drm/i915: Add connector dbgfs for all connectors
[linux-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
117d54df 126void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
127{
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
130
131 return p;
132}
133
345c905d
JK
134static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135{
136#ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
138#else
139 return false;
140#endif
141}
142
81819f0f
CL
143/*
144 * Issues still to be resolved:
145 *
81819f0f
CL
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
81819f0f
CL
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
b789ef51
CL
154/* Enable to log cmpxchg failures */
155#undef SLUB_DEBUG_CMPXCHG
156
2086d26a
CL
157/*
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
160 */
76be8950 161#define MIN_PARTIAL 5
e95eed57 162
2086d26a
CL
163/*
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 166 * sort the partial list by the number of objects in use.
2086d26a
CL
167 */
168#define MAX_PARTIAL 10
169
becfda68 170#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 171 SLAB_POISON | SLAB_STORE_USER)
672bba3a 172
149daaf3
LA
173/*
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
176 */
177#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 SLAB_TRACE)
179
180
fa5ec8a1 181/*
3de47213
DR
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
184 * metadata.
fa5ec8a1 185 */
3de47213 186#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 187
210b5c06
CG
188#define OO_SHIFT 16
189#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 190#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 191
81819f0f 192/* Internal SLUB flags */
d50112ed 193/* Poison object */
4fd0b46e 194#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 195/* Use cmpxchg_double */
4fd0b46e 196#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 197
02cbc874
CL
198/*
199 * Tracking user of a slab.
200 */
d6543e39 201#define TRACK_ADDRS_COUNT 16
02cbc874 202struct track {
ce71e27c 203 unsigned long addr; /* Called from address */
d6543e39
BG
204#ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206#endif
02cbc874
CL
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210};
211
212enum track_item { TRACK_ALLOC, TRACK_FREE };
213
ab4d5ed5 214#ifdef CONFIG_SYSFS
81819f0f
CL
215static int sysfs_slab_add(struct kmem_cache *);
216static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 217static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 218static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 219#else
0c710013
CL
220static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
107dab5c 223static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 224static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
2482ddec 278 return freelist_dereference(s, object + s->offset);
7656c72b
CL
279}
280
0ad9500e
ED
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
0882ff91 283 prefetch(object + s->offset);
0ad9500e
ED
284}
285
1393d9a1
CL
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
2482ddec 288 unsigned long freepointer_addr;
1393d9a1
CL
289 void *p;
290
8e57f8ac 291 if (!debug_pagealloc_enabled_static())
922d566c
JK
292 return get_freepointer(s, object);
293
2482ddec
KC
294 freepointer_addr = (unsigned long)object + s->offset;
295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
297}
298
7656c72b
CL
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
2482ddec
KC
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
ce6fa91b
AP
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
2482ddec 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
308}
309
310/* Loop over all objects in a slab */
224a88be 311#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
7656c72b 315
7656c72b 316/* Determine object index from a given position */
284b50dd 317static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 318{
6373dca1 319 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
320}
321
9736d2a9 322static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 323{
9736d2a9 324 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
325}
326
19af27af 327static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 328 unsigned int size)
834f3d11
CL
329{
330 struct kmem_cache_order_objects x = {
9736d2a9 331 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
332 };
333
334 return x;
335}
336
19af27af 337static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 338{
210b5c06 339 return x.x >> OO_SHIFT;
834f3d11
CL
340}
341
19af27af 342static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 343{
210b5c06 344 return x.x & OO_MASK;
834f3d11
CL
345}
346
881db7fb
CL
347/*
348 * Per slab locking using the pagelock
349 */
350static __always_inline void slab_lock(struct page *page)
351{
48c935ad 352 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
353 bit_spin_lock(PG_locked, &page->flags);
354}
355
356static __always_inline void slab_unlock(struct page *page)
357{
48c935ad 358 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
2565409f
HC
369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 371 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 372 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
373 freelist_old, counters_old,
374 freelist_new, counters_new))
6f6528a1 375 return true;
1d07171c
CL
376 } else
377#endif
378 {
379 slab_lock(page);
d0e0ac97
CG
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
1d07171c 382 page->freelist = freelist_new;
7d27a04b 383 page->counters = counters_new;
1d07171c 384 slab_unlock(page);
6f6528a1 385 return true;
1d07171c
CL
386 }
387 slab_unlock(page);
388 }
389
390 cpu_relax();
391 stat(s, CMPXCHG_DOUBLE_FAIL);
392
393#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
395#endif
396
6f6528a1 397 return false;
1d07171c
CL
398}
399
b789ef51
CL
400static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
403 const char *n)
404{
2565409f
HC
405#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 407 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 408 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
409 freelist_old, counters_old,
410 freelist_new, counters_new))
6f6528a1 411 return true;
b789ef51
CL
412 } else
413#endif
414 {
1d07171c
CL
415 unsigned long flags;
416
417 local_irq_save(flags);
881db7fb 418 slab_lock(page);
d0e0ac97
CG
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
b789ef51 421 page->freelist = freelist_new;
7d27a04b 422 page->counters = counters_new;
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
6f6528a1 425 return true;
b789ef51 426 }
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 }
430
431 cpu_relax();
432 stat(s, CMPXCHG_DOUBLE_FAIL);
433
434#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
436#endif
437
6f6528a1 438 return false;
b789ef51
CL
439}
440
41ecc55b 441#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
442static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443static DEFINE_SPINLOCK(object_map_lock);
444
5f80b13a
CL
445/*
446 * Determine a map of object in use on a page.
447 *
881db7fb 448 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
449 * not vanish from under us.
450 */
90e9f6a6 451static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 452 __acquires(&object_map_lock)
5f80b13a
CL
453{
454 void *p;
455 void *addr = page_address(page);
456
90e9f6a6
YZ
457 VM_BUG_ON(!irqs_disabled());
458
459 spin_lock(&object_map_lock);
460
461 bitmap_zero(object_map, page->objects);
462
5f80b13a 463 for (p = page->freelist; p; p = get_freepointer(s, p))
90e9f6a6
YZ
464 set_bit(slab_index(p, s, addr), object_map);
465
466 return object_map;
467}
468
81aba9e0 469static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
470{
471 VM_BUG_ON(map != object_map);
472 lockdep_assert_held(&object_map_lock);
473
474 spin_unlock(&object_map_lock);
5f80b13a
CL
475}
476
870b1fbb 477static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
478{
479 if (s->flags & SLAB_RED_ZONE)
480 return s->size - s->red_left_pad;
481
482 return s->size;
483}
484
485static inline void *restore_red_left(struct kmem_cache *s, void *p)
486{
487 if (s->flags & SLAB_RED_ZONE)
488 p -= s->red_left_pad;
489
490 return p;
491}
492
41ecc55b
CL
493/*
494 * Debug settings:
495 */
89d3c87e 496#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 497static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 498#else
d50112ed 499static slab_flags_t slub_debug;
f0630fff 500#endif
41ecc55b
CL
501
502static char *slub_debug_slabs;
fa5ec8a1 503static int disable_higher_order_debug;
41ecc55b 504
a79316c6
AR
505/*
506 * slub is about to manipulate internal object metadata. This memory lies
507 * outside the range of the allocated object, so accessing it would normally
508 * be reported by kasan as a bounds error. metadata_access_enable() is used
509 * to tell kasan that these accesses are OK.
510 */
511static inline void metadata_access_enable(void)
512{
513 kasan_disable_current();
514}
515
516static inline void metadata_access_disable(void)
517{
518 kasan_enable_current();
519}
520
81819f0f
CL
521/*
522 * Object debugging
523 */
d86bd1be
JK
524
525/* Verify that a pointer has an address that is valid within a slab page */
526static inline int check_valid_pointer(struct kmem_cache *s,
527 struct page *page, void *object)
528{
529 void *base;
530
531 if (!object)
532 return 1;
533
534 base = page_address(page);
338cfaad 535 object = kasan_reset_tag(object);
d86bd1be
JK
536 object = restore_red_left(s, object);
537 if (object < base || object >= base + page->objects * s->size ||
538 (object - base) % s->size) {
539 return 0;
540 }
541
542 return 1;
543}
544
aa2efd5e
DT
545static void print_section(char *level, char *text, u8 *addr,
546 unsigned int length)
81819f0f 547{
a79316c6 548 metadata_access_enable();
aa2efd5e 549 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 550 length, 1);
a79316c6 551 metadata_access_disable();
81819f0f
CL
552}
553
81819f0f
CL
554static struct track *get_track(struct kmem_cache *s, void *object,
555 enum track_item alloc)
556{
557 struct track *p;
558
559 if (s->offset)
560 p = object + s->offset + sizeof(void *);
561 else
562 p = object + s->inuse;
563
564 return p + alloc;
565}
566
567static void set_track(struct kmem_cache *s, void *object,
ce71e27c 568 enum track_item alloc, unsigned long addr)
81819f0f 569{
1a00df4a 570 struct track *p = get_track(s, object, alloc);
81819f0f 571
81819f0f 572 if (addr) {
d6543e39 573#ifdef CONFIG_STACKTRACE
79716799 574 unsigned int nr_entries;
d6543e39 575
a79316c6 576 metadata_access_enable();
79716799 577 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 578 metadata_access_disable();
d6543e39 579
79716799
TG
580 if (nr_entries < TRACK_ADDRS_COUNT)
581 p->addrs[nr_entries] = 0;
d6543e39 582#endif
81819f0f
CL
583 p->addr = addr;
584 p->cpu = smp_processor_id();
88e4ccf2 585 p->pid = current->pid;
81819f0f 586 p->when = jiffies;
b8ca7ff7 587 } else {
81819f0f 588 memset(p, 0, sizeof(struct track));
b8ca7ff7 589 }
81819f0f
CL
590}
591
81819f0f
CL
592static void init_tracking(struct kmem_cache *s, void *object)
593{
24922684
CL
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
596
ce71e27c
EGM
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
599}
600
86609d33 601static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
602{
603 if (!t->addr)
604 return;
605
f9f58285 606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 607 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
608#ifdef CONFIG_STACKTRACE
609 {
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
f9f58285 613 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
614 else
615 break;
616 }
617#endif
24922684
CL
618}
619
620static void print_tracking(struct kmem_cache *s, void *object)
621{
86609d33 622 unsigned long pr_time = jiffies;
24922684
CL
623 if (!(s->flags & SLAB_STORE_USER))
624 return;
625
86609d33
CP
626 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
628}
629
630static void print_page_info(struct page *page)
631{
f9f58285 632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 633 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
634
635}
636
637static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638{
ecc42fbe 639 struct va_format vaf;
24922684 640 va_list args;
24922684
CL
641
642 va_start(args, fmt);
ecc42fbe
FF
643 vaf.fmt = fmt;
644 vaf.va = &args;
f9f58285 645 pr_err("=============================================================================\n");
ecc42fbe 646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 647 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 648
373d4d09 649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 650 va_end(args);
81819f0f
CL
651}
652
24922684
CL
653static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654{
ecc42fbe 655 struct va_format vaf;
24922684 656 va_list args;
24922684
CL
657
658 va_start(args, fmt);
ecc42fbe
FF
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 662 va_end(args);
24922684
CL
663}
664
665static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
666{
667 unsigned int off; /* Offset of last byte */
a973e9dd 668 u8 *addr = page_address(page);
24922684
CL
669
670 print_tracking(s, p);
671
672 print_page_info(page);
673
f9f58285
FF
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p, p - addr, get_freepointer(s, p));
24922684 676
d86bd1be 677 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
679 s->red_left_pad);
d86bd1be 680 else if (p > addr + 16)
aa2efd5e 681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 682
aa2efd5e 683 print_section(KERN_ERR, "Object ", p,
1b473f29 684 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 685 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 686 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 687 s->inuse - s->object_size);
81819f0f 688
81819f0f
CL
689 if (s->offset)
690 off = s->offset + sizeof(void *);
691 else
692 off = s->inuse;
693
24922684 694 if (s->flags & SLAB_STORE_USER)
81819f0f 695 off += 2 * sizeof(struct track);
81819f0f 696
80a9201a
AP
697 off += kasan_metadata_size(s);
698
d86bd1be 699 if (off != size_from_object(s))
81819f0f 700 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
701 print_section(KERN_ERR, "Padding ", p + off,
702 size_from_object(s) - off);
24922684
CL
703
704 dump_stack();
81819f0f
CL
705}
706
75c66def 707void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
708 u8 *object, char *reason)
709{
3dc50637 710 slab_bug(s, "%s", reason);
24922684 711 print_trailer(s, page, object);
81819f0f
CL
712}
713
a38965bf 714static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 715 const char *fmt, ...)
81819f0f
CL
716{
717 va_list args;
718 char buf[100];
719
24922684
CL
720 va_start(args, fmt);
721 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 722 va_end(args);
3dc50637 723 slab_bug(s, "%s", buf);
24922684 724 print_page_info(page);
81819f0f
CL
725 dump_stack();
726}
727
f7cb1933 728static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
729{
730 u8 *p = object;
731
d86bd1be
JK
732 if (s->flags & SLAB_RED_ZONE)
733 memset(p - s->red_left_pad, val, s->red_left_pad);
734
81819f0f 735 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
736 memset(p, POISON_FREE, s->object_size - 1);
737 p[s->object_size - 1] = POISON_END;
81819f0f
CL
738 }
739
740 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 741 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
742}
743
24922684
CL
744static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 void *from, void *to)
746{
747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 memset(from, data, to - from);
749}
750
751static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 u8 *object, char *what,
06428780 753 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
754{
755 u8 *fault;
756 u8 *end;
e1b70dd1 757 u8 *addr = page_address(page);
24922684 758
a79316c6 759 metadata_access_enable();
79824820 760 fault = memchr_inv(start, value, bytes);
a79316c6 761 metadata_access_disable();
24922684
CL
762 if (!fault)
763 return 1;
764
765 end = start + bytes;
766 while (end > fault && end[-1] == value)
767 end--;
768
769 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
770 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
771 fault, end - 1, fault - addr,
772 fault[0], value);
24922684
CL
773 print_trailer(s, page, object);
774
775 restore_bytes(s, what, value, fault, end);
776 return 0;
81819f0f
CL
777}
778
81819f0f
CL
779/*
780 * Object layout:
781 *
782 * object address
783 * Bytes of the object to be managed.
784 * If the freepointer may overlay the object then the free
785 * pointer is the first word of the object.
672bba3a 786 *
81819f0f
CL
787 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
788 * 0xa5 (POISON_END)
789 *
3b0efdfa 790 * object + s->object_size
81819f0f 791 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 792 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 793 * object_size == inuse.
672bba3a 794 *
81819f0f
CL
795 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
796 * 0xcc (RED_ACTIVE) for objects in use.
797 *
798 * object + s->inuse
672bba3a
CL
799 * Meta data starts here.
800 *
81819f0f
CL
801 * A. Free pointer (if we cannot overwrite object on free)
802 * B. Tracking data for SLAB_STORE_USER
672bba3a 803 * C. Padding to reach required alignment boundary or at mininum
6446faa2 804 * one word if debugging is on to be able to detect writes
672bba3a
CL
805 * before the word boundary.
806 *
807 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
808 *
809 * object + s->size
672bba3a 810 * Nothing is used beyond s->size.
81819f0f 811 *
3b0efdfa 812 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 813 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
814 * may be used with merged slabcaches.
815 */
816
81819f0f
CL
817static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
818{
819 unsigned long off = s->inuse; /* The end of info */
820
821 if (s->offset)
822 /* Freepointer is placed after the object. */
823 off += sizeof(void *);
824
825 if (s->flags & SLAB_STORE_USER)
826 /* We also have user information there */
827 off += 2 * sizeof(struct track);
828
80a9201a
AP
829 off += kasan_metadata_size(s);
830
d86bd1be 831 if (size_from_object(s) == off)
81819f0f
CL
832 return 1;
833
24922684 834 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 835 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
836}
837
39b26464 838/* Check the pad bytes at the end of a slab page */
81819f0f
CL
839static int slab_pad_check(struct kmem_cache *s, struct page *page)
840{
24922684
CL
841 u8 *start;
842 u8 *fault;
843 u8 *end;
5d682681 844 u8 *pad;
24922684
CL
845 int length;
846 int remainder;
81819f0f
CL
847
848 if (!(s->flags & SLAB_POISON))
849 return 1;
850
a973e9dd 851 start = page_address(page);
a50b854e 852 length = page_size(page);
39b26464
CL
853 end = start + length;
854 remainder = length % s->size;
81819f0f
CL
855 if (!remainder)
856 return 1;
857
5d682681 858 pad = end - remainder;
a79316c6 859 metadata_access_enable();
5d682681 860 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 861 metadata_access_disable();
24922684
CL
862 if (!fault)
863 return 1;
864 while (end > fault && end[-1] == POISON_INUSE)
865 end--;
866
e1b70dd1
MC
867 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
868 fault, end - 1, fault - start);
5d682681 869 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 870
5d682681 871 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 872 return 0;
81819f0f
CL
873}
874
875static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 876 void *object, u8 val)
81819f0f
CL
877{
878 u8 *p = object;
3b0efdfa 879 u8 *endobject = object + s->object_size;
81819f0f
CL
880
881 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
882 if (!check_bytes_and_report(s, page, object, "Redzone",
883 object - s->red_left_pad, val, s->red_left_pad))
884 return 0;
885
24922684 886 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 887 endobject, val, s->inuse - s->object_size))
81819f0f 888 return 0;
81819f0f 889 } else {
3b0efdfa 890 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 891 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
892 endobject, POISON_INUSE,
893 s->inuse - s->object_size);
3adbefee 894 }
81819f0f
CL
895 }
896
897 if (s->flags & SLAB_POISON) {
f7cb1933 898 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 899 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 900 POISON_FREE, s->object_size - 1) ||
24922684 901 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 902 p + s->object_size - 1, POISON_END, 1)))
81819f0f 903 return 0;
81819f0f
CL
904 /*
905 * check_pad_bytes cleans up on its own.
906 */
907 check_pad_bytes(s, page, p);
908 }
909
f7cb1933 910 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
911 /*
912 * Object and freepointer overlap. Cannot check
913 * freepointer while object is allocated.
914 */
915 return 1;
916
917 /* Check free pointer validity */
918 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
919 object_err(s, page, p, "Freepointer corrupt");
920 /*
9f6c708e 921 * No choice but to zap it and thus lose the remainder
81819f0f 922 * of the free objects in this slab. May cause
672bba3a 923 * another error because the object count is now wrong.
81819f0f 924 */
a973e9dd 925 set_freepointer(s, p, NULL);
81819f0f
CL
926 return 0;
927 }
928 return 1;
929}
930
931static int check_slab(struct kmem_cache *s, struct page *page)
932{
39b26464
CL
933 int maxobj;
934
81819f0f
CL
935 VM_BUG_ON(!irqs_disabled());
936
937 if (!PageSlab(page)) {
24922684 938 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
939 return 0;
940 }
39b26464 941
9736d2a9 942 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
943 if (page->objects > maxobj) {
944 slab_err(s, page, "objects %u > max %u",
f6edde9c 945 page->objects, maxobj);
39b26464
CL
946 return 0;
947 }
948 if (page->inuse > page->objects) {
24922684 949 slab_err(s, page, "inuse %u > max %u",
f6edde9c 950 page->inuse, page->objects);
81819f0f
CL
951 return 0;
952 }
953 /* Slab_pad_check fixes things up after itself */
954 slab_pad_check(s, page);
955 return 1;
956}
957
958/*
672bba3a
CL
959 * Determine if a certain object on a page is on the freelist. Must hold the
960 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
961 */
962static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
963{
964 int nr = 0;
881db7fb 965 void *fp;
81819f0f 966 void *object = NULL;
f6edde9c 967 int max_objects;
81819f0f 968
881db7fb 969 fp = page->freelist;
39b26464 970 while (fp && nr <= page->objects) {
81819f0f
CL
971 if (fp == search)
972 return 1;
973 if (!check_valid_pointer(s, page, fp)) {
974 if (object) {
975 object_err(s, page, object,
976 "Freechain corrupt");
a973e9dd 977 set_freepointer(s, object, NULL);
81819f0f 978 } else {
24922684 979 slab_err(s, page, "Freepointer corrupt");
a973e9dd 980 page->freelist = NULL;
39b26464 981 page->inuse = page->objects;
24922684 982 slab_fix(s, "Freelist cleared");
81819f0f
CL
983 return 0;
984 }
985 break;
986 }
987 object = fp;
988 fp = get_freepointer(s, object);
989 nr++;
990 }
991
9736d2a9 992 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
993 if (max_objects > MAX_OBJS_PER_PAGE)
994 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
995
996 if (page->objects != max_objects) {
756a025f
JP
997 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
998 page->objects, max_objects);
224a88be
CL
999 page->objects = max_objects;
1000 slab_fix(s, "Number of objects adjusted.");
1001 }
39b26464 1002 if (page->inuse != page->objects - nr) {
756a025f
JP
1003 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1004 page->inuse, page->objects - nr);
39b26464 1005 page->inuse = page->objects - nr;
24922684 1006 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1007 }
1008 return search == NULL;
1009}
1010
0121c619
CL
1011static void trace(struct kmem_cache *s, struct page *page, void *object,
1012 int alloc)
3ec09742
CL
1013{
1014 if (s->flags & SLAB_TRACE) {
f9f58285 1015 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1016 s->name,
1017 alloc ? "alloc" : "free",
1018 object, page->inuse,
1019 page->freelist);
1020
1021 if (!alloc)
aa2efd5e 1022 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1023 s->object_size);
3ec09742
CL
1024
1025 dump_stack();
1026 }
1027}
1028
643b1138 1029/*
672bba3a 1030 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1031 */
5cc6eee8
CL
1032static void add_full(struct kmem_cache *s,
1033 struct kmem_cache_node *n, struct page *page)
643b1138 1034{
5cc6eee8
CL
1035 if (!(s->flags & SLAB_STORE_USER))
1036 return;
1037
255d0884 1038 lockdep_assert_held(&n->list_lock);
916ac052 1039 list_add(&page->slab_list, &n->full);
643b1138
CL
1040}
1041
c65c1877 1042static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1043{
643b1138
CL
1044 if (!(s->flags & SLAB_STORE_USER))
1045 return;
1046
255d0884 1047 lockdep_assert_held(&n->list_lock);
916ac052 1048 list_del(&page->slab_list);
643b1138
CL
1049}
1050
0f389ec6
CL
1051/* Tracking of the number of slabs for debugging purposes */
1052static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1053{
1054 struct kmem_cache_node *n = get_node(s, node);
1055
1056 return atomic_long_read(&n->nr_slabs);
1057}
1058
26c02cf0
AB
1059static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1060{
1061 return atomic_long_read(&n->nr_slabs);
1062}
1063
205ab99d 1064static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1065{
1066 struct kmem_cache_node *n = get_node(s, node);
1067
1068 /*
1069 * May be called early in order to allocate a slab for the
1070 * kmem_cache_node structure. Solve the chicken-egg
1071 * dilemma by deferring the increment of the count during
1072 * bootstrap (see early_kmem_cache_node_alloc).
