Merge tag 'rtc-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[linux-2.6-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
c7b23b68 14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
68ef169a 25#include <linux/kmsan.h>
81819f0f
CL
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
5cf909c5 30#include <linux/stackdepot.h>
3ac7fe5a 31#include <linux/debugobjects.h>
81819f0f 32#include <linux/kallsyms.h>
b89fb5ef 33#include <linux/kfence.h>
b9049e23 34#include <linux/memory.h>
f8bd2258 35#include <linux/math64.h>
773ff60e 36#include <linux/fault-inject.h>
6011be59 37#include <linux/kmemleak.h>
bfa71457 38#include <linux/stacktrace.h>
4de900b4 39#include <linux/prefetch.h>
2633d7a0 40#include <linux/memcontrol.h>
2482ddec 41#include <linux/random.h>
1f9f78b1 42#include <kunit/test.h>
909c6475 43#include <kunit/test-bug.h>
553c0369 44#include <linux/sort.h>
81819f0f 45
64dd6849 46#include <linux/debugfs.h>
4a92379b
RK
47#include <trace/events/kmem.h>
48
072bb0aa
MG
49#include "internal.h"
50
81819f0f
CL
51/*
52 * Lock order:
18004c5d 53 * 1. slab_mutex (Global Mutex)
bd0e7491
VB
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
41bec7c3 56 * 4. slab_lock(slab) (Only on some arches)
bd0e7491 57 * 5. object_map_lock (Only for debugging)
81819f0f 58 *
18004c5d 59 * slab_mutex
881db7fb 60 *
18004c5d 61 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb 62 * and to synchronize major metadata changes to slab cache structures.
bd0e7491
VB
63 * Also synchronizes memory hotplug callbacks.
64 *
65 * slab_lock
66 *
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
881db7fb 69 *
41bec7c3
VB
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
72 *
c2092c12
VB
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
881db7fb 77 *
bd0e7491
VB
78 * Frozen slabs
79 *
31bda717
CZ
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
c2092c12 83 * slab is the one who can perform list operations on the slab. Other
632b2ef0
LX
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
c2092c12 86 * slab's freelist.
81819f0f 87 *
31bda717
CZ
88 * CPU partial slabs
89 *
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
95 *
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
101 *
bd0e7491
VB
102 * list_lock
103 *
81819f0f
CL
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
109 *
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
bd0e7491 115 *
41bec7c3
VB
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
118 *
bd0e7491
VB
119 * cpu_slab->lock local lock
120 *
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
1f04b07d
TG
125 *
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
bd0e7491
VB
130 *
131 * lockless fastpaths
132 *
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
139 *
140 * irq, preemption, migration considerations
141 *
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
145 *
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
81819f0f
CL
150 *
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
153 *
672bba3a
CL
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 156 * freed then the slab will show up again on the partial lists.
672bba3a
CL
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
81819f0f
CL
159 *
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
163 *
c2092c12 164 * slab->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
172 *
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
dfb4f096 176 * freelist that allows lockless access to
894b8788
CL
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
81819f0f 179 *
aed68148 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 181 * options set. This moves slab handling out of
894b8788 182 * the fast path and disables lockless freelists.
81819f0f
CL
183 */
184
25c00c50
VB
185/*
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188 */
189#ifndef CONFIG_PREEMPT_RT
1f04b07d
TG
190#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192#define USE_LOCKLESS_FAST_PATH() (true)
25c00c50
VB
193#else
194#define slub_get_cpu_ptr(var) \
195({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
198})
199#define slub_put_cpu_ptr(var) \
200do { \
201 (void)(var); \
202 migrate_enable(); \
203} while (0)
1f04b07d 204#define USE_LOCKLESS_FAST_PATH() (false)
25c00c50
VB
205#endif
206
be784ba8
VB
207#ifndef CONFIG_SLUB_TINY
208#define __fastpath_inline __always_inline
209#else
210#define __fastpath_inline
211#endif
212
ca0cab65
VB
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
79270291 219#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 220
6edf2576
FT
221/* Structure holding parameters for get_partial() call chain */
222struct partial_context {
6edf2576
FT
223 gfp_t flags;
224 unsigned int orig_size;
43c4c349 225 void *object;
6edf2576
FT
226};
227
59052e89
VB
228static inline bool kmem_cache_debug(struct kmem_cache *s)
229{
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 231}
5577bd8a 232
6edf2576
FT
233static inline bool slub_debug_orig_size(struct kmem_cache *s)
234{
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
237}
238
117d54df 239void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 240{
59052e89 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
242 p += s->red_left_pad;
243
244 return p;
245}
246
345c905d
JK
247static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248{
249#ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
251#else
252 return false;
253#endif
254}
255
81819f0f
CL
256/*
257 * Issues still to be resolved:
258 *
81819f0f
CL
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260 *
81819f0f
CL
261 * - Variable sizing of the per node arrays
262 */
263
b789ef51
CL
264/* Enable to log cmpxchg failures */
265#undef SLUB_DEBUG_CMPXCHG
266
5a8a3c1f 267#ifndef CONFIG_SLUB_TINY
2086d26a 268/*
dc84207d 269 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
271 */
76be8950 272#define MIN_PARTIAL 5
e95eed57 273
2086d26a
CL
274/*
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 277 * sort the partial list by the number of objects in use.
2086d26a
CL
278 */
279#define MAX_PARTIAL 10
5a8a3c1f
VB
280#else
281#define MIN_PARTIAL 0
282#define MAX_PARTIAL 0
283#endif
2086d26a 284
becfda68 285#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 286 SLAB_POISON | SLAB_STORE_USER)
672bba3a 287
149daaf3
LA
288/*
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
291 */
292#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 SLAB_TRACE)
294
295
fa5ec8a1 296/*
3de47213
DR
297 * Debugging flags that require metadata to be stored in the slab. These get
298 * disabled when slub_debug=O is used and a cache's min order increases with
299 * metadata.
fa5ec8a1 300 */
3de47213 301#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 302
210b5c06
CG
303#define OO_SHIFT 16
304#define OO_MASK ((1 << OO_SHIFT) - 1)
c2092c12 305#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
210b5c06 306
81819f0f 307/* Internal SLUB flags */
d50112ed 308/* Poison object */
4fd0b46e 309#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 310/* Use cmpxchg_double */
6801be4f
PZ
311
312#ifdef system_has_freelist_aba
4fd0b46e 313#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
6801be4f
PZ
314#else
315#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U)
316#endif
81819f0f 317
02cbc874
CL
318/*
319 * Tracking user of a slab.
320 */
d6543e39 321#define TRACK_ADDRS_COUNT 16
02cbc874 322struct track {
ce71e27c 323 unsigned long addr; /* Called from address */
5cf909c5
OG
324#ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
d6543e39 326#endif
02cbc874
CL
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
330};
331
332enum track_item { TRACK_ALLOC, TRACK_FREE };
333
b1a413a3 334#ifdef SLAB_SUPPORTS_SYSFS
81819f0f
CL
335static int sysfs_slab_add(struct kmem_cache *);
336static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 337#else
0c710013
CL
338static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 { return 0; }
81819f0f
CL
341#endif
342
64dd6849
FM
343#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344static void debugfs_slab_add(struct kmem_cache *);
345#else
346static inline void debugfs_slab_add(struct kmem_cache *s) { }
347#endif
348
7ef08ae8
VB
349enum stat_item {
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
376 NR_SLUB_STAT_ITEMS
377};
378
379#ifndef CONFIG_SLUB_TINY
380/*
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
383 */
384struct kmem_cache_cpu {
385 union {
386 struct {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
389 };
390 freelist_aba_t freelist_tid;
391 };
392 struct slab *slab; /* The slab from which we are allocating */
393#ifdef CONFIG_SLUB_CPU_PARTIAL
394 struct slab *partial; /* Partially allocated frozen slabs */
395#endif
396 local_lock_t lock; /* Protects the fields above */
397#ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
399#endif
400};
401#endif /* CONFIG_SLUB_TINY */
402
4fdccdfb 403static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
404{
405#ifdef CONFIG_SLUB_STATS
88da03a6
CL
406 /*
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
409 */
410 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
411#endif
412}
413
6f3dd2c3
VB
414static inline
415void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416{
417#ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
419#endif
420}
421
b52ef56e
VB
422/*
423 * The slab lists for all objects.
424 */
425struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429#ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
433#endif
434};
435
436static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437{
438 return s->node[node];
439}
440
441/*
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
444 */
445#define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
448
7e1fa93d
VB
449/*
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
454 */
455static nodemask_t slab_nodes;
456
0af8489b 457#ifndef CONFIG_SLUB_TINY
e45cc288
ML
458/*
459 * Workqueue used for flush_cpu_slab().
460 */
461static struct workqueue_struct *flushwq;
0af8489b 462#endif
e45cc288 463
81819f0f
CL
464/********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
467
44f6a42d
JH
468/*
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471 */
472typedef struct { unsigned long v; } freeptr_t;
473
2482ddec
KC
474/*
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
477 * random number.
478 */
44f6a42d
JH
479static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 void *ptr, unsigned long ptr_addr)
2482ddec 481{
b06952cd
VB
482 unsigned long encoded;
483
2482ddec 484#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
44f6a42d 486#else
b06952cd 487 encoded = (unsigned long)ptr;
44f6a42d 488#endif
b06952cd 489 return (freeptr_t){.v = encoded};
44f6a42d
JH
490}
491
492static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 freeptr_t ptr, unsigned long ptr_addr)
494{
495 void *decoded;
496
497#ifdef CONFIG_SLAB_FREELIST_HARDENED
b06952cd 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
2482ddec 499#else
44f6a42d 500 decoded = (void *)ptr.v;
2482ddec 501#endif
44f6a42d 502 return decoded;
2482ddec
KC
503}
504
7656c72b
CL
505static inline void *get_freepointer(struct kmem_cache *s, void *object)
506{
1662b6c2
VB
507 unsigned long ptr_addr;
508 freeptr_t p;
509
aa1ef4d7 510 object = kasan_reset_tag(object);
1662b6c2
VB
511 ptr_addr = (unsigned long)object + s->offset;
512 p = *(freeptr_t *)(ptr_addr);
513 return freelist_ptr_decode(s, p, ptr_addr);
7656c72b
CL
514}
515
0af8489b 516#ifndef CONFIG_SLUB_TINY
0ad9500e
ED
517static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518{
04b4b006 519 prefetchw(object + s->offset);
0ad9500e 520}
0af8489b 521#endif
0ad9500e 522
68ef169a
AP
523/*
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
532 */
533__no_kmsan_checks
1393d9a1
CL
534static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535{
2482ddec 536 unsigned long freepointer_addr;
44f6a42d 537 freeptr_t p;
1393d9a1 538
8e57f8ac 539 if (!debug_pagealloc_enabled_static())
922d566c
JK
540 return get_freepointer(s, object);
541
f70b0049 542 object = kasan_reset_tag(object);
2482ddec 543 freepointer_addr = (unsigned long)object + s->offset;
44f6a42d
JH
544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 return freelist_ptr_decode(s, p, freepointer_addr);
1393d9a1
CL
546}
547
7656c72b
CL
548static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549{
2482ddec
KC
550 unsigned long freeptr_addr = (unsigned long)object + s->offset;
551
ce6fa91b
AP
552#ifdef CONFIG_SLAB_FREELIST_HARDENED
553 BUG_ON(object == fp); /* naive detection of double free or corruption */
554#endif
555
aa1ef4d7 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
44f6a42d 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
7656c72b
CL
558}
559
560/* Loop over all objects in a slab */
224a88be 561#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
562 for (__p = fixup_red_left(__s, __addr); \
563 __p < (__addr) + (__objects) * (__s)->size; \
564 __p += (__s)->size)
7656c72b 565
9736d2a9 566static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 567{
9736d2a9 568 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
569}
570
19af27af 571static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 572 unsigned int size)
834f3d11
CL
573{
574 struct kmem_cache_order_objects x = {
9736d2a9 575 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
576 };
577
578 return x;
579}
580
19af27af 581static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 582{
210b5c06 583 return x.x >> OO_SHIFT;
834f3d11
CL
584}
585
19af27af 586static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 587{
210b5c06 588 return x.x & OO_MASK;
834f3d11
CL
589}
590
b47291ef
VB
591#ifdef CONFIG_SLUB_CPU_PARTIAL
592static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
593{
bb192ed9 594 unsigned int nr_slabs;
b47291ef
VB
595
596 s->cpu_partial = nr_objects;
597
598 /*
599 * We take the number of objects but actually limit the number of
c2092c12
VB
600 * slabs on the per cpu partial list, in order to limit excessive
601 * growth of the list. For simplicity we assume that the slabs will
b47291ef
VB
602 * be half-full.
603 */
bb192ed9
VB
604 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
605 s->cpu_partial_slabs = nr_slabs;
b47291ef
VB
606}
607#else
608static inline void
609slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
610{
611}
612#endif /* CONFIG_SLUB_CPU_PARTIAL */
613
881db7fb
CL
614/*
615 * Per slab locking using the pagelock
616 */
5875e598 617static __always_inline void slab_lock(struct slab *slab)
881db7fb 618{
0393895b
VB
619 struct page *page = slab_page(slab);
620
48c935ad 621 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
622 bit_spin_lock(PG_locked, &page->flags);
623}
624
5875e598 625static __always_inline void slab_unlock(struct slab *slab)
881db7fb 626{
0393895b
VB
627 struct page *page = slab_page(slab);
628
48c935ad 629 VM_BUG_ON_PAGE(PageTail(page), page);
8a399e2f 630 bit_spin_unlock(PG_locked, &page->flags);
881db7fb
CL
631}
632
6801be4f
PZ
633static inline bool
634__update_freelist_fast(struct slab *slab,
635 void *freelist_old, unsigned long counters_old,
636 void *freelist_new, unsigned long counters_new)
637{
638#ifdef system_has_freelist_aba
639 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
640 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
641
642 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
643#else
644 return false;
645#endif
646}
647
648static inline bool
649__update_freelist_slow(struct slab *slab,
650 void *freelist_old, unsigned long counters_old,
651 void *freelist_new, unsigned long counters_new)
652{
653 bool ret = false;
654
655 slab_lock(slab);
656 if (slab->freelist == freelist_old &&
657 slab->counters == counters_old) {
658 slab->freelist = freelist_new;
659 slab->counters = counters_new;
660 ret = true;
661 }
662 slab_unlock(slab);
663
664 return ret;
665}
666
a2b4ae8b
VB
667/*
668 * Interrupts must be disabled (for the fallback code to work right), typically
5875e598
VB
669 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
670 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
671 * allocation/ free operation in hardirq context. Therefore nothing can
672 * interrupt the operation.
a2b4ae8b 673 */
6801be4f 674static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
1d07171c
CL
675 void *freelist_old, unsigned long counters_old,
676 void *freelist_new, unsigned long counters_new,
677 const char *n)
678{
6801be4f
PZ
679 bool ret;
680
1f04b07d 681 if (USE_LOCKLESS_FAST_PATH())
a2b4ae8b 682 lockdep_assert_irqs_disabled();
6801be4f 683
1d07171c 684 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
685 ret = __update_freelist_fast(slab, freelist_old, counters_old,
686 freelist_new, counters_new);
687 } else {
688 ret = __update_freelist_slow(slab, freelist_old, counters_old,
689 freelist_new, counters_new);
1d07171c 690 }
6801be4f
PZ
691 if (likely(ret))
692 return true;
1d07171c
CL
693
694 cpu_relax();
695 stat(s, CMPXCHG_DOUBLE_FAIL);
696
697#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 698 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
699#endif
700
6f6528a1 701 return false;
1d07171c
CL
702}
703
6801be4f 704static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
b789ef51
CL
705 void *freelist_old, unsigned long counters_old,
706 void *freelist_new, unsigned long counters_new,
707 const char *n)
708{
6801be4f
PZ
709 bool ret;
710
b789ef51 711 if (s->flags & __CMPXCHG_DOUBLE) {
6801be4f
PZ
712 ret = __update_freelist_fast(slab, freelist_old, counters_old,
713 freelist_new, counters_new);
714 } else {
1d07171c
CL
715 unsigned long flags;
716
717 local_irq_save(flags);
6801be4f
PZ
718 ret = __update_freelist_slow(slab, freelist_old, counters_old,
719 freelist_new, counters_new);
1d07171c 720 local_irq_restore(flags);
b789ef51 721 }
6801be4f
PZ
722 if (likely(ret))
723 return true;
b789ef51
CL
724
725 cpu_relax();
726 stat(s, CMPXCHG_DOUBLE_FAIL);
727
728#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 729 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
730#endif
731
6f6528a1 732 return false;
b789ef51
CL
733}
734
41ecc55b 735#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 736static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
4ef3f5a3 737static DEFINE_SPINLOCK(object_map_lock);
90e9f6a6 738
b3fd64e1 739static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
bb192ed9 740 struct slab *slab)
b3fd64e1 741{
bb192ed9 742 void *addr = slab_address(slab);
b3fd64e1
VB
743 void *p;
744
bb192ed9 745 bitmap_zero(obj_map, slab->objects);
b3fd64e1 746
bb192ed9 747 for (p = slab->freelist; p; p = get_freepointer(s, p))
b3fd64e1
VB
748 set_bit(__obj_to_index(s, addr, p), obj_map);
749}
750
1f9f78b1
OG
751#if IS_ENABLED(CONFIG_KUNIT)
752static bool slab_add_kunit_errors(void)
753{
754 struct kunit_resource *resource;
755
909c6475 756 if (!kunit_get_current_test())
1f9f78b1
OG
757 return false;
758
759 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
760 if (!resource)
761 return false;
762
763 (*(int *)resource->data)++;
764 kunit_put_resource(resource);
765 return true;
766}
767#else
768static inline bool slab_add_kunit_errors(void) { return false; }
769#endif
770
870b1fbb 771static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
772{
773 if (s->flags & SLAB_RED_ZONE)
774 return s->size - s->red_left_pad;
775
776 return s->size;
777}
778
779static inline void *restore_red_left(struct kmem_cache *s, void *p)
780{
781 if (s->flags & SLAB_RED_ZONE)
782 p -= s->red_left_pad;
783
784 return p;
785}
786
41ecc55b
CL
787/*
788 * Debug settings:
789 */
89d3c87e 790#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 791static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 792#else
d50112ed 793static slab_flags_t slub_debug;
f0630fff 794#endif
41ecc55b 795
e17f1dfb 796static char *slub_debug_string;
fa5ec8a1 797static int disable_higher_order_debug;
41ecc55b 798
a79316c6
AR
799/*
800 * slub is about to manipulate internal object metadata. This memory lies
801 * outside the range of the allocated object, so accessing it would normally
802 * be reported by kasan as a bounds error. metadata_access_enable() is used
803 * to tell kasan that these accesses are OK.
804 */
805static inline void metadata_access_enable(void)
806{
807 kasan_disable_current();
808}
809
810static inline void metadata_access_disable(void)
811{
812 kasan_enable_current();
813}
814
81819f0f
CL
815/*
816 * Object debugging
817 */
d86bd1be
JK
818
819/* Verify that a pointer has an address that is valid within a slab page */
820static inline int check_valid_pointer(struct kmem_cache *s,
bb192ed9 821 struct slab *slab, void *object)
d86bd1be
JK
822{
823 void *base;
824
825 if (!object)
826 return 1;
827
bb192ed9 828 base = slab_address(slab);
338cfaad 829 object = kasan_reset_tag(object);
d86bd1be 830 object = restore_red_left(s, object);
bb192ed9 831 if (object < base || object >= base + slab->objects * s->size ||
d86bd1be
JK
832 (object - base) % s->size) {
833 return 0;
834 }
835
836 return 1;
837}
838
aa2efd5e
DT
839static void print_section(char *level, char *text, u8 *addr,
840 unsigned int length)
81819f0f 841{
a79316c6 842 metadata_access_enable();
340caf17
KYL
843 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
844 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 845 metadata_access_disable();
81819f0f
CL
846}
847
cbfc35a4
WL
848/*
849 * See comment in calculate_sizes().
850 */
851static inline bool freeptr_outside_object(struct kmem_cache *s)
852{
853 return s->offset >= s->inuse;
854}
855
856/*
857 * Return offset of the end of info block which is inuse + free pointer if
858 * not overlapping with object.
859 */
860static inline unsigned int get_info_end(struct kmem_cache *s)
861{
862 if (freeptr_outside_object(s))
863 return s->inuse + sizeof(void *);
864 else
865 return s->inuse;
866}
867
81819f0f
CL
868static struct track *get_track(struct kmem_cache *s, void *object,
869 enum track_item alloc)
870{
871 struct track *p;
872
cbfc35a4 873 p = object + get_info_end(s);
81819f0f 874
aa1ef4d7 875 return kasan_reset_tag(p + alloc);
81819f0f
CL
876}
877
5cf909c5 878#ifdef CONFIG_STACKDEPOT
c4cf6785
SAS
879static noinline depot_stack_handle_t set_track_prepare(void)
880{
881 depot_stack_handle_t handle;
5cf909c5 882 unsigned long entries[TRACK_ADDRS_COUNT];
0cd1a029 883 unsigned int nr_entries;
ae14c63a 884
5cf909c5 885 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
c4cf6785
SAS
886 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
887
888 return handle;
889}
890#else
891static inline depot_stack_handle_t set_track_prepare(void)
892{
893 return 0;
894}
d6543e39 895#endif
5cf909c5 896
c4cf6785
SAS
897static void set_track_update(struct kmem_cache *s, void *object,
898 enum track_item alloc, unsigned long addr,
899 depot_stack_handle_t handle)
900{
901 struct track *p = get_track(s, object, alloc);
902
903#ifdef CONFIG_STACKDEPOT
904 p->handle = handle;
905#endif
0cd1a029
VB
906 p->addr = addr;
907 p->cpu = smp_processor_id();
908 p->pid = current->pid;
909 p->when = jiffies;
81819f0f
CL
910}
911
c4cf6785
SAS
912static __always_inline void set_track(struct kmem_cache *s, void *object,
913 enum track_item alloc, unsigned long addr)
914{
915 depot_stack_handle_t handle = set_track_prepare();
916
917 set_track_update(s, object, alloc, addr, handle);
918}
919
81819f0f
CL
920static void init_tracking(struct kmem_cache *s, void *object)
921{
0cd1a029
VB
922 struct track *p;
923
24922684
CL
924 if (!(s->flags & SLAB_STORE_USER))
925 return;
926
0cd1a029
VB
927 p = get_track(s, object, TRACK_ALLOC);
928 memset(p, 0, 2*sizeof(struct track));
81819f0f
CL
929}
930
86609d33 931static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f 932{
5cf909c5
OG
933 depot_stack_handle_t handle __maybe_unused;
934
81819f0f
CL
935 if (!t->addr)
936 return;
937
96b94abc 938 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 939 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
5cf909c5
OG
940#ifdef CONFIG_STACKDEPOT
941 handle = READ_ONCE(t->handle);
942 if (handle)
943 stack_depot_print(handle);
944 else
945 pr_err("object allocation/free stack trace missing\n");
d6543e39 946#endif
24922684
CL
947}
948
e42f174e 949void print_tracking(struct kmem_cache *s, void *object)
24922684 950{
86609d33 951 unsigned long pr_time = jiffies;
24922684
CL
952 if (!(s->flags & SLAB_STORE_USER))
953 return;
954
86609d33
CP
955 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
956 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
957}
958
fb012e27 959static void print_slab_info(const struct slab *slab)
24922684 960{
fb012e27 961 struct folio *folio = (struct folio *)slab_folio(slab);
24922684 962
fb012e27
MWO
963 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
964 slab, slab->objects, slab->inuse, slab->freelist,
965 folio_flags(folio, 0));
24922684
CL
966}
967
6edf2576
FT
968/*
969 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
970 * family will round up the real request size to these fixed ones, so
971 * there could be an extra area than what is requested. Save the original
972 * request size in the meta data area, for better debug and sanity check.
973 */
974static inline void set_orig_size(struct kmem_cache *s,
975 void *object, unsigned int orig_size)
976{
977 void *p = kasan_reset_tag(object);
2d552463 978 unsigned int kasan_meta_size;
6edf2576
FT
979
980 if (!slub_debug_orig_size(s))
981 return;
982
946fa0db 983 /*
2d552463
AK
984 * KASAN can save its free meta data inside of the object at offset 0.
985 * If this meta data size is larger than 'orig_size', it will overlap
986 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
987 * 'orig_size' to be as at least as big as KASAN's meta data.
946fa0db 988 */
2d552463
AK
989 kasan_meta_size = kasan_metadata_size(s, true);
990 if (kasan_meta_size > orig_size)
991 orig_size = kasan_meta_size;
946fa0db 992
6edf2576
FT
993 p += get_info_end(s);
994 p += sizeof(struct track) * 2;
995
996 *(unsigned int *)p = orig_size;
997}
998
999static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1000{
1001 void *p = kasan_reset_tag(object);
1002
1003 if (!slub_debug_orig_size(s))
1004 return s->object_size;
1005
1006 p += get_info_end(s);
1007 p += sizeof(struct track) * 2;
1008
1009 return *(unsigned int *)p;
1010}
1011
946fa0db
FT
1012void skip_orig_size_check(struct kmem_cache *s, const void *object)
1013{
1014 set_orig_size(s, (void *)object, s->object_size);
1015}
1016
24922684
CL
1017static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1018{
ecc42fbe 1019 struct va_format vaf;
24922684 1020 va_list args;
24922684
CL
1021
1022 va_start(args, fmt);
ecc42fbe
FF
1023 vaf.fmt = fmt;
1024 vaf.va = &args;
f9f58285 1025 pr_err("=============================================================================\n");
ecc42fbe 1026 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 1027 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 1028 va_end(args);
81819f0f
CL
1029}
1030
582d1212 1031__printf(2, 3)
24922684
CL
1032static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1033{
ecc42fbe 1034 struct va_format vaf;
24922684 1035 va_list args;
24922684 1036
1f9f78b1
OG
1037 if (slab_add_kunit_errors())
1038 return;
1039
24922684 1040 va_start(args, fmt);
ecc42fbe
FF
1041 vaf.fmt = fmt;
1042 vaf.va = &args;
1043 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 1044 va_end(args);
24922684
CL
1045}
1046
bb192ed9 1047static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f
CL
1048{
1049 unsigned int off; /* Offset of last byte */
bb192ed9 1050 u8 *addr = slab_address(slab);
24922684
CL
1051
1052 print_tracking(s, p);
1053
bb192ed9 1054 print_slab_info(slab);
24922684 1055
96b94abc 1056 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 1057 p, p - addr, get_freepointer(s, p));
24922684 1058
d86bd1be 1059 if (s->flags & SLAB_RED_ZONE)
8669dbab 1060 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 1061 s->red_left_pad);
d86bd1be 1062 else if (p > addr + 16)
aa2efd5e 1063 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 1064
8669dbab 1065 print_section(KERN_ERR, "Object ", p,
1b473f29 1066 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 1067 if (s->flags & SLAB_RED_ZONE)
8669dbab 1068 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 1069 s->inuse - s->object_size);
81819f0f 1070
cbfc35a4 1071 off = get_info_end(s);
81819f0f 1072
24922684 1073 if (s->flags & SLAB_STORE_USER)
81819f0f 1074 off += 2 * sizeof(struct track);
81819f0f 1075
6edf2576
FT
1076 if (slub_debug_orig_size(s))
1077 off += sizeof(unsigned int);
1078
5d1ba310 1079 off += kasan_metadata_size(s, false);
80a9201a 1080
d86bd1be 1081 if (off != size_from_object(s))
81819f0f 1082 /* Beginning of the filler is the free pointer */
8669dbab 1083 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 1084 size_from_object(s) - off);
24922684
CL
1085
1086 dump_stack();
81819f0f
CL
1087}
1088
bb192ed9 1089static void object_err(struct kmem_cache *s, struct slab *slab,
81819f0f
CL
1090 u8 *object, char *reason)
1091{
1f9f78b1
OG
1092 if (slab_add_kunit_errors())
1093 return;
1094
3dc50637 1095 slab_bug(s, "%s", reason);
bb192ed9 1096 print_trailer(s, slab, object);
65ebdeef 1097 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1098}
1099
bb192ed9 1100static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
ae16d059
VB
1101 void **freelist, void *nextfree)
1102{
1103 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
bb192ed9
VB
1104 !check_valid_pointer(s, slab, nextfree) && freelist) {
1105 object_err(s, slab, *freelist, "Freechain corrupt");
ae16d059
VB
1106 *freelist = NULL;
1107 slab_fix(s, "Isolate corrupted freechain");
1108 return true;
1109 }
1110
1111 return false;
1112}
1113
bb192ed9 1114static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
d0e0ac97 1115 const char *fmt, ...)
81819f0f
CL
1116{
1117 va_list args;
1118 char buf[100];
1119
1f9f78b1
OG
1120 if (slab_add_kunit_errors())
1121 return;
1122
24922684
CL
1123 va_start(args, fmt);
1124 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 1125 va_end(args);
3dc50637 1126 slab_bug(s, "%s", buf);
bb192ed9 1127 print_slab_info(slab);
81819f0f 1128 dump_stack();
65ebdeef 1129 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
1130}
1131
f7cb1933 1132static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 1133{
aa1ef4d7 1134 u8 *p = kasan_reset_tag(object);
946fa0db 1135 unsigned int poison_size = s->object_size;
81819f0f 1136
946fa0db 1137 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
1138 memset(p - s->red_left_pad, val, s->red_left_pad);
1139
946fa0db
FT
1140 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1141 /*
1142 * Redzone the extra allocated space by kmalloc than
1143 * requested, and the poison size will be limited to
1144 * the original request size accordingly.
