of the address where the pointer is held and a per-cache
318 * random number.
319 */
320static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
321 unsigned long ptr_addr)
322{
323#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 324 /*
aa1ef4d7 325 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
326 * Normally, this doesn't cause any issues, as both set_freepointer()
327 * and get_freepointer() are called with a pointer with the same tag.
328 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
329 * example, when __free_slub() iterates over objects in a cache, it
330 * passes untagged pointers to check_object(). check_object() in turns
331 * calls get_freepointer() with an untagged pointer, which causes the
332 * freepointer to be restored incorrectly.
333 */
334 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 335 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
336#else
337 return ptr;
338#endif
339}
340
341/* Returns the freelist pointer recorded at location ptr_addr. */
342static inline void *freelist_dereference(const struct kmem_cache *s,
343 void *ptr_addr)
344{
345 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
346 (unsigned long)ptr_addr);
347}
348
7656c72b
CL
349static inline void *get_freepointer(struct kmem_cache *s, void *object)
350{
aa1ef4d7 351 object = kasan_reset_tag(object);
2482ddec 352 return freelist_dereference(s, object + s->offset);
7656c72b
CL
353}
354
0ad9500e
ED
355static void prefetch_freepointer(const struct kmem_cache *s, void *object)
356{
04b4b006 357 prefetchw(object + s->offset);
0ad9500e
ED
358}
359
1393d9a1
CL
360static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
361{
2482ddec 362 unsigned long freepointer_addr;
1393d9a1
CL
363 void *p;
364
8e57f8ac 365 if (!debug_pagealloc_enabled_static())
922d566c
JK
366 return get_freepointer(s, object);
367
f70b0049 368 object = kasan_reset_tag(object);
2482ddec 369 freepointer_addr = (unsigned long)object + s->offset;
fe557319 370 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 371 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
372}
373
7656c72b
CL
374static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
375{
2482ddec
KC
376 unsigned long freeptr_addr = (unsigned long)object + s->offset;
377
ce6fa91b
AP
378#ifdef CONFIG_SLAB_FREELIST_HARDENED
379 BUG_ON(object == fp); /* naive detection of double free or corruption */
380#endif
381
aa1ef4d7 382 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 383 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
384}
385
386/* Loop over all objects in a slab */
224a88be 387#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
388 for (__p = fixup_red_left(__s, __addr); \
389 __p < (__addr) + (__objects) * (__s)->size; \
390 __p += (__s)->size)
7656c72b 391
9736d2a9 392static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 393{
9736d2a9 394 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
395}
396
19af27af 397static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 398 unsigned int size)
834f3d11
CL
399{
400 struct kmem_cache_order_objects x = {
9736d2a9 401 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
402 };
403
404 return x;
405}
406
19af27af 407static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 408{
210b5c06 409 return x.x >> OO_SHIFT;
834f3d11
CL
410}
411
19af27af 412static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 413{
210b5c06 414 return x.x & OO_MASK;
834f3d11
CL
415}
416
b47291ef
VB
417#ifdef CONFIG_SLUB_CPU_PARTIAL
418static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
419{
420 unsigned int nr_pages;
421
422 s->cpu_partial = nr_objects;
423
424 /*
425 * We take the number of objects but actually limit the number of
426 * pages on the per cpu partial list, in order to limit excessive
427 * growth of the list. For simplicity we assume that the pages will
428 * be half-full.
429 */
430 nr_pages = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
431 s->cpu_partial_pages = nr_pages;
432}
433#else
434static inline void
435slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
436{
437}
438#endif /* CONFIG_SLUB_CPU_PARTIAL */
439
881db7fb
CL
440/*
441 * Per slab locking using the pagelock
442 */
a2b4ae8b 443static __always_inline void __slab_lock(struct page *page)
881db7fb 444{
48c935ad 445 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
446 bit_spin_lock(PG_locked, &page->flags);
447}
448
a2b4ae8b 449static __always_inline void __slab_unlock(struct page *page)
881db7fb 450{
48c935ad 451 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
452 __bit_spin_unlock(PG_locked, &page->flags);
453}
454
a2b4ae8b
VB
455static __always_inline void slab_lock(struct page *page, unsigned long *flags)
456{
457 if (IS_ENABLED(CONFIG_PREEMPT_RT))
458 local_irq_save(*flags);
459 __slab_lock(page);
460}
461
462static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
463{
464 __slab_unlock(page);
465 if (IS_ENABLED(CONFIG_PREEMPT_RT))
466 local_irq_restore(*flags);
467}
468
469/*
470 * Interrupts must be disabled (for the fallback code to work right), typically
471 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
472 * so we disable interrupts as part of slab_[un]lock().
473 */
1d07171c
CL
474static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
475 void *freelist_old, unsigned long counters_old,
476 void *freelist_new, unsigned long counters_new,
477 const char *n)
478{
a2b4ae8b
VB
479 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
480 lockdep_assert_irqs_disabled();
2565409f
HC
481#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
482 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 483 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 484 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
485 freelist_old, counters_old,
486 freelist_new, counters_new))
6f6528a1 487 return true;
1d07171c
CL
488 } else
489#endif
490 {
a2b4ae8b
VB
491 /* init to 0 to prevent spurious warnings */
492 unsigned long flags = 0;
493
494 slab_lock(page, &flags);
d0e0ac97
CG
495 if (page->freelist == freelist_old &&
496 page->counters == counters_old) {
1d07171c 497 page->freelist = freelist_new;
7d27a04b 498 page->counters = counters_new;
a2b4ae8b 499 slab_unlock(page, &flags);
6f6528a1 500 return true;
1d07171c 501 }
a2b4ae8b 502 slab_unlock(page, &flags);
1d07171c
CL
503 }
504
505 cpu_relax();
506 stat(s, CMPXCHG_DOUBLE_FAIL);
507
508#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 509 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
510#endif
511
6f6528a1 512 return false;
1d07171c
CL
513}
514
b789ef51
CL
515static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
516 void *freelist_old, unsigned long counters_old,
517 void *freelist_new, unsigned long counters_new,
518 const char *n)
519{
2565409f
HC
520#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
521 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 522 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 523 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
524 freelist_old, counters_old,
525 freelist_new, counters_new))
6f6528a1 526 return true;
b789ef51
CL
527 } else
528#endif
529 {
1d07171c
CL
530 unsigned long flags;
531
532 local_irq_save(flags);
a2b4ae8b 533 __slab_lock(page);
d0e0ac97
CG
534 if (page->freelist == freelist_old &&
535 page->counters == counters_old) {
b789ef51 536 page->freelist = freelist_new;
7d27a04b 537 page->counters = counters_new;
a2b4ae8b 538 __slab_unlock(page);
1d07171c 539 local_irq_restore(flags);
6f6528a1 540 return true;
b789ef51 541 }
a2b4ae8b 542 __slab_unlock(page);
1d07171c 543 local_irq_restore(flags);
b789ef51
CL
544 }
545
546 cpu_relax();
547 stat(s, CMPXCHG_DOUBLE_FAIL);
548
549#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 550 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
551#endif
552
6f6528a1 553 return false;
b789ef51
CL
554}
555
41ecc55b 556#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 557static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
94ef0304 558static DEFINE_RAW_SPINLOCK(object_map_lock);
90e9f6a6 559
b3fd64e1
VB
560static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
561 struct page *page)
562{
563 void *addr = page_address(page);
564 void *p;
565
566 bitmap_zero(obj_map, page->objects);
567
568 for (p = page->freelist; p; p = get_freepointer(s, p))
569 set_bit(__obj_to_index(s, addr, p), obj_map);
570}
571
1f9f78b1
OG
572#if IS_ENABLED(CONFIG_KUNIT)
573static bool slab_add_kunit_errors(void)
574{
575 struct kunit_resource *resource;
576
577 if (likely(!current->kunit_test))
578 return false;
579
580 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
581 if (!resource)
582 return false;
583
584 (*(int *)resource->data)++;
585 kunit_put_resource(resource);
586 return true;
587}
588#else
589static inline bool slab_add_kunit_errors(void) { return false; }
590#endif
591
5f80b13a
CL
592/*
593 * Determine a map of object in use on a page.
594 *
881db7fb 595 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
596 * not vanish from under us.
597 */
90e9f6a6 598static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 599 __acquires(&object_map_lock)
5f80b13a 600{
90e9f6a6
YZ
601 VM_BUG_ON(!irqs_disabled());
602
94ef0304 603 raw_spin_lock(&object_map_lock);
90e9f6a6 604
b3fd64e1 605 __fill_map(object_map, s, page);
90e9f6a6
YZ
606
607 return object_map;
608}
609
81aba9e0 610static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
611{
612 VM_BUG_ON(map != object_map);
94ef0304 613 raw_spin_unlock(&object_map_lock);
5f80b13a
CL
614}
615
870b1fbb 616static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
617{
618 if (s->flags & SLAB_RED_ZONE)
619 return s->size - s->red_left_pad;
620
621 return s->size;
622}
623
624static inline void *restore_red_left(struct kmem_cache *s, void *p)
625{
626 if (s->flags & SLAB_RED_ZONE)
627 p -= s->red_left_pad;
628
629 return p;
630}
631
41ecc55b
CL
632/*
633 * Debug settings:
634 */
89d3c87e 635#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 636static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 637#else
d50112ed 638static slab_flags_t slub_debug;
f0630fff 639#endif
41ecc55b 640
e17f1dfb 641static char *slub_debug_string;
fa5ec8a1 642static int disable_higher_order_debug;
41ecc55b 643
a79316c6
AR
644/*
645 * slub is about to manipulate internal object metadata. This memory lies
646 * outside the range of the allocated object, so accessing it would normally
647 * be reported by kasan as a bounds error. metadata_access_enable() is used
648 * to tell kasan that these accesses are OK.
649 */
650static inline void metadata_access_enable(void)
651{
652 kasan_disable_current();
653}
654
655static inline void metadata_access_disable(void)
656{
657 kasan_enable_current();
658}
659
81819f0f
CL
660/*
661 * Object debugging
662 */
d86bd1be
JK
663
664/* Verify that a pointer has an address that is valid within a slab page */
665static inline int check_valid_pointer(struct kmem_cache *s,
666 struct page *page, void *object)
667{
668 void *base;
669
670 if (!object)
671 return 1;
672
673 base = page_address(page);
338cfaad 674 object = kasan_reset_tag(object);
d86bd1be
JK
675 object = restore_red_left(s, object);
676 if (object < base || object >= base + page->objects * s->size ||
677 (object - base) % s->size) {
678 return 0;
679 }
680
681 return 1;
682}
683
aa2efd5e
DT
684static void print_section(char *level, char *text, u8 *addr,
685 unsigned int length)
81819f0f 686{
a79316c6 687 metadata_access_enable();
340caf17
KYL
688 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
689 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 690 metadata_access_disable();
81819f0f
CL
691}
692
cbfc35a4
WL
693/*
694 * See comment in calculate_sizes().
695 */
696static inline bool freeptr_outside_object(struct kmem_cache *s)
697{
698 return s->offset >= s->inuse;
699}
700
701/*
702 * Return offset of the end of info block which is inuse + free pointer if
703 * not overlapping with object.
704 */
705static inline unsigned int get_info_end(struct kmem_cache *s)
706{
707 if (freeptr_outside_object(s))
708 return s->inuse + sizeof(void *);
709 else
710 return s->inuse;
711}
712
81819f0f
CL
713static struct track *get_track(struct kmem_cache *s, void *object,
714 enum track_item alloc)
715{
716 struct track *p;
717
cbfc35a4 718 p = object + get_info_end(s);
81819f0f 719
aa1ef4d7 720 return kasan_reset_tag(p + alloc);
81819f0f
CL
721}
722
723static void set_track(struct kmem_cache *s, void *object,
ce71e27c 724 enum track_item alloc, unsigned long addr)
81819f0f 725{
1a00df4a 726 struct track *p = get_track(s, object, alloc);
81819f0f 727
81819f0f 728 if (addr) {
ae14c63a
LT
729#ifdef CONFIG_STACKTRACE
730 unsigned int nr_entries;
731
732 metadata_access_enable();
733 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
734 TRACK_ADDRS_COUNT, 3);
735 metadata_access_disable();
736
737 if (nr_entries < TRACK_ADDRS_COUNT)
738 p->addrs[nr_entries] = 0;
d6543e39 739#endif
81819f0f
CL
740 p->addr = addr;
741 p->cpu = smp_processor_id();
88e4ccf2 742 p->pid = current->pid;
81819f0f 743 p->when = jiffies;
b8ca7ff7 744 } else {
81819f0f 745 memset(p, 0, sizeof(struct track));
b8ca7ff7 746 }
81819f0f
CL
747}
748
81819f0f
CL
749static void init_tracking(struct kmem_cache *s, void *object)
750{
24922684
CL
751 if (!(s->flags & SLAB_STORE_USER))
752 return;
753
ce71e27c
EGM
754 set_track(s, object, TRACK_FREE, 0UL);
755 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
756}
757
86609d33 758static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
759{
760 if (!t->addr)
761 return;
762
96b94abc 763 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 764 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
ae14c63a 765#ifdef CONFIG_STACKTRACE
d6543e39 766 {
ae14c63a
LT
767 int i;
768 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
769 if (t->addrs[i])
770 pr_err("\t%pS\n", (void *)t->addrs[i]);
771 else
772 break;
d6543e39
BG
773 }
774#endif
24922684
CL
775}
776
e42f174e 777void print_tracking(struct kmem_cache *s, void *object)
24922684 778{
86609d33 779 unsigned long pr_time = jiffies;
24922684
CL
780 if (!(s->flags & SLAB_STORE_USER))
781 return;
782
86609d33
CP
783 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
784 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
785}
786
787static void print_page_info(struct page *page)
788{
23efd080 789 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
4a8ef190 790 page, page->objects, page->inuse, page->freelist,
23efd080 791 &page->flags);
24922684
CL
792
793}
794
795static void slab_bug(struct kmem_cache *s, char *fmt, ...)
796{
ecc42fbe 797 struct va_format vaf;
24922684 798 va_list args;
24922684
CL
799
800 va_start(args, fmt);
ecc42fbe
FF
801 vaf.fmt = fmt;
802 vaf.va = &args;
f9f58285 803 pr_err("=============================================================================\n");
ecc42fbe 804 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 805 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 806 va_end(args);
81819f0f
CL
807}
808
582d1212 809__printf(2, 3)
24922684
CL
810static void slab_fix(struct kmem_cache *s, char *fmt, ...)
811{
ecc42fbe 812 struct va_format vaf;
24922684 813 va_list args;
24922684 814
1f9f78b1
OG
815 if (slab_add_kunit_errors())
816 return;
817
24922684 818 va_start(args, fmt);
ecc42fbe
FF
819 vaf.fmt = fmt;
820 vaf.va = &args;
821 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 822 va_end(args);
24922684
CL
823}
824
52f23478 825static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 826 void **freelist, void *nextfree)
52f23478
DZ
827{
828 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
829 !check_valid_pointer(s, page, nextfree) && freelist) {
830 object_err(s, page, *freelist, "Freechain corrupt");
831 *freelist = NULL;
52f23478
DZ
832 slab_fix(s, "Isolate corrupted freechain");
833 return true;
834 }
835
836 return false;
837}
838
24922684 839static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
840{
841 unsigned int off; /* Offset of last byte */
a973e9dd 842 u8 *addr = page_address(page);
24922684
CL
843
844 print_tracking(s, p);
845
846 print_page_info(page);
847
96b94abc 848 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 849 p, p - addr, get_freepointer(s, p));
24922684 850
d86bd1be 851 if (s->flags & SLAB_RED_ZONE)
8669dbab 852 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 853 s->red_left_pad);
d86bd1be 854 else if (p > addr + 16)
aa2efd5e 855 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 856
8669dbab 857 print_section(KERN_ERR, "Object ", p,
1b473f29 858 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 859 if (s->flags & SLAB_RED_ZONE)
8669dbab 860 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 861 s->inuse - s->object_size);
81819f0f 862
cbfc35a4 863 off = get_info_end(s);
81819f0f 864
24922684 865 if (s->flags & SLAB_STORE_USER)
81819f0f 866 off += 2 * sizeof(struct track);
81819f0f 867
80a9201a
AP
868 off += kasan_metadata_size(s);
869
d86bd1be 870 if (off != size_from_object(s))
81819f0f 871 /* Beginning of the filler is the free pointer */
8669dbab 872 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 873 size_from_object(s) - off);
24922684
CL
874
875 dump_stack();
81819f0f
CL
876}
877
75c66def 878void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
879 u8 *object, char *reason)
880{
1f9f78b1
OG
881 if (slab_add_kunit_errors())
882 return;
883
3dc50637 884 slab_bug(s, "%s", reason);
24922684 885 print_trailer(s, page, object);
65ebdeef 886 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
887}
888
a38965bf 889static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 890 const char *fmt, ...)
81819f0f
CL
891{
892 va_list args;
893 char buf[100];
894
1f9f78b1
OG
895 if (slab_add_kunit_errors())
896 return;
897
24922684
CL
898 va_start(args, fmt);
899 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 900 va_end(args);
3dc50637 901 slab_bug(s, "%s", buf);
24922684 902 print_page_info(page);
81819f0f 903 dump_stack();
65ebdeef 904 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
905}
906
f7cb1933 907static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 908{
aa1ef4d7 909 u8 *p = kasan_reset_tag(object);
81819f0f 910
d86bd1be
JK
911 if (s->flags & SLAB_RED_ZONE)
912 memset(p - s->red_left_pad, val, s->red_left_pad);
913
81819f0f 914 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
915 memset(p, POISON_FREE, s->object_size - 1);
916 p[s->object_size - 1] = POISON_END;
81819f0f
CL
917 }
918
919 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 920 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
921}
922
24922684
CL
923static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
924 void *from, void *to)
925{
582d1212 926 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
927 memset(from, data, to - from);
928}
929
930static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
931 u8 *object, char *what,
06428780 932 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
933{
934 u8 *fault;
935 u8 *end;
e1b70dd1 936 u8 *addr = page_address(page);
24922684 937
a79316c6 938 metadata_access_enable();
aa1ef4d7 939 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 940 metadata_access_disable();
24922684
CL
941 if (!fault)
942 return 1;
943
944 end = start + bytes;
945 while (end > fault && end[-1] == value)
946 end--;
947
1f9f78b1
OG
948 if (slab_add_kunit_errors())
949 goto skip_bug_print;
950
24922684 951 slab_bug(s, "%s overwritten", what);
96b94abc 952 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
953 fault, end - 1, fault - addr,
954 fault[0], value);
24922684 955 print_trailer(s, page, object);
65ebdeef 956 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 957
1f9f78b1 958skip_bug_print:
24922684
CL
959 restore_bytes(s, what, value, fault, end);
960 return 0;
81819f0f
CL
961}
962
81819f0f
CL
963/*
964 * Object layout:
965 *
966 * object address
967 * Bytes of the object to be managed.
968 * If the freepointer may overlay the object then the free
cbfc35a4 969 * pointer is at the middle of the object.
672bba3a 970 *
81819f0f
CL
971 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
972 * 0xa5 (POISON_END)
973 *
3b0efdfa 974 * object + s->object_size
81819f0f 975 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 976 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 977 * object_size == inuse.
672bba3a 978 *
81819f0f
CL
979 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
980 * 0xcc (RED_ACTIVE) for objects in use.
981 *
982 * object + s->inuse
672bba3a
CL
983 * Meta data starts here.
984 *
81819f0f
CL
985 * A. Free pointer (if we cannot overwrite object on free)
986 * B. Tracking data for SLAB_STORE_USER
dc84207d 987 * C. Padding to reach required alignment boundary or at minimum
6446faa2 988 * one word if debugging is on to be able to detect writes
672bba3a
CL
989 * before the word boundary.
990 *
991 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
992 *
993 * object + s->size
672bba3a 994 * Nothing is used beyond s->size.
81819f0f 995 *
3b0efdfa 996 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 997 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
998 * may be used with merged slabcaches.
999 */
1000
81819f0f
CL
1001static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
1002{
cbfc35a4 1003 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
1004
1005 if (s->flags & SLAB_STORE_USER)
1006 /* We also have user information there */
1007 off += 2 * sizeof(struct track);
1008
80a9201a
AP
1009 off += kasan_metadata_size(s);
1010
d86bd1be 1011 if (size_from_object(s) == off)
81819f0f
CL
1012 return 1;
1013
24922684 1014 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 1015 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1016}
1017
39b26464 1018/* Check the pad bytes at the end of a slab page */
81819f0f
CL
1019static int slab_pad_check(struct kmem_cache *s, struct page *page)
1020{
24922684
CL
1021 u8 *start;
1022 u8 *fault;
1023 u8 *end;
5d682681 1024 u8 *pad;
24922684
CL
1025 int length;
1026 int remainder;
81819f0f
CL
1027
1028 if (!(s->flags & SLAB_POISON))
1029 return 1;
1030
a973e9dd 1031 start = page_address(page);
a50b854e 1032 length = page_size(page);
39b26464
CL
1033 end = start + length;
1034 remainder = length % s->size;
81819f0f
CL
1035 if (!remainder)
1036 return 1;
1037
5d682681 1038 pad = end - remainder;
a79316c6 1039 metadata_access_enable();
aa1ef4d7 1040 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1041 metadata_access_disable();
24922684
CL
1042 if (!fault)
1043 return 1;
1044 while (end > fault && end[-1] == POISON_INUSE)
1045 end--;
1046
e1b70dd1
MC
1047 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1048 fault, end - 1, fault - start);
5d682681 1049 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1050
5d682681 1051 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 1052 return 0;
81819f0f
CL
1053}
1054
1055static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1056 void *object, u8 val)
81819f0f
CL
1057{
1058 u8 *p = object;
3b0efdfa 1059 u8 *endobject = object + s->object_size;
81819f0f
CL
1060
1061 if (s->flags & SLAB_RED_ZONE) {
8669dbab 1062 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
1063 object - s->red_left_pad, val, s->red_left_pad))
1064 return 0;
1065
8669dbab 1066 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 1067 endobject, val, s->inuse - s->object_size))
81819f0f 1068 return 0;
81819f0f 1069 } else {
3b0efdfa 1070 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 1071 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
1072 endobject, POISON_INUSE,
1073 s->inuse - s->object_size);
3adbefee 1074 }
81819f0f
CL
1075 }
1076
1077 if (s->flags & SLAB_POISON) {
f7cb1933 1078 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 1079 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 1080 POISON_FREE, s->object_size - 1) ||
8669dbab 1081 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 1082 p + s->object_size - 1, POISON_END, 1)))
81819f0f 1083 return 0;
81819f0f
CL
1084 /*
1085 * check_pad_bytes cleans up on its own.
1086 */
1087 check_pad_bytes(s, page, p);
1088 }
1089
cbfc35a4 1090 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1091 /*
1092 * Object and freepointer overlap. Cannot check
1093 * freepointer while object is allocated.
1094 */
1095 return 1;
1096
1097 /* Check free pointer validity */
1098 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1099 object_err(s, page, p, "Freepointer corrupt");
1100 /*
9f6c708e 1101 * No choice but to zap it and thus lose the remainder
81819f0f 1102 * of the free objects in this slab. May cause
672bba3a 1103 * another error because the object count is now wrong.