1073 */
338b2642 1074 if (likely(n)) {
0f389ec6 1075 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1076 atomic_long_add(objects, &n->total_objects);
1077 }
0f389ec6 1078}
205ab99d 1079static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1080{
1081 struct kmem_cache_node *n = get_node(s, node);
1082
1083 atomic_long_dec(&n->nr_slabs);
205ab99d 1084 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1085}
1086
1087/* Object debug checks for alloc/free paths */
3ec09742
CL
1088static void setup_object_debug(struct kmem_cache *s, struct page *page,
1089 void *object)
1090{
1091 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1092 return;
1093
f7cb1933 1094 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1095 init_tracking(s, object);
1096}
1097
a50b854e
MWO
1098static
1099void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224
AK
1100{
1101 if (!(s->flags & SLAB_POISON))
1102 return;
1103
1104 metadata_access_enable();
a50b854e 1105 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1106 metadata_access_disable();
1107}
1108
becfda68 1109static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1110 struct page *page, void *object)
81819f0f
CL
1111{
1112 if (!check_slab(s, page))
becfda68 1113 return 0;
81819f0f 1114
81819f0f
CL
1115 if (!check_valid_pointer(s, page, object)) {
1116 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1117 return 0;
81819f0f
CL
1118 }
1119
f7cb1933 1120 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1121 return 0;
1122
1123 return 1;
1124}
1125
1126static noinline int alloc_debug_processing(struct kmem_cache *s,
1127 struct page *page,
1128 void *object, unsigned long addr)
1129{
1130 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1131 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1132 goto bad;
1133 }
81819f0f 1134
3ec09742
CL
1135 /* Success perform special debug activities for allocs */
1136 if (s->flags & SLAB_STORE_USER)
1137 set_track(s, object, TRACK_ALLOC, addr);
1138 trace(s, page, object, 1);
f7cb1933 1139 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1140 return 1;
3ec09742 1141
81819f0f
CL
1142bad:
1143 if (PageSlab(page)) {
1144 /*
1145 * If this is a slab page then lets do the best we can
1146 * to avoid issues in the future. Marking all objects
672bba3a 1147 * as used avoids touching the remaining objects.
81819f0f 1148 */
24922684 1149 slab_fix(s, "Marking all objects used");
39b26464 1150 page->inuse = page->objects;
a973e9dd 1151 page->freelist = NULL;
81819f0f
CL
1152 }
1153 return 0;
1154}
1155
becfda68
LA
1156static inline int free_consistency_checks(struct kmem_cache *s,
1157 struct page *page, void *object, unsigned long addr)
81819f0f 1158{
81819f0f 1159 if (!check_valid_pointer(s, page, object)) {
70d71228 1160 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1161 return 0;
81819f0f
CL
1162 }
1163
1164 if (on_freelist(s, page, object)) {
24922684 1165 object_err(s, page, object, "Object already free");
becfda68 1166 return 0;
81819f0f
CL
1167 }
1168
f7cb1933 1169 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1170 return 0;
81819f0f 1171
1b4f59e3 1172 if (unlikely(s != page->slab_cache)) {
3adbefee 1173 if (!PageSlab(page)) {
756a025f
JP
1174 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1175 object);
1b4f59e3 1176 } else if (!page->slab_cache) {
f9f58285
FF
1177 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1178 object);
70d71228 1179 dump_stack();
06428780 1180 } else
24922684
CL
1181 object_err(s, page, object,
1182 "page slab pointer corrupt.");
becfda68
LA
1183 return 0;
1184 }
1185 return 1;
1186}
1187
1188/* Supports checking bulk free of a constructed freelist */
1189static noinline int free_debug_processing(
1190 struct kmem_cache *s, struct page *page,
1191 void *head, void *tail, int bulk_cnt,
1192 unsigned long addr)
1193{
1194 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1195 void *object = head;
1196 int cnt = 0;
1197 unsigned long uninitialized_var(flags);
1198 int ret = 0;
1199
1200 spin_lock_irqsave(&n->list_lock, flags);
1201 slab_lock(page);
1202
1203 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1204 if (!check_slab(s, page))
1205 goto out;
1206 }
1207
1208next_object:
1209 cnt++;
1210
1211 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1212 if (!free_consistency_checks(s, page, object, addr))
1213 goto out;
81819f0f 1214 }
3ec09742 1215
3ec09742
CL
1216 if (s->flags & SLAB_STORE_USER)
1217 set_track(s, object, TRACK_FREE, addr);
1218 trace(s, page, object, 0);
81084651 1219 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1220 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1221
1222 /* Reached end of constructed freelist yet? */
1223 if (object != tail) {
1224 object = get_freepointer(s, object);
1225 goto next_object;
1226 }
804aa132
LA
1227 ret = 1;
1228
5c2e4bbb 1229out:
81084651
JDB
1230 if (cnt != bulk_cnt)
1231 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1232 bulk_cnt, cnt);
1233
881db7fb 1234 slab_unlock(page);
282acb43 1235 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1236 if (!ret)
1237 slab_fix(s, "Object at 0x%p not freed", object);
1238 return ret;
81819f0f
CL
1239}
1240
41ecc55b
CL
1241static int __init setup_slub_debug(char *str)
1242{
f0630fff
CL
1243 slub_debug = DEBUG_DEFAULT_FLAGS;
1244 if (*str++ != '=' || !*str)
1245 /*
1246 * No options specified. Switch on full debugging.
1247 */
1248 goto out;
1249
1250 if (*str == ',')
1251 /*
1252 * No options but restriction on slabs. This means full
1253 * debugging for slabs matching a pattern.
1254 */
1255 goto check_slabs;
1256
1257 slub_debug = 0;
1258 if (*str == '-')
1259 /*
1260 * Switch off all debugging measures.
1261 */
1262 goto out;
1263
1264 /*
1265 * Determine which debug features should be switched on
1266 */
06428780 1267 for (; *str && *str != ','; str++) {
f0630fff
CL
1268 switch (tolower(*str)) {
1269 case 'f':
becfda68 1270 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1271 break;
1272 case 'z':
1273 slub_debug |= SLAB_RED_ZONE;
1274 break;
1275 case 'p':
1276 slub_debug |= SLAB_POISON;
1277 break;
1278 case 'u':
1279 slub_debug |= SLAB_STORE_USER;
1280 break;
1281 case 't':
1282 slub_debug |= SLAB_TRACE;
1283 break;
4c13dd3b
DM
1284 case 'a':
1285 slub_debug |= SLAB_FAILSLAB;
1286 break;
08303a73
CA
1287 case 'o':
1288 /*
1289 * Avoid enabling debugging on caches if its minimum
1290 * order would increase as a result.
1291 */
1292 disable_higher_order_debug = 1;
1293 break;
f0630fff 1294 default:
f9f58285
FF
1295 pr_err("slub_debug option '%c' unknown. skipped\n",
1296 *str);
f0630fff 1297 }
41ecc55b
CL
1298 }
1299
f0630fff 1300check_slabs:
41ecc55b
CL
1301 if (*str == ',')
1302 slub_debug_slabs = str + 1;
f0630fff 1303out:
6471384a
AP
1304 if ((static_branch_unlikely(&init_on_alloc) ||
1305 static_branch_unlikely(&init_on_free)) &&
1306 (slub_debug & SLAB_POISON))
1307 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1308 return 1;
1309}
1310
1311__setup("slub_debug", setup_slub_debug);
1312
c5fd3ca0
AT
1313/*
1314 * kmem_cache_flags - apply debugging options to the cache
1315 * @object_size: the size of an object without meta data
1316 * @flags: flags to set
1317 * @name: name of the cache
1318 * @ctor: constructor function
1319 *
1320 * Debug option(s) are applied to @flags. In addition to the debug
1321 * option(s), if a slab name (or multiple) is specified i.e.
1322 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1323 * then only the select slabs will receive the debug option(s).
1324 */
0293d1fd 1325slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1326 slab_flags_t flags, const char *name,
51cc5068 1327 void (*ctor)(void *))
41ecc55b 1328{
c5fd3ca0
AT
1329 char *iter;
1330 size_t len;
1331
1332 /* If slub_debug = 0, it folds into the if conditional. */
1333 if (!slub_debug_slabs)
1334 return flags | slub_debug;
1335
1336 len = strlen(name);
1337 iter = slub_debug_slabs;
1338 while (*iter) {
1339 char *end, *glob;
1340 size_t cmplen;
1341
9cf3a8d8 1342 end = strchrnul(iter, ',');
c5fd3ca0
AT
1343
1344 glob = strnchr(iter, end - iter, '*');
1345 if (glob)
1346 cmplen = glob - iter;
1347 else
1348 cmplen = max_t(size_t, len, (end - iter));
1349
1350 if (!strncmp(name, iter, cmplen)) {
1351 flags |= slub_debug;
1352 break;
1353 }
1354
1355 if (!*end)
1356 break;
1357 iter = end + 1;
1358 }
ba0268a8
CL
1359
1360 return flags;
41ecc55b 1361}
b4a64718 1362#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1363static inline void setup_object_debug(struct kmem_cache *s,
1364 struct page *page, void *object) {}
a50b854e
MWO
1365static inline
1366void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1367
3ec09742 1368static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1369 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1370
282acb43 1371static inline int free_debug_processing(
81084651
JDB
1372 struct kmem_cache *s, struct page *page,
1373 void *head, void *tail, int bulk_cnt,
282acb43 1374 unsigned long addr) { return 0; }
41ecc55b 1375
41ecc55b
CL
1376static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1377 { return 1; }
1378static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1379 void *object, u8 val) { return 1; }
5cc6eee8
CL
1380static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1381 struct page *page) {}
c65c1877
PZ
1382static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1383 struct page *page) {}
0293d1fd 1384slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1385 slab_flags_t flags, const char *name,
51cc5068 1386 void (*ctor)(void *))
ba0268a8
CL
1387{
1388 return flags;
1389}
41ecc55b 1390#define slub_debug 0
0f389ec6 1391
fdaa45e9
IM
1392#define disable_higher_order_debug 0
1393
0f389ec6
CL
1394static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1395 { return 0; }
26c02cf0
AB
1396static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1397 { return 0; }
205ab99d
CL
1398static inline void inc_slabs_node(struct kmem_cache *s, int node,
1399 int objects) {}
1400static inline void dec_slabs_node(struct kmem_cache *s, int node,
1401 int objects) {}
7d550c56 1402
02e72cc6
AR
1403#endif /* CONFIG_SLUB_DEBUG */
1404
1405/*
1406 * Hooks for other subsystems that check memory allocations. In a typical
1407 * production configuration these hooks all should produce no code at all.
1408 */
0116523c 1409static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1410{
53128245 1411 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1412 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1413 kmemleak_alloc(ptr, size, 1, flags);
53128245 1414 return ptr;
d56791b3
RB
1415}
1416
ee3ce779 1417static __always_inline void kfree_hook(void *x)
d56791b3
RB
1418{
1419 kmemleak_free(x);
ee3ce779 1420 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1421}
1422
c3895391 1423static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1424{
1425 kmemleak_free_recursive(x, s->flags);
7d550c56 1426
02e72cc6
AR
1427 /*
1428 * Trouble is that we may no longer disable interrupts in the fast path
1429 * So in order to make the debug calls that expect irqs to be
1430 * disabled we need to disable interrupts temporarily.
1431 */
4675ff05 1432#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1433 {
1434 unsigned long flags;
1435
1436 local_irq_save(flags);
02e72cc6
AR
1437 debug_check_no_locks_freed(x, s->object_size);
1438 local_irq_restore(flags);
1439 }
1440#endif
1441 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1442 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1443
c3895391
AK
1444 /* KASAN might put x into memory quarantine, delaying its reuse */
1445 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1446}
205ab99d 1447
c3895391
AK
1448static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1449 void **head, void **tail)
81084651 1450{
6471384a
AP
1451
1452 void *object;
1453 void *next = *head;
1454 void *old_tail = *tail ? *tail : *head;
1455 int rsize;
1456
aea4df4c
LA
1457 /* Head and tail of the reconstructed freelist */
1458 *head = NULL;
1459 *tail = NULL;
1b7e816f 1460
aea4df4c
LA
1461 do {
1462 object = next;
1463 next = get_freepointer(s, object);
1464
1465 if (slab_want_init_on_free(s)) {
6471384a
AP
1466 /*
1467 * Clear the object and the metadata, but don't touch
1468 * the redzone.
1469 */
1470 memset(object, 0, s->object_size);
1471 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1472 : 0;
1473 memset((char *)object + s->inuse, 0,
1474 s->size - s->inuse - rsize);
81084651 1475
aea4df4c 1476 }
c3895391
AK
1477 /* If object's reuse doesn't have to be delayed */
1478 if (!slab_free_hook(s, object)) {
1479 /* Move object to the new freelist */
1480 set_freepointer(s, object, *head);
1481 *head = object;
1482 if (!*tail)
1483 *tail = object;
1484 }
1485 } while (object != old_tail);
1486
1487 if (*head == *tail)
1488 *tail = NULL;
1489
1490 return *head != NULL;
81084651
JDB
1491}
1492
4d176711 1493static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1494 void *object)
1495{
1496 setup_object_debug(s, page, object);
4d176711 1497 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1498 if (unlikely(s->ctor)) {
1499 kasan_unpoison_object_data(s, object);
1500 s->ctor(object);
1501 kasan_poison_object_data(s, object);
1502 }
4d176711 1503 return object;
588f8ba9
TG
1504}
1505
81819f0f
CL
1506/*
1507 * Slab allocation and freeing
1508 */
5dfb4175
VD
1509static inline struct page *alloc_slab_page(struct kmem_cache *s,
1510 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1511{
5dfb4175 1512 struct page *page;
19af27af 1513 unsigned int order = oo_order(oo);
65c3376a 1514
2154a336 1515 if (node == NUMA_NO_NODE)
5dfb4175 1516 page = alloc_pages(flags, order);
65c3376a 1517 else
96db800f 1518 page = __alloc_pages_node(node, flags, order);
5dfb4175 1519
6cea1d56 1520 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1521 __free_pages(page, order);
1522 page = NULL;
1523 }
5dfb4175
VD
1524
1525 return page;
65c3376a
CL
1526}
1527
210e7a43
TG
1528#ifdef CONFIG_SLAB_FREELIST_RANDOM
1529/* Pre-initialize the random sequence cache */
1530static int init_cache_random_seq(struct kmem_cache *s)
1531{
19af27af 1532 unsigned int count = oo_objects(s->oo);
210e7a43 1533 int err;
210e7a43 1534
a810007a
SR
1535 /* Bailout if already initialised */
1536 if (s->random_seq)
1537 return 0;
1538
210e7a43
TG
1539 err = cache_random_seq_create(s, count, GFP_KERNEL);
1540 if (err) {
1541 pr_err("SLUB: Unable to initialize free list for %s\n",
1542 s->name);
1543 return err;
1544 }
1545
1546 /* Transform to an offset on the set of pages */
1547 if (s->random_seq) {
19af27af
AD
1548 unsigned int i;
1549
210e7a43
TG
1550 for (i = 0; i < count; i++)
1551 s->random_seq[i] *= s->size;
1552 }
1553 return 0;
1554}
1555
1556/* Initialize each random sequence freelist per cache */
1557static void __init init_freelist_randomization(void)
1558{
1559 struct kmem_cache *s;
1560
1561 mutex_lock(&slab_mutex);
1562
1563 list_for_each_entry(s, &slab_caches, list)
1564 init_cache_random_seq(s);
1565
1566 mutex_unlock(&slab_mutex);
1567}
1568
1569/* Get the next entry on the pre-computed freelist randomized */
1570static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1571 unsigned long *pos, void *start,
1572 unsigned long page_limit,
1573 unsigned long freelist_count)
1574{
1575 unsigned int idx;
1576
1577 /*
1578 * If the target page allocation failed, the number of objects on the
1579 * page might be smaller than the usual size defined by the cache.
1580 */
1581 do {
1582 idx = s->random_seq[*pos];
1583 *pos += 1;
1584 if (*pos >= freelist_count)
1585 *pos = 0;
1586 } while (unlikely(idx >= page_limit));
1587
1588 return (char *)start + idx;
1589}
1590
1591/* Shuffle the single linked freelist based on a random pre-computed sequence */
1592static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1593{
1594 void *start;
1595 void *cur;
1596 void *next;
1597 unsigned long idx, pos, page_limit, freelist_count;
1598
1599 if (page->objects < 2 || !s->random_seq)
1600 return false;
1601
1602 freelist_count = oo_objects(s->oo);
1603 pos = get_random_int() % freelist_count;
1604
1605 page_limit = page->objects * s->size;
1606 start = fixup_red_left(s, page_address(page));
1607
1608 /* First entry is used as the base of the freelist */
1609 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1610 freelist_count);
4d176711 1611 cur = setup_object(s, page, cur);
210e7a43
TG
1612 page->freelist = cur;
1613
1614 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1615 next = next_freelist_entry(s, page, &pos, start, page_limit,
1616 freelist_count);
4d176711 1617 next = setup_object(s, page, next);
210e7a43
TG
1618 set_freepointer(s, cur, next);
1619 cur = next;
1620 }
210e7a43
TG
1621 set_freepointer(s, cur, NULL);
1622
1623 return true;
1624}
1625#else
1626static inline int init_cache_random_seq(struct kmem_cache *s)
1627{
1628 return 0;
1629}
1630static inline void init_freelist_randomization(void) { }
1631static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1632{
1633 return false;
1634}
1635#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1636
81819f0f
CL
1637static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1638{
06428780 1639 struct page *page;
834f3d11 1640 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1641 gfp_t alloc_gfp;
4d176711 1642 void *start, *p, *next;
a50b854e 1643 int idx;
210e7a43 1644 bool shuffle;
81819f0f 1645
7e0528da
CL
1646 flags &= gfp_allowed_mask;
1647
d0164adc 1648 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1649 local_irq_enable();
1650
b7a49f0d 1651 flags |= s->allocflags;
e12ba74d 1652
ba52270d
PE
1653 /*
1654 * Let the initial higher-order allocation fail under memory pressure
1655 * so we fall-back to the minimum order allocation.
1656 */
1657 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1658 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1659 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1660
5dfb4175 1661 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1662 if (unlikely(!page)) {
1663 oo = s->min;
80c3a998 1664 alloc_gfp = flags;
65c3376a
CL
1665 /*
1666 * Allocation may have failed due to fragmentation.
1667 * Try a lower order alloc if possible
1668 */
5dfb4175 1669 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1670 if (unlikely(!page))
1671 goto out;
1672 stat(s, ORDER_FALLBACK);
65c3376a 1673 }
5a896d9e 1674
834f3d11 1675 page->objects = oo_objects(oo);
81819f0f 1676
1b4f59e3 1677 page->slab_cache = s;
c03f94cc 1678 __SetPageSlab(page);
2f064f34 1679 if (page_is_pfmemalloc(page))
072bb0aa 1680 SetPageSlabPfmemalloc(page);
81819f0f 1681
a7101224 1682 kasan_poison_slab(page);
81819f0f 1683
a7101224 1684 start = page_address(page);
81819f0f 1685
a50b854e 1686 setup_page_debug(s, page, start);
0316bec2 1687
210e7a43
TG
1688 shuffle = shuffle_freelist(s, page);
1689
1690 if (!shuffle) {
4d176711
AK
1691 start = fixup_red_left(s, start);
1692 start = setup_object(s, page, start);
1693 page->freelist = start;
18e50661
AK
1694 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1695 next = p + s->size;
1696 next = setup_object(s, page, next);
1697 set_freepointer(s, p, next);
1698 p = next;
1699 }
1700 set_freepointer(s, p, NULL);
81819f0f 1701 }
81819f0f 1702
e6e82ea1 1703 page->inuse = page->objects;
8cb0a506 1704 page->frozen = 1;
588f8ba9 1705
81819f0f 1706out:
d0164adc 1707 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1708 local_irq_disable();
1709 if (!page)
1710 return NULL;
1711
588f8ba9
TG
1712 inc_slabs_node(s, page_to_nid(page), page->objects);
1713
81819f0f
CL
1714 return page;
1715}
1716
588f8ba9
TG
1717static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1718{
1719 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1720 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1721 flags &= ~GFP_SLAB_BUG_MASK;
1722 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1723 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1724 dump_stack();
588f8ba9
TG
1725 }
1726
1727 return allocate_slab(s,
1728 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1729}
1730
81819f0f
CL
1731static void __free_slab(struct kmem_cache *s, struct page *page)
1732{
834f3d11
CL
1733 int order = compound_order(page);
1734 int pages = 1 << order;
81819f0f 1735
becfda68 1736 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1737 void *p;
1738
1739 slab_pad_check(s, page);
224a88be
CL
1740 for_each_object(p, s, page_address(page),
1741 page->objects)
f7cb1933 1742 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1743 }
1744
072bb0aa 1745 __ClearPageSlabPfmemalloc(page);
49bd5221 1746 __ClearPageSlab(page);
1f458cbf 1747
d4fc5069 1748 page->mapping = NULL;
1eb5ac64
NP
1749 if (current->reclaim_state)
1750 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1751 uncharge_slab_page(page, order, s);
27ee57c9 1752 __free_pages(page, order);
81819f0f
CL
1753}
1754
1755static void rcu_free_slab(struct rcu_head *h)
1756{
bf68c214 1757 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1758
1b4f59e3 1759 __free_slab(page->slab_cache, page);
81819f0f
CL
1760}
1761
1762static void free_slab(struct kmem_cache *s, struct page *page)
1763{
5f0d5a3a 1764 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1765 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1766 } else
1767 __free_slab(s, page);
1768}
1769
1770static void discard_slab(struct kmem_cache *s, struct page *page)
1771{
205ab99d 1772 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1773 free_slab(s, page);
1774}
1775
1776/*
5cc6eee8 1777 * Management of partially allocated slabs.