1145 */
1146 poison_size = get_orig_size(s, object);
1147 }
1148 }
1149
81819f0f 1150 if (s->flags & __OBJECT_POISON) {
946fa0db
FT
1151 memset(p, POISON_FREE, poison_size - 1);
1152 p[poison_size - 1] = POISON_END;
81819f0f
CL
1153 }
1154
1155 if (s->flags & SLAB_RED_ZONE)
946fa0db 1156 memset(p + poison_size, val, s->inuse - poison_size);
81819f0f
CL
1157}
1158
24922684
CL
1159static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1160 void *from, void *to)
1161{
582d1212 1162 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
1163 memset(from, data, to - from);
1164}
1165
bb192ed9 1166static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
24922684 1167 u8 *object, char *what,
06428780 1168 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
1169{
1170 u8 *fault;
1171 u8 *end;
bb192ed9 1172 u8 *addr = slab_address(slab);
24922684 1173
a79316c6 1174 metadata_access_enable();
aa1ef4d7 1175 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 1176 metadata_access_disable();
24922684
CL
1177 if (!fault)
1178 return 1;
1179
1180 end = start + bytes;
1181 while (end > fault && end[-1] == value)
1182 end--;
1183
1f9f78b1
OG
1184 if (slab_add_kunit_errors())
1185 goto skip_bug_print;
1186
24922684 1187 slab_bug(s, "%s overwritten", what);
96b94abc 1188 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
1189 fault, end - 1, fault - addr,
1190 fault[0], value);
bb192ed9 1191 print_trailer(s, slab, object);
65ebdeef 1192 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 1193
1f9f78b1 1194skip_bug_print:
24922684
CL
1195 restore_bytes(s, what, value, fault, end);
1196 return 0;
81819f0f
CL
1197}
1198
81819f0f
CL
1199/*
1200 * Object layout:
1201 *
1202 * object address
1203 * Bytes of the object to be managed.
1204 * If the freepointer may overlay the object then the free
cbfc35a4 1205 * pointer is at the middle of the object.
672bba3a 1206 *
81819f0f
CL
1207 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1208 * 0xa5 (POISON_END)
1209 *
3b0efdfa 1210 * object + s->object_size
81819f0f 1211 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 1212 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 1213 * object_size == inuse.
672bba3a 1214 *
81819f0f
CL
1215 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1216 * 0xcc (RED_ACTIVE) for objects in use.
1217 *
1218 * object + s->inuse
672bba3a
CL
1219 * Meta data starts here.
1220 *
81819f0f
CL
1221 * A. Free pointer (if we cannot overwrite object on free)
1222 * B. Tracking data for SLAB_STORE_USER
6edf2576
FT
1223 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1224 * D. Padding to reach required alignment boundary or at minimum
6446faa2 1225 * one word if debugging is on to be able to detect writes
672bba3a
CL
1226 * before the word boundary.
1227 *
1228 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
1229 *
1230 * object + s->size
672bba3a 1231 * Nothing is used beyond s->size.
81819f0f 1232 *
3b0efdfa 1233 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 1234 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
1235 * may be used with merged slabcaches.
1236 */
1237
bb192ed9 1238static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
81819f0f 1239{
cbfc35a4 1240 unsigned long off = get_info_end(s); /* The end of info */
81819f0f 1241
6edf2576 1242 if (s->flags & SLAB_STORE_USER) {
81819f0f
CL
1243 /* We also have user information there */
1244 off += 2 * sizeof(struct track);
1245
6edf2576
FT
1246 if (s->flags & SLAB_KMALLOC)
1247 off += sizeof(unsigned int);
1248 }
1249
5d1ba310 1250 off += kasan_metadata_size(s, false);
80a9201a 1251
d86bd1be 1252 if (size_from_object(s) == off)
81819f0f
CL
1253 return 1;
1254
bb192ed9 1255 return check_bytes_and_report(s, slab, p, "Object padding",
d86bd1be 1256 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
1257}
1258
39b26464 1259/* Check the pad bytes at the end of a slab page */
a204e6d6 1260static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
81819f0f 1261{
24922684
CL
1262 u8 *start;
1263 u8 *fault;
1264 u8 *end;
5d682681 1265 u8 *pad;
24922684
CL
1266 int length;
1267 int remainder;
81819f0f
CL
1268
1269 if (!(s->flags & SLAB_POISON))
a204e6d6 1270 return;
81819f0f 1271
bb192ed9
VB
1272 start = slab_address(slab);
1273 length = slab_size(slab);
39b26464
CL
1274 end = start + length;
1275 remainder = length % s->size;
81819f0f 1276 if (!remainder)
a204e6d6 1277 return;
81819f0f 1278
5d682681 1279 pad = end - remainder;
a79316c6 1280 metadata_access_enable();
aa1ef4d7 1281 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 1282 metadata_access_disable();
24922684 1283 if (!fault)
a204e6d6 1284 return;
24922684
CL
1285 while (end > fault && end[-1] == POISON_INUSE)
1286 end--;
1287
bb192ed9 1288 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
e1b70dd1 1289 fault, end - 1, fault - start);
5d682681 1290 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 1291
5d682681 1292 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
81819f0f
CL
1293}
1294
bb192ed9 1295static int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1296 void *object, u8 val)
81819f0f
CL
1297{
1298 u8 *p = object;
3b0efdfa 1299 u8 *endobject = object + s->object_size;
2d552463 1300 unsigned int orig_size, kasan_meta_size;
81819f0f
CL
1301
1302 if (s->flags & SLAB_RED_ZONE) {
bb192ed9 1303 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
d86bd1be
JK
1304 object - s->red_left_pad, val, s->red_left_pad))
1305 return 0;
1306
bb192ed9 1307 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
3b0efdfa 1308 endobject, val, s->inuse - s->object_size))
81819f0f 1309 return 0;
946fa0db
FT
1310
1311 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1312 orig_size = get_orig_size(s, object);
1313
1314 if (s->object_size > orig_size &&
1315 !check_bytes_and_report(s, slab, object,
1316 "kmalloc Redzone", p + orig_size,
1317 val, s->object_size - orig_size)) {
1318 return 0;
1319 }
1320 }
81819f0f 1321 } else {
3b0efdfa 1322 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
bb192ed9 1323 check_bytes_and_report(s, slab, p, "Alignment padding",
d0e0ac97
CG
1324 endobject, POISON_INUSE,
1325 s->inuse - s->object_size);
3adbefee 1326 }
81819f0f
CL
1327 }
1328
1329 if (s->flags & SLAB_POISON) {
2d552463
AK
1330 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1331 /*
1332 * KASAN can save its free meta data inside of the
1333 * object at offset 0. Thus, skip checking the part of
1334 * the redzone that overlaps with the meta data.
1335 */
1336 kasan_meta_size = kasan_metadata_size(s, true);
1337 if (kasan_meta_size < s->object_size - 1 &&
1338 !check_bytes_and_report(s, slab, p, "Poison",
1339 p + kasan_meta_size, POISON_FREE,
1340 s->object_size - kasan_meta_size - 1))
1341 return 0;
1342 if (kasan_meta_size < s->object_size &&
1343 !check_bytes_and_report(s, slab, p, "End Poison",
1344 p + s->object_size - 1, POISON_END, 1))
1345 return 0;
1346 }
81819f0f
CL
1347 /*
1348 * check_pad_bytes cleans up on its own.
1349 */
bb192ed9 1350 check_pad_bytes(s, slab, p);
81819f0f
CL
1351 }
1352
cbfc35a4 1353 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
1354 /*
1355 * Object and freepointer overlap. Cannot check
1356 * freepointer while object is allocated.
1357 */
1358 return 1;
1359
1360 /* Check free pointer validity */
bb192ed9
VB
1361 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1362 object_err(s, slab, p, "Freepointer corrupt");
81819f0f 1363 /*
9f6c708e 1364 * No choice but to zap it and thus lose the remainder
81819f0f 1365 * of the free objects in this slab. May cause
672bba3a 1366 * another error because the object count is now wrong.
81819f0f 1367 */
a973e9dd 1368 set_freepointer(s, p, NULL);
81819f0f
CL
1369 return 0;
1370 }
1371 return 1;
1372}
1373
bb192ed9 1374static int check_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 1375{
39b26464
CL
1376 int maxobj;
1377
bb192ed9
VB
1378 if (!folio_test_slab(slab_folio(slab))) {
1379 slab_err(s, slab, "Not a valid slab page");
81819f0f
CL
1380 return 0;
1381 }
39b26464 1382
bb192ed9
VB
1383 maxobj = order_objects(slab_order(slab), s->size);
1384 if (slab->objects > maxobj) {
1385 slab_err(s, slab, "objects %u > max %u",
1386 slab->objects, maxobj);
39b26464
CL
1387 return 0;
1388 }
bb192ed9
VB
1389 if (slab->inuse > slab->objects) {
1390 slab_err(s, slab, "inuse %u > max %u",
1391 slab->inuse, slab->objects);
81819f0f
CL
1392 return 0;
1393 }
1394 /* Slab_pad_check fixes things up after itself */
bb192ed9 1395 slab_pad_check(s, slab);
81819f0f
CL
1396 return 1;
1397}
1398
1399/*
c2092c12 1400 * Determine if a certain object in a slab is on the freelist. Must hold the
672bba3a 1401 * slab lock to guarantee that the chains are in a consistent state.
81819f0f 1402 */
bb192ed9 1403static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
81819f0f
CL
1404{
1405 int nr = 0;
881db7fb 1406 void *fp;
81819f0f 1407 void *object = NULL;
f6edde9c 1408 int max_objects;
81819f0f 1409
bb192ed9
VB
1410 fp = slab->freelist;
1411 while (fp && nr <= slab->objects) {
81819f0f
CL
1412 if (fp == search)
1413 return 1;
bb192ed9 1414 if (!check_valid_pointer(s, slab, fp)) {
81819f0f 1415 if (object) {
bb192ed9 1416 object_err(s, slab, object,
81819f0f 1417 "Freechain corrupt");
a973e9dd 1418 set_freepointer(s, object, NULL);
81819f0f 1419 } else {
bb192ed9
VB
1420 slab_err(s, slab, "Freepointer corrupt");
1421 slab->freelist = NULL;
1422 slab->inuse = slab->objects;
24922684 1423 slab_fix(s, "Freelist cleared");
81819f0f
CL
1424 return 0;
1425 }
1426 break;
1427 }
1428 object = fp;
1429 fp = get_freepointer(s, object);
1430 nr++;
1431 }
1432
bb192ed9 1433 max_objects = order_objects(slab_order(slab), s->size);
210b5c06
CG
1434 if (max_objects > MAX_OBJS_PER_PAGE)
1435 max_objects = MAX_OBJS_PER_PAGE;
224a88be 1436
bb192ed9
VB
1437 if (slab->objects != max_objects) {
1438 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1439 slab->objects, max_objects);
1440 slab->objects = max_objects;
582d1212 1441 slab_fix(s, "Number of objects adjusted");
224a88be 1442 }
bb192ed9
VB
1443 if (slab->inuse != slab->objects - nr) {
1444 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1445 slab->inuse, slab->objects - nr);
1446 slab->inuse = slab->objects - nr;
582d1212 1447 slab_fix(s, "Object count adjusted");
81819f0f
CL
1448 }
1449 return search == NULL;
1450}
1451
bb192ed9 1452static void trace(struct kmem_cache *s, struct slab *slab, void *object,
0121c619 1453 int alloc)
3ec09742
CL
1454{
1455 if (s->flags & SLAB_TRACE) {
f9f58285 1456 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1457 s->name,
1458 alloc ? "alloc" : "free",
bb192ed9
VB
1459 object, slab->inuse,
1460 slab->freelist);
3ec09742
CL
1461
1462 if (!alloc)
aa2efd5e 1463 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1464 s->object_size);
3ec09742
CL
1465
1466 dump_stack();
1467 }
1468}
1469
643b1138 1470/*
672bba3a 1471 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1472 */
5cc6eee8 1473static void add_full(struct kmem_cache *s,
bb192ed9 1474 struct kmem_cache_node *n, struct slab *slab)
643b1138 1475{
5cc6eee8
CL
1476 if (!(s->flags & SLAB_STORE_USER))
1477 return;
1478
255d0884 1479 lockdep_assert_held(&n->list_lock);
bb192ed9 1480 list_add(&slab->slab_list, &n->full);
643b1138
CL
1481}
1482
bb192ed9 1483static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
643b1138 1484{
643b1138
CL
1485 if (!(s->flags & SLAB_STORE_USER))
1486 return;
1487
255d0884 1488 lockdep_assert_held(&n->list_lock);
bb192ed9 1489 list_del(&slab->slab_list);
643b1138
CL
1490}
1491
26c02cf0
AB
1492static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1493{
1494 return atomic_long_read(&n->nr_slabs);
1495}
1496
205ab99d 1497static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1498{
1499 struct kmem_cache_node *n = get_node(s, node);
1500
1501 /*
1502 * May be called early in order to allocate a slab for the
1503 * kmem_cache_node structure. Solve the chicken-egg
1504 * dilemma by deferring the increment of the count during
1505 * bootstrap (see early_kmem_cache_node_alloc).
1506 */
338b2642 1507 if (likely(n)) {
0f389ec6 1508 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1509 atomic_long_add(objects, &n->total_objects);
1510 }
0f389ec6 1511}
205ab99d 1512static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1513{
1514 struct kmem_cache_node *n = get_node(s, node);
1515
1516 atomic_long_dec(&n->nr_slabs);
205ab99d 1517 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1518}
1519
1520/* Object debug checks for alloc/free paths */
c0f81a94 1521static void setup_object_debug(struct kmem_cache *s, void *object)
3ec09742 1522{
8fc8d666 1523 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1524 return;
1525
f7cb1933 1526 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1527 init_tracking(s, object);
1528}
1529
a50b854e 1530static
bb192ed9 1531void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
a7101224 1532{
8fc8d666 1533 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1534 return;
1535
1536 metadata_access_enable();
bb192ed9 1537 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
a7101224
AK
1538 metadata_access_disable();
1539}
1540
becfda68 1541static inline int alloc_consistency_checks(struct kmem_cache *s,
bb192ed9 1542 struct slab *slab, void *object)
81819f0f 1543{
bb192ed9 1544 if (!check_slab(s, slab))
becfda68 1545 return 0;
81819f0f 1546
bb192ed9
VB
1547 if (!check_valid_pointer(s, slab, object)) {
1548 object_err(s, slab, object, "Freelist Pointer check fails");
becfda68 1549 return 0;
81819f0f
CL
1550 }
1551
bb192ed9 1552 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
becfda68
LA
1553 return 0;
1554
1555 return 1;
1556}
1557
fa9b88e4 1558static noinline bool alloc_debug_processing(struct kmem_cache *s,
6edf2576 1559 struct slab *slab, void *object, int orig_size)
becfda68
LA
1560{
1561 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
bb192ed9 1562 if (!alloc_consistency_checks(s, slab, object))
becfda68
LA
1563 goto bad;
1564 }
81819f0f 1565
c7323a5a 1566 /* Success. Perform special debug activities for allocs */
bb192ed9 1567 trace(s, slab, object, 1);
6edf2576 1568 set_orig_size(s, object, orig_size);
f7cb1933 1569 init_object(s, object, SLUB_RED_ACTIVE);
fa9b88e4 1570 return true;
3ec09742 1571
81819f0f 1572bad:
bb192ed9 1573 if (folio_test_slab(slab_folio(slab))) {
81819f0f
CL
1574 /*
1575 * If this is a slab page then lets do the best we can
1576 * to avoid issues in the future. Marking all objects
672bba3a 1577 * as used avoids touching the remaining objects.
81819f0f 1578 */
24922684 1579 slab_fix(s, "Marking all objects used");
bb192ed9
VB
1580 slab->inuse = slab->objects;
1581 slab->freelist = NULL;
81819f0f 1582 }
fa9b88e4 1583 return false;
81819f0f
CL
1584}
1585
becfda68 1586static inline int free_consistency_checks(struct kmem_cache *s,
bb192ed9 1587 struct slab *slab, void *object, unsigned long addr)
81819f0f 1588{
bb192ed9
VB
1589 if (!check_valid_pointer(s, slab, object)) {
1590 slab_err(s, slab, "Invalid object pointer 0x%p", object);
becfda68 1591 return 0;
81819f0f
CL
1592 }
1593
bb192ed9
VB
1594 if (on_freelist(s, slab, object)) {
1595 object_err(s, slab, object, "Object already free");
becfda68 1596 return 0;
81819f0f
CL
1597 }
1598
bb192ed9 1599 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
becfda68 1600 return 0;
81819f0f 1601
bb192ed9
VB
1602 if (unlikely(s != slab->slab_cache)) {
1603 if (!folio_test_slab(slab_folio(slab))) {
1604 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
756a025f 1605 object);
bb192ed9 1606 } else if (!slab->slab_cache) {
f9f58285
FF
1607 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1608 object);
70d71228 1609 dump_stack();
06428780 1610 } else
bb192ed9 1611 object_err(s, slab, object,
24922684 1612 "page slab pointer corrupt.");
becfda68
LA
1613 return 0;
1614 }
1615 return 1;
1616}
1617
e17f1dfb
VB
1618/*
1619 * Parse a block of slub_debug options. Blocks are delimited by ';'
1620 *
1621 * @str: start of block
1622 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1623 * @slabs: return start of list of slabs, or NULL when there's no list
1624 * @init: assume this is initial parsing and not per-kmem-create parsing
1625 *
1626 * returns the start of next block if there's any, or NULL
1627 */
1628static char *
1629parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1630{
e17f1dfb 1631 bool higher_order_disable = false;
f0630fff 1632
e17f1dfb
VB
1633 /* Skip any completely empty blocks */
1634 while (*str && *str == ';')
1635 str++;
1636
1637 if (*str == ',') {
f0630fff
CL
1638 /*
1639 * No options but restriction on slabs. This means full
1640 * debugging for slabs matching a pattern.
1641 */
e17f1dfb 1642 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1643 goto check_slabs;
e17f1dfb
VB
1644 }
1645 *flags = 0;
f0630fff 1646
e17f1dfb
VB
1647 /* Determine which debug features should be switched on */
1648 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1649 switch (tolower(*str)) {
e17f1dfb
VB
1650 case '-':
1651 *flags = 0;
1652 break;
f0630fff 1653 case 'f':
e17f1dfb 1654 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1655 break;
1656 case 'z':
e17f1dfb 1657 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1658 break;
1659 case 'p':
e17f1dfb 1660 *flags |= SLAB_POISON;
f0630fff
CL
1661 break;
1662 case 'u':
e17f1dfb 1663 *flags |= SLAB_STORE_USER;
f0630fff
CL
1664 break;
1665 case 't':
e17f1dfb 1666 *flags |= SLAB_TRACE;
f0630fff 1667 break;
4c13dd3b 1668 case 'a':
e17f1dfb 1669 *flags |= SLAB_FAILSLAB;
4c13dd3b 1670 break;
08303a73
CA
1671 case 'o':
1672 /*
1673 * Avoid enabling debugging on caches if its minimum
1674 * order would increase as a result.
1675 */
e17f1dfb 1676 higher_order_disable = true;
08303a73 1677 break;
f0630fff 1678 default:
e17f1dfb
VB
1679 if (init)
1680 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1681 }
41ecc55b 1682 }
f0630fff 1683check_slabs:
41ecc55b 1684 if (*str == ',')
e17f1dfb
VB
1685 *slabs = ++str;
1686 else
1687 *slabs = NULL;
1688
1689 /* Skip over the slab list */
1690 while (*str && *str != ';')
1691 str++;
1692
1693 /* Skip any completely empty blocks */
1694 while (*str && *str == ';')
1695 str++;
1696
1697 if (init && higher_order_disable)
1698 disable_higher_order_debug = 1;
1699
1700 if (*str)
1701 return str;
1702 else
1703 return NULL;
1704}
1705
1706static int __init setup_slub_debug(char *str)
1707{
1708 slab_flags_t flags;
a7f1d485 1709 slab_flags_t global_flags;
e17f1dfb
VB
1710 char *saved_str;
1711 char *slab_list;
1712 bool global_slub_debug_changed = false;
1713 bool slab_list_specified = false;
1714
a7f1d485 1715 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1716 if (*str++ != '=' || !*str)
1717 /*
1718 * No options specified. Switch on full debugging.
1719 */
1720 goto out;
1721
1722 saved_str = str;
1723 while (str) {
1724 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1725
1726 if (!slab_list) {
a7f1d485 1727 global_flags = flags;
e17f1dfb
VB
1728 global_slub_debug_changed = true;
1729 } else {
1730 slab_list_specified = true;
5cf909c5 1731 if (flags & SLAB_STORE_USER)
1c0310ad 1732 stack_depot_request_early_init();
e17f1dfb
VB
1733 }
1734 }
1735
1736 /*
1737 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1738 * slabs means debugging is only changed for those slabs, so the global
1739 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1740 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1741 * long as there is no option specifying flags without a slab list.
1742 */
1743 if (slab_list_specified) {
1744 if (!global_slub_debug_changed)
a7f1d485 1745 global_flags = slub_debug;
e17f1dfb
VB
1746 slub_debug_string = saved_str;
1747 }
f0630fff 1748out:
a7f1d485 1749 slub_debug = global_flags;
5cf909c5 1750 if (slub_debug & SLAB_STORE_USER)
1c0310ad 1751 stack_depot_request_early_init();
ca0cab65
VB
1752 if (slub_debug != 0 || slub_debug_string)
1753 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1754 else
1755 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1756 if ((static_branch_unlikely(&init_on_alloc) ||
1757 static_branch_unlikely(&init_on_free)) &&
1758 (slub_debug & SLAB_POISON))
1759 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1760 return 1;
1761}
1762
1763__setup("slub_debug", setup_slub_debug);
1764
c5fd3ca0
AT
1765/*
1766 * kmem_cache_flags - apply debugging options to the cache
1767 * @object_size: the size of an object without meta data
1768 * @flags: flags to set
1769 * @name: name of the cache
c5fd3ca0
AT
1770 *
1771 * Debug option(s) are applied to @flags. In addition to the debug
1772 * option(s), if a slab name (or multiple) is specified i.e.
1773 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1774 * then only the select slabs will receive the debug option(s).
1775 */
0293d1fd 1776slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1777 slab_flags_t flags, const char *name)
41ecc55b 1778{
c5fd3ca0
AT
1779 char *iter;
1780 size_t len;
e17f1dfb
VB
1781 char *next_block;
1782 slab_flags_t block_flags;
ca220593
JB
1783 slab_flags_t slub_debug_local = slub_debug;
1784
a285909f
HY
1785 if (flags & SLAB_NO_USER_FLAGS)
1786 return flags;
1787
ca220593
JB
1788 /*
1789 * If the slab cache is for debugging (e.g. kmemleak) then
1790 * don't store user (stack trace) information by default,
1791 * but let the user enable it via the command line below.
1792 */
1793 if (flags & SLAB_NOLEAKTRACE)
1794 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1795
c5fd3ca0 1796 len = strlen(name);
e17f1dfb
VB
1797 next_block = slub_debug_string;
1798 /* Go through all blocks of debug options, see if any matches our slab's name */
1799 while (next_block) {
1800 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1801 if (!iter)
1802 continue;
1803 /* Found a block that has a slab list, search it */
1804 while (*iter) {
1805 char *end, *glob;
1806 size_t cmplen;
1807
1808 end = strchrnul(iter, ',');
1809 if (next_block && next_block < end)
1810 end = next_block - 1;
1811
1812 glob = strnchr(iter, end - iter, '*');
1813 if (glob)
1814 cmplen = glob - iter;
1815 else
1816 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1817
e17f1dfb
VB
1818 if (!strncmp(name, iter, cmplen)) {
1819 flags |= block_flags;
1820 return flags;
1821 }
c5fd3ca0 1822
e17f1dfb
VB
1823 if (!*end || *end == ';')
1824 break;
1825 iter = end + 1;
c5fd3ca0 1826 }
c5fd3ca0 1827 }
ba0268a8 1828
ca220593 1829 return flags | slub_debug_local;
41ecc55b 1830}
b4a64718 1831#else /* !CONFIG_SLUB_DEBUG */
c0f81a94 1832static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
a50b854e 1833static inline
bb192ed9 1834void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
41ecc55b 1835
fa9b88e4
VB
1836static inline bool alloc_debug_processing(struct kmem_cache *s,
1837 struct slab *slab, void *object, int orig_size) { return true; }
41ecc55b 1838
fa9b88e4
VB
1839static inline bool free_debug_processing(struct kmem_cache *s,
1840 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1841 unsigned long addr, depot_stack_handle_t handle) { return true; }
41ecc55b 1842
a204e6d6 1843static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
bb192ed9 1844static inline int check_object(struct kmem_cache *s, struct slab *slab,
f7cb1933 1845 void *object, u8 val) { return 1; }
fa9b88e4 1846static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
c7323a5a
VB
1847static inline void set_track(struct kmem_cache *s, void *object,
1848 enum track_item alloc, unsigned long addr) {}
5cc6eee8 1849static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1850 struct slab *slab) {}
c65c1877 1851static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
bb192ed9 1852 struct slab *slab) {}
0293d1fd 1853slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1854 slab_flags_t flags, const char *name)
ba0268a8
CL
1855{
1856 return flags;
1857}
41ecc55b 1858#define slub_debug 0
0f389ec6 1859
fdaa45e9
IM
1860#define disable_higher_order_debug 0
1861
26c02cf0
AB
1862static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1863 { return 0; }
205ab99d
CL
1864static inline void inc_slabs_node(struct kmem_cache *s, int node,
1865 int objects) {}
1866static inline void dec_slabs_node(struct kmem_cache *s, int node,
1867 int objects) {}
7d550c56 1868
0af8489b 1869#ifndef CONFIG_SLUB_TINY
bb192ed9 1870static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
dc07a728 1871 void **freelist, void *nextfree)
52f23478
DZ
1872{
1873 return false;
1874}
0af8489b 1875#endif
02e72cc6
AR
1876#endif /* CONFIG_SLUB_DEBUG */
1877
0bedcc66
VB
1878static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
1879{
1880 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1881 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
1882}
1883
1884#ifdef CONFIG_MEMCG_KMEM
1885static inline void memcg_free_slab_cgroups(struct slab *slab)
1886{
1887 kfree(slab_objcgs(slab));
1888 slab->memcg_data = 0;
1889}
1890
1891static inline size_t obj_full_size(struct kmem_cache *s)
1892{
1893 /*
1894 * For each accounted object there is an extra space which is used
1895 * to store obj_cgroup membership. Charge it too.
1896 */
1897 return s->size + sizeof(struct obj_cgroup *);
1898}
1899
1900/*
1901 * Returns false if the allocation should fail.
1902 */
3450a0e5
VB
1903static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s,
1904 struct list_lru *lru,
1905 struct obj_cgroup **objcgp,
1906 size_t objects, gfp_t flags)
0bedcc66 1907{
0bedcc66
VB
1908 /*
1909 * The obtained objcg pointer is safe to use within the current scope,
1910 * defined by current task or set_active_memcg() pair.
1911 * obj_cgroup_get() is used to get a permanent reference.
1912 */
3450a0e5 1913 struct obj_cgroup *objcg = current_obj_cgroup();
0bedcc66
VB
1914 if (!objcg)
1915 return true;
1916
1917 if (lru) {
1918 int ret;
1919 struct mem_cgroup *memcg;
1920
1921 memcg = get_mem_cgroup_from_objcg(objcg);
1922 ret = memcg_list_lru_alloc(memcg, lru, flags);
1923 css_put(&memcg->css);
1924
1925 if (ret)
1926 return false;
1927 }
1928
1929 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
1930 return false;
1931
1932 *objcgp = objcg;
1933 return true;
1934}
1935
3450a0e5
VB
1936/*
1937 * Returns false if the allocation should fail.
1938 */
1939static __fastpath_inline
1940bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
1941 struct obj_cgroup **objcgp, size_t objects,
1942 gfp_t flags)
1943{
1944 if (!memcg_kmem_online())
1945 return true;
1946
1947 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
1948 return true;
1949
1950 return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects,
1951 flags));
1952}
1953
1954static void __memcg_slab_post_alloc_hook(struct kmem_cache *s,
1955 struct obj_cgroup *objcg,
1956 gfp_t flags, size_t size,
1957 void **p)
0bedcc66
VB
1958{
1959 struct slab *slab;
1960 unsigned long off;
1961 size_t i;
1962
3450a0e5 1963 flags &= gfp_allowed_mask;
0bedcc66
VB
1964
1965 for (i = 0; i < size; i++) {
1966 if (likely(p[i])) {
1967 slab = virt_to_slab(p[i]);
1968
1969 if (!slab_objcgs(slab) &&
1970 memcg_alloc_slab_cgroups(slab, s, flags, false)) {
1971 obj_cgroup_uncharge(objcg, obj_full_size(s));
1972 continue;
1973 }
1974
1975 off = obj_to_index(s, slab, p[i]);
1976 obj_cgroup_get(objcg);
1977 slab_objcgs(slab)[off] = objcg;
1978 mod_objcg_state(objcg, slab_pgdat(slab),
1979 cache_vmstat_idx(s), obj_full_size(s));
1980 } else {
1981 obj_cgroup_uncharge(objcg, obj_full_size(s));
1982 }
1983 }
1984}
1985
3450a0e5
VB
1986static __fastpath_inline
1987void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
1988 gfp_t flags, size_t size, void **p)
1989{
1990 if (likely(!memcg_kmem_online() || !objcg))
1991 return;
1992
1993 return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
1994}
1995
ecf9a253
VB
1996static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
1997 void **p, int objects,
1998 struct obj_cgroup **objcgs)
0bedcc66 1999{
ecf9a253 2000 for (int i = 0; i < objects; i++) {
0bedcc66
VB
2001 struct obj_cgroup *objcg;
2002 unsigned int off;
2003
2004 off = obj_to_index(s, slab, p[i]);
2005 objcg = objcgs[off];
2006 if (!objcg)
2007 continue;
2008
2009 objcgs[off] = NULL;
2010 obj_cgroup_uncharge(objcg, obj_full_size(s));
2011 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
2012 -obj_full_size(s));
2013 obj_cgroup_put(objcg);
2014 }
2015}
ecf9a253
VB
2016
2017static __fastpath_inline
2018void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2019 int objects)
2020{
2021 struct obj_cgroup **objcgs;
2022
2023 if (!memcg_kmem_online())
2024 return;
2025
2026 objcgs = slab_objcgs(slab);
2027 if (likely(!objcgs))
2028 return;
2029
2030 __memcg_slab_free_hook(s, slab, p, objects, objcgs);
2031}
520a688a
VB
2032
2033static inline
2034void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2035 struct obj_cgroup *objcg)
2036{
2037 if (objcg)
2038 obj_cgroup_uncharge(objcg, objects * obj_full_size(s));
2039}
0bedcc66
VB
2040#else /* CONFIG_MEMCG_KMEM */
2041static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
2042{
2043 return NULL;
2044}
2045
2046static inline void memcg_free_slab_cgroups(struct slab *slab)
2047{
2048}
2049
2050static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
2051 struct list_lru *lru,
2052 struct obj_cgroup **objcgp,
2053 size_t objects, gfp_t flags)
2054{
2055 return true;
2056}
2057
2058static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
2059 struct obj_cgroup *objcg,
2060 gfp_t flags, size_t size,
2061 void **p)
2062{
2063}
2064
2065static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2066 void **p, int objects)
2067{
2068}
520a688a
VB
2069
2070static inline
2071void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2072 struct obj_cgroup *objcg)
2073{
2074}
0bedcc66
VB
2075#endif /* CONFIG_MEMCG_KMEM */
2076
02e72cc6
AR
2077/*
2078 * Hooks for other subsystems that check memory allocations. In a typical
2079 * production configuration these hooks all should produce no code at all.