81819f0f 1104 */
a973e9dd 1105 set_freepointer(s, p, NULL);
81819f0f
CL
1106 return 0;
1107 }
1108 return 1;
1109}
1110
1111static int check_slab(struct kmem_cache *s, struct page *page)
1112{
39b26464
CL
1113 int maxobj;
1114
81819f0f 1115 if (!PageSlab(page)) {
24922684 1116 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
1117 return 0;
1118 }
39b26464 1119
9736d2a9 1120 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
1121 if (page->objects > maxobj) {
1122 slab_err(s, page, "objects %u > max %u",
f6edde9c 1123 page->objects, maxobj);
39b26464
CL
1124 return 0;
1125 }
1126 if (page->inuse > page->objects) {
24922684 1127 slab_err(s, page, "inuse %u > max %u",
f6edde9c 1128 page->inuse, page->objects);
81819f0f
CL
1129 return 0;
1130 }
1131 /* Slab_pad_check fixes things up after itself */
1132 slab_pad_check(s, page);
1133 return 1;
1134}
1135
1136/*
672bba3a
CL
1137 * Determine if a certain object on a page is on the freelist. Must hold the
1138 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
1139 */
1140static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1141{
1142 int nr = 0;
881db7fb 1143 void *fp;
81819f0f 1144 void *object = NULL;
f6edde9c 1145 int max_objects;
81819f0f 1146
881db7fb 1147 fp = page->freelist;
39b26464 1148 while (fp && nr <= page->objects) {
81819f0f
CL
1149 if (fp == search)
1150 return 1;
1151 if (!check_valid_pointer(s, page, fp)) {
1152 if (object) {
1153 object_err(s, page, object,
1154 "Freechain corrupt");
a973e9dd 1155 set_freepointer(s, object, NULL);
81819f0f 1156 } else {
24922684 1157 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1158 page->freelist = NULL;
39b26464 1159 page->inuse = page->objects;
24922684 1160 slab_fix(s, "Freelist cleared");
81819f0f
CL
1161 return 0;
1162 }
1163 break;
1164 }
1165 object = fp;
1166 fp = get_freepointer(s, object);
1167 nr++;
1168 }
1169
9736d2a9 1170 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1171 if (max_objects > MAX_OBJS_PER_PAGE)
1172 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1173
1174 if (page->objects != max_objects) {
756a025f
JP
1175 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1176 page->objects, max_objects);
224a88be 1177 page->objects = max_objects;
582d1212 1178 slab_fix(s, "Number of objects adjusted");
224a88be 1179 }
39b26464 1180 if (page->inuse != page->objects - nr) {
756a025f
JP
1181 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1182 page->inuse, page->objects - nr);
39b26464 1183 page->inuse = page->objects - nr;
582d1212 1184 slab_fix(s, "Object count adjusted");
81819f0f
CL
1185 }
1186 return search == NULL;
1187}
1188
0121c619
CL
1189static void trace(struct kmem_cache *s, struct page *page, void *object,
1190 int alloc)
3ec09742
CL
1191{
1192 if (s->flags & SLAB_TRACE) {
f9f58285 1193 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1194 s->name,
1195 alloc ? "alloc" : "free",
1196 object, page->inuse,
1197 page->freelist);
1198
1199 if (!alloc)
aa2efd5e 1200 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1201 s->object_size);
3ec09742
CL
1202
1203 dump_stack();
1204 }
1205}
1206
643b1138 1207/*
672bba3a 1208 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1209 */
5cc6eee8
CL
1210static void add_full(struct kmem_cache *s,
1211 struct kmem_cache_node *n, struct page *page)
643b1138 1212{
5cc6eee8
CL
1213 if (!(s->flags & SLAB_STORE_USER))
1214 return;
1215
255d0884 1216 lockdep_assert_held(&n->list_lock);
916ac052 1217 list_add(&page->slab_list, &n->full);
643b1138
CL
1218}
1219
c65c1877 1220static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1221{
643b1138
CL
1222 if (!(s->flags & SLAB_STORE_USER))
1223 return;
1224
255d0884 1225 lockdep_assert_held(&n->list_lock);
916ac052 1226 list_del(&page->slab_list);
643b1138
CL
1227}
1228
0f389ec6
CL
1229/* Tracking of the number of slabs for debugging purposes */
1230static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1231{
1232 struct kmem_cache_node *n = get_node(s, node);
1233
1234 return atomic_long_read(&n->nr_slabs);
1235}
1236
26c02cf0
AB
1237static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1238{
1239 return atomic_long_read(&n->nr_slabs);
1240}
1241
205ab99d 1242static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1243{
1244 struct kmem_cache_node *n = get_node(s, node);
1245
1246 /*
1247 * May be called early in order to allocate a slab for the
1248 * kmem_cache_node structure. Solve the chicken-egg
1249 * dilemma by deferring the increment of the count during
1250 * bootstrap (see early_kmem_cache_node_alloc).
1251 */
338b2642 1252 if (likely(n)) {
0f389ec6 1253 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1254 atomic_long_add(objects, &n->total_objects);
1255 }
0f389ec6 1256}
205ab99d 1257static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1258{
1259 struct kmem_cache_node *n = get_node(s, node);
1260
1261 atomic_long_dec(&n->nr_slabs);
205ab99d 1262 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1263}
1264
1265/* Object debug checks for alloc/free paths */
3ec09742
CL
1266static void setup_object_debug(struct kmem_cache *s, struct page *page,
1267 void *object)
1268{
8fc8d666 1269 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1270 return;
1271
f7cb1933 1272 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1273 init_tracking(s, object);
1274}
1275
a50b854e
MWO
1276static
1277void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1278{
8fc8d666 1279 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1280 return;
1281
1282 metadata_access_enable();
aa1ef4d7 1283 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1284 metadata_access_disable();
1285}
1286
becfda68 1287static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1288 struct page *page, void *object)
81819f0f
CL
1289{
1290 if (!check_slab(s, page))
becfda68 1291 return 0;
81819f0f 1292
81819f0f
CL
1293 if (!check_valid_pointer(s, page, object)) {
1294 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1295 return 0;
81819f0f
CL
1296 }
1297
f7cb1933 1298 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1299 return 0;
1300
1301 return 1;
1302}
1303
1304static noinline int alloc_debug_processing(struct kmem_cache *s,
1305 struct page *page,
1306 void *object, unsigned long addr)
1307{
1308 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1309 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1310 goto bad;
1311 }
81819f0f 1312
3ec09742
CL
1313 /* Success perform special debug activities for allocs */
1314 if (s->flags & SLAB_STORE_USER)
1315 set_track(s, object, TRACK_ALLOC, addr);
1316 trace(s, page, object, 1);
f7cb1933 1317 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1318 return 1;
3ec09742 1319
81819f0f
CL
1320bad:
1321 if (PageSlab(page)) {
1322 /*
1323 * If this is a slab page then lets do the best we can
1324 * to avoid issues in the future. Marking all objects
672bba3a 1325 * as used avoids touching the remaining objects.
81819f0f 1326 */
24922684 1327 slab_fix(s, "Marking all objects used");
39b26464 1328 page->inuse = page->objects;
a973e9dd 1329 page->freelist = NULL;
81819f0f
CL
1330 }
1331 return 0;
1332}
1333
becfda68
LA
1334static inline int free_consistency_checks(struct kmem_cache *s,
1335 struct page *page, void *object, unsigned long addr)
81819f0f 1336{
81819f0f 1337 if (!check_valid_pointer(s, page, object)) {
70d71228 1338 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1339 return 0;
81819f0f
CL
1340 }
1341
1342 if (on_freelist(s, page, object)) {
24922684 1343 object_err(s, page, object, "Object already free");
becfda68 1344 return 0;
81819f0f
CL
1345 }
1346
f7cb1933 1347 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1348 return 0;
81819f0f 1349
1b4f59e3 1350 if (unlikely(s != page->slab_cache)) {
3adbefee 1351 if (!PageSlab(page)) {
756a025f
JP
1352 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1353 object);
1b4f59e3 1354 } else if (!page->slab_cache) {
f9f58285
FF
1355 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1356 object);
70d71228 1357 dump_stack();
06428780 1358 } else
24922684
CL
1359 object_err(s, page, object,
1360 "page slab pointer corrupt.");
becfda68
LA
1361 return 0;
1362 }
1363 return 1;
1364}
1365
1366/* Supports checking bulk free of a constructed freelist */
1367static noinline int free_debug_processing(
1368 struct kmem_cache *s, struct page *page,
1369 void *head, void *tail, int bulk_cnt,
1370 unsigned long addr)
1371{
1372 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1373 void *object = head;
1374 int cnt = 0;
a2b4ae8b 1375 unsigned long flags, flags2;
becfda68
LA
1376 int ret = 0;
1377
1378 spin_lock_irqsave(&n->list_lock, flags);
a2b4ae8b 1379 slab_lock(page, &flags2);
becfda68
LA
1380
1381 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1382 if (!check_slab(s, page))
1383 goto out;
1384 }
1385
1386next_object:
1387 cnt++;
1388
1389 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1390 if (!free_consistency_checks(s, page, object, addr))
1391 goto out;
81819f0f 1392 }
3ec09742 1393
3ec09742
CL
1394 if (s->flags & SLAB_STORE_USER)
1395 set_track(s, object, TRACK_FREE, addr);
1396 trace(s, page, object, 0);
81084651 1397 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1398 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1399
1400 /* Reached end of constructed freelist yet? */
1401 if (object != tail) {
1402 object = get_freepointer(s, object);
1403 goto next_object;
1404 }
804aa132
LA
1405 ret = 1;
1406
5c2e4bbb 1407out:
81084651
JDB
1408 if (cnt != bulk_cnt)
1409 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1410 bulk_cnt, cnt);
1411
a2b4ae8b 1412 slab_unlock(page, &flags2);
282acb43 1413 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1414 if (!ret)
1415 slab_fix(s, "Object at 0x%p not freed", object);
1416 return ret;
81819f0f
CL
1417}
1418
e17f1dfb
VB
1419/*
1420 * Parse a block of slub_debug options. Blocks are delimited by ';'
1421 *
1422 * @str: start of block
1423 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1424 * @slabs: return start of list of slabs, or NULL when there's no list
1425 * @init: assume this is initial parsing and not per-kmem-create parsing
1426 *
1427 * returns the start of next block if there's any, or NULL
1428 */
1429static char *
1430parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1431{
e17f1dfb 1432 bool higher_order_disable = false;
f0630fff 1433
e17f1dfb
VB
1434 /* Skip any completely empty blocks */
1435 while (*str && *str == ';')
1436 str++;
1437
1438 if (*str == ',') {
f0630fff
CL
1439 /*
1440 * No options but restriction on slabs. This means full
1441 * debugging for slabs matching a pattern.
1442 */
e17f1dfb 1443 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1444 goto check_slabs;
e17f1dfb
VB
1445 }
1446 *flags = 0;
f0630fff 1447
e17f1dfb
VB
1448 /* Determine which debug features should be switched on */
1449 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1450 switch (tolower(*str)) {
e17f1dfb
VB
1451 case '-':
1452 *flags = 0;
1453 break;
f0630fff 1454 case 'f':
e17f1dfb 1455 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1456 break;
1457 case 'z':
e17f1dfb 1458 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1459 break;
1460 case 'p':
e17f1dfb 1461 *flags |= SLAB_POISON;
f0630fff
CL
1462 break;
1463 case 'u':
e17f1dfb 1464 *flags |= SLAB_STORE_USER;
f0630fff
CL
1465 break;
1466 case 't':
e17f1dfb 1467 *flags |= SLAB_TRACE;
f0630fff 1468 break;
4c13dd3b 1469 case 'a':
e17f1dfb 1470 *flags |= SLAB_FAILSLAB;
4c13dd3b 1471 break;
08303a73
CA
1472 case 'o':
1473 /*
1474 * Avoid enabling debugging on caches if its minimum
1475 * order would increase as a result.
1476 */
e17f1dfb 1477 higher_order_disable = true;
08303a73 1478 break;
f0630fff 1479 default:
e17f1dfb
VB
1480 if (init)
1481 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1482 }
41ecc55b 1483 }
f0630fff 1484check_slabs:
41ecc55b 1485 if (*str == ',')
e17f1dfb
VB
1486 *slabs = ++str;
1487 else
1488 *slabs = NULL;
1489
1490 /* Skip over the slab list */
1491 while (*str && *str != ';')
1492 str++;
1493
1494 /* Skip any completely empty blocks */
1495 while (*str && *str == ';')
1496 str++;
1497
1498 if (init && higher_order_disable)
1499 disable_higher_order_debug = 1;
1500
1501 if (*str)
1502 return str;
1503 else
1504 return NULL;
1505}
1506
1507static int __init setup_slub_debug(char *str)
1508{
1509 slab_flags_t flags;
a7f1d485 1510 slab_flags_t global_flags;
e17f1dfb
VB
1511 char *saved_str;
1512 char *slab_list;
1513 bool global_slub_debug_changed = false;
1514 bool slab_list_specified = false;
1515
a7f1d485 1516 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1517 if (*str++ != '=' || !*str)
1518 /*
1519 * No options specified. Switch on full debugging.
1520 */
1521 goto out;
1522
1523 saved_str = str;
1524 while (str) {
1525 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1526
1527 if (!slab_list) {
a7f1d485 1528 global_flags = flags;
e17f1dfb
VB
1529 global_slub_debug_changed = true;
1530 } else {
1531 slab_list_specified = true;
1532 }
1533 }
1534
1535 /*
1536 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1537 * slabs means debugging is only changed for those slabs, so the global
1538 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1539 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1540 * long as there is no option specifying flags without a slab list.
1541 */
1542 if (slab_list_specified) {
1543 if (!global_slub_debug_changed)
a7f1d485 1544 global_flags = slub_debug;
e17f1dfb
VB
1545 slub_debug_string = saved_str;
1546 }
f0630fff 1547out:
a7f1d485 1548 slub_debug = global_flags;
ca0cab65
VB
1549 if (slub_debug != 0 || slub_debug_string)
1550 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1551 else
1552 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1553 if ((static_branch_unlikely(&init_on_alloc) ||
1554 static_branch_unlikely(&init_on_free)) &&
1555 (slub_debug & SLAB_POISON))
1556 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1557 return 1;
1558}
1559
1560__setup("slub_debug", setup_slub_debug);
1561
c5fd3ca0
AT
1562/*
1563 * kmem_cache_flags - apply debugging options to the cache
1564 * @object_size: the size of an object without meta data
1565 * @flags: flags to set
1566 * @name: name of the cache
c5fd3ca0
AT
1567 *
1568 * Debug option(s) are applied to @flags. In addition to the debug
1569 * option(s), if a slab name (or multiple) is specified i.e.
1570 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1571 * then only the select slabs will receive the debug option(s).
1572 */
0293d1fd 1573slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1574 slab_flags_t flags, const char *name)
41ecc55b 1575{
c5fd3ca0
AT
1576 char *iter;
1577 size_t len;
e17f1dfb
VB
1578 char *next_block;
1579 slab_flags_t block_flags;
ca220593
JB
1580 slab_flags_t slub_debug_local = slub_debug;
1581
1582 /*
1583 * If the slab cache is for debugging (e.g. kmemleak) then
1584 * don't store user (stack trace) information by default,
1585 * but let the user enable it via the command line below.
1586 */
1587 if (flags & SLAB_NOLEAKTRACE)
1588 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1589
c5fd3ca0 1590 len = strlen(name);
e17f1dfb
VB
1591 next_block = slub_debug_string;
1592 /* Go through all blocks of debug options, see if any matches our slab's name */
1593 while (next_block) {
1594 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1595 if (!iter)
1596 continue;
1597 /* Found a block that has a slab list, search it */
1598 while (*iter) {
1599 char *end, *glob;
1600 size_t cmplen;
1601
1602 end = strchrnul(iter, ',');
1603 if (next_block && next_block < end)
1604 end = next_block - 1;
1605
1606 glob = strnchr(iter, end - iter, '*');
1607 if (glob)
1608 cmplen = glob - iter;
1609 else
1610 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1611
e17f1dfb
VB
1612 if (!strncmp(name, iter, cmplen)) {
1613 flags |= block_flags;
1614 return flags;
1615 }
c5fd3ca0 1616
e17f1dfb
VB
1617 if (!*end || *end == ';')
1618 break;
1619 iter = end + 1;
c5fd3ca0 1620 }
c5fd3ca0 1621 }
ba0268a8 1622
ca220593 1623 return flags | slub_debug_local;
41ecc55b 1624}
b4a64718 1625#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1626static inline void setup_object_debug(struct kmem_cache *s,
1627 struct page *page, void *object) {}
a50b854e
MWO
1628static inline
1629void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1630
3ec09742 1631static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1632 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1633
282acb43 1634static inline int free_debug_processing(
81084651
JDB
1635 struct kmem_cache *s, struct page *page,
1636 void *head, void *tail, int bulk_cnt,
282acb43 1637 unsigned long addr) { return 0; }
41ecc55b 1638
41ecc55b
CL
1639static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1640 { return 1; }
1641static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1642 void *object, u8 val) { return 1; }
5cc6eee8
CL
1643static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1644 struct page *page) {}
c65c1877
PZ
1645static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1646 struct page *page) {}
0293d1fd 1647slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1648 slab_flags_t flags, const char *name)
ba0268a8
CL
1649{
1650 return flags;
1651}
41ecc55b 1652#define slub_debug 0
0f389ec6 1653
fdaa45e9
IM
1654#define disable_higher_order_debug 0
1655
0f389ec6
CL
1656static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1657 { return 0; }
26c02cf0
AB
1658static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1659 { return 0; }
205ab99d
CL
1660static inline void inc_slabs_node(struct kmem_cache *s, int node,
1661 int objects) {}
1662static inline void dec_slabs_node(struct kmem_cache *s, int node,
1663 int objects) {}
7d550c56 1664
52f23478 1665static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1666 void **freelist, void *nextfree)
52f23478
DZ
1667{
1668 return false;
1669}
02e72cc6
AR
1670#endif /* CONFIG_SLUB_DEBUG */
1671
1672/*
1673 * Hooks for other subsystems that check memory allocations. In a typical
1674 * production configuration these hooks all should produce no code at all.
1675 */
0116523c 1676static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1677{
53128245 1678 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1679 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1680 kmemleak_alloc(ptr, size, 1, flags);
53128245 1681 return ptr;
d56791b3
RB
1682}
1683
ee3ce779 1684static __always_inline void kfree_hook(void *x)
d56791b3
RB
1685{
1686 kmemleak_free(x);
027b37b5 1687 kasan_kfree_large(x);
d56791b3
RB
1688}
1689
d57a964e
AK
1690static __always_inline bool slab_free_hook(struct kmem_cache *s,
1691 void *x, bool init)
d56791b3
RB
1692{
1693 kmemleak_free_recursive(x, s->flags);
7d550c56 1694
84048039 1695 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1696
02e72cc6
AR
1697 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1698 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1699
cfbe1636
ME
1700 /* Use KCSAN to help debug racy use-after-free. */
1701 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1702 __kcsan_check_access(x, s->object_size,
1703 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1704
d57a964e
AK
1705 /*
1706 * As memory initialization might be integrated into KASAN,
1707 * kasan_slab_free and initialization memset's must be
1708 * kept together to avoid discrepancies in behavior.
1709 *
1710 * The initialization memset's clear the object and the metadata,
1711 * but don't touch the SLAB redzone.
1712 */
1713 if (init) {
1714 int rsize;
1715
1716 if (!kasan_has_integrated_init())
1717 memset(kasan_reset_tag(x), 0, s->object_size);
1718 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1719 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1720 s->size - s->inuse - rsize);
1721 }
1722 /* KASAN might put x into memory quarantine, delaying its reuse. */
1723 return kasan_slab_free(s, x, init);
02e72cc6 1724}
205ab99d 1725
c3895391 1726static inline bool slab_free_freelist_hook(struct kmem_cache *s,
899447f6
ML
1727 void **head, void **tail,
1728 int *cnt)
81084651 1729{
6471384a
AP
1730
1731 void *object;
1732 void *next = *head;
1733 void *old_tail = *tail ? *tail : *head;
6471384a 1734
b89fb5ef 1735 if (is_kfence_address(next)) {
d57a964e 1736 slab_free_hook(s, next, false);
b89fb5ef
AP
1737 return true;
1738 }
1739
aea4df4c
LA
1740 /* Head and tail of the reconstructed freelist */
1741 *head = NULL;
1742 *tail = NULL;
1b7e816f 1743
aea4df4c
LA
1744 do {
1745 object = next;
1746 next = get_freepointer(s, object);
1747
c3895391 1748 /* If object's reuse doesn't have to be delayed */
d57a964e 1749 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1750 /* Move object to the new freelist */
1751 set_freepointer(s, object, *head);
1752 *head = object;
1753 if (!*tail)
1754 *tail = object;
899447f6
ML
1755 } else {
1756 /*
1757 * Adjust the reconstructed freelist depth
1758 * accordingly if object's reuse is delayed.
1759 */
1760 --(*cnt);
c3895391
AK
1761 }
1762 } while (object != old_tail);
1763
1764 if (*head == *tail)
1765 *tail = NULL;
1766
1767 return *head != NULL;
81084651
JDB
1768}
1769
4d176711 1770static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1771 void *object)
1772{
1773 setup_object_debug(s, page, object);
4d176711 1774 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1775 if (unlikely(s->ctor)) {
1776 kasan_unpoison_object_data(s, object);
1777 s->ctor(object);
1778 kasan_poison_object_data(s, object);
1779 }
4d176711 1780 return object;
588f8ba9
TG
1781}
1782
81819f0f
CL
1783/*
1784 * Slab allocation and freeing
1785 */
5dfb4175
VD
1786static inline struct page *alloc_slab_page(struct kmem_cache *s,
1787 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1788{
5dfb4175 1789 struct page *page;
19af27af 1790 unsigned int order = oo_order(oo);
65c3376a 1791
2154a336 1792 if (node == NUMA_NO_NODE)
5dfb4175 1793 page = alloc_pages(flags, order);
65c3376a 1794 else
96db800f 1795 page = __alloc_pages_node(node, flags, order);
5dfb4175 1796
5dfb4175 1797 return page;
65c3376a
CL
1798}
1799
210e7a43
TG
1800#ifdef CONFIG_SLAB_FREELIST_RANDOM
1801/* Pre-initialize the random sequence cache */
1802static int init_cache_random_seq(struct kmem_cache *s)
1803{
19af27af 1804 unsigned int count = oo_objects(s->oo);
210e7a43 1805 int err;
210e7a43 1806
a810007a
SR
1807 /* Bailout if already initialised */
1808 if (s->random_seq)
1809 return 0;
1810
210e7a43
TG
1811 err = cache_random_seq_create(s, count, GFP_KERNEL);
1812 if (err) {
1813 pr_err("SLUB: Unable to initialize free list for %s\n",
1814 s->name);
1815 return err;
1816 }
1817
1818 /* Transform to an offset on the set of pages */
1819 if (s->random_seq) {
19af27af
AD
1820 unsigned int i;
1821
210e7a43
TG
1822 for (i = 0; i < count; i++)
1823 s->random_seq[i] *= s->size;
1824 }
1825 return 0;
1826}
1827
1828/* Initialize each random sequence freelist per cache */
1829static void __init init_freelist_randomization(void)
1830{
1831 struct kmem_cache *s;
1832
1833 mutex_lock(&slab_mutex);
1834
1835 list_for_each_entry(s, &slab_caches, list)
1836 init_cache_random_seq(s);
1837
1838 mutex_unlock(&slab_mutex);
1839}
1840
1841/* Get the next entry on the pre-computed freelist randomized */
1842static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1843 unsigned long *pos, void *start,
1844 unsigned long page_limit,
1845 unsigned long freelist_count)
1846{
1847 unsigned int idx;
1848
1849 /*
1850 * If the target page allocation failed, the number of objects on the
1851 * page might be smaller than the usual size defined by the cache.