81819f0f 1778 */
1e4dd946
SR
1779static inline void
1780__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1781{
e95eed57 1782 n->nr_partial++;
136333d1 1783 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1784 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1785 else
916ac052 1786 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1787}
1788
1e4dd946
SR
1789static inline void add_partial(struct kmem_cache_node *n,
1790 struct page *page, int tail)
62e346a8 1791{
c65c1877 1792 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1793 __add_partial(n, page, tail);
1794}
c65c1877 1795
1e4dd946
SR
1796static inline void remove_partial(struct kmem_cache_node *n,
1797 struct page *page)
1798{
1799 lockdep_assert_held(&n->list_lock);
916ac052 1800 list_del(&page->slab_list);
52b4b950 1801 n->nr_partial--;
1e4dd946
SR
1802}
1803
81819f0f 1804/*
7ced3719
CL
1805 * Remove slab from the partial list, freeze it and
1806 * return the pointer to the freelist.
81819f0f 1807 *
497b66f2 1808 * Returns a list of objects or NULL if it fails.
81819f0f 1809 */
497b66f2 1810static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1811 struct kmem_cache_node *n, struct page *page,
633b0764 1812 int mode, int *objects)
81819f0f 1813{
2cfb7455
CL
1814 void *freelist;
1815 unsigned long counters;
1816 struct page new;
1817
c65c1877
PZ
1818 lockdep_assert_held(&n->list_lock);
1819
2cfb7455
CL
1820 /*
1821 * Zap the freelist and set the frozen bit.
1822 * The old freelist is the list of objects for the
1823 * per cpu allocation list.
1824 */
7ced3719
CL
1825 freelist = page->freelist;
1826 counters = page->counters;
1827 new.counters = counters;
633b0764 1828 *objects = new.objects - new.inuse;
23910c50 1829 if (mode) {
7ced3719 1830 new.inuse = page->objects;
23910c50
PE
1831 new.freelist = NULL;
1832 } else {
1833 new.freelist = freelist;
1834 }
2cfb7455 1835
a0132ac0 1836 VM_BUG_ON(new.frozen);
7ced3719 1837 new.frozen = 1;
2cfb7455 1838
7ced3719 1839 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1840 freelist, counters,
02d7633f 1841 new.freelist, new.counters,
7ced3719 1842 "acquire_slab"))
7ced3719 1843 return NULL;
2cfb7455
CL
1844
1845 remove_partial(n, page);
7ced3719 1846 WARN_ON(!freelist);
49e22585 1847 return freelist;
81819f0f
CL
1848}
1849
633b0764 1850static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1851static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1852
81819f0f 1853/*
672bba3a 1854 * Try to allocate a partial slab from a specific node.
81819f0f 1855 */
8ba00bb6
JK
1856static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1857 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1858{
49e22585
CL
1859 struct page *page, *page2;
1860 void *object = NULL;
e5d9998f 1861 unsigned int available = 0;
633b0764 1862 int objects;
81819f0f
CL
1863
1864 /*
1865 * Racy check. If we mistakenly see no partial slabs then we
1866 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1867 * partial slab and there is none available then get_partials()
1868 * will return NULL.
81819f0f
CL
1869 */
1870 if (!n || !n->nr_partial)
1871 return NULL;
1872
1873 spin_lock(&n->list_lock);
916ac052 1874 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1875 void *t;
49e22585 1876
8ba00bb6
JK
1877 if (!pfmemalloc_match(page, flags))
1878 continue;
1879
633b0764 1880 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1881 if (!t)
1882 break;
1883
633b0764 1884 available += objects;
12d79634 1885 if (!object) {
49e22585 1886 c->page = page;
49e22585 1887 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1888 object = t;
49e22585 1889 } else {
633b0764 1890 put_cpu_partial(s, page, 0);
8028dcea 1891 stat(s, CPU_PARTIAL_NODE);
49e22585 1892 }
345c905d 1893 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1894 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1895 break;
1896
497b66f2 1897 }
81819f0f 1898 spin_unlock(&n->list_lock);
497b66f2 1899 return object;
81819f0f
CL
1900}
1901
1902/*
672bba3a 1903 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1904 */
de3ec035 1905static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1906 struct kmem_cache_cpu *c)
81819f0f
CL
1907{
1908#ifdef CONFIG_NUMA
1909 struct zonelist *zonelist;
dd1a239f 1910 struct zoneref *z;
54a6eb5c
MG
1911 struct zone *zone;
1912 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1913 void *object;
cc9a6c87 1914 unsigned int cpuset_mems_cookie;
81819f0f
CL
1915
1916 /*
672bba3a
CL
1917 * The defrag ratio allows a configuration of the tradeoffs between
1918 * inter node defragmentation and node local allocations. A lower
1919 * defrag_ratio increases the tendency to do local allocations
1920 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1921 *
672bba3a
CL
1922 * If the defrag_ratio is set to 0 then kmalloc() always
1923 * returns node local objects. If the ratio is higher then kmalloc()
1924 * may return off node objects because partial slabs are obtained
1925 * from other nodes and filled up.
81819f0f 1926 *
43efd3ea
LP
1927 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1928 * (which makes defrag_ratio = 1000) then every (well almost)
1929 * allocation will first attempt to defrag slab caches on other nodes.
1930 * This means scanning over all nodes to look for partial slabs which
1931 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1932 * with available objects.
81819f0f 1933 */
9824601e
CL
1934 if (!s->remote_node_defrag_ratio ||
1935 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1936 return NULL;
1937
cc9a6c87 1938 do {
d26914d1 1939 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1940 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1941 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1942 struct kmem_cache_node *n;
1943
1944 n = get_node(s, zone_to_nid(zone));
1945
dee2f8aa 1946 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1947 n->nr_partial > s->min_partial) {
8ba00bb6 1948 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1949 if (object) {
1950 /*
d26914d1
MG
1951 * Don't check read_mems_allowed_retry()
1952 * here - if mems_allowed was updated in
1953 * parallel, that was a harmless race
1954 * between allocation and the cpuset
1955 * update
cc9a6c87 1956 */
cc9a6c87
MG
1957 return object;
1958 }
c0ff7453 1959 }
81819f0f 1960 }
d26914d1 1961 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1962#endif /* CONFIG_NUMA */
81819f0f
CL
1963 return NULL;
1964}
1965
1966/*
1967 * Get a partial page, lock it and return it.
1968 */
497b66f2 1969static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1970 struct kmem_cache_cpu *c)
81819f0f 1971{
497b66f2 1972 void *object;
a561ce00
JK
1973 int searchnode = node;
1974
1975 if (node == NUMA_NO_NODE)
1976 searchnode = numa_mem_id();
81819f0f 1977
8ba00bb6 1978 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1979 if (object || node != NUMA_NO_NODE)
1980 return object;
81819f0f 1981
acd19fd1 1982 return get_any_partial(s, flags, c);
81819f0f
CL
1983}
1984
923717cb 1985#ifdef CONFIG_PREEMPTION
8a5ec0ba
CL
1986/*
1987 * Calculate the next globally unique transaction for disambiguiation
1988 * during cmpxchg. The transactions start with the cpu number and are then
1989 * incremented by CONFIG_NR_CPUS.
1990 */
1991#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1992#else
1993/*
1994 * No preemption supported therefore also no need to check for
1995 * different cpus.
1996 */
1997#define TID_STEP 1
1998#endif
1999
2000static inline unsigned long next_tid(unsigned long tid)
2001{
2002 return tid + TID_STEP;
2003}
2004
9d5f0be0 2005#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2006static inline unsigned int tid_to_cpu(unsigned long tid)
2007{
2008 return tid % TID_STEP;
2009}
2010
2011static inline unsigned long tid_to_event(unsigned long tid)
2012{
2013 return tid / TID_STEP;
2014}
9d5f0be0 2015#endif
8a5ec0ba
CL
2016
2017static inline unsigned int init_tid(int cpu)
2018{
2019 return cpu;
2020}
2021
2022static inline void note_cmpxchg_failure(const char *n,
2023 const struct kmem_cache *s, unsigned long tid)
2024{
2025#ifdef SLUB_DEBUG_CMPXCHG
2026 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2027
f9f58285 2028 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2029
923717cb 2030#ifdef CONFIG_PREEMPTION
8a5ec0ba 2031 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2032 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2033 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2034 else
2035#endif
2036 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2037 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2038 tid_to_event(tid), tid_to_event(actual_tid));
2039 else
f9f58285 2040 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2041 actual_tid, tid, next_tid(tid));
2042#endif
4fdccdfb 2043 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2044}
2045
788e1aad 2046static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2047{
8a5ec0ba
CL
2048 int cpu;
2049
2050 for_each_possible_cpu(cpu)
2051 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2052}
2cfb7455 2053
81819f0f
CL
2054/*
2055 * Remove the cpu slab
2056 */
d0e0ac97 2057static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2058 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2059{
2cfb7455 2060 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2061 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2062 int lock = 0;
2063 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2064 void *nextfree;
136333d1 2065 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2066 struct page new;
2067 struct page old;
2068
2069 if (page->freelist) {
84e554e6 2070 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2071 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2072 }
2073
894b8788 2074 /*
2cfb7455
CL
2075 * Stage one: Free all available per cpu objects back
2076 * to the page freelist while it is still frozen. Leave the
2077 * last one.
2078 *
2079 * There is no need to take the list->lock because the page
2080 * is still frozen.
2081 */
2082 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2083 void *prior;
2084 unsigned long counters;
2085
2086 do {
2087 prior = page->freelist;
2088 counters = page->counters;
2089 set_freepointer(s, freelist, prior);
2090 new.counters = counters;
2091 new.inuse--;
a0132ac0 2092 VM_BUG_ON(!new.frozen);
2cfb7455 2093
1d07171c 2094 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2095 prior, counters,
2096 freelist, new.counters,
2097 "drain percpu freelist"));
2098
2099 freelist = nextfree;
2100 }
2101
894b8788 2102 /*
2cfb7455
CL
2103 * Stage two: Ensure that the page is unfrozen while the
2104 * list presence reflects the actual number of objects
2105 * during unfreeze.
2106 *
2107 * We setup the list membership and then perform a cmpxchg
2108 * with the count. If there is a mismatch then the page
2109 * is not unfrozen but the page is on the wrong list.
2110 *
2111 * Then we restart the process which may have to remove
2112 * the page from the list that we just put it on again
2113 * because the number of objects in the slab may have
2114 * changed.
894b8788 2115 */
2cfb7455 2116redo:
894b8788 2117
2cfb7455
CL
2118 old.freelist = page->freelist;
2119 old.counters = page->counters;
a0132ac0 2120 VM_BUG_ON(!old.frozen);
7c2e132c 2121
2cfb7455
CL
2122 /* Determine target state of the slab */
2123 new.counters = old.counters;
2124 if (freelist) {
2125 new.inuse--;
2126 set_freepointer(s, freelist, old.freelist);
2127 new.freelist = freelist;
2128 } else
2129 new.freelist = old.freelist;
2130
2131 new.frozen = 0;
2132
8a5b20ae 2133 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2134 m = M_FREE;
2135 else if (new.freelist) {
2136 m = M_PARTIAL;
2137 if (!lock) {
2138 lock = 1;
2139 /*
8bb4e7a2 2140 * Taking the spinlock removes the possibility
2cfb7455
CL
2141 * that acquire_slab() will see a slab page that
2142 * is frozen
2143 */
2144 spin_lock(&n->list_lock);
2145 }
2146 } else {
2147 m = M_FULL;
2148 if (kmem_cache_debug(s) && !lock) {
2149 lock = 1;
2150 /*
2151 * This also ensures that the scanning of full
2152 * slabs from diagnostic functions will not see
2153 * any frozen slabs.
2154 */
2155 spin_lock(&n->list_lock);
2156 }
2157 }
2158
2159 if (l != m) {
2cfb7455 2160 if (l == M_PARTIAL)
2cfb7455 2161 remove_partial(n, page);
2cfb7455 2162 else if (l == M_FULL)
c65c1877 2163 remove_full(s, n, page);
2cfb7455 2164
88349a28 2165 if (m == M_PARTIAL)
2cfb7455 2166 add_partial(n, page, tail);
88349a28 2167 else if (m == M_FULL)
2cfb7455 2168 add_full(s, n, page);
2cfb7455
CL
2169 }
2170
2171 l = m;
1d07171c 2172 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2173 old.freelist, old.counters,
2174 new.freelist, new.counters,
2175 "unfreezing slab"))
2176 goto redo;
2177
2cfb7455
CL
2178 if (lock)
2179 spin_unlock(&n->list_lock);
2180
88349a28
WY
2181 if (m == M_PARTIAL)
2182 stat(s, tail);
2183 else if (m == M_FULL)
2184 stat(s, DEACTIVATE_FULL);
2185 else if (m == M_FREE) {
2cfb7455
CL
2186 stat(s, DEACTIVATE_EMPTY);
2187 discard_slab(s, page);
2188 stat(s, FREE_SLAB);
894b8788 2189 }
d4ff6d35
WY
2190
2191 c->page = NULL;
2192 c->freelist = NULL;
81819f0f
CL
2193}
2194
d24ac77f
JK
2195/*
2196 * Unfreeze all the cpu partial slabs.
2197 *
59a09917
CL
2198 * This function must be called with interrupts disabled
2199 * for the cpu using c (or some other guarantee must be there
2200 * to guarantee no concurrent accesses).
d24ac77f 2201 */
59a09917
CL
2202static void unfreeze_partials(struct kmem_cache *s,
2203 struct kmem_cache_cpu *c)
49e22585 2204{
345c905d 2205#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2206 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2207 struct page *page, *discard_page = NULL;
49e22585 2208
4c7ba22e 2209 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2210 struct page new;
2211 struct page old;
2212
4c7ba22e 2213 slub_set_percpu_partial(c, page);
43d77867
JK
2214
2215 n2 = get_node(s, page_to_nid(page));
2216 if (n != n2) {
2217 if (n)
2218 spin_unlock(&n->list_lock);
2219
2220 n = n2;
2221 spin_lock(&n->list_lock);
2222 }
49e22585
CL
2223
2224 do {
2225
2226 old.freelist = page->freelist;
2227 old.counters = page->counters;
a0132ac0 2228 VM_BUG_ON(!old.frozen);
49e22585
CL
2229
2230 new.counters = old.counters;
2231 new.freelist = old.freelist;
2232
2233 new.frozen = 0;
2234
d24ac77f 2235 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2236 old.freelist, old.counters,
2237 new.freelist, new.counters,
2238 "unfreezing slab"));
2239
8a5b20ae 2240 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2241 page->next = discard_page;
2242 discard_page = page;
43d77867
JK
2243 } else {
2244 add_partial(n, page, DEACTIVATE_TO_TAIL);
2245 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2246 }
2247 }
2248
2249 if (n)
2250 spin_unlock(&n->list_lock);
9ada1934
SL
2251
2252 while (discard_page) {
2253 page = discard_page;
2254 discard_page = discard_page->next;
2255
2256 stat(s, DEACTIVATE_EMPTY);
2257 discard_slab(s, page);
2258 stat(s, FREE_SLAB);
2259 }
6dfd1b65 2260#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2261}
2262
2263/*
9234bae9
WY
2264 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2265 * partial page slot if available.
49e22585
CL
2266 *
2267 * If we did not find a slot then simply move all the partials to the
2268 * per node partial list.
2269 */
633b0764 2270static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2271{
345c905d 2272#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2273 struct page *oldpage;
2274 int pages;
2275 int pobjects;
2276
d6e0b7fa 2277 preempt_disable();
49e22585
CL
2278 do {
2279 pages = 0;
2280 pobjects = 0;
2281 oldpage = this_cpu_read(s->cpu_slab->partial);
2282
2283 if (oldpage) {
2284 pobjects = oldpage->pobjects;
2285 pages = oldpage->pages;
bbd4e305 2286 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2287 unsigned long flags;
2288 /*
2289 * partial array is full. Move the existing
2290 * set to the per node partial list.
2291 */
2292 local_irq_save(flags);
59a09917 2293 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2294 local_irq_restore(flags);
e24fc410 2295 oldpage = NULL;
49e22585
CL
2296 pobjects = 0;
2297 pages = 0;
8028dcea 2298 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2299 }
2300 }
2301
2302 pages++;
2303 pobjects += page->objects - page->inuse;
2304
2305 page->pages = pages;
2306 page->pobjects = pobjects;
2307 page->next = oldpage;
2308
d0e0ac97
CG
2309 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2310 != oldpage);
bbd4e305 2311 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2312 unsigned long flags;
2313
2314 local_irq_save(flags);
2315 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2316 local_irq_restore(flags);
2317 }
2318 preempt_enable();
6dfd1b65 2319#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2320}
2321
dfb4f096 2322static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2323{
84e554e6 2324 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2325 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2326
2327 c->tid = next_tid(c->tid);
81819f0f
CL
2328}
2329
2330/*
2331 * Flush cpu slab.
6446faa2 2332 *
81819f0f
CL
2333 * Called from IPI handler with interrupts disabled.
2334 */
0c710013 2335static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2336{
9dfc6e68 2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2338
1265ef2d
WY
2339 if (c->page)
2340 flush_slab(s, c);
49e22585 2341
1265ef2d 2342 unfreeze_partials(s, c);
81819f0f
CL
2343}
2344
2345static void flush_cpu_slab(void *d)
2346{
2347 struct kmem_cache *s = d;
81819f0f 2348
dfb4f096 2349 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2350}
2351
a8364d55
GBY
2352static bool has_cpu_slab(int cpu, void *info)
2353{
2354 struct kmem_cache *s = info;
2355 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2356
a93cf07b 2357 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2358}
2359
81819f0f
CL
2360static void flush_all(struct kmem_cache *s)
2361{
cb923159 2362 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2363}
2364
a96a87bf
SAS
2365/*
2366 * Use the cpu notifier to insure that the cpu slabs are flushed when
2367 * necessary.
2368 */
2369static int slub_cpu_dead(unsigned int cpu)
2370{
2371 struct kmem_cache *s;
2372 unsigned long flags;
2373
2374 mutex_lock(&slab_mutex);
2375 list_for_each_entry(s, &slab_caches, list) {
2376 local_irq_save(flags);
2377 __flush_cpu_slab(s, cpu);
2378 local_irq_restore(flags);
2379 }
2380 mutex_unlock(&slab_mutex);
2381 return 0;
2382}
2383
dfb4f096
CL
2384/*
2385 * Check if the objects in a per cpu structure fit numa
2386 * locality expectations.
2387 */
57d437d2 2388static inline int node_match(struct page *page, int node)
dfb4f096
CL
2389{
2390#ifdef CONFIG_NUMA
6159d0f5 2391 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2392 return 0;
2393#endif
2394 return 1;
2395}
2396
9a02d699 2397#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2398static int count_free(struct page *page)
2399{
2400 return page->objects - page->inuse;
2401}
2402
9a02d699
DR
2403static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2404{
2405 return atomic_long_read(&n->total_objects);
2406}
2407#endif /* CONFIG_SLUB_DEBUG */
2408
2409#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2410static unsigned long count_partial(struct kmem_cache_node *n,
2411 int (*get_count)(struct page *))
2412{
2413 unsigned long flags;
2414 unsigned long x = 0;
2415 struct page *page;
2416
2417 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2418 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2419 x += get_count(page);
2420 spin_unlock_irqrestore(&n->list_lock, flags);
2421 return x;
2422}
9a02d699 2423#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2424
781b2ba6
PE
2425static noinline void
2426slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2427{
9a02d699
DR
2428#ifdef CONFIG_SLUB_DEBUG
2429 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2430 DEFAULT_RATELIMIT_BURST);
781b2ba6 2431 int node;
fa45dc25 2432 struct kmem_cache_node *n;
781b2ba6 2433
9a02d699
DR
2434 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2435 return;
2436
5b3810e5
VB
2437 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2438 nid, gfpflags, &gfpflags);
19af27af 2439 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2440 s->name, s->object_size, s->size, oo_order(s->oo),
2441 oo_order(s->min));
781b2ba6 2442
3b0efdfa 2443 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2444 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2445 s->name);
fa5ec8a1 2446
fa45dc25 2447 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2448 unsigned long nr_slabs;
2449 unsigned long nr_objs;
2450 unsigned long nr_free;
2451
26c02cf0
AB
2452 nr_free = count_partial(n, count_free);
2453 nr_slabs = node_nr_slabs(n);
2454 nr_objs = node_nr_objs(n);
781b2ba6 2455
f9f58285 2456 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2457 node, nr_slabs, nr_objs, nr_free);
2458 }
9a02d699 2459#endif
781b2ba6
PE
2460}
2461
497b66f2
CL
2462static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2463 int node, struct kmem_cache_cpu **pc)
2464{
6faa6833 2465 void *freelist;
188fd063
CL
2466 struct kmem_cache_cpu *c = *pc;
2467 struct page *page;
497b66f2 2468
128227e7
MW
2469 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2470
188fd063 2471 freelist = get_partial(s, flags, node, c);
497b66f2 2472
188fd063
CL
2473 if (freelist)
2474 return freelist;
2475
2476 page = new_slab(s, flags, node);
497b66f2 2477 if (page) {
7c8e0181 2478 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2479 if (c->page)
2480 flush_slab(s, c);
2481
2482 /*
2483 * No other reference to the page yet so we can
2484 * muck around with it freely without cmpxchg
2485 */
6faa6833 2486 freelist = page->freelist;
497b66f2
CL
2487 page->freelist = NULL;
2488
2489 stat(s, ALLOC_SLAB);
497b66f2
CL
2490 c->page = page;
2491 *pc = c;
edde82b6 2492 }
497b66f2 2493
6faa6833 2494 return freelist;
497b66f2
CL
2495}
2496
072bb0aa
MG
2497static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2498{
2499 if (unlikely(PageSlabPfmemalloc(page)))
2500 return gfp_pfmemalloc_allowed(gfpflags);
2501
2502 return true;
2503}
2504
213eeb9f 2505/*
d0e0ac97
CG
2506 * Check the page->freelist of a page and either transfer the freelist to the
2507 * per cpu freelist or deactivate the page.