284f17ac
VB
2080 *
2081 * Returns true if freeing of the object can proceed, false if its reuse
782f8906 2082 * was delayed by KASAN quarantine, or it was returned to KFENCE.
02e72cc6 2083 */
284f17ac
VB
2084static __always_inline
2085bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
d56791b3
RB
2086{
2087 kmemleak_free_recursive(x, s->flags);
68ef169a 2088 kmsan_slab_free(s, x);
7d550c56 2089
84048039 2090 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 2091
02e72cc6
AR
2092 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2093 debug_check_no_obj_freed(x, s->object_size);
0316bec2 2094
cfbe1636
ME
2095 /* Use KCSAN to help debug racy use-after-free. */
2096 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2097 __kcsan_check_access(x, s->object_size,
2098 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2099
782f8906
VB
2100 if (kfence_free(x))
2101 return false;
2102
d57a964e
AK
2103 /*
2104 * As memory initialization might be integrated into KASAN,
2105 * kasan_slab_free and initialization memset's must be
2106 * kept together to avoid discrepancies in behavior.
2107 *
2108 * The initialization memset's clear the object and the metadata,
2109 * but don't touch the SLAB redzone.
2110 */
ecf9a253 2111 if (unlikely(init)) {
d57a964e
AK
2112 int rsize;
2113
2114 if (!kasan_has_integrated_init())
2115 memset(kasan_reset_tag(x), 0, s->object_size);
2116 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2117 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
2118 s->size - s->inuse - rsize);
2119 }
2120 /* KASAN might put x into memory quarantine, delaying its reuse. */
284f17ac 2121 return !kasan_slab_free(s, x, init);
02e72cc6 2122}
205ab99d 2123
c3895391 2124static inline bool slab_free_freelist_hook(struct kmem_cache *s,
899447f6
ML
2125 void **head, void **tail,
2126 int *cnt)
81084651 2127{
6471384a
AP
2128
2129 void *object;
2130 void *next = *head;
284f17ac 2131 void *old_tail = *tail;
782f8906 2132 bool init;
6471384a 2133
b89fb5ef 2134 if (is_kfence_address(next)) {
d57a964e 2135 slab_free_hook(s, next, false);
782f8906 2136 return false;
b89fb5ef
AP
2137 }
2138
aea4df4c
LA
2139 /* Head and tail of the reconstructed freelist */
2140 *head = NULL;
2141 *tail = NULL;
1b7e816f 2142
782f8906
VB
2143 init = slab_want_init_on_free(s);
2144
aea4df4c
LA
2145 do {
2146 object = next;
2147 next = get_freepointer(s, object);
2148
c3895391 2149 /* If object's reuse doesn't have to be delayed */
782f8906 2150 if (likely(slab_free_hook(s, object, init))) {
c3895391
AK
2151 /* Move object to the new freelist */
2152 set_freepointer(s, object, *head);
2153 *head = object;
2154 if (!*tail)
2155 *tail = object;
899447f6
ML
2156 } else {
2157 /*
2158 * Adjust the reconstructed freelist depth
2159 * accordingly if object's reuse is delayed.
2160 */
2161 --(*cnt);
c3895391
AK
2162 }
2163 } while (object != old_tail);
2164
c3895391 2165 return *head != NULL;
81084651
JDB
2166}
2167
c0f81a94 2168static void *setup_object(struct kmem_cache *s, void *object)
588f8ba9 2169{
c0f81a94 2170 setup_object_debug(s, object);
4d176711 2171 object = kasan_init_slab_obj(s, object);
588f8ba9 2172 if (unlikely(s->ctor)) {
1ce9a052 2173 kasan_unpoison_new_object(s, object);
588f8ba9 2174 s->ctor(object);
1ce9a052 2175 kasan_poison_new_object(s, object);
588f8ba9 2176 }
4d176711 2177 return object;
588f8ba9
TG
2178}
2179
81819f0f
CL
2180/*
2181 * Slab allocation and freeing
2182 */
a485e1da
XS
2183static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2184 struct kmem_cache_order_objects oo)
65c3376a 2185{
45387b8c
VB
2186 struct folio *folio;
2187 struct slab *slab;
19af27af 2188 unsigned int order = oo_order(oo);
65c3376a 2189
8014c46a 2190 folio = (struct folio *)alloc_pages_node(node, flags, order);
45387b8c
VB
2191 if (!folio)
2192 return NULL;
2193
2194 slab = folio_slab(folio);
2195 __folio_set_slab(folio);
8b881763
VB
2196 /* Make the flag visible before any changes to folio->mapping */
2197 smp_wmb();
02d65d6f 2198 if (folio_is_pfmemalloc(folio))
45387b8c
VB
2199 slab_set_pfmemalloc(slab);
2200
2201 return slab;
65c3376a
CL
2202}
2203
210e7a43
TG
2204#ifdef CONFIG_SLAB_FREELIST_RANDOM
2205/* Pre-initialize the random sequence cache */
2206static int init_cache_random_seq(struct kmem_cache *s)
2207{
19af27af 2208 unsigned int count = oo_objects(s->oo);
210e7a43 2209 int err;
210e7a43 2210
a810007a
SR
2211 /* Bailout if already initialised */
2212 if (s->random_seq)
2213 return 0;
2214
210e7a43
TG
2215 err = cache_random_seq_create(s, count, GFP_KERNEL);
2216 if (err) {
2217 pr_err("SLUB: Unable to initialize free list for %s\n",
2218 s->name);
2219 return err;
2220 }
2221
2222 /* Transform to an offset on the set of pages */
2223 if (s->random_seq) {
19af27af
AD
2224 unsigned int i;
2225
210e7a43
TG
2226 for (i = 0; i < count; i++)
2227 s->random_seq[i] *= s->size;
2228 }
2229 return 0;
2230}
2231
2232/* Initialize each random sequence freelist per cache */
2233static void __init init_freelist_randomization(void)
2234{
2235 struct kmem_cache *s;
2236
2237 mutex_lock(&slab_mutex);
2238
2239 list_for_each_entry(s, &slab_caches, list)
2240 init_cache_random_seq(s);
2241
2242 mutex_unlock(&slab_mutex);
2243}
2244
2245/* Get the next entry on the pre-computed freelist randomized */
bb192ed9 2246static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
210e7a43
TG
2247 unsigned long *pos, void *start,
2248 unsigned long page_limit,
2249 unsigned long freelist_count)
2250{
2251 unsigned int idx;
2252
2253 /*
2254 * If the target page allocation failed, the number of objects on the
2255 * page might be smaller than the usual size defined by the cache.
2256 */
2257 do {
2258 idx = s->random_seq[*pos];
2259 *pos += 1;
2260 if (*pos >= freelist_count)
2261 *pos = 0;
2262 } while (unlikely(idx >= page_limit));
2263
2264 return (char *)start + idx;
2265}
2266
2267/* Shuffle the single linked freelist based on a random pre-computed sequence */
bb192ed9 2268static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
2269{
2270 void *start;
2271 void *cur;
2272 void *next;
2273 unsigned long idx, pos, page_limit, freelist_count;
2274
bb192ed9 2275 if (slab->objects < 2 || !s->random_seq)
210e7a43
TG
2276 return false;
2277
2278 freelist_count = oo_objects(s->oo);
8032bf12 2279 pos = get_random_u32_below(freelist_count);
210e7a43 2280
bb192ed9
VB
2281 page_limit = slab->objects * s->size;
2282 start = fixup_red_left(s, slab_address(slab));
210e7a43
TG
2283
2284 /* First entry is used as the base of the freelist */
bb192ed9 2285 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 2286 freelist_count);
c0f81a94 2287 cur = setup_object(s, cur);
bb192ed9 2288 slab->freelist = cur;
210e7a43 2289
bb192ed9
VB
2290 for (idx = 1; idx < slab->objects; idx++) {
2291 next = next_freelist_entry(s, slab, &pos, start, page_limit,
210e7a43 2292 freelist_count);
c0f81a94 2293 next = setup_object(s, next);
210e7a43
TG
2294 set_freepointer(s, cur, next);
2295 cur = next;
2296 }
210e7a43
TG
2297 set_freepointer(s, cur, NULL);
2298
2299 return true;
2300}
2301#else
2302static inline int init_cache_random_seq(struct kmem_cache *s)
2303{
2304 return 0;
2305}
2306static inline void init_freelist_randomization(void) { }
bb192ed9 2307static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
210e7a43
TG
2308{
2309 return false;
2310}
2311#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2312
0bedcc66
VB
2313static __always_inline void account_slab(struct slab *slab, int order,
2314 struct kmem_cache *s, gfp_t gfp)
2315{
2316 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2317 memcg_alloc_slab_cgroups(slab, s, gfp, true);
2318
2319 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2320 PAGE_SIZE << order);
2321}
2322
2323static __always_inline void unaccount_slab(struct slab *slab, int order,
2324 struct kmem_cache *s)
2325{
2326 if (memcg_kmem_online())
2327 memcg_free_slab_cgroups(slab);
2328
2329 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2330 -(PAGE_SIZE << order));
2331}
2332
bb192ed9 2333static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
81819f0f 2334{
bb192ed9 2335 struct slab *slab;
834f3d11 2336 struct kmem_cache_order_objects oo = s->oo;
ba52270d 2337 gfp_t alloc_gfp;
4d176711 2338 void *start, *p, *next;
a50b854e 2339 int idx;
210e7a43 2340 bool shuffle;
81819f0f 2341
7e0528da
CL
2342 flags &= gfp_allowed_mask;
2343
b7a49f0d 2344 flags |= s->allocflags;
e12ba74d 2345
ba52270d
PE
2346 /*
2347 * Let the initial higher-order allocation fail under memory pressure
2348 * so we fall-back to the minimum order allocation.
2349 */
2350 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 2351 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
27c08f75 2352 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
ba52270d 2353
a485e1da 2354 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2355 if (unlikely(!slab)) {
65c3376a 2356 oo = s->min;
80c3a998 2357 alloc_gfp = flags;
65c3376a
CL
2358 /*
2359 * Allocation may have failed due to fragmentation.
2360 * Try a lower order alloc if possible
2361 */
a485e1da 2362 slab = alloc_slab_page(alloc_gfp, node, oo);
bb192ed9 2363 if (unlikely(!slab))
c7323a5a 2364 return NULL;
588f8ba9 2365 stat(s, ORDER_FALLBACK);
65c3376a 2366 }
5a896d9e 2367
bb192ed9 2368 slab->objects = oo_objects(oo);
c7323a5a
VB
2369 slab->inuse = 0;
2370 slab->frozen = 0;
81819f0f 2371
bb192ed9 2372 account_slab(slab, oo_order(oo), s, flags);
1f3147b4 2373
bb192ed9 2374 slab->slab_cache = s;
81819f0f 2375
6e48a966 2376 kasan_poison_slab(slab);
81819f0f 2377
bb192ed9 2378 start = slab_address(slab);
81819f0f 2379
bb192ed9 2380 setup_slab_debug(s, slab, start);
0316bec2 2381
bb192ed9 2382 shuffle = shuffle_freelist(s, slab);
210e7a43
TG
2383
2384 if (!shuffle) {
4d176711 2385 start = fixup_red_left(s, start);
c0f81a94 2386 start = setup_object(s, start);
bb192ed9
VB
2387 slab->freelist = start;
2388 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
18e50661 2389 next = p + s->size;
c0f81a94 2390 next = setup_object(s, next);
18e50661
AK
2391 set_freepointer(s, p, next);
2392 p = next;
2393 }
2394 set_freepointer(s, p, NULL);
81819f0f 2395 }
81819f0f 2396
bb192ed9 2397 return slab;
81819f0f
CL
2398}
2399
bb192ed9 2400static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
588f8ba9 2401{
44405099
LL
2402 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2403 flags = kmalloc_fix_flags(flags);
588f8ba9 2404
53a0de06
VB
2405 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2406
588f8ba9
TG
2407 return allocate_slab(s,
2408 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2409}
2410
4020b4a2 2411static void __free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2412{
4020b4a2
VB
2413 struct folio *folio = slab_folio(slab);
2414 int order = folio_order(folio);
834f3d11 2415 int pages = 1 << order;
81819f0f 2416
4020b4a2 2417 __slab_clear_pfmemalloc(slab);
4020b4a2 2418 folio->mapping = NULL;
8b881763
VB
2419 /* Make the mapping reset visible before clearing the flag */
2420 smp_wmb();
2421 __folio_clear_slab(folio);
c7b23b68 2422 mm_account_reclaimed_pages(pages);
4020b4a2 2423 unaccount_slab(slab, order, s);
c034c6a4 2424 __free_pages(&folio->page, order);
81819f0f
CL
2425}
2426
2427static void rcu_free_slab(struct rcu_head *h)
2428{
bb192ed9 2429 struct slab *slab = container_of(h, struct slab, rcu_head);
da9a638c 2430
bb192ed9 2431 __free_slab(slab->slab_cache, slab);
81819f0f
CL
2432}
2433
bb192ed9 2434static void free_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2435{
bc29d5bd
VB
2436 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2437 void *p;
2438
2439 slab_pad_check(s, slab);
2440 for_each_object(p, s, slab_address(slab), slab->objects)
2441 check_object(s, slab, p, SLUB_RED_INACTIVE);
2442 }
2443
2444 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
bb192ed9 2445 call_rcu(&slab->rcu_head, rcu_free_slab);
bc29d5bd 2446 else
bb192ed9 2447 __free_slab(s, slab);
81819f0f
CL
2448}
2449
bb192ed9 2450static void discard_slab(struct kmem_cache *s, struct slab *slab)
81819f0f 2451{
bb192ed9
VB
2452 dec_slabs_node(s, slab_nid(slab), slab->objects);
2453 free_slab(s, slab);
81819f0f
CL
2454}
2455
8a399e2f
CZ
2456/*
2457 * SLUB reuses PG_workingset bit to keep track of whether it's on
2458 * the per-node partial list.
2459 */
2460static inline bool slab_test_node_partial(const struct slab *slab)
2461{
2462 return folio_test_workingset((struct folio *)slab_folio(slab));
2463}
2464
2465static inline void slab_set_node_partial(struct slab *slab)
2466{
2467 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2468}
2469
2470static inline void slab_clear_node_partial(struct slab *slab)
2471{
2472 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2473}
2474
81819f0f 2475/*
5cc6eee8 2476 * Management of partially allocated slabs.
81819f0f 2477 */
1e4dd946 2478static inline void
bb192ed9 2479__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
81819f0f 2480{
e95eed57 2481 n->nr_partial++;
136333d1 2482 if (tail == DEACTIVATE_TO_TAIL)
bb192ed9 2483 list_add_tail(&slab->slab_list, &n->partial);
7c2e132c 2484 else
bb192ed9 2485 list_add(&slab->slab_list, &n->partial);
8a399e2f 2486 slab_set_node_partial(slab);
81819f0f
CL
2487}
2488
1e4dd946 2489static inline void add_partial(struct kmem_cache_node *n,
bb192ed9 2490 struct slab *slab, int tail)
62e346a8 2491{
c65c1877 2492 lockdep_assert_held(&n->list_lock);
bb192ed9 2493 __add_partial(n, slab, tail);
1e4dd946 2494}
c65c1877 2495
1e4dd946 2496static inline void remove_partial(struct kmem_cache_node *n,
bb192ed9 2497 struct slab *slab)
1e4dd946
SR
2498{
2499 lockdep_assert_held(&n->list_lock);
bb192ed9 2500 list_del(&slab->slab_list);
8a399e2f 2501 slab_clear_node_partial(slab);
52b4b950 2502 n->nr_partial--;
1e4dd946
SR
2503}
2504
c7323a5a 2505/*
8cd3fa42 2506 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
c7323a5a
VB
2507 * slab from the n->partial list. Remove only a single object from the slab, do
2508 * the alloc_debug_processing() checks and leave the slab on the list, or move
2509 * it to full list if it was the last free object.
2510 */
2511static void *alloc_single_from_partial(struct kmem_cache *s,
6edf2576 2512 struct kmem_cache_node *n, struct slab *slab, int orig_size)
c7323a5a
VB
2513{
2514 void *object;
2515
2516 lockdep_assert_held(&n->list_lock);
2517
2518 object = slab->freelist;
2519 slab->freelist = get_freepointer(s, object);
2520 slab->inuse++;
2521
6edf2576 2522 if (!alloc_debug_processing(s, slab, object, orig_size)) {
c7323a5a
VB
2523 remove_partial(n, slab);
2524 return NULL;
2525 }
2526
2527 if (slab->inuse == slab->objects) {
2528 remove_partial(n, slab);
2529 add_full(s, n, slab);
2530 }
2531
2532 return object;
2533}
2534
2535/*
2536 * Called only for kmem_cache_debug() caches to allocate from a freshly
2537 * allocated slab. Allocate a single object instead of whole freelist
2538 * and put the slab to the partial (or full) list.
2539 */
2540static void *alloc_single_from_new_slab(struct kmem_cache *s,
6edf2576 2541 struct slab *slab, int orig_size)
c7323a5a
VB
2542{
2543 int nid = slab_nid(slab);
2544 struct kmem_cache_node *n = get_node(s, nid);
2545 unsigned long flags;
2546 void *object;
2547
2548
2549 object = slab->freelist;
2550 slab->freelist = get_freepointer(s, object);
2551 slab->inuse = 1;
2552
6edf2576 2553 if (!alloc_debug_processing(s, slab, object, orig_size))
c7323a5a
VB
2554 /*
2555 * It's not really expected that this would fail on a
2556 * freshly allocated slab, but a concurrent memory
2557 * corruption in theory could cause that.
2558 */
2559 return NULL;
2560
2561 spin_lock_irqsave(&n->list_lock, flags);
2562
2563 if (slab->inuse == slab->objects)
2564 add_full(s, n, slab);
2565 else
2566 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2567
2568 inc_slabs_node(s, nid, slab->objects);
2569 spin_unlock_irqrestore(&n->list_lock, flags);
2570
2571 return object;
2572}
2573
e0a043aa 2574#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9 2575static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
e0a043aa 2576#else
bb192ed9 2577static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
e0a043aa
VB
2578 int drain) { }
2579#endif
01b34d16 2580static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
49e22585 2581
81819f0f 2582/*
672bba3a 2583 * Try to allocate a partial slab from a specific node.
81819f0f 2584 */
43c4c349
CZ
2585static struct slab *get_partial_node(struct kmem_cache *s,
2586 struct kmem_cache_node *n,
2587 struct partial_context *pc)
81819f0f 2588{
43c4c349 2589 struct slab *slab, *slab2, *partial = NULL;
4b1f449d 2590 unsigned long flags;
bb192ed9 2591 unsigned int partial_slabs = 0;
81819f0f
CL
2592
2593 /*
2594 * Racy check. If we mistakenly see no partial slabs then we
2595 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2596 * partial slab and there is none available then get_partial()
672bba3a 2597 * will return NULL.
81819f0f
CL
2598 */
2599 if (!n || !n->nr_partial)
2600 return NULL;
2601
4b1f449d 2602 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9 2603 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
6edf2576 2604 if (!pfmemalloc_match(slab, pc->flags))
8ba00bb6
JK
2605 continue;
2606
0af8489b 2607 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
8cd3fa42 2608 void *object = alloc_single_from_partial(s, n, slab,
6edf2576 2609 pc->orig_size);
43c4c349
CZ
2610 if (object) {
2611 partial = slab;
2612 pc->object = object;
c7323a5a 2613 break;
43c4c349 2614 }
c7323a5a
VB
2615 continue;
2616 }
2617
8cd3fa42 2618 remove_partial(n, slab);
49e22585 2619
43c4c349
CZ
2620 if (!partial) {
2621 partial = slab;
49e22585 2622 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2623 } else {
bb192ed9 2624 put_cpu_partial(s, slab, 0);
8028dcea 2625 stat(s, CPU_PARTIAL_NODE);
bb192ed9 2626 partial_slabs++;
49e22585 2627 }
b47291ef 2628#ifdef CONFIG_SLUB_CPU_PARTIAL
345c905d 2629 if (!kmem_cache_has_cpu_partial(s)
bb192ed9 2630 || partial_slabs > s->cpu_partial_slabs / 2)
49e22585 2631 break;
b47291ef
VB
2632#else
2633 break;
2634#endif
49e22585 2635
497b66f2 2636 }
4b1f449d 2637 spin_unlock_irqrestore(&n->list_lock, flags);
43c4c349 2638 return partial;
81819f0f
CL
2639}
2640
2641/*
c2092c12 2642 * Get a slab from somewhere. Search in increasing NUMA distances.
81819f0f 2643 */
43c4c349
CZ
2644static struct slab *get_any_partial(struct kmem_cache *s,
2645 struct partial_context *pc)
81819f0f
CL
2646{
2647#ifdef CONFIG_NUMA
2648 struct zonelist *zonelist;
dd1a239f 2649 struct zoneref *z;
54a6eb5c 2650 struct zone *zone;
6edf2576 2651 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
43c4c349 2652 struct slab *slab;
cc9a6c87 2653 unsigned int cpuset_mems_cookie;
81819f0f
CL
2654
2655 /*
672bba3a
CL
2656 * The defrag ratio allows a configuration of the tradeoffs between
2657 * inter node defragmentation and node local allocations. A lower
2658 * defrag_ratio increases the tendency to do local allocations
2659 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2660 *
672bba3a
CL
2661 * If the defrag_ratio is set to 0 then kmalloc() always
2662 * returns node local objects. If the ratio is higher then kmalloc()
2663 * may return off node objects because partial slabs are obtained
2664 * from other nodes and filled up.
81819f0f 2665 *
43efd3ea
LP
2666 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2667 * (which makes defrag_ratio = 1000) then every (well almost)
2668 * allocation will first attempt to defrag slab caches on other nodes.
2669 * This means scanning over all nodes to look for partial slabs which
2670 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2671 * with available objects.
81819f0f 2672 */
9824601e
CL
2673 if (!s->remote_node_defrag_ratio ||
2674 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2675 return NULL;
2676
cc9a6c87 2677 do {
d26914d1 2678 cpuset_mems_cookie = read_mems_allowed_begin();
6edf2576 2679 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
97a225e6 2680 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2681 struct kmem_cache_node *n;
2682
2683 n = get_node(s, zone_to_nid(zone));
2684
6edf2576 2685 if (n && cpuset_zone_allowed(zone, pc->flags) &&
cc9a6c87 2686 n->nr_partial > s->min_partial) {
43c4c349
CZ
2687 slab = get_partial_node(s, n, pc);
2688 if (slab) {
cc9a6c87 2689 /*
d26914d1
MG
2690 * Don't check read_mems_allowed_retry()
2691 * here - if mems_allowed was updated in
2692 * parallel, that was a harmless race
2693 * between allocation and the cpuset
2694 * update
cc9a6c87 2695 */
43c4c349 2696 return slab;
cc9a6c87 2697 }
c0ff7453 2698 }
81819f0f 2699 }
d26914d1 2700 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2701#endif /* CONFIG_NUMA */
81819f0f
CL
2702 return NULL;
2703}
2704
2705/*
c2092c12 2706 * Get a partial slab, lock it and return it.
81819f0f 2707 */
43c4c349
CZ
2708static struct slab *get_partial(struct kmem_cache *s, int node,
2709 struct partial_context *pc)
81819f0f 2710{
43c4c349 2711 struct slab *slab;
a561ce00
JK
2712 int searchnode = node;
2713
2714 if (node == NUMA_NO_NODE)
2715 searchnode = numa_mem_id();
81819f0f 2716
43c4c349
CZ
2717 slab = get_partial_node(s, get_node(s, searchnode), pc);
2718 if (slab || node != NUMA_NO_NODE)
2719 return slab;
81819f0f 2720
6edf2576 2721 return get_any_partial(s, pc);
81819f0f
CL
2722}
2723
0af8489b
VB
2724#ifndef CONFIG_SLUB_TINY
2725
923717cb 2726#ifdef CONFIG_PREEMPTION
8a5ec0ba 2727/*
0d645ed1 2728 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2729 * during cmpxchg. The transactions start with the cpu number and are then
2730 * incremented by CONFIG_NR_CPUS.
2731 */
2732#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2733#else
2734/*
2735 * No preemption supported therefore also no need to check for
2736 * different cpus.
2737 */
2738#define TID_STEP 1
0af8489b 2739#endif /* CONFIG_PREEMPTION */
8a5ec0ba
CL
2740
2741static inline unsigned long next_tid(unsigned long tid)
2742{
2743 return tid + TID_STEP;
2744}
2745
9d5f0be0 2746#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2747static inline unsigned int tid_to_cpu(unsigned long tid)
2748{
2749 return tid % TID_STEP;
2750}
2751
2752static inline unsigned long tid_to_event(unsigned long tid)
2753{
2754 return tid / TID_STEP;
2755}
9d5f0be0 2756#endif
8a5ec0ba
CL
2757
2758static inline unsigned int init_tid(int cpu)
2759{
2760 return cpu;
2761}
2762
2763static inline void note_cmpxchg_failure(const char *n,
2764 const struct kmem_cache *s, unsigned long tid)
2765{
2766#ifdef SLUB_DEBUG_CMPXCHG
2767 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2768
f9f58285 2769 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2770
923717cb 2771#ifdef CONFIG_PREEMPTION
8a5ec0ba 2772 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2773 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2774 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2775 else
2776#endif
2777 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2778 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2779 tid_to_event(tid), tid_to_event(actual_tid));
2780 else
f9f58285 2781 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2782 actual_tid, tid, next_tid(tid));
2783#endif
4fdccdfb 2784 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2785}
2786
788e1aad 2787static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2788{
8a5ec0ba 2789 int cpu;
bd0e7491 2790 struct kmem_cache_cpu *c;
8a5ec0ba 2791
bd0e7491
VB
2792 for_each_possible_cpu(cpu) {
2793 c = per_cpu_ptr(s->cpu_slab, cpu);
2794 local_lock_init(&c->lock);
2795 c->tid = init_tid(cpu);
2796 }
8a5ec0ba 2797}
2cfb7455 2798
81819f0f 2799/*
c2092c12 2800 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
a019d201
VB
2801 * unfreezes the slabs and puts it on the proper list.
2802 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2803 * by the caller.
81819f0f 2804 */
bb192ed9 2805static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
a019d201 2806 void *freelist)
81819f0f 2807{
bb192ed9 2808 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
6d3a16d0 2809 int free_delta = 0;
d930ff03 2810 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2811 int tail = DEACTIVATE_TO_HEAD;
3406e91b 2812 unsigned long flags = 0;
bb192ed9
VB
2813 struct slab new;
2814 struct slab old;
2cfb7455 2815
bb192ed9 2816 if (slab->freelist) {
84e554e6 2817 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2818 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2819 }
2820
894b8788 2821 /*
d930ff03
VB
2822 * Stage one: Count the objects on cpu's freelist as free_delta and
2823 * remember the last object in freelist_tail for later splicing.
2cfb7455 2824 */
d930ff03
VB
2825 freelist_tail = NULL;
2826 freelist_iter = freelist;
2827 while (freelist_iter) {
2828 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2829
52f23478
DZ
2830 /*
2831 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2832 * 'freelist_iter' is already corrupted. So isolate all objects
2833 * starting at 'freelist_iter' by skipping them.
52f23478 2834 */
bb192ed9 2835 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
52f23478
DZ
2836 break;
2837
d930ff03
VB
2838 freelist_tail = freelist_iter;
2839 free_delta++;
2cfb7455 2840
d930ff03 2841 freelist_iter = nextfree;
2cfb7455
CL
2842 }
2843
894b8788 2844 /*
c2092c12
VB
2845 * Stage two: Unfreeze the slab while splicing the per-cpu
2846 * freelist to the head of slab's freelist.
894b8788 2847 */
00eb60c2
CZ
2848 do {
2849 old.freelist = READ_ONCE(slab->freelist);
2850 old.counters = READ_ONCE(slab->counters);
2851 VM_BUG_ON(!old.frozen);
2852
2853 /* Determine target state of the slab */
2854 new.counters = old.counters;
2855 new.frozen = 0;
2856 if (freelist_tail) {
2857 new.inuse -= free_delta;
2858 set_freepointer(s, freelist_tail, old.freelist);
2859 new.freelist = freelist;
2860 } else {
2861 new.freelist = old.freelist;
2862 }
2863 } while (!slab_update_freelist(s, slab,
2864 old.freelist, old.counters,
2865 new.freelist, new.counters,
2866 "unfreezing slab"));
2cfb7455 2867
00eb60c2
CZ
2868 /*
2869 * Stage three: Manipulate the slab list based on the updated state.
2870 */
6d3a16d0 2871 if (!new.inuse && n->nr_partial >= s->min_partial) {
00eb60c2
CZ
2872 stat(s, DEACTIVATE_EMPTY);
2873 discard_slab(s, slab);
2874 stat(s, FREE_SLAB);
6d3a16d0 2875 } else if (new.freelist) {
6d3a16d0 2876 spin_lock_irqsave(&n->list_lock, flags);
6d3a16d0
HY
2877 add_partial(n, slab, tail);
2878 spin_unlock_irqrestore(&n->list_lock, flags);
88349a28 2879 stat(s, tail);
00eb60c2 2880 } else {
6d3a16d0 2881 stat(s, DEACTIVATE_FULL);
894b8788 2882 }
81819f0f
CL
2883}
2884
345c905d 2885#ifdef CONFIG_SLUB_CPU_PARTIAL
21316fdc 2886static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
fc1455f4 2887{
43d77867 2888 struct kmem_cache_node *n = NULL, *n2 = NULL;
bb192ed9 2889 struct slab *slab, *slab_to_discard = NULL;
7cf9f3ba 2890 unsigned long flags = 0;
49e22585 2891
bb192ed9 2892 while (partial_slab) {
bb192ed9
VB
2893 slab = partial_slab;
2894 partial_slab = slab->next;
43d77867 2895
bb192ed9 2896 n2 = get_node(s, slab_nid(slab));
43d77867
JK
2897 if (n != n2) {
2898 if (n)
7cf9f3ba 2899 spin_unlock_irqrestore(&n->list_lock, flags);
43d77867
JK
2900
2901 n = n2;
7cf9f3ba 2902 spin_lock_irqsave(&n->list_lock, flags);
43d77867 2903 }
49e22585 2904
8cd3fa42 2905 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
bb192ed9
VB
2906 slab->next = slab_to_discard;
2907 slab_to_discard = slab;
43d77867 2908 } else {
bb192ed9 2909 add_partial(n, slab, DEACTIVATE_TO_TAIL);
43d77867 2910 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2911 }
2912 }
2913
2914 if (n)
7cf9f3ba 2915 spin_unlock_irqrestore(&n->list_lock, flags);
8de06a6f 2916
bb192ed9
VB
2917 while (slab_to_discard) {
2918 slab = slab_to_discard;
2919 slab_to_discard = slab_to_discard->next;
9ada1934
SL
2920
2921 stat(s, DEACTIVATE_EMPTY);
bb192ed9 2922 discard_slab(s, slab);
9ada1934
SL
2923 stat(s, FREE_SLAB);
2924 }
fc1455f4 2925}
f3ab8b6b 2926
fc1455f4 2927/*
21316fdc 2928 * Put all the cpu partial slabs to the node partial list.
fc1455f4 2929 */
21316fdc 2930static void put_partials(struct kmem_cache *s)
fc1455f4 2931{
bb192ed9 2932 struct slab *partial_slab;
fc1455f4
VB
2933 unsigned long flags;
2934
bd0e7491 2935 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 2936 partial_slab = this_cpu_read(s->cpu_slab->partial);
fc1455f4 2937 this_cpu_write(s->cpu_slab->partial, NULL);
bd0e7491 2938 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
fc1455f4 2939
bb192ed9 2940 if (partial_slab)
21316fdc 2941 __put_partials(s, partial_slab);
fc1455f4
VB
2942}
2943
21316fdc
CZ
2944static void put_partials_cpu(struct kmem_cache *s,
2945 struct kmem_cache_cpu *c)
fc1455f4 2946{
bb192ed9 2947 struct slab *partial_slab;
fc1455f4 2948
bb192ed9 2949 partial_slab = slub_percpu_partial(c);
fc1455f4
VB
2950 c->partial = NULL;
2951
bb192ed9 2952 if (partial_slab)
21316fdc 2953 __put_partials(s, partial_slab);
49e22585
CL
2954}
2955
2956/*
31bda717 2957 * Put a slab into a partial slab slot if available.
49e22585
CL
2958 *
2959 * If we did not find a slot then simply move all the partials to the
2960 * per node partial list.
2961 */
bb192ed9 2962static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
49e22585 2963{
bb192ed9 2964 struct slab *oldslab;
21316fdc 2965 struct slab *slab_to_put = NULL;
e0a043aa 2966 unsigned long flags;
bb192ed9 2967 int slabs = 0;
49e22585 2968
bd0e7491 2969 local_lock_irqsave(&s->cpu_slab->lock, flags);
49e22585 2970
bb192ed9 2971 oldslab = this_cpu_read(s->cpu_slab->partial);
e0a043aa 2972
bb192ed9
VB
2973 if (oldslab) {
2974 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
e0a043aa
VB
2975 /*
2976 * Partial array is full. Move the existing set to the
2977 * per node partial list. Postpone the actual unfreezing
2978 * outside of the critical section.
2979 */
21316fdc 2980 slab_to_put = oldslab;
bb192ed9 2981 oldslab = NULL;
e0a043aa 2982 } else {
bb192ed9 2983 slabs = oldslab->slabs;
49e22585 2984 }
e0a043aa 2985 }
49e22585 2986
bb192ed9 2987 slabs++;
49e22585 2988
bb192ed9
VB
2989 slab->slabs = slabs;
2990 slab->next = oldslab;
49e22585 2991
bb192ed9 2992 this_cpu_write(s->cpu_slab->partial, slab);
e0a043aa 2993
bd0e7491 2994 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
e0a043aa 2995
21316fdc
CZ
2996 if (slab_to_put) {
2997 __put_partials(s, slab_to_put);
e0a043aa
VB
2998 stat(s, CPU_PARTIAL_DRAIN);
2999 }
49e22585
CL
3000}
3001
e0a043aa
VB
3002#else /* CONFIG_SLUB_CPU_PARTIAL */
3003
21316fdc
CZ
3004static inline void put_partials(struct kmem_cache *s) { }
3005static inline void put_partials_cpu(struct kmem_cache *s,
3006 struct kmem_cache_cpu *c) { }
e0a043aa
VB
3007
3008#endif /* CONFIG_SLUB_CPU_PARTIAL */
3009
dfb4f096 3010static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 3011{
5a836bf6 3012 unsigned long flags;
bb192ed9 3013 struct slab *slab;
5a836bf6
SAS
3014 void *freelist;
3015
bd0e7491 3016 local_lock_irqsave(&s->cpu_slab->lock, flags);
5a836bf6 3017
bb192ed9 3018 slab = c->slab;
5a836bf6 3019 freelist = c->freelist;
c17dda40 3020
bb192ed9 3021 c->slab = NULL;
a019d201 3022 c->freelist = NULL;
c17dda40 3023 c->tid = next_tid(c->tid);
a019d201 3024
bd0e7491 3025 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
a019d201 3026
bb192ed9
VB
3027 if (slab) {
3028 deactivate_slab(s, slab, freelist);
5a836bf6
SAS
3029 stat(s, CPUSLAB_FLUSH);
3030 }
81819f0f
CL
3031}
3032
0c710013 3033static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 3034{
9dfc6e68 3035 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
08beb547 3036 void *freelist = c->freelist;
bb192ed9 3037 struct slab *slab = c->slab;
81819f0f 3038
bb192ed9 3039 c->slab = NULL;
08beb547
VB
3040 c->freelist = NULL;
3041 c->tid = next_tid(c->tid);
3042
bb192ed9
VB
3043 if (slab) {
3044 deactivate_slab(s, slab, freelist);
08beb547
VB
3045 stat(s, CPUSLAB_FLUSH);
3046 }
49e22585 3047
21316fdc 3048 put_partials_cpu(s, c);
81819f0f
CL
3049}
3050
5a836bf6
SAS
3051struct slub_flush_work {
3052 struct work_struct work;
3053 struct kmem_cache *s;
3054 bool skip;
3055};
3056
fc1455f4
VB
3057/*
3058 * Flush cpu slab.
3059 *
5a836bf6 3060 * Called from CPU work handler with migration disabled.
fc1455f4 3061 */
5a836bf6 3062static void flush_cpu_slab(struct work_struct *w)
81819f0f 3063{
5a836bf6
SAS
3064 struct kmem_cache *s;
3065 struct kmem_cache_cpu *c;
3066 struct slub_flush_work *sfw;
3067
3068 sfw = container_of(w, struct slub_flush_work, work);
3069
3070 s = sfw->s;
3071 c = this_cpu_ptr(s->cpu_slab);
fc1455f4 3072
bb192ed9 3073 if (c->slab)
fc1455f4 3074 flush_slab(s, c);
81819f0f 3075
21316fdc 3076 put_partials(s);
81819f0f
CL
3077}
3078
5a836bf6 3079static bool has_cpu_slab(int cpu, struct kmem_cache *s)
a8364d55 3080{
a8364d55
GBY
3081 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3082
bb192ed9 3083 return c->slab || slub_percpu_partial(c);
a8364d55
GBY
3084}
3085
5a836bf6
SAS
3086static DEFINE_MUTEX(flush_lock);
3087static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3088
3089static void flush_all_cpus_locked(struct kmem_cache *s)
3090{
3091 struct slub_flush_work *sfw;
3092 unsigned int cpu;
3093
3094 lockdep_assert_cpus_held();
3095 mutex_lock(&flush_lock);
3096
3097 for_each_online_cpu(cpu) {
3098 sfw = &per_cpu(slub_flush, cpu);
3099 if (!has_cpu_slab(cpu, s)) {
3100 sfw->skip = true;
3101 continue;
3102 }
3103 INIT_WORK(&sfw->work, flush_cpu_slab);
3104 sfw->skip = false;
3105 sfw->s = s;
e45cc288 3106 queue_work_on(cpu, flushwq, &sfw->work);
5a836bf6
SAS
3107 }
3108
3109 for_each_online_cpu(cpu) {
3110 sfw = &per_cpu(slub_flush, cpu);
3111 if (sfw->skip)
3112 continue;
3113 flush_work(&sfw->work);
3114 }
3115
3116 mutex_unlock(&flush_lock);
3117}
3118
81819f0f
CL
3119static void flush_all(struct kmem_cache *s)
3120{
5a836bf6
SAS
3121 cpus_read_lock();
3122 flush_all_cpus_locked(s);
3123 cpus_read_unlock();
81819f0f
CL
3124}
3125
a96a87bf
SAS
3126/*
3127 * Use the cpu notifier to insure that the cpu slabs are flushed when
3128 * necessary.
3129 */
3130static int slub_cpu_dead(unsigned int cpu)
3131{
3132 struct kmem_cache *s;
a96a87bf
SAS
3133
3134 mutex_lock(&slab_mutex);
0e7ac738 3135 list_for_each_entry(s, &slab_caches, list)
a96a87bf 3136 __flush_cpu_slab(s, cpu);
a96a87bf
SAS
3137 mutex_unlock(&slab_mutex);
3138 return 0;
3139}
3140
0af8489b
VB
3141#else /* CONFIG_SLUB_TINY */
3142static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3143static inline void flush_all(struct kmem_cache *s) { }
3144static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3145static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3146#endif /* CONFIG_SLUB_TINY */
3147
dfb4f096
CL
3148/*
3149 * Check if the objects in a per cpu structure fit numa
3150 * locality expectations.
3151 */
bb192ed9 3152static inline int node_match(struct slab *slab, int node)
dfb4f096
CL
3153{
3154#ifdef CONFIG_NUMA
bb192ed9 3155 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
dfb4f096
CL
3156 return 0;
3157#endif
3158 return 1;
3159}
3160
9a02d699 3161#ifdef CONFIG_SLUB_DEBUG
bb192ed9 3162static int count_free(struct slab *slab)
781b2ba6 3163{
bb192ed9 3164 return slab->objects - slab->inuse;
781b2ba6
PE
3165}
3166
9a02d699
DR
3167static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3168{
3169 return atomic_long_read(&n->total_objects);
3170}
a579b056
VB
3171
3172/* Supports checking bulk free of a constructed freelist */
fa9b88e4
VB
3173static inline bool free_debug_processing(struct kmem_cache *s,
3174 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3175 unsigned long addr, depot_stack_handle_t handle)
a579b056 3176{
fa9b88e4 3177 bool checks_ok = false;
a579b056
VB
3178 void *object = head;
3179 int cnt = 0;
a579b056
VB
3180
3181 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3182 if (!check_slab(s, slab))
3183 goto out;
3184 }
3185
fa9b88e4 3186 if (slab->inuse < *bulk_cnt) {
c7323a5a 3187 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
fa9b88e4 3188 slab->inuse, *bulk_cnt);
c7323a5a
VB
3189 goto out;
3190 }
3191
a579b056 3192next_object:
c7323a5a 3193
fa9b88e4 3194 if (++cnt > *bulk_cnt)
c7323a5a 3195 goto out_cnt;
a579b056
VB
3196
3197 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3198 if (!free_consistency_checks(s, slab, object, addr))
3199 goto out;
3200 }
3201
3202 if (s->flags & SLAB_STORE_USER)
3203 set_track_update(s, object, TRACK_FREE, addr, handle);
3204 trace(s, slab, object, 0);
3205 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3206 init_object(s, object, SLUB_RED_INACTIVE);
3207
3208 /* Reached end of constructed freelist yet? */
3209 if (object != tail) {
3210 object = get_freepointer(s, object);
3211 goto next_object;
3212 }
c7323a5a 3213 checks_ok = true;
a579b056 3214
c7323a5a 3215out_cnt:
fa9b88e4 3216 if (cnt != *bulk_cnt) {
c7323a5a 3217 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
fa9b88e4
VB
3218 *bulk_cnt, cnt);
3219 *bulk_cnt = cnt;
c7323a5a
VB
3220 }
3221
fa9b88e4 3222out:
c7323a5a
VB
3223
3224 if (!checks_ok)
a579b056 3225 slab_fix(s, "Object at 0x%p not freed", object);
c7323a5a 3226
fa9b88e4 3227 return checks_ok;
a579b056 3228}
9a02d699
DR
3229#endif /* CONFIG_SLUB_DEBUG */
3230
b1a413a3 3231#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
781b2ba6 3232static unsigned long count_partial(struct kmem_cache_node *n,
bb192ed9 3233 int (*get_count)(struct slab *))
781b2ba6
PE
3234{
3235 unsigned long flags;
3236 unsigned long x = 0;
bb192ed9 3237 struct slab *slab;
781b2ba6
PE
3238
3239 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
3240 list_for_each_entry(slab, &n->partial, slab_list)
3241 x += get_count(slab);
781b2ba6
PE
3242 spin_unlock_irqrestore(&n->list_lock, flags);
3243 return x;
3244}
b1a413a3 3245#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
26c02cf0 3246
56d5a2b9 3247#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
3248static noinline void
3249slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3250{
9a02d699
DR
3251 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3252 DEFAULT_RATELIMIT_BURST);
781b2ba6 3253 int node;
fa45dc25 3254 struct kmem_cache_node *n;
781b2ba6 3255
9a02d699
DR
3256 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3257 return;
3258
5b3810e5
VB
3259 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3260 nid, gfpflags, &gfpflags);
19af27af 3261 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
3262 s->name, s->object_size, s->size, oo_order(s->oo),
3263 oo_order(s->min));
781b2ba6 3264
3b0efdfa 3265 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
3266 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
3267 s->name);
fa5ec8a1 3268
fa45dc25 3269 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
3270 unsigned long nr_slabs;
3271 unsigned long nr_objs;
3272 unsigned long nr_free;
3273
26c02cf0
AB
3274 nr_free = count_partial(n, count_free);
3275 nr_slabs = node_nr_slabs(n);
3276 nr_objs = node_nr_objs(n);
781b2ba6 3277
f9f58285 3278 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
3279 node, nr_slabs, nr_objs, nr_free);
3280 }
3281}
56d5a2b9
VB
3282#else /* CONFIG_SLUB_DEBUG */
3283static inline void
3284slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3285#endif
781b2ba6 3286
01b34d16 3287static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
072bb0aa 3288{
01b34d16 3289 if (unlikely(slab_test_pfmemalloc(slab)))
0b303fb4
VB
3290 return gfp_pfmemalloc_allowed(gfpflags);
3291
3292 return true;
3293}
3294
0af8489b 3295#ifndef CONFIG_SLUB_TINY
6801be4f
PZ
3296static inline bool
3297__update_cpu_freelist_fast(struct kmem_cache *s,
3298 void *freelist_old, void *freelist_new,
3299 unsigned long tid)
3300{
3301 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3302 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3303
3304 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3305 &old.full, new.full);
3306}
3307
213eeb9f 3308/*
c2092c12
VB
3309 * Check the slab->freelist and either transfer the freelist to the
3310 * per cpu freelist or deactivate the slab.
213eeb9f 3311 *
c2092c12 3312 * The slab is still frozen if the return value is not NULL.
213eeb9f 3313 *
c2092c12 3314 * If this function returns NULL then the slab has been unfrozen.
213eeb9f 3315 */
bb192ed9 3316static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
213eeb9f 3317{
bb192ed9 3318 struct slab new;
213eeb9f
CL
3319 unsigned long counters;
3320 void *freelist;
3321
bd0e7491
VB
3322 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3323
213eeb9f 3324 do {
bb192ed9
VB
3325 freelist = slab->freelist;
3326 counters = slab->counters;
6faa6833 3327
213eeb9f 3328 new.counters = counters;
a0132ac0 3329 VM_BUG_ON(!new.frozen);
213eeb9f 3330
bb192ed9 3331 new.inuse = slab->objects;
213eeb9f
CL
3332 new.frozen = freelist != NULL;
3333
6801be4f 3334 } while (!__slab_update_freelist(s, slab,
213eeb9f
CL
3335 freelist, counters,
3336 NULL, new.counters,
3337 "get_freelist"));
3338
3339 return freelist;
3340}
3341
213094b5
CZ
3342/*
3343 * Freeze the partial slab and return the pointer to the freelist.
3344 */
3345static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3346{
3347 struct slab new;
3348 unsigned long counters;
3349 void *freelist;
3350
3351 do {
3352 freelist = slab->freelist;
3353 counters = slab->counters;
3354
3355 new.counters = counters;
3356 VM_BUG_ON(new.frozen);
3357
3358 new.inuse = slab->objects;
3359 new.frozen = 1;
3360
3361 } while (!slab_update_freelist(s, slab,
3362 freelist, counters,
3363 NULL, new.counters,
3364 "freeze_slab"));
3365
3366 return freelist;
3367}
3368
81819f0f 3369/*
894b8788
CL
3370 * Slow path. The lockless freelist is empty or we need to perform
3371 * debugging duties.
3372 *
894b8788
CL
3373 * Processing is still very fast if new objects have been freed to the
3374 * regular freelist. In that case we simply take over the regular freelist
3375 * as the lockless freelist and zap the regular freelist.
81819f0f 3376 *
894b8788
CL
3377 * If that is not working then we fall back to the partial lists. We take the
3378 * first element of the freelist as the object to allocate now and move the
3379 * rest of the freelist to the lockless freelist.
81819f0f 3380 *
894b8788 3381 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
3382 * we need to allocate a new slab. This is the slowest path since it involves
3383 * a call to the page allocator and the setup of a new slab.
a380a3c7 3384 *
e500059b 3385 * Version of __slab_alloc to use when we know that preemption is
a380a3c7 3386 * already disabled (which is the case for bulk allocation).
81819f0f 3387 */
a380a3c7 3388static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3389 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
81819f0f 3390{
6faa6833 3391 void *freelist;
bb192ed9 3392 struct slab *slab;
e500059b 3393 unsigned long flags;
6edf2576 3394 struct partial_context pc;
81819f0f 3395
9f986d99
AW
3396 stat(s, ALLOC_SLOWPATH);
3397
c2092c12 3398reread_slab:
0b303fb4 3399
bb192ed9
VB
3400 slab = READ_ONCE(c->slab);
3401 if (!slab) {
0715e6c5
VB
3402 /*
3403 * if the node is not online or has no normal memory, just
3404 * ignore the node constraint
3405 */
3406 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 3407 !node_isset(node, slab_nodes)))
0715e6c5 3408 node = NUMA_NO_NODE;
81819f0f 3409 goto new_slab;
0715e6c5 3410 }
6faa6833 3411
bb192ed9 3412 if (unlikely(!node_match(slab, node))) {
0715e6c5
VB
3413 /*
3414 * same as above but node_match() being false already
3415 * implies node != NUMA_NO_NODE
3416 */
7e1fa93d 3417 if (!node_isset(node, slab_nodes)) {
0715e6c5 3418 node = NUMA_NO_NODE;
0715e6c5 3419 } else {
a561ce00 3420 stat(s, ALLOC_NODE_MISMATCH);
0b303fb4 3421 goto deactivate_slab;
a561ce00 3422 }
fc59c053 3423 }
6446faa2 3424
072bb0aa
MG
3425 /*
3426 * By rights, we should be searching for a slab page that was
3427 * PFMEMALLOC but right now, we are losing the pfmemalloc
3428 * information when the page leaves the per-cpu allocator
3429 */
bb192ed9 3430 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
0b303fb4 3431 goto deactivate_slab;
072bb0aa 3432
c2092c12 3433 /* must check again c->slab in case we got preempted and it changed */
bd0e7491 3434 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3435 if (unlikely(slab != c->slab)) {
bd0e7491 3436 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3437 goto reread_slab;
0b303fb4 3438 }
6faa6833
CL
3439 freelist = c->freelist;
3440 if (freelist)
73736e03 3441 goto load_freelist;
03e404af 3442
bb192ed9 3443 freelist = get_freelist(s, slab);
6446faa2 3444
6faa6833 3445 if (!freelist) {
bb192ed9 3446 c->slab = NULL;
eeaa345e 3447 c->tid = next_tid(c->tid);
bd0e7491 3448 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
03e404af 3449 stat(s, DEACTIVATE_BYPASS);
fc59c053 3450 goto new_slab;
03e404af 3451 }
6446faa2 3452
84e554e6 3453 stat(s, ALLOC_REFILL);
6446faa2 3454
894b8788 3455load_freelist:
0b303fb4 3456
bd0e7491 3457 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
0b303fb4 3458
507effea
CL
3459 /*
3460 * freelist is pointing to the list of objects to be used.
c2092c12
VB
3461 * slab is pointing to the slab from which the objects are obtained.
3462 * That slab must be frozen for per cpu allocations to work.
507effea 3463 */
bb192ed9 3464 VM_BUG_ON(!c->slab->frozen);
6faa6833 3465 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 3466 c->tid = next_tid(c->tid);
bd0e7491 3467 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
6faa6833 3468 return freelist;
81819f0f 3469
0b303fb4
VB
3470deactivate_slab:
3471
bd0e7491 3472 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3473 if (slab != c->slab) {
bd0e7491 3474 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3475 goto reread_slab;
0b303fb4 3476 }
a019d201 3477 freelist = c->freelist;
bb192ed9 3478 c->slab = NULL;
a019d201 3479 c->freelist = NULL;
eeaa345e 3480 c->tid = next_tid(c->tid);
bd0e7491 3481 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
bb192ed9 3482 deactivate_slab(s, slab, freelist);
0b303fb4 3483
81819f0f 3484new_slab:
2cfb7455 3485
8cd3fa42
CZ
3486#ifdef CONFIG_SLUB_CPU_PARTIAL
3487 while (slub_percpu_partial(c)) {
bd0e7491 3488 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3489 if (unlikely(c->slab)) {
bd0e7491 3490 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
c2092c12 3491 goto reread_slab;
fa417ab7 3492 }
4b1f449d 3493 if (unlikely(!slub_percpu_partial(c))) {
bd0e7491 3494 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
25c00c50
VB
3495 /* we were preempted and partial list got empty */
3496 goto new_objects;
4b1f449d 3497 }
fa417ab7 3498
8cd3fa42 3499 slab = slub_percpu_partial(c);
bb192ed9 3500 slub_set_percpu_partial(c, slab);
bd0e7491 3501 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
49e22585 3502 stat(s, CPU_PARTIAL_ALLOC);
8cd3fa42
CZ
3503
3504 if (unlikely(!node_match(slab, node) ||
3505 !pfmemalloc_match(slab, gfpflags))) {
3506 slab->next = NULL;
21316fdc 3507 __put_partials(s, slab);
8cd3fa42
CZ
3508 continue;
3509 }
3510
3511 freelist = freeze_slab(s, slab);
3512 goto retry_load_slab;
81819f0f 3513 }
8cd3fa42 3514#endif
81819f0f 3515
fa417ab7
VB
3516new_objects:
3517
6edf2576 3518 pc.flags = gfpflags;
6edf2576 3519 pc.orig_size = orig_size;
43c4c349
CZ
3520 slab = get_partial(s, node, &pc);
3521 if (slab) {
24c6a097 3522 if (kmem_cache_debug(s)) {
8cd3fa42 3523 freelist = pc.object;
24c6a097
CZ
3524 /*
3525 * For debug caches here we had to go through
3526 * alloc_single_from_partial() so just store the
3527 * tracking info and return the object.
3528 */
3529 if (s->flags & SLAB_STORE_USER)
3530 set_track(s, freelist, TRACK_ALLOC, addr);
3531
3532 return freelist;
3533 }
3534
8cd3fa42 3535 freelist = freeze_slab(s, slab);
24c6a097
CZ
3536 goto retry_load_slab;
3537 }
2a904905 3538
25c00c50 3539 slub_put_cpu_ptr(s->cpu_slab);
bb192ed9 3540 slab = new_slab(s, gfpflags, node);
25c00c50 3541 c = slub_get_cpu_ptr(s->cpu_slab);
01ad8a7b 3542
bb192ed9 3543 if (unlikely(!slab)) {
9a02d699 3544 slab_out_of_memory(s, gfpflags, node);
f4697436 3545 return NULL;
81819f0f 3546 }
2cfb7455 3547
c7323a5a
VB
3548 stat(s, ALLOC_SLAB);
3549
3550 if (kmem_cache_debug(s)) {
6edf2576 3551 freelist = alloc_single_from_new_slab(s, slab, orig_size);
c7323a5a
VB
3552
3553 if (unlikely(!freelist))
3554 goto new_objects;
3555
3556 if (s->flags & SLAB_STORE_USER)
3557 set_track(s, freelist, TRACK_ALLOC, addr);
3558
3559 return freelist;
3560 }
3561
53a0de06 3562 /*
c2092c12 3563 * No other reference to the slab yet so we can
53a0de06
VB
3564 * muck around with it freely without cmpxchg
3565 */
bb192ed9
VB
3566 freelist = slab->freelist;
3567 slab->freelist = NULL;
c7323a5a
VB
3568 slab->inuse = slab->objects;
3569 slab->frozen = 1;
53a0de06 3570
c7323a5a 3571 inc_slabs_node(s, slab_nid(slab), slab->objects);
53a0de06 3572
c7323a5a 3573 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
1572df7c
VB
3574 /*
3575 * For !pfmemalloc_match() case we don't load freelist so that
3576 * we don't make further mismatched allocations easier.
3577 */
c7323a5a
VB
3578 deactivate_slab(s, slab, get_freepointer(s, freelist));
3579 return freelist;
3580 }
1572df7c 3581
c2092c12 3582retry_load_slab:
cfdf836e 3583
bd0e7491 3584 local_lock_irqsave(&s->cpu_slab->lock, flags);
bb192ed9 3585 if (unlikely(c->slab)) {
cfdf836e 3586 void *flush_freelist = c->freelist;
bb192ed9 3587 struct slab *flush_slab = c->slab;
cfdf836e 3588
bb192ed9 3589 c->slab = NULL;
cfdf836e
VB
3590 c->freelist = NULL;
3591 c->tid = next_tid(c->tid);
3592
bd0e7491 3593 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
cfdf836e 3594
bb192ed9 3595 deactivate_slab(s, flush_slab, flush_freelist);
cfdf836e
VB
3596
3597 stat(s, CPUSLAB_FLUSH);
3598
c2092c12 3599 goto retry_load_slab;
cfdf836e 3600 }
bb192ed9 3601 c->slab = slab;
3f2b77e3 3602
1572df7c 3603 goto load_freelist;
894b8788
CL
3604}
3605
a380a3c7 3606/*
e500059b
VB
3607 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3608 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3609 * pointer.
a380a3c7
CL
3610 */
3611static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
6edf2576 3612 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
a380a3c7
CL
3613{
3614 void *p;
a380a3c7 3615
e500059b 3616#ifdef CONFIG_PREEMPT_COUNT
a380a3c7
CL
3617 /*
3618 * We may have been preempted and rescheduled on a different
e500059b 3619 * cpu before disabling preemption. Need to reload cpu area
a380a3c7
CL
3620 * pointer.
3621 */
25c00c50 3622 c = slub_get_cpu_ptr(s->cpu_slab);
a380a3c7
CL
3623#endif
3624
6edf2576 3625 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
e500059b 3626#ifdef CONFIG_PREEMPT_COUNT
25c00c50 3627 slub_put_cpu_ptr(s->cpu_slab);
e500059b 3628#endif
a380a3c7
CL
3629 return p;
3630}
3631
56d5a2b9 3632static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
b89fb5ef 3633 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 3634{
dfb4f096 3635 struct kmem_cache_cpu *c;
bb192ed9 3636 struct slab *slab;
8a5ec0ba 3637 unsigned long tid;
56d5a2b9 3638 void *object;
b89fb5ef 3639
8a5ec0ba 3640redo:
8a5ec0ba
CL
3641 /*
3642 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3643 * enabled. We may switch back and forth between cpus while
3644 * reading from one cpu area. That does not matter as long
3645 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 3646 *
9b4bc85a
VB
3647 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3648 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3649 * the tid. If we are preempted and switched to another cpu between the
3650 * two reads, it's OK as the two are still associated with the same cpu
3651 * and cmpxchg later will validate the cpu.
8a5ec0ba 3652 */
9b4bc85a
VB
3653 c = raw_cpu_ptr(s->cpu_slab);
3654 tid = READ_ONCE(c->tid);
9aabf810
JK
3655
3656 /*
3657 * Irqless object alloc/free algorithm used here depends on sequence
3658 * of fetching cpu_slab's data. tid should be fetched before anything
c2092c12 3659 * on c to guarantee that object and slab associated with previous tid
9aabf810 3660 * won't be used with current tid. If we fetch tid first, object and
c2092c12 3661 * slab could be one associated with next tid and our alloc/free
9aabf810
JK
3662 * request will be failed. In this case, we will retry. So, no problem.
3663 */
3664 barrier();
8a5ec0ba 3665
8a5ec0ba
CL
3666 /*
3667 * The transaction ids are globally unique per cpu and per operation on
3668 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3669 * occurs on the right processor and that there was no operation on the
3670 * linked list in between.
3671 */
8a5ec0ba 3672
9dfc6e68 3673 object = c->freelist;
bb192ed9 3674 slab = c->slab;
1f04b07d
TG
3675
3676 if (!USE_LOCKLESS_FAST_PATH() ||
bb192ed9 3677 unlikely(!object || !slab || !node_match(slab, node))) {
6edf2576 3678 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
8eae1492 3679 } else {
0ad9500e
ED
3680 void *next_object = get_freepointer_safe(s, object);
3681
8a5ec0ba 3682 /*
25985edc 3683 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
3684 * operation and if we are on the right processor.
3685 *
d0e0ac97
CG
3686 * The cmpxchg does the following atomically (without lock
3687 * semantics!)
8a5ec0ba
CL
3688 * 1. Relocate first pointer to the current per cpu area.
3689 * 2. Verify that tid and freelist have not been changed
3690 * 3. If they were not changed replace tid and freelist
3691 *
d0e0ac97
CG
3692 * Since this is without lock semantics the protection is only
3693 * against code executing on this cpu *not* from access by
3694 * other cpus.
8a5ec0ba 3695 */
6801be4f 3696 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
8a5ec0ba
CL
3697 note_cmpxchg_failure("slab_alloc", s, tid);
3698 goto redo;
3699 }
0ad9500e 3700 prefetch_freepointer(s, next_object);
84e554e6 3701 stat(s, ALLOC_FASTPATH);
894b8788 3702 }
0f181f9f 3703
56d5a2b9
VB
3704 return object;
3705}
0af8489b
VB
3706#else /* CONFIG_SLUB_TINY */
3707static void *__slab_alloc_node(struct kmem_cache *s,
3708 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3709{
3710 struct partial_context pc;
3711 struct slab *slab;
3712 void *object;
3713
3714 pc.flags = gfpflags;
0af8489b 3715 pc.orig_size = orig_size;
43c4c349 3716 slab = get_partial(s, node, &pc);
0af8489b 3717
43c4c349
CZ
3718 if (slab)
3719 return pc.object;
0af8489b
VB
3720
3721 slab = new_slab(s, gfpflags, node);
3722 if (unlikely(!slab)) {
3723 slab_out_of_memory(s, gfpflags, node);
3724 return NULL;
3725 }
3726
3727 object = alloc_single_from_new_slab(s, slab, orig_size);
3728
3729 return object;
3730}
3731#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
3732
3733/*
3734 * If the object has been wiped upon free, make sure it's fully initialized by
3735 * zeroing out freelist pointer.
3736 */
3737static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3738 void *obj)
3739{
3740 if (unlikely(slab_want_init_on_free(s)) && obj)
3741 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3742 0, sizeof(void *));
3743}
3744
6011be59
VB
3745noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3746{
3747 if (__should_failslab(s, gfpflags))
3748 return -ENOMEM;
3749 return 0;
3750}
3751ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3752
3450a0e5
VB
3753static __fastpath_inline
3754struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
3755 struct list_lru *lru,
3756 struct obj_cgroup **objcgp,
3757 size_t size, gfp_t flags)
6011be59
VB
3758{
3759 flags &= gfp_allowed_mask;
3760
3761 might_alloc(flags);
3762
3450a0e5 3763 if (unlikely(should_failslab(s, flags)))
6011be59
VB
3764 return NULL;
3765
3450a0e5 3766 if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)))
6011be59
VB
3767 return NULL;
3768
3769 return s;
3770}
3771
3450a0e5
VB
3772static __fastpath_inline
3773void slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
3774 gfp_t flags, size_t size, void **p, bool init,
3775 unsigned int orig_size)
6011be59
VB
3776{
3777 unsigned int zero_size = s->object_size;
3778 bool kasan_init = init;
3779 size_t i;
3450a0e5 3780 gfp_t init_flags = flags & gfp_allowed_mask;
6011be59
VB
3781
3782 /*
3783 * For kmalloc object, the allocated memory size(object_size) is likely
3784 * larger than the requested size(orig_size). If redzone check is
3785 * enabled for the extra space, don't zero it, as it will be redzoned
3786 * soon. The redzone operation for this extra space could be seen as a
3787 * replacement of current poisoning under certain debug option, and
3788 * won't break other sanity checks.
3789 */
3790 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3791 (s->flags & SLAB_KMALLOC))
3792 zero_size = orig_size;
3793
3794 /*
3795 * When slub_debug is enabled, avoid memory initialization integrated
3796 * into KASAN and instead zero out the memory via the memset below with
3797 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3798 * cause false-positive reports. This does not lead to a performance
3799 * penalty on production builds, as slub_debug is not intended to be
3800 * enabled there.
3801 */
3802 if (__slub_debug_enabled())
3803 kasan_init = false;
3804
3805 /*
3806 * As memory initialization might be integrated into KASAN,
3807 * kasan_slab_alloc and initialization memset must be
3808 * kept together to avoid discrepancies in behavior.
3809 *
3810 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3811 */
3812 for (i = 0; i < size; i++) {
3450a0e5 3813 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
6011be59
VB
3814 if (p[i] && init && (!kasan_init ||
3815 !kasan_has_integrated_init()))
3816 memset(p[i], 0, zero_size);
3817 kmemleak_alloc_recursive(p[i], s->object_size, 1,
3450a0e5
VB
3818 s->flags, init_flags);
3819 kmsan_slab_alloc(s, p[i], init_flags);
6011be59
VB
3820 }
3821
3822 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
3823}
3824
56d5a2b9
VB
3825/*
3826 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3827 * have the fastpath folded into their functions. So no function call
3828 * overhead for requests that can be satisfied on the fastpath.
3829 *
3830 * The fastpath works by first checking if the lockless freelist can be used.
3831 * If not then __slab_alloc is called for slow processing.
3832 *
3833 * Otherwise we can simply pick the next object from the lockless free list.
3834 */
be784ba8 3835static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
56d5a2b9
VB
3836 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3837{
3838 void *object;
3839 struct obj_cgroup *objcg = NULL;
3840 bool init = false;
3841
3842 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3450a0e5 3843 if (unlikely(!s))
56d5a2b9
VB
3844 return NULL;
3845
3846 object = kfence_alloc(s, orig_size, gfpflags);
3847 if (unlikely(object))
3848 goto out;
3849
3850 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3851
ce5716c6 3852 maybe_wipe_obj_freeptr(s, object);
da844b78 3853 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 3854
b89fb5ef 3855out:
9ce67395
FT
3856 /*
3857 * When init equals 'true', like for kzalloc() family, only
3858 * @orig_size bytes might be zeroed instead of s->object_size
3859 */
3860 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
5a896d9e 3861
894b8788 3862 return object;
81819f0f
CL
3863}
3864
49378a05 3865void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2b847c3c 3866{
49378a05
VB
3867 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
3868 s->object_size);
5b882be4 3869
2c1d697f 3870 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
3871
3872 return ret;
2b847c3c 3873}
81819f0f 3874EXPORT_SYMBOL(kmem_cache_alloc);
2b847c3c 3875
88f2ef73
MS
3876void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3877 gfp_t gfpflags)
81819f0f 3878{
49378a05
VB
3879 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
3880 s->object_size);
5b882be4 3881
2c1d697f 3882 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5b882be4
EGM
3883
3884 return ret;
81819f0f 3885}
88f2ef73 3886EXPORT_SYMBOL(kmem_cache_alloc_lru);
88f2ef73 3887
0445ee00
VB
3888/**
3889 * kmem_cache_alloc_node - Allocate an object on the specified node
3890 * @s: The cache to allocate from.
3891 * @gfpflags: See kmalloc().
3892 * @node: node number of the target node.
3893 *
3894 * Identical to kmem_cache_alloc but it will allocate memory on the given
3895 * node, which can improve the performance for cpu bound structures.
3896 *
3897 * Fallback to other node is possible if __GFP_THISNODE is not set.
3898 *
3899 * Return: pointer to the new object or %NULL in case of error
3900 */
81819f0f
CL
3901void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3902{
88f2ef73 3903 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 3904
2c1d697f 3905 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5b882be4
EGM
3906
3907 return ret;
81819f0f
CL
3908}
3909EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 3910
4862caa5
VB
3911/*
3912 * To avoid unnecessary overhead, we pass through large allocation requests
3913 * directly to the page allocator. We use __GFP_COMP, because we will need to
3914 * know the allocation order to free the pages properly in kfree.
3915 */
3916static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
88f2ef73 3917{
fb46e22a 3918 struct folio *folio;
4862caa5
VB
3919 void *ptr = NULL;
3920 unsigned int order = get_order(size);
3921
3922 if (unlikely(flags & GFP_SLAB_BUG_MASK))
3923 flags = kmalloc_fix_flags(flags);
3924
3925 flags |= __GFP_COMP;
fb46e22a
LT
3926 folio = (struct folio *)alloc_pages_node(node, flags, order);
3927 if (folio) {
3928 ptr = folio_address(folio);
3929 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4862caa5
VB
3930 PAGE_SIZE << order);
3931 }
3932
3933 ptr = kasan_kmalloc_large(ptr, size, flags);
3934 /* As ptr might get tagged, call kmemleak hook after KASAN. */
3935 kmemleak_alloc(ptr, size, 1, flags);
3936 kmsan_kmalloc_large(ptr, size, flags);
3937
3938 return ptr;
88f2ef73 3939}
81819f0f 3940
4862caa5 3941void *kmalloc_large(size_t size, gfp_t flags)
88f2ef73 3942{
4862caa5
VB
3943 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
3944
3945 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3946 flags, NUMA_NO_NODE);
3947 return ret;
88f2ef73 3948}
4862caa5 3949EXPORT_SYMBOL(kmalloc_large);
88f2ef73 3950
4862caa5 3951void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4a92379b 3952{
4862caa5
VB
3953 void *ret = __kmalloc_large_node(size, flags, node);
3954
3955 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3956 flags, node);
3957 return ret;
4a92379b 3958}
4862caa5 3959EXPORT_SYMBOL(kmalloc_large_node);
5b882be4 3960
4862caa5
VB
3961static __always_inline
3962void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
3963 unsigned long caller)
81819f0f 3964{
4862caa5
VB
3965 struct kmem_cache *s;
3966 void *ret;
5b882be4 3967
4862caa5
VB
3968 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3969 ret = __kmalloc_large_node(size, flags, node);
3970 trace_kmalloc(caller, ret, size,
3971 PAGE_SIZE << get_order(size), flags, node);
3972 return ret;
3973 }
5b882be4 3974
4862caa5
VB
3975 if (unlikely(!size))
3976 return ZERO_SIZE_PTR;
3977
3978 s = kmalloc_slab(size, flags, caller);
3979
3980 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
3981 ret = kasan_kmalloc(s, ret, size, flags);
3982 trace_kmalloc(caller, ret, size, s->size, flags, node);
5b882be4 3983 return ret;
81819f0f 3984}
4862caa5
VB
3985
3986void *__kmalloc_node(size_t size, gfp_t flags, int node)
3987{
3988 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3989}
3990EXPORT_SYMBOL(__kmalloc_node);
3991
3992void *__kmalloc(size_t size, gfp_t flags)
3993{
3994 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
3995}
3996EXPORT_SYMBOL(__kmalloc);
3997
3998void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3999 int node, unsigned long caller)
4000{
4001 return __do_kmalloc_node(size, flags, node, caller);
4002}
4003EXPORT_SYMBOL(__kmalloc_node_track_caller);
4004
4005void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4006{
4007 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4008 _RET_IP_, size);
4009
4010 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4011
4012 ret = kasan_kmalloc(s, ret, size, gfpflags);
4013 return ret;
4014}
4015EXPORT_SYMBOL(kmalloc_trace);
4016
4017void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
4018 int node, size_t size)
4019{
4020 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4021
4022 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4023
4024 ret = kasan_kmalloc(s, ret, size, gfpflags);
4025 return ret;
4026}
4027EXPORT_SYMBOL(kmalloc_node_trace);
81819f0f 4028
fa9b88e4
VB
4029static noinline void free_to_partial_list(
4030 struct kmem_cache *s, struct slab *slab,
4031 void *head, void *tail, int bulk_cnt,
4032 unsigned long addr)
4033{
4034 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4035 struct slab *slab_free = NULL;
4036 int cnt = bulk_cnt;
4037 unsigned long flags;
4038 depot_stack_handle_t handle = 0;
4039
4040 if (s->flags & SLAB_STORE_USER)
4041 handle = set_track_prepare();
4042
4043 spin_lock_irqsave(&n->list_lock, flags);
4044
4045 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4046 void *prior = slab->freelist;
4047
4048 /* Perform the actual freeing while we still hold the locks */
4049 slab->inuse -= cnt;
4050 set_freepointer(s, tail, prior);
4051 slab->freelist = head;
4052
4053 /*
4054 * If the slab is empty, and node's partial list is full,
4055 * it should be discarded anyway no matter it's on full or
4056 * partial list.
4057 */
4058 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4059 slab_free = slab;
4060
4061 if (!prior) {
4062 /* was on full list */
4063 remove_full(s, n, slab);
4064 if (!slab_free) {
4065 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4066 stat(s, FREE_ADD_PARTIAL);
4067 }
4068 } else if (slab_free) {
4069 remove_partial(n, slab);
4070 stat(s, FREE_REMOVE_PARTIAL);
4071 }
4072 }
4073
4074 if (slab_free) {
4075 /*
4076 * Update the counters while still holding n->list_lock to
4077 * prevent spurious validation warnings
4078 */
4079 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4080 }
4081
4082 spin_unlock_irqrestore(&n->list_lock, flags);
4083
4084 if (slab_free) {
4085 stat(s, FREE_SLAB);
4086 free_slab(s, slab_free);
4087 }
4088}
4089
81819f0f 4090/*
94e4d712 4091 * Slow path handling. This may still be called frequently since objects
894b8788 4092 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 4093 *
894b8788 4094 * So we still attempt to reduce cache line usage. Just take the slab
c2092c12 4095 * lock and free the item. If there is no additional partial slab
894b8788 4096 * handling required then we can return immediately.
81819f0f 4097 */
bb192ed9 4098static void __slab_free(struct kmem_cache *s, struct slab *slab,
81084651
JDB
4099 void *head, void *tail, int cnt,
4100 unsigned long addr)
4101
81819f0f
CL
4102{
4103 void *prior;
2cfb7455 4104 int was_frozen;
bb192ed9 4105 struct slab new;
2cfb7455
CL
4106 unsigned long counters;
4107 struct kmem_cache_node *n = NULL;
3f649ab7 4108 unsigned long flags;
422e7d54 4109 bool on_node_partial;
81819f0f 4110
8a5ec0ba 4111 stat(s, FREE_SLOWPATH);
81819f0f 4112
0af8489b 4113 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
fa9b88e4 4114 free_to_partial_list(s, slab, head, tail, cnt, addr);
80f08c19 4115 return;
c7323a5a 4116 }
6446faa2 4117
2cfb7455 4118 do {
837d678d
JK
4119 if (unlikely(n)) {
4120 spin_unlock_irqrestore(&n->list_lock, flags);
4121 n = NULL;
4122 }
bb192ed9
VB
4123 prior = slab->freelist;
4124 counters = slab->counters;
81084651 4125 set_freepointer(s, tail, prior);
2cfb7455
CL
4126 new.counters = counters;
4127 was_frozen = new.frozen;
81084651 4128 new.inuse -= cnt;
837d678d 4129 if ((!new.inuse || !prior) && !was_frozen) {
8cd3fa42
CZ
4130 /* Needs to be taken off a list */
4131 if (!kmem_cache_has_cpu_partial(s) || prior) {
49e22585 4132
bb192ed9 4133 n = get_node(s, slab_nid(slab));
49e22585
CL
4134 /*
4135 * Speculatively acquire the list_lock.
4136 * If the cmpxchg does not succeed then we may
4137 * drop the list_lock without any processing.
4138 *
4139 * Otherwise the list_lock will synchronize with
4140 * other processors updating the list of slabs.
4141 */
4142 spin_lock_irqsave(&n->list_lock, flags);
4143
422e7d54 4144 on_node_partial = slab_test_node_partial(slab);
49e22585 4145 }
2cfb7455 4146 }
81819f0f 4147
6801be4f 4148 } while (!slab_update_freelist(s, slab,
2cfb7455 4149 prior, counters,
81084651 4150 head, new.counters,
2cfb7455 4151 "__slab_free"));
81819f0f 4152
2cfb7455 4153 if (likely(!n)) {
49e22585 4154
c270cf30
AW
4155 if (likely(was_frozen)) {
4156 /*
4157 * The list lock was not taken therefore no list
4158 * activity can be necessary.
4159 */
4160 stat(s, FREE_FROZEN);
8cd3fa42 4161 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
c270cf30 4162 /*
8cd3fa42 4163 * If we started with a full slab then put it onto the
c270cf30
AW
4164 * per cpu partial list.
4165 */
bb192ed9 4166 put_cpu_partial(s, slab, 1);
8028dcea
AS
4167 stat(s, CPU_PARTIAL_FREE);
4168 }
c270cf30 4169
b455def2
L
4170 return;
4171 }
81819f0f 4172
422e7d54
CZ
4173 /*
4174 * This slab was partially empty but not on the per-node partial list,
4175 * in which case we shouldn't manipulate its list, just return.
4176 */
4177 if (prior && !on_node_partial) {
4178 spin_unlock_irqrestore(&n->list_lock, flags);
4179 return;
4180 }
4181
8a5b20ae 4182 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
4183 goto slab_empty;
4184
81819f0f 4185 /*
837d678d
JK
4186 * Objects left in the slab. If it was not on the partial list before
4187 * then add it.
81819f0f 4188 */
345c905d 4189 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
bb192ed9
VB
4190 remove_full(s, n, slab);
4191 add_partial(n, slab, DEACTIVATE_TO_TAIL);
837d678d 4192 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 4193 }
80f08c19 4194 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
4195 return;
4196
4197slab_empty:
a973e9dd 4198 if (prior) {
81819f0f 4199 /*
6fbabb20 4200 * Slab on the partial list.
81819f0f 4201 */
bb192ed9 4202 remove_partial(n, slab);
84e554e6 4203 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 4204 } else {
6fbabb20 4205 /* Slab must be on the full list */
bb192ed9 4206 remove_full(s, n, slab);
c65c1877 4207 }
2cfb7455 4208
80f08c19 4209 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 4210 stat(s, FREE_SLAB);
bb192ed9 4211 discard_slab(s, slab);
81819f0f
CL
4212}
4213
0af8489b 4214#ifndef CONFIG_SLUB_TINY
894b8788
CL
4215/*
4216 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4217 * can perform fastpath freeing without additional function calls.
4218 *
4219 * The fastpath is only possible if we are freeing to the current cpu slab
4220 * of this processor. This typically the case if we have just allocated
4221 * the item before.
4222 *
4223 * If fastpath is not possible then fall back to __slab_free where we deal
4224 * with all sorts of special processing.
81084651
JDB
4225 *
4226 * Bulk free of a freelist with several objects (all pointing to the
c2092c12 4227 * same slab) possible by specifying head and tail ptr, plus objects
81084651 4228 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 4229 */
80a9201a 4230static __always_inline void do_slab_free(struct kmem_cache *s,
bb192ed9 4231 struct slab *slab, void *head, void *tail,
80a9201a 4232 int cnt, unsigned long addr)
894b8788 4233{
dfb4f096 4234 struct kmem_cache_cpu *c;
8a5ec0ba 4235 unsigned long tid;
1f04b07d 4236 void **freelist;
964d4bd3 4237
8a5ec0ba
CL
4238redo:
4239 /*
4240 * Determine the currently cpus per cpu slab.
4241 * The cpu may change afterward. However that does not matter since
4242 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 4243 * during the cmpxchg then the free will succeed.
8a5ec0ba 4244 */
9b4bc85a
VB
4245 c = raw_cpu_ptr(s->cpu_slab);
4246 tid = READ_ONCE(c->tid);
c016b0bd 4247
9aabf810
JK
4248 /* Same with comment on barrier() in slab_alloc_node() */
4249 barrier();
c016b0bd 4250
1f04b07d 4251 if (unlikely(slab != c->slab)) {
284f17ac 4252 __slab_free(s, slab, head, tail, cnt, addr);
1f04b07d
TG
4253 return;
4254 }
4255
4256 if (USE_LOCKLESS_FAST_PATH()) {
4257 freelist = READ_ONCE(c->freelist);
5076190d 4258
284f17ac 4259 set_freepointer(s, tail, freelist);
8a5ec0ba 4260
6801be4f 4261 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
8a5ec0ba
CL
4262 note_cmpxchg_failure("slab_free", s, tid);
4263 goto redo;
4264 }
1f04b07d
TG
4265 } else {
4266 /* Update the free list under the local lock */
bd0e7491
VB
4267 local_lock(&s->cpu_slab->lock);
4268 c = this_cpu_ptr(s->cpu_slab);
bb192ed9 4269 if (unlikely(slab != c->slab)) {
bd0e7491
VB
4270 local_unlock(&s->cpu_slab->lock);
4271 goto redo;
4272 }
4273 tid = c->tid;
4274 freelist = c->freelist;
4275
284f17ac 4276 set_freepointer(s, tail, freelist);
bd0e7491
VB
4277 c->freelist = head;
4278 c->tid = next_tid(tid);
4279
4280 local_unlock(&s->cpu_slab->lock);
1f04b07d 4281 }
6f3dd2c3 4282 stat_add(s, FREE_FASTPATH, cnt);
894b8788 4283}
0af8489b
VB
4284#else /* CONFIG_SLUB_TINY */
4285static void do_slab_free(struct kmem_cache *s,
4286 struct slab *slab, void *head, void *tail,
4287 int cnt, unsigned long addr)
4288{
284f17ac 4289 __slab_free(s, slab, head, tail, cnt, addr);
0af8489b
VB
4290}
4291#endif /* CONFIG_SLUB_TINY */
894b8788 4292
284f17ac
VB
4293static __fastpath_inline
4294void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4295 unsigned long addr)
4296{
284f17ac
VB
4297 memcg_slab_free_hook(s, slab, &object, 1);
4298
782f8906 4299 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
284f17ac
VB
4300 do_slab_free(s, slab, object, object, 1, addr);
4301}
4302
4303static __fastpath_inline
4304void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4305 void *tail, void **p, int cnt, unsigned long addr)
80a9201a 4306{
b77d5b1b 4307 memcg_slab_free_hook(s, slab, p, cnt);
80a9201a 4308 /*
c3895391
AK
4309 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4310 * to remove objects, whose reuse must be delayed.
80a9201a 4311 */
ecf9a253 4312 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
bb192ed9 4313 do_slab_free(s, slab, head, tail, cnt, addr);
80a9201a
AP
4314}
4315
2bd926b4 4316#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
4317void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4318{
284f17ac 4319 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
80a9201a
AP
4320}
4321#endif
4322
0bedcc66 4323static inline struct kmem_cache *virt_to_cache(const void *obj)
ed4cd17e 4324{
0bedcc66
VB
4325 struct slab *slab;
4326
4327 slab = virt_to_slab(obj);
4328 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4329 return NULL;
4330 return slab->slab_cache;
ed4cd17e
HY
4331}
4332
0bedcc66
VB
4333static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4334{
4335 struct kmem_cache *cachep;
4336
4337 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4338 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4339 return s;
4340
4341 cachep = virt_to_cache(x);
4342 if (WARN(cachep && cachep != s,
4343 "%s: Wrong slab cache. %s but object is from %s\n",
4344 __func__, s->name, cachep->name))
4345 print_tracking(cachep, x);
4346 return cachep;
4347}
4348
0445ee00
VB
4349/**
4350 * kmem_cache_free - Deallocate an object
4351 * @s: The cache the allocation was from.
4352 * @x: The previously allocated object.
4353 *
4354 * Free an object which was previously allocated from this
4355 * cache.
4356 */
81819f0f
CL
4357void kmem_cache_free(struct kmem_cache *s, void *x)
4358{
b9ce5ef4
GC
4359 s = cache_from_obj(s, x);
4360 if (!s)
79576102 4361 return;
2c1d697f 4362 trace_kmem_cache_free(_RET_IP_, x, s);
284f17ac 4363 slab_free(s, virt_to_slab(x), x, _RET_IP_);
81819f0f
CL
4364}
4365EXPORT_SYMBOL(kmem_cache_free);
4366
b774d3e3
VB
4367static void free_large_kmalloc(struct folio *folio, void *object)
4368{
4369 unsigned int order = folio_order(folio);
4370
4371 if (WARN_ON_ONCE(order == 0))
4372 pr_warn_once("object pointer: 0x%p\n", object);
4373
4374 kmemleak_free(object);
4375 kasan_kfree_large(object);
4376 kmsan_kfree_large(object);
4377
fb46e22a 4378 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
b774d3e3 4379 -(PAGE_SIZE << order));
fb46e22a 4380 folio_put(folio);
b774d3e3
VB
4381}
4382
4383/**
4384 * kfree - free previously allocated memory
4385 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4386 *
4387 * If @object is NULL, no operation is performed.
4388 */
4389void kfree(const void *object)
4390{
4391 struct folio *folio;
4392 struct slab *slab;
4393 struct kmem_cache *s;
4394 void *x = (void *)object;
4395
4396 trace_kfree(_RET_IP_, object);
4397
4398 if (unlikely(ZERO_OR_NULL_PTR(object)))
4399 return;
4400
4401 folio = virt_to_folio(object);
4402 if (unlikely(!folio_test_slab(folio))) {
4403 free_large_kmalloc(folio, (void *)object);
4404 return;
4405 }
4406
4407 slab = folio_slab(folio);
4408 s = slab->slab_cache;
284f17ac 4409 slab_free(s, slab, x, _RET_IP_);
b774d3e3
VB
4410}
4411EXPORT_SYMBOL(kfree);
4412
d0ecd894 4413struct detached_freelist {
cc465c3b 4414 struct slab *slab;
d0ecd894
JDB
4415 void *tail;
4416 void *freelist;
4417 int cnt;
376bf125 4418 struct kmem_cache *s;
d0ecd894 4419};
fbd02630 4420
d0ecd894
JDB
4421/*
4422 * This function progressively scans the array with free objects (with
4423 * a limited look ahead) and extract objects belonging to the same
cc465c3b
MWO
4424 * slab. It builds a detached freelist directly within the given
4425 * slab/objects. This can happen without any need for
d0ecd894
JDB
4426 * synchronization, because the objects are owned by running process.
4427 * The freelist is build up as a single linked list in the objects.
4428 * The idea is, that this detached freelist can then be bulk
4429 * transferred to the real freelist(s), but only requiring a single
4430 * synchronization primitive. Look ahead in the array is limited due
4431 * to performance reasons.
4432 */
376bf125
JDB
4433static inline
4434int build_detached_freelist(struct kmem_cache *s, size_t size,
4435 void **p, struct detached_freelist *df)
d0ecd894 4436{
d0ecd894
JDB
4437 int lookahead = 3;
4438 void *object;
cc465c3b 4439 struct folio *folio;
b77d5b1b 4440 size_t same;
fbd02630 4441
b77d5b1b 4442 object = p[--size];
cc465c3b 4443 folio = virt_to_folio(object);
ca257195
JDB
4444 if (!s) {
4445 /* Handle kalloc'ed objects */
cc465c3b 4446 if (unlikely(!folio_test_slab(folio))) {
d835eef4 4447 free_large_kmalloc(folio, object);
b77d5b1b 4448 df->slab = NULL;
ca257195
JDB
4449 return size;
4450 }
4451 /* Derive kmem_cache from object */
b77d5b1b
MS
4452 df->slab = folio_slab(folio);
4453 df->s = df->slab->slab_cache;
ca257195 4454 } else {
b77d5b1b 4455 df->slab = folio_slab(folio);
ca257195
JDB
4456 df->s = cache_from_obj(s, object); /* Support for memcg */
4457 }
376bf125 4458
d0ecd894 4459 /* Start new detached freelist */
d0ecd894
JDB
4460 df->tail = object;
4461 df->freelist = object;
d0ecd894
JDB
4462 df->cnt = 1;
4463
b77d5b1b
MS
4464 if (is_kfence_address(object))
4465 return size;
4466
4467 set_freepointer(df->s, object, NULL);
4468
4469 same = size;
d0ecd894
JDB
4470 while (size) {
4471 object = p[--size];
cc465c3b
MWO
4472 /* df->slab is always set at this point */
4473 if (df->slab == virt_to_slab(object)) {
d0ecd894 4474 /* Opportunity build freelist */
376bf125 4475 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
4476 df->freelist = object;
4477 df->cnt++;
b77d5b1b
MS
4478 same--;
4479 if (size != same)
4480 swap(p[size], p[same]);
d0ecd894 4481 continue;
fbd02630 4482 }
d0ecd894
JDB
4483
4484 /* Limit look ahead search */
4485 if (!--lookahead)
4486 break;
fbd02630 4487 }
d0ecd894 4488
b77d5b1b 4489 return same;
d0ecd894
JDB
4490}
4491
520a688a
VB
4492/*
4493 * Internal bulk free of objects that were not initialised by the post alloc
4494 * hooks and thus should not be processed by the free hooks
4495 */
4496static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4497{
4498 if (!size)
4499 return;
4500
4501 do {
4502 struct detached_freelist df;
4503
4504 size = build_detached_freelist(s, size, p, &df);
4505 if (!df.slab)
4506 continue;
4507
4508 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4509 _RET_IP_);
4510 } while (likely(size));
4511}
4512
d0ecd894 4513/* Note that interrupts must be enabled when calling this function. */
376bf125 4514void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894 4515{
2055e67b 4516 if (!size)
d0ecd894
JDB
4517 return;
4518
4519 do {
4520 struct detached_freelist df;
4521
4522 size = build_detached_freelist(s, size, p, &df);
cc465c3b 4523 if (!df.slab)
d0ecd894
JDB
4524 continue;
4525
284f17ac
VB
4526 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4527 df.cnt, _RET_IP_);
d0ecd894 4528 } while (likely(size));
484748f0
CL
4529}
4530EXPORT_SYMBOL(kmem_cache_free_bulk);
4531
0af8489b 4532#ifndef CONFIG_SLUB_TINY
520a688a
VB
4533static inline
4534int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4535 void **p)
484748f0 4536{
994eb764 4537 struct kmem_cache_cpu *c;
f5451547 4538 unsigned long irqflags;
994eb764
JDB
4539 int i;
4540
994eb764
JDB
4541 /*
4542 * Drain objects in the per cpu slab, while disabling local
4543 * IRQs, which protects against PREEMPT and interrupts
4544 * handlers invoking normal fastpath.
4545 */
25c00c50 4546 c = slub_get_cpu_ptr(s->cpu_slab);
f5451547 4547 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
994eb764
JDB
4548
4549 for (i = 0; i < size; i++) {
b89fb5ef 4550 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 4551
b89fb5ef
AP
4552 if (unlikely(object)) {
4553 p[i] = object;
4554 continue;
4555 }
4556
4557 object = c->freelist;
ebe909e0 4558 if (unlikely(!object)) {
fd4d9c7d
JH
4559 /*
4560 * We may have removed an object from c->freelist using
4561 * the fastpath in the previous iteration; in that case,
4562 * c->tid has not been bumped yet.
4563 * Since ___slab_alloc() may reenable interrupts while
4564 * allocating memory, we should bump c->tid now.
4565 */
4566 c->tid = next_tid(c->tid);
4567
f5451547 4568 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
e500059b 4569
ebe909e0
JDB
4570 /*
4571 * Invoking slow path likely have side-effect
4572 * of re-populating per CPU c->freelist
4573 */
87098373 4574 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
6edf2576 4575 _RET_IP_, c, s->object_size);
87098373
CL
4576 if (unlikely(!p[i]))
4577 goto error;
4578
ebe909e0 4579 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
4580 maybe_wipe_obj_freeptr(s, p[i]);
4581
f5451547 4582 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
e500059b 4583
ebe909e0
JDB
4584 continue; /* goto for-loop */
4585 }
994eb764
JDB
4586 c->freelist = get_freepointer(s, object);
4587 p[i] = object;
0f181f9f 4588 maybe_wipe_obj_freeptr(s, p[i]);
6f3dd2c3 4589 stat(s, ALLOC_FASTPATH);
994eb764
JDB
4590 }
4591 c->tid = next_tid(c->tid);
f5451547 4592 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
25c00c50 4593 slub_put_cpu_ptr(s->cpu_slab);
994eb764 4594
865762a8 4595 return i;
56d5a2b9 4596
87098373 4597error:
25c00c50 4598 slub_put_cpu_ptr(s->cpu_slab);
520a688a 4599 __kmem_cache_free_bulk(s, i, p);
865762a8 4600 return 0;
56d5a2b9
VB
4601
4602}
0af8489b
VB
4603#else /* CONFIG_SLUB_TINY */
4604static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
520a688a 4605 size_t size, void **p)
0af8489b
VB
4606{
4607 int i;
4608
4609 for (i = 0; i < size; i++) {
4610 void *object = kfence_alloc(s, s->object_size, flags);
4611
4612 if (unlikely(object)) {
4613 p[i] = object;
4614 continue;
4615 }
4616
4617 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4618 _RET_IP_, s->object_size);
4619 if (unlikely(!p[i]))
4620 goto error;
4621
4622 maybe_wipe_obj_freeptr(s, p[i]);
4623 }
4624
4625 return i;
4626
4627error:
520a688a 4628 __kmem_cache_free_bulk(s, i, p);
0af8489b
VB
4629 return 0;
4630}
4631#endif /* CONFIG_SLUB_TINY */
56d5a2b9
VB
4632
4633/* Note that interrupts must be enabled when calling this function. */
4634int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4635 void **p)
4636{
4637 int i;
4638 struct obj_cgroup *objcg = NULL;
4639
4640 if (!size)
4641 return 0;
4642
4643 /* memcg and kmem_cache debug support */
4644 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4645 if (unlikely(!s))
4646 return 0;
4647
520a688a 4648 i = __kmem_cache_alloc_bulk(s, flags, size, p);
56d5a2b9
VB
4649
4650 /*
4651 * memcg and kmem_cache debug support and memory initialization.
4652 * Done outside of the IRQ disabled fastpath loop.
4653 */
520a688a 4654 if (likely(i != 0)) {
56d5a2b9 4655 slab_post_alloc_hook(s, objcg, flags, size, p,
dc19745a 4656 slab_want_init_on_alloc(flags, s), s->object_size);
520a688a
VB
4657 } else {
4658 memcg_slab_alloc_error_hook(s, size, objcg);
4659 }
4660
56d5a2b9 4661 return i;
484748f0
CL
4662}
4663EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4664
4665
81819f0f 4666/*
672bba3a
CL
4667 * Object placement in a slab is made very easy because we always start at
4668 * offset 0. If we tune the size of the object to the alignment then we can
4669 * get the required alignment by putting one properly sized object after
4670 * another.
81819f0f
CL
4671 *
4672 * Notice that the allocation order determines the sizes of the per cpu
4673 * caches. Each processor has always one slab available for allocations.
4674 * Increasing the allocation order reduces the number of times that slabs
672bba3a 4675 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 4676 * locking overhead.
81819f0f
CL
4677 */
4678
4679/*
f0953a1b 4680 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
4681 * and slab fragmentation. A higher order reduces the number of partial slabs
4682 * and increases the number of allocations possible without having to
4683 * take the list_lock.
4684 */
19af27af 4685static unsigned int slub_min_order;
90ce872c
VB
4686static unsigned int slub_max_order =
4687 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
19af27af 4688static unsigned int slub_min_objects;
81819f0f 4689
81819f0f
CL
4690/*
4691 * Calculate the order of allocation given an slab object size.
4692 *
672bba3a
CL
4693 * The order of allocation has significant impact on performance and other
4694 * system components. Generally order 0 allocations should be preferred since
4695 * order 0 does not cause fragmentation in the page allocator. Larger objects
4696 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 4697 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
4698 * would be wasted.
4699 *
4700 * In order to reach satisfactory performance we must ensure that a minimum
4701 * number of objects is in one slab. Otherwise we may generate too much
4702 * activity on the partial lists which requires taking the list_lock. This is
4703 * less a concern for large slabs though which are rarely used.
81819f0f 4704 *
672bba3a
CL
4705 * slub_max_order specifies the order where we begin to stop considering the
4706 * number of objects in a slab as critical. If we reach slub_max_order then
4707 * we try to keep the page order as low as possible. So we accept more waste
4708 * of space in favor of a small page order.
81819f0f 4709 *
672bba3a
CL
4710 * Higher order allocations also allow the placement of more objects in a
4711 * slab and thereby reduce object handling overhead. If the user has
dc84207d 4712 * requested a higher minimum order then we start with that one instead of
672bba3a 4713 * the smallest order which will fit the object.
81819f0f 4714 */
d122019b 4715static inline unsigned int calc_slab_order(unsigned int size,
90f055df 4716 unsigned int min_order, unsigned int max_order,
9736d2a9 4717 unsigned int fract_leftover)
81819f0f 4718{
19af27af 4719 unsigned int order;
81819f0f 4720
90f055df 4721 for (order = min_order; order <= max_order; order++) {
81819f0f 4722
19af27af
AD
4723 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4724 unsigned int rem;
81819f0f 4725
9736d2a9 4726 rem = slab_size % size;
81819f0f 4727
5e6d444e 4728 if (rem <= slab_size / fract_leftover)
81819f0f 4729 break;
81819f0f 4730 }
672bba3a 4731
81819f0f
CL
4732 return order;
4733}
4734
9736d2a9 4735static inline int calculate_order(unsigned int size)
5e6d444e 4736{
19af27af
AD
4737 unsigned int order;
4738 unsigned int min_objects;
4739 unsigned int max_objects;
90f055df 4740 unsigned int min_order;
5e6d444e 4741
5e6d444e 4742 min_objects = slub_min_objects;
3286222f
VB
4743 if (!min_objects) {
4744 /*
4745 * Some architectures will only update present cpus when
4746 * onlining them, so don't trust the number if it's just 1. But
4747 * we also don't want to use nr_cpu_ids always, as on some other
4748 * architectures, there can be many possible cpus, but never
4749 * onlined. Here we compromise between trying to avoid too high
4750 * order on systems that appear larger than they are, and too
4751 * low order on systems that appear smaller than they are.
4752 */
90f055df 4753 unsigned int nr_cpus = num_present_cpus();
3286222f
VB
4754 if (nr_cpus <= 1)
4755 nr_cpus = nr_cpu_ids;
4756 min_objects = 4 * (fls(nr_cpus) + 1);
4757 }
90f055df
VB
4758 /* min_objects can't be 0 because get_order(0) is undefined */
4759 max_objects = max(order_objects(slub_max_order, size), 1U);
e8120ff1
ZY
4760 min_objects = min(min_objects, max_objects);
4761
90f055df
VB
4762 min_order = max_t(unsigned int, slub_min_order,
4763 get_order(min_objects * size));
4764 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4765 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4766
0fe2735d
VB
4767 /*
4768 * Attempt to find best configuration for a slab. This works by first
4769 * attempting to generate a layout with the best possible configuration
4770 * and backing off gradually.
4771 *
4772 * We start with accepting at most 1/16 waste and try to find the
4773 * smallest order from min_objects-derived/slub_min_order up to
4774 * slub_max_order that will satisfy the constraint. Note that increasing
4775 * the order can only result in same or less fractional waste, not more.
4776 *
4777 * If that fails, we increase the acceptable fraction of waste and try
5886fc82
VB
4778 * again. The last iteration with fraction of 1/2 would effectively
4779 * accept any waste and give us the order determined by min_objects, as
4780 * long as at least single object fits within slub_max_order.
0fe2735d 4781 */
5886fc82 4782 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
90f055df 4783 order = calc_slab_order(size, min_order, slub_max_order,
0fe2735d
VB
4784 fraction);
4785 if (order <= slub_max_order)
4786 return order;
5e6d444e
CL
4787 }
4788
5e6d444e
CL
4789 /*
4790 * Doh this slab cannot be placed using slub_max_order.
4791 */
c7355d75 4792 order = get_order(size);
5e0a760b 4793 if (order <= MAX_PAGE_ORDER)
5e6d444e
CL
4794 return order;
4795 return -ENOSYS;
4796}
4797
5595cffc 4798static void
4053497d 4799init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
4800{
4801 n->nr_partial = 0;
81819f0f
CL
4802 spin_lock_init(&n->list_lock);
4803 INIT_LIST_HEAD(&n->partial);
8ab1372f 4804#ifdef CONFIG_SLUB_DEBUG
0f389ec6 4805 atomic_long_set(&n->nr_slabs, 0);
02b71b70 4806 atomic_long_set(&n->total_objects, 0);
643b1138 4807 INIT_LIST_HEAD(&n->full);
8ab1372f 4808#endif
81819f0f
CL
4809}
4810
0af8489b 4811#ifndef CONFIG_SLUB_TINY
55136592 4812static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 4813{
6c182dc0 4814 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
a0dc161a
BH
4815 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4816 sizeof(struct kmem_cache_cpu));
4c93c355 4817
8a5ec0ba 4818 /*
d4d84fef
CM
4819 * Must align to double word boundary for the double cmpxchg
4820 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 4821 */
d4d84fef
CM
4822 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4823 2 * sizeof(void *));
8a5ec0ba
CL
4824
4825 if (!s->cpu_slab)
4826 return 0;
4827
4828 init_kmem_cache_cpus(s);
4c93c355 4829
8a5ec0ba 4830 return 1;
4c93c355 4831}
0af8489b
VB
4832#else
4833static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4834{
4835 return 1;
4836}
4837#endif /* CONFIG_SLUB_TINY */
4c93c355 4838
51df1142
CL
4839static struct kmem_cache *kmem_cache_node;
4840
81819f0f
CL
4841/*
4842 * No kmalloc_node yet so do it by hand. We know that this is the first
4843 * slab on the node for this slabcache. There are no concurrent accesses
4844 * possible.
4845 *
721ae22a
ZYW
4846 * Note that this function only works on the kmem_cache_node
4847 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 4848 * memory on a fresh node that has no slab structures yet.
81819f0f 4849 */
55136592 4850static void early_kmem_cache_node_alloc(int node)
81819f0f 4851{
bb192ed9 4852 struct slab *slab;
81819f0f
CL
4853 struct kmem_cache_node *n;
4854
51df1142 4855 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 4856
bb192ed9 4857 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f 4858
bb192ed9 4859 BUG_ON(!slab);
c7323a5a 4860 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
bb192ed9 4861 if (slab_nid(slab) != node) {
f9f58285
FF
4862 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4863 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
4864 }
4865
bb192ed9 4866 n = slab->freelist;
81819f0f 4867 BUG_ON(!n);
8ab1372f 4868#ifdef CONFIG_SLUB_DEBUG
f7cb1933 4869 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 4870 init_tracking(kmem_cache_node, n);
8ab1372f 4871#endif
da844b78 4872 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
bb192ed9
VB
4873 slab->freelist = get_freepointer(kmem_cache_node, n);
4874 slab->inuse = 1;
12b22386 4875 kmem_cache_node->node[node] = n;
4053497d 4876 init_kmem_cache_node(n);
bb192ed9 4877 inc_slabs_node(kmem_cache_node, node, slab->objects);
6446faa2 4878
67b6c900 4879 /*
1e4dd946
SR
4880 * No locks need to be taken here as it has just been
4881 * initialized and there is no concurrent access.
67b6c900 4882 */
bb192ed9 4883 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
81819f0f
CL
4884}
4885
4886static void free_kmem_cache_nodes(struct kmem_cache *s)
4887{
4888 int node;
fa45dc25 4889 struct kmem_cache_node *n;
81819f0f 4890
fa45dc25 4891 for_each_kmem_cache_node(s, node, n) {
81819f0f 4892 s->node[node] = NULL;
ea37df54 4893 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
4894 }
4895}
4896
52b4b950
DS
4897void __kmem_cache_release(struct kmem_cache *s)
4898{
210e7a43 4899 cache_random_seq_destroy(s);
0af8489b 4900#ifndef CONFIG_SLUB_TINY
52b4b950 4901 free_percpu(s->cpu_slab);
0af8489b 4902#endif
52b4b950
DS
4903 free_kmem_cache_nodes(s);
4904}
4905
55136592 4906static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
4907{
4908 int node;
81819f0f 4909
7e1fa93d 4910 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
4911 struct kmem_cache_node *n;
4912
73367bd8 4913 if (slab_state == DOWN) {
55136592 4914 early_kmem_cache_node_alloc(node);
73367bd8
AD
4915 continue;
4916 }
51df1142 4917 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 4918 GFP_KERNEL, node);
81819f0f 4919
73367bd8
AD
4920 if (!n) {
4921 free_kmem_cache_nodes(s);
4922 return 0;
81819f0f 4923 }
73367bd8 4924
4053497d 4925 init_kmem_cache_node(n);
ea37df54 4926 s->node[node] = n;
81819f0f
CL
4927 }
4928 return 1;
4929}
81819f0f 4930
e6d0e1dc
WY
4931static void set_cpu_partial(struct kmem_cache *s)
4932{
4933#ifdef CONFIG_SLUB_CPU_PARTIAL
b47291ef
VB
4934 unsigned int nr_objects;
4935
e6d0e1dc
WY
4936 /*
4937 * cpu_partial determined the maximum number of objects kept in the
4938 * per cpu partial lists of a processor.
4939 *
4940 * Per cpu partial lists mainly contain slabs that just have one
4941 * object freed. If they are used for allocation then they can be
4942 * filled up again with minimal effort. The slab will never hit the
4943 * per node partial lists and therefore no locking will be required.
4944 *
b47291ef
VB
4945 * For backwards compatibility reasons, this is determined as number
4946 * of objects, even though we now limit maximum number of pages, see
4947 * slub_set_cpu_partial()
e6d0e1dc
WY
4948 */
4949 if (!kmem_cache_has_cpu_partial(s))
b47291ef 4950 nr_objects = 0;
e6d0e1dc 4951 else if (s->size >= PAGE_SIZE)
b47291ef 4952 nr_objects = 6;
e6d0e1dc 4953 else if (s->size >= 1024)
23e98ad1 4954 nr_objects = 24;
e6d0e1dc 4955 else if (s->size >= 256)
23e98ad1 4956 nr_objects = 52;
e6d0e1dc 4957 else
23e98ad1 4958 nr_objects = 120;
b47291ef
VB
4959
4960 slub_set_cpu_partial(s, nr_objects);
e6d0e1dc
WY
4961#endif
4962}
4963
81819f0f
CL
4964/*
4965 * calculate_sizes() determines the order and the distribution of data within
4966 * a slab object.
4967 */
ae44d81d 4968static int calculate_sizes(struct kmem_cache *s)
81819f0f 4969{
d50112ed 4970 slab_flags_t flags = s->flags;
be4a7988 4971 unsigned int size = s->object_size;
19af27af 4972 unsigned int order;
81819f0f 4973
d8b42bf5
CL
4974 /*
4975 * Round up object size to the next word boundary. We can only
4976 * place the free pointer at word boundaries and this determines
4977 * the possible location of the free pointer.
4978 */
4979 size = ALIGN(size, sizeof(void *));
4980
4981#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4982 /*
4983 * Determine if we can poison the object itself. If the user of
4984 * the slab may touch the object after free or before allocation
4985 * then we should never poison the object itself.
4986 */
5f0d5a3a 4987 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 4988 !s->ctor)
81819f0f
CL
4989 s->flags |= __OBJECT_POISON;
4990 else
4991 s->flags &= ~__OBJECT_POISON;
4992
81819f0f
CL
4993
4994 /*
672bba3a 4995 * If we are Redzoning then check if there is some space between the
81819f0f 4996 * end of the object and the free pointer. If not then add an
672bba3a 4997 * additional word to have some bytes to store Redzone information.
81819f0f 4998 */
3b0efdfa 4999 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 5000 size += sizeof(void *);
41ecc55b 5001#endif
81819f0f
CL
5002
5003 /*
672bba3a 5004 * With that we have determined the number of bytes in actual use
e41a49fa 5005 * by the object and redzoning.
81819f0f
CL
5006 */
5007 s->inuse = size;
5008
946fa0db
FT
5009 if (slub_debug_orig_size(s) ||
5010 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
74c1d3e0
KC
5011 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
5012 s->ctor) {
81819f0f
CL
5013 /*
5014 * Relocate free pointer after the object if it is not
5015 * permitted to overwrite the first word of the object on
5016 * kmem_cache_free.
5017 *
5018 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
5019 * destructor, are poisoning the objects, or are
5020 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
5021 *
5022 * The assumption that s->offset >= s->inuse means free
5023 * pointer is outside of the object is used in the
5024 * freeptr_outside_object() function. If that is no
5025 * longer true, the function needs to be modified.
81819f0f
CL
5026 */
5027 s->offset = size;
5028 size += sizeof(void *);
e41a49fa 5029 } else {
3202fa62
KC
5030 /*
5031 * Store freelist pointer near middle of object to keep
5032 * it away from the edges of the object to avoid small
5033 * sized over/underflows from neighboring allocations.
5034 */
e41a49fa 5035 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
5036 }
5037
c12b3c62 5038#ifdef CONFIG_SLUB_DEBUG
6edf2576 5039 if (flags & SLAB_STORE_USER) {
81819f0f
CL
5040 /*
5041 * Need to store information about allocs and frees after
5042 * the object.
5043 */
5044 size += 2 * sizeof(struct track);
6edf2576
FT
5045
5046 /* Save the original kmalloc request size */
5047 if (flags & SLAB_KMALLOC)
5048 size += sizeof(unsigned int);
5049 }
80a9201a 5050#endif
81819f0f 5051
80a9201a
AP
5052 kasan_cache_create(s, &size, &s->flags);
5053#ifdef CONFIG_SLUB_DEBUG
d86bd1be 5054 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
5055 /*
5056 * Add some empty padding so that we can catch
5057 * overwrites from earlier objects rather than let
5058 * tracking information or the free pointer be
0211a9c8 5059 * corrupted if a user writes before the start
81819f0f
CL
5060 * of the object.
5061 */
5062 size += sizeof(void *);
d86bd1be
JK
5063
5064 s->red_left_pad = sizeof(void *);
5065 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5066 size += s->red_left_pad;
5067 }
41ecc55b 5068#endif
672bba3a 5069
81819f0f
CL
5070 /*
5071 * SLUB stores one object immediately after another beginning from
5072 * offset 0. In order to align the objects we have to simply size
5073 * each object to conform to the alignment.
5074 */
45906855 5075 size = ALIGN(size, s->align);
81819f0f 5076 s->size = size;
4138fdfc 5077 s->reciprocal_size = reciprocal_value(size);
ae44d81d 5078 order = calculate_order(size);
81819f0f 5079
19af27af 5080 if ((int)order < 0)
81819f0f
CL
5081 return 0;
5082
b7a49f0d 5083 s->allocflags = 0;
834f3d11 5084 if (order)
b7a49f0d
CL
5085 s->allocflags |= __GFP_COMP;
5086
5087 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 5088 s->allocflags |= GFP_DMA;
b7a49f0d 5089
6d6ea1e9
NB
5090 if (s->flags & SLAB_CACHE_DMA32)
5091 s->allocflags |= GFP_DMA32;
5092
b7a49f0d
CL
5093 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5094 s->allocflags |= __GFP_RECLAIMABLE;
5095
81819f0f
CL
5096 /*
5097 * Determine the number of objects per slab
5098 */
9736d2a9
MW
5099 s->oo = oo_make(order, size);
5100 s->min = oo_make(get_order(size), size);
81819f0f 5101
834f3d11 5102 return !!oo_objects(s->oo);
81819f0f
CL
5103}
5104
d50112ed 5105static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 5106{
37540008 5107 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
5108#ifdef CONFIG_SLAB_FREELIST_HARDENED
5109 s->random = get_random_long();
5110#endif
81819f0f 5111
ae44d81d 5112 if (!calculate_sizes(s))
81819f0f 5113 goto error;
3de47213
DR
5114 if (disable_higher_order_debug) {
5115 /*
5116 * Disable debugging flags that store metadata if the min slab
5117 * order increased.
5118 */
3b0efdfa 5119 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
5120 s->flags &= ~DEBUG_METADATA_FLAGS;
5121 s->offset = 0;
ae44d81d 5122 if (!calculate_sizes(s))
3de47213
DR
5123 goto error;
5124 }
5125 }
81819f0f 5126
6801be4f
PZ
5127#ifdef system_has_freelist_aba
5128 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
b789ef51
CL
5129 /* Enable fast mode */
5130 s->flags |= __CMPXCHG_DOUBLE;
6801be4f 5131 }
b789ef51
CL
5132#endif
5133
3b89d7d8 5134 /*
c2092c12 5135 * The larger the object size is, the more slabs we want on the partial
3b89d7d8
DR
5136 * list to avoid pounding the page allocator excessively.
5137 */
5182f3c9
HY
5138 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5139 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
49e22585 5140
e6d0e1dc 5141 set_cpu_partial(s);
49e22585 5142
81819f0f 5143#ifdef CONFIG_NUMA
e2cb96b7 5144 s->remote_node_defrag_ratio = 1000;
81819f0f 5145#endif
210e7a43
TG
5146
5147 /* Initialize the pre-computed randomized freelist if slab is up */
5148 if (slab_state >= UP) {
5149 if (init_cache_random_seq(s))
5150 goto error;
5151 }
5152
55136592 5153 if (!init_kmem_cache_nodes(s))
dfb4f096 5154 goto error;
81819f0f 5155
55136592 5156 if (alloc_kmem_cache_cpus(s))
278b1bb1 5157 return 0;
ff12059e 5158
81819f0f 5159error:
9037c576 5160 __kmem_cache_release(s);
278b1bb1 5161 return -EINVAL;
81819f0f 5162}
81819f0f 5163
bb192ed9 5164static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
55860d96 5165 const char *text)
33b12c38
CL
5166{
5167#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5168 void *addr = slab_address(slab);
33b12c38 5169 void *p;
aa456c7a 5170
bb192ed9 5171 slab_err(s, slab, text, s->name);
33b12c38 5172
4ef3f5a3
VB
5173 spin_lock(&object_map_lock);
5174 __fill_map(object_map, s, slab);
5175
bb192ed9 5176 for_each_object(p, s, addr, slab->objects) {
33b12c38 5177
4ef3f5a3 5178 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
96b94abc 5179 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
5180 print_tracking(s, p);
5181 }
5182 }
4ef3f5a3 5183 spin_unlock(&object_map_lock);
33b12c38
CL
5184#endif
5185}
5186
81819f0f 5187/*
599870b1 5188 * Attempt to free all partial slabs on a node.
52b4b950
DS
5189 * This is called from __kmem_cache_shutdown(). We must take list_lock
5190 * because sysfs file might still access partial list after the shutdowning.
81819f0f 5191 */
599870b1 5192static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 5193{
60398923 5194 LIST_HEAD(discard);
bb192ed9 5195 struct slab *slab, *h;
81819f0f 5196
52b4b950
DS
5197 BUG_ON(irqs_disabled());
5198 spin_lock_irq(&n->list_lock);
bb192ed9
VB
5199 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5200 if (!slab->inuse) {
5201 remove_partial(n, slab);
5202 list_add(&slab->slab_list, &discard);
33b12c38 5203 } else {
bb192ed9 5204 list_slab_objects(s, slab,
55860d96 5205 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 5206 }
33b12c38 5207 }
52b4b950 5208 spin_unlock_irq(&n->list_lock);
60398923 5209
bb192ed9
VB
5210 list_for_each_entry_safe(slab, h, &discard, slab_list)
5211 discard_slab(s, slab);
81819f0f
CL
5212}
5213
f9e13c0a
SB
5214bool __kmem_cache_empty(struct kmem_cache *s)
5215{
5216 int node;
5217 struct kmem_cache_node *n;
5218
5219 for_each_kmem_cache_node(s, node, n)
4f174a8b 5220 if (n->nr_partial || node_nr_slabs(n))
f9e13c0a
SB
5221 return false;
5222 return true;
5223}
5224
81819f0f 5225/*
672bba3a 5226 * Release all resources used by a slab cache.
81819f0f 5227 */
52b4b950 5228int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
5229{
5230 int node;
fa45dc25 5231 struct kmem_cache_node *n;
81819f0f 5232
5a836bf6 5233 flush_all_cpus_locked(s);
81819f0f 5234 /* Attempt to free all objects */
fa45dc25 5235 for_each_kmem_cache_node(s, node, n) {
599870b1 5236 free_partial(s, n);
4f174a8b 5237 if (n->nr_partial || node_nr_slabs(n))
81819f0f
CL
5238 return 1;
5239 }
81819f0f
CL
5240 return 0;
5241}
5242
5bb1bb35 5243#ifdef CONFIG_PRINTK
2dfe63e6 5244void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
5245{
5246 void *base;
5247 int __maybe_unused i;
5248 unsigned int objnr;
5249 void *objp;
5250 void *objp0;
7213230a 5251 struct kmem_cache *s = slab->slab_cache;
8e7f37f2
PM
5252 struct track __maybe_unused *trackp;
5253
5254 kpp->kp_ptr = object;
7213230a 5255 kpp->kp_slab = slab;
8e7f37f2 5256 kpp->kp_slab_cache = s;
7213230a 5257 base = slab_address(slab);
8e7f37f2
PM
5258 objp0 = kasan_reset_tag(object);
5259#ifdef CONFIG_SLUB_DEBUG
5260 objp = restore_red_left(s, objp0);
5261#else
5262 objp = objp0;
5263#endif
40f3bf0c 5264 objnr = obj_to_index(s, slab, objp);
8e7f37f2
PM
5265 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5266 objp = base + s->size * objnr;
5267 kpp->kp_objp = objp;
7213230a
MWO
5268 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5269 || (objp - base) % s->size) ||
8e7f37f2
PM
5270 !(s->flags & SLAB_STORE_USER))
5271 return;
5272#ifdef CONFIG_SLUB_DEBUG
0cbc124b 5273 objp = fixup_red_left(s, objp);
8e7f37f2
PM
5274 trackp = get_track(s, objp, TRACK_ALLOC);
5275 kpp->kp_ret = (void *)trackp->addr;
5cf909c5
OG
5276#ifdef CONFIG_STACKDEPOT
5277 {
5278 depot_stack_handle_t handle;
5279 unsigned long *entries;
5280 unsigned int nr_entries;
78869146 5281
5cf909c5
OG
5282 handle = READ_ONCE(trackp->handle);
5283 if (handle) {
5284 nr_entries = stack_depot_fetch(handle, &entries);
5285 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5286 kpp->kp_stack[i] = (void *)entries[i];
5287 }
78869146 5288
5cf909c5
OG
5289 trackp = get_track(s, objp, TRACK_FREE);
5290 handle = READ_ONCE(trackp->handle);
5291 if (handle) {
5292 nr_entries = stack_depot_fetch(handle, &entries);
5293 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5294 kpp->kp_free_stack[i] = (void *)entries[i];
5295 }
e548eaa1 5296 }
8e7f37f2
PM
5297#endif
5298#endif
5299}
5bb1bb35 5300#endif
8e7f37f2 5301
81819f0f
CL
5302/********************************************************************
5303 * Kmalloc subsystem
5304 *******************************************************************/
5305
81819f0f
CL
5306static int __init setup_slub_min_order(char *str)
5307{
19af27af 5308 get_option(&str, (int *)&slub_min_order);
81819f0f 5309
e519ce7a
FT
5310 if (slub_min_order > slub_max_order)
5311 slub_max_order = slub_min_order;
5312
81819f0f
CL
5313 return 1;
5314}
5315
5316__setup("slub_min_order=", setup_slub_min_order);
5317
5318static int __init setup_slub_max_order(char *str)
5319{
19af27af 5320 get_option(&str, (int *)&slub_max_order);
5e0a760b 5321 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
81819f0f 5322
e519ce7a
FT
5323 if (slub_min_order > slub_max_order)
5324 slub_min_order = slub_max_order;
5325
81819f0f
CL
5326 return 1;
5327}
5328
5329__setup("slub_max_order=", setup_slub_max_order);
5330
5331static int __init setup_slub_min_objects(char *str)
5332{
19af27af 5333 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
5334
5335 return 1;
5336}
5337
5338__setup("slub_min_objects=", setup_slub_min_objects);
5339
ed18adc1
KC
5340#ifdef CONFIG_HARDENED_USERCOPY
5341/*
afcc90f8
KC
5342 * Rejects incorrectly sized objects and objects that are to be copied
5343 * to/from userspace but do not fall entirely within the containing slab
5344 * cache's usercopy region.
ed18adc1
KC
5345 *
5346 * Returns NULL if check passes, otherwise const char * to name of cache
5347 * to indicate an error.
5348 */
0b3eb091
MWO
5349void __check_heap_object(const void *ptr, unsigned long n,
5350 const struct slab *slab, bool to_user)
ed18adc1
KC
5351{
5352 struct kmem_cache *s;
44065b2e 5353 unsigned int offset;
b89fb5ef 5354 bool is_kfence = is_kfence_address(ptr);
ed18adc1 5355
96fedce2
AK
5356 ptr = kasan_reset_tag(ptr);
5357
ed18adc1 5358 /* Find object and usable object size. */
0b3eb091 5359 s = slab->slab_cache;
ed18adc1
KC
5360
5361 /* Reject impossible pointers. */
0b3eb091 5362 if (ptr < slab_address(slab))
f4e6e289
KC
5363 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5364 to_user, 0, n);
ed18adc1
KC
5365
5366 /* Find offset within object. */
b89fb5ef
AP
5367 if (is_kfence)
5368 offset = ptr - kfence_object_start(ptr);
5369 else
0b3eb091 5370 offset = (ptr - slab_address(slab)) % s->size;
ed18adc1
KC
5371
5372 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 5373 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 5374 if (offset < s->red_left_pad)
f4e6e289
KC
5375 usercopy_abort("SLUB object in left red zone",
5376 s->name, to_user, offset, n);
ed18adc1
KC
5377 offset -= s->red_left_pad;
5378 }
5379
afcc90f8
KC
5380 /* Allow address range falling entirely within usercopy region. */
5381 if (offset >= s->useroffset &&
5382 offset - s->useroffset <= s->usersize &&
5383 n <= s->useroffset - offset + s->usersize)
f4e6e289 5384 return;
ed18adc1 5385
f4e6e289 5386 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
5387}
5388#endif /* CONFIG_HARDENED_USERCOPY */
5389
832f37f5
VD
5390#define SHRINK_PROMOTE_MAX 32
5391
2086d26a 5392/*
832f37f5
VD
5393 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5394 * up most to the head of the partial lists. New allocations will then
5395 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
5396 *
5397 * The slabs with the least items are placed last. This results in them
5398 * being allocated from last increasing the chance that the last objects
5399 * are freed in them.
2086d26a 5400 */
5a836bf6 5401static int __kmem_cache_do_shrink(struct kmem_cache *s)
2086d26a
CL
5402{
5403 int node;
5404 int i;
5405 struct kmem_cache_node *n;
bb192ed9
VB
5406 struct slab *slab;
5407 struct slab *t;
832f37f5
VD
5408 struct list_head discard;
5409 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 5410 unsigned long flags;
ce3712d7 5411 int ret = 0;
2086d26a 5412
fa45dc25 5413 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
5414 INIT_LIST_HEAD(&discard);
5415 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5416 INIT_LIST_HEAD(promote + i);
2086d26a
CL
5417
5418 spin_lock_irqsave(&n->list_lock, flags);
5419
5420 /*
832f37f5 5421 * Build lists of slabs to discard or promote.
2086d26a 5422 *
672bba3a 5423 * Note that concurrent frees may occur while we hold the
c2092c12 5424 * list_lock. slab->inuse here is the upper limit.
2086d26a 5425 */
bb192ed9
VB
5426 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5427 int free = slab->objects - slab->inuse;
832f37f5 5428
c2092c12 5429 /* Do not reread slab->inuse */
832f37f5
VD
5430 barrier();
5431
5432 /* We do not keep full slabs on the list */
5433 BUG_ON(free <= 0);
5434
bb192ed9
VB
5435 if (free == slab->objects) {
5436 list_move(&slab->slab_list, &discard);
8a399e2f 5437 slab_clear_node_partial(slab);
69cb8e6b 5438 n->nr_partial--;
c7323a5a 5439 dec_slabs_node(s, node, slab->objects);
832f37f5 5440 } else if (free <= SHRINK_PROMOTE_MAX)
bb192ed9 5441 list_move(&slab->slab_list, promote + free - 1);
2086d26a
CL
5442 }
5443
2086d26a 5444 /*
832f37f5
VD
5445 * Promote the slabs filled up most to the head of the
5446 * partial list.
2086d26a 5447 */
832f37f5
VD
5448 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5449 list_splice(promote + i, &n->partial);
2086d26a 5450
2086d26a 5451 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
5452
5453 /* Release empty slabs */
bb192ed9 5454 list_for_each_entry_safe(slab, t, &discard, slab_list)
c7323a5a 5455 free_slab(s, slab);
ce3712d7 5456
4f174a8b 5457 if (node_nr_slabs(n))
ce3712d7 5458 ret = 1;
2086d26a
CL
5459 }
5460
ce3712d7 5461 return ret;
2086d26a 5462}
2086d26a 5463
5a836bf6
SAS
5464int __kmem_cache_shrink(struct kmem_cache *s)
5465{
5466 flush_all(s);
5467 return __kmem_cache_do_shrink(s);
5468}
5469
b9049e23
YG
5470static int slab_mem_going_offline_callback(void *arg)
5471{
5472 struct kmem_cache *s;
5473
18004c5d 5474 mutex_lock(&slab_mutex);
5a836bf6
SAS
5475 list_for_each_entry(s, &slab_caches, list) {
5476 flush_all_cpus_locked(s);
5477 __kmem_cache_do_shrink(s);
5478 }
18004c5d 5479 mutex_unlock(&slab_mutex);
b9049e23
YG
5480
5481 return 0;
5482}
5483
5484static void slab_mem_offline_callback(void *arg)
5485{
b9049e23
YG
5486 struct memory_notify *marg = arg;
5487 int offline_node;
5488
b9d5ab25 5489 offline_node = marg->status_change_nid_normal;
b9049e23
YG
5490
5491 /*
5492 * If the node still has available memory. we need kmem_cache_node
5493 * for it yet.
5494 */
5495 if (offline_node < 0)
5496 return;
5497
18004c5d 5498 mutex_lock(&slab_mutex);
7e1fa93d 5499 node_clear(offline_node, slab_nodes);
666716fd
VB
5500 /*
5501 * We no longer free kmem_cache_node structures here, as it would be
5502 * racy with all get_node() users, and infeasible to protect them with
5503 * slab_mutex.
5504 */
18004c5d 5505 mutex_unlock(&slab_mutex);
b9049e23
YG
5506}
5507
5508static int slab_mem_going_online_callback(void *arg)
5509{
5510 struct kmem_cache_node *n;
5511 struct kmem_cache *s;
5512 struct memory_notify *marg = arg;
b9d5ab25 5513 int nid = marg->status_change_nid_normal;
b9049e23
YG
5514 int ret = 0;
5515
5516 /*
5517 * If the node's memory is already available, then kmem_cache_node is
5518 * already created. Nothing to do.
5519 */
5520 if (nid < 0)
5521 return 0;
5522
5523 /*
0121c619 5524 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
5525 * allocate a kmem_cache_node structure in order to bring the node
5526 * online.
5527 */
18004c5d 5528 mutex_lock(&slab_mutex);
b9049e23 5529 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
5530 /*
5531 * The structure may already exist if the node was previously
5532 * onlined and offlined.
5533 */
5534 if (get_node(s, nid))
5535 continue;
b9049e23
YG
5536 /*
5537 * XXX: kmem_cache_alloc_node will fallback to other nodes
5538 * since memory is not yet available from the node that
5539 * is brought up.
5540 */
8de66a0c 5541 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
5542 if (!n) {
5543 ret = -ENOMEM;
5544 goto out;
5545 }
4053497d 5546 init_kmem_cache_node(n);
b9049e23
YG
5547 s->node[nid] = n;
5548 }
7e1fa93d
VB
5549 /*
5550 * Any cache created after this point will also have kmem_cache_node
5551 * initialized for the new node.
5552 */
5553 node_set(nid, slab_nodes);
b9049e23 5554out:
18004c5d 5555 mutex_unlock(&slab_mutex);
b9049e23
YG
5556 return ret;
5557}
5558
5559static int slab_memory_callback(struct notifier_block *self,
5560 unsigned long action, void *arg)
5561{
5562 int ret = 0;
5563
5564 switch (action) {
5565 case MEM_GOING_ONLINE:
5566 ret = slab_mem_going_online_callback(arg);
5567 break;
5568 case MEM_GOING_OFFLINE:
5569 ret = slab_mem_going_offline_callback(arg);
5570 break;
5571 case MEM_OFFLINE:
5572 case MEM_CANCEL_ONLINE:
5573 slab_mem_offline_callback(arg);
5574 break;
5575 case MEM_ONLINE:
5576 case MEM_CANCEL_OFFLINE:
5577 break;
5578 }
dc19f9db
KH
5579 if (ret)
5580 ret = notifier_from_errno(ret);
5581 else
5582 ret = NOTIFY_OK;
b9049e23
YG
5583 return ret;
5584}
5585
81819f0f
CL
5586/********************************************************************
5587 * Basic setup of slabs
5588 *******************************************************************/
5589
51df1142
CL
5590/*
5591 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
5592 * the page allocator. Allocate them properly then fix up the pointers
5593 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
5594 */
5595
dffb4d60 5596static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
5597{
5598 int node;
dffb4d60 5599 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 5600 struct kmem_cache_node *n;
51df1142 5601
dffb4d60 5602 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 5603
7d557b3c
GC
5604 /*
5605 * This runs very early, and only the boot processor is supposed to be
5606 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5607 * IPIs around.
5608 */
5609 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 5610 for_each_kmem_cache_node(s, node, n) {
bb192ed9 5611 struct slab *p;
51df1142 5612
916ac052 5613 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 5614 p->slab_cache = s;
51df1142 5615
607bf324 5616#ifdef CONFIG_SLUB_DEBUG
916ac052 5617 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 5618 p->slab_cache = s;
51df1142 5619#endif
51df1142 5620 }
dffb4d60
CL
5621 list_add(&s->list, &slab_caches);
5622 return s;
51df1142
CL
5623}
5624
81819f0f
CL
5625void __init kmem_cache_init(void)
5626{
dffb4d60
CL
5627 static __initdata struct kmem_cache boot_kmem_cache,
5628 boot_kmem_cache_node;
7e1fa93d 5629 int node;
51df1142 5630
fc8d8620
SG
5631 if (debug_guardpage_minorder())
5632 slub_max_order = 0;
5633
79270291
SB
5634 /* Print slub debugging pointers without hashing */
5635 if (__slub_debug_enabled())
5636 no_hash_pointers_enable(NULL);
5637
dffb4d60
CL
5638 kmem_cache_node = &boot_kmem_cache_node;
5639 kmem_cache = &boot_kmem_cache;
51df1142 5640
7e1fa93d
VB
5641 /*
5642 * Initialize the nodemask for which we will allocate per node
5643 * structures. Here we don't need taking slab_mutex yet.
5644 */
5645 for_each_node_state(node, N_NORMAL_MEMORY)
5646 node_set(node, slab_nodes);
5647
dffb4d60 5648 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 5649 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 5650
946d5f9c 5651 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
5652
5653 /* Able to allocate the per node structures */
5654 slab_state = PARTIAL;
5655
dffb4d60
CL
5656 create_boot_cache(kmem_cache, "kmem_cache",
5657 offsetof(struct kmem_cache, node) +
5658 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 5659 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 5660
dffb4d60 5661 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 5662 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
5663
5664 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 5665 setup_kmalloc_cache_index_table();
f97d5f63 5666 create_kmalloc_caches(0);
81819f0f 5667
210e7a43
TG
5668 /* Setup random freelists for each cache */
5669 init_freelist_randomization();
5670
a96a87bf
SAS
5671 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5672 slub_cpu_dead);
81819f0f 5673
b9726c26 5674 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 5675 cache_line_size(),
81819f0f
CL
5676 slub_min_order, slub_max_order, slub_min_objects,
5677 nr_cpu_ids, nr_node_ids);
5678}
5679
7e85ee0c
PE
5680void __init kmem_cache_init_late(void)
5681{
0af8489b 5682#ifndef CONFIG_SLUB_TINY
e45cc288
ML
5683 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5684 WARN_ON(!flushwq);
0af8489b 5685#endif
7e85ee0c
PE
5686}
5687
2633d7a0 5688struct kmem_cache *
f4957d5b 5689__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 5690 slab_flags_t flags, void (*ctor)(void *))
81819f0f 5691{
10befea9 5692 struct kmem_cache *s;
81819f0f 5693
a44cb944 5694 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 5695 if (s) {
efb93527
XS
5696 if (sysfs_slab_alias(s, name))
5697 return NULL;
5698
81819f0f 5699 s->refcount++;
84d0ddd6 5700
81819f0f
CL
5701 /*
5702 * Adjust the object sizes so that we clear
5703 * the complete object on kzalloc.
5704 */
1b473f29 5705 s->object_size = max(s->object_size, size);
52ee6d74 5706 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 5707 }
6446faa2 5708
cbb79694
CL
5709 return s;
5710}
84c1cf62 5711
d50112ed 5712int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 5713{
aac3a166
PE
5714 int err;
5715
5716 err = kmem_cache_open(s, flags);
5717 if (err)
5718 return err;
20cea968 5719
45530c44
CL
5720 /* Mutex is not taken during early boot */
5721 if (slab_state <= UP)
5722 return 0;
5723
aac3a166 5724 err = sysfs_slab_add(s);
67823a54 5725 if (err) {
52b4b950 5726 __kmem_cache_release(s);
67823a54
ML
5727 return err;
5728 }
20cea968 5729
64dd6849
FM
5730 if (s->flags & SLAB_STORE_USER)
5731 debugfs_slab_add(s);
5732
67823a54 5733 return 0;
81819f0f 5734}
81819f0f 5735
b1a413a3 5736#ifdef SLAB_SUPPORTS_SYSFS
bb192ed9 5737static int count_inuse(struct slab *slab)
205ab99d 5738{
bb192ed9 5739 return slab->inuse;
205ab99d
CL
5740}
5741
bb192ed9 5742static int count_total(struct slab *slab)
205ab99d 5743{
bb192ed9 5744 return slab->objects;
205ab99d 5745}
ab4d5ed5 5746#endif
205ab99d 5747
ab4d5ed5 5748#ifdef CONFIG_SLUB_DEBUG
bb192ed9 5749static void validate_slab(struct kmem_cache *s, struct slab *slab,
0a19e7dd 5750 unsigned long *obj_map)
53e15af0
CL
5751{
5752 void *p;
bb192ed9 5753 void *addr = slab_address(slab);
53e15af0 5754
bb192ed9 5755 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
41bec7c3 5756 return;
53e15af0
CL
5757
5758 /* Now we know that a valid freelist exists */
bb192ed9
VB
5759 __fill_map(obj_map, s, slab);
5760 for_each_object(p, s, addr, slab->objects) {
0a19e7dd 5761 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 5762 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 5763
bb192ed9 5764 if (!check_object(s, slab, p, val))
dd98afd4
YZ
5765 break;
5766 }
53e15af0
CL
5767}
5768
434e245d 5769static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 5770 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
5771{
5772 unsigned long count = 0;
bb192ed9 5773 struct slab *slab;
53e15af0
CL
5774 unsigned long flags;
5775
5776 spin_lock_irqsave(&n->list_lock, flags);
5777
bb192ed9
VB
5778 list_for_each_entry(slab, &n->partial, slab_list) {
5779 validate_slab(s, slab, obj_map);
53e15af0
CL
5780 count++;
5781 }
1f9f78b1 5782 if (count != n->nr_partial) {
f9f58285
FF
5783 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5784 s->name, count, n->nr_partial);
1f9f78b1
OG
5785 slab_add_kunit_errors();
5786 }
53e15af0
CL
5787
5788 if (!(s->flags & SLAB_STORE_USER))
5789 goto out;
5790
bb192ed9
VB
5791 list_for_each_entry(slab, &n->full, slab_list) {
5792 validate_slab(s, slab, obj_map);
53e15af0
CL
5793 count++;
5794 }
8040cbf5 5795 if (count != node_nr_slabs(n)) {
f9f58285 5796 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8040cbf5 5797 s->name, count, node_nr_slabs(n));
1f9f78b1
OG
5798 slab_add_kunit_errors();
5799 }
53e15af0
CL
5800
5801out:
5802 spin_unlock_irqrestore(&n->list_lock, flags);
5803 return count;
5804}
5805
1f9f78b1 5806long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
5807{
5808 int node;
5809 unsigned long count = 0;
fa45dc25 5810 struct kmem_cache_node *n;
0a19e7dd
VB
5811 unsigned long *obj_map;
5812
5813 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5814 if (!obj_map)
5815 return -ENOMEM;
53e15af0
CL
5816
5817 flush_all(s);
fa45dc25 5818 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
5819 count += validate_slab_node(s, n, obj_map);
5820
5821 bitmap_free(obj_map);
90e9f6a6 5822
53e15af0
CL
5823 return count;
5824}
1f9f78b1
OG
5825EXPORT_SYMBOL(validate_slab_cache);
5826
64dd6849 5827#ifdef CONFIG_DEBUG_FS
88a420e4 5828/*
672bba3a 5829 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
5830 * and freed.
5831 */
5832
5833struct location {
8ea9fb92 5834 depot_stack_handle_t handle;
88a420e4 5835 unsigned long count;
ce71e27c 5836 unsigned long addr;
6edf2576 5837 unsigned long waste;
45edfa58
CL
5838 long long sum_time;
5839 long min_time;
5840 long max_time;
5841 long min_pid;
5842 long max_pid;
174596a0 5843 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 5844 nodemask_t nodes;
88a420e4
CL
5845};
5846
5847struct loc_track {
5848 unsigned long max;
5849 unsigned long count;
5850 struct location *loc;
005a79e5 5851 loff_t idx;
88a420e4
CL
5852};
5853
64dd6849
FM
5854static struct dentry *slab_debugfs_root;
5855
88a420e4
CL
5856static void free_loc_track(struct loc_track *t)
5857{
5858 if (t->max)
5859 free_pages((unsigned long)t->loc,
5860 get_order(sizeof(struct location) * t->max));
5861}
5862
68dff6a9 5863static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
5864{
5865 struct location *l;
5866 int order;
5867
88a420e4
CL
5868 order = get_order(sizeof(struct location) * max);
5869
68dff6a9 5870 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
5871 if (!l)
5872 return 0;
5873
5874 if (t->count) {
5875 memcpy(l, t->loc, sizeof(struct location) * t->count);
5876 free_loc_track(t);
5877 }
5878 t->max = max;
5879 t->loc = l;
5880 return 1;
5881}
5882
5883static int add_location(struct loc_track *t, struct kmem_cache *s,
6edf2576
FT
5884 const struct track *track,
5885 unsigned int orig_size)
88a420e4
CL
5886{
5887 long start, end, pos;
5888 struct location *l;
6edf2576 5889 unsigned long caddr, chandle, cwaste;
45edfa58 5890 unsigned long age = jiffies - track->when;
8ea9fb92 5891 depot_stack_handle_t handle = 0;
6edf2576 5892 unsigned int waste = s->object_size - orig_size;
88a420e4 5893
8ea9fb92
OG
5894#ifdef CONFIG_STACKDEPOT
5895 handle = READ_ONCE(track->handle);
5896#endif
88a420e4
CL
5897 start = -1;
5898 end = t->count;
5899
5900 for ( ; ; ) {
5901 pos = start + (end - start + 1) / 2;
5902
5903 /*
5904 * There is nothing at "end". If we end up there
5905 * we need to add something to before end.
5906 */
5907 if (pos == end)
5908 break;
5909
6edf2576
FT
5910 l = &t->loc[pos];
5911 caddr = l->addr;
5912 chandle = l->handle;
5913 cwaste = l->waste;
5914 if ((track->addr == caddr) && (handle == chandle) &&
5915 (waste == cwaste)) {
45edfa58 5916
45edfa58
CL
5917 l->count++;
5918 if (track->when) {
5919 l->sum_time += age;
5920 if (age < l->min_time)
5921 l->min_time = age;
5922 if (age > l->max_time)
5923 l->max_time = age;
5924
5925 if (track->pid < l->min_pid)
5926 l->min_pid = track->pid;
5927 if (track->pid > l->max_pid)
5928 l->max_pid = track->pid;
5929
174596a0
RR
5930 cpumask_set_cpu(track->cpu,
5931 to_cpumask(l->cpus));
45edfa58
CL
5932 }
5933 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5934 return 1;
5935 }
5936
45edfa58 5937 if (track->addr < caddr)
88a420e4 5938 end = pos;
8ea9fb92
OG
5939 else if (track->addr == caddr && handle < chandle)
5940 end = pos;
6edf2576
FT
5941 else if (track->addr == caddr && handle == chandle &&
5942 waste < cwaste)
5943 end = pos;
88a420e4
CL
5944 else
5945 start = pos;
5946 }
5947
5948 /*
672bba3a 5949 * Not found. Insert new tracking element.
88a420e4 5950 */
68dff6a9 5951 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
5952 return 0;
5953
5954 l = t->loc + pos;
5955 if (pos < t->count)
5956 memmove(l + 1, l,
5957 (t->count - pos) * sizeof(struct location));
5958 t->count++;
5959 l->count = 1;
45edfa58
CL
5960 l->addr = track->addr;
5961 l->sum_time = age;
5962 l->min_time = age;
5963 l->max_time = age;
5964 l->min_pid = track->pid;
5965 l->max_pid = track->pid;
8ea9fb92 5966 l->handle = handle;
6edf2576 5967 l->waste = waste;
174596a0
RR
5968 cpumask_clear(to_cpumask(l->cpus));
5969 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
5970 nodes_clear(l->nodes);
5971 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
5972 return 1;
5973}
5974
5975static void process_slab(struct loc_track *t, struct kmem_cache *s,
bb192ed9 5976 struct slab *slab, enum track_item alloc,
b3fd64e1 5977 unsigned long *obj_map)
88a420e4 5978{
bb192ed9 5979 void *addr = slab_address(slab);
6edf2576 5980 bool is_alloc = (alloc == TRACK_ALLOC);
88a420e4
CL
5981 void *p;
5982
bb192ed9 5983 __fill_map(obj_map, s, slab);
b3fd64e1 5984
bb192ed9 5985 for_each_object(p, s, addr, slab->objects)
b3fd64e1 5986 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6edf2576
FT
5987 add_location(t, s, get_track(s, p, alloc),
5988 is_alloc ? get_orig_size(s, p) :
5989 s->object_size);
88a420e4 5990}
64dd6849 5991#endif /* CONFIG_DEBUG_FS */
6dfd1b65 5992#endif /* CONFIG_SLUB_DEBUG */
88a420e4 5993
b1a413a3 5994#ifdef SLAB_SUPPORTS_SYSFS
81819f0f 5995enum slab_stat_type {
205ab99d
CL
5996 SL_ALL, /* All slabs */
5997 SL_PARTIAL, /* Only partially allocated slabs */
5998 SL_CPU, /* Only slabs used for cpu caches */
5999 SL_OBJECTS, /* Determine allocated objects not slabs */
6000 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
6001};
6002
205ab99d 6003#define SO_ALL (1 << SL_ALL)
81819f0f
CL
6004#define SO_PARTIAL (1 << SL_PARTIAL)
6005#define SO_CPU (1 << SL_CPU)
6006#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 6007#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 6008
62e5c4b4 6009static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 6010 char *buf, unsigned long flags)
81819f0f
CL
6011{
6012 unsigned long total = 0;
81819f0f
CL
6013 int node;
6014 int x;
6015 unsigned long *nodes;
bf16d19a 6016 int len = 0;
81819f0f 6017
6396bb22 6018 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
6019 if (!nodes)
6020 return -ENOMEM;
81819f0f 6021
205ab99d
CL
6022 if (flags & SO_CPU) {
6023 int cpu;
81819f0f 6024
205ab99d 6025 for_each_possible_cpu(cpu) {
d0e0ac97
CG
6026 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6027 cpu);
ec3ab083 6028 int node;
bb192ed9 6029 struct slab *slab;
dfb4f096 6030
bb192ed9
VB
6031 slab = READ_ONCE(c->slab);
6032 if (!slab)
ec3ab083 6033 continue;
205ab99d 6034
bb192ed9 6035 node = slab_nid(slab);
ec3ab083 6036 if (flags & SO_TOTAL)
bb192ed9 6037 x = slab->objects;
ec3ab083 6038 else if (flags & SO_OBJECTS)
bb192ed9 6039 x = slab->inuse;
ec3ab083
CL
6040 else
6041 x = 1;
49e22585 6042
ec3ab083
CL
6043 total += x;
6044 nodes[node] += x;
6045
9c01e9af 6046#ifdef CONFIG_SLUB_CPU_PARTIAL
bb192ed9
VB
6047 slab = slub_percpu_partial_read_once(c);
6048 if (slab) {
6049 node = slab_nid(slab);
8afb1474
LZ
6050 if (flags & SO_TOTAL)
6051 WARN_ON_ONCE(1);
6052 else if (flags & SO_OBJECTS)
6053 WARN_ON_ONCE(1);
6054 else
bb192ed9 6055 x = slab->slabs;
bc6697d8
ED
6056 total += x;
6057 nodes[node] += x;
49e22585 6058 }
9c01e9af 6059#endif
81819f0f
CL
6060 }
6061 }
6062
e4f8e513
QC
6063 /*
6064 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6065 * already held which will conflict with an existing lock order:
6066 *
6067 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6068 *
6069 * We don't really need mem_hotplug_lock (to hold off
6070 * slab_mem_going_offline_callback) here because slab's memory hot
6071 * unplug code doesn't destroy the kmem_cache->node[] data.
6072 */
6073
ab4d5ed5 6074#ifdef CONFIG_SLUB_DEBUG
205ab99d 6075 if (flags & SO_ALL) {
fa45dc25
CL
6076 struct kmem_cache_node *n;
6077
6078 for_each_kmem_cache_node(s, node, n) {
205ab99d 6079
d0e0ac97 6080 if (flags & SO_TOTAL)
8040cbf5 6081 x = node_nr_objs(n);
d0e0ac97 6082 else if (flags & SO_OBJECTS)
8040cbf5 6083 x = node_nr_objs(n) - count_partial(n, count_free);
81819f0f 6084 else
8040cbf5 6085 x = node_nr_slabs(n);
81819f0f
CL
6086 total += x;
6087 nodes[node] += x;
6088 }
6089
ab4d5ed5
CL
6090 } else
6091#endif
6092 if (flags & SO_PARTIAL) {
fa45dc25 6093 struct kmem_cache_node *n;
81819f0f 6094
fa45dc25 6095 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
6096 if (flags & SO_TOTAL)
6097 x = count_partial(n, count_total);
6098 else if (flags & SO_OBJECTS)
6099 x = count_partial(n, count_inuse);
81819f0f 6100 else
205ab99d 6101 x = n->nr_partial;
81819f0f
CL
6102 total += x;
6103 nodes[node] += x;
6104 }
6105 }
bf16d19a
JP
6106
6107 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 6108#ifdef CONFIG_NUMA
bf16d19a 6109 for (node = 0; node < nr_node_ids; node++) {
81819f0f 6110 if (nodes[node])
bf16d19a
JP
6111 len += sysfs_emit_at(buf, len, " N%d=%lu",
6112 node, nodes[node]);
6113 }
81819f0f 6114#endif
bf16d19a 6115 len += sysfs_emit_at(buf, len, "\n");
81819f0f 6116 kfree(nodes);
bf16d19a
JP
6117
6118 return len;
81819f0f
CL
6119}
6120
81819f0f 6121#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 6122#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
6123
6124struct slab_attribute {
6125 struct attribute attr;
6126 ssize_t (*show)(struct kmem_cache *s, char *buf);
6127 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6128};
6129
6130#define SLAB_ATTR_RO(_name) \
d1d28bd9 6131 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
81819f0f
CL
6132
6133#define SLAB_ATTR(_name) \
d1d28bd9 6134 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
81819f0f 6135
81819f0f
CL
6136static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6137{
bf16d19a 6138 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
6139}
6140SLAB_ATTR_RO(slab_size);
6141
6142static ssize_t align_show(struct kmem_cache *s, char *buf)
6143{
bf16d19a 6144 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
6145}
6146SLAB_ATTR_RO(align);
6147
6148static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6149{
bf16d19a 6150 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
6151}
6152SLAB_ATTR_RO(object_size);
6153
6154static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6155{
bf16d19a 6156 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
6157}
6158SLAB_ATTR_RO(objs_per_slab);
6159
6160static ssize_t order_show(struct kmem_cache *s, char *buf)
6161{
bf16d19a 6162 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 6163}
32a6f409 6164SLAB_ATTR_RO(order);
81819f0f 6165
73d342b1
DR
6166static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6167{
bf16d19a 6168 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
6169}
6170
6171static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6172 size_t length)
6173{
6174 unsigned long min;
6175 int err;
6176
3dbb95f7 6177 err = kstrtoul(buf, 10, &min);
73d342b1
DR
6178 if (err)
6179 return err;
6180
5182f3c9 6181 s->min_partial = min;
73d342b1
DR
6182 return length;
6183}
6184SLAB_ATTR(min_partial);
6185
49e22585
CL
6186static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6187{
b47291ef
VB
6188 unsigned int nr_partial = 0;
6189#ifdef CONFIG_SLUB_CPU_PARTIAL
6190 nr_partial = s->cpu_partial;
6191#endif
6192
6193 return sysfs_emit(buf, "%u\n", nr_partial);
49e22585
CL
6194}
6195
6196static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6197 size_t length)
6198{
e5d9998f 6199 unsigned int objects;
49e22585
CL
6200 int err;
6201
e5d9998f 6202 err = kstrtouint(buf, 10, &objects);
49e22585
CL
6203 if (err)
6204 return err;
345c905d 6205 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 6206 return -EINVAL;
49e22585 6207
e6d0e1dc 6208 slub_set_cpu_partial(s, objects);
49e22585
CL
6209 flush_all(s);
6210 return length;
6211}
6212SLAB_ATTR(cpu_partial);
6213
81819f0f
CL
6214static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6215{
62c70bce
JP
6216 if (!s->ctor)
6217 return 0;
bf16d19a 6218 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
6219}
6220SLAB_ATTR_RO(ctor);
6221
81819f0f
CL
6222static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6223{
bf16d19a 6224 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
6225}
6226SLAB_ATTR_RO(aliases);
6227
81819f0f
CL
6228static ssize_t partial_show(struct kmem_cache *s, char *buf)
6229{
d9acf4b7 6230 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
6231}
6232SLAB_ATTR_RO(partial);
6233
6234static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6235{
d9acf4b7 6236 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
6237}
6238SLAB_ATTR_RO(cpu_slabs);
6239
205ab99d
CL
6240static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6241{
6242 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6243}
6244SLAB_ATTR_RO(objects_partial);
6245
49e22585
CL
6246static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6247{
6248 int objects = 0;
bb192ed9 6249 int slabs = 0;
9c01e9af 6250 int cpu __maybe_unused;
bf16d19a 6251 int len = 0;
49e22585 6252
9c01e9af 6253#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 6254 for_each_online_cpu(cpu) {
bb192ed9 6255 struct slab *slab;
a93cf07b 6256
bb192ed9 6257 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585 6258
bb192ed9
VB
6259 if (slab)
6260 slabs += slab->slabs;
49e22585 6261 }
9c01e9af 6262#endif
49e22585 6263
c2092c12 6264 /* Approximate half-full slabs, see slub_set_cpu_partial() */
bb192ed9
VB
6265 objects = (slabs * oo_objects(s->oo)) / 2;
6266 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
49e22585 6267
c6c17c4d 6268#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585 6269 for_each_online_cpu(cpu) {
bb192ed9 6270 struct slab *slab;
a93cf07b 6271
bb192ed9
VB
6272 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6273 if (slab) {
6274 slabs = READ_ONCE(slab->slabs);
6275 objects = (slabs * oo_objects(s->oo)) / 2;
bf16d19a 6276 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
bb192ed9 6277 cpu, objects, slabs);
b47291ef 6278 }
49e22585
CL
6279 }
6280#endif
bf16d19a
JP
6281 len += sysfs_emit_at(buf, len, "\n");
6282
6283 return len;
49e22585
CL
6284}
6285SLAB_ATTR_RO(slabs_cpu_partial);
6286
a5a84755
CL
6287static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6288{
bf16d19a 6289 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 6290}
8f58119a 6291SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
6292
6293static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6294{
bf16d19a 6295 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
6296}
6297SLAB_ATTR_RO(hwcache_align);
6298
6299#ifdef CONFIG_ZONE_DMA
6300static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6301{
bf16d19a 6302 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
6303}
6304SLAB_ATTR_RO(cache_dma);
6305#endif
6306
346907ce 6307#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
6308static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6309{
bf16d19a 6310 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
6311}
6312SLAB_ATTR_RO(usersize);
346907ce 6313#endif
8eb8284b 6314
a5a84755
CL
6315static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6316{
bf16d19a 6317 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
6318}
6319SLAB_ATTR_RO(destroy_by_rcu);
6320
ab4d5ed5 6321#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
6322static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6323{
6324 return show_slab_objects(s, buf, SO_ALL);
6325}
6326SLAB_ATTR_RO(slabs);
6327
205ab99d
CL
6328static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6329{
6330 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6331}
6332SLAB_ATTR_RO(total_objects);
6333
81bd3179
XS
6334static ssize_t objects_show(struct kmem_cache *s, char *buf)
6335{
6336 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6337}
6338SLAB_ATTR_RO(objects);
6339
81819f0f
CL
6340static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6341{
bf16d19a 6342 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 6343}
060807f8 6344SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
6345
6346static ssize_t trace_show(struct kmem_cache *s, char *buf)
6347{
bf16d19a 6348 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 6349}
060807f8 6350SLAB_ATTR_RO(trace);
81819f0f 6351
81819f0f
CL
6352static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6353{
bf16d19a 6354 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
6355}
6356
ad38b5b1 6357SLAB_ATTR_RO(red_zone);
81819f0f
CL
6358
6359static ssize_t poison_show(struct kmem_cache *s, char *buf)
6360{
bf16d19a 6361 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
6362}
6363
ad38b5b1 6364SLAB_ATTR_RO(poison);
81819f0f
CL
6365
6366static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6367{
bf16d19a 6368 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
6369}
6370
ad38b5b1 6371SLAB_ATTR_RO(store_user);
81819f0f 6372
53e15af0
CL
6373static ssize_t validate_show(struct kmem_cache *s, char *buf)
6374{
6375 return 0;
6376}
6377
6378static ssize_t validate_store(struct kmem_cache *s,
6379 const char *buf, size_t length)
6380{
434e245d
CL
6381 int ret = -EINVAL;
6382
c7323a5a 6383 if (buf[0] == '1' && kmem_cache_debug(s)) {
434e245d
CL
6384 ret = validate_slab_cache(s);
6385 if (ret >= 0)
6386 ret = length;
6387 }
6388 return ret;
53e15af0
CL
6389}
6390SLAB_ATTR(validate);
a5a84755 6391
a5a84755
CL
6392#endif /* CONFIG_SLUB_DEBUG */
6393
6394#ifdef CONFIG_FAILSLAB
6395static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6396{
bf16d19a 6397 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 6398}
7c82b3b3
AA
6399
6400static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6401 size_t length)
6402{
6403 if (s->refcount > 1)
6404 return -EINVAL;
6405
6406 if (buf[0] == '1')
6407 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6408 else
6409 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6410
6411 return length;
6412}
6413SLAB_ATTR(failslab);
ab4d5ed5 6414#endif
53e15af0 6415
2086d26a
CL
6416static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6417{
6418 return 0;
6419}
6420
6421static ssize_t shrink_store(struct kmem_cache *s,
6422 const char *buf, size_t length)
6423{
832f37f5 6424 if (buf[0] == '1')
10befea9 6425 kmem_cache_shrink(s);
832f37f5 6426 else
2086d26a
CL
6427 return -EINVAL;
6428 return length;
6429}
6430SLAB_ATTR(shrink);
6431
81819f0f 6432#ifdef CONFIG_NUMA
9824601e 6433static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 6434{
bf16d19a 6435 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
6436}
6437
9824601e 6438static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
6439 const char *buf, size_t length)
6440{
eb7235eb 6441 unsigned int ratio;
0121c619
CL
6442 int err;
6443
eb7235eb 6444 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
6445 if (err)
6446 return err;
eb7235eb
AD
6447 if (ratio > 100)
6448 return -ERANGE;
0121c619 6449
eb7235eb 6450 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 6451
81819f0f
CL
6452 return length;
6453}
9824601e 6454SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
6455#endif
6456
8ff12cfc 6457#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
6458static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6459{
6460 unsigned long sum = 0;
6461 int cpu;
bf16d19a 6462 int len = 0;
6da2ec56 6463 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
6464
6465 if (!data)
6466 return -ENOMEM;
6467
6468 for_each_online_cpu(cpu) {
9dfc6e68 6469 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
6470
6471 data[cpu] = x;
6472 sum += x;
6473 }
6474
bf16d19a 6475 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 6476
50ef37b9 6477#ifdef CONFIG_SMP
8ff12cfc 6478 for_each_online_cpu(cpu) {
bf16d19a
JP
6479 if (data[cpu])
6480 len += sysfs_emit_at(buf, len, " C%d=%u",
6481 cpu, data[cpu]);
8ff12cfc 6482 }
50ef37b9 6483#endif
8ff12cfc 6484 kfree(data);
bf16d19a
JP
6485 len += sysfs_emit_at(buf, len, "\n");
6486
6487 return len;
8ff12cfc
CL
6488}
6489
78eb00cc
DR
6490static void clear_stat(struct kmem_cache *s, enum stat_item si)
6491{
6492 int cpu;
6493
6494 for_each_online_cpu(cpu)
9dfc6e68 6495 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
6496}
6497
8ff12cfc
CL
6498#define STAT_ATTR(si, text) \
6499static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6500{ \
6501 return show_stat(s, buf, si); \
6502} \
78eb00cc
DR
6503static ssize_t text##_store(struct kmem_cache *s, \
6504 const char *buf, size_t length) \
6505{ \
6506 if (buf[0] != '0') \
6507 return -EINVAL; \
6508 clear_stat(s, si); \
6509 return length; \
6510} \
6511SLAB_ATTR(text); \
8ff12cfc
CL
6512
6513STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6514STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6515STAT_ATTR(FREE_FASTPATH, free_fastpath);
6516STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6517STAT_ATTR(FREE_FROZEN, free_frozen);
6518STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6519STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6520STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6521STAT_ATTR(ALLOC_SLAB, alloc_slab);
6522STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 6523STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
6524STAT_ATTR(FREE_SLAB, free_slab);
6525STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6526STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6527STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6528STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6529STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6530STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 6531STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 6532STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
6533STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6534STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
6535STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6536STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
6537STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6538STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 6539#endif /* CONFIG_SLUB_STATS */
8ff12cfc 6540
b84e04f1
IK
6541#ifdef CONFIG_KFENCE
6542static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6543{
6544 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6545}
6546
6547static ssize_t skip_kfence_store(struct kmem_cache *s,
6548 const char *buf, size_t length)
6549{
6550 int ret = length;
6551
6552 if (buf[0] == '0')
6553 s->flags &= ~SLAB_SKIP_KFENCE;
6554 else if (buf[0] == '1')
6555 s->flags |= SLAB_SKIP_KFENCE;
6556 else
6557 ret = -EINVAL;
6558
6559 return ret;
6560}
6561SLAB_ATTR(skip_kfence);
6562#endif
6563
06428780 6564static struct attribute *slab_attrs[] = {
81819f0f
CL
6565 &slab_size_attr.attr,
6566 &object_size_attr.attr,
6567 &objs_per_slab_attr.attr,
6568 &order_attr.attr,
73d342b1 6569 &min_partial_attr.attr,
49e22585 6570 &cpu_partial_attr.attr,
205ab99d 6571 &objects_partial_attr.attr,
81819f0f
CL
6572 &partial_attr.attr,
6573 &cpu_slabs_attr.attr,
6574 &ctor_attr.attr,
81819f0f
CL
6575 &aliases_attr.attr,
6576 &align_attr.attr,
81819f0f
CL
6577 &hwcache_align_attr.attr,
6578 &reclaim_account_attr.attr,
6579 &destroy_by_rcu_attr.attr,
a5a84755 6580 &shrink_attr.attr,
49e22585 6581 &slabs_cpu_partial_attr.attr,
ab4d5ed5 6582#ifdef CONFIG_SLUB_DEBUG
a5a84755 6583 &total_objects_attr.attr,
81bd3179 6584 &objects_attr.attr,
a5a84755
CL
6585 &slabs_attr.attr,
6586 &sanity_checks_attr.attr,
6587 &trace_attr.attr,
81819f0f
CL
6588 &red_zone_attr.attr,
6589 &poison_attr.attr,
6590 &store_user_attr.attr,
53e15af0 6591 &validate_attr.attr,
ab4d5ed5 6592#endif
81819f0f
CL
6593#ifdef CONFIG_ZONE_DMA
6594 &cache_dma_attr.attr,
6595#endif
6596#ifdef CONFIG_NUMA
9824601e 6597 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
6598#endif
6599#ifdef CONFIG_SLUB_STATS
6600 &alloc_fastpath_attr.attr,
6601 &alloc_slowpath_attr.attr,
6602 &free_fastpath_attr.attr,
6603 &free_slowpath_attr.attr,
6604 &free_frozen_attr.attr,
6605 &free_add_partial_attr.attr,
6606 &free_remove_partial_attr.attr,
6607 &alloc_from_partial_attr.attr,
6608 &alloc_slab_attr.attr,
6609 &alloc_refill_attr.attr,
e36a2652 6610 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
6611 &free_slab_attr.attr,
6612 &cpuslab_flush_attr.attr,
6613 &deactivate_full_attr.attr,
6614 &deactivate_empty_attr.attr,
6615 &deactivate_to_head_attr.attr,
6616 &deactivate_to_tail_attr.attr,
6617 &deactivate_remote_frees_attr.attr,
03e404af 6618 &deactivate_bypass_attr.attr,
65c3376a 6619 &order_fallback_attr.attr,
b789ef51
CL
6620 &cmpxchg_double_fail_attr.attr,
6621 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
6622 &cpu_partial_alloc_attr.attr,
6623 &cpu_partial_free_attr.attr,
8028dcea
AS
6624 &cpu_partial_node_attr.attr,
6625 &cpu_partial_drain_attr.attr,
81819f0f 6626#endif
4c13dd3b
DM
6627#ifdef CONFIG_FAILSLAB
6628 &failslab_attr.attr,
6629#endif
346907ce 6630#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b 6631 &usersize_attr.attr,
346907ce 6632#endif
b84e04f1
IK
6633#ifdef CONFIG_KFENCE
6634 &skip_kfence_attr.attr,
6635#endif
4c13dd3b 6636
81819f0f
CL
6637 NULL
6638};
6639
1fdaaa23 6640static const struct attribute_group slab_attr_group = {
81819f0f
CL
6641 .attrs = slab_attrs,
6642};
6643
6644static ssize_t slab_attr_show(struct kobject *kobj,
6645 struct attribute *attr,
6646 char *buf)
6647{
6648 struct slab_attribute *attribute;
6649 struct kmem_cache *s;
81819f0f
CL
6650
6651 attribute = to_slab_attr(attr);
6652 s = to_slab(kobj);
6653
6654 if (!attribute->show)
6655 return -EIO;
6656
2bfbb027 6657 return attribute->show(s, buf);
81819f0f
CL
6658}
6659
6660static ssize_t slab_attr_store(struct kobject *kobj,
6661 struct attribute *attr,
6662 const char *buf, size_t len)
6663{
6664 struct slab_attribute *attribute;
6665 struct kmem_cache *s;
81819f0f
CL
6666
6667 attribute = to_slab_attr(attr);
6668 s = to_slab(kobj);
6669
6670 if (!attribute->store)
6671 return -EIO;
6672
2bfbb027 6673 return attribute->store(s, buf, len);
81819f0f
CL
6674}
6675
41a21285
CL
6676static void kmem_cache_release(struct kobject *k)
6677{
6678 slab_kmem_cache_release(to_slab(k));
6679}
6680
52cf25d0 6681static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
6682 .show = slab_attr_show,
6683 .store = slab_attr_store,
6684};
6685
9ebe720e 6686static const struct kobj_type slab_ktype = {
81819f0f 6687 .sysfs_ops = &slab_sysfs_ops,
41a21285 6688 .release = kmem_cache_release,
81819f0f
CL
6689};
6690
27c3a314 6691static struct kset *slab_kset;
81819f0f 6692
9a41707b
VD
6693static inline struct kset *cache_kset(struct kmem_cache *s)
6694{
9a41707b
VD
6695 return slab_kset;
6696}
6697
d65360f2 6698#define ID_STR_LENGTH 32
81819f0f
CL
6699
6700/* Create a unique string id for a slab cache:
6446faa2
CL
6701 *
6702 * Format :[flags-]size
81819f0f
CL
6703 */
6704static char *create_unique_id(struct kmem_cache *s)
6705{
6706 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6707 char *p = name;
6708
7e9c323c
CY
6709 if (!name)
6710 return ERR_PTR(-ENOMEM);
81819f0f
CL
6711
6712 *p++ = ':';
6713 /*
6714 * First flags affecting slabcache operations. We will only
6715 * get here for aliasable slabs so we do not need to support
6716 * too many flags. The flags here must cover all flags that
6717 * are matched during merging to guarantee that the id is
6718 * unique.
6719 */
6720 if (s->flags & SLAB_CACHE_DMA)
6721 *p++ = 'd';
6d6ea1e9
NB
6722 if (s->flags & SLAB_CACHE_DMA32)
6723 *p++ = 'D';
81819f0f
CL
6724 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6725 *p++ = 'a';
becfda68 6726 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 6727 *p++ = 'F';
230e9fc2
VD
6728 if (s->flags & SLAB_ACCOUNT)
6729 *p++ = 'A';
81819f0f
CL
6730 if (p != name + 1)
6731 *p++ = '-';
d65360f2 6732 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
2633d7a0 6733
d65360f2
CY
6734 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6735 kfree(name);
6736 return ERR_PTR(-EINVAL);
6737 }
68ef169a 6738 kmsan_unpoison_memory(name, p - name);
81819f0f
CL
6739 return name;
6740}
6741
6742static int sysfs_slab_add(struct kmem_cache *s)
6743{
6744 int err;
6745 const char *name;
1663f26d 6746 struct kset *kset = cache_kset(s);
45530c44 6747 int unmergeable = slab_unmergeable(s);
81819f0f 6748
11066386
MC
6749 if (!unmergeable && disable_higher_order_debug &&
6750 (slub_debug & DEBUG_METADATA_FLAGS))
6751 unmergeable = 1;
6752
81819f0f
CL
6753 if (unmergeable) {
6754 /*
6755 * Slabcache can never be merged so we can use the name proper.
6756 * This is typically the case for debug situations. In that
6757 * case we can catch duplicate names easily.
6758 */
27c3a314 6759 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
6760 name = s->name;
6761 } else {
6762 /*
6763 * Create a unique name for the slab as a target
6764 * for the symlinks.
6765 */
6766 name = create_unique_id(s);
7e9c323c
CY
6767 if (IS_ERR(name))
6768 return PTR_ERR(name);
81819f0f
CL
6769 }
6770
1663f26d 6771 s->kobj.kset = kset;
26e4f205 6772 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 6773 if (err)
80da026a 6774 goto out;
81819f0f
CL
6775
6776 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
6777 if (err)
6778 goto out_del_kobj;
9a41707b 6779
81819f0f
CL
6780 if (!unmergeable) {
6781 /* Setup first alias */
6782 sysfs_slab_alias(s, s->name);
81819f0f 6783 }
54b6a731
DJ
6784out:
6785 if (!unmergeable)
6786 kfree(name);
6787 return err;
6788out_del_kobj:
6789 kobject_del(&s->kobj);
54b6a731 6790 goto out;
81819f0f
CL
6791}
6792
d50d82fa
MP
6793void sysfs_slab_unlink(struct kmem_cache *s)
6794{
6795 if (slab_state >= FULL)
6796 kobject_del(&s->kobj);
6797}
6798
bf5eb3de
TH
6799void sysfs_slab_release(struct kmem_cache *s)
6800{
6801 if (slab_state >= FULL)
6802 kobject_put(&s->kobj);
81819f0f
CL
6803}
6804
6805/*
6806 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 6807 * available lest we lose that information.
81819f0f
CL
6808 */
6809struct saved_alias {
6810 struct kmem_cache *s;
6811 const char *name;
6812 struct saved_alias *next;
6813};
6814
5af328a5 6815static struct saved_alias *alias_list;
81819f0f
CL
6816
6817static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6818{
6819 struct saved_alias *al;
6820
97d06609 6821 if (slab_state == FULL) {
81819f0f
CL
6822 /*
6823 * If we have a leftover link then remove it.
6824 */
27c3a314
GKH
6825 sysfs_remove_link(&slab_kset->kobj, name);
6826 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
6827 }
6828
6829 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6830 if (!al)
6831 return -ENOMEM;
6832
6833 al->s = s;
6834 al->name = name;
6835 al->next = alias_list;
6836 alias_list = al;
68ef169a 6837 kmsan_unpoison_memory(al, sizeof(*al));
81819f0f
CL
6838 return 0;
6839}
6840
6841static int __init slab_sysfs_init(void)
6842{
5b95a4ac 6843 struct kmem_cache *s;
81819f0f
CL
6844 int err;
6845
18004c5d 6846 mutex_lock(&slab_mutex);
2bce6485 6847
d7660ce5 6848 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 6849 if (!slab_kset) {
18004c5d 6850 mutex_unlock(&slab_mutex);
f9f58285 6851 pr_err("Cannot register slab subsystem.\n");
35973232 6852 return -ENOMEM;
81819f0f
CL
6853 }
6854
97d06609 6855 slab_state = FULL;
26a7bd03 6856
5b95a4ac 6857 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 6858 err = sysfs_slab_add(s);
5d540fb7 6859 if (err)
f9f58285
FF
6860 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6861 s->name);
26a7bd03 6862 }
81819f0f
CL
6863
6864 while (alias_list) {
6865 struct saved_alias *al = alias_list;
6866
6867 alias_list = alias_list->next;
6868 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 6869 if (err)
f9f58285
FF
6870 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6871 al->name);
81819f0f
CL
6872 kfree(al);
6873 }
6874
18004c5d 6875 mutex_unlock(&slab_mutex);
81819f0f
CL
6876 return 0;
6877}
1a5ad30b 6878late_initcall(slab_sysfs_init);
b1a413a3 6879#endif /* SLAB_SUPPORTS_SYSFS */
57ed3eda 6880
64dd6849
FM
6881#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6882static int slab_debugfs_show(struct seq_file *seq, void *v)
6883{
64dd6849 6884 struct loc_track *t = seq->private;
005a79e5
GS
6885 struct location *l;
6886 unsigned long idx;
64dd6849 6887
005a79e5 6888 idx = (unsigned long) t->idx;
64dd6849
FM
6889 if (idx < t->count) {
6890 l = &t->loc[idx];
6891
6892 seq_printf(seq, "%7ld ", l->count);
6893
6894 if (l->addr)
6895 seq_printf(seq, "%pS", (void *)l->addr);
6896 else
6897 seq_puts(seq, "<not-available>");
6898
6edf2576
FT
6899 if (l->waste)
6900 seq_printf(seq, " waste=%lu/%lu",
6901 l->count * l->waste, l->waste);
6902
64dd6849
FM
6903 if (l->sum_time != l->min_time) {
6904 seq_printf(seq, " age=%ld/%llu/%ld",
6905 l->min_time, div_u64(l->sum_time, l->count),
6906 l->max_time);
6907 } else
6908 seq_printf(seq, " age=%ld", l->min_time);
6909
6910 if (l->min_pid != l->max_pid)
6911 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6912 else
6913 seq_printf(seq, " pid=%ld",
6914 l->min_pid);
6915
6916 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6917 seq_printf(seq, " cpus=%*pbl",
6918 cpumask_pr_args(to_cpumask(l->cpus)));
6919
6920 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6921 seq_printf(seq, " nodes=%*pbl",
6922 nodemask_pr_args(&l->nodes));
6923
8ea9fb92
OG
6924#ifdef CONFIG_STACKDEPOT
6925 {
6926 depot_stack_handle_t handle;
6927 unsigned long *entries;
6928 unsigned int nr_entries, j;
6929
6930 handle = READ_ONCE(l->handle);
6931 if (handle) {
6932 nr_entries = stack_depot_fetch(handle, &entries);
6933 seq_puts(seq, "\n");
6934 for (j = 0; j < nr_entries; j++)
6935 seq_printf(seq, " %pS\n", (void *)entries[j]);
6936 }
6937 }
6938#endif
64dd6849
FM
6939 seq_puts(seq, "\n");
6940 }
6941
6942 if (!idx && !t->count)
6943 seq_puts(seq, "No data\n");
6944
6945 return 0;
6946}
6947
6948static void slab_debugfs_stop(struct seq_file *seq, void *v)
6949{
6950}
6951
6952static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6953{
6954 struct loc_track *t = seq->private;
6955
005a79e5 6956 t->idx = ++(*ppos);
64dd6849 6957 if (*ppos <= t->count)
005a79e5 6958 return ppos;
64dd6849
FM
6959
6960 return NULL;
6961}
6962
553c0369
OG
6963static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6964{
6965 struct location *loc1 = (struct location *)a;
6966 struct location *loc2 = (struct location *)b;
6967
6968 if (loc1->count > loc2->count)
6969 return -1;
6970 else
6971 return 1;
6972}
6973
64dd6849
FM
6974static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6975{
005a79e5
GS
6976 struct loc_track *t = seq->private;
6977
6978 t->idx = *ppos;
64dd6849
FM
6979 return ppos;
6980}
6981
6982static const struct seq_operations slab_debugfs_sops = {
6983 .start = slab_debugfs_start,
6984 .next = slab_debugfs_next,
6985 .stop = slab_debugfs_stop,
6986 .show = slab_debugfs_show,
6987};
6988
6989static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6990{
6991
6992 struct kmem_cache_node *n;
6993 enum track_item alloc;
6994 int node;
6995 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6996 sizeof(struct loc_track));
6997 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
6998 unsigned long *obj_map;
6999
2127d225
ML
7000 if (!t)
7001 return -ENOMEM;
7002
b3fd64e1 7003 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
2127d225
ML
7004 if (!obj_map) {
7005 seq_release_private(inode, filep);
b3fd64e1 7006 return -ENOMEM;
2127d225 7007 }
64dd6849
FM
7008
7009 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7010 alloc = TRACK_ALLOC;
7011 else
7012 alloc = TRACK_FREE;
7013
b3fd64e1
VB
7014 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7015 bitmap_free(obj_map);
2127d225 7016 seq_release_private(inode, filep);
64dd6849 7017 return -ENOMEM;
b3fd64e1 7018 }
64dd6849 7019
64dd6849
FM
7020 for_each_kmem_cache_node(s, node, n) {
7021 unsigned long flags;
bb192ed9 7022 struct slab *slab;
64dd6849 7023
8040cbf5 7024 if (!node_nr_slabs(n))
64dd6849
FM
7025 continue;
7026
7027 spin_lock_irqsave(&n->list_lock, flags);
bb192ed9
VB
7028 list_for_each_entry(slab, &n->partial, slab_list)
7029 process_slab(t, s, slab, alloc, obj_map);
7030 list_for_each_entry(slab, &n->full, slab_list)
7031 process_slab(t, s, slab, alloc, obj_map);
64dd6849
FM
7032 spin_unlock_irqrestore(&n->list_lock, flags);
7033 }
7034
553c0369
OG
7035 /* Sort locations by count */
7036 sort_r(t->loc, t->count, sizeof(struct location),
7037 cmp_loc_by_count, NULL, NULL);
7038
b3fd64e1 7039 bitmap_free(obj_map);
64dd6849
FM
7040 return 0;
7041}
7042
7043static int slab_debug_trace_release(struct inode *inode, struct file *file)
7044{
7045 struct seq_file *seq = file->private_data;
7046 struct loc_track *t = seq->private;
7047
7048 free_loc_track(t);
7049 return seq_release_private(inode, file);
7050}
7051
7052static const struct file_operations slab_debugfs_fops = {
7053 .open = slab_debug_trace_open,
7054 .read = seq_read,
7055 .llseek = seq_lseek,
7056 .release = slab_debug_trace_release,
7057};
7058
7059static void debugfs_slab_add(struct kmem_cache *s)
7060{
7061 struct dentry *slab_cache_dir;
7062
7063 if (unlikely(!slab_debugfs_root))
7064 return;
7065
7066 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7067
7068 debugfs_create_file("alloc_traces", 0400,
7069 slab_cache_dir, s, &slab_debugfs_fops);
7070
7071 debugfs_create_file("free_traces", 0400,
7072 slab_cache_dir, s, &slab_debugfs_fops);
7073}
7074
7075void debugfs_slab_release(struct kmem_cache *s)
7076{
aa4a8605 7077 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
64dd6849
FM
7078}
7079
7080static int __init slab_debugfs_init(void)
7081{
7082 struct kmem_cache *s;
7083
7084 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7085
7086 list_for_each_entry(s, &slab_caches, list)
7087 if (s->flags & SLAB_STORE_USER)
7088 debugfs_slab_add(s);
7089
7090 return 0;
7091
7092}
7093__initcall(slab_debugfs_init);
7094#endif
57ed3eda
PE
7095/*
7096 * The /proc/slabinfo ABI
7097 */
5b365771 7098#ifdef CONFIG_SLUB_DEBUG
0d7561c6 7099void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 7100{
57ed3eda 7101 unsigned long nr_slabs = 0;
205ab99d
CL
7102 unsigned long nr_objs = 0;
7103 unsigned long nr_free = 0;
57ed3eda 7104 int node;
fa45dc25 7105 struct kmem_cache_node *n;
57ed3eda 7106
fa45dc25 7107 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
7108 nr_slabs += node_nr_slabs(n);
7109 nr_objs += node_nr_objs(n);
205ab99d 7110 nr_free += count_partial(n, count_free);
57ed3eda
PE
7111 }
7112
0d7561c6
GC
7113 sinfo->active_objs = nr_objs - nr_free;
7114 sinfo->num_objs = nr_objs;
7115 sinfo->active_slabs = nr_slabs;
7116 sinfo->num_slabs = nr_slabs;
7117 sinfo->objects_per_slab = oo_objects(s->oo);
7118 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
7119}
7120
0d7561c6 7121void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 7122{
7b3c3a50
AD
7123}
7124
b7454ad3
GC
7125ssize_t slabinfo_write(struct file *file, const char __user *buffer,
7126 size_t count, loff_t *ppos)
7b3c3a50 7127{
b7454ad3 7128 return -EIO;
7b3c3a50 7129}
5b365771 7130#endif /* CONFIG_SLUB_DEBUG */