1852 */
1853 do {
1854 idx = s->random_seq[*pos];
1855 *pos += 1;
1856 if (*pos >= freelist_count)
1857 *pos = 0;
1858 } while (unlikely(idx >= page_limit));
1859
1860 return (char *)start + idx;
1861}
1862
1863/* Shuffle the single linked freelist based on a random pre-computed sequence */
1864static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1865{
1866 void *start;
1867 void *cur;
1868 void *next;
1869 unsigned long idx, pos, page_limit, freelist_count;
1870
1871 if (page->objects < 2 || !s->random_seq)
1872 return false;
1873
1874 freelist_count = oo_objects(s->oo);
1875 pos = get_random_int() % freelist_count;
1876
1877 page_limit = page->objects * s->size;
1878 start = fixup_red_left(s, page_address(page));
1879
1880 /* First entry is used as the base of the freelist */
1881 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1882 freelist_count);
4d176711 1883 cur = setup_object(s, page, cur);
210e7a43
TG
1884 page->freelist = cur;
1885
1886 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1887 next = next_freelist_entry(s, page, &pos, start, page_limit,
1888 freelist_count);
4d176711 1889 next = setup_object(s, page, next);
210e7a43
TG
1890 set_freepointer(s, cur, next);
1891 cur = next;
1892 }
210e7a43
TG
1893 set_freepointer(s, cur, NULL);
1894
1895 return true;
1896}
1897#else
1898static inline int init_cache_random_seq(struct kmem_cache *s)
1899{
1900 return 0;
1901}
1902static inline void init_freelist_randomization(void) { }
1903static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1904{
1905 return false;
1906}
1907#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1908
81819f0f
CL
1909static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1910{
06428780 1911 struct page *page;
834f3d11 1912 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1913 gfp_t alloc_gfp;
4d176711 1914 void *start, *p, *next;
a50b854e 1915 int idx;
210e7a43 1916 bool shuffle;
81819f0f 1917
7e0528da
CL
1918 flags &= gfp_allowed_mask;
1919
b7a49f0d 1920 flags |= s->allocflags;
e12ba74d 1921
ba52270d
PE
1922 /*
1923 * Let the initial higher-order allocation fail under memory pressure
1924 * so we fall-back to the minimum order allocation.
1925 */
1926 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1927 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1928 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1929
5dfb4175 1930 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1931 if (unlikely(!page)) {
1932 oo = s->min;
80c3a998 1933 alloc_gfp = flags;
65c3376a
CL
1934 /*
1935 * Allocation may have failed due to fragmentation.
1936 * Try a lower order alloc if possible
1937 */
5dfb4175 1938 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1939 if (unlikely(!page))
1940 goto out;
1941 stat(s, ORDER_FALLBACK);
65c3376a 1942 }
5a896d9e 1943
834f3d11 1944 page->objects = oo_objects(oo);
81819f0f 1945
2e9bd483 1946 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1947
1b4f59e3 1948 page->slab_cache = s;
c03f94cc 1949 __SetPageSlab(page);
2f064f34 1950 if (page_is_pfmemalloc(page))
072bb0aa 1951 SetPageSlabPfmemalloc(page);
81819f0f 1952
a7101224 1953 kasan_poison_slab(page);
81819f0f 1954
a7101224 1955 start = page_address(page);
81819f0f 1956
a50b854e 1957 setup_page_debug(s, page, start);
0316bec2 1958
210e7a43
TG
1959 shuffle = shuffle_freelist(s, page);
1960
1961 if (!shuffle) {
4d176711
AK
1962 start = fixup_red_left(s, start);
1963 start = setup_object(s, page, start);
1964 page->freelist = start;
18e50661
AK
1965 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1966 next = p + s->size;
1967 next = setup_object(s, page, next);
1968 set_freepointer(s, p, next);
1969 p = next;
1970 }
1971 set_freepointer(s, p, NULL);
81819f0f 1972 }
81819f0f 1973
e6e82ea1 1974 page->inuse = page->objects;
8cb0a506 1975 page->frozen = 1;
588f8ba9 1976
81819f0f 1977out:
588f8ba9
TG
1978 if (!page)
1979 return NULL;
1980
588f8ba9
TG
1981 inc_slabs_node(s, page_to_nid(page), page->objects);
1982
81819f0f
CL
1983 return page;
1984}
1985
588f8ba9
TG
1986static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1987{
44405099
LL
1988 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1989 flags = kmalloc_fix_flags(flags);
588f8ba9 1990
53a0de06
VB
1991 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1992
588f8ba9
TG
1993 return allocate_slab(s,
1994 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1995}
1996
81819f0f
CL
1997static void __free_slab(struct kmem_cache *s, struct page *page)
1998{
834f3d11
CL
1999 int order = compound_order(page);
2000 int pages = 1 << order;
81819f0f 2001
8fc8d666 2002 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
2003 void *p;
2004
2005 slab_pad_check(s, page);
224a88be
CL
2006 for_each_object(p, s, page_address(page),
2007 page->objects)
f7cb1933 2008 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
2009 }
2010
072bb0aa 2011 __ClearPageSlabPfmemalloc(page);
49bd5221 2012 __ClearPageSlab(page);
0c06dd75
VB
2013 /* In union with page->mapping where page allocator expects NULL */
2014 page->slab_cache = NULL;
1eb5ac64
NP
2015 if (current->reclaim_state)
2016 current->reclaim_state->reclaimed_slab += pages;
74d555be 2017 unaccount_slab_page(page, order, s);
27ee57c9 2018 __free_pages(page, order);
81819f0f
CL
2019}
2020
2021static void rcu_free_slab(struct rcu_head *h)
2022{
bf68c214 2023 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 2024
1b4f59e3 2025 __free_slab(page->slab_cache, page);
81819f0f
CL
2026}
2027
2028static void free_slab(struct kmem_cache *s, struct page *page)
2029{
5f0d5a3a 2030 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 2031 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
2032 } else
2033 __free_slab(s, page);
2034}
2035
2036static void discard_slab(struct kmem_cache *s, struct page *page)
2037{
205ab99d 2038 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
2039 free_slab(s, page);
2040}
2041
2042/*
5cc6eee8 2043 * Management of partially allocated slabs.
81819f0f 2044 */
1e4dd946
SR
2045static inline void
2046__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 2047{
e95eed57 2048 n->nr_partial++;
136333d1 2049 if (tail == DEACTIVATE_TO_TAIL)
916ac052 2050 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 2051 else
916ac052 2052 list_add(&page->slab_list, &n->partial);
81819f0f
CL
2053}
2054
1e4dd946
SR
2055static inline void add_partial(struct kmem_cache_node *n,
2056 struct page *page, int tail)
62e346a8 2057{
c65c1877 2058 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
2059 __add_partial(n, page, tail);
2060}
c65c1877 2061
1e4dd946
SR
2062static inline void remove_partial(struct kmem_cache_node *n,
2063 struct page *page)
2064{
2065 lockdep_assert_held(&n->list_lock);
916ac052 2066 list_del(&page->slab_list);
52b4b950 2067 n->nr_partial--;
1e4dd946
SR
2068}
2069
81819f0f 2070/*
7ced3719
CL
2071 * Remove slab from the partial list, freeze it and
2072 * return the pointer to the freelist.
81819f0f 2073 *
497b66f2 2074 * Returns a list of objects or NULL if it fails.
81819f0f 2075 */
497b66f2 2076static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 2077 struct kmem_cache_node *n, struct page *page,
b47291ef 2078 int mode)
81819f0f 2079{
2cfb7455
CL
2080 void *freelist;
2081 unsigned long counters;
2082 struct page new;
2083
c65c1877
PZ
2084 lockdep_assert_held(&n->list_lock);
2085
2cfb7455
CL
2086 /*
2087 * Zap the freelist and set the frozen bit.
2088 * The old freelist is the list of objects for the
2089 * per cpu allocation list.
2090 */
7ced3719
CL
2091 freelist = page->freelist;
2092 counters = page->counters;
2093 new.counters = counters;
23910c50 2094 if (mode) {
7ced3719 2095 new.inuse = page->objects;
23910c50
PE
2096 new.freelist = NULL;
2097 } else {
2098 new.freelist = freelist;
2099 }
2cfb7455 2100
a0132ac0 2101 VM_BUG_ON(new.frozen);
7ced3719 2102 new.frozen = 1;
2cfb7455 2103
7ced3719 2104 if (!__cmpxchg_double_slab(s, page,
2cfb7455 2105 freelist, counters,
02d7633f 2106 new.freelist, new.counters,
7ced3719 2107 "acquire_slab"))
7ced3719 2108 return NULL;
2cfb7455
CL
2109
2110 remove_partial(n, page);
7ced3719 2111 WARN_ON(!freelist);
49e22585 2112 return freelist;
81819f0f
CL
2113}
2114
e0a043aa 2115#ifdef CONFIG_SLUB_CPU_PARTIAL
633b0764 2116static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
e0a043aa
VB
2117#else
2118static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
2119 int drain) { }
2120#endif
8ba00bb6 2121static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 2122
81819f0f 2123/*
672bba3a 2124 * Try to allocate a partial slab from a specific node.
81819f0f 2125 */
8ba00bb6 2126static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
4b1f449d 2127 struct page **ret_page, gfp_t gfpflags)
81819f0f 2128{
49e22585
CL
2129 struct page *page, *page2;
2130 void *object = NULL;
4b1f449d 2131 unsigned long flags;
b47291ef 2132 unsigned int partial_pages = 0;
81819f0f
CL
2133
2134 /*
2135 * Racy check. If we mistakenly see no partial slabs then we
2136 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2137 * partial slab and there is none available then get_partial()
672bba3a 2138 * will return NULL.
81819f0f
CL
2139 */
2140 if (!n || !n->nr_partial)
2141 return NULL;
2142
4b1f449d 2143 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2144 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 2145 void *t;
49e22585 2146
4b1f449d 2147 if (!pfmemalloc_match(page, gfpflags))
8ba00bb6
JK
2148 continue;
2149
b47291ef 2150 t = acquire_slab(s, n, page, object == NULL);
49e22585 2151 if (!t)
9b1ea29b 2152 break;
49e22585 2153
12d79634 2154 if (!object) {
75c8ff28 2155 *ret_page = page;
49e22585 2156 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2157 object = t;
49e22585 2158 } else {
633b0764 2159 put_cpu_partial(s, page, 0);
8028dcea 2160 stat(s, CPU_PARTIAL_NODE);
b47291ef 2161 partial_pages++;
49e22585 2162 }
b47291ef 2163#ifdef CONFIG_SLUB_CPU_PARTIAL
345c905d 2164 if (!kmem_cache_has_cpu_partial(s)
b47291ef 2165 || partial_pages > s->cpu_partial_pages / 2)
49e22585 2166 break;
b47291ef
VB
2167#else
2168 break;
2169#endif
49e22585 2170
497b66f2 2171 }
4b1f449d 2172 spin_unlock_irqrestore(&n->list_lock, flags);
497b66f2 2173 return object;
81819f0f
CL
2174}
2175
2176/*
672bba3a 2177 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2178 */
de3ec035 2179static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
75c8ff28 2180 struct page **ret_page)
81819f0f
CL
2181{
2182#ifdef CONFIG_NUMA
2183 struct zonelist *zonelist;
dd1a239f 2184 struct zoneref *z;
54a6eb5c 2185 struct zone *zone;
97a225e6 2186 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2187 void *object;
cc9a6c87 2188 unsigned int cpuset_mems_cookie;
81819f0f
CL
2189
2190 /*
672bba3a
CL
2191 * The defrag ratio allows a configuration of the tradeoffs between
2192 * inter node defragmentation and node local allocations. A lower
2193 * defrag_ratio increases the tendency to do local allocations
2194 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2195 *
672bba3a
CL
2196 * If the defrag_ratio is set to 0 then kmalloc() always
2197 * returns node local objects. If the ratio is higher then kmalloc()
2198 * may return off node objects because partial slabs are obtained
2199 * from other nodes and filled up.
81819f0f 2200 *
43efd3ea
LP
2201 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2202 * (which makes defrag_ratio = 1000) then every (well almost)
2203 * allocation will first attempt to defrag slab caches on other nodes.
2204 * This means scanning over all nodes to look for partial slabs which
2205 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2206 * with available objects.
81819f0f 2207 */
9824601e
CL
2208 if (!s->remote_node_defrag_ratio ||
2209 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2210 return NULL;
2211
cc9a6c87 2212 do {
d26914d1 2213 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2214 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2215 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2216 struct kmem_cache_node *n;
2217
2218 n = get_node(s, zone_to_nid(zone));
2219
dee2f8aa 2220 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2221 n->nr_partial > s->min_partial) {
75c8ff28 2222 object = get_partial_node(s, n, ret_page, flags);
cc9a6c87
MG
2223 if (object) {
2224 /*
d26914d1
MG
2225 * Don't check read_mems_allowed_retry()
2226 * here - if mems_allowed was updated in
2227 * parallel, that was a harmless race
2228 * between allocation and the cpuset
2229 * update
cc9a6c87 2230 */
cc9a6c87
MG
2231 return object;
2232 }
c0ff7453 2233 }
81819f0f 2234 }
d26914d1 2235 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2236#endif /* CONFIG_NUMA */
81819f0f
CL
2237 return NULL;
2238}
2239
2240/*
2241 * Get a partial page, lock it and return it.
2242 */
497b66f2 2243static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
75c8ff28 2244 struct page **ret_page)
81819f0f 2245{
497b66f2 2246 void *object;
a561ce00
JK
2247 int searchnode = node;
2248
2249 if (node == NUMA_NO_NODE)
2250 searchnode = numa_mem_id();
81819f0f 2251
75c8ff28 2252 object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
497b66f2
CL
2253 if (object || node != NUMA_NO_NODE)
2254 return object;
81819f0f 2255
75c8ff28 2256 return get_any_partial(s, flags, ret_page);
81819f0f
CL
2257}
2258
923717cb 2259#ifdef CONFIG_PREEMPTION
8a5ec0ba 2260/*
0d645ed1 2261 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2262 * during cmpxchg. The transactions start with the cpu number and are then
2263 * incremented by CONFIG_NR_CPUS.
2264 */
2265#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2266#else
2267/*
2268 * No preemption supported therefore also no need to check for
2269 * different cpus.
2270 */
2271#define TID_STEP 1
2272#endif
2273
2274static inline unsigned long next_tid(unsigned long tid)
2275{
2276 return tid + TID_STEP;
2277}
2278
9d5f0be0 2279#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2280static inline unsigned int tid_to_cpu(unsigned long tid)
2281{
2282 return tid % TID_STEP;
2283}
2284
2285static inline unsigned long tid_to_event(unsigned long tid)
2286{
2287 return tid / TID_STEP;
2288}
9d5f0be0 2289#endif
8a5ec0ba
CL
2290
2291static inline unsigned int init_tid(int cpu)
2292{
2293 return cpu;
2294}
2295
2296static inline void note_cmpxchg_failure(const char *n,
2297 const struct kmem_cache *s, unsigned long tid)
2298{
2299#ifdef SLUB_DEBUG_CMPXCHG
2300 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2301
f9f58285 2302 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2303
923717cb 2304#ifdef CONFIG_PREEMPTION
8a5ec0ba 2305 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2306 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2307 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2308 else
2309#endif
2310 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2311 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2312 tid_to_event(tid), tid_to_event(actual_tid));
2313 else
f9f58285 2314 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2315 actual_tid, tid, next_tid(tid));
2316#endif
4fdccdfb 2317 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2318}
2319
788e1aad 2320static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2321{
8a5ec0ba 2322 int cpu;
bd0e7491 2323 struct kmem_cache_cpu *c;
8a5ec0ba 2324
bd0e7491
VB
2325 for_each_possible_cpu(cpu) {
2326 c = per_cpu_ptr(s->cpu_slab, cpu);
2327 local_lock_init(&c->lock);
2328 c->tid = init_tid(cpu);
2329 }
8a5ec0ba 2330}
2cfb7455 2331
81819f0f 2332/*
a019d201
VB
2333 * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2334 * unfreezes the slabs and puts it on the proper list.
2335 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2336 * by the caller.
81819f0f 2337 */
d0e0ac97 2338static void deactivate_slab(struct kmem_cache *s, struct page *page,
a019d201 2339 void *freelist)
81819f0f 2340{
2cfb7455 2341 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2342 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2343 int lock = 0, free_delta = 0;
2cfb7455 2344 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2345 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2346 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2347 unsigned long flags = 0;
2cfb7455
CL
2348 struct page new;
2349 struct page old;
2350
2351 if (page->freelist) {
84e554e6 2352 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2353 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2354 }
2355
894b8788 2356 /*
d930ff03
VB
2357 * Stage one: Count the objects on cpu's freelist as free_delta and
2358 * remember the last object in freelist_tail for later splicing.
2cfb7455 2359 */
d930ff03
VB
2360 freelist_tail = NULL;
2361 freelist_iter = freelist;
2362 while (freelist_iter) {
2363 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2364
52f23478
DZ
2365 /*
2366 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2367 * 'freelist_iter' is already corrupted. So isolate all objects
2368 * starting at 'freelist_iter' by skipping them.
52f23478 2369 */
d930ff03 2370 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2371 break;
2372
d930ff03
VB
2373 freelist_tail = freelist_iter;
2374 free_delta++;
2cfb7455 2375
d930ff03 2376 freelist_iter = nextfree;
2cfb7455
CL
2377 }
2378
894b8788 2379 /*
d930ff03
VB
2380 * Stage two: Unfreeze the page while splicing the per-cpu
2381 * freelist to the head of page's freelist.
2382 *
2383 * Ensure that the page is unfrozen while the list presence
2384 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2385 *
2386 * We setup the list membership and then perform a cmpxchg
2387 * with the count. If there is a mismatch then the page
2388 * is not unfrozen but the page is on the wrong list.
2389 *
2390 * Then we restart the process which may have to remove
2391 * the page from the list that we just put it on again
2392 * because the number of objects in the slab may have
2393 * changed.
894b8788 2394 */
2cfb7455 2395redo:
894b8788 2396
d930ff03
VB
2397 old.freelist = READ_ONCE(page->freelist);
2398 old.counters = READ_ONCE(page->counters);
a0132ac0 2399 VM_BUG_ON(!old.frozen);
7c2e132c 2400
2cfb7455
CL
2401 /* Determine target state of the slab */
2402 new.counters = old.counters;
d930ff03
VB
2403 if (freelist_tail) {
2404 new.inuse -= free_delta;
2405 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2406 new.freelist = freelist;
2407 } else
2408 new.freelist = old.freelist;
2409
2410 new.frozen = 0;
2411
8a5b20ae 2412 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2413 m = M_FREE;
2414 else if (new.freelist) {
2415 m = M_PARTIAL;
2416 if (!lock) {
2417 lock = 1;
2418 /*
8bb4e7a2 2419 * Taking the spinlock removes the possibility
2cfb7455
CL
2420 * that acquire_slab() will see a slab page that
2421 * is frozen
2422 */
3406e91b 2423 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2424 }
2425 } else {
2426 m = M_FULL;
965c4848 2427 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2428 lock = 1;
2429 /*
2430 * This also ensures that the scanning of full
2431 * slabs from diagnostic functions will not see
2432 * any frozen slabs.
2433 */
3406e91b 2434 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2435 }
2436 }
2437
2438 if (l != m) {
2cfb7455 2439 if (l == M_PARTIAL)
2cfb7455 2440 remove_partial(n, page);
2cfb7455 2441 else if (l == M_FULL)
c65c1877 2442 remove_full(s, n, page);
2cfb7455 2443
88349a28 2444 if (m == M_PARTIAL)
2cfb7455 2445 add_partial(n, page, tail);
88349a28 2446 else if (m == M_FULL)
2cfb7455 2447 add_full(s, n, page);
2cfb7455
CL
2448 }
2449
2450 l = m;
3406e91b 2451 if (!cmpxchg_double_slab(s, page,
2cfb7455
CL
2452 old.freelist, old.counters,
2453 new.freelist, new.counters,
2454 "unfreezing slab"))
2455 goto redo;
2456
2cfb7455 2457 if (lock)
3406e91b 2458 spin_unlock_irqrestore(&n->list_lock, flags);
2cfb7455 2459
88349a28
WY
2460 if (m == M_PARTIAL)
2461 stat(s, tail);
2462 else if (m == M_FULL)
2463 stat(s, DEACTIVATE_FULL);
2464 else if (m == M_FREE) {
2cfb7455
CL
2465 stat(s, DEACTIVATE_EMPTY);
2466 discard_slab(s, page);
2467 stat(s, FREE_SLAB);
894b8788 2468 }
81819f0f
CL
2469}
2470
345c905d 2471#ifdef CONFIG_SLUB_CPU_PARTIAL
fc1455f4
VB
2472static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2473{
43d77867 2474 struct kmem_cache_node *n = NULL, *n2 = NULL;
fc1455f4 2475 struct page *page, *discard_page = NULL;
7cf9f3ba 2476 unsigned long flags = 0;
49e22585 2477
c2f973ba 2478 while (partial_page) {
49e22585
CL
2479 struct page new;
2480 struct page old;
2481
c2f973ba
VB
2482 page = partial_page;
2483 partial_page = page->next;
43d77867
JK
2484
2485 n2 = get_node(s, page_to_nid(page));
2486 if (n != n2) {
2487 if (n)
7cf9f3ba 2488 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2489
2490 n = n2;
7cf9f3ba 2491 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2492 }
49e22585
CL
2493
2494 do {
2495
2496 old.freelist = page->freelist;
2497 old.counters = page->counters;
a0132ac0 2498 VM_BUG_ON(!old.frozen);
49e22585
CL
2499
2500 new.counters = old.counters;
2501 new.freelist = old.freelist;
2502
2503 new.frozen = 0;
2504
d24ac77f 2505 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2506 old.freelist, old.counters,
2507 new.freelist, new.counters,
2508 "unfreezing slab"));
2509
8a5b20ae 2510 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2511 page->next = discard_page;
2512 discard_page = page;
43d77867
JK
2513 } else {
2514 add_partial(n, page, DEACTIVATE_TO_TAIL);
2515 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2516 }
2517 }
2518
2519 if (n)
7cf9f3ba 2520 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2521
9ada1934
SL
2522 while (discard_page) {
2523 page = discard_page;
2524 discard_page = discard_page->next;
2525
2526 stat(s, DEACTIVATE_EMPTY);
2527 discard_slab(s, page);
2528 stat(s, FREE_SLAB);
2529 }
fc1455f4 2530}
f3ab8b6b 2531
fc1455f4
VB
2532/*
2533 * Unfreeze all the cpu partial slabs.
2534 */
2535static void unfreeze_partials(struct kmem_cache *s)
2536{
2537 struct page *partial_page;
2538 unsigned long flags;
2539
bd0e7491 2540 local_lock_irqsave(&s->cpu_slab->lock, flags);
fc1455f4
VB
2541 partial_page = this_cpu_read(s->cpu_slab->partial);
2542 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 2543 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4
VB
2544
2545 if (partial_page)
2546 __unfreeze_partials(s, partial_page);
2547}
2548
2549static void unfreeze_partials_cpu(struct kmem_cache *s,
2550 struct kmem_cache_cpu *c)
2551{
2552 struct page *partial_page;
2553
2554 partial_page = slub_percpu_partial(c);
2555 c->partial = NULL;
2556
2557 if (partial_page)
2558 __unfreeze_partials(s, partial_page);
49e22585
CL
2559}
2560
2561/*
9234bae9
WY
2562 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2563 * partial page slot if available.
49e22585
CL
2564 *
2565 * If we did not find a slot then simply move all the partials to the
2566 * per node partial list.
2567 */
633b0764 2568static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585
CL
2569{
2570 struct page *oldpage;
e0a043aa
VB
2571 struct page *page_to_unfreeze = NULL;
2572 unsigned long flags;
2573 int pages = 0;
49e22585 2574
bd0e7491 2575 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 2576
e0a043aa
VB
2577 oldpage = this_cpu_read(s->cpu_slab->partial);
2578
2579 if (oldpage) {
b47291ef 2580 if (drain && oldpage->pages >= s->cpu_partial_pages) {
e0a043aa
VB
2581 /*
2582 * Partial array is full. Move the existing set to the
2583 * per node partial list. Postpone the actual unfreezing
2584 * outside of the critical section.