213eeb9f
CL
2508 *
2509 * The page is still frozen if the return value is not NULL.
2510 *
2511 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2512 *
2513 * This function must be called with interrupt disabled.
213eeb9f
CL
2514 */
2515static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2516{
2517 struct page new;
2518 unsigned long counters;
2519 void *freelist;
2520
2521 do {
2522 freelist = page->freelist;
2523 counters = page->counters;
6faa6833 2524
213eeb9f 2525 new.counters = counters;
a0132ac0 2526 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2527
2528 new.inuse = page->objects;
2529 new.frozen = freelist != NULL;
2530
d24ac77f 2531 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2532 freelist, counters,
2533 NULL, new.counters,
2534 "get_freelist"));
2535
2536 return freelist;
2537}
2538
81819f0f 2539/*
894b8788
CL
2540 * Slow path. The lockless freelist is empty or we need to perform
2541 * debugging duties.
2542 *
894b8788
CL
2543 * Processing is still very fast if new objects have been freed to the
2544 * regular freelist. In that case we simply take over the regular freelist
2545 * as the lockless freelist and zap the regular freelist.
81819f0f 2546 *
894b8788
CL
2547 * If that is not working then we fall back to the partial lists. We take the
2548 * first element of the freelist as the object to allocate now and move the
2549 * rest of the freelist to the lockless freelist.
81819f0f 2550 *
894b8788 2551 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2552 * we need to allocate a new slab. This is the slowest path since it involves
2553 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2554 *
2555 * Version of __slab_alloc to use when we know that interrupts are
2556 * already disabled (which is the case for bulk allocation).
81819f0f 2557 */
a380a3c7 2558static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2559 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2560{
6faa6833 2561 void *freelist;
f6e7def7 2562 struct page *page;
81819f0f 2563
f6e7def7 2564 page = c->page;
0715e6c5
VB
2565 if (!page) {
2566 /*
2567 * if the node is not online or has no normal memory, just
2568 * ignore the node constraint
2569 */
2570 if (unlikely(node != NUMA_NO_NODE &&
2571 !node_state(node, N_NORMAL_MEMORY)))
2572 node = NUMA_NO_NODE;
81819f0f 2573 goto new_slab;
0715e6c5 2574 }
49e22585 2575redo:
6faa6833 2576
57d437d2 2577 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2578 /*
2579 * same as above but node_match() being false already
2580 * implies node != NUMA_NO_NODE
2581 */
2582 if (!node_state(node, N_NORMAL_MEMORY)) {
2583 node = NUMA_NO_NODE;
2584 goto redo;
2585 } else {
a561ce00 2586 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2587 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2588 goto new_slab;
2589 }
fc59c053 2590 }
6446faa2 2591
072bb0aa
MG
2592 /*
2593 * By rights, we should be searching for a slab page that was
2594 * PFMEMALLOC but right now, we are losing the pfmemalloc
2595 * information when the page leaves the per-cpu allocator
2596 */
2597 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2598 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2599 goto new_slab;
2600 }
2601
73736e03 2602 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2603 freelist = c->freelist;
2604 if (freelist)
73736e03 2605 goto load_freelist;
03e404af 2606
f6e7def7 2607 freelist = get_freelist(s, page);
6446faa2 2608
6faa6833 2609 if (!freelist) {
03e404af
CL
2610 c->page = NULL;
2611 stat(s, DEACTIVATE_BYPASS);
fc59c053 2612 goto new_slab;
03e404af 2613 }
6446faa2 2614
84e554e6 2615 stat(s, ALLOC_REFILL);
6446faa2 2616
894b8788 2617load_freelist:
507effea
CL
2618 /*
2619 * freelist is pointing to the list of objects to be used.
2620 * page is pointing to the page from which the objects are obtained.
2621 * That page must be frozen for per cpu allocations to work.
2622 */
a0132ac0 2623 VM_BUG_ON(!c->page->frozen);
6faa6833 2624 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2625 c->tid = next_tid(c->tid);
6faa6833 2626 return freelist;
81819f0f 2627
81819f0f 2628new_slab:
2cfb7455 2629
a93cf07b
WY
2630 if (slub_percpu_partial(c)) {
2631 page = c->page = slub_percpu_partial(c);
2632 slub_set_percpu_partial(c, page);
49e22585 2633 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2634 goto redo;
81819f0f
CL
2635 }
2636
188fd063 2637 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2638
f4697436 2639 if (unlikely(!freelist)) {
9a02d699 2640 slab_out_of_memory(s, gfpflags, node);
f4697436 2641 return NULL;
81819f0f 2642 }
2cfb7455 2643
f6e7def7 2644 page = c->page;
5091b74a 2645 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2646 goto load_freelist;
2cfb7455 2647
497b66f2 2648 /* Only entered in the debug case */
d0e0ac97
CG
2649 if (kmem_cache_debug(s) &&
2650 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2651 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2652
d4ff6d35 2653 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2654 return freelist;
894b8788
CL
2655}
2656
a380a3c7
CL
2657/*
2658 * Another one that disabled interrupt and compensates for possible
2659 * cpu changes by refetching the per cpu area pointer.
2660 */
2661static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2662 unsigned long addr, struct kmem_cache_cpu *c)
2663{
2664 void *p;
2665 unsigned long flags;
2666
2667 local_irq_save(flags);
923717cb 2668#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2669 /*
2670 * We may have been preempted and rescheduled on a different
2671 * cpu before disabling interrupts. Need to reload cpu area
2672 * pointer.
2673 */
2674 c = this_cpu_ptr(s->cpu_slab);
2675#endif
2676
2677 p = ___slab_alloc(s, gfpflags, node, addr, c);
2678 local_irq_restore(flags);
2679 return p;
2680}
2681
0f181f9f
AP
2682/*
2683 * If the object has been wiped upon free, make sure it's fully initialized by
2684 * zeroing out freelist pointer.
2685 */
2686static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2687 void *obj)
2688{
2689 if (unlikely(slab_want_init_on_free(s)) && obj)
2690 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2691}
2692
894b8788
CL
2693/*
2694 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2695 * have the fastpath folded into their functions. So no function call
2696 * overhead for requests that can be satisfied on the fastpath.
2697 *
2698 * The fastpath works by first checking if the lockless freelist can be used.
2699 * If not then __slab_alloc is called for slow processing.
2700 *
2701 * Otherwise we can simply pick the next object from the lockless free list.
2702 */
2b847c3c 2703static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2704 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2705{
03ec0ed5 2706 void *object;
dfb4f096 2707 struct kmem_cache_cpu *c;
57d437d2 2708 struct page *page;
8a5ec0ba 2709 unsigned long tid;
1f84260c 2710
8135be5a
VD
2711 s = slab_pre_alloc_hook(s, gfpflags);
2712 if (!s)
773ff60e 2713 return NULL;
8a5ec0ba 2714redo:
8a5ec0ba
CL
2715 /*
2716 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2717 * enabled. We may switch back and forth between cpus while
2718 * reading from one cpu area. That does not matter as long
2719 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2720 *
9aabf810 2721 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2722 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2723 * to check if it is matched or not.
8a5ec0ba 2724 */
9aabf810
JK
2725 do {
2726 tid = this_cpu_read(s->cpu_slab->tid);
2727 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2728 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2729 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2730
2731 /*
2732 * Irqless object alloc/free algorithm used here depends on sequence
2733 * of fetching cpu_slab's data. tid should be fetched before anything
2734 * on c to guarantee that object and page associated with previous tid
2735 * won't be used with current tid. If we fetch tid first, object and
2736 * page could be one associated with next tid and our alloc/free
2737 * request will be failed. In this case, we will retry. So, no problem.
2738 */
2739 barrier();
8a5ec0ba 2740
8a5ec0ba
CL
2741 /*
2742 * The transaction ids are globally unique per cpu and per operation on
2743 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2744 * occurs on the right processor and that there was no operation on the
2745 * linked list in between.
2746 */
8a5ec0ba 2747
9dfc6e68 2748 object = c->freelist;
57d437d2 2749 page = c->page;
8eae1492 2750 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2751 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2752 stat(s, ALLOC_SLOWPATH);
2753 } else {
0ad9500e
ED
2754 void *next_object = get_freepointer_safe(s, object);
2755
8a5ec0ba 2756 /*
25985edc 2757 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2758 * operation and if we are on the right processor.
2759 *
d0e0ac97
CG
2760 * The cmpxchg does the following atomically (without lock
2761 * semantics!)
8a5ec0ba
CL
2762 * 1. Relocate first pointer to the current per cpu area.
2763 * 2. Verify that tid and freelist have not been changed
2764 * 3. If they were not changed replace tid and freelist
2765 *
d0e0ac97
CG
2766 * Since this is without lock semantics the protection is only
2767 * against code executing on this cpu *not* from access by
2768 * other cpus.
8a5ec0ba 2769 */
933393f5 2770 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2771 s->cpu_slab->freelist, s->cpu_slab->tid,
2772 object, tid,
0ad9500e 2773 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2774
2775 note_cmpxchg_failure("slab_alloc", s, tid);
2776 goto redo;
2777 }
0ad9500e 2778 prefetch_freepointer(s, next_object);
84e554e6 2779 stat(s, ALLOC_FASTPATH);
894b8788 2780 }
0f181f9f
AP
2781
2782 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2783
6471384a 2784 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2785 memset(object, 0, s->object_size);
d07dbea4 2786
03ec0ed5 2787 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2788
894b8788 2789 return object;
81819f0f
CL
2790}
2791
2b847c3c
EG
2792static __always_inline void *slab_alloc(struct kmem_cache *s,
2793 gfp_t gfpflags, unsigned long addr)
2794{
2795 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2796}
2797
81819f0f
CL
2798void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2799{
2b847c3c 2800 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2801
d0e0ac97
CG
2802 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2803 s->size, gfpflags);
5b882be4
EGM
2804
2805 return ret;
81819f0f
CL
2806}
2807EXPORT_SYMBOL(kmem_cache_alloc);
2808
0f24f128 2809#ifdef CONFIG_TRACING
4a92379b
RK
2810void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2811{
2b847c3c 2812 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2813 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2814 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2815 return ret;
2816}
2817EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2818#endif
2819
81819f0f
CL
2820#ifdef CONFIG_NUMA
2821void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2822{
2b847c3c 2823 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2824
ca2b84cb 2825 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2826 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2827
2828 return ret;
81819f0f
CL
2829}
2830EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2831
0f24f128 2832#ifdef CONFIG_TRACING
4a92379b 2833void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2834 gfp_t gfpflags,
4a92379b 2835 int node, size_t size)
5b882be4 2836{
2b847c3c 2837 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2838
2839 trace_kmalloc_node(_RET_IP_, ret,
2840 size, s->size, gfpflags, node);
0316bec2 2841
0116523c 2842 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2843 return ret;
5b882be4 2844}
4a92379b 2845EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2846#endif
6dfd1b65 2847#endif /* CONFIG_NUMA */
5b882be4 2848
81819f0f 2849/*
94e4d712 2850 * Slow path handling. This may still be called frequently since objects
894b8788 2851 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2852 *
894b8788
CL
2853 * So we still attempt to reduce cache line usage. Just take the slab
2854 * lock and free the item. If there is no additional partial page
2855 * handling required then we can return immediately.
81819f0f 2856 */
894b8788 2857static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2858 void *head, void *tail, int cnt,
2859 unsigned long addr)
2860
81819f0f
CL
2861{
2862 void *prior;
2cfb7455 2863 int was_frozen;
2cfb7455
CL
2864 struct page new;
2865 unsigned long counters;
2866 struct kmem_cache_node *n = NULL;
61728d1e 2867 unsigned long uninitialized_var(flags);
81819f0f 2868
8a5ec0ba 2869 stat(s, FREE_SLOWPATH);
81819f0f 2870
19c7ff9e 2871 if (kmem_cache_debug(s) &&
282acb43 2872 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2873 return;
6446faa2 2874
2cfb7455 2875 do {
837d678d
JK
2876 if (unlikely(n)) {
2877 spin_unlock_irqrestore(&n->list_lock, flags);
2878 n = NULL;
2879 }
2cfb7455
CL
2880 prior = page->freelist;
2881 counters = page->counters;
81084651 2882 set_freepointer(s, tail, prior);
2cfb7455
CL
2883 new.counters = counters;
2884 was_frozen = new.frozen;
81084651 2885 new.inuse -= cnt;
837d678d 2886 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2887
c65c1877 2888 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2889
2890 /*
d0e0ac97
CG
2891 * Slab was on no list before and will be
2892 * partially empty
2893 * We can defer the list move and instead
2894 * freeze it.
49e22585
CL
2895 */
2896 new.frozen = 1;
2897
c65c1877 2898 } else { /* Needs to be taken off a list */
49e22585 2899
b455def2 2900 n = get_node(s, page_to_nid(page));
49e22585
CL
2901 /*
2902 * Speculatively acquire the list_lock.
2903 * If the cmpxchg does not succeed then we may
2904 * drop the list_lock without any processing.
2905 *
2906 * Otherwise the list_lock will synchronize with
2907 * other processors updating the list of slabs.
2908 */
2909 spin_lock_irqsave(&n->list_lock, flags);
2910
2911 }
2cfb7455 2912 }
81819f0f 2913
2cfb7455
CL
2914 } while (!cmpxchg_double_slab(s, page,
2915 prior, counters,
81084651 2916 head, new.counters,
2cfb7455 2917 "__slab_free"));
81819f0f 2918
2cfb7455 2919 if (likely(!n)) {
49e22585
CL
2920
2921 /*
2922 * If we just froze the page then put it onto the
2923 * per cpu partial list.
2924 */
8028dcea 2925 if (new.frozen && !was_frozen) {
49e22585 2926 put_cpu_partial(s, page, 1);
8028dcea
AS
2927 stat(s, CPU_PARTIAL_FREE);
2928 }
49e22585 2929 /*
2cfb7455
CL
2930 * The list lock was not taken therefore no list
2931 * activity can be necessary.
2932 */
b455def2
L
2933 if (was_frozen)
2934 stat(s, FREE_FROZEN);
2935 return;
2936 }
81819f0f 2937
8a5b20ae 2938 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2939 goto slab_empty;
2940
81819f0f 2941 /*
837d678d
JK
2942 * Objects left in the slab. If it was not on the partial list before
2943 * then add it.
81819f0f 2944 */
345c905d 2945 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2946 remove_full(s, n, page);
837d678d
JK
2947 add_partial(n, page, DEACTIVATE_TO_TAIL);
2948 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2949 }
80f08c19 2950 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2951 return;
2952
2953slab_empty:
a973e9dd 2954 if (prior) {
81819f0f 2955 /*
6fbabb20 2956 * Slab on the partial list.
81819f0f 2957 */
5cc6eee8 2958 remove_partial(n, page);
84e554e6 2959 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2960 } else {
6fbabb20 2961 /* Slab must be on the full list */
c65c1877
PZ
2962 remove_full(s, n, page);
2963 }
2cfb7455 2964
80f08c19 2965 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2966 stat(s, FREE_SLAB);
81819f0f 2967 discard_slab(s, page);
81819f0f
CL
2968}
2969
894b8788
CL
2970/*
2971 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2972 * can perform fastpath freeing without additional function calls.
2973 *
2974 * The fastpath is only possible if we are freeing to the current cpu slab
2975 * of this processor. This typically the case if we have just allocated
2976 * the item before.
2977 *
2978 * If fastpath is not possible then fall back to __slab_free where we deal
2979 * with all sorts of special processing.
81084651
JDB
2980 *
2981 * Bulk free of a freelist with several objects (all pointing to the
2982 * same page) possible by specifying head and tail ptr, plus objects
2983 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2984 */
80a9201a
AP
2985static __always_inline void do_slab_free(struct kmem_cache *s,
2986 struct page *page, void *head, void *tail,
2987 int cnt, unsigned long addr)
894b8788 2988{
81084651 2989 void *tail_obj = tail ? : head;
dfb4f096 2990 struct kmem_cache_cpu *c;
8a5ec0ba 2991 unsigned long tid;
8a5ec0ba
CL
2992redo:
2993 /*
2994 * Determine the currently cpus per cpu slab.
2995 * The cpu may change afterward. However that does not matter since
2996 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2997 * during the cmpxchg then the free will succeed.
8a5ec0ba 2998 */
9aabf810
JK
2999 do {
3000 tid = this_cpu_read(s->cpu_slab->tid);
3001 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3002 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3003 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3004
9aabf810
JK
3005 /* Same with comment on barrier() in slab_alloc_node() */
3006 barrier();
c016b0bd 3007
442b06bc 3008 if (likely(page == c->page)) {
5076190d
LT
3009 void **freelist = READ_ONCE(c->freelist);
3010
3011 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3012
933393f5 3013 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3014 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3015 freelist, tid,
81084651 3016 head, next_tid(tid)))) {
8a5ec0ba
CL
3017
3018 note_cmpxchg_failure("slab_free", s, tid);
3019 goto redo;
3020 }
84e554e6 3021 stat(s, FREE_FASTPATH);
894b8788 3022 } else
81084651 3023 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3024
894b8788
CL
3025}
3026
80a9201a
AP
3027static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3028 void *head, void *tail, int cnt,
3029 unsigned long addr)
3030{
80a9201a 3031 /*
c3895391
AK
3032 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3033 * to remove objects, whose reuse must be delayed.
80a9201a 3034 */
c3895391
AK
3035 if (slab_free_freelist_hook(s, &head, &tail))
3036 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3037}
3038
2bd926b4 3039#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3040void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3041{
3042 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3043}
3044#endif
3045
81819f0f
CL
3046void kmem_cache_free(struct kmem_cache *s, void *x)
3047{
b9ce5ef4
GC
3048 s = cache_from_obj(s, x);
3049 if (!s)
79576102 3050 return;
81084651 3051 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3052 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3053}
3054EXPORT_SYMBOL(kmem_cache_free);
3055
d0ecd894 3056struct detached_freelist {
fbd02630 3057 struct page *page;
d0ecd894
JDB
3058 void *tail;
3059 void *freelist;
3060 int cnt;
376bf125 3061 struct kmem_cache *s;
d0ecd894 3062};
fbd02630 3063
d0ecd894
JDB
3064/*
3065 * This function progressively scans the array with free objects (with
3066 * a limited look ahead) and extract objects belonging to the same
3067 * page. It builds a detached freelist directly within the given
3068 * page/objects. This can happen without any need for
3069 * synchronization, because the objects are owned by running process.
3070 * The freelist is build up as a single linked list in the objects.
3071 * The idea is, that this detached freelist can then be bulk
3072 * transferred to the real freelist(s), but only requiring a single
3073 * synchronization primitive. Look ahead in the array is limited due
3074 * to performance reasons.
3075 */
376bf125
JDB
3076static inline
3077int build_detached_freelist(struct kmem_cache *s, size_t size,
3078 void **p, struct detached_freelist *df)
d0ecd894
JDB
3079{
3080 size_t first_skipped_index = 0;
3081 int lookahead = 3;
3082 void *object;
ca257195 3083 struct page *page;
fbd02630 3084
d0ecd894
JDB
3085 /* Always re-init detached_freelist */
3086 df->page = NULL;
fbd02630 3087
d0ecd894
JDB
3088 do {
3089 object = p[--size];
ca257195 3090 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3091 } while (!object && size);
3eed034d 3092
d0ecd894
JDB
3093 if (!object)
3094 return 0;
fbd02630 3095
ca257195
JDB
3096 page = virt_to_head_page(object);
3097 if (!s) {
3098 /* Handle kalloc'ed objects */
3099 if (unlikely(!PageSlab(page))) {
3100 BUG_ON(!PageCompound(page));
3101 kfree_hook(object);
4949148a 3102 __free_pages(page, compound_order(page));
ca257195
JDB
3103 p[size] = NULL; /* mark object processed */
3104 return size;
3105 }
3106 /* Derive kmem_cache from object */
3107 df->s = page->slab_cache;
3108 } else {
3109 df->s = cache_from_obj(s, object); /* Support for memcg */
3110 }
376bf125 3111
d0ecd894 3112 /* Start new detached freelist */
ca257195 3113 df->page = page;
376bf125 3114 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3115 df->tail = object;
3116 df->freelist = object;
3117 p[size] = NULL; /* mark object processed */
3118 df->cnt = 1;
3119
3120 while (size) {
3121 object = p[--size];
3122 if (!object)
3123 continue; /* Skip processed objects */
3124
3125 /* df->page is always set at this point */
3126 if (df->page == virt_to_head_page(object)) {
3127 /* Opportunity build freelist */
376bf125 3128 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3129 df->freelist = object;
3130 df->cnt++;
3131 p[size] = NULL; /* mark object processed */
3132
3133 continue;
fbd02630 3134 }
d0ecd894
JDB
3135
3136 /* Limit look ahead search */
3137 if (!--lookahead)
3138 break;
3139
3140 if (!first_skipped_index)
3141 first_skipped_index = size + 1;
fbd02630 3142 }
d0ecd894
JDB
3143
3144 return first_skipped_index;
3145}
3146
d0ecd894 3147/* Note that interrupts must be enabled when calling this function. */
376bf125 3148void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3149{
3150 if (WARN_ON(!size))
3151 return;
3152
3153 do {
3154 struct detached_freelist df;
3155
3156 size = build_detached_freelist(s, size, p, &df);
84582c8a 3157 if (!df.page)
d0ecd894
JDB
3158 continue;
3159
376bf125 3160 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3161 } while (likely(size));
484748f0
CL
3162}
3163EXPORT_SYMBOL(kmem_cache_free_bulk);
3164
994eb764 3165/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3166int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3167 void **p)
484748f0 3168{
994eb764
JDB
3169 struct kmem_cache_cpu *c;
3170 int i;
3171
03ec0ed5
JDB
3172 /* memcg and kmem_cache debug support */
3173 s = slab_pre_alloc_hook(s, flags);
3174 if (unlikely(!s))
3175 return false;
994eb764
JDB
3176 /*
3177 * Drain objects in the per cpu slab, while disabling local
3178 * IRQs, which protects against PREEMPT and interrupts
3179 * handlers invoking normal fastpath.
3180 */
3181 local_irq_disable();
3182 c = this_cpu_ptr(s->cpu_slab);
3183
3184 for (i = 0; i < size; i++) {
3185 void *object = c->freelist;
3186
ebe909e0 3187 if (unlikely(!object)) {
fd4d9c7d
JH
3188 /*
3189 * We may have removed an object from c->freelist using
3190 * the fastpath in the previous iteration; in that case,
3191 * c->tid has not been bumped yet.
3192 * Since ___slab_alloc() may reenable interrupts while
3193 * allocating memory, we should bump c->tid now.
3194 */
3195 c->tid = next_tid(c->tid);
3196
ebe909e0
JDB
3197 /*
3198 * Invoking slow path likely have side-effect
3199 * of re-populating per CPU c->freelist
3200 */
87098373 3201 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3202 _RET_IP_, c);
87098373
CL
3203 if (unlikely(!p[i]))
3204 goto error;
3205
ebe909e0 3206 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3207 maybe_wipe_obj_freeptr(s, p[i]);
3208
ebe909e0
JDB
3209 continue; /* goto for-loop */
3210 }
994eb764
JDB
3211 c->freelist = get_freepointer(s, object);
3212 p[i] = object;
0f181f9f 3213 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3214 }
3215 c->tid = next_tid(c->tid);
3216 local_irq_enable();
3217
3218 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3219 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3220 int j;
3221
3222 for (j = 0; j < i; j++)
3223 memset(p[j], 0, s->object_size);
3224 }
3225
03ec0ed5
JDB
3226 /* memcg and kmem_cache debug support */
3227 slab_post_alloc_hook(s, flags, size, p);
865762a8 3228 return i;
87098373 3229error:
87098373 3230 local_irq_enable();
03ec0ed5
JDB
3231 slab_post_alloc_hook(s, flags, i, p);
3232 __kmem_cache_free_bulk(s, i, p);
865762a8 3233 return 0;
484748f0
CL
3234}
3235EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3236
3237
81819f0f 3238/*
672bba3a
CL
3239 * Object placement in a slab is made very easy because we always start at
3240 * offset 0. If we tune the size of the object to the alignment then we can
3241 * get the required alignment by putting one properly sized object after
3242 * another.
81819f0f
CL
3243 *
3244 * Notice that the allocation order determines the sizes of the per cpu
3245 * caches. Each processor has always one slab available for allocations.
3246 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3247 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3248 * locking overhead.
81819f0f
CL
3249 */
3250
3251/*
3252 * Mininum / Maximum order of slab pages. This influences locking overhead
3253 * and slab fragmentation. A higher order reduces the number of partial slabs
3254 * and increases the number of allocations possible without having to
3255 * take the list_lock.
3256 */
19af27af
AD
3257static unsigned int slub_min_order;
3258static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3259static unsigned int slub_min_objects;
81819f0f 3260
81819f0f
CL
3261/*
3262 * Calculate the order of allocation given an slab object size.
3263 *
672bba3a
CL
3264 * The order of allocation has significant impact on performance and other
3265 * system components. Generally order 0 allocations should be preferred since
3266 * order 0 does not cause fragmentation in the page allocator. Larger objects
3267 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3268 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3269 * would be wasted.
3270 *
3271 * In order to reach satisfactory performance we must ensure that a minimum
3272 * number of objects is in one slab. Otherwise we may generate too much
3273 * activity on the partial lists which requires taking the list_lock. This is
3274 * less a concern for large slabs though which are rarely used.
81819f0f 3275 *
672bba3a
CL
3276 * slub_max_order specifies the order where we begin to stop considering the
3277 * number of objects in a slab as critical. If we reach slub_max_order then
3278 * we try to keep the page order as low as possible. So we accept more waste
3279 * of space in favor of a small page order.
81819f0f 3280 *
672bba3a
CL
3281 * Higher order allocations also allow the placement of more objects in a
3282 * slab and thereby reduce object handling overhead. If the user has
3283 * requested a higher mininum order then we start with that one instead of
3284 * the smallest order which will fit the object.
81819f0f 3285 */
19af27af
AD
3286static inline unsigned int slab_order(unsigned int size,
3287 unsigned int min_objects, unsigned int max_order,
9736d2a9 3288 unsigned int fract_leftover)
81819f0f 3289{
19af27af
AD
3290 unsigned int min_order = slub_min_order;
3291 unsigned int order;
81819f0f 3292
9736d2a9 3293 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3294 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3295
9736d2a9 3296 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3297 order <= max_order; order++) {
81819f0f 3298
19af27af
AD
3299 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3300 unsigned int rem;
81819f0f 3301
9736d2a9 3302 rem = slab_size % size;
81819f0f 3303
5e6d444e 3304 if (rem <= slab_size / fract_leftover)
81819f0f 3305 break;
81819f0f 3306 }
672bba3a 3307
81819f0f
CL
3308 return order;
3309}
3310
9736d2a9 3311static inline int calculate_order(unsigned int size)
5e6d444e 3312{
19af27af
AD
3313 unsigned int order;
3314 unsigned int min_objects;
3315 unsigned int max_objects;
5e6d444e
CL
3316
3317 /*
3318 * Attempt to find best configuration for a slab. This
3319 * works by first attempting to generate a layout with
3320 * the best configuration and backing off gradually.
3321 *
422ff4d7 3322 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3323 * we reduce the minimum objects required in a slab.
3324 */
3325 min_objects = slub_min_objects;
9b2cd506
CL
3326 if (!min_objects)
3327 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3328 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3329 min_objects = min(min_objects, max_objects);
3330
5e6d444e 3331 while (min_objects > 1) {
19af27af
AD
3332 unsigned int fraction;
3333
c124f5b5 3334 fraction = 16;
5e6d444e
CL
3335 while (fraction >= 4) {
3336 order = slab_order(size, min_objects,
9736d2a9 3337 slub_max_order, fraction);
5e6d444e
CL
3338 if (order <= slub_max_order)
3339 return order;
3340 fraction /= 2;
3341 }
5086c389 3342 min_objects--;
5e6d444e
CL
3343 }
3344
3345 /*
3346 * We were unable to place multiple objects in a slab. Now
3347 * lets see if we can place a single object there.
3348 */
9736d2a9 3349 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3350 if (order <= slub_max_order)
3351 return order;
3352
3353 /*
3354 * Doh this slab cannot be placed using slub_max_order.
3355 */
9736d2a9 3356 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3357 if (order < MAX_ORDER)
5e6d444e
CL
3358 return order;
3359 return -ENOSYS;
3360}
3361
5595cffc 3362static void
4053497d 3363init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3364{
3365 n->nr_partial = 0;
81819f0f
CL
3366 spin_lock_init(&n->list_lock);
3367 INIT_LIST_HEAD(&n->partial);
8ab1372f 3368#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3369 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3370 atomic_long_set(&n->total_objects, 0);
643b1138 3371 INIT_LIST_HEAD(&n->full);
8ab1372f 3372#endif
81819f0f
CL
3373}
3374
55136592 3375static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3376{
6c182dc0 3377 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3378 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3379
8a5ec0ba 3380 /*
d4d84fef
CM
3381 * Must align to double word boundary for the double cmpxchg
3382 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3383 */
d4d84fef
CM
3384 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3385 2 * sizeof(void *));
8a5ec0ba
CL
3386
3387 if (!s->cpu_slab)
3388 return 0;
3389
3390 init_kmem_cache_cpus(s);
4c93c355 3391
8a5ec0ba 3392 return 1;
4c93c355 3393}
4c93c355 3394
51df1142
CL
3395static struct kmem_cache *kmem_cache_node;
3396
81819f0f
CL
3397/*
3398 * No kmalloc_node yet so do it by hand. We know that this is the first
3399 * slab on the node for this slabcache. There are no concurrent accesses
3400 * possible.
3401 *
721ae22a
ZYW
3402 * Note that this function only works on the kmem_cache_node
3403 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3404 * memory on a fresh node that has no slab structures yet.
81819f0f 3405 */
55136592 3406static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3407{
3408 struct page *page;
3409 struct kmem_cache_node *n;
3410
51df1142 3411 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3412
51df1142 3413 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3414
3415 BUG_ON(!page);
a2f92ee7 3416 if (page_to_nid(page) != node) {
f9f58285
FF
3417 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3418 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3419 }
3420
81819f0f
CL
3421 n = page->freelist;
3422 BUG_ON(!n);
8ab1372f 3423#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3424 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3425 init_tracking(kmem_cache_node, n);
8ab1372f 3426#endif
12b22386 3427 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3428 GFP_KERNEL);
12b22386
AK
3429 page->freelist = get_freepointer(kmem_cache_node, n);
3430 page->inuse = 1;
3431 page->frozen = 0;
3432 kmem_cache_node->node[node] = n;
4053497d 3433 init_kmem_cache_node(n);
51df1142 3434 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3435
67b6c900 3436 /*
1e4dd946
SR
3437 * No locks need to be taken here as it has just been
3438 * initialized and there is no concurrent access.
67b6c900 3439 */
1e4dd946 3440 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3441}
3442
3443static void free_kmem_cache_nodes(struct kmem_cache *s)
3444{
3445 int node;
fa45dc25 3446 struct kmem_cache_node *n;
81819f0f 3447
fa45dc25 3448 for_each_kmem_cache_node(s, node, n) {
81819f0f 3449 s->node[node] = NULL;
ea37df54 3450 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3451 }
3452}
3453
52b4b950
DS
3454void __kmem_cache_release(struct kmem_cache *s)
3455{
210e7a43 3456 cache_random_seq_destroy(s);
52b4b950
DS
3457 free_percpu(s->cpu_slab);
3458 free_kmem_cache_nodes(s);
3459}
3460
55136592 3461static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3462{
3463 int node;
81819f0f 3464
f64dc58c 3465 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3466 struct kmem_cache_node *n;
3467
73367bd8 3468 if (slab_state == DOWN) {
55136592 3469 early_kmem_cache_node_alloc(node);
73367bd8
AD
3470 continue;
3471 }
51df1142 3472 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3473 GFP_KERNEL, node);
81819f0f 3474
73367bd8
AD
3475 if (!n) {
3476 free_kmem_cache_nodes(s);
3477 return 0;
81819f0f 3478 }
73367bd8 3479
4053497d 3480 init_kmem_cache_node(n);
ea37df54 3481 s->node[node] = n;
81819f0f
CL
3482 }
3483 return 1;
3484}
81819f0f 3485
c0bdb232 3486static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3487{
3488 if (min < MIN_PARTIAL)
3489 min = MIN_PARTIAL;
3490 else if (min > MAX_PARTIAL)
3491 min = MAX_PARTIAL;
3492 s->min_partial = min;
3493}
3494
e6d0e1dc
WY
3495static void set_cpu_partial(struct kmem_cache *s)
3496{
3497#ifdef CONFIG_SLUB_CPU_PARTIAL
3498 /*
3499 * cpu_partial determined the maximum number of objects kept in the
3500 * per cpu partial lists of a processor.
3501 *
3502 * Per cpu partial lists mainly contain slabs that just have one
3503 * object freed. If they are used for allocation then they can be
3504 * filled up again with minimal effort. The slab will never hit the
3505 * per node partial lists and therefore no locking will be required.
3506 *
3507 * This setting also determines
3508 *
3509 * A) The number of objects from per cpu partial slabs dumped to the
3510 * per node list when we reach the limit.
3511 * B) The number of objects in cpu partial slabs to extract from the
3512 * per node list when we run out of per cpu objects. We only fetch
3513 * 50% to keep some capacity around for frees.
3514 */
3515 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3516 slub_set_cpu_partial(s, 0);
e6d0e1dc 3517 else if (s->size >= PAGE_SIZE)
bbd4e305 3518 slub_set_cpu_partial(s, 2);
e6d0e1dc 3519 else if (s->size >= 1024)
bbd4e305 3520 slub_set_cpu_partial(s, 6);
e6d0e1dc 3521 else if (s->size >= 256)
bbd4e305 3522 slub_set_cpu_partial(s, 13);
e6d0e1dc 3523 else
bbd4e305 3524 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3525#endif
3526}
3527
81819f0f
CL
3528/*
3529 * calculate_sizes() determines the order and the distribution of data within
3530 * a slab object.
3531 */
06b285dc 3532static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3533{
d50112ed 3534 slab_flags_t flags = s->flags;
be4a7988 3535 unsigned int size = s->object_size;
19af27af 3536 unsigned int order;
81819f0f 3537
d8b42bf5
CL
3538 /*
3539 * Round up object size to the next word boundary. We can only
3540 * place the free pointer at word boundaries and this determines
3541 * the possible location of the free pointer.
3542 */
3543 size = ALIGN(size, sizeof(void *));
3544
3545#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3546 /*
3547 * Determine if we can poison the object itself. If the user of
3548 * the slab may touch the object after free or before allocation
3549 * then we should never poison the object itself.
3550 */
5f0d5a3a 3551 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3552 !s->ctor)
81819f0f
CL
3553 s->flags |= __OBJECT_POISON;
3554 else
3555 s->flags &= ~__OBJECT_POISON;
3556
81819f0f
CL
3557
3558 /*
672bba3a 3559 * If we are Redzoning then check if there is some space between the
81819f0f 3560 * end of the object and the free pointer. If not then add an
672bba3a 3561 * additional word to have some bytes to store Redzone information.
81819f0f 3562 */
3b0efdfa 3563 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3564 size += sizeof(void *);
41ecc55b 3565#endif
81819f0f
CL
3566
3567 /*
672bba3a
CL
3568 * With that we have determined the number of bytes in actual use
3569 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3570 */
3571 s->inuse = size;
3572
5f0d5a3a 3573 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3574 s->ctor)) {
81819f0f
CL
3575 /*
3576 * Relocate free pointer after the object if it is not
3577 * permitted to overwrite the first word of the object on
3578 * kmem_cache_free.
3579 *
3580 * This is the case if we do RCU, have a constructor or
3581 * destructor or are poisoning the objects.
3582 */
3583 s->offset = size;
3584 size += sizeof(void *);
3202fa62
KC
3585 } else if (size > sizeof(void *)) {
3586 /*
3587 * Store freelist pointer near middle of object to keep
3588 * it away from the edges of the object to avoid small
3589 * sized over/underflows from neighboring allocations.
3590 */
3591 s->offset = ALIGN(size / 2, sizeof(void *));
81819f0f
CL
3592 }
3593
c12b3c62 3594#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3595 if (flags & SLAB_STORE_USER)
3596 /*
3597 * Need to store information about allocs and frees after
3598 * the object.
3599 */
3600 size += 2 * sizeof(struct track);
80a9201a 3601#endif
81819f0f 3602
80a9201a
AP
3603 kasan_cache_create(s, &size, &s->flags);
3604#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3605 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3606 /*
3607 * Add some empty padding so that we can catch
3608 * overwrites from earlier objects rather than let
3609 * tracking information or the free pointer be
0211a9c8 3610 * corrupted if a user writes before the start
81819f0f
CL
3611 * of the object.
3612 */
3613 size += sizeof(void *);
d86bd1be
JK
3614
3615 s->red_left_pad = sizeof(void *);
3616 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3617 size += s->red_left_pad;
3618 }
41ecc55b 3619#endif
672bba3a 3620
81819f0f
CL
3621 /*
3622 * SLUB stores one object immediately after another beginning from
3623 * offset 0. In order to align the objects we have to simply size
3624 * each object to conform to the alignment.
3625 */
45906855 3626 size = ALIGN(size, s->align);
81819f0f 3627 s->size = size;
06b285dc
CL
3628 if (forced_order >= 0)
3629 order = forced_order;
3630 else
9736d2a9 3631 order = calculate_order(size);
81819f0f 3632
19af27af 3633 if ((int)order < 0)
81819f0f
CL
3634 return 0;
3635
b7a49f0d 3636 s->allocflags = 0;
834f3d11 3637 if (order)
b7a49f0d
CL
3638 s->allocflags |= __GFP_COMP;
3639
3640 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3641 s->allocflags |= GFP_DMA;
b7a49f0d 3642
6d6ea1e9
NB
3643 if (s->flags & SLAB_CACHE_DMA32)
3644 s->allocflags |= GFP_DMA32;
3645
b7a49f0d
CL
3646 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3647 s->allocflags |= __GFP_RECLAIMABLE;
3648
81819f0f
CL
3649 /*
3650 * Determine the number of objects per slab
3651 */
9736d2a9
MW
3652 s->oo = oo_make(order, size);
3653 s->min = oo_make(get_order(size), size);
205ab99d
CL
3654 if (oo_objects(s->oo) > oo_objects(s->max))
3655 s->max = s->oo;
81819f0f 3656
834f3d11 3657 return !!oo_objects(s->oo);
81819f0f
CL
3658}
3659
d50112ed 3660static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3661{
8a13a4cc 3662 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3663#ifdef CONFIG_SLAB_FREELIST_HARDENED
3664 s->random = get_random_long();
3665#endif
81819f0f 3666
06b285dc 3667 if (!calculate_sizes(s, -1))
81819f0f 3668 goto error;
3de47213
DR
3669 if (disable_higher_order_debug) {
3670 /*
3671 * Disable debugging flags that store metadata if the min slab
3672 * order increased.
3673 */
3b0efdfa 3674 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3675 s->flags &= ~DEBUG_METADATA_FLAGS;
3676 s->offset = 0;
3677 if (!calculate_sizes(s, -1))
3678 goto error;
3679 }
3680 }
81819f0f 3681
2565409f
HC
3682#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3683 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3684 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3685 /* Enable fast mode */
3686 s->flags |= __CMPXCHG_DOUBLE;
3687#endif
3688
3b89d7d8
DR
3689 /*
3690 * The larger the object size is, the more pages we want on the partial
3691 * list to avoid pounding the page allocator excessively.
3692 */
49e22585
CL
3693 set_min_partial(s, ilog2(s->size) / 2);
3694
e6d0e1dc 3695 set_cpu_partial(s);
49e22585 3696
81819f0f 3697#ifdef CONFIG_NUMA
e2cb96b7 3698 s->remote_node_defrag_ratio = 1000;
81819f0f 3699#endif
210e7a43
TG
3700
3701 /* Initialize the pre-computed randomized freelist if slab is up */
3702 if (slab_state >= UP) {
3703 if (init_cache_random_seq(s))
3704 goto error;
3705 }
3706
55136592 3707 if (!init_kmem_cache_nodes(s))
dfb4f096 3708 goto error;
81819f0f 3709
55136592 3710 if (alloc_kmem_cache_cpus(s))
278b1bb1 3711 return 0;
ff12059e 3712
4c93c355 3713 free_kmem_cache_nodes(s);
81819f0f 3714error:
278b1bb1 3715 return -EINVAL;
81819f0f 3716}
81819f0f 3717
33b12c38
CL
3718static void list_slab_objects(struct kmem_cache *s, struct page *page,
3719 const char *text)
3720{
3721#ifdef CONFIG_SLUB_DEBUG
3722 void *addr = page_address(page);
3723 void *p;
90e9f6a6
YZ
3724 unsigned long *map;
3725
945cf2b6 3726 slab_err(s, page, text, s->name);
33b12c38 3727 slab_lock(page);
33b12c38 3728
90e9f6a6 3729 map = get_map(s, page);
33b12c38
CL
3730 for_each_object(p, s, addr, page->objects) {
3731
3732 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3733 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3734 print_tracking(s, p);
3735 }
3736 }
90e9f6a6
YZ
3737 put_map(map);
3738
33b12c38
CL
3739 slab_unlock(page);
3740#endif
3741}
3742
81819f0f 3743/*
599870b1 3744 * Attempt to free all partial slabs on a node.
52b4b950
DS
3745 * This is called from __kmem_cache_shutdown(). We must take list_lock
3746 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3747 */
599870b1 3748static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3749{
60398923 3750 LIST_HEAD(discard);
81819f0f
CL
3751 struct page *page, *h;
3752
52b4b950
DS
3753 BUG_ON(irqs_disabled());
3754 spin_lock_irq(&n->list_lock);
916ac052 3755 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3756 if (!page->inuse) {
52b4b950 3757 remove_partial(n, page);
916ac052 3758 list_add(&page->slab_list, &discard);
33b12c38
CL
3759 } else {
3760 list_slab_objects(s, page,
52b4b950 3761 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3762 }
33b12c38 3763 }
52b4b950 3764 spin_unlock_irq(&n->list_lock);
60398923 3765
916ac052 3766 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3767 discard_slab(s, page);
81819f0f
CL
3768}
3769
f9e13c0a
SB
3770bool __kmem_cache_empty(struct kmem_cache *s)
3771{
3772 int node;
3773 struct kmem_cache_node *n;
3774
3775 for_each_kmem_cache_node(s, node, n)
3776 if (n->nr_partial || slabs_node(s, node))
3777 return false;
3778 return true;
3779}
3780
81819f0f 3781/*
672bba3a 3782 * Release all resources used by a slab cache.
81819f0f 3783 */
52b4b950 3784int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3785{
3786 int node;
fa45dc25 3787 struct kmem_cache_node *n;
81819f0f
CL
3788
3789 flush_all(s);
81819f0f 3790 /* Attempt to free all objects */
fa45dc25 3791 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3792 free_partial(s, n);
3793 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3794 return 1;
3795 }
bf5eb3de 3796 sysfs_slab_remove(s);
81819f0f
CL
3797 return 0;
3798}
3799
81819f0f
CL
3800/********************************************************************
3801 * Kmalloc subsystem
3802 *******************************************************************/
3803
81819f0f
CL
3804static int __init setup_slub_min_order(char *str)
3805{
19af27af 3806 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3807
3808 return 1;
3809}
3810
3811__setup("slub_min_order=", setup_slub_min_order);
3812
3813static int __init setup_slub_max_order(char *str)
3814{
19af27af
AD
3815 get_option(&str, (int *)&slub_max_order);
3816 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3817
3818 return 1;
3819}
3820
3821__setup("slub_max_order=", setup_slub_max_order);
3822
3823static int __init setup_slub_min_objects(char *str)
3824{
19af27af 3825 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3826
3827 return 1;
3828}
3829
3830__setup("slub_min_objects=", setup_slub_min_objects);
3831
81819f0f
CL
3832void *__kmalloc(size_t size, gfp_t flags)
3833{
aadb4bc4 3834 struct kmem_cache *s;
5b882be4 3835 void *ret;
81819f0f 3836
95a05b42 3837 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3838 return kmalloc_large(size, flags);
aadb4bc4 3839
2c59dd65 3840 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3841
3842 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3843 return s;
3844
2b847c3c 3845 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3846
ca2b84cb 3847 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3848
0116523c 3849 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3850
5b882be4 3851 return ret;
81819f0f
CL
3852}
3853EXPORT_SYMBOL(__kmalloc);
3854
5d1f57e4 3855#ifdef CONFIG_NUMA
f619cfe1
CL
3856static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3857{
b1eeab67 3858 struct page *page;
e4f7c0b4 3859 void *ptr = NULL;
6a486c0a 3860 unsigned int order = get_order(size);
f619cfe1 3861
75f296d9 3862 flags |= __GFP_COMP;
6a486c0a
VB
3863 page = alloc_pages_node(node, flags, order);
3864 if (page) {
e4f7c0b4 3865 ptr = page_address(page);
6a486c0a
VB
3866 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3867 1 << order);
3868 }
e4f7c0b4 3869
0116523c 3870 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3871}
3872
81819f0f
CL
3873void *__kmalloc_node(size_t size, gfp_t flags, int node)
3874{
aadb4bc4 3875 struct kmem_cache *s;
5b882be4 3876 void *ret;
81819f0f 3877
95a05b42 3878 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3879 ret = kmalloc_large_node(size, flags, node);
3880
ca2b84cb
EGM
3881 trace_kmalloc_node(_RET_IP_, ret,
3882 size, PAGE_SIZE << get_order(size),
3883 flags, node);
5b882be4
EGM
3884
3885 return ret;
3886 }
aadb4bc4 3887
2c59dd65 3888 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3889
3890 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3891 return s;
3892
2b847c3c 3893 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3894
ca2b84cb 3895 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3896
0116523c 3897 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3898
5b882be4 3899 return ret;
81819f0f
CL
3900}
3901EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3902#endif /* CONFIG_NUMA */
81819f0f 3903
ed18adc1
KC
3904#ifdef CONFIG_HARDENED_USERCOPY
3905/*
afcc90f8
KC
3906 * Rejects incorrectly sized objects and objects that are to be copied
3907 * to/from userspace but do not fall entirely within the containing slab
3908 * cache's usercopy region.
ed18adc1
KC
3909 *
3910 * Returns NULL if check passes, otherwise const char * to name of cache
3911 * to indicate an error.
3912 */
f4e6e289
KC
3913void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3914 bool to_user)
ed18adc1
KC
3915{
3916 struct kmem_cache *s;
44065b2e 3917 unsigned int offset;
ed18adc1
KC
3918 size_t object_size;
3919
96fedce2
AK
3920 ptr = kasan_reset_tag(ptr);
3921
ed18adc1
KC
3922 /* Find object and usable object size. */
3923 s = page->slab_cache;
ed18adc1
KC
3924
3925 /* Reject impossible pointers. */
3926 if (ptr < page_address(page))
f4e6e289
KC
3927 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3928 to_user, 0, n);
ed18adc1
KC
3929
3930 /* Find offset within object. */
3931 offset = (ptr - page_address(page)) % s->size;
3932
3933 /* Adjust for redzone and reject if within the redzone. */
3934 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3935 if (offset < s->red_left_pad)
f4e6e289
KC
3936 usercopy_abort("SLUB object in left red zone",
3937 s->name, to_user, offset, n);
ed18adc1
KC
3938 offset -= s->red_left_pad;
3939 }
3940
afcc90f8
KC
3941 /* Allow address range falling entirely within usercopy region. */
3942 if (offset >= s->useroffset &&
3943 offset - s->useroffset <= s->usersize &&
3944 n <= s->useroffset - offset + s->usersize)
f4e6e289 3945 return;
ed18adc1 3946
afcc90f8
KC
3947 /*
3948 * If the copy is still within the allocated object, produce
3949 * a warning instead of rejecting the copy. This is intended
3950 * to be a temporary method to find any missing usercopy
3951 * whitelists.
3952 */
3953 object_size = slab_ksize(s);
2d891fbc
KC
3954 if (usercopy_fallback &&
3955 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3956 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3957 return;
3958 }
ed18adc1 3959
f4e6e289 3960 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3961}
3962#endif /* CONFIG_HARDENED_USERCOPY */
3963
10d1f8cb 3964size_t __ksize(const void *object)
81819f0f 3965{
272c1d21 3966 struct page *page;
81819f0f 3967
ef8b4520 3968 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3969 return 0;
3970
294a80a8 3971 page = virt_to_head_page(object);
294a80a8 3972
76994412
PE
3973 if (unlikely(!PageSlab(page))) {
3974 WARN_ON(!PageCompound(page));
a50b854e 3975 return page_size(page);
76994412 3976 }
81819f0f 3977
1b4f59e3 3978 return slab_ksize(page->slab_cache);
81819f0f 3979}
10d1f8cb 3980EXPORT_SYMBOL(__ksize);
81819f0f
CL
3981
3982void kfree(const void *x)
3983{
81819f0f 3984 struct page *page;
5bb983b0 3985 void *object = (void *)x;
81819f0f 3986
2121db74
PE
3987 trace_kfree(_RET_IP_, x);
3988
2408c550 3989 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3990 return;
3991
b49af68f 3992 page = virt_to_head_page(x);
aadb4bc4 3993 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
3994 unsigned int order = compound_order(page);
3995
0937502a 3996 BUG_ON(!PageCompound(page));
47adccce 3997 kfree_hook(object);
6a486c0a
VB
3998 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3999 -(1 << order));
4000 __free_pages(page, order);
aadb4bc4
CL
4001 return;
4002 }
81084651 4003 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4004}
4005EXPORT_SYMBOL(kfree);
4006
832f37f5
VD
4007#define SHRINK_PROMOTE_MAX 32
4008
2086d26a 4009/*
832f37f5
VD
4010 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4011 * up most to the head of the partial lists. New allocations will then
4012 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4013 *
4014 * The slabs with the least items are placed last. This results in them
4015 * being allocated from last increasing the chance that the last objects
4016 * are freed in them.
2086d26a 4017 */
c9fc5864 4018int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4019{
4020 int node;
4021 int i;
4022 struct kmem_cache_node *n;
4023 struct page *page;
4024 struct page *t;
832f37f5
VD
4025 struct list_head discard;
4026 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4027 unsigned long flags;
ce3712d7 4028 int ret = 0;
2086d26a 4029
2086d26a 4030 flush_all(s);
fa45dc25 4031 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4032 INIT_LIST_HEAD(&discard);
4033 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4034 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4035
4036 spin_lock_irqsave(&n->list_lock, flags);
4037
4038 /*
832f37f5 4039 * Build lists of slabs to discard or promote.
2086d26a 4040 *
672bba3a
CL
4041 * Note that concurrent frees may occur while we hold the
4042 * list_lock. page->inuse here is the upper limit.
2086d26a 4043 */
916ac052 4044 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4045 int free = page->objects - page->inuse;
4046
4047 /* Do not reread page->inuse */
4048 barrier();
4049
4050 /* We do not keep full slabs on the list */
4051 BUG_ON(free <= 0);
4052
4053 if (free == page->objects) {
916ac052 4054 list_move(&page->slab_list, &discard);
69cb8e6b 4055 n->nr_partial--;
832f37f5 4056 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4057 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4058 }
4059
2086d26a 4060 /*
832f37f5
VD
4061 * Promote the slabs filled up most to the head of the
4062 * partial list.
2086d26a 4063 */
832f37f5
VD
4064 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4065 list_splice(promote + i, &n->partial);
2086d26a 4066
2086d26a 4067 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4068
4069 /* Release empty slabs */
916ac052 4070 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4071 discard_slab(s, page);
ce3712d7
VD
4072
4073 if (slabs_node(s, node))
4074 ret = 1;
2086d26a
CL
4075 }
4076
ce3712d7 4077 return ret;
2086d26a 4078}
2086d26a 4079
c9fc5864 4080#ifdef CONFIG_MEMCG
43486694 4081void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4082{
50862ce7
TH
4083 /*
4084 * Called with all the locks held after a sched RCU grace period.
4085 * Even if @s becomes empty after shrinking, we can't know that @s
4086 * doesn't have allocations already in-flight and thus can't
4087 * destroy @s until the associated memcg is released.
4088 *
4089 * However, let's remove the sysfs files for empty caches here.
4090 * Each cache has a lot of interface files which aren't
4091 * particularly useful for empty draining caches; otherwise, we can
4092 * easily end up with millions of unnecessary sysfs files on
4093 * systems which have a lot of memory and transient cgroups.
4094 */
4095 if (!__kmem_cache_shrink(s))
4096 sysfs_slab_remove(s);
01fb58bc
TH
4097}
4098
c9fc5864
TH
4099void __kmemcg_cache_deactivate(struct kmem_cache *s)
4100{
4101 /*
4102 * Disable empty slabs caching. Used to avoid pinning offline
4103 * memory cgroups by kmem pages that can be freed.
4104 */
e6d0e1dc 4105 slub_set_cpu_partial(s, 0);
c9fc5864 4106 s->min_partial = 0;
c9fc5864 4107}
6dfd1b65 4108#endif /* CONFIG_MEMCG */
c9fc5864 4109
b9049e23
YG
4110static int slab_mem_going_offline_callback(void *arg)
4111{
4112 struct kmem_cache *s;
4113
18004c5d 4114 mutex_lock(&slab_mutex);
b9049e23 4115 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4116 __kmem_cache_shrink(s);
18004c5d 4117 mutex_unlock(&slab_mutex);
b9049e23
YG
4118
4119 return 0;
4120}
4121
4122static void slab_mem_offline_callback(void *arg)
4123{
4124 struct kmem_cache_node *n;
4125 struct kmem_cache *s;
4126 struct memory_notify *marg = arg;
4127 int offline_node;
4128
b9d5ab25 4129 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4130
4131 /*
4132 * If the node still has available memory. we need kmem_cache_node
4133 * for it yet.
4134 */
4135 if (offline_node < 0)
4136 return;
4137
18004c5d 4138 mutex_lock(&slab_mutex);
b9049e23
YG
4139 list_for_each_entry(s, &slab_caches, list) {
4140 n = get_node(s, offline_node);
4141 if (n) {
4142 /*
4143 * if n->nr_slabs > 0, slabs still exist on the node
4144 * that is going down. We were unable to free them,
c9404c9c 4145 * and offline_pages() function shouldn't call this
b9049e23
YG
4146 * callback. So, we must fail.
4147 */
0f389ec6 4148 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4149
4150 s->node[offline_node] = NULL;
8de66a0c 4151 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4152 }
4153 }
18004c5d 4154 mutex_unlock(&slab_mutex);
b9049e23
YG
4155}
4156
4157static int slab_mem_going_online_callback(void *arg)
4158{
4159 struct kmem_cache_node *n;
4160 struct kmem_cache *s;
4161 struct memory_notify *marg = arg;
b9d5ab25 4162 int nid = marg->status_change_nid_normal;
b9049e23
YG
4163 int ret = 0;
4164
4165 /*
4166 * If the node's memory is already available, then kmem_cache_node is
4167 * already created. Nothing to do.
4168 */
4169 if (nid < 0)
4170 return 0;
4171
4172 /*
0121c619 4173 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4174 * allocate a kmem_cache_node structure in order to bring the node
4175 * online.
4176 */
18004c5d 4177 mutex_lock(&slab_mutex);
b9049e23
YG
4178 list_for_each_entry(s, &slab_caches, list) {
4179 /*
4180 * XXX: kmem_cache_alloc_node will fallback to other nodes
4181 * since memory is not yet available from the node that
4182 * is brought up.
4183 */
8de66a0c 4184 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4185 if (!n) {
4186 ret = -ENOMEM;
4187 goto out;
4188 }
4053497d 4189 init_kmem_cache_node(n);
b9049e23
YG
4190 s->node[nid] = n;
4191 }
4192out:
18004c5d 4193 mutex_unlock(&slab_mutex);
b9049e23
YG
4194 return ret;
4195}
4196
4197static int slab_memory_callback(struct notifier_block *self,
4198 unsigned long action, void *arg)
4199{
4200 int ret = 0;
4201
4202 switch (action) {
4203 case MEM_GOING_ONLINE:
4204 ret = slab_mem_going_online_callback(arg);
4205 break;
4206 case MEM_GOING_OFFLINE:
4207 ret = slab_mem_going_offline_callback(arg);
4208 break;
4209 case MEM_OFFLINE:
4210 case MEM_CANCEL_ONLINE:
4211 slab_mem_offline_callback(arg);
4212 break;
4213 case MEM_ONLINE:
4214 case MEM_CANCEL_OFFLINE:
4215 break;
4216 }
dc19f9db
KH
4217 if (ret)
4218 ret = notifier_from_errno(ret);
4219 else
4220 ret = NOTIFY_OK;
b9049e23
YG
4221 return ret;
4222}
4223
3ac38faa
AM
4224static struct notifier_block slab_memory_callback_nb = {
4225 .notifier_call = slab_memory_callback,
4226 .priority = SLAB_CALLBACK_PRI,
4227};
b9049e23 4228
81819f0f
CL
4229/********************************************************************
4230 * Basic setup of slabs
4231 *******************************************************************/
4232
51df1142
CL
4233/*
4234 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4235 * the page allocator. Allocate them properly then fix up the pointers
4236 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4237 */
4238
dffb4d60 4239static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4240{
4241 int node;
dffb4d60 4242 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4243 struct kmem_cache_node *n;
51df1142 4244
dffb4d60 4245 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4246
7d557b3c
GC
4247 /*
4248 * This runs very early, and only the boot processor is supposed to be
4249 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4250 * IPIs around.
4251 */
4252 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4253 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4254 struct page *p;
4255
916ac052 4256 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4257 p->slab_cache = s;
51df1142 4258
607bf324 4259#ifdef CONFIG_SLUB_DEBUG
916ac052 4260 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4261 p->slab_cache = s;
51df1142 4262#endif
51df1142 4263 }
f7ce3190 4264 slab_init_memcg_params(s);
dffb4d60 4265 list_add(&s->list, &slab_caches);
c03914b7 4266 memcg_link_cache(s, NULL);
dffb4d60 4267 return s;
51df1142
CL
4268}
4269
81819f0f
CL
4270void __init kmem_cache_init(void)
4271{
dffb4d60
CL
4272 static __initdata struct kmem_cache boot_kmem_cache,
4273 boot_kmem_cache_node;
51df1142 4274
fc8d8620
SG
4275 if (debug_guardpage_minorder())
4276 slub_max_order = 0;
4277
dffb4d60
CL
4278 kmem_cache_node = &boot_kmem_cache_node;
4279 kmem_cache = &boot_kmem_cache;
51df1142 4280
dffb4d60 4281 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4282 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4283
3ac38faa 4284 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4285
4286 /* Able to allocate the per node structures */
4287 slab_state = PARTIAL;
4288
dffb4d60
CL
4289 create_boot_cache(kmem_cache, "kmem_cache",
4290 offsetof(struct kmem_cache, node) +
4291 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4292 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4293
dffb4d60 4294 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4295 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4296
4297 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4298 setup_kmalloc_cache_index_table();
f97d5f63 4299 create_kmalloc_caches(0);
81819f0f 4300
210e7a43
TG
4301 /* Setup random freelists for each cache */
4302 init_freelist_randomization();
4303
a96a87bf
SAS
4304 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4305 slub_cpu_dead);
81819f0f 4306
b9726c26 4307 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4308 cache_line_size(),
81819f0f
CL
4309 slub_min_order, slub_max_order, slub_min_objects,
4310 nr_cpu_ids, nr_node_ids);
4311}
4312
7e85ee0c
PE
4313void __init kmem_cache_init_late(void)
4314{
7e85ee0c
PE
4315}
4316
2633d7a0 4317struct kmem_cache *
f4957d5b 4318__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4319 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4320{
426589f5 4321 struct kmem_cache *s, *c;
81819f0f 4322
a44cb944 4323 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4324 if (s) {
4325 s->refcount++;
84d0ddd6 4326
81819f0f
CL
4327 /*
4328 * Adjust the object sizes so that we clear
4329 * the complete object on kzalloc.
4330 */
1b473f29 4331 s->object_size = max(s->object_size, size);
52ee6d74 4332 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4333
426589f5 4334 for_each_memcg_cache(c, s) {
84d0ddd6 4335 c->object_size = s->object_size;
52ee6d74 4336 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4337 }
4338
7b8f3b66 4339 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4340 s->refcount--;
cbb79694 4341 s = NULL;
7b8f3b66 4342 }
a0e1d1be 4343 }
6446faa2 4344
cbb79694
CL
4345 return s;
4346}
84c1cf62 4347
d50112ed 4348int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4349{
aac3a166
PE
4350 int err;
4351
4352 err = kmem_cache_open(s, flags);
4353 if (err)
4354 return err;
20cea968 4355
45530c44
CL
4356 /* Mutex is not taken during early boot */
4357 if (slab_state <= UP)
4358 return 0;
4359
107dab5c 4360 memcg_propagate_slab_attrs(s);
aac3a166 4361 err = sysfs_slab_add(s);
aac3a166 4362 if (err)
52b4b950 4363 __kmem_cache_release(s);
20cea968 4364
aac3a166 4365 return err;
81819f0f 4366}
81819f0f 4367
ce71e27c 4368void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4369{
aadb4bc4 4370 struct kmem_cache *s;
94b528d0 4371 void *ret;
aadb4bc4 4372
95a05b42 4373 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4374 return kmalloc_large(size, gfpflags);
4375
2c59dd65 4376 s = kmalloc_slab(size, gfpflags);
81819f0f 4377
2408c550 4378 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4379 return s;
81819f0f 4380
2b847c3c 4381 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4382
25985edc 4383 /* Honor the call site pointer we received. */
ca2b84cb 4384 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4385
4386 return ret;
81819f0f
CL
4387}
4388
5d1f57e4 4389#ifdef CONFIG_NUMA
81819f0f 4390void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4391 int node, unsigned long caller)
81819f0f 4392{
aadb4bc4 4393 struct kmem_cache *s;
94b528d0 4394 void *ret;
aadb4bc4 4395
95a05b42 4396 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4397 ret = kmalloc_large_node(size, gfpflags, node);
4398
4399 trace_kmalloc_node(caller, ret,
4400 size, PAGE_SIZE << get_order(size),
4401 gfpflags, node);
4402
4403 return ret;
4404 }
eada35ef 4405
2c59dd65 4406 s = kmalloc_slab(size, gfpflags);
81819f0f 4407
2408c550 4408 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4409 return s;
81819f0f 4410
2b847c3c 4411 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4412
25985edc 4413 /* Honor the call site pointer we received. */
ca2b84cb 4414 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4415
4416 return ret;
81819f0f 4417}
5d1f57e4 4418#endif
81819f0f 4419
ab4d5ed5 4420#ifdef CONFIG_SYSFS
205ab99d
CL
4421static int count_inuse(struct page *page)
4422{
4423 return page->inuse;
4424}
4425
4426static int count_total(struct page *page)
4427{
4428 return page->objects;
4429}
ab4d5ed5 4430#endif
205ab99d 4431
ab4d5ed5 4432#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4433static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4434{
4435 void *p;
a973e9dd 4436 void *addr = page_address(page);
90e9f6a6
YZ
4437 unsigned long *map;
4438
4439 slab_lock(page);
53e15af0 4440
dd98afd4 4441 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4442 goto unlock;
53e15af0
CL
4443
4444 /* Now we know that a valid freelist exists */
90e9f6a6 4445 map = get_map(s, page);
5f80b13a 4446 for_each_object(p, s, addr, page->objects) {
dd98afd4
YZ
4447 u8 val = test_bit(slab_index(p, s, addr), map) ?
4448 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4449
dd98afd4
YZ
4450 if (!check_object(s, page, p, val))
4451 break;
4452 }
90e9f6a6
YZ
4453 put_map(map);
4454unlock:
881db7fb 4455 slab_unlock(page);
53e15af0
CL
4456}
4457
434e245d 4458static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4459 struct kmem_cache_node *n)
53e15af0
CL
4460{
4461 unsigned long count = 0;
4462 struct page *page;
4463 unsigned long flags;
4464
4465 spin_lock_irqsave(&n->list_lock, flags);
4466
916ac052 4467 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4468 validate_slab(s, page);
53e15af0
CL
4469 count++;
4470 }
4471 if (count != n->nr_partial)
f9f58285
FF
4472 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4473 s->name, count, n->nr_partial);
53e15af0
CL
4474
4475 if (!(s->flags & SLAB_STORE_USER))
4476 goto out;
4477
916ac052 4478 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4479 validate_slab(s, page);
53e15af0
CL
4480 count++;
4481 }
4482 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4483 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4484 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4485
4486out:
4487 spin_unlock_irqrestore(&n->list_lock, flags);
4488 return count;
4489}
4490
434e245d 4491static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4492{
4493 int node;
4494 unsigned long count = 0;
fa45dc25 4495 struct kmem_cache_node *n;
53e15af0
CL
4496
4497 flush_all(s);
fa45dc25 4498 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4499 count += validate_slab_node(s, n);
4500
53e15af0
CL
4501 return count;
4502}
88a420e4 4503/*
672bba3a 4504 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4505 * and freed.
4506 */
4507
4508struct location {
4509 unsigned long count;
ce71e27c 4510 unsigned long addr;
45edfa58
CL
4511 long long sum_time;
4512 long min_time;
4513 long max_time;
4514 long min_pid;
4515 long max_pid;
174596a0 4516 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4517 nodemask_t nodes;
88a420e4
CL
4518};
4519
4520struct loc_track {
4521 unsigned long max;
4522 unsigned long count;
4523 struct location *loc;
4524};
4525
4526static void free_loc_track(struct loc_track *t)
4527{
4528 if (t->max)
4529 free_pages((unsigned long)t->loc,
4530 get_order(sizeof(struct location) * t->max));
4531}
4532
68dff6a9 4533static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4534{
4535 struct location *l;
4536 int order;
4537
88a420e4
CL
4538 order = get_order(sizeof(struct location) * max);
4539
68dff6a9 4540 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4541 if (!l)
4542 return 0;
4543
4544 if (t->count) {
4545 memcpy(l, t->loc, sizeof(struct location) * t->count);
4546 free_loc_track(t);
4547 }
4548 t->max = max;
4549 t->loc = l;
4550 return 1;
4551}
4552
4553static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4554 const struct track *track)
88a420e4
CL
4555{
4556 long start, end, pos;
4557 struct location *l;
ce71e27c 4558 unsigned long caddr;
45edfa58 4559 unsigned long age = jiffies - track->when;
88a420e4
CL
4560
4561 start = -1;
4562 end = t->count;
4563
4564 for ( ; ; ) {
4565 pos = start + (end - start + 1) / 2;
4566
4567 /*
4568 * There is nothing at "end". If we end up there
4569 * we need to add something to before end.
4570 */
4571 if (pos == end)
4572 break;
4573
4574 caddr = t->loc[pos].addr;
45edfa58
CL
4575 if (track->addr == caddr) {
4576
4577 l = &t->loc[pos];
4578 l->count++;
4579 if (track->when) {
4580 l->sum_time += age;
4581 if (age < l->min_time)
4582 l->min_time = age;
4583 if (age > l->max_time)
4584 l->max_time = age;
4585
4586 if (track->pid < l->min_pid)
4587 l->min_pid = track->pid;
4588 if (track->pid > l->max_pid)
4589 l->max_pid = track->pid;
4590
174596a0
RR
4591 cpumask_set_cpu(track->cpu,
4592 to_cpumask(l->cpus));
45edfa58
CL
4593 }
4594 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4595 return 1;
4596 }
4597
45edfa58 4598 if (track->addr < caddr)
88a420e4
CL
4599 end = pos;
4600 else
4601 start = pos;
4602 }
4603
4604 /*
672bba3a 4605 * Not found. Insert new tracking element.
88a420e4 4606 */
68dff6a9 4607 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4608 return 0;
4609
4610 l = t->loc + pos;
4611 if (pos < t->count)
4612 memmove(l + 1, l,
4613 (t->count - pos) * sizeof(struct location));
4614 t->count++;
4615 l->count = 1;
45edfa58
CL
4616 l->addr = track->addr;
4617 l->sum_time = age;
4618 l->min_time = age;
4619 l->max_time = age;
4620 l->min_pid = track->pid;
4621 l->max_pid = track->pid;
174596a0
RR
4622 cpumask_clear(to_cpumask(l->cpus));
4623 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4624 nodes_clear(l->nodes);
4625 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4626 return 1;
4627}
4628
4629static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4630 struct page *page, enum track_item alloc)
88a420e4 4631{
a973e9dd 4632 void *addr = page_address(page);
88a420e4 4633 void *p;
90e9f6a6 4634 unsigned long *map;
88a420e4 4635
90e9f6a6 4636 map = get_map(s, page);
224a88be 4637 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4638 if (!test_bit(slab_index(p, s, addr), map))
4639 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4640 put_map(map);
88a420e4
CL
4641}
4642
4643static int list_locations(struct kmem_cache *s, char *buf,
4644 enum track_item alloc)
4645{
e374d483 4646 int len = 0;
88a420e4 4647 unsigned long i;
68dff6a9 4648 struct loc_track t = { 0, 0, NULL };
88a420e4 4649 int node;
fa45dc25 4650 struct kmem_cache_node *n;
88a420e4 4651
90e9f6a6
YZ
4652 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4653 GFP_KERNEL)) {
68dff6a9 4654 return sprintf(buf, "Out of memory\n");
bbd7d57b 4655 }
88a420e4
CL
4656 /* Push back cpu slabs */
4657 flush_all(s);
4658
fa45dc25 4659 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4660 unsigned long flags;
4661 struct page *page;
4662
9e86943b 4663 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4664 continue;
4665
4666 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4667 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4668 process_slab(&t, s, page, alloc);
916ac052 4669 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4670 process_slab(&t, s, page, alloc);
88a420e4
CL
4671 spin_unlock_irqrestore(&n->list_lock, flags);
4672 }
4673
4674 for (i = 0; i < t.count; i++) {
45edfa58 4675 struct location *l = &t.loc[i];
88a420e4 4676
9c246247 4677 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4678 break;
e374d483 4679 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4680
4681 if (l->addr)
62c70bce 4682 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4683 else
e374d483 4684 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4685
4686 if (l->sum_time != l->min_time) {
e374d483 4687 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4688 l->min_time,
4689 (long)div_u64(l->sum_time, l->count),
4690 l->max_time);
45edfa58 4691 } else
e374d483 4692 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4693 l->min_time);
4694
4695 if (l->min_pid != l->max_pid)
e374d483 4696 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4697 l->min_pid, l->max_pid);
4698 else
e374d483 4699 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4700 l->min_pid);
4701
174596a0
RR
4702 if (num_online_cpus() > 1 &&
4703 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4704 len < PAGE_SIZE - 60)
4705 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4706 " cpus=%*pbl",
4707 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4708
62bc62a8 4709 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4710 len < PAGE_SIZE - 60)
4711 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4712 " nodes=%*pbl",
4713 nodemask_pr_args(&l->nodes));
45edfa58 4714
e374d483 4715 len += sprintf(buf + len, "\n");
88a420e4
CL
4716 }
4717
4718 free_loc_track(&t);
4719 if (!t.count)
e374d483
HH
4720 len += sprintf(buf, "No data\n");
4721 return len;
88a420e4 4722}
6dfd1b65 4723#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4724
a5a84755 4725#ifdef SLUB_RESILIENCY_TEST
c07b8183 4726static void __init resiliency_test(void)
a5a84755
CL
4727{
4728 u8 *p;
cc252eae 4729 int type = KMALLOC_NORMAL;
a5a84755 4730
95a05b42 4731 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4732
f9f58285
FF
4733 pr_err("SLUB resiliency testing\n");
4734 pr_err("-----------------------\n");
4735 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4736
4737 p = kzalloc(16, GFP_KERNEL);
4738 p[16] = 0x12;
f9f58285
FF
4739 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4740 p + 16);
a5a84755 4741
cc252eae 4742 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4743
4744 /* Hmmm... The next two are dangerous */
4745 p = kzalloc(32, GFP_KERNEL);
4746 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4747 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4748 p);
4749 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4750
cc252eae 4751 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4752 p = kzalloc(64, GFP_KERNEL);
4753 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4754 *p = 0x56;
f9f58285
FF
4755 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4756 p);
4757 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4758 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4759
f9f58285 4760 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4761 p = kzalloc(128, GFP_KERNEL);
4762 kfree(p);
4763 *p = 0x78;
f9f58285 4764 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4765 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4766
4767 p = kzalloc(256, GFP_KERNEL);
4768 kfree(p);
4769 p[50] = 0x9a;
f9f58285 4770 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4771 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4772
4773 p = kzalloc(512, GFP_KERNEL);
4774 kfree(p);
4775 p[512] = 0xab;
f9f58285 4776 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4777 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4778}
4779#else
4780#ifdef CONFIG_SYSFS
4781static void resiliency_test(void) {};
4782#endif
6dfd1b65 4783#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4784
ab4d5ed5 4785#ifdef CONFIG_SYSFS
81819f0f 4786enum slab_stat_type {
205ab99d
CL
4787 SL_ALL, /* All slabs */
4788 SL_PARTIAL, /* Only partially allocated slabs */
4789 SL_CPU, /* Only slabs used for cpu caches */
4790 SL_OBJECTS, /* Determine allocated objects not slabs */
4791 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4792};
4793
205ab99d 4794#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4795#define SO_PARTIAL (1 << SL_PARTIAL)
4796#define SO_CPU (1 << SL_CPU)
4797#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4798#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4799
1663f26d
TH
4800#ifdef CONFIG_MEMCG
4801static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4802
4803static int __init setup_slub_memcg_sysfs(char *str)
4804{
4805 int v;
4806
4807 if (get_option(&str, &v) > 0)
4808 memcg_sysfs_enabled = v;
4809
4810 return 1;
4811}
4812
4813__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4814#endif
4815
62e5c4b4
CG
4816static ssize_t show_slab_objects(struct kmem_cache *s,
4817 char *buf, unsigned long flags)
81819f0f
CL
4818{
4819 unsigned long total = 0;
81819f0f
CL
4820 int node;
4821 int x;
4822 unsigned long *nodes;
81819f0f 4823
6396bb22 4824 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4825 if (!nodes)
4826 return -ENOMEM;
81819f0f 4827
205ab99d
CL
4828 if (flags & SO_CPU) {
4829 int cpu;
81819f0f 4830
205ab99d 4831 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4832 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4833 cpu);
ec3ab083 4834 int node;
49e22585 4835 struct page *page;
dfb4f096 4836
4db0c3c2 4837 page = READ_ONCE(c->page);
ec3ab083
CL
4838 if (!page)
4839 continue;
205ab99d 4840
ec3ab083
CL
4841 node = page_to_nid(page);
4842 if (flags & SO_TOTAL)
4843 x = page->objects;
4844 else if (flags & SO_OBJECTS)
4845 x = page->inuse;
4846 else
4847 x = 1;
49e22585 4848
ec3ab083
CL
4849 total += x;
4850 nodes[node] += x;
4851
a93cf07b 4852 page = slub_percpu_partial_read_once(c);
49e22585 4853 if (page) {
8afb1474
LZ
4854 node = page_to_nid(page);
4855 if (flags & SO_TOTAL)
4856 WARN_ON_ONCE(1);
4857 else if (flags & SO_OBJECTS)
4858 WARN_ON_ONCE(1);
4859 else
4860 x = page->pages;
bc6697d8
ED
4861 total += x;
4862 nodes[node] += x;
49e22585 4863 }
81819f0f
CL
4864 }
4865 }
4866
e4f8e513
QC
4867 /*
4868 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4869 * already held which will conflict with an existing lock order:
4870 *
4871 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4872 *
4873 * We don't really need mem_hotplug_lock (to hold off
4874 * slab_mem_going_offline_callback) here because slab's memory hot
4875 * unplug code doesn't destroy the kmem_cache->node[] data.
4876 */
4877
ab4d5ed5 4878#ifdef CONFIG_SLUB_DEBUG
205ab99d 4879 if (flags & SO_ALL) {
fa45dc25
CL
4880 struct kmem_cache_node *n;
4881
4882 for_each_kmem_cache_node(s, node, n) {
205ab99d 4883
d0e0ac97
CG
4884 if (flags & SO_TOTAL)
4885 x = atomic_long_read(&n->total_objects);
4886 else if (flags & SO_OBJECTS)
4887 x = atomic_long_read(&n->total_objects) -
4888 count_partial(n, count_free);
81819f0f 4889 else
205ab99d 4890 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4891 total += x;
4892 nodes[node] += x;
4893 }
4894
ab4d5ed5
CL
4895 } else
4896#endif
4897 if (flags & SO_PARTIAL) {
fa45dc25 4898 struct kmem_cache_node *n;
81819f0f 4899
fa45dc25 4900 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4901 if (flags & SO_TOTAL)
4902 x = count_partial(n, count_total);
4903 else if (flags & SO_OBJECTS)
4904 x = count_partial(n, count_inuse);
81819f0f 4905 else
205ab99d 4906 x = n->nr_partial;
81819f0f
CL
4907 total += x;
4908 nodes[node] += x;
4909 }
4910 }
81819f0f
CL
4911 x = sprintf(buf, "%lu", total);
4912#ifdef CONFIG_NUMA
fa45dc25 4913 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4914 if (nodes[node])
4915 x += sprintf(buf + x, " N%d=%lu",
4916 node, nodes[node]);
4917#endif
4918 kfree(nodes);
4919 return x + sprintf(buf + x, "\n");
4920}
4921
ab4d5ed5 4922#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4923static int any_slab_objects(struct kmem_cache *s)
4924{
4925 int node;
fa45dc25 4926 struct kmem_cache_node *n;
81819f0f 4927
fa45dc25 4928 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4929 if (atomic_long_read(&n->total_objects))
81819f0f 4930 return 1;
fa45dc25 4931
81819f0f
CL
4932 return 0;
4933}
ab4d5ed5 4934#endif
81819f0f
CL
4935
4936#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4937#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4938
4939struct slab_attribute {
4940 struct attribute attr;
4941 ssize_t (*show)(struct kmem_cache *s, char *buf);
4942 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4943};
4944
4945#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4946 static struct slab_attribute _name##_attr = \
4947 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4948
4949#define SLAB_ATTR(_name) \
4950 static struct slab_attribute _name##_attr = \
ab067e99 4951 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4952
81819f0f
CL
4953static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4954{
44065b2e 4955 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4956}
4957SLAB_ATTR_RO(slab_size);
4958
4959static ssize_t align_show(struct kmem_cache *s, char *buf)
4960{
3a3791ec 4961 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4962}
4963SLAB_ATTR_RO(align);
4964
4965static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4966{
1b473f29 4967 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4968}
4969SLAB_ATTR_RO(object_size);
4970
4971static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4972{
19af27af 4973 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4974}
4975SLAB_ATTR_RO(objs_per_slab);
4976
06b285dc
CL
4977static ssize_t order_store(struct kmem_cache *s,
4978 const char *buf, size_t length)
4979{
19af27af 4980 unsigned int order;
0121c619
CL
4981 int err;
4982
19af27af 4983 err = kstrtouint(buf, 10, &order);
0121c619
CL
4984 if (err)
4985 return err;
06b285dc
CL
4986
4987 if (order > slub_max_order || order < slub_min_order)
4988 return -EINVAL;
4989
4990 calculate_sizes(s, order);
4991 return length;
4992}
4993
81819f0f
CL
4994static ssize_t order_show(struct kmem_cache *s, char *buf)
4995{
19af27af 4996 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4997}
06b285dc 4998SLAB_ATTR(order);
81819f0f 4999
73d342b1
DR
5000static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5001{
5002 return sprintf(buf, "%lu\n", s->min_partial);
5003}
5004
5005static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5006 size_t length)
5007{
5008 unsigned long min;
5009 int err;
5010
3dbb95f7 5011 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5012 if (err)
5013 return err;
5014
c0bdb232 5015 set_min_partial(s, min);
73d342b1
DR
5016 return length;
5017}
5018SLAB_ATTR(min_partial);
5019
49e22585
CL
5020static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5021{
e6d0e1dc 5022 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5023}
5024
5025static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5026 size_t length)
5027{
e5d9998f 5028 unsigned int objects;
49e22585
CL
5029 int err;
5030
e5d9998f 5031 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5032 if (err)
5033 return err;
345c905d 5034 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5035 return -EINVAL;
49e22585 5036
e6d0e1dc 5037 slub_set_cpu_partial(s, objects);
49e22585
CL
5038 flush_all(s);
5039 return length;
5040}
5041SLAB_ATTR(cpu_partial);
5042
81819f0f
CL
5043static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5044{
62c70bce
JP
5045 if (!s->ctor)
5046 return 0;
5047 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5048}
5049SLAB_ATTR_RO(ctor);
5050
81819f0f
CL
5051static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5052{
4307c14f 5053 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5054}
5055SLAB_ATTR_RO(aliases);
5056
81819f0f
CL
5057static ssize_t partial_show(struct kmem_cache *s, char *buf)
5058{
d9acf4b7 5059 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5060}
5061SLAB_ATTR_RO(partial);
5062
5063static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5064{
d9acf4b7 5065 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5066}
5067SLAB_ATTR_RO(cpu_slabs);
5068
5069static ssize_t objects_show(struct kmem_cache *s, char *buf)
5070{
205ab99d 5071 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5072}
5073SLAB_ATTR_RO(objects);
5074
205ab99d
CL
5075static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5076{
5077 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5078}
5079SLAB_ATTR_RO(objects_partial);
5080
49e22585
CL
5081static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5082{
5083 int objects = 0;
5084 int pages = 0;
5085 int cpu;
5086 int len;
5087
5088 for_each_online_cpu(cpu) {
a93cf07b
WY
5089 struct page *page;
5090
5091 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5092
5093 if (page) {
5094 pages += page->pages;
5095 objects += page->pobjects;
5096 }
5097 }
5098
5099 len = sprintf(buf, "%d(%d)", objects, pages);
5100
5101#ifdef CONFIG_SMP
5102 for_each_online_cpu(cpu) {
a93cf07b
WY
5103 struct page *page;
5104
5105 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5106
5107 if (page && len < PAGE_SIZE - 20)
5108 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5109 page->pobjects, page->pages);
5110 }
5111#endif
5112 return len + sprintf(buf + len, "\n");
5113}
5114SLAB_ATTR_RO(slabs_cpu_partial);
5115
a5a84755
CL
5116static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5117{
5118 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5119}
5120
5121static ssize_t reclaim_account_store(struct kmem_cache *s,
5122 const char *buf, size_t length)
5123{
5124 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5125 if (buf[0] == '1')
5126 s->flags |= SLAB_RECLAIM_ACCOUNT;
5127 return length;
5128}
5129SLAB_ATTR(reclaim_account);
5130
5131static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5132{
5133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5134}
5135SLAB_ATTR_RO(hwcache_align);
5136
5137#ifdef CONFIG_ZONE_DMA
5138static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5139{
5140 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5141}
5142SLAB_ATTR_RO(cache_dma);
5143#endif
5144
8eb8284b
DW
5145static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5146{
7bbdb81e 5147 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5148}
5149SLAB_ATTR_RO(usersize);
5150
a5a84755
CL
5151static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5152{
5f0d5a3a 5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5154}
5155SLAB_ATTR_RO(destroy_by_rcu);
5156
ab4d5ed5 5157#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5158static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5159{
5160 return show_slab_objects(s, buf, SO_ALL);
5161}
5162SLAB_ATTR_RO(slabs);
5163
205ab99d
CL
5164static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5165{
5166 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5167}
5168SLAB_ATTR_RO(total_objects);
5169
81819f0f
CL
5170static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5171{
becfda68 5172 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5173}
5174
5175static ssize_t sanity_checks_store(struct kmem_cache *s,
5176 const char *buf, size_t length)
5177{
becfda68 5178 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5179 if (buf[0] == '1') {
5180 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5181 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5182 }
81819f0f
CL
5183 return length;
5184}
5185SLAB_ATTR(sanity_checks);
5186
5187static ssize_t trace_show(struct kmem_cache *s, char *buf)
5188{
5189 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5190}
5191
5192static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5193 size_t length)
5194{
c9e16131
CL
5195 /*
5196 * Tracing a merged cache is going to give confusing results
5197 * as well as cause other issues like converting a mergeable
5198 * cache into an umergeable one.
5199 */
5200 if (s->refcount > 1)
5201 return -EINVAL;
5202
81819f0f 5203 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5204 if (buf[0] == '1') {
5205 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5206 s->flags |= SLAB_TRACE;
b789ef51 5207 }
81819f0f
CL
5208 return length;
5209}
5210SLAB_ATTR(trace);
5211
81819f0f
CL
5212static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5213{
5214 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5215}
5216
5217static ssize_t red_zone_store(struct kmem_cache *s,
5218 const char *buf, size_t length)
5219{
5220 if (any_slab_objects(s))
5221 return -EBUSY;
5222
5223 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5224 if (buf[0] == '1') {
81819f0f 5225 s->flags |= SLAB_RED_ZONE;
b789ef51 5226 }
06b285dc 5227 calculate_sizes(s, -1);
81819f0f
CL
5228 return length;
5229}
5230SLAB_ATTR(red_zone);
5231
5232static ssize_t poison_show(struct kmem_cache *s, char *buf)
5233{
5234 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5235}
5236
5237static ssize_t poison_store(struct kmem_cache *s,
5238 const char *buf, size_t length)
5239{
5240 if (any_slab_objects(s))
5241 return -EBUSY;
5242
5243 s->flags &= ~SLAB_POISON;
b789ef51 5244 if (buf[0] == '1') {
81819f0f 5245 s->flags |= SLAB_POISON;
b789ef51 5246 }
06b285dc 5247 calculate_sizes(s, -1);
81819f0f
CL
5248 return length;
5249}
5250SLAB_ATTR(poison);
5251
5252static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5253{
5254 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5255}
5256
5257static ssize_t store_user_store(struct kmem_cache *s,
5258 const char *buf, size_t length)
5259{
5260 if (any_slab_objects(s))
5261 return -EBUSY;
5262
5263 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5264 if (buf[0] == '1') {
5265 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5266 s->flags |= SLAB_STORE_USER;
b789ef51 5267 }
06b285dc 5268 calculate_sizes(s, -1);
81819f0f
CL
5269 return length;
5270}
5271SLAB_ATTR(store_user);
5272
53e15af0
CL
5273static ssize_t validate_show(struct kmem_cache *s, char *buf)
5274{
5275 return 0;
5276}
5277
5278static ssize_t validate_store(struct kmem_cache *s,
5279 const char *buf, size_t length)
5280{
434e245d
CL
5281 int ret = -EINVAL;
5282
5283 if (buf[0] == '1') {
5284 ret = validate_slab_cache(s);
5285 if (ret >= 0)
5286 ret = length;
5287 }
5288 return ret;
53e15af0
CL
5289}
5290SLAB_ATTR(validate);
a5a84755
CL
5291
5292static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5293{
5294 if (!(s->flags & SLAB_STORE_USER))
5295 return -ENOSYS;
5296 return list_locations(s, buf, TRACK_ALLOC);
5297}
5298SLAB_ATTR_RO(alloc_calls);
5299
5300static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5301{
5302 if (!(s->flags & SLAB_STORE_USER))
5303 return -ENOSYS;
5304 return list_locations(s, buf, TRACK_FREE);
5305}
5306SLAB_ATTR_RO(free_calls);
5307#endif /* CONFIG_SLUB_DEBUG */
5308
5309#ifdef CONFIG_FAILSLAB
5310static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5311{
5312 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5313}
5314
5315static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5316 size_t length)
5317{
c9e16131
CL
5318 if (s->refcount > 1)
5319 return -EINVAL;
5320
a5a84755
CL
5321 s->flags &= ~SLAB_FAILSLAB;
5322 if (buf[0] == '1')
5323 s->flags |= SLAB_FAILSLAB;
5324 return length;
5325}
5326SLAB_ATTR(failslab);
ab4d5ed5 5327#endif
53e15af0 5328
2086d26a
CL
5329static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5330{
5331 return 0;
5332}
5333
5334static ssize_t shrink_store(struct kmem_cache *s,
5335 const char *buf, size_t length)
5336{
832f37f5 5337 if (buf[0] == '1')
04f768a3 5338 kmem_cache_shrink_all(s);
832f37f5 5339 else
2086d26a
CL
5340 return -EINVAL;
5341 return length;
5342}
5343SLAB_ATTR(shrink);
5344
81819f0f 5345#ifdef CONFIG_NUMA
9824601e 5346static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5347{
eb7235eb 5348 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5349}
5350
9824601e 5351static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5352 const char *buf, size_t length)
5353{
eb7235eb 5354 unsigned int ratio;
0121c619
CL
5355 int err;
5356
eb7235eb 5357 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5358 if (err)
5359 return err;
eb7235eb
AD
5360 if (ratio > 100)
5361 return -ERANGE;
0121c619 5362
eb7235eb 5363 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5364
81819f0f
CL
5365 return length;
5366}
9824601e 5367SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5368#endif
5369
8ff12cfc 5370#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5371static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5372{
5373 unsigned long sum = 0;
5374 int cpu;
5375 int len;
6da2ec56 5376 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5377
5378 if (!data)
5379 return -ENOMEM;
5380
5381 for_each_online_cpu(cpu) {
9dfc6e68 5382 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5383
5384 data[cpu] = x;
5385 sum += x;
5386 }
5387
5388 len = sprintf(buf, "%lu", sum);
5389
50ef37b9 5390#ifdef CONFIG_SMP
8ff12cfc
CL
5391 for_each_online_cpu(cpu) {
5392 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5393 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5394 }
50ef37b9 5395#endif
8ff12cfc
CL
5396 kfree(data);
5397 return len + sprintf(buf + len, "\n");
5398}
5399
78eb00cc
DR
5400static void clear_stat(struct kmem_cache *s, enum stat_item si)
5401{
5402 int cpu;
5403
5404 for_each_online_cpu(cpu)
9dfc6e68 5405 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5406}
5407
8ff12cfc
CL
5408#define STAT_ATTR(si, text) \
5409static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5410{ \
5411 return show_stat(s, buf, si); \
5412} \
78eb00cc
DR
5413static ssize_t text##_store(struct kmem_cache *s, \
5414 const char *buf, size_t length) \
5415{ \
5416 if (buf[0] != '0') \
5417 return -EINVAL; \
5418 clear_stat(s, si); \
5419 return length; \
5420} \
5421SLAB_ATTR(text); \
8ff12cfc
CL
5422
5423STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5424STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5425STAT_ATTR(FREE_FASTPATH, free_fastpath);
5426STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5427STAT_ATTR(FREE_FROZEN, free_frozen);
5428STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5429STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5430STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5431STAT_ATTR(ALLOC_SLAB, alloc_slab);
5432STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5433STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5434STAT_ATTR(FREE_SLAB, free_slab);
5435STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5436STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5437STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5438STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5439STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5440STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5441STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5442STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5443STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5444STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5445STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5446STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5447STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5448STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5449#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5450
06428780 5451static struct attribute *slab_attrs[] = {
81819f0f
CL
5452 &slab_size_attr.attr,
5453 &object_size_attr.attr,
5454 &objs_per_slab_attr.attr,
5455 &order_attr.attr,
73d342b1 5456 &min_partial_attr.attr,
49e22585 5457 &cpu_partial_attr.attr,
81819f0f 5458 &objects_attr.attr,
205ab99d 5459 &objects_partial_attr.attr,
81819f0f
CL
5460 &partial_attr.attr,
5461 &cpu_slabs_attr.attr,
5462 &ctor_attr.attr,
81819f0f
CL
5463 &aliases_attr.attr,
5464 &align_attr.attr,
81819f0f
CL
5465 &hwcache_align_attr.attr,
5466 &reclaim_account_attr.attr,
5467 &destroy_by_rcu_attr.attr,
a5a84755 5468 &shrink_attr.attr,
49e22585 5469 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5470#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5471 &total_objects_attr.attr,
5472 &slabs_attr.attr,
5473 &sanity_checks_attr.attr,
5474 &trace_attr.attr,
81819f0f
CL
5475 &red_zone_attr.attr,
5476 &poison_attr.attr,
5477 &store_user_attr.attr,
53e15af0 5478 &validate_attr.attr,
88a420e4
CL
5479 &alloc_calls_attr.attr,
5480 &free_calls_attr.attr,
ab4d5ed5 5481#endif
81819f0f
CL
5482#ifdef CONFIG_ZONE_DMA
5483 &cache_dma_attr.attr,
5484#endif
5485#ifdef CONFIG_NUMA
9824601e 5486 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5487#endif
5488#ifdef CONFIG_SLUB_STATS
5489 &alloc_fastpath_attr.attr,
5490 &alloc_slowpath_attr.attr,
5491 &free_fastpath_attr.attr,
5492 &free_slowpath_attr.attr,
5493 &free_frozen_attr.attr,
5494 &free_add_partial_attr.attr,
5495 &free_remove_partial_attr.attr,
5496 &alloc_from_partial_attr.attr,
5497 &alloc_slab_attr.attr,
5498 &alloc_refill_attr.attr,
e36a2652 5499 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5500 &free_slab_attr.attr,
5501 &cpuslab_flush_attr.attr,
5502 &deactivate_full_attr.attr,
5503 &deactivate_empty_attr.attr,
5504 &deactivate_to_head_attr.attr,
5505 &deactivate_to_tail_attr.attr,
5506 &deactivate_remote_frees_attr.attr,
03e404af 5507 &deactivate_bypass_attr.attr,
65c3376a 5508 &order_fallback_attr.attr,
b789ef51
CL
5509 &cmpxchg_double_fail_attr.attr,
5510 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5511 &cpu_partial_alloc_attr.attr,
5512 &cpu_partial_free_attr.attr,
8028dcea
AS
5513 &cpu_partial_node_attr.attr,
5514 &cpu_partial_drain_attr.attr,
81819f0f 5515#endif
4c13dd3b
DM
5516#ifdef CONFIG_FAILSLAB
5517 &failslab_attr.attr,
5518#endif
8eb8284b 5519 &usersize_attr.attr,
4c13dd3b 5520
81819f0f
CL
5521 NULL
5522};
5523
1fdaaa23 5524static const struct attribute_group slab_attr_group = {
81819f0f
CL
5525 .attrs = slab_attrs,
5526};
5527
5528static ssize_t slab_attr_show(struct kobject *kobj,
5529 struct attribute *attr,
5530 char *buf)
5531{
5532 struct slab_attribute *attribute;
5533 struct kmem_cache *s;
5534 int err;
5535
5536 attribute = to_slab_attr(attr);
5537 s = to_slab(kobj);
5538
5539 if (!attribute->show)
5540 return -EIO;
5541
5542 err = attribute->show(s, buf);
5543
5544 return err;
5545}
5546
5547static ssize_t slab_attr_store(struct kobject *kobj,
5548 struct attribute *attr,
5549 const char *buf, size_t len)
5550{
5551 struct slab_attribute *attribute;
5552 struct kmem_cache *s;
5553 int err;
5554
5555 attribute = to_slab_attr(attr);
5556 s = to_slab(kobj);
5557
5558 if (!attribute->store)
5559 return -EIO;
5560
5561 err = attribute->store(s, buf, len);
127424c8 5562#ifdef CONFIG_MEMCG
107dab5c 5563 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5564 struct kmem_cache *c;
81819f0f 5565
107dab5c
GC
5566 mutex_lock(&slab_mutex);
5567 if (s->max_attr_size < len)
5568 s->max_attr_size = len;
5569
ebe945c2
GC
5570 /*
5571 * This is a best effort propagation, so this function's return
5572 * value will be determined by the parent cache only. This is
5573 * basically because not all attributes will have a well
5574 * defined semantics for rollbacks - most of the actions will
5575 * have permanent effects.
5576 *
5577 * Returning the error value of any of the children that fail
5578 * is not 100 % defined, in the sense that users seeing the
5579 * error code won't be able to know anything about the state of
5580 * the cache.
5581 *
5582 * Only returning the error code for the parent cache at least
5583 * has well defined semantics. The cache being written to
5584 * directly either failed or succeeded, in which case we loop
5585 * through the descendants with best-effort propagation.
5586 */
426589f5
VD
5587 for_each_memcg_cache(c, s)
5588 attribute->store(c, buf, len);
107dab5c
GC
5589 mutex_unlock(&slab_mutex);
5590 }
5591#endif
81819f0f
CL
5592 return err;
5593}
5594
107dab5c
GC
5595static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5596{
127424c8 5597#ifdef CONFIG_MEMCG
107dab5c
GC
5598 int i;
5599 char *buffer = NULL;
93030d83 5600 struct kmem_cache *root_cache;
107dab5c 5601
93030d83 5602 if (is_root_cache(s))
107dab5c
GC
5603 return;
5604
f7ce3190 5605 root_cache = s->memcg_params.root_cache;
93030d83 5606
107dab5c
GC
5607 /*
5608 * This mean this cache had no attribute written. Therefore, no point
5609 * in copying default values around
5610 */
93030d83 5611 if (!root_cache->max_attr_size)
107dab5c
GC
5612 return;
5613
5614 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5615 char mbuf[64];
5616 char *buf;
5617 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5618 ssize_t len;
107dab5c
GC
5619
5620 if (!attr || !attr->store || !attr->show)
5621 continue;
5622
5623 /*
5624 * It is really bad that we have to allocate here, so we will
5625 * do it only as a fallback. If we actually allocate, though,
5626 * we can just use the allocated buffer until the end.
5627 *
5628 * Most of the slub attributes will tend to be very small in
5629 * size, but sysfs allows buffers up to a page, so they can
5630 * theoretically happen.
5631 */
5632 if (buffer)
5633 buf = buffer;
93030d83 5634 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5635 buf = mbuf;
5636 else {
5637 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5638 if (WARN_ON(!buffer))
5639 continue;
5640 buf = buffer;
5641 }
5642
478fe303
TG
5643 len = attr->show(root_cache, buf);
5644 if (len > 0)
5645 attr->store(s, buf, len);
107dab5c
GC
5646 }
5647
5648 if (buffer)
5649 free_page((unsigned long)buffer);
6dfd1b65 5650#endif /* CONFIG_MEMCG */
107dab5c
GC
5651}
5652
41a21285
CL
5653static void kmem_cache_release(struct kobject *k)
5654{
5655 slab_kmem_cache_release(to_slab(k));
5656}
5657
52cf25d0 5658static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5659 .show = slab_attr_show,
5660 .store = slab_attr_store,
5661};
5662
5663static struct kobj_type slab_ktype = {
5664 .sysfs_ops = &slab_sysfs_ops,
41a21285 5665 .release = kmem_cache_release,
81819f0f
CL
5666};
5667
5668static int uevent_filter(struct kset *kset, struct kobject *kobj)
5669{
5670 struct kobj_type *ktype = get_ktype(kobj);
5671
5672 if (ktype == &slab_ktype)
5673 return 1;
5674 return 0;
5675}
5676
9cd43611 5677static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5678 .filter = uevent_filter,
5679};
5680
27c3a314 5681static struct kset *slab_kset;
81819f0f 5682
9a41707b
VD
5683static inline struct kset *cache_kset(struct kmem_cache *s)
5684{
127424c8 5685#ifdef CONFIG_MEMCG
9a41707b 5686 if (!is_root_cache(s))
f7ce3190 5687 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5688#endif
5689 return slab_kset;
5690}
5691
81819f0f
CL
5692#define ID_STR_LENGTH 64
5693
5694/* Create a unique string id for a slab cache:
6446faa2
CL
5695 *
5696 * Format :[flags-]size
81819f0f
CL
5697 */
5698static char *create_unique_id(struct kmem_cache *s)
5699{
5700 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5701 char *p = name;
5702
5703 BUG_ON(!name);
5704
5705 *p++ = ':';
5706 /*
5707 * First flags affecting slabcache operations. We will only
5708 * get here for aliasable slabs so we do not need to support
5709 * too many flags. The flags here must cover all flags that
5710 * are matched during merging to guarantee that the id is
5711 * unique.
5712 */
5713 if (s->flags & SLAB_CACHE_DMA)
5714 *p++ = 'd';
6d6ea1e9
NB
5715 if (s->flags & SLAB_CACHE_DMA32)
5716 *p++ = 'D';
81819f0f
CL
5717 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5718 *p++ = 'a';
becfda68 5719 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5720 *p++ = 'F';
230e9fc2
VD
5721 if (s->flags & SLAB_ACCOUNT)
5722 *p++ = 'A';
81819f0f
CL
5723 if (p != name + 1)
5724 *p++ = '-';
44065b2e 5725 p += sprintf(p, "%07u", s->size);
2633d7a0 5726
81819f0f
CL
5727 BUG_ON(p > name + ID_STR_LENGTH - 1);
5728 return name;
5729}
5730
3b7b3140
TH
5731static void sysfs_slab_remove_workfn(struct work_struct *work)
5732{
5733 struct kmem_cache *s =
5734 container_of(work, struct kmem_cache, kobj_remove_work);
5735
5736 if (!s->kobj.state_in_sysfs)
5737 /*
5738 * For a memcg cache, this may be called during
5739 * deactivation and again on shutdown. Remove only once.
5740 * A cache is never shut down before deactivation is
5741 * complete, so no need to worry about synchronization.
5742 */
f6ba4880 5743 goto out;
3b7b3140
TH
5744
5745#ifdef CONFIG_MEMCG
5746 kset_unregister(s->memcg_kset);
5747#endif
5748 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5749out:
3b7b3140
TH
5750 kobject_put(&s->kobj);
5751}
5752
81819f0f
CL
5753static int sysfs_slab_add(struct kmem_cache *s)
5754{
5755 int err;
5756 const char *name;
1663f26d 5757 struct kset *kset = cache_kset(s);
45530c44 5758 int unmergeable = slab_unmergeable(s);
81819f0f 5759
3b7b3140
TH
5760 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5761
1663f26d
TH
5762 if (!kset) {
5763 kobject_init(&s->kobj, &slab_ktype);
5764 return 0;
5765 }
5766
11066386
MC
5767 if (!unmergeable && disable_higher_order_debug &&
5768 (slub_debug & DEBUG_METADATA_FLAGS))
5769 unmergeable = 1;
5770
81819f0f
CL
5771 if (unmergeable) {
5772 /*
5773 * Slabcache can never be merged so we can use the name proper.
5774 * This is typically the case for debug situations. In that
5775 * case we can catch duplicate names easily.
5776 */
27c3a314 5777 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5778 name = s->name;
5779 } else {
5780 /*
5781 * Create a unique name for the slab as a target
5782 * for the symlinks.
5783 */
5784 name = create_unique_id(s);
5785 }
5786
1663f26d 5787 s->kobj.kset = kset;
26e4f205 5788 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5789 if (err)
80da026a 5790 goto out;
81819f0f
CL
5791
5792 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5793 if (err)
5794 goto out_del_kobj;
9a41707b 5795
127424c8 5796#ifdef CONFIG_MEMCG
1663f26d 5797 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5798 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5799 if (!s->memcg_kset) {
54b6a731
DJ
5800 err = -ENOMEM;
5801 goto out_del_kobj;
9a41707b
VD
5802 }
5803 }
5804#endif
5805
81819f0f
CL
5806 kobject_uevent(&s->kobj, KOBJ_ADD);
5807 if (!unmergeable) {
5808 /* Setup first alias */
5809 sysfs_slab_alias(s, s->name);
81819f0f 5810 }
54b6a731
DJ
5811out:
5812 if (!unmergeable)
5813 kfree(name);
5814 return err;
5815out_del_kobj:
5816 kobject_del(&s->kobj);
54b6a731 5817 goto out;
81819f0f
CL
5818}
5819
bf5eb3de 5820static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5821{
97d06609 5822 if (slab_state < FULL)
2bce6485
CL
5823 /*
5824 * Sysfs has not been setup yet so no need to remove the
5825 * cache from sysfs.
5826 */
5827 return;
5828
3b7b3140
TH
5829 kobject_get(&s->kobj);
5830 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5831}
5832
d50d82fa
MP
5833void sysfs_slab_unlink(struct kmem_cache *s)
5834{
5835 if (slab_state >= FULL)
5836 kobject_del(&s->kobj);
5837}
5838
bf5eb3de
TH
5839void sysfs_slab_release(struct kmem_cache *s)
5840{
5841 if (slab_state >= FULL)
5842 kobject_put(&s->kobj);
81819f0f
CL
5843}
5844
5845/*
5846 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5847 * available lest we lose that information.
81819f0f
CL
5848 */
5849struct saved_alias {
5850 struct kmem_cache *s;
5851 const char *name;
5852 struct saved_alias *next;
5853};
5854
5af328a5 5855static struct saved_alias *alias_list;
81819f0f
CL
5856
5857static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5858{
5859 struct saved_alias *al;
5860
97d06609 5861 if (slab_state == FULL) {
81819f0f
CL
5862 /*
5863 * If we have a leftover link then remove it.
5864 */
27c3a314
GKH
5865 sysfs_remove_link(&slab_kset->kobj, name);
5866 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5867 }
5868
5869 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5870 if (!al)
5871 return -ENOMEM;
5872
5873 al->s = s;
5874 al->name = name;
5875 al->next = alias_list;
5876 alias_list = al;
5877 return 0;
5878}
5879
5880static int __init slab_sysfs_init(void)
5881{
5b95a4ac 5882 struct kmem_cache *s;
81819f0f
CL
5883 int err;
5884
18004c5d 5885 mutex_lock(&slab_mutex);
2bce6485 5886
0ff21e46 5887 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5888 if (!slab_kset) {
18004c5d 5889 mutex_unlock(&slab_mutex);
f9f58285 5890 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5891 return -ENOSYS;
5892 }
5893
97d06609 5894 slab_state = FULL;
26a7bd03 5895
5b95a4ac 5896 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5897 err = sysfs_slab_add(s);
5d540fb7 5898 if (err)
f9f58285
FF
5899 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5900 s->name);
26a7bd03 5901 }
81819f0f
CL
5902
5903 while (alias_list) {
5904 struct saved_alias *al = alias_list;
5905
5906 alias_list = alias_list->next;
5907 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5908 if (err)
f9f58285
FF
5909 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5910 al->name);
81819f0f
CL
5911 kfree(al);
5912 }
5913
18004c5d 5914 mutex_unlock(&slab_mutex);
81819f0f
CL
5915 resiliency_test();
5916 return 0;
5917}
5918
5919__initcall(slab_sysfs_init);
ab4d5ed5 5920#endif /* CONFIG_SYSFS */
57ed3eda
PE
5921
5922/*
5923 * The /proc/slabinfo ABI
5924 */
5b365771 5925#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5926void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5927{
57ed3eda 5928 unsigned long nr_slabs = 0;
205ab99d
CL
5929 unsigned long nr_objs = 0;
5930 unsigned long nr_free = 0;
57ed3eda 5931 int node;
fa45dc25 5932 struct kmem_cache_node *n;
57ed3eda 5933
fa45dc25 5934 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5935 nr_slabs += node_nr_slabs(n);
5936 nr_objs += node_nr_objs(n);
205ab99d 5937 nr_free += count_partial(n, count_free);
57ed3eda
PE
5938 }
5939
0d7561c6
GC
5940 sinfo->active_objs = nr_objs - nr_free;
5941 sinfo->num_objs = nr_objs;
5942 sinfo->active_slabs = nr_slabs;
5943 sinfo->num_slabs = nr_slabs;
5944 sinfo->objects_per_slab = oo_objects(s->oo);
5945 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5946}
5947
0d7561c6 5948void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5949{
7b3c3a50
AD
5950}
5951
b7454ad3
GC
5952ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5953 size_t count, loff_t *ppos)
7b3c3a50 5954{
b7454ad3 5955 return -EIO;
7b3c3a50 5956}
5b365771 5957#endif /* CONFIG_SLUB_DEBUG */