Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
10cef602 MM |
2 | /* |
3 | * SLOB Allocator: Simple List Of Blocks | |
4 | * | |
5 | * Matt Mackall <mpm@selenic.com> 12/30/03 | |
6 | * | |
6193a2ff PM |
7 | * NUMA support by Paul Mundt, 2007. |
8 | * | |
10cef602 MM |
9 | * How SLOB works: |
10 | * | |
11 | * The core of SLOB is a traditional K&R style heap allocator, with | |
12 | * support for returning aligned objects. The granularity of this | |
55394849 NP |
13 | * allocator is as little as 2 bytes, however typically most architectures |
14 | * will require 4 bytes on 32-bit and 8 bytes on 64-bit. | |
95b35127 | 15 | * |
20cecbae MM |
16 | * The slob heap is a set of linked list of pages from alloc_pages(), |
17 | * and within each page, there is a singly-linked list of free blocks | |
18 | * (slob_t). The heap is grown on demand. To reduce fragmentation, | |
19 | * heap pages are segregated into three lists, with objects less than | |
20 | * 256 bytes, objects less than 1024 bytes, and all other objects. | |
21 | * | |
22 | * Allocation from heap involves first searching for a page with | |
23 | * sufficient free blocks (using a next-fit-like approach) followed by | |
24 | * a first-fit scan of the page. Deallocation inserts objects back | |
25 | * into the free list in address order, so this is effectively an | |
26 | * address-ordered first fit. | |
10cef602 MM |
27 | * |
28 | * Above this is an implementation of kmalloc/kfree. Blocks returned | |
55394849 | 29 | * from kmalloc are prepended with a 4-byte header with the kmalloc size. |
10cef602 | 30 | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
6193a2ff | 31 | * alloc_pages() directly, allocating compound pages so the page order |
999d8795 EG |
32 | * does not have to be separately tracked. |
33 | * These objects are detected in kfree() because PageSlab() | |
d87a133f | 34 | * is false for them. |
10cef602 MM |
35 | * |
36 | * SLAB is emulated on top of SLOB by simply calling constructors and | |
95b35127 NP |
37 | * destructors for every SLAB allocation. Objects are returned with the |
38 | * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which | |
39 | * case the low-level allocator will fragment blocks to create the proper | |
40 | * alignment. Again, objects of page-size or greater are allocated by | |
6193a2ff | 41 | * calling alloc_pages(). As SLAB objects know their size, no separate |
95b35127 | 42 | * size bookkeeping is necessary and there is essentially no allocation |
d87a133f NP |
43 | * space overhead, and compound pages aren't needed for multi-page |
44 | * allocations. | |
6193a2ff PM |
45 | * |
46 | * NUMA support in SLOB is fairly simplistic, pushing most of the real | |
47 | * logic down to the page allocator, and simply doing the node accounting | |
48 | * on the upper levels. In the event that a node id is explicitly | |
96db800f | 49 | * provided, __alloc_pages_node() with the specified node id is used |
6193a2ff PM |
50 | * instead. The common case (or when the node id isn't explicitly provided) |
51 | * will default to the current node, as per numa_node_id(). | |
52 | * | |
53 | * Node aware pages are still inserted in to the global freelist, and | |