2585 */
2586 page_to_unfreeze = oldpage;
2587 oldpage = NULL;
2588 } else {
49e22585 2589 pages = oldpage->pages;
49e22585 2590 }
e0a043aa 2591 }
49e22585 2592
e0a043aa 2593 pages++;
49e22585 2594
e0a043aa 2595 page->pages = pages;
e0a043aa 2596 page->next = oldpage;
49e22585 2597
e0a043aa
VB
2598 this_cpu_write(s->cpu_slab->partial, page);
2599
bd0e7491 2600 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa
VB
2601
2602 if (page_to_unfreeze) {
2603 __unfreeze_partials(s, page_to_unfreeze);
2604 stat(s, CPU_PARTIAL_DRAIN);
2605 }
49e22585
CL
2606}
2607
e0a043aa
VB
2608#else /* CONFIG_SLUB_CPU_PARTIAL */
2609
2610static inline void unfreeze_partials(struct kmem_cache *s) { }
2611static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2612 struct kmem_cache_cpu *c) { }
2613
2614#endif /* CONFIG_SLUB_CPU_PARTIAL */
2615
dfb4f096 2616static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2617{
5a836bf6
SAS
2618 unsigned long flags;
2619 struct page *page;
2620 void *freelist;
2621
bd0e7491 2622 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6
SAS
2623
2624 page = c->page;
2625 freelist = c->freelist;
c17dda40 2626
a019d201
VB
2627 c->page = NULL;
2628 c->freelist = NULL;
c17dda40 2629 c->tid = next_tid(c->tid);
a019d201 2630
bd0e7491 2631 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 2632
5a836bf6
SAS
2633 if (page) {
2634 deactivate_slab(s, page, freelist);
2635 stat(s, CPUSLAB_FLUSH);
2636 }
81819f0f
CL
2637}
2638
0c710013 2639static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2640{
9dfc6e68 2641 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547
VB
2642 void *freelist = c->freelist;
2643 struct page *page = c->page;
81819f0f 2644
08beb547
VB
2645 c->page = NULL;
2646 c->freelist = NULL;
2647 c->tid = next_tid(c->tid);
2648
2649 if (page) {
2650 deactivate_slab(s, page, freelist);
2651 stat(s, CPUSLAB_FLUSH);
2652 }
49e22585 2653
fc1455f4 2654 unfreeze_partials_cpu(s, c);
81819f0f
CL
2655}
2656
5a836bf6
SAS
2657struct slub_flush_work {
2658 struct work_struct work;
2659 struct kmem_cache *s;
2660 bool skip;
2661};
2662
fc1455f4
VB
2663/*
2664 * Flush cpu slab.
2665 *
5a836bf6 2666 * Called from CPU work handler with migration disabled.
fc1455f4 2667 */
5a836bf6 2668static void flush_cpu_slab(struct work_struct *w)
81819f0f 2669{
5a836bf6
SAS
2670 struct kmem_cache *s;
2671 struct kmem_cache_cpu *c;
2672 struct slub_flush_work *sfw;
2673
2674 sfw = container_of(w, struct slub_flush_work, work);
2675
2676 s = sfw->s;
2677 c = this_cpu_ptr(s->cpu_slab);
fc1455f4
VB
2678
2679 if (c->page)
2680 flush_slab(s, c);
81819f0f 2681
fc1455f4 2682 unfreeze_partials(s);
81819f0f
CL
2683}
2684
5a836bf6 2685static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 2686{
a8364d55
GBY
2687 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2688
a93cf07b 2689 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2690}
2691
5a836bf6
SAS
2692static DEFINE_MUTEX(flush_lock);
2693static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2694
2695static void flush_all_cpus_locked(struct kmem_cache *s)
2696{
2697 struct slub_flush_work *sfw;
2698 unsigned int cpu;
2699
2700 lockdep_assert_cpus_held();
2701 mutex_lock(&flush_lock);
2702
2703 for_each_online_cpu(cpu) {
2704 sfw = &per_cpu(slub_flush, cpu);
2705 if (!has_cpu_slab(cpu, s)) {
2706 sfw->skip = true;
2707 continue;
2708 }
2709 INIT_WORK(&sfw->work, flush_cpu_slab);
2710 sfw->skip = false;
2711 sfw->s = s;
2712 schedule_work_on(cpu, &sfw->work);
2713 }
2714
2715 for_each_online_cpu(cpu) {
2716 sfw = &per_cpu(slub_flush, cpu);
2717 if (sfw->skip)
2718 continue;
2719 flush_work(&sfw->work);
2720 }
2721
2722 mutex_unlock(&flush_lock);
2723}
2724
81819f0f
CL
2725static void flush_all(struct kmem_cache *s)
2726{
5a836bf6
SAS
2727 cpus_read_lock();
2728 flush_all_cpus_locked(s);
2729 cpus_read_unlock();
81819f0f
CL
2730}
2731
a96a87bf
SAS
2732/*
2733 * Use the cpu notifier to insure that the cpu slabs are flushed when
2734 * necessary.
2735 */
2736static int slub_cpu_dead(unsigned int cpu)
2737{
2738 struct kmem_cache *s;
a96a87bf
SAS
2739
2740 mutex_lock(&slab_mutex);
0e7ac738 2741 list_for_each_entry(s, &slab_caches, list)
a96a87bf 2742 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
2743 mutex_unlock(&slab_mutex);
2744 return 0;
2745}
2746
dfb4f096
CL
2747/*
2748 * Check if the objects in a per cpu structure fit numa
2749 * locality expectations.
2750 */
57d437d2 2751static inline int node_match(struct page *page, int node)
dfb4f096
CL
2752{
2753#ifdef CONFIG_NUMA
6159d0f5 2754 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2755 return 0;
2756#endif
2757 return 1;
2758}
2759
9a02d699 2760#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2761static int count_free(struct page *page)
2762{
2763 return page->objects - page->inuse;
2764}
2765
9a02d699
DR
2766static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2767{
2768 return atomic_long_read(&n->total_objects);
2769}
2770#endif /* CONFIG_SLUB_DEBUG */
2771
2772#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2773static unsigned long count_partial(struct kmem_cache_node *n,
2774 int (*get_count)(struct page *))
2775{
2776 unsigned long flags;
2777 unsigned long x = 0;
2778 struct page *page;
2779
2780 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2781 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2782 x += get_count(page);
2783 spin_unlock_irqrestore(&n->list_lock, flags);
2784 return x;
2785}
9a02d699 2786#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2787
781b2ba6
PE
2788static noinline void
2789slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2790{
9a02d699
DR
2791#ifdef CONFIG_SLUB_DEBUG
2792 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2793 DEFAULT_RATELIMIT_BURST);
781b2ba6 2794 int node;
fa45dc25 2795 struct kmem_cache_node *n;
781b2ba6 2796
9a02d699
DR
2797 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2798 return;
2799
5b3810e5
VB
2800 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2801 nid, gfpflags, &gfpflags);
19af27af 2802 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2803 s->name, s->object_size, s->size, oo_order(s->oo),
2804 oo_order(s->min));
781b2ba6 2805
3b0efdfa 2806 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2807 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2808 s->name);
fa5ec8a1 2809
fa45dc25 2810 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2811 unsigned long nr_slabs;
2812 unsigned long nr_objs;
2813 unsigned long nr_free;
2814
26c02cf0
AB
2815 nr_free = count_partial(n, count_free);
2816 nr_slabs = node_nr_slabs(n);
2817 nr_objs = node_nr_objs(n);
781b2ba6 2818
f9f58285 2819 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2820 node, nr_slabs, nr_objs, nr_free);
2821 }
9a02d699 2822#endif
781b2ba6
PE
2823}
2824
072bb0aa
MG
2825static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2826{
2827 if (unlikely(PageSlabPfmemalloc(page)))
2828 return gfp_pfmemalloc_allowed(gfpflags);
2829
2830 return true;
2831}
2832
0b303fb4
VB
2833/*
2834 * A variant of pfmemalloc_match() that tests page flags without asserting
2835 * PageSlab. Intended for opportunistic checks before taking a lock and
2836 * rechecking that nobody else freed the page under us.
2837 */
2838static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2839{
2840 if (unlikely(__PageSlabPfmemalloc(page)))
2841 return gfp_pfmemalloc_allowed(gfpflags);
2842
2843 return true;
2844}
2845
213eeb9f 2846/*
d0e0ac97
CG
2847 * Check the page->freelist of a page and either transfer the freelist to the
2848 * per cpu freelist or deactivate the page.
213eeb9f
CL
2849 *
2850 * The page is still frozen if the return value is not NULL.
2851 *
2852 * If this function returns NULL then the page has been unfrozen.
2853 */
2854static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2855{
2856 struct page new;
2857 unsigned long counters;
2858 void *freelist;
2859
bd0e7491
VB
2860 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2861
213eeb9f
CL
2862 do {
2863 freelist = page->freelist;
2864 counters = page->counters;
6faa6833 2865
213eeb9f 2866 new.counters = counters;
a0132ac0 2867 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2868
2869 new.inuse = page->objects;
2870 new.frozen = freelist != NULL;
2871
d24ac77f 2872 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2873 freelist, counters,
2874 NULL, new.counters,
2875 "get_freelist"));
2876
2877 return freelist;
2878}
2879
81819f0f 2880/*
894b8788
CL
2881 * Slow path. The lockless freelist is empty or we need to perform
2882 * debugging duties.
2883 *
894b8788
CL
2884 * Processing is still very fast if new objects have been freed to the
2885 * regular freelist. In that case we simply take over the regular freelist
2886 * as the lockless freelist and zap the regular freelist.
81819f0f 2887 *
894b8788
CL
2888 * If that is not working then we fall back to the partial lists. We take the
2889 * first element of the freelist as the object to allocate now and move the
2890 * rest of the freelist to the lockless freelist.
81819f0f 2891 *
894b8788 2892 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2893 * we need to allocate a new slab. This is the slowest path since it involves
2894 * a call to the page allocator and the setup of a new slab.
a380a3c7 2895 *
e500059b 2896 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 2897 * already disabled (which is the case for bulk allocation).
81819f0f 2898 */
a380a3c7 2899static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2900 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2901{
6faa6833 2902 void *freelist;
f6e7def7 2903 struct page *page;
e500059b 2904 unsigned long flags;
81819f0f 2905
9f986d99
AW
2906 stat(s, ALLOC_SLOWPATH);
2907
0b303fb4
VB
2908reread_page:
2909
2910 page = READ_ONCE(c->page);
0715e6c5
VB
2911 if (!page) {
2912 /*
2913 * if the node is not online or has no normal memory, just
2914 * ignore the node constraint
2915 */
2916 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2917 !node_isset(node, slab_nodes)))
0715e6c5 2918 node = NUMA_NO_NODE;
81819f0f 2919 goto new_slab;
0715e6c5 2920 }
49e22585 2921redo:
6faa6833 2922
57d437d2 2923 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2924 /*
2925 * same as above but node_match() being false already
2926 * implies node != NUMA_NO_NODE
2927 */
7e1fa93d 2928 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2929 node = NUMA_NO_NODE;
2930 goto redo;
2931 } else {
a561ce00 2932 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 2933 goto deactivate_slab;
a561ce00 2934 }
fc59c053 2935 }
6446faa2 2936
072bb0aa
MG
2937 /*
2938 * By rights, we should be searching for a slab page that was
2939 * PFMEMALLOC but right now, we are losing the pfmemalloc
2940 * information when the page leaves the per-cpu allocator
2941 */
0b303fb4
VB
2942 if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2943 goto deactivate_slab;
072bb0aa 2944
25c00c50 2945 /* must check again c->page in case we got preempted and it changed */
bd0e7491 2946 local_lock_irqsave(&s->cpu_slab->lock, flags);
0b303fb4 2947 if (unlikely(page != c->page)) {
bd0e7491 2948 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
0b303fb4
VB
2949 goto reread_page;
2950 }
6faa6833
CL
2951 freelist = c->freelist;
2952 if (freelist)
73736e03 2953 goto load_freelist;
03e404af 2954
f6e7def7 2955 freelist = get_freelist(s, page);
6446faa2 2956
6faa6833 2957 if (!freelist) {
03e404af 2958 c->page = NULL;
bd0e7491 2959 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 2960 stat(s, DEACTIVATE_BYPASS);
fc59c053 2961 goto new_slab;
03e404af 2962 }
6446faa2 2963
84e554e6 2964 stat(s, ALLOC_REFILL);
6446faa2 2965
894b8788 2966load_freelist:
0b303fb4 2967
bd0e7491 2968 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 2969
507effea
CL
2970 /*
2971 * freelist is pointing to the list of objects to be used.
2972 * page is pointing to the page from which the objects are obtained.
2973 * That page must be frozen for per cpu allocations to work.
2974 */
a0132ac0 2975 VM_BUG_ON(!c->page->frozen);
6faa6833 2976 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2977 c->tid = next_tid(c->tid);
bd0e7491 2978 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 2979 return freelist;
81819f0f 2980
0b303fb4
VB
2981deactivate_slab:
2982
bd0e7491 2983 local_lock_irqsave(&s->cpu_slab->lock, flags);
0b303fb4 2984 if (page != c->page) {
bd0e7491 2985 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
0b303fb4
VB
2986 goto reread_page;
2987 }
a019d201
VB
2988 freelist = c->freelist;
2989 c->page = NULL;
2990 c->freelist = NULL;
bd0e7491 2991 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 2992 deactivate_slab(s, page, freelist);
0b303fb4 2993
81819f0f 2994new_slab:
2cfb7455 2995
a93cf07b 2996 if (slub_percpu_partial(c)) {
bd0e7491 2997 local_lock_irqsave(&s->cpu_slab->lock, flags);
fa417ab7 2998 if (unlikely(c->page)) {
bd0e7491 2999 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fa417ab7
VB
3000 goto reread_page;
3001 }
4b1f449d 3002 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3003 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3004 /* we were preempted and partial list got empty */
3005 goto new_objects;
4b1f449d 3006 }
fa417ab7 3007
a93cf07b
WY
3008 page = c->page = slub_percpu_partial(c);
3009 slub_set_percpu_partial(c, page);
bd0e7491 3010 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
49e22585 3011 stat(s, CPU_PARTIAL_ALLOC);
49e22585 3012 goto redo;
81819f0f
CL
3013 }
3014
fa417ab7
VB
3015new_objects:
3016
75c8ff28 3017 freelist = get_partial(s, gfpflags, node, &page);
3f2b77e3 3018 if (freelist)
2a904905
VB
3019 goto check_new_page;
3020
25c00c50 3021 slub_put_cpu_ptr(s->cpu_slab);
53a0de06 3022 page = new_slab(s, gfpflags, node);
25c00c50 3023 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3024
53a0de06 3025 if (unlikely(!page)) {
9a02d699 3026 slab_out_of_memory(s, gfpflags, node);
f4697436 3027 return NULL;
81819f0f 3028 }
2cfb7455 3029
53a0de06
VB
3030 /*
3031 * No other reference to the page yet so we can
3032 * muck around with it freely without cmpxchg
3033 */
3034 freelist = page->freelist;
3035 page->freelist = NULL;
3036
3037 stat(s, ALLOC_SLAB);
53a0de06 3038
2a904905 3039check_new_page:
2cfb7455 3040
1572df7c 3041 if (kmem_cache_debug(s)) {
fa417ab7 3042 if (!alloc_debug_processing(s, page, freelist, addr)) {
1572df7c
VB
3043 /* Slab failed checks. Next slab needed */
3044 goto new_slab;
fa417ab7 3045 } else {
1572df7c
VB
3046 /*
3047 * For debug case, we don't load freelist so that all
3048 * allocations go through alloc_debug_processing()
3049 */
3050 goto return_single;
fa417ab7 3051 }
1572df7c
VB
3052 }
3053
3054 if (unlikely(!pfmemalloc_match(page, gfpflags)))
3055 /*
3056 * For !pfmemalloc_match() case we don't load freelist so that
3057 * we don't make further mismatched allocations easier.
3058 */
3059 goto return_single;
3060
cfdf836e
VB
3061retry_load_page:
3062
bd0e7491 3063 local_lock_irqsave(&s->cpu_slab->lock, flags);
cfdf836e
VB
3064 if (unlikely(c->page)) {
3065 void *flush_freelist = c->freelist;
3066 struct page *flush_page = c->page;
3067
3068 c->page = NULL;
3069 c->freelist = NULL;
3070 c->tid = next_tid(c->tid);
3071
bd0e7491 3072 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e
VB
3073
3074 deactivate_slab(s, flush_page, flush_freelist);
3075
3076 stat(s, CPUSLAB_FLUSH);
3077
3078 goto retry_load_page;
3079 }
3f2b77e3
VB
3080 c->page = page;
3081
1572df7c
VB
3082 goto load_freelist;
3083
3084return_single:
894b8788 3085
a019d201 3086 deactivate_slab(s, page, get_freepointer(s, freelist));
6faa6833 3087 return freelist;
894b8788
CL
3088}
3089
a380a3c7 3090/*
e500059b
VB
3091 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3092 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3093 * pointer.
a380a3c7
CL
3094 */
3095static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3096 unsigned long addr, struct kmem_cache_cpu *c)
3097{
3098 void *p;
a380a3c7 3099
e500059b 3100#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3101 /*
3102 * We may have been preempted and rescheduled on a different
e500059b 3103 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3104 * pointer.
3105 */
25c00c50 3106 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3107#endif
3108
3109 p = ___slab_alloc(s, gfpflags, node, addr, c);
e500059b 3110#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3111 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3112#endif
a380a3c7
CL
3113 return p;
3114}
3115
0f181f9f
AP
3116/*
3117 * If the object has been wiped upon free, make sure it's fully initialized by
3118 * zeroing out freelist pointer.
3119 */
3120static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3121 void *obj)
3122{
3123 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
3124 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3125 0, sizeof(void *));
0f181f9f
AP
3126}
3127
894b8788
CL
3128/*
3129 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3130 * have the fastpath folded into their functions. So no function call
3131 * overhead for requests that can be satisfied on the fastpath.
3132 *
3133 * The fastpath works by first checking if the lockless freelist can be used.
3134 * If not then __slab_alloc is called for slow processing.
3135 *
3136 * Otherwise we can simply pick the next object from the lockless free list.
3137 */
2b847c3c 3138static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3139 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3140{
03ec0ed5 3141 void *object;
dfb4f096 3142 struct kmem_cache_cpu *c;
57d437d2 3143 struct page *page;
8a5ec0ba 3144 unsigned long tid;
964d4bd3 3145 struct obj_cgroup *objcg = NULL;
da844b78 3146 bool init = false;
1f84260c 3147
964d4bd3 3148 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 3149 if (!s)
773ff60e 3150 return NULL;
b89fb5ef
AP
3151
3152 object = kfence_alloc(s, orig_size, gfpflags);
3153 if (unlikely(object))
3154 goto out;
3155
8a5ec0ba 3156redo:
8a5ec0ba
CL
3157 /*
3158 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3159 * enabled. We may switch back and forth between cpus while
3160 * reading from one cpu area. That does not matter as long
3161 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3162 *
9b4bc85a
VB
3163 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3164 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3165 * the tid. If we are preempted and switched to another cpu between the
3166 * two reads, it's OK as the two are still associated with the same cpu
3167 * and cmpxchg later will validate the cpu.
8a5ec0ba 3168 */
9b4bc85a
VB
3169 c = raw_cpu_ptr(s->cpu_slab);
3170 tid = READ_ONCE(c->tid);
9aabf810
JK
3171
3172 /*
3173 * Irqless object alloc/free algorithm used here depends on sequence
3174 * of fetching cpu_slab's data. tid should be fetched before anything
3175 * on c to guarantee that object and page associated with previous tid
3176 * won't be used with current tid. If we fetch tid first, object and
3177 * page could be one associated with next tid and our alloc/free
3178 * request will be failed. In this case, we will retry. So, no problem.
3179 */
3180 barrier();
8a5ec0ba 3181
8a5ec0ba
CL
3182 /*
3183 * The transaction ids are globally unique per cpu and per operation on
3184 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3185 * occurs on the right processor and that there was no operation on the
3186 * linked list in between.
3187 */
8a5ec0ba 3188
9dfc6e68 3189 object = c->freelist;
57d437d2 3190 page = c->page;
bd0e7491
VB
3191 /*
3192 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3193 * slowpath has taken the local_lock_irqsave(), it is not protected
3194 * against a fast path operation in an irq handler. So we need to take
3195 * the slow path which uses local_lock. It is still relatively fast if
3196 * there is a suitable cpu freelist.
3197 */
3198 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3199 unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 3200 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 3201 } else {
0ad9500e
ED
3202 void *next_object = get_freepointer_safe(s, object);
3203
8a5ec0ba 3204 /*
25985edc 3205 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3206 * operation and if we are on the right processor.
3207 *
d0e0ac97
CG
3208 * The cmpxchg does the following atomically (without lock
3209 * semantics!)
8a5ec0ba
CL
3210 * 1. Relocate first pointer to the current per cpu area.
3211 * 2. Verify that tid and freelist have not been changed
3212 * 3. If they were not changed replace tid and freelist
3213 *
d0e0ac97
CG
3214 * Since this is without lock semantics the protection is only
3215 * against code executing on this cpu *not* from access by
3216 * other cpus.
8a5ec0ba 3217 */
933393f5 3218 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
3219 s->cpu_slab->freelist, s->cpu_slab->tid,
3220 object, tid,
0ad9500e 3221 next_object, next_tid(tid)))) {
8a5ec0ba
CL
3222
3223 note_cmpxchg_failure("slab_alloc", s, tid);
3224 goto redo;
3225 }
0ad9500e 3226 prefetch_freepointer(s, next_object);
84e554e6 3227 stat(s, ALLOC_FASTPATH);
894b8788 3228 }
0f181f9f 3229
ce5716c6 3230 maybe_wipe_obj_freeptr(s, object);
da844b78 3231 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3232
b89fb5ef 3233out:
da844b78 3234 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 3235
894b8788 3236 return object;
81819f0f
CL
3237}
3238
2b847c3c 3239static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 3240 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 3241{
b89fb5ef 3242 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
3243}
3244
81819f0f
CL
3245void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3246{
b89fb5ef 3247 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 3248
d0e0ac97
CG
3249 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3250 s->size, gfpflags);
5b882be4
EGM
3251
3252 return ret;
81819f0f
CL
3253}
3254EXPORT_SYMBOL(kmem_cache_alloc);
3255
0f24f128 3256#ifdef CONFIG_TRACING
4a92379b
RK
3257void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3258{
b89fb5ef 3259 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 3260 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 3261 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
3262 return ret;
3263}
3264EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
3265#endif
3266
81819f0f
CL
3267#ifdef CONFIG_NUMA
3268void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3269{
b89fb5ef 3270 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3271
ca2b84cb 3272 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 3273 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
3274
3275 return ret;
81819f0f
CL
3276}
3277EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3278
0f24f128 3279#ifdef CONFIG_TRACING
4a92379b 3280void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 3281 gfp_t gfpflags,
4a92379b 3282 int node, size_t size)
5b882be4 3283{
b89fb5ef 3284 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
3285
3286 trace_kmalloc_node(_RET_IP_, ret,
3287 size, s->size, gfpflags, node);
0316bec2 3288
0116523c 3289 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3290 return ret;
5b882be4 3291}
4a92379b 3292EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 3293#endif
6dfd1b65 3294#endif /* CONFIG_NUMA */
5b882be4 3295
81819f0f 3296/*
94e4d712 3297 * Slow path handling. This may still be called frequently since objects
894b8788 3298 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3299 *
894b8788
CL
3300 * So we still attempt to reduce cache line usage. Just take the slab
3301 * lock and free the item. If there is no additional partial page
3302 * handling required then we can return immediately.
81819f0f 3303 */
894b8788 3304static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
3305 void *head, void *tail, int cnt,
3306 unsigned long addr)
3307
81819f0f
CL
3308{
3309 void *prior;
2cfb7455 3310 int was_frozen;
2cfb7455
CL
3311 struct page new;
3312 unsigned long counters;
3313 struct kmem_cache_node *n = NULL;
3f649ab7 3314 unsigned long flags;
81819f0f 3315
8a5ec0ba 3316 stat(s, FREE_SLOWPATH);
81819f0f 3317
b89fb5ef
AP
3318 if (kfence_free(head))
3319 return;
3320
19c7ff9e 3321 if (kmem_cache_debug(s) &&
282acb43 3322 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3323 return;
6446faa2 3324
2cfb7455 3325 do {
837d678d
JK
3326 if (unlikely(n)) {
3327 spin_unlock_irqrestore(&n->list_lock, flags);
3328 n = NULL;
3329 }
2cfb7455
CL
3330 prior = page->freelist;
3331 counters = page->counters;
81084651 3332 set_freepointer(s, tail, prior);
2cfb7455
CL
3333 new.counters = counters;
3334 was_frozen = new.frozen;
81084651 3335 new.inuse -= cnt;
837d678d 3336 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3337
c65c1877 3338 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3339
3340 /*
d0e0ac97
CG
3341 * Slab was on no list before and will be
3342 * partially empty
3343 * We can defer the list move and instead
3344 * freeze it.
49e22585
CL
3345 */
3346 new.frozen = 1;
3347
c65c1877 3348 } else { /* Needs to be taken off a list */
49e22585 3349
b455def2 3350 n = get_node(s, page_to_nid(page));
49e22585
CL
3351 /*
3352 * Speculatively acquire the list_lock.
3353 * If the cmpxchg does not succeed then we may
3354 * drop the list_lock without any processing.
3355 *
3356 * Otherwise the list_lock will synchronize with
3357 * other processors updating the list of slabs.
3358 */
3359 spin_lock_irqsave(&n->list_lock, flags);
3360
3361 }
2cfb7455 3362 }
81819f0f 3363
2cfb7455
CL
3364 } while (!cmpxchg_double_slab(s, page,
3365 prior, counters,
81084651 3366 head, new.counters,
2cfb7455 3367 "__slab_free"));
81819f0f 3368
2cfb7455 3369 if (likely(!n)) {
49e22585 3370
c270cf30
AW
3371 if (likely(was_frozen)) {
3372 /*
3373 * The list lock was not taken therefore no list
3374 * activity can be necessary.
3375 */
3376 stat(s, FREE_FROZEN);
3377 } else if (new.frozen) {
3378 /*
3379 * If we just froze the page then put it onto the
3380 * per cpu partial list.
3381 */
49e22585 3382 put_cpu_partial(s, page, 1);
8028dcea
AS
3383 stat(s, CPU_PARTIAL_FREE);
3384 }
c270cf30 3385
b455def2
L
3386 return;
3387 }
81819f0f 3388
8a5b20ae 3389 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3390 goto slab_empty;
3391
81819f0f 3392 /*
837d678d
JK
3393 * Objects left in the slab. If it was not on the partial list before
3394 * then add it.
81819f0f 3395 */
345c905d 3396 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3397 remove_full(s, n, page);
837d678d
JK
3398 add_partial(n, page, DEACTIVATE_TO_TAIL);
3399 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3400 }
80f08c19 3401 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3402 return;
3403
3404slab_empty:
a973e9dd 3405 if (prior) {
81819f0f 3406 /*
6fbabb20 3407 * Slab on the partial list.
81819f0f 3408 */
5cc6eee8 3409 remove_partial(n, page);
84e554e6 3410 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3411 } else {
6fbabb20 3412 /* Slab must be on the full list */
c65c1877
PZ
3413 remove_full(s, n, page);
3414 }
2cfb7455 3415
80f08c19 3416 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3417 stat(s, FREE_SLAB);
81819f0f 3418 discard_slab(s, page);
81819f0f
CL
3419}
3420
894b8788
CL
3421/*
3422 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3423 * can perform fastpath freeing without additional function calls.
3424 *
3425 * The fastpath is only possible if we are freeing to the current cpu slab
3426 * of this processor. This typically the case if we have just allocated
3427 * the item before.
3428 *
3429 * If fastpath is not possible then fall back to __slab_free where we deal
3430 * with all sorts of special processing.
81084651
JDB
3431 *
3432 * Bulk free of a freelist with several objects (all pointing to the
3433 * same page) possible by specifying head and tail ptr, plus objects
3434 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3435 */
80a9201a
AP
3436static __always_inline void do_slab_free(struct kmem_cache *s,
3437 struct page *page, void *head, void *tail,
3438 int cnt, unsigned long addr)
894b8788 3439{
81084651 3440 void *tail_obj = tail ? : head;
dfb4f096 3441 struct kmem_cache_cpu *c;
8a5ec0ba 3442 unsigned long tid;
964d4bd3 3443
3ddd6026
ML
3444 /* memcg_slab_free_hook() is already called for bulk free. */
3445 if (!tail)
3446 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3447redo:
3448 /*
3449 * Determine the currently cpus per cpu slab.
3450 * The cpu may change afterward. However that does not matter since
3451 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3452 * during the cmpxchg then the free will succeed.
8a5ec0ba 3453 */
9b4bc85a
VB
3454 c = raw_cpu_ptr(s->cpu_slab);
3455 tid = READ_ONCE(c->tid);
c016b0bd 3456
9aabf810
JK
3457 /* Same with comment on barrier() in slab_alloc_node() */
3458 barrier();
c016b0bd 3459
442b06bc 3460 if (likely(page == c->page)) {
bd0e7491 3461#ifndef CONFIG_PREEMPT_RT
5076190d
LT
3462 void **freelist = READ_ONCE(c->freelist);
3463
3464 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3465
933393f5 3466 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3467 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3468 freelist, tid,
81084651 3469 head, next_tid(tid)))) {
8a5ec0ba
CL
3470
3471 note_cmpxchg_failure("slab_free", s, tid);
3472 goto redo;
3473 }
bd0e7491
VB
3474#else /* CONFIG_PREEMPT_RT */
3475 /*
3476 * We cannot use the lockless fastpath on PREEMPT_RT because if
3477 * a slowpath has taken the local_lock_irqsave(), it is not
3478 * protected against a fast path operation in an irq handler. So
3479 * we need to take the local_lock. We shouldn't simply defer to
3480 * __slab_free() as that wouldn't use the cpu freelist at all.
3481 */
3482 void **freelist;
3483
3484 local_lock(&s->cpu_slab->lock);
3485 c = this_cpu_ptr(s->cpu_slab);
3486 if (unlikely(page != c->page)) {
3487 local_unlock(&s->cpu_slab->lock);
3488 goto redo;
3489 }
3490 tid = c->tid;
3491 freelist = c->freelist;
3492
3493 set_freepointer(s, tail_obj, freelist);
3494 c->freelist = head;
3495 c->tid = next_tid(tid);
3496
3497 local_unlock(&s->cpu_slab->lock);
3498#endif
84e554e6 3499 stat(s, FREE_FASTPATH);
894b8788 3500 } else
81084651 3501 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3502
894b8788
CL
3503}
3504
80a9201a
AP
3505static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3506 void *head, void *tail, int cnt,
3507 unsigned long addr)
3508{
80a9201a 3509 /*
c3895391
AK
3510 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3511 * to remove objects, whose reuse must be delayed.
80a9201a 3512 */
899447f6 3513 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
c3895391 3514 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3515}
3516
2bd926b4 3517#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3518void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3519{
3520 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3521}
3522#endif
3523
81819f0f
CL
3524void kmem_cache_free(struct kmem_cache *s, void *x)
3525{
b9ce5ef4
GC
3526 s = cache_from_obj(s, x);
3527 if (!s)
79576102 3528 return;
3544de8e 3529 trace_kmem_cache_free(_RET_IP_, x, s->name);
9a543f00 3530 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
81819f0f
CL
3531}
3532EXPORT_SYMBOL(kmem_cache_free);
3533
d0ecd894 3534struct detached_freelist {
fbd02630 3535 struct page *page;
d0ecd894
JDB
3536 void *tail;
3537 void *freelist;
3538 int cnt;
376bf125 3539 struct kmem_cache *s;
d0ecd894 3540};
fbd02630 3541
1ed7ce57 3542static inline void free_nonslab_page(struct page *page, void *object)
f227f0fa
SB
3543{
3544 unsigned int order = compound_order(page);
3545
d0fe47c6
KW
3546 if (WARN_ON_ONCE(!PageCompound(page)))
3547 pr_warn_once("object pointer: 0x%p\n", object);
3548
1ed7ce57 3549 kfree_hook(object);
f227f0fa
SB
3550 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3551 __free_pages(page, order);
3552}
3553
d0ecd894
JDB
3554/*
3555 * This function progressively scans the array with free objects (with
3556 * a limited look ahead) and extract objects belonging to the same
3557 * page. It builds a detached freelist directly within the given
3558 * page/objects. This can happen without any need for
3559 * synchronization, because the objects are owned by running process.
3560 * The freelist is build up as a single linked list in the objects.
3561 * The idea is, that this detached freelist can then be bulk
3562 * transferred to the real freelist(s), but only requiring a single
3563 * synchronization primitive. Look ahead in the array is limited due
3564 * to performance reasons.
3565 */
376bf125
JDB
3566static inline
3567int build_detached_freelist(struct kmem_cache *s, size_t size,
3568 void **p, struct detached_freelist *df)
d0ecd894
JDB
3569{
3570 size_t first_skipped_index = 0;
3571 int lookahead = 3;
3572 void *object;
ca257195 3573 struct page *page;
fbd02630 3574
d0ecd894
JDB
3575 /* Always re-init detached_freelist */
3576 df->page = NULL;
fbd02630 3577
d0ecd894
JDB
3578 do {
3579 object = p[--size];
ca257195 3580 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3581 } while (!object && size);
3eed034d 3582
d0ecd894
JDB
3583 if (!object)
3584 return 0;
fbd02630 3585
ca257195
JDB
3586 page = virt_to_head_page(object);
3587 if (!s) {
3588 /* Handle kalloc'ed objects */
3589 if (unlikely(!PageSlab(page))) {
1ed7ce57 3590 free_nonslab_page(page, object);
ca257195
JDB
3591 p[size] = NULL; /* mark object processed */
3592 return size;
3593 }
3594 /* Derive kmem_cache from object */
3595 df->s = page->slab_cache;
3596 } else {
3597 df->s = cache_from_obj(s, object); /* Support for memcg */
3598 }
376bf125 3599
b89fb5ef 3600 if (is_kfence_address(object)) {
d57a964e 3601 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3602 __kfence_free(object);
3603 p[size] = NULL; /* mark object processed */
3604 return size;
3605 }
3606
d0ecd894 3607 /* Start new detached freelist */
ca257195 3608 df->page = page;
376bf125 3609 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3610 df->tail = object;
3611 df->freelist = object;
3612 p[size] = NULL; /* mark object processed */
3613 df->cnt = 1;
3614
3615 while (size) {
3616 object = p[--size];
3617 if (!object)
3618 continue; /* Skip processed objects */
3619
3620 /* df->page is always set at this point */
3621 if (df->page == virt_to_head_page(object)) {
3622 /* Opportunity build freelist */
376bf125 3623 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3624 df->freelist = object;
3625 df->cnt++;
3626 p[size] = NULL; /* mark object processed */
3627
3628 continue;
fbd02630 3629 }
d0ecd894
JDB
3630
3631 /* Limit look ahead search */
3632 if (!--lookahead)
3633 break;
3634
3635 if (!first_skipped_index)
3636 first_skipped_index = size + 1;
fbd02630 3637 }
d0ecd894
JDB
3638
3639 return first_skipped_index;
3640}
3641
d0ecd894 3642/* Note that interrupts must be enabled when calling this function. */
376bf125 3643void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3644{
3645 if (WARN_ON(!size))
3646 return;
3647
d1b2cf6c 3648 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3649 do {
3650 struct detached_freelist df;
3651
3652 size = build_detached_freelist(s, size, p, &df);
84582c8a 3653 if (!df.page)
d0ecd894
JDB
3654 continue;
3655
457c82c3 3656 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3657 } while (likely(size));
484748f0
CL
3658}
3659EXPORT_SYMBOL(kmem_cache_free_bulk);
3660
994eb764 3661/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3662int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3663 void **p)
484748f0 3664{
994eb764
JDB
3665 struct kmem_cache_cpu *c;
3666 int i;
964d4bd3 3667 struct obj_cgroup *objcg = NULL;
994eb764 3668
03ec0ed5 3669 /* memcg and kmem_cache debug support */
964d4bd3 3670 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3671 if (unlikely(!s))
3672 return false;
994eb764
JDB
3673 /*
3674 * Drain objects in the per cpu slab, while disabling local
3675 * IRQs, which protects against PREEMPT and interrupts
3676 * handlers invoking normal fastpath.
3677 */
25c00c50 3678 c = slub_get_cpu_ptr(s->cpu_slab);
bd0e7491 3679 local_lock_irq(&s->cpu_slab->lock);
994eb764
JDB
3680
3681 for (i = 0; i < size; i++) {
b89fb5ef 3682 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3683
b89fb5ef
AP
3684 if (unlikely(object)) {
3685 p[i] = object;
3686 continue;
3687 }
3688
3689 object = c->freelist;
ebe909e0 3690 if (unlikely(!object)) {
fd4d9c7d
JH
3691 /*
3692 * We may have removed an object from c->freelist using
3693 * the fastpath in the previous iteration; in that case,
3694 * c->tid has not been bumped yet.
3695 * Since ___slab_alloc() may reenable interrupts while
3696 * allocating memory, we should bump c->tid now.
3697 */
3698 c->tid = next_tid(c->tid);
3699
bd0e7491 3700 local_unlock_irq(&s->cpu_slab->lock);
e500059b 3701
ebe909e0
JDB
3702 /*
3703 * Invoking slow path likely have side-effect
3704 * of re-populating per CPU c->freelist
3705 */
87098373 3706 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3707 _RET_IP_, c);
87098373
CL
3708 if (unlikely(!p[i]))
3709 goto error;
3710
ebe909e0 3711 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3712 maybe_wipe_obj_freeptr(s, p[i]);
3713
bd0e7491 3714 local_lock_irq(&s->cpu_slab->lock);
e500059b 3715
ebe909e0
JDB
3716 continue; /* goto for-loop */
3717 }
994eb764
JDB
3718 c->freelist = get_freepointer(s, object);
3719 p[i] = object;
0f181f9f 3720 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3721 }
3722 c->tid = next_tid(c->tid);
bd0e7491 3723 local_unlock_irq(&s->cpu_slab->lock);
25c00c50 3724 slub_put_cpu_ptr(s->cpu_slab);
994eb764 3725
da844b78
AK
3726 /*
3727 * memcg and kmem_cache debug support and memory initialization.
3728 * Done outside of the IRQ disabled fastpath loop.
3729 */
3730 slab_post_alloc_hook(s, objcg, flags, size, p,
3731 slab_want_init_on_alloc(flags, s));
865762a8 3732 return i;
87098373 3733error:
25c00c50 3734 slub_put_cpu_ptr(s->cpu_slab);
da844b78 3735 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3736 __kmem_cache_free_bulk(s, i, p);
865762a8 3737 return 0;
484748f0
CL
3738}
3739EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3740
3741
81819f0f 3742/*
672bba3a
CL
3743 * Object placement in a slab is made very easy because we always start at
3744 * offset 0. If we tune the size of the object to the alignment then we can
3745 * get the required alignment by putting one properly sized object after
3746 * another.
81819f0f
CL
3747 *
3748 * Notice that the allocation order determines the sizes of the per cpu
3749 * caches. Each processor has always one slab available for allocations.
3750 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3751 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3752 * locking overhead.
81819f0f
CL
3753 */
3754
3755/*
f0953a1b 3756 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3757 * and slab fragmentation. A higher order reduces the number of partial slabs
3758 * and increases the number of allocations possible without having to
3759 * take the list_lock.
3760 */
19af27af
AD
3761static unsigned int slub_min_order;
3762static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3763static unsigned int slub_min_objects;
81819f0f 3764
81819f0f
CL
3765/*
3766 * Calculate the order of allocation given an slab object size.
3767 *
672bba3a
CL
3768 * The order of allocation has significant impact on performance and other
3769 * system components. Generally order 0 allocations should be preferred since
3770 * order 0 does not cause fragmentation in the page allocator. Larger objects
3771 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3772 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3773 * would be wasted.
3774 *
3775 * In order to reach satisfactory performance we must ensure that a minimum
3776 * number of objects is in one slab. Otherwise we may generate too much
3777 * activity on the partial lists which requires taking the list_lock. This is
3778 * less a concern for large slabs though which are rarely used.
81819f0f 3779 *
672bba3a
CL
3780 * slub_max_order specifies the order where we begin to stop considering the
3781 * number of objects in a slab as critical. If we reach slub_max_order then
3782 * we try to keep the page order as low as possible. So we accept more waste
3783 * of space in favor of a small page order.
81819f0f 3784 *
672bba3a
CL
3785 * Higher order allocations also allow the placement of more objects in a
3786 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3787 * requested a higher minimum order then we start with that one instead of
672bba3a 3788 * the smallest order which will fit the object.
81819f0f 3789 */
19af27af
AD
3790static inline unsigned int slab_order(unsigned int size,
3791 unsigned int min_objects, unsigned int max_order,
9736d2a9 3792 unsigned int fract_leftover)
81819f0f 3793{
19af27af
AD
3794 unsigned int min_order = slub_min_order;
3795 unsigned int order;
81819f0f 3796
9736d2a9 3797 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3798 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3799
9736d2a9 3800 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3801 order <= max_order; order++) {
81819f0f 3802
19af27af
AD
3803 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3804 unsigned int rem;
81819f0f 3805
9736d2a9 3806 rem = slab_size % size;
81819f0f 3807
5e6d444e 3808 if (rem <= slab_size / fract_leftover)
81819f0f 3809 break;
81819f0f 3810 }
672bba3a 3811
81819f0f
CL
3812 return order;
3813}
3814
9736d2a9 3815static inline int calculate_order(unsigned int size)
5e6d444e 3816{
19af27af
AD
3817 unsigned int order;
3818 unsigned int min_objects;
3819 unsigned int max_objects;
3286222f 3820 unsigned int nr_cpus;
5e6d444e
CL
3821
3822 /*
3823 * Attempt to find best configuration for a slab. This
3824 * works by first attempting to generate a layout with
3825 * the best configuration and backing off gradually.
3826 *
422ff4d7 3827 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3828 * we reduce the minimum objects required in a slab.
3829 */
3830 min_objects = slub_min_objects;
3286222f
VB
3831 if (!min_objects) {
3832 /*
3833 * Some architectures will only update present cpus when
3834 * onlining them, so don't trust the number if it's just 1. But
3835 * we also don't want to use nr_cpu_ids always, as on some other
3836 * architectures, there can be many possible cpus, but never
3837 * onlined. Here we compromise between trying to avoid too high
3838 * order on systems that appear larger than they are, and too
3839 * low order on systems that appear smaller than they are.
3840 */
3841 nr_cpus = num_present_cpus();
3842 if (nr_cpus <= 1)
3843 nr_cpus = nr_cpu_ids;
3844 min_objects = 4 * (fls(nr_cpus) + 1);
3845 }
9736d2a9 3846 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3847 min_objects = min(min_objects, max_objects);
3848
5e6d444e 3849 while (min_objects > 1) {
19af27af
AD
3850 unsigned int fraction;
3851
c124f5b5 3852 fraction = 16;
5e6d444e
CL
3853 while (fraction >= 4) {
3854 order = slab_order(size, min_objects,
9736d2a9 3855 slub_max_order, fraction);
5e6d444e
CL
3856 if (order <= slub_max_order)
3857 return order;
3858 fraction /= 2;
3859 }
5086c389 3860 min_objects--;
5e6d444e
CL
3861 }
3862
3863 /*
3864 * We were unable to place multiple objects in a slab. Now
3865 * lets see if we can place a single object there.
3866 */
9736d2a9 3867 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3868 if (order <= slub_max_order)
3869 return order;
3870
3871 /*
3872 * Doh this slab cannot be placed using slub_max_order.
3873 */
9736d2a9 3874 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3875 if (order < MAX_ORDER)
5e6d444e
CL
3876 return order;
3877 return -ENOSYS;
3878}
3879
5595cffc 3880static void
4053497d 3881init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3882{
3883 n->nr_partial = 0;
81819f0f
CL
3884 spin_lock_init(&n->list_lock);
3885 INIT_LIST_HEAD(&n->partial);
8ab1372f 3886#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3887 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3888 atomic_long_set(&n->total_objects, 0);
643b1138 3889 INIT_LIST_HEAD(&n->full);
8ab1372f 3890#endif
81819f0f
CL
3891}
3892
55136592 3893static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3894{
6c182dc0 3895 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3896 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3897
8a5ec0ba 3898 /*
d4d84fef
CM
3899 * Must align to double word boundary for the double cmpxchg
3900 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3901 */
d4d84fef
CM
3902 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3903 2 * sizeof(void *));
8a5ec0ba
CL
3904
3905 if (!s->cpu_slab)
3906 return 0;
3907
3908 init_kmem_cache_cpus(s);
4c93c355 3909
8a5ec0ba 3910 return 1;
4c93c355 3911}
4c93c355 3912
51df1142
CL
3913static struct kmem_cache *kmem_cache_node;
3914
81819f0f
CL
3915/*
3916 * No kmalloc_node yet so do it by hand. We know that this is the first
3917 * slab on the node for this slabcache. There are no concurrent accesses
3918 * possible.
3919 *
721ae22a
ZYW
3920 * Note that this function only works on the kmem_cache_node
3921 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3922 * memory on a fresh node that has no slab structures yet.
81819f0f 3923 */
55136592 3924static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3925{
3926 struct page *page;
3927 struct kmem_cache_node *n;
3928
51df1142 3929 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3930
51df1142 3931 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3932
3933 BUG_ON(!page);
a2f92ee7 3934 if (page_to_nid(page) != node) {
f9f58285
FF
3935 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3936 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3937 }
3938
81819f0f
CL
3939 n = page->freelist;
3940 BUG_ON(!n);
8ab1372f 3941#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3942 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3943 init_tracking(kmem_cache_node, n);
8ab1372f 3944#endif
da844b78 3945 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3946 page->freelist = get_freepointer(kmem_cache_node, n);
3947 page->inuse = 1;
3948 page->frozen = 0;
3949 kmem_cache_node->node[node] = n;
4053497d 3950 init_kmem_cache_node(n);
51df1142 3951 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3952
67b6c900 3953 /*
1e4dd946
SR
3954 * No locks need to be taken here as it has just been
3955 * initialized and there is no concurrent access.
67b6c900 3956 */
1e4dd946 3957 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3958}
3959
3960static void free_kmem_cache_nodes(struct kmem_cache *s)
3961{
3962 int node;
fa45dc25 3963 struct kmem_cache_node *n;
81819f0f 3964
fa45dc25 3965 for_each_kmem_cache_node(s, node, n) {
81819f0f 3966 s->node[node] = NULL;
ea37df54 3967 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3968 }
3969}
3970
52b4b950
DS
3971void __kmem_cache_release(struct kmem_cache *s)
3972{
210e7a43 3973 cache_random_seq_destroy(s);
52b4b950
DS
3974 free_percpu(s->cpu_slab);
3975 free_kmem_cache_nodes(s);
3976}
3977
55136592 3978static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3979{
3980 int node;
81819f0f 3981
7e1fa93d 3982 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3983 struct kmem_cache_node *n;
3984
73367bd8 3985 if (slab_state == DOWN) {
55136592 3986 early_kmem_cache_node_alloc(node);
73367bd8
AD
3987 continue;
3988 }
51df1142 3989 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3990 GFP_KERNEL, node);
81819f0f 3991
73367bd8
AD
3992 if (!n) {
3993 free_kmem_cache_nodes(s);
3994 return 0;
81819f0f 3995 }
73367bd8 3996
4053497d 3997 init_kmem_cache_node(n);
ea37df54 3998 s->node[node] = n;
81819f0f
CL
3999 }
4000 return 1;
4001}
81819f0f 4002
c0bdb232 4003static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
4004{
4005 if (min < MIN_PARTIAL)
4006 min = MIN_PARTIAL;
4007 else if (min > MAX_PARTIAL)
4008 min = MAX_PARTIAL;
4009 s->min_partial = min;
4010}
4011
e6d0e1dc
WY
4012static void set_cpu_partial(struct kmem_cache *s)
4013{
4014#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
4015 unsigned int nr_objects;
4016
e6d0e1dc
WY
4017 /*
4018 * cpu_partial determined the maximum number of objects kept in the
4019 * per cpu partial lists of a processor.
4020 *
4021 * Per cpu partial lists mainly contain slabs that just have one
4022 * object freed. If they are used for allocation then they can be
4023 * filled up again with minimal effort. The slab will never hit the
4024 * per node partial lists and therefore no locking will be required.
4025 *
b47291ef
VB
4026 * For backwards compatibility reasons, this is determined as number
4027 * of objects, even though we now limit maximum number of pages, see
4028 * slub_set_cpu_partial()
e6d0e1dc
WY
4029 */
4030 if (!kmem_cache_has_cpu_partial(s))
b47291ef 4031 nr_objects = 0;
e6d0e1dc 4032 else if (s->size >= PAGE_SIZE)
b47291ef 4033 nr_objects = 6;
e6d0e1dc 4034 else if (s->size >= 1024)
23e98ad1 4035 nr_objects = 24;
e6d0e1dc 4036 else if (s->size >= 256)
23e98ad1 4037 nr_objects = 52;
e6d0e1dc 4038 else
23e98ad1 4039 nr_objects = 120;
b47291ef
VB
4040
4041 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
4042#endif
4043}
4044
81819f0f
CL
4045/*
4046 * calculate_sizes() determines the order and the distribution of data within
4047 * a slab object.
4048 */
06b285dc 4049static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 4050{
d50112ed 4051 slab_flags_t flags = s->flags;
be4a7988 4052 unsigned int size = s->object_size;
19af27af 4053 unsigned int order;
81819f0f 4054
d8b42bf5
CL
4055 /*
4056 * Round up object size to the next word boundary. We can only
4057 * place the free pointer at word boundaries and this determines
4058 * the possible location of the free pointer.
4059 */
4060 size = ALIGN(size, sizeof(void *));
4061
4062#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4063 /*
4064 * Determine if we can poison the object itself. If the user of
4065 * the slab may touch the object after free or before allocation
4066 * then we should never poison the object itself.
4067 */
5f0d5a3a 4068 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 4069 !s->ctor)
81819f0f
CL
4070 s->flags |= __OBJECT_POISON;
4071 else
4072 s->flags &= ~__OBJECT_POISON;
4073
81819f0f
CL
4074
4075 /*
672bba3a 4076 * If we are Redzoning then check if there is some space between the
81819f0f 4077 * end of the object and the free pointer. If not then add an
672bba3a 4078 * additional word to have some bytes to store Redzone information.
81819f0f 4079 */
3b0efdfa 4080 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 4081 size += sizeof(void *);
41ecc55b 4082#endif
81819f0f
CL
4083
4084 /*
672bba3a 4085 * With that we have determined the number of bytes in actual use
e41a49fa 4086 * by the object and redzoning.
81819f0f
CL
4087 */
4088 s->inuse = size;
4089
74c1d3e0
KC
4090 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4091 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4092 s->ctor) {
81819f0f
CL
4093 /*
4094 * Relocate free pointer after the object if it is not
4095 * permitted to overwrite the first word of the object on
4096 * kmem_cache_free.
4097 *
4098 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
4099 * destructor, are poisoning the objects, or are
4100 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
4101 *
4102 * The assumption that s->offset >= s->inuse means free
4103 * pointer is outside of the object is used in the
4104 * freeptr_outside_object() function. If that is no
4105 * longer true, the function needs to be modified.
81819f0f
CL
4106 */
4107 s->offset = size;
4108 size += sizeof(void *);
e41a49fa 4109 } else {
3202fa62
KC
4110 /*
4111 * Store freelist pointer near middle of object to keep
4112 * it away from the edges of the object to avoid small
4113 * sized over/underflows from neighboring allocations.
4114 */
e41a49fa 4115 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
4116 }
4117
c12b3c62 4118#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4119 if (flags & SLAB_STORE_USER)
4120 /*
4121 * Need to store information about allocs and frees after
4122 * the object.
4123 */
4124 size += 2 * sizeof(struct track);
80a9201a 4125#endif
81819f0f 4126
80a9201a
AP
4127 kasan_cache_create(s, &size, &s->flags);
4128#ifdef CONFIG_SLUB_DEBUG
d86bd1be 4129 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
4130 /*
4131 * Add some empty padding so that we can catch
4132 * overwrites from earlier objects rather than let
4133 * tracking information or the free pointer be
0211a9c8 4134 * corrupted if a user writes before the start
81819f0f
CL
4135 * of the object.
4136 */
4137 size += sizeof(void *);
d86bd1be
JK
4138
4139 s->red_left_pad = sizeof(void *);
4140 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4141 size += s->red_left_pad;
4142 }
41ecc55b 4143#endif
672bba3a 4144
81819f0f
CL
4145 /*
4146 * SLUB stores one object immediately after another beginning from
4147 * offset 0. In order to align the objects we have to simply size
4148 * each object to conform to the alignment.
4149 */
45906855 4150 size = ALIGN(size, s->align);
81819f0f 4151 s->size = size;
4138fdfc 4152 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
4153 if (forced_order >= 0)
4154 order = forced_order;
4155 else
9736d2a9 4156 order = calculate_order(size);
81819f0f 4157
19af27af 4158 if ((int)order < 0)
81819f0f
CL
4159 return 0;
4160
b7a49f0d 4161 s->allocflags = 0;
834f3d11 4162 if (order)
b7a49f0d
CL
4163 s->allocflags |= __GFP_COMP;
4164
4165 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 4166 s->allocflags |= GFP_DMA;
b7a49f0d 4167
6d6ea1e9
NB
4168 if (s->flags & SLAB_CACHE_DMA32)
4169 s->allocflags |= GFP_DMA32;
4170
b7a49f0d
CL
4171 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4172 s->allocflags |= __GFP_RECLAIMABLE;
4173
81819f0f
CL
4174 /*
4175 * Determine the number of objects per slab
4176 */
9736d2a9
MW
4177 s->oo = oo_make(order, size);
4178 s->min = oo_make(get_order(size), size);
205ab99d
CL
4179 if (oo_objects(s->oo) > oo_objects(s->max))
4180 s->max = s->oo;
81819f0f 4181
834f3d11 4182 return !!oo_objects(s->oo);
81819f0f
CL
4183}
4184
d50112ed 4185static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 4186{
37540008 4187 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
4188#ifdef CONFIG_SLAB_FREELIST_HARDENED
4189 s->random = get_random_long();
4190#endif
81819f0f 4191
06b285dc 4192 if (!calculate_sizes(s, -1))
81819f0f 4193 goto error;
3de47213
DR
4194 if (disable_higher_order_debug) {
4195 /*
4196 * Disable debugging flags that store metadata if the min slab
4197 * order increased.
4198 */
3b0efdfa 4199 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
4200 s->flags &= ~DEBUG_METADATA_FLAGS;
4201 s->offset = 0;
4202 if (!calculate_sizes(s, -1))
4203 goto error;
4204 }
4205 }
81819f0f 4206
2565409f
HC
4207#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4208 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 4209 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
4210 /* Enable fast mode */
4211 s->flags |= __CMPXCHG_DOUBLE;
4212#endif
4213
3b89d7d8
DR
4214 /*
4215 * The larger the object size is, the more pages we want on the partial
4216 * list to avoid pounding the page allocator excessively.
4217 */
49e22585
CL
4218 set_min_partial(s, ilog2(s->size) / 2);
4219
e6d0e1dc 4220 set_cpu_partial(s);
49e22585 4221
81819f0f 4222#ifdef CONFIG_NUMA
e2cb96b7 4223 s->remote_node_defrag_ratio = 1000;
81819f0f 4224#endif
210e7a43
TG
4225
4226 /* Initialize the pre-computed randomized freelist if slab is up */
4227 if (slab_state >= UP) {
4228 if (init_cache_random_seq(s))
4229 goto error;
4230 }
4231
55136592 4232 if (!init_kmem_cache_nodes(s))
dfb4f096 4233 goto error;
81819f0f 4234
55136592 4235 if (alloc_kmem_cache_cpus(s))
278b1bb1 4236 return 0;
ff12059e 4237
81819f0f 4238error:
9037c576 4239 __kmem_cache_release(s);
278b1bb1 4240 return -EINVAL;
81819f0f 4241}
81819f0f 4242
33b12c38 4243static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 4244 const char *text)
33b12c38
CL
4245{
4246#ifdef CONFIG_SLUB_DEBUG
4247 void *addr = page_address(page);
a2b4ae8b 4248 unsigned long flags;
55860d96 4249 unsigned long *map;
33b12c38 4250 void *p;
aa456c7a 4251
945cf2b6 4252 slab_err(s, page, text, s->name);
a2b4ae8b 4253 slab_lock(page, &flags);
33b12c38 4254
90e9f6a6 4255 map = get_map(s, page);
33b12c38
CL
4256 for_each_object(p, s, addr, page->objects) {
4257
4138fdfc 4258 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 4259 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
4260 print_tracking(s, p);
4261 }
4262 }
55860d96 4263 put_map(map);
a2b4ae8b 4264 slab_unlock(page, &flags);
33b12c38
CL
4265#endif
4266}
4267
81819f0f 4268/*
599870b1 4269 * Attempt to free all partial slabs on a node.
52b4b950
DS
4270 * This is called from __kmem_cache_shutdown(). We must take list_lock
4271 * because sysfs file might still access partial list after the shutdowning.
81819f0f 4272 */
599870b1 4273static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 4274{
60398923 4275 LIST_HEAD(discard);
81819f0f
CL
4276 struct page *page, *h;
4277
52b4b950
DS
4278 BUG_ON(irqs_disabled());
4279 spin_lock_irq(&n->list_lock);
916ac052 4280 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 4281 if (!page->inuse) {
52b4b950 4282 remove_partial(n, page);
916ac052 4283 list_add(&page->slab_list, &discard);
33b12c38
CL
4284 } else {
4285 list_slab_objects(s, page,
55860d96 4286 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 4287 }
33b12c38 4288 }
52b4b950 4289 spin_unlock_irq(&n->list_lock);
60398923 4290
916ac052 4291 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 4292 discard_slab(s, page);
81819f0f
CL
4293}
4294
f9e13c0a
SB
4295bool __kmem_cache_empty(struct kmem_cache *s)
4296{
4297 int node;
4298 struct kmem_cache_node *n;
4299
4300 for_each_kmem_cache_node(s, node, n)
4301 if (n->nr_partial || slabs_node(s, node))
4302 return false;
4303 return true;
4304}
4305
81819f0f 4306/*
672bba3a 4307 * Release all resources used by a slab cache.
81819f0f 4308 */
52b4b950 4309int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
4310{
4311 int node;
fa45dc25 4312 struct kmem_cache_node *n;
81819f0f 4313
5a836bf6 4314 flush_all_cpus_locked(s);
81819f0f 4315 /* Attempt to free all objects */
fa45dc25 4316 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
4317 free_partial(s, n);
4318 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
4319 return 1;
4320 }
81819f0f
CL
4321 return 0;
4322}
4323
5bb1bb35 4324#ifdef CONFIG_PRINTK
8e7f37f2
PM
4325void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4326{
4327 void *base;
4328 int __maybe_unused i;
4329 unsigned int objnr;
4330 void *objp;
4331 void *objp0;
4332 struct kmem_cache *s = page->slab_cache;
4333 struct track __maybe_unused *trackp;
4334
4335 kpp->kp_ptr = object;
4336 kpp->kp_page = page;
4337 kpp->kp_slab_cache = s;
4338 base = page_address(page);
4339 objp0 = kasan_reset_tag(object);
4340#ifdef CONFIG_SLUB_DEBUG
4341 objp = restore_red_left(s, objp0);
4342#else
4343 objp = objp0;
4344#endif
4345 objnr = obj_to_index(s, page, objp);
4346 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4347 objp = base + s->size * objnr;
4348 kpp->kp_objp = objp;
4349 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4350 !(s->flags & SLAB_STORE_USER))
4351 return;
4352#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4353 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4354 trackp = get_track(s, objp, TRACK_ALLOC);
4355 kpp->kp_ret = (void *)trackp->addr;
ae14c63a
LT
4356#ifdef CONFIG_STACKTRACE
4357 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4358 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4359 if (!kpp->kp_stack[i])
4360 break;
4361 }
78869146 4362
ae14c63a
LT
4363 trackp = get_track(s, objp, TRACK_FREE);
4364 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4365 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4366 if (!kpp->kp_free_stack[i])
4367 break;
e548eaa1 4368 }
8e7f37f2
PM
4369#endif
4370#endif
4371}
5bb1bb35 4372#endif
8e7f37f2 4373
81819f0f
CL
4374/********************************************************************
4375 * Kmalloc subsystem
4376 *******************************************************************/
4377
81819f0f
CL
4378static int __init setup_slub_min_order(char *str)
4379{
19af27af 4380 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4381
4382 return 1;
4383}
4384
4385__setup("slub_min_order=", setup_slub_min_order);
4386
4387static int __init setup_slub_max_order(char *str)
4388{
19af27af
AD
4389 get_option(&str, (int *)&slub_max_order);
4390 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4391
4392 return 1;
4393}
4394
4395__setup("slub_max_order=", setup_slub_max_order);
4396
4397static int __init setup_slub_min_objects(char *str)
4398{
19af27af 4399 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4400
4401 return 1;
4402}
4403
4404__setup("slub_min_objects=", setup_slub_min_objects);
4405
81819f0f
CL
4406void *__kmalloc(size_t size, gfp_t flags)
4407{
aadb4bc4 4408 struct kmem_cache *s;
5b882be4 4409 void *ret;
81819f0f 4410
95a05b42 4411 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4412 return kmalloc_large(size, flags);
aadb4bc4 4413
2c59dd65 4414 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4415
4416 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4417 return s;
4418
b89fb5ef 4419 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4420
ca2b84cb 4421 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4422
0116523c 4423 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4424
5b882be4 4425 return ret;
81819f0f
CL
4426}
4427EXPORT_SYMBOL(__kmalloc);
4428
5d1f57e4 4429#ifdef CONFIG_NUMA
f619cfe1
CL
4430static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4431{
b1eeab67 4432 struct page *page;
e4f7c0b4 4433 void *ptr = NULL;
6a486c0a 4434 unsigned int order = get_order(size);
f619cfe1 4435
75f296d9 4436 flags |= __GFP_COMP;
6a486c0a
VB
4437 page = alloc_pages_node(node, flags, order);
4438 if (page) {
e4f7c0b4 4439 ptr = page_address(page);
96403bfe
MS
4440 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4441 PAGE_SIZE << order);
6a486c0a 4442 }
e4f7c0b4 4443
0116523c 4444 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4445}
4446
81819f0f
CL
4447void *__kmalloc_node(size_t size, gfp_t flags, int node)
4448{
aadb4bc4 4449 struct kmem_cache *s;
5b882be4 4450 void *ret;
81819f0f 4451
95a05b42 4452 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4453 ret = kmalloc_large_node(size, flags, node);
4454
ca2b84cb
EGM
4455 trace_kmalloc_node(_RET_IP_, ret,
4456 size, PAGE_SIZE << get_order(size),
4457 flags, node);
5b882be4
EGM
4458
4459 return ret;
4460 }
aadb4bc4 4461
2c59dd65 4462 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4463
4464 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4465 return s;
4466
b89fb5ef 4467 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4468
ca2b84cb 4469 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4470
0116523c 4471 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4472
5b882be4 4473 return ret;
81819f0f
CL
4474}
4475EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4476#endif /* CONFIG_NUMA */
81819f0f 4477
ed18adc1
KC
4478#ifdef CONFIG_HARDENED_USERCOPY
4479/*
afcc90f8
KC
4480 * Rejects incorrectly sized objects and objects that are to be copied
4481 * to/from userspace but do not fall entirely within the containing slab
4482 * cache's usercopy region.
ed18adc1
KC
4483 *
4484 * Returns NULL if check passes, otherwise const char * to name of cache
4485 * to indicate an error.
4486 */
f4e6e289
KC
4487void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4488 bool to_user)
ed18adc1
KC
4489{
4490 struct kmem_cache *s;
44065b2e 4491 unsigned int offset;
b89fb5ef 4492 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4493
96fedce2
AK
4494 ptr = kasan_reset_tag(ptr);
4495
ed18adc1
KC
4496 /* Find object and usable object size. */
4497 s = page->slab_cache;
ed18adc1
KC
4498
4499 /* Reject impossible pointers. */
4500 if (ptr < page_address(page))
f4e6e289
KC
4501 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4502 to_user, 0, n);
ed18adc1
KC
4503
4504 /* Find offset within object. */
b89fb5ef
AP
4505 if (is_kfence)
4506 offset = ptr - kfence_object_start(ptr);
4507 else
4508 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4509
4510 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4511 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4512 if (offset < s->red_left_pad)
f4e6e289
KC
4513 usercopy_abort("SLUB object in left red zone",
4514 s->name, to_user, offset, n);
ed18adc1
KC
4515 offset -= s->red_left_pad;
4516 }
4517
afcc90f8
KC
4518 /* Allow address range falling entirely within usercopy region. */
4519 if (offset >= s->useroffset &&
4520 offset - s->useroffset <= s->usersize &&
4521 n <= s->useroffset - offset + s->usersize)
f4e6e289 4522 return;
ed18adc1 4523
f4e6e289 4524 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4525}
4526#endif /* CONFIG_HARDENED_USERCOPY */
4527
10d1f8cb 4528size_t __ksize(const void *object)
81819f0f 4529{
272c1d21 4530 struct page *page;
81819f0f 4531
ef8b4520 4532 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4533 return 0;
4534
294a80a8 4535 page = virt_to_head_page(object);
294a80a8 4536
76994412
PE
4537 if (unlikely(!PageSlab(page))) {
4538 WARN_ON(!PageCompound(page));
a50b854e 4539 return page_size(page);
76994412 4540 }
81819f0f 4541
1b4f59e3 4542 return slab_ksize(page->slab_cache);
81819f0f 4543}
10d1f8cb 4544EXPORT_SYMBOL(__ksize);
81819f0f
CL
4545
4546void kfree(const void *x)
4547{
81819f0f 4548 struct page *page;
5bb983b0 4549 void *object = (void *)x;
81819f0f 4550
2121db74
PE
4551 trace_kfree(_RET_IP_, x);
4552
2408c550 4553 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4554 return;
4555
b49af68f 4556 page = virt_to_head_page(x);
aadb4bc4 4557 if (unlikely(!PageSlab(page))) {
1ed7ce57 4558 free_nonslab_page(page, object);
aadb4bc4
CL
4559 return;
4560 }
81084651 4561 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4562}
4563EXPORT_SYMBOL(kfree);
4564
832f37f5
VD
4565#define SHRINK_PROMOTE_MAX 32
4566
2086d26a 4567/*
832f37f5
VD
4568 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4569 * up most to the head of the partial lists. New allocations will then
4570 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4571 *
4572 * The slabs with the least items are placed last. This results in them
4573 * being allocated from last increasing the chance that the last objects
4574 * are freed in them.
2086d26a 4575 */
5a836bf6 4576static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
4577{
4578 int node;
4579 int i;
4580 struct kmem_cache_node *n;
4581 struct page *page;
4582 struct page *t;
832f37f5
VD
4583 struct list_head discard;
4584 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4585 unsigned long flags;
ce3712d7 4586 int ret = 0;
2086d26a 4587
fa45dc25 4588 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4589 INIT_LIST_HEAD(&discard);
4590 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4591 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4592
4593 spin_lock_irqsave(&n->list_lock, flags);
4594
4595 /*
832f37f5 4596 * Build lists of slabs to discard or promote.
2086d26a 4597 *
672bba3a
CL
4598 * Note that concurrent frees may occur while we hold the
4599 * list_lock. page->inuse here is the upper limit.
2086d26a 4600 */
916ac052 4601 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4602 int free = page->objects - page->inuse;
4603
4604 /* Do not reread page->inuse */
4605 barrier();
4606
4607 /* We do not keep full slabs on the list */
4608 BUG_ON(free <= 0);
4609
4610 if (free == page->objects) {
916ac052 4611 list_move(&page->slab_list, &discard);
69cb8e6b 4612 n->nr_partial--;
832f37f5 4613 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4614 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4615 }
4616
2086d26a 4617 /*
832f37f5
VD
4618 * Promote the slabs filled up most to the head of the
4619 * partial list.
2086d26a 4620 */
832f37f5
VD
4621 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4622 list_splice(promote + i, &n->partial);
2086d26a 4623
2086d26a 4624 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4625
4626 /* Release empty slabs */
916ac052 4627 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4628 discard_slab(s, page);
ce3712d7
VD
4629
4630 if (slabs_node(s, node))
4631 ret = 1;
2086d26a
CL
4632 }
4633
ce3712d7 4634 return ret;
2086d26a 4635}
2086d26a 4636
5a836bf6
SAS
4637int __kmem_cache_shrink(struct kmem_cache *s)
4638{
4639 flush_all(s);
4640 return __kmem_cache_do_shrink(s);
4641}
4642
b9049e23
YG
4643static int slab_mem_going_offline_callback(void *arg)
4644{
4645 struct kmem_cache *s;
4646
18004c5d 4647 mutex_lock(&slab_mutex);
5a836bf6
SAS
4648 list_for_each_entry(s, &slab_caches, list) {
4649 flush_all_cpus_locked(s);
4650 __kmem_cache_do_shrink(s);
4651 }
18004c5d 4652 mutex_unlock(&slab_mutex);
b9049e23
YG
4653
4654 return 0;
4655}
4656
4657static void slab_mem_offline_callback(void *arg)
4658{
b9049e23
YG
4659 struct memory_notify *marg = arg;
4660 int offline_node;
4661
b9d5ab25 4662 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4663
4664 /*
4665 * If the node still has available memory. we need kmem_cache_node
4666 * for it yet.
4667 */
4668 if (offline_node < 0)
4669 return;
4670
18004c5d 4671 mutex_lock(&slab_mutex);
7e1fa93d 4672 node_clear(offline_node, slab_nodes);
666716fd
VB
4673 /*
4674 * We no longer free kmem_cache_node structures here, as it would be
4675 * racy with all get_node() users, and infeasible to protect them with
4676 * slab_mutex.
4677 */
18004c5d 4678 mutex_unlock(&slab_mutex);
b9049e23
YG
4679}
4680
4681static int slab_mem_going_online_callback(void *arg)
4682{
4683 struct kmem_cache_node *n;
4684 struct kmem_cache *s;
4685 struct memory_notify *marg = arg;
b9d5ab25 4686 int nid = marg->status_change_nid_normal;
b9049e23
YG
4687 int ret = 0;
4688
4689 /*
4690 * If the node's memory is already available, then kmem_cache_node is
4691 * already created. Nothing to do.
4692 */
4693 if (nid < 0)
4694 return 0;
4695
4696 /*
0121c619 4697 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4698 * allocate a kmem_cache_node structure in order to bring the node
4699 * online.
4700 */
18004c5d 4701 mutex_lock(&slab_mutex);
b9049e23 4702 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4703 /*
4704 * The structure may already exist if the node was previously
4705 * onlined and offlined.
4706 */
4707 if (get_node(s, nid))
4708 continue;
b9049e23
YG
4709 /*
4710 * XXX: kmem_cache_alloc_node will fallback to other nodes
4711 * since memory is not yet available from the node that
4712 * is brought up.
4713 */
8de66a0c 4714 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4715 if (!n) {
4716 ret = -ENOMEM;
4717 goto out;
4718 }
4053497d 4719 init_kmem_cache_node(n);
b9049e23
YG
4720 s->node[nid] = n;
4721 }
7e1fa93d
VB
4722 /*
4723 * Any cache created after this point will also have kmem_cache_node
4724 * initialized for the new node.
4725 */
4726 node_set(nid, slab_nodes);
b9049e23 4727out:
18004c5d 4728 mutex_unlock(&slab_mutex);
b9049e23
YG
4729 return ret;
4730}
4731
4732static int slab_memory_callback(struct notifier_block *self,
4733 unsigned long action, void *arg)
4734{
4735 int ret = 0;
4736
4737 switch (action) {
4738 case MEM_GOING_ONLINE:
4739 ret = slab_mem_going_online_callback(arg);
4740 break;
4741 case MEM_GOING_OFFLINE:
4742 ret = slab_mem_going_offline_callback(arg);
4743 break;
4744 case MEM_OFFLINE:
4745 case MEM_CANCEL_ONLINE:
4746 slab_mem_offline_callback(arg);
4747 break;
4748 case MEM_ONLINE:
4749 case MEM_CANCEL_OFFLINE:
4750 break;
4751 }
dc19f9db
KH
4752 if (ret)
4753 ret = notifier_from_errno(ret);
4754 else
4755 ret = NOTIFY_OK;
b9049e23
YG
4756 return ret;
4757}
4758
3ac38faa
AM
4759static struct notifier_block slab_memory_callback_nb = {
4760 .notifier_call = slab_memory_callback,
4761 .priority = SLAB_CALLBACK_PRI,
4762};
b9049e23 4763
81819f0f
CL
4764/********************************************************************
4765 * Basic setup of slabs
4766 *******************************************************************/
4767
51df1142
CL
4768/*
4769 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4770 * the page allocator. Allocate them properly then fix up the pointers
4771 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4772 */
4773
dffb4d60 4774static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4775{
4776 int node;
dffb4d60 4777 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4778 struct kmem_cache_node *n;
51df1142 4779
dffb4d60 4780 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4781
7d557b3c
GC
4782 /*
4783 * This runs very early, and only the boot processor is supposed to be
4784 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4785 * IPIs around.
4786 */
4787 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4788 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4789 struct page *p;
4790
916ac052 4791 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4792 p->slab_cache = s;
51df1142 4793
607bf324 4794#ifdef CONFIG_SLUB_DEBUG
916ac052 4795 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4796 p->slab_cache = s;
51df1142 4797#endif
51df1142 4798 }
dffb4d60
CL
4799 list_add(&s->list, &slab_caches);
4800 return s;
51df1142
CL
4801}
4802
81819f0f
CL
4803void __init kmem_cache_init(void)
4804{
dffb4d60
CL
4805 static __initdata struct kmem_cache boot_kmem_cache,
4806 boot_kmem_cache_node;
7e1fa93d 4807 int node;
51df1142 4808
fc8d8620
SG
4809 if (debug_guardpage_minorder())
4810 slub_max_order = 0;
4811
79270291
SB
4812 /* Print slub debugging pointers without hashing */
4813 if (__slub_debug_enabled())
4814 no_hash_pointers_enable(NULL);
4815
dffb4d60
CL
4816 kmem_cache_node = &boot_kmem_cache_node;
4817 kmem_cache = &boot_kmem_cache;
51df1142 4818
7e1fa93d
VB
4819 /*
4820 * Initialize the nodemask for which we will allocate per node
4821 * structures. Here we don't need taking slab_mutex yet.
4822 */
4823 for_each_node_state(node, N_NORMAL_MEMORY)
4824 node_set(node, slab_nodes);
4825
dffb4d60 4826 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4827 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4828
3ac38faa 4829 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4830
4831 /* Able to allocate the per node structures */
4832 slab_state = PARTIAL;
4833
dffb4d60
CL
4834 create_boot_cache(kmem_cache, "kmem_cache",
4835 offsetof(struct kmem_cache, node) +
4836 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4837 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4838
dffb4d60 4839 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4840 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4841
4842 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4843 setup_kmalloc_cache_index_table();
f97d5f63 4844 create_kmalloc_caches(0);
81819f0f 4845
210e7a43
TG
4846 /* Setup random freelists for each cache */
4847 init_freelist_randomization();
4848
a96a87bf
SAS
4849 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4850 slub_cpu_dead);
81819f0f 4851
b9726c26 4852 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4853 cache_line_size(),
81819f0f
CL
4854 slub_min_order, slub_max_order, slub_min_objects,
4855 nr_cpu_ids, nr_node_ids);
4856}
4857
7e85ee0c
PE
4858void __init kmem_cache_init_late(void)
4859{
7e85ee0c
PE
4860}
4861
2633d7a0 4862struct kmem_cache *
f4957d5b 4863__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4864 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4865{
10befea9 4866 struct kmem_cache *s;
81819f0f 4867
a44cb944 4868 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4869 if (s) {
4870 s->refcount++;
84d0ddd6 4871
81819f0f
CL
4872 /*
4873 * Adjust the object sizes so that we clear
4874 * the complete object on kzalloc.
4875 */
1b473f29 4876 s->object_size = max(s->object_size, size);
52ee6d74 4877 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4878
7b8f3b66 4879 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4880 s->refcount--;
cbb79694 4881 s = NULL;
7b8f3b66 4882 }
a0e1d1be 4883 }
6446faa2 4884
cbb79694
CL
4885 return s;
4886}
84c1cf62 4887
d50112ed 4888int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4889{
aac3a166
PE
4890 int err;
4891
4892 err = kmem_cache_open(s, flags);
4893 if (err)
4894 return err;
20cea968 4895
45530c44
CL
4896 /* Mutex is not taken during early boot */
4897 if (slab_state <= UP)
4898 return 0;
4899
aac3a166 4900 err = sysfs_slab_add(s);
67823a54 4901 if (err) {
52b4b950 4902 __kmem_cache_release(s);
67823a54
ML
4903 return err;
4904 }
20cea968 4905
64dd6849
FM
4906 if (s->flags & SLAB_STORE_USER)
4907 debugfs_slab_add(s);
4908
67823a54 4909 return 0;
81819f0f 4910}
81819f0f 4911
ce71e27c 4912void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4913{
aadb4bc4 4914 struct kmem_cache *s;
94b528d0 4915 void *ret;
aadb4bc4 4916
95a05b42 4917 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4918 return kmalloc_large(size, gfpflags);
4919
2c59dd65 4920 s = kmalloc_slab(size, gfpflags);
81819f0f 4921
2408c550 4922 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4923 return s;
81819f0f 4924
b89fb5ef 4925 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4926
25985edc 4927 /* Honor the call site pointer we received. */
ca2b84cb 4928 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4929
4930 return ret;
81819f0f 4931}
fd7cb575 4932EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4933
5d1f57e4 4934#ifdef CONFIG_NUMA
81819f0f 4935void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4936 int node, unsigned long caller)
81819f0f 4937{
aadb4bc4 4938 struct kmem_cache *s;
94b528d0 4939 void *ret;
aadb4bc4 4940
95a05b42 4941 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4942 ret = kmalloc_large_node(size, gfpflags, node);
4943
4944 trace_kmalloc_node(caller, ret,
4945 size, PAGE_SIZE << get_order(size),
4946 gfpflags, node);
4947
4948 return ret;
4949 }
eada35ef 4950
2c59dd65 4951 s = kmalloc_slab(size, gfpflags);
81819f0f 4952
2408c550 4953 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4954 return s;
81819f0f 4955
b89fb5ef 4956 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4957
25985edc 4958 /* Honor the call site pointer we received. */
ca2b84cb 4959 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4960
4961 return ret;
81819f0f 4962}
fd7cb575 4963EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4964#endif
81819f0f 4965
ab4d5ed5 4966#ifdef CONFIG_SYSFS
205ab99d
CL
4967static int count_inuse(struct page *page)
4968{
4969 return page->inuse;
4970}
4971
4972static int count_total(struct page *page)
4973{
4974 return page->objects;
4975}
ab4d5ed5 4976#endif
205ab99d 4977
ab4d5ed5 4978#ifdef CONFIG_SLUB_DEBUG
0a19e7dd
VB
4979static void validate_slab(struct kmem_cache *s, struct page *page,
4980 unsigned long *obj_map)
53e15af0
CL
4981{
4982 void *p;
a973e9dd 4983 void *addr = page_address(page);
a2b4ae8b 4984 unsigned long flags;
90e9f6a6 4985
a2b4ae8b 4986 slab_lock(page, &flags);
53e15af0 4987
dd98afd4 4988 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4989 goto unlock;
53e15af0
CL
4990
4991 /* Now we know that a valid freelist exists */
0a19e7dd 4992 __fill_map(obj_map, s, page);
5f80b13a 4993 for_each_object(p, s, addr, page->objects) {
0a19e7dd 4994 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 4995 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4996
dd98afd4
YZ
4997 if (!check_object(s, page, p, val))
4998 break;
4999 }
90e9f6a6 5000unlock:
a2b4ae8b 5001 slab_unlock(page, &flags);
53e15af0
CL
5002}
5003
434e245d 5004static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5005 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5006{
5007 unsigned long count = 0;
5008 struct page *page;
5009 unsigned long flags;
5010
5011 spin_lock_irqsave(&n->list_lock, flags);
5012
916ac052 5013 list_for_each_entry(page, &n->partial, slab_list) {
0a19e7dd 5014 validate_slab(s, page, obj_map);
53e15af0
CL
5015 count++;
5016 }
1f9f78b1 5017 if (count != n->nr_partial) {
f9f58285
FF
5018 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5019 s->name, count, n->nr_partial);
1f9f78b1
OG
5020 slab_add_kunit_errors();
5021 }
53e15af0
CL
5022
5023 if (!(s->flags & SLAB_STORE_USER))
5024 goto out;
5025
916ac052 5026 list_for_each_entry(page, &n->full, slab_list) {
0a19e7dd 5027 validate_slab(s, page, obj_map);
53e15af0
CL
5028 count++;
5029 }
1f9f78b1 5030 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
5031 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5032 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
5033 slab_add_kunit_errors();
5034 }
53e15af0
CL
5035
5036out:
5037 spin_unlock_irqrestore(&n->list_lock, flags);
5038 return count;
5039}
5040
1f9f78b1 5041long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5042{
5043 int node;
5044 unsigned long count = 0;
fa45dc25 5045 struct kmem_cache_node *n;
0a19e7dd
VB
5046 unsigned long *obj_map;
5047
5048 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5049 if (!obj_map)
5050 return -ENOMEM;
53e15af0
CL
5051
5052 flush_all(s);
fa45dc25 5053 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
5054 count += validate_slab_node(s, n, obj_map);
5055
5056 bitmap_free(obj_map);
90e9f6a6 5057
53e15af0
CL
5058 return count;
5059}
1f9f78b1
OG
5060EXPORT_SYMBOL(validate_slab_cache);
5061
64dd6849 5062#ifdef CONFIG_DEBUG_FS
88a420e4 5063/*
672bba3a 5064 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
5065 * and freed.
5066 */
5067
5068struct location {
5069 unsigned long count;
ce71e27c 5070 unsigned long addr;
45edfa58
CL
5071 long long sum_time;
5072 long min_time;
5073 long max_time;
5074 long min_pid;
5075 long max_pid;
174596a0 5076 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 5077 nodemask_t nodes;
88a420e4
CL
5078};
5079
5080struct loc_track {
5081 unsigned long max;
5082 unsigned long count;
5083 struct location *loc;
005a79e5 5084 loff_t idx;
88a420e4
CL
5085};
5086
64dd6849
FM
5087static struct dentry *slab_debugfs_root;
5088
88a420e4
CL
5089static void free_loc_track(struct loc_track *t)
5090{
5091 if (t->max)
5092 free_pages((unsigned long)t->loc,
5093 get_order(sizeof(struct location) * t->max));
5094}
5095
68dff6a9 5096static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
5097{
5098 struct location *l;
5099 int order;
5100
88a420e4
CL
5101 order = get_order(sizeof(struct location) * max);
5102
68dff6a9 5103 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
5104 if (!l)
5105 return 0;
5106
5107 if (t->count) {
5108 memcpy(l, t->loc, sizeof(struct location) * t->count);
5109 free_loc_track(t);
5110 }
5111 t->max = max;
5112 t->loc = l;
5113 return 1;
5114}
5115
5116static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 5117 const struct track *track)
88a420e4
CL
5118{
5119 long start, end, pos;
5120 struct location *l;
ce71e27c 5121 unsigned long caddr;
45edfa58 5122 unsigned long age = jiffies - track->when;
88a420e4
CL
5123
5124 start = -1;
5125 end = t->count;
5126
5127 for ( ; ; ) {
5128 pos = start + (end - start + 1) / 2;
5129
5130 /*
5131 * There is nothing at "end". If we end up there
5132 * we need to add something to before end.
5133 */
5134 if (pos == end)
5135 break;
5136
5137 caddr = t->loc[pos].addr;
45edfa58
CL
5138 if (track->addr == caddr) {
5139
5140 l = &t->loc[pos];
5141 l->count++;
5142 if (track->when) {
5143 l->sum_time += age;
5144 if (age < l->min_time)
5145 l->min_time = age;
5146 if (age > l->max_time)
5147 l->max_time = age;
5148
5149 if (track->pid < l->min_pid)
5150 l->min_pid = track->pid;
5151 if (track->pid > l->max_pid)
5152 l->max_pid = track->pid;
5153
174596a0
RR
5154 cpumask_set_cpu(track->cpu,
5155 to_cpumask(l->cpus));
45edfa58
CL
5156 }
5157 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5158 return 1;
5159 }
5160
45edfa58 5161 if (track->addr < caddr)
88a420e4
CL
5162 end = pos;
5163 else
5164 start = pos;
5165 }
5166
5167 /*
672bba3a 5168 * Not found. Insert new tracking element.
88a420e4 5169 */
68dff6a9 5170 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
5171 return 0;
5172
5173 l = t->loc + pos;
5174 if (pos < t->count)
5175 memmove(l + 1, l,
5176 (t->count - pos) * sizeof(struct location));
5177 t->count++;
5178 l->count = 1;
45edfa58
CL
5179 l->addr = track->addr;
5180 l->sum_time = age;
5181 l->min_time = age;
5182 l->max_time = age;
5183 l->min_pid = track->pid;
5184 l->max_pid = track->pid;
174596a0
RR
5185 cpumask_clear(to_cpumask(l->cpus));
5186 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
5187 nodes_clear(l->nodes);
5188 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5189 return 1;
5190}
5191
5192static void process_slab(struct loc_track *t, struct kmem_cache *s,
b3fd64e1
VB
5193 struct page *page, enum track_item alloc,
5194 unsigned long *obj_map)
88a420e4 5195{
a973e9dd 5196 void *addr = page_address(page);
88a420e4
CL
5197 void *p;
5198
b3fd64e1
VB
5199 __fill_map(obj_map, s, page);
5200
224a88be 5201 for_each_object(p, s, addr, page->objects)
b3fd64e1 5202 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
45edfa58 5203 add_location(t, s, get_track(s, p, alloc));
88a420e4 5204}
64dd6849 5205#endif /* CONFIG_DEBUG_FS */
6dfd1b65 5206#endif /* CONFIG_SLUB_DEBUG */
88a420e4 5207
ab4d5ed5 5208#ifdef CONFIG_SYSFS
81819f0f 5209enum slab_stat_type {
205ab99d
CL
5210 SL_ALL, /* All slabs */
5211 SL_PARTIAL, /* Only partially allocated slabs */
5212 SL_CPU, /* Only slabs used for cpu caches */
5213 SL_OBJECTS, /* Determine allocated objects not slabs */
5214 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
5215};
5216
205ab99d 5217#define SO_ALL (1 << SL_ALL)
81819f0f
CL
5218#define SO_PARTIAL (1 << SL_PARTIAL)
5219#define SO_CPU (1 << SL_CPU)
5220#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 5221#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 5222
62e5c4b4 5223static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 5224 char *buf, unsigned long flags)
81819f0f
CL
5225{
5226 unsigned long total = 0;
81819f0f
CL
5227 int node;
5228 int x;
5229 unsigned long *nodes;
bf16d19a 5230 int len = 0;
81819f0f 5231
6396bb22 5232 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5233 if (!nodes)
5234 return -ENOMEM;
81819f0f 5235
205ab99d
CL
5236 if (flags & SO_CPU) {
5237 int cpu;
81819f0f 5238
205ab99d 5239 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5240 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5241 cpu);
ec3ab083 5242 int node;
49e22585 5243 struct page *page;
dfb4f096 5244
4db0c3c2 5245 page = READ_ONCE(c->page);
ec3ab083
CL
5246 if (!page)
5247 continue;
205ab99d 5248
ec3ab083
CL
5249 node = page_to_nid(page);
5250 if (flags & SO_TOTAL)
5251 x = page->objects;
5252 else if (flags & SO_OBJECTS)
5253 x = page->inuse;
5254 else
5255 x = 1;
49e22585 5256
ec3ab083
CL
5257 total += x;
5258 nodes[node] += x;
5259
a93cf07b 5260 page = slub_percpu_partial_read_once(c);
49e22585 5261 if (page) {
8afb1474
LZ
5262 node = page_to_nid(page);
5263 if (flags & SO_TOTAL)
5264 WARN_ON_ONCE(1);
5265 else if (flags & SO_OBJECTS)
5266 WARN_ON_ONCE(1);
5267 else
5268 x = page->pages;
bc6697d8
ED
5269 total += x;
5270 nodes[node] += x;
49e22585 5271 }
81819f0f
CL
5272 }
5273 }
5274
e4f8e513
QC
5275 /*
5276 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5277 * already held which will conflict with an existing lock order:
5278 *
5279 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5280 *
5281 * We don't really need mem_hotplug_lock (to hold off
5282 * slab_mem_going_offline_callback) here because slab's memory hot
5283 * unplug code doesn't destroy the kmem_cache->node[] data.
5284 */
5285
ab4d5ed5 5286#ifdef CONFIG_SLUB_DEBUG
205ab99d 5287 if (flags & SO_ALL) {
fa45dc25
CL
5288 struct kmem_cache_node *n;
5289
5290 for_each_kmem_cache_node(s, node, n) {
205ab99d 5291
d0e0ac97
CG
5292 if (flags & SO_TOTAL)
5293 x = atomic_long_read(&n->total_objects);
5294 else if (flags & SO_OBJECTS)
5295 x = atomic_long_read(&n->total_objects) -
5296 count_partial(n, count_free);
81819f0f 5297 else
205ab99d 5298 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5299 total += x;
5300 nodes[node] += x;
5301 }
5302
ab4d5ed5
CL
5303 } else
5304#endif
5305 if (flags & SO_PARTIAL) {
fa45dc25 5306 struct kmem_cache_node *n;
81819f0f 5307
fa45dc25 5308 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5309 if (flags & SO_TOTAL)
5310 x = count_partial(n, count_total);
5311 else if (flags & SO_OBJECTS)
5312 x = count_partial(n, count_inuse);
81819f0f 5313 else
205ab99d 5314 x = n->nr_partial;
81819f0f
CL
5315 total += x;
5316 nodes[node] += x;
5317 }
5318 }
bf16d19a
JP
5319
5320 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5321#ifdef CONFIG_NUMA
bf16d19a 5322 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5323 if (nodes[node])
bf16d19a
JP
5324 len += sysfs_emit_at(buf, len, " N%d=%lu",
5325 node, nodes[node]);
5326 }
81819f0f 5327#endif
bf16d19a 5328 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5329 kfree(nodes);
bf16d19a
JP
5330
5331 return len;
81819f0f
CL
5332}
5333
81819f0f 5334#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5335#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5336
5337struct slab_attribute {
5338 struct attribute attr;
5339 ssize_t (*show)(struct kmem_cache *s, char *buf);
5340 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5341};
5342
5343#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5344 static struct slab_attribute _name##_attr = \
5345 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5346
5347#define SLAB_ATTR(_name) \
5348 static struct slab_attribute _name##_attr = \
ab067e99 5349 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5350
81819f0f
CL
5351static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5352{
bf16d19a 5353 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5354}
5355SLAB_ATTR_RO(slab_size);
5356
5357static ssize_t align_show(struct kmem_cache *s, char *buf)
5358{
bf16d19a 5359 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5360}
5361SLAB_ATTR_RO(align);
5362
5363static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5364{
bf16d19a 5365 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5366}
5367SLAB_ATTR_RO(object_size);
5368
5369static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5370{
bf16d19a 5371 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5372}
5373SLAB_ATTR_RO(objs_per_slab);
5374
5375static ssize_t order_show(struct kmem_cache *s, char *buf)
5376{
bf16d19a 5377 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5378}
32a6f409 5379SLAB_ATTR_RO(order);
81819f0f 5380
73d342b1
DR
5381static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5382{
bf16d19a 5383 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5384}
5385
5386static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5387 size_t length)
5388{
5389 unsigned long min;
5390 int err;
5391
3dbb95f7 5392 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5393 if (err)
5394 return err;
5395
c0bdb232 5396 set_min_partial(s, min);
73d342b1
DR
5397 return length;
5398}
5399SLAB_ATTR(min_partial);
5400
49e22585
CL
5401static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5402{
b47291ef
VB
5403 unsigned int nr_partial = 0;
5404#ifdef CONFIG_SLUB_CPU_PARTIAL
5405 nr_partial = s->cpu_partial;
5406#endif
5407
5408 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
5409}
5410
5411static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5412 size_t length)
5413{
e5d9998f 5414 unsigned int objects;
49e22585
CL
5415 int err;
5416
e5d9998f 5417 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5418 if (err)
5419 return err;
345c905d 5420 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5421 return -EINVAL;
49e22585 5422
e6d0e1dc 5423 slub_set_cpu_partial(s, objects);
49e22585
CL
5424 flush_all(s);
5425 return length;
5426}
5427SLAB_ATTR(cpu_partial);
5428
81819f0f
CL
5429static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5430{
62c70bce
JP
5431 if (!s->ctor)
5432 return 0;
bf16d19a 5433 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5434}
5435SLAB_ATTR_RO(ctor);
5436
81819f0f
CL
5437static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5438{
bf16d19a 5439 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5440}
5441SLAB_ATTR_RO(aliases);
5442
81819f0f
CL
5443static ssize_t partial_show(struct kmem_cache *s, char *buf)
5444{
d9acf4b7 5445 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5446}
5447SLAB_ATTR_RO(partial);
5448
5449static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5450{
d9acf4b7 5451 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5452}
5453SLAB_ATTR_RO(cpu_slabs);
5454
5455static ssize_t objects_show(struct kmem_cache *s, char *buf)
5456{
205ab99d 5457 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5458}
5459SLAB_ATTR_RO(objects);
5460
205ab99d
CL
5461static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5462{
5463 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5464}
5465SLAB_ATTR_RO(objects_partial);
5466
49e22585
CL
5467static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5468{
5469 int objects = 0;
5470 int pages = 0;
5471 int cpu;
bf16d19a 5472 int len = 0;
49e22585
CL
5473
5474 for_each_online_cpu(cpu) {
a93cf07b
WY
5475 struct page *page;
5476
5477 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 5478
b47291ef 5479 if (page)
49e22585 5480 pages += page->pages;
49e22585
CL
5481 }
5482
b47291ef
VB
5483 /* Approximate half-full pages , see slub_set_cpu_partial() */
5484 objects = (pages * oo_objects(s->oo)) / 2;
bf16d19a 5485 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5486
5487#ifdef CONFIG_SMP
5488 for_each_online_cpu(cpu) {
a93cf07b
WY
5489 struct page *page;
5490
5491 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
b47291ef
VB
5492 if (page) {
5493 pages = READ_ONCE(page->pages);
5494 objects = (pages * oo_objects(s->oo)) / 2;
bf16d19a 5495 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
b47291ef
VB
5496 cpu, objects, pages);
5497 }
49e22585
CL
5498 }
5499#endif
bf16d19a
JP
5500 len += sysfs_emit_at(buf, len, "\n");
5501
5502 return len;
49e22585
CL
5503}
5504SLAB_ATTR_RO(slabs_cpu_partial);
5505
a5a84755
CL
5506static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5507{
bf16d19a 5508 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5509}
8f58119a 5510SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5511
5512static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5513{
bf16d19a 5514 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5515}
5516SLAB_ATTR_RO(hwcache_align);
5517
5518#ifdef CONFIG_ZONE_DMA
5519static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5520{
bf16d19a 5521 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5522}
5523SLAB_ATTR_RO(cache_dma);
5524#endif
5525
8eb8284b
DW
5526static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5527{
bf16d19a 5528 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5529}
5530SLAB_ATTR_RO(usersize);
5531
a5a84755
CL
5532static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5533{
bf16d19a 5534 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5535}
5536SLAB_ATTR_RO(destroy_by_rcu);
5537
ab4d5ed5 5538#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5539static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5540{
5541 return show_slab_objects(s, buf, SO_ALL);
5542}
5543SLAB_ATTR_RO(slabs);
5544
205ab99d
CL
5545static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5546{
5547 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5548}
5549SLAB_ATTR_RO(total_objects);
5550
81819f0f
CL
5551static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5552{
bf16d19a 5553 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5554}
060807f8 5555SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5556
5557static ssize_t trace_show(struct kmem_cache *s, char *buf)
5558{
bf16d19a 5559 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5560}
060807f8 5561SLAB_ATTR_RO(trace);
81819f0f 5562
81819f0f
CL
5563static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5564{
bf16d19a 5565 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5566}
5567
ad38b5b1 5568SLAB_ATTR_RO(red_zone);
81819f0f
CL
5569
5570static ssize_t poison_show(struct kmem_cache *s, char *buf)
5571{
bf16d19a 5572 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5573}
5574
ad38b5b1 5575SLAB_ATTR_RO(poison);
81819f0f
CL
5576
5577static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5578{
bf16d19a 5579 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5580}
5581
ad38b5b1 5582SLAB_ATTR_RO(store_user);
81819f0f 5583
53e15af0
CL
5584static ssize_t validate_show(struct kmem_cache *s, char *buf)
5585{
5586 return 0;
5587}
5588
5589static ssize_t validate_store(struct kmem_cache *s,
5590 const char *buf, size_t length)
5591{
434e245d
CL
5592 int ret = -EINVAL;
5593
5594 if (buf[0] == '1') {
5595 ret = validate_slab_cache(s);
5596 if (ret >= 0)
5597 ret = length;
5598 }
5599 return ret;
53e15af0
CL
5600}
5601SLAB_ATTR(validate);
a5a84755 5602
a5a84755
CL
5603#endif /* CONFIG_SLUB_DEBUG */
5604
5605#ifdef CONFIG_FAILSLAB
5606static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5607{
bf16d19a 5608 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5609}
060807f8 5610SLAB_ATTR_RO(failslab);
ab4d5ed5 5611#endif
53e15af0 5612
2086d26a
CL
5613static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5614{
5615 return 0;
5616}
5617
5618static ssize_t shrink_store(struct kmem_cache *s,
5619 const char *buf, size_t length)
5620{
832f37f5 5621 if (buf[0] == '1')
10befea9 5622 kmem_cache_shrink(s);
832f37f5 5623 else
2086d26a
CL
5624 return -EINVAL;
5625 return length;
5626}
5627SLAB_ATTR(shrink);
5628
81819f0f 5629#ifdef CONFIG_NUMA
9824601e 5630static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5631{
bf16d19a 5632 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5633}
5634
9824601e 5635static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5636 const char *buf, size_t length)
5637{
eb7235eb 5638 unsigned int ratio;
0121c619
CL
5639 int err;
5640
eb7235eb 5641 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5642 if (err)
5643 return err;
eb7235eb
AD
5644 if (ratio > 100)
5645 return -ERANGE;
0121c619 5646
eb7235eb 5647 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5648
81819f0f
CL
5649 return length;
5650}
9824601e 5651SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5652#endif
5653
8ff12cfc 5654#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5655static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5656{
5657 unsigned long sum = 0;
5658 int cpu;
bf16d19a 5659 int len = 0;
6da2ec56 5660 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5661
5662 if (!data)
5663 return -ENOMEM;
5664
5665 for_each_online_cpu(cpu) {
9dfc6e68 5666 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5667
5668 data[cpu] = x;
5669 sum += x;
5670 }
5671
bf16d19a 5672 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5673
50ef37b9 5674#ifdef CONFIG_SMP
8ff12cfc 5675 for_each_online_cpu(cpu) {
bf16d19a
JP
5676 if (data[cpu])
5677 len += sysfs_emit_at(buf, len, " C%d=%u",
5678 cpu, data[cpu]);
8ff12cfc 5679 }
50ef37b9 5680#endif
8ff12cfc 5681 kfree(data);
bf16d19a
JP
5682 len += sysfs_emit_at(buf, len, "\n");
5683
5684 return len;
8ff12cfc
CL
5685}
5686
78eb00cc
DR
5687static void clear_stat(struct kmem_cache *s, enum stat_item si)
5688{
5689 int cpu;
5690
5691 for_each_online_cpu(cpu)
9dfc6e68 5692 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5693}
5694
8ff12cfc
CL
5695#define STAT_ATTR(si, text) \
5696static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5697{ \
5698 return show_stat(s, buf, si); \
5699} \
78eb00cc
DR
5700static ssize_t text##_store(struct kmem_cache *s, \
5701 const char *buf, size_t length) \
5702{ \
5703 if (buf[0] != '0') \
5704 return -EINVAL; \
5705 clear_stat(s, si); \
5706 return length; \
5707} \
5708SLAB_ATTR(text); \
8ff12cfc
CL
5709
5710STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5711STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5712STAT_ATTR(FREE_FASTPATH, free_fastpath);
5713STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5714STAT_ATTR(FREE_FROZEN, free_frozen);
5715STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5716STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5717STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5718STAT_ATTR(ALLOC_SLAB, alloc_slab);
5719STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5720STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5721STAT_ATTR(FREE_SLAB, free_slab);
5722STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5723STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5724STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5725STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5726STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5727STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5728STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5729STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5730STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5731STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5732STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5733STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5734STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5735STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5736#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5737
06428780 5738static struct attribute *slab_attrs[] = {
81819f0f
CL
5739 &slab_size_attr.attr,
5740 &object_size_attr.attr,
5741 &objs_per_slab_attr.attr,
5742 &order_attr.attr,
73d342b1 5743 &min_partial_attr.attr,
49e22585 5744 &cpu_partial_attr.attr,
81819f0f 5745 &objects_attr.attr,
205ab99d 5746 &objects_partial_attr.attr,
81819f0f
CL
5747 &partial_attr.attr,
5748 &cpu_slabs_attr.attr,
5749 &ctor_attr.attr,
81819f0f
CL
5750 &aliases_attr.attr,
5751 &align_attr.attr,
81819f0f
CL
5752 &hwcache_align_attr.attr,
5753 &reclaim_account_attr.attr,
5754 &destroy_by_rcu_attr.attr,
a5a84755 5755 &shrink_attr.attr,
49e22585 5756 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5757#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5758 &total_objects_attr.attr,
5759 &slabs_attr.attr,
5760 &sanity_checks_attr.attr,
5761 &trace_attr.attr,
81819f0f
CL
5762 &red_zone_attr.attr,
5763 &poison_attr.attr,
5764 &store_user_attr.attr,
53e15af0 5765 &validate_attr.attr,
ab4d5ed5 5766#endif
81819f0f
CL
5767#ifdef CONFIG_ZONE_DMA
5768 &cache_dma_attr.attr,
5769#endif
5770#ifdef CONFIG_NUMA
9824601e 5771 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5772#endif
5773#ifdef CONFIG_SLUB_STATS
5774 &alloc_fastpath_attr.attr,
5775 &alloc_slowpath_attr.attr,
5776 &free_fastpath_attr.attr,
5777 &free_slowpath_attr.attr,
5778 &free_frozen_attr.attr,
5779 &free_add_partial_attr.attr,
5780 &free_remove_partial_attr.attr,
5781 &alloc_from_partial_attr.attr,
5782 &alloc_slab_attr.attr,
5783 &alloc_refill_attr.attr,
e36a2652 5784 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5785 &free_slab_attr.attr,
5786 &cpuslab_flush_attr.attr,
5787 &deactivate_full_attr.attr,
5788 &deactivate_empty_attr.attr,
5789 &deactivate_to_head_attr.attr,
5790 &deactivate_to_tail_attr.attr,
5791 &deactivate_remote_frees_attr.attr,
03e404af 5792 &deactivate_bypass_attr.attr,
65c3376a 5793 &order_fallback_attr.attr,
b789ef51
CL
5794 &cmpxchg_double_fail_attr.attr,
5795 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5796 &cpu_partial_alloc_attr.attr,
5797 &cpu_partial_free_attr.attr,
8028dcea
AS
5798 &cpu_partial_node_attr.attr,
5799 &cpu_partial_drain_attr.attr,
81819f0f 5800#endif
4c13dd3b
DM
5801#ifdef CONFIG_FAILSLAB
5802 &failslab_attr.attr,
5803#endif
8eb8284b 5804 &usersize_attr.attr,
4c13dd3b 5805
81819f0f
CL
5806 NULL
5807};
5808
1fdaaa23 5809static const struct attribute_group slab_attr_group = {
81819f0f
CL
5810 .attrs = slab_attrs,
5811};
5812
5813static ssize_t slab_attr_show(struct kobject *kobj,
5814 struct attribute *attr,
5815 char *buf)
5816{
5817 struct slab_attribute *attribute;
5818 struct kmem_cache *s;
5819 int err;
5820
5821 attribute = to_slab_attr(attr);
5822 s = to_slab(kobj);
5823
5824 if (!attribute->show)
5825 return -EIO;
5826
5827 err = attribute->show(s, buf);
5828
5829 return err;
5830}
5831
5832static ssize_t slab_attr_store(struct kobject *kobj,
5833 struct attribute *attr,
5834 const char *buf, size_t len)
5835{
5836 struct slab_attribute *attribute;
5837 struct kmem_cache *s;
5838 int err;
5839
5840 attribute = to_slab_attr(attr);
5841 s = to_slab(kobj);
5842
5843 if (!attribute->store)
5844 return -EIO;
5845
5846 err = attribute->store(s, buf, len);
81819f0f
CL
5847 return err;
5848}
5849
41a21285
CL
5850static void kmem_cache_release(struct kobject *k)
5851{
5852 slab_kmem_cache_release(to_slab(k));
5853}
5854
52cf25d0 5855static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5856 .show = slab_attr_show,
5857 .store = slab_attr_store,
5858};
5859
5860static struct kobj_type slab_ktype = {
5861 .sysfs_ops = &slab_sysfs_ops,
41a21285 5862 .release = kmem_cache_release,
81819f0f
CL
5863};
5864
27c3a314 5865static struct kset *slab_kset;
81819f0f 5866
9a41707b
VD
5867static inline struct kset *cache_kset(struct kmem_cache *s)
5868{
9a41707b
VD
5869 return slab_kset;
5870}
5871
81819f0f
CL
5872#define ID_STR_LENGTH 64
5873
5874/* Create a unique string id for a slab cache:
6446faa2
CL
5875 *
5876 * Format :[flags-]size
81819f0f
CL
5877 */
5878static char *create_unique_id(struct kmem_cache *s)
5879{
5880 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5881 char *p = name;
5882
5883 BUG_ON(!name);
5884
5885 *p++ = ':';
5886 /*
5887 * First flags affecting slabcache operations. We will only
5888 * get here for aliasable slabs so we do not need to support
5889 * too many flags. The flags here must cover all flags that
5890 * are matched during merging to guarantee that the id is
5891 * unique.
5892 */
5893 if (s->flags & SLAB_CACHE_DMA)
5894 *p++ = 'd';
6d6ea1e9
NB
5895 if (s->flags & SLAB_CACHE_DMA32)
5896 *p++ = 'D';
81819f0f
CL
5897 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5898 *p++ = 'a';
becfda68 5899 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5900 *p++ = 'F';
230e9fc2
VD
5901 if (s->flags & SLAB_ACCOUNT)
5902 *p++ = 'A';
81819f0f
CL
5903 if (p != name + 1)
5904 *p++ = '-';
44065b2e 5905 p += sprintf(p, "%07u", s->size);
2633d7a0 5906
81819f0f
CL
5907 BUG_ON(p > name + ID_STR_LENGTH - 1);
5908 return name;
5909}
5910
5911static int sysfs_slab_add(struct kmem_cache *s)
5912{
5913 int err;
5914 const char *name;
1663f26d 5915 struct kset *kset = cache_kset(s);
45530c44 5916 int unmergeable = slab_unmergeable(s);
81819f0f 5917
1663f26d
TH
5918 if (!kset) {
5919 kobject_init(&s->kobj, &slab_ktype);
5920 return 0;
5921 }
5922
11066386
MC
5923 if (!unmergeable && disable_higher_order_debug &&
5924 (slub_debug & DEBUG_METADATA_FLAGS))
5925 unmergeable = 1;
5926
81819f0f
CL
5927 if (unmergeable) {
5928 /*
5929 * Slabcache can never be merged so we can use the name proper.
5930 * This is typically the case for debug situations. In that
5931 * case we can catch duplicate names easily.
5932 */
27c3a314 5933 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5934 name = s->name;
5935 } else {
5936 /*
5937 * Create a unique name for the slab as a target
5938 * for the symlinks.
5939 */
5940 name = create_unique_id(s);
5941 }
5942
1663f26d 5943 s->kobj.kset = kset;
26e4f205 5944 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5945 if (err)
80da026a 5946 goto out;
81819f0f
CL
5947
5948 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5949 if (err)
5950 goto out_del_kobj;
9a41707b 5951
81819f0f
CL
5952 if (!unmergeable) {
5953 /* Setup first alias */
5954 sysfs_slab_alias(s, s->name);
81819f0f 5955 }
54b6a731
DJ
5956out:
5957 if (!unmergeable)
5958 kfree(name);
5959 return err;
5960out_del_kobj:
5961 kobject_del(&s->kobj);
54b6a731 5962 goto out;
81819f0f
CL
5963}
5964
d50d82fa
MP
5965void sysfs_slab_unlink(struct kmem_cache *s)
5966{
5967 if (slab_state >= FULL)
5968 kobject_del(&s->kobj);
5969}
5970
bf5eb3de
TH
5971void sysfs_slab_release(struct kmem_cache *s)
5972{
5973 if (slab_state >= FULL)
5974 kobject_put(&s->kobj);
81819f0f
CL
5975}
5976
5977/*
5978 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5979 * available lest we lose that information.
81819f0f
CL
5980 */
5981struct saved_alias {
5982 struct kmem_cache *s;
5983 const char *name;
5984 struct saved_alias *next;
5985};
5986
5af328a5 5987static struct saved_alias *alias_list;
81819f0f
CL
5988
5989static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5990{
5991 struct saved_alias *al;
5992
97d06609 5993 if (slab_state == FULL) {
81819f0f
CL
5994 /*
5995 * If we have a leftover link then remove it.
5996 */
27c3a314
GKH
5997 sysfs_remove_link(&slab_kset->kobj, name);
5998 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5999 }
6000
6001 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6002 if (!al)
6003 return -ENOMEM;
6004
6005 al->s = s;
6006 al->name = name;
6007 al->next = alias_list;
6008 alias_list = al;
6009 return 0;
6010}
6011
6012static int __init slab_sysfs_init(void)
6013{
5b95a4ac 6014 struct kmem_cache *s;
81819f0f
CL
6015 int err;
6016
18004c5d 6017 mutex_lock(&slab_mutex);
2bce6485 6018
d7660ce5 6019 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 6020 if (!slab_kset) {
18004c5d 6021 mutex_unlock(&slab_mutex);
f9f58285 6022 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
6023 return -ENOSYS;
6024 }
6025
97d06609 6026 slab_state = FULL;
26a7bd03 6027
5b95a4ac 6028 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 6029 err = sysfs_slab_add(s);
5d540fb7 6030 if (err)
f9f58285
FF
6031 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6032 s->name);
26a7bd03 6033 }
81819f0f
CL
6034
6035 while (alias_list) {
6036 struct saved_alias *al = alias_list;
6037
6038 alias_list = alias_list->next;
6039 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 6040 if (err)
f9f58285
FF
6041 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6042 al->name);
81819f0f
CL
6043 kfree(al);
6044 }
6045
18004c5d 6046 mutex_unlock(&slab_mutex);
81819f0f
CL
6047 return 0;
6048}
6049
6050__initcall(slab_sysfs_init);
ab4d5ed5 6051#endif /* CONFIG_SYSFS */
57ed3eda 6052
64dd6849
FM
6053#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6054static int slab_debugfs_show(struct seq_file *seq, void *v)
6055{
64dd6849 6056 struct loc_track *t = seq->private;
005a79e5
GS
6057 struct location *l;
6058 unsigned long idx;
64dd6849 6059
005a79e5 6060 idx = (unsigned long) t->idx;
64dd6849
FM
6061 if (idx < t->count) {
6062 l = &t->loc[idx];
6063
6064 seq_printf(seq, "%7ld ", l->count);
6065
6066 if (l->addr)
6067 seq_printf(seq, "%pS", (void *)l->addr);
6068 else
6069 seq_puts(seq, "<not-available>");
6070
6071 if (l->sum_time != l->min_time) {
6072 seq_printf(seq, " age=%ld/%llu/%ld",
6073 l->min_time, div_u64(l->sum_time, l->count),
6074 l->max_time);
6075 } else
6076 seq_printf(seq, " age=%ld", l->min_time);
6077
6078 if (l->min_pid != l->max_pid)
6079 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6080 else
6081 seq_printf(seq, " pid=%ld",
6082 l->min_pid);
6083
6084 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6085 seq_printf(seq, " cpus=%*pbl",
6086 cpumask_pr_args(to_cpumask(l->cpus)));
6087
6088 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6089 seq_printf(seq, " nodes=%*pbl",
6090 nodemask_pr_args(&l->nodes));
6091
6092 seq_puts(seq, "\n");
6093 }
6094
6095 if (!idx && !t->count)
6096 seq_puts(seq, "No data\n");
6097
6098 return 0;
6099}
6100
6101static void slab_debugfs_stop(struct seq_file *seq, void *v)
6102{
6103}
6104
6105static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6106{
6107 struct loc_track *t = seq->private;
6108
005a79e5 6109 t->idx = ++(*ppos);
64dd6849 6110 if (*ppos <= t->count)
005a79e5 6111 return ppos;
64dd6849
FM
6112
6113 return NULL;
6114}
6115
6116static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6117{
005a79e5
GS
6118 struct loc_track *t = seq->private;
6119
6120 t->idx = *ppos;
64dd6849
FM
6121 return ppos;
6122}
6123
6124static const struct seq_operations slab_debugfs_sops = {
6125 .start = slab_debugfs_start,
6126 .next = slab_debugfs_next,
6127 .stop = slab_debugfs_stop,
6128 .show = slab_debugfs_show,
6129};
6130
6131static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6132{
6133
6134 struct kmem_cache_node *n;
6135 enum track_item alloc;
6136 int node;
6137 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6138 sizeof(struct loc_track));
6139 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
6140 unsigned long *obj_map;
6141
2127d225
ML
6142 if (!t)
6143 return -ENOMEM;
6144
b3fd64e1 6145 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
6146 if (!obj_map) {
6147 seq_release_private(inode, filep);
b3fd64e1 6148 return -ENOMEM;
2127d225 6149 }
64dd6849
FM
6150
6151 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6152 alloc = TRACK_ALLOC;
6153 else
6154 alloc = TRACK_FREE;
6155
b3fd64e1
VB
6156 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6157 bitmap_free(obj_map);
2127d225 6158 seq_release_private(inode, filep);
64dd6849 6159 return -ENOMEM;
b3fd64e1 6160 }
64dd6849 6161
64dd6849
FM
6162 for_each_kmem_cache_node(s, node, n) {
6163 unsigned long flags;
6164 struct page *page;
6165
6166 if (!atomic_long_read(&n->nr_slabs))
6167 continue;
6168
6169 spin_lock_irqsave(&n->list_lock, flags);
6170 list_for_each_entry(page, &n->partial, slab_list)
b3fd64e1 6171 process_slab(t, s, page, alloc, obj_map);
64dd6849 6172 list_for_each_entry(page, &n->full, slab_list)
b3fd64e1 6173 process_slab(t, s, page, alloc, obj_map);
64dd6849
FM
6174 spin_unlock_irqrestore(&n->list_lock, flags);
6175 }
6176
b3fd64e1 6177 bitmap_free(obj_map);
64dd6849
FM
6178 return 0;
6179}
6180
6181static int slab_debug_trace_release(struct inode *inode, struct file *file)
6182{
6183 struct seq_file *seq = file->private_data;
6184 struct loc_track *t = seq->private;
6185
6186 free_loc_track(t);
6187 return seq_release_private(inode, file);
6188}
6189
6190static const struct file_operations slab_debugfs_fops = {
6191 .open = slab_debug_trace_open,
6192 .read = seq_read,
6193 .llseek = seq_lseek,
6194 .release = slab_debug_trace_release,
6195};
6196
6197static void debugfs_slab_add(struct kmem_cache *s)
6198{
6199 struct dentry *slab_cache_dir;
6200
6201 if (unlikely(!slab_debugfs_root))
6202 return;
6203
6204 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6205
6206 debugfs_create_file("alloc_traces", 0400,
6207 slab_cache_dir, s, &slab_debugfs_fops);
6208
6209 debugfs_create_file("free_traces", 0400,
6210 slab_cache_dir, s, &slab_debugfs_fops);
6211}
6212
6213void debugfs_slab_release(struct kmem_cache *s)
6214{
6215 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6216}
6217
6218static int __init slab_debugfs_init(void)
6219{
6220 struct kmem_cache *s;
6221
6222 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6223
6224 list_for_each_entry(s, &slab_caches, list)
6225 if (s->flags & SLAB_STORE_USER)
6226 debugfs_slab_add(s);
6227
6228 return 0;
6229
6230}
6231__initcall(slab_debugfs_init);
6232#endif
57ed3eda
PE
6233/*
6234 * The /proc/slabinfo ABI
6235 */
5b365771 6236#ifdef CONFIG_SLUB_DEBUG
0d7561c6 6237void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 6238{
57ed3eda 6239 unsigned long nr_slabs = 0;
205ab99d
CL
6240 unsigned long nr_objs = 0;
6241 unsigned long nr_free = 0;
57ed3eda 6242 int node;
fa45dc25 6243 struct kmem_cache_node *n;
57ed3eda 6244
fa45dc25 6245 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
6246 nr_slabs += node_nr_slabs(n);
6247 nr_objs += node_nr_objs(n);
205ab99d 6248 nr_free += count_partial(n, count_free);
57ed3eda
PE
6249 }
6250
0d7561c6
GC
6251 sinfo->active_objs = nr_objs - nr_free;
6252 sinfo->num_objs = nr_objs;
6253 sinfo->active_slabs = nr_slabs;
6254 sinfo->num_slabs = nr_slabs;
6255 sinfo->objects_per_slab = oo_objects(s->oo);
6256 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
6257}
6258
0d7561c6 6259void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 6260{
7b3c3a50
AD
6261}
6262
b7454ad3
GC
6263ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6264 size_t count, loff_t *ppos)
7b3c3a50 6265{
b7454ad3 6266 return -EIO;
7b3c3a50 6267}
5b365771 6268#endif /* CONFIG_SLUB_DEBUG */