54 | * these are scanned for by matching against the node id encoded in the | |
55 | * page flags. As a result, block allocations that can be satisfied from | |
56 | * the freelist will only be done so on pages residing on the same node, | |
57 | * in order to prevent random node placement. | |
10cef602 MM |
58 | */ |
59 | ||
95b35127 | 60 | #include <linux/kernel.h> |
10cef602 | 61 | #include <linux/slab.h> |
97d06609 | 62 | |
10cef602 | 63 | #include <linux/mm.h> |
1f0532eb | 64 | #include <linux/swap.h> /* struct reclaim_state */ |
10cef602 MM |
65 | #include <linux/cache.h> |
66 | #include <linux/init.h> | |
b95f1b31 | 67 | #include <linux/export.h> |
afc0cedb | 68 | #include <linux/rcupdate.h> |
95b35127 | 69 | #include <linux/list.h> |
4374e616 | 70 | #include <linux/kmemleak.h> |
039ca4e7 LZ |
71 | |
72 | #include <trace/events/kmem.h> | |
73 | ||
60063497 | 74 | #include <linux/atomic.h> |
95b35127 | 75 | |
b9ce5ef4 | 76 | #include "slab.h" |
95b35127 NP |
77 | /* |
78 | * slob_block has a field 'units', which indicates size of block if +ve, | |
79 | * or offset of next block if -ve (in SLOB_UNITs). | |
80 | * | |
81 | * Free blocks of size 1 unit simply contain the offset of the next block. | |
82 | * Those with larger size contain their size in the first SLOB_UNIT of | |
83 | * memory, and the offset of the next free block in the second SLOB_UNIT. | |
84 | */ | |
55394849 | 85 | #if PAGE_SIZE <= (32767 * 2) |
95b35127 NP |
86 | typedef s16 slobidx_t; |
87 | #else | |
88 | typedef s32 slobidx_t; | |
89 | #endif | |
90 | ||
10cef602 | 91 | struct slob_block { |
95b35127 | 92 | slobidx_t units; |
55394849 | 93 | }; |
10cef602 MM |
94 | typedef struct slob_block slob_t; |
95 | ||
95b35127 | 96 | /* |
20cecbae | 97 | * All partially free slob pages go on these lists. |
95b35127 | 98 | */ |
20cecbae MM |
99 | #define SLOB_BREAK1 256 |
100 | #define SLOB_BREAK2 1024 | |
101 | static LIST_HEAD(free_slob_small); | |
102 | static LIST_HEAD(free_slob_medium); | |
103 | static LIST_HEAD(free_slob_large); | |
95b35127 | 104 | |
95b35127 NP |
105 | /* |
106 | * slob_page_free: true for pages on free_slob_pages list. | |
107 | */ | |
b8c24c4a | 108 | static inline int slob_page_free(struct page *sp) |
95b35127 | 109 | { |
b8c24c4a | 110 | return PageSlobFree(sp); |
95b35127 NP |
111 | } |
112 | ||
b8c24c4a | 113 | static void set_slob_page_free(struct page *sp, struct list_head *list) |
95b35127 | 114 | { |
adab7b68 | 115 | list_add(&sp->slab_list, list); |
b8c24c4a | 116 | __SetPageSlobFree(sp); |
95b35127 NP |
117 | } |
118 | ||
b8c24c4a | 119 | static inline void clear_slob_page_free(struct page *sp) |
95b35127 | 120 | { |
adab7b68 | 121 | list_del(&sp->slab_list); |
b8c24c4a | 122 | __ClearPageSlobFree(sp); |
95b35127 NP |
123 | } |
124 | ||
10cef602 | 125 | #define SLOB_UNIT sizeof(slob_t) |
a6d78159 | 126 | #define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT) |
10cef602 | 127 | |
afc0cedb NP |
128 | /* |
129 | * struct slob_rcu is inserted at the tail of allocated slob blocks, which | |
5f0d5a3a | 130 | * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free |
afc0cedb NP |
131 | * the block using call_rcu. |
132 | */ | |
133 | struct slob_rcu { | |
134 | struct rcu_head head; | |
135 | int size; | |
136 | }; | |
137 | ||
95b35127 NP |
138 | /* |
139 | * slob_lock protects all slob allocator structures. | |
140 | */ | |
10cef602 | 141 | static DEFINE_SPINLOCK(slob_lock); |
10cef602 | 142 | |
95b35127 NP |
143 | /* |
144 | * Encode the given size and next info into a free slob block s. | |
145 | */ | |
146 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) | |
147 | { | |
148 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | |
149 | slobidx_t offset = next - base; | |
bcb4ddb4 | 150 | |
95b35127 NP |
151 | if (size > 1) { |
152 | s[0].units = size; | |
153 | s[1].units = offset; | |
154 | } else | |
155 | s[0].units = -offset; | |
156 | } | |
10cef602 | 157 | |
95b35127 NP |
158 | /* |
159 | * Return the size of a slob block. | |
160 | */ | |
161 | static slobidx_t slob_units(slob_t *s) | |
162 | { | |
163 | if (s->units > 0) | |
164 | return s->units; | |
165 | return 1; | |
166 | } | |
167 | ||
168 | /* | |
169 | * Return the next free slob block pointer after this one. | |
170 | */ | |
171 | static slob_t *slob_next(slob_t *s) | |
172 | { | |
173 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | |
174 | slobidx_t next; | |
175 | ||
176 | if (s[0].units < 0) | |
177 | next = -s[0].units; | |
178 | else | |
179 | next = s[1].units; | |
180 | return base+next; | |
181 | } | |
182 | ||
183 | /* | |
184 | * Returns true if s is the last free block in its page. | |
185 | */ | |
186 | static int slob_last(slob_t *s) | |
187 | { | |
188 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); | |
189 | } | |
190 | ||
6e9ed0cc | 191 | static void *slob_new_pages(gfp_t gfp, int order, int node) |
6193a2ff PM |
192 | { |
193 | void *page; | |
194 | ||
195 | #ifdef CONFIG_NUMA | |
90f2cbbc | 196 | if (node != NUMA_NO_NODE) |
96db800f | 197 | page = __alloc_pages_node(node, gfp, order); |
6193a2ff PM |
198 | else |
199 | #endif | |
200 | page = alloc_pages(gfp, order); | |
201 | ||
202 | if (!page) | |
203 | return NULL; | |
204 | ||
205 | return page_address(page); | |
206 | } | |
207 | ||
6e9ed0cc AW |
208 | static void slob_free_pages(void *b, int order) |
209 | { | |
1f0532eb NP |
210 | if (current->reclaim_state) |
211 | current->reclaim_state->reclaimed_slab += 1 << order; | |
6e9ed0cc AW |
212 | free_pages((unsigned long)b, order); |
213 | } | |
214 | ||
95b35127 | 215 | /* |
130e8e09 TH |
216 | * slob_page_alloc() - Allocate a slob block within a given slob_page sp. |
217 | * @sp: Page to look in. | |
218 | * @size: Size of the allocation. | |
219 | * @align: Allocation alignment. | |
220 | * @page_removed_from_list: Return parameter. | |
221 | * | |
222 | * Tries to find a chunk of memory at least @size bytes big within @page. | |
223 | * | |
224 | * Return: Pointer to memory if allocated, %NULL otherwise. If the | |
225 | * allocation fills up @page then the page is removed from the | |
226 | * freelist, in this case @page_removed_from_list will be set to | |
227 | * true (set to false otherwise). | |
95b35127 | 228 | */ |
130e8e09 TH |
229 | static void *slob_page_alloc(struct page *sp, size_t size, int align, |
230 | bool *page_removed_from_list) | |
10cef602 | 231 | { |
6e9ed0cc | 232 | slob_t *prev, *cur, *aligned = NULL; |
10cef602 | 233 | int delta = 0, units = SLOB_UNITS(size); |
10cef602 | 234 | |
130e8e09 | 235 | *page_removed_from_list = false; |
b8c24c4a | 236 | for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) { |
95b35127 NP |
237 | slobidx_t avail = slob_units(cur); |
238 | ||
10cef602 MM |
239 | if (align) { |
240 | aligned = (slob_t *)ALIGN((unsigned long)cur, align); | |
241 | delta = aligned - cur; | |
242 | } | |
95b35127 NP |
243 | if (avail >= units + delta) { /* room enough? */ |
244 | slob_t *next; | |
245 | ||
10cef602 | 246 | if (delta) { /* need to fragment head to align? */ |
95b35127 NP |
247 | next = slob_next(cur); |
248 | set_slob(aligned, avail - delta, next); | |
249 | set_slob(cur, delta, aligned); | |
10cef602 MM |
250 | prev = cur; |
251 | cur = aligned; | |
95b35127 | 252 | avail = slob_units(cur); |
10cef602 MM |
253 | } |
254 | ||
95b35127 NP |
255 | next = slob_next(cur); |
256 | if (avail == units) { /* exact fit? unlink. */ | |
257 | if (prev) | |
258 | set_slob(prev, slob_units(prev), next); | |
259 | else | |
b8c24c4a | 260 | sp->freelist = next; |
95b35127 NP |
261 | } else { /* fragment */ |
262 | if (prev) | |
263 | set_slob(prev, slob_units(prev), cur + units); | |
264 | else | |
b8c24c4a | 265 | sp->freelist = cur + units; |
95b35127 | 266 | set_slob(cur + units, avail - units, next); |
10cef602 MM |
267 | } |
268 | ||
95b35127 | 269 | sp->units -= units; |
130e8e09 | 270 | if (!sp->units) { |
95b35127 | 271 | clear_slob_page_free(sp); |
130e8e09 TH |
272 | *page_removed_from_list = true; |
273 | } | |
10cef602 MM |
274 | return cur; |
275 | } | |
95b35127 NP |
276 | if (slob_last(cur)) |
277 | return NULL; | |
278 | } | |
279 | } | |
10cef602 | 280 | |
95b35127 NP |
281 | /* |
282 | * slob_alloc: entry point into the slob allocator. | |
283 | */ | |
6193a2ff | 284 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) |
95b35127 | 285 | { |
b8c24c4a | 286 | struct page *sp; |
20cecbae | 287 | struct list_head *slob_list; |
95b35127 NP |
288 | slob_t *b = NULL; |
289 | unsigned long flags; | |
130e8e09 | 290 | bool _unused; |
10cef602 | 291 | |
20cecbae MM |
292 | if (size < SLOB_BREAK1) |
293 | slob_list = &free_slob_small; | |
294 | else if (size < SLOB_BREAK2) | |
295 | slob_list = &free_slob_medium; | |
296 | else | |
297 | slob_list = &free_slob_large; | |
298 | ||
95b35127 NP |
299 | spin_lock_irqsave(&slob_lock, flags); |
300 | /* Iterate through each partially free page, try to find room */ | |
adab7b68 | 301 | list_for_each_entry(sp, slob_list, slab_list) { |
130e8e09 | 302 | bool page_removed_from_list = false; |
6193a2ff PM |
303 | #ifdef CONFIG_NUMA |
304 | /* | |
305 | * If there's a node specification, search for a partial | |
306 | * page with a matching node id in the freelist. | |
307 | */ | |
90f2cbbc | 308 | if (node != NUMA_NO_NODE && page_to_nid(sp) != node) |
6193a2ff PM |
309 | continue; |
310 | #endif | |
d6269543 MM |
311 | /* Enough room on this page? */ |
312 | if (sp->units < SLOB_UNITS(size)) | |
313 | continue; | |
6193a2ff | 314 | |
130e8e09 | 315 | b = slob_page_alloc(sp, size, align, &page_removed_from_list); |
d6269543 MM |
316 | if (!b) |
317 | continue; | |
318 | ||
130e8e09 TH |
319 | /* |
320 | * If slob_page_alloc() removed sp from the list then we | |
321 | * cannot call list functions on sp. If so allocation | |
322 | * did not fragment the page anyway so optimisation is | |
323 | * unnecessary. | |
324 | */ | |
325 | if (!page_removed_from_list) { | |
326 | /* | |
327 | * Improve fragment distribution and reduce our average | |
328 | * search time by starting our next search here. (see | |
329 | * Knuth vol 1, sec 2.5, pg 449) | |
330 | */ | |
adab7b68 TH |
331 | if (!list_is_first(&sp->slab_list, slob_list)) |
332 | list_rotate_to_front(&sp->slab_list, slob_list); | |
130e8e09 | 333 | } |
d6269543 | 334 | break; |
10cef602 | 335 | } |
95b35127 NP |
336 | spin_unlock_irqrestore(&slob_lock, flags); |
337 | ||
338 | /* Not enough space: must allocate a new page */ | |
339 | if (!b) { | |
6e9ed0cc | 340 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); |
95b35127 | 341 | if (!b) |
6e9ed0cc | 342 | return NULL; |
b5568280 CL |
343 | sp = virt_to_page(b); |
344 | __SetPageSlab(sp); | |
95b35127 NP |
345 | |
346 | spin_lock_irqsave(&slob_lock, flags); | |
347 | sp->units = SLOB_UNITS(PAGE_SIZE); | |
b8c24c4a | 348 | sp->freelist = b; |
adab7b68 | 349 | INIT_LIST_HEAD(&sp->slab_list); |
95b35127 | 350 | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); |
20cecbae | 351 | set_slob_page_free(sp, slob_list); |
130e8e09 | 352 | b = slob_page_alloc(sp, size, align, &_unused); |
95b35127 NP |
353 | BUG_ON(!b); |
354 | spin_unlock_irqrestore(&slob_lock, flags); | |
355 | } | |
9f88faee | 356 | if (unlikely(gfp & __GFP_ZERO)) |
d07dbea4 | 357 | memset(b, 0, size); |
95b35127 | 358 | return b; |
10cef602 MM |
359 | } |
360 | ||
95b35127 NP |
361 | /* |
362 | * slob_free: entry point into the slob allocator. | |
363 | */ | |
10cef602 MM |
364 | static void slob_free(void *block, int size) |
365 | { | |
b8c24c4a | 366 | struct page *sp; |
95b35127 NP |
367 | slob_t *prev, *next, *b = (slob_t *)block; |
368 | slobidx_t units; | |
10cef602 | 369 | unsigned long flags; |
d602daba | 370 | struct list_head *slob_list; |
10cef602 | 371 | |
2408c550 | 372 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
10cef602 | 373 | return; |
95b35127 | 374 | BUG_ON(!size); |
10cef602 | 375 | |
b5568280 | 376 | sp = virt_to_page(block); |
95b35127 | 377 | units = SLOB_UNITS(size); |
10cef602 | 378 | |
10cef602 | 379 | spin_lock_irqsave(&slob_lock, flags); |
10cef602 | 380 | |
95b35127 NP |
381 | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { |
382 | /* Go directly to page allocator. Do not pass slob allocator */ | |
383 | if (slob_page_free(sp)) | |
384 | clear_slob_page_free(sp); | |
6fb8f424 | 385 | spin_unlock_irqrestore(&slob_lock, flags); |
b5568280 | 386 | __ClearPageSlab(sp); |
22b751c3 | 387 | page_mapcount_reset(sp); |
1f0532eb | 388 | slob_free_pages(b, 0); |
6fb8f424 | 389 | return; |
95b35127 | 390 | } |
10cef602 | 391 | |
95b35127 NP |
392 | if (!slob_page_free(sp)) { |
393 | /* This slob page is about to become partially free. Easy! */ | |
394 | sp->units = units; | |
b8c24c4a | 395 | sp->freelist = b; |
95b35127 NP |
396 | set_slob(b, units, |
397 | (void *)((unsigned long)(b + | |
398 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); | |
d602daba BL |
399 | if (size < SLOB_BREAK1) |
400 | slob_list = &free_slob_small; | |
401 | else if (size < SLOB_BREAK2) | |
402 | slob_list = &free_slob_medium; | |
403 | else | |
404 | slob_list = &free_slob_large; | |
405 | set_slob_page_free(sp, slob_list); | |
95b35127 NP |
406 | goto out; |
407 | } | |
408 | ||
409 | /* | |
410 | * Otherwise the page is already partially free, so find reinsertion | |
411 | * point. | |
412 | */ | |
413 | sp->units += units; | |
10cef602 | 414 | |
b8c24c4a CL |
415 | if (b < (slob_t *)sp->freelist) { |
416 | if (b + units == sp->freelist) { | |
417 | units += slob_units(sp->freelist); | |
418 | sp->freelist = slob_next(sp->freelist); | |
679299b3 | 419 | } |
b8c24c4a CL |
420 | set_slob(b, units, sp->freelist); |
421 | sp->freelist = b; | |
95b35127 | 422 | } else { |
b8c24c4a | 423 | prev = sp->freelist; |
95b35127 NP |
424 | next = slob_next(prev); |
425 | while (b > next) { | |
426 | prev = next; | |
427 | next = slob_next(prev); | |
428 | } | |
10cef602 | 429 | |
95b35127 NP |
430 | if (!slob_last(prev) && b + units == next) { |
431 | units += slob_units(next); | |
432 | set_slob(b, units, slob_next(next)); | |
433 | } else | |
434 | set_slob(b, units, next); | |
435 | ||
436 | if (prev + slob_units(prev) == b) { | |
437 | units = slob_units(b) + slob_units(prev); | |
438 | set_slob(prev, units, slob_next(b)); | |
439 | } else | |
440 | set_slob(prev, slob_units(prev), b); | |
441 | } | |
442 | out: | |
10cef602 MM |
443 | spin_unlock_irqrestore(&slob_lock, flags); |
444 | } | |
445 | ||
95b35127 NP |
446 | /* |
447 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. | |
448 | */ | |
449 | ||
f3f74101 EG |
450 | static __always_inline void * |
451 | __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller) | |
10cef602 | 452 | { |
6cb8f913 | 453 | unsigned int *m; |
789306e5 | 454 | int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
3eae2cb2 | 455 | void *ret; |
55394849 | 456 | |
bd50cfa8 SR |
457 | gfp &= gfp_allowed_mask; |
458 | ||
d92a8cfc PZ |
459 | fs_reclaim_acquire(gfp); |
460 | fs_reclaim_release(gfp); | |
cf40bd16 | 461 | |
55394849 | 462 | if (size < PAGE_SIZE - align) { |
6cb8f913 CL |
463 | if (!size) |
464 | return ZERO_SIZE_PTR; | |
465 | ||
6193a2ff | 466 | m = slob_alloc(size + align, gfp, align, node); |
3eae2cb2 | 467 | |
239f49c0 MK |
468 | if (!m) |
469 | return NULL; | |
470 | *m = size; | |
3eae2cb2 EGM |
471 | ret = (void *)m + align; |
472 | ||
f3f74101 | 473 | trace_kmalloc_node(caller, ret, |
ca2b84cb | 474 | size, size + align, gfp, node); |
d87a133f | 475 | } else { |
3eae2cb2 | 476 | unsigned int order = get_order(size); |
d87a133f | 477 | |
8df275af DR |
478 | if (likely(order)) |
479 | gfp |= __GFP_COMP; | |
480 | ret = slob_new_pages(gfp, order, node); | |
3eae2cb2 | 481 | |
f3f74101 | 482 | trace_kmalloc_node(caller, ret, |
ca2b84cb | 483 | size, PAGE_SIZE << order, gfp, node); |
10cef602 | 484 | } |
3eae2cb2 | 485 | |
4374e616 | 486 | kmemleak_alloc(ret, size, 1, gfp); |
3eae2cb2 | 487 | return ret; |
10cef602 | 488 | } |
f3f74101 | 489 | |
f1b6eb6e | 490 | void *__kmalloc(size_t size, gfp_t gfp) |
f3f74101 | 491 | { |
f1b6eb6e | 492 | return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_); |
f3f74101 | 493 | } |
f1b6eb6e | 494 | EXPORT_SYMBOL(__kmalloc); |
10cef602 | 495 | |
f3f74101 EG |
496 | void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller) |
497 | { | |
498 | return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller); | |
499 | } | |
500 | ||
501 | #ifdef CONFIG_NUMA | |
82bd5508 | 502 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfp, |
f3f74101 EG |
503 | int node, unsigned long caller) |
504 | { | |
505 | return __do_kmalloc_node(size, gfp, node, caller); | |
506 | } | |
507 | #endif | |
f3f74101 | 508 | |
10cef602 MM |
509 | void kfree(const void *block) |
510 | { | |
b8c24c4a | 511 | struct page *sp; |
10cef602 | 512 | |
2121db74 PE |
513 | trace_kfree(_RET_IP_, block); |
514 | ||
2408c550 | 515 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
10cef602 | 516 | return; |
4374e616 | 517 | kmemleak_free(block); |
10cef602 | 518 | |
b5568280 CL |
519 | sp = virt_to_page(block); |
520 | if (PageSlab(sp)) { | |
789306e5 | 521 | int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
55394849 NP |
522 | unsigned int *m = (unsigned int *)(block - align); |
523 | slob_free(m, *m + align); | |
d87a133f | 524 | } else |
8cf9864b | 525 | __free_pages(sp, compound_order(sp)); |
10cef602 | 526 | } |
10cef602 MM |
527 | EXPORT_SYMBOL(kfree); |
528 | ||
d87a133f | 529 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ |
10d1f8cb | 530 | size_t __ksize(const void *block) |
10cef602 | 531 | { |
b8c24c4a | 532 | struct page *sp; |
999d8795 EG |
533 | int align; |
534 | unsigned int *m; | |
10cef602 | 535 | |
ef8b4520 CL |
536 | BUG_ON(!block); |
537 | if (unlikely(block == ZERO_SIZE_PTR)) | |
10cef602 MM |
538 | return 0; |
539 | ||
b5568280 | 540 | sp = virt_to_page(block); |
999d8795 EG |
541 | if (unlikely(!PageSlab(sp))) |
542 | return PAGE_SIZE << compound_order(sp); | |
543 | ||
789306e5 | 544 | align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
999d8795 EG |
545 | m = (unsigned int *)(block - align); |
546 | return SLOB_UNITS(*m) * SLOB_UNIT; | |
10cef602 | 547 | } |
10d1f8cb | 548 | EXPORT_SYMBOL(__ksize); |
10cef602 | 549 | |
d50112ed | 550 | int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags) |
10cef602 | 551 | { |
5f0d5a3a | 552 | if (flags & SLAB_TYPESAFE_BY_RCU) { |
278b1bb1 CL |
553 | /* leave room for rcu footer at the end of object */ |
554 | c->size += sizeof(struct slob_rcu); | |
039363f3 | 555 | } |
278b1bb1 | 556 | c->flags = flags; |
278b1bb1 | 557 | return 0; |
10cef602 | 558 | } |
10cef602 | 559 | |
c21a6daf | 560 | static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node) |
10cef602 MM |
561 | { |
562 | void *b; | |
563 | ||
bd50cfa8 SR |
564 | flags &= gfp_allowed_mask; |
565 | ||
d92a8cfc PZ |
566 | fs_reclaim_acquire(flags); |
567 | fs_reclaim_release(flags); | |
bd50cfa8 | 568 | |
3eae2cb2 | 569 | if (c->size < PAGE_SIZE) { |
6193a2ff | 570 | b = slob_alloc(c->size, flags, c->align, node); |
fe74fe2b | 571 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size, |
ca2b84cb EGM |
572 | SLOB_UNITS(c->size) * SLOB_UNIT, |
573 | flags, node); | |
3eae2cb2 | 574 | } else { |
6e9ed0cc | 575 | b = slob_new_pages(flags, get_order(c->size), node); |
fe74fe2b | 576 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size, |
ca2b84cb EGM |
577 | PAGE_SIZE << get_order(c->size), |
578 | flags, node); | |
3eae2cb2 | 579 | } |
10cef602 | 580 | |
128227e7 MW |
581 | if (b && c->ctor) { |
582 | WARN_ON_ONCE(flags & __GFP_ZERO); | |
51cc5068 | 583 | c->ctor(b); |
128227e7 | 584 | } |
10cef602 | 585 | |
4374e616 | 586 | kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); |
10cef602 MM |
587 | return b; |
588 | } | |
f1b6eb6e CL |
589 | |
590 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
591 | { | |
592 | return slob_alloc_node(cachep, flags, NUMA_NO_NODE); | |
593 | } | |
594 | EXPORT_SYMBOL(kmem_cache_alloc); | |
595 | ||
596 | #ifdef CONFIG_NUMA | |
597 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) | |
598 | { | |
599 | return __do_kmalloc_node(size, gfp, node, _RET_IP_); | |
600 | } | |
601 | EXPORT_SYMBOL(__kmalloc_node); | |
602 | ||
603 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node) | |
604 | { | |
605 | return slob_alloc_node(cachep, gfp, node); | |
606 | } | |
6193a2ff | 607 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
f1b6eb6e | 608 | #endif |
10cef602 | 609 | |
afc0cedb | 610 | static void __kmem_cache_free(void *b, int size) |
10cef602 | 611 | { |
afc0cedb NP |
612 | if (size < PAGE_SIZE) |
613 | slob_free(b, size); | |
10cef602 | 614 | else |
6e9ed0cc | 615 | slob_free_pages(b, get_order(size)); |
afc0cedb NP |
616 | } |
617 | ||
618 | static void kmem_rcu_free(struct rcu_head *head) | |
619 | { | |
620 | struct slob_rcu *slob_rcu = (struct slob_rcu *)head; | |
621 | void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); | |
622 | ||
623 | __kmem_cache_free(b, slob_rcu->size); | |
624 | } | |
625 | ||
626 | void kmem_cache_free(struct kmem_cache *c, void *b) | |
627 | { | |
4374e616 | 628 | kmemleak_free_recursive(b, c->flags); |
5f0d5a3a | 629 | if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) { |
afc0cedb NP |
630 | struct slob_rcu *slob_rcu; |
631 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); | |
afc0cedb NP |
632 | slob_rcu->size = c->size; |
633 | call_rcu(&slob_rcu->head, kmem_rcu_free); | |
634 | } else { | |
afc0cedb NP |
635 | __kmem_cache_free(b, c->size); |
636 | } | |
3eae2cb2 | 637 | |
ca2b84cb | 638 | trace_kmem_cache_free(_RET_IP_, b); |
10cef602 MM |
639 | } |
640 | EXPORT_SYMBOL(kmem_cache_free); | |
641 | ||
484748f0 CL |
642 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
643 | { | |
644 | __kmem_cache_free_bulk(s, size, p); | |
645 | } | |
646 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
647 | ||
865762a8 | 648 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
484748f0 CL |
649 | void **p) |
650 | { | |
651 | return __kmem_cache_alloc_bulk(s, flags, size, p); | |
652 | } | |
653 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
654 | ||
945cf2b6 CL |
655 | int __kmem_cache_shutdown(struct kmem_cache *c) |
656 | { | |
657 | /* No way to check for remaining objects */ | |
658 | return 0; | |
659 | } | |
660 | ||
52b4b950 DS |
661 | void __kmem_cache_release(struct kmem_cache *c) |
662 | { | |
663 | } | |
664 | ||
89e364db | 665 | int __kmem_cache_shrink(struct kmem_cache *d) |
2e892f43 CL |
666 | { |
667 | return 0; | |
668 | } | |
2e892f43 | 669 | |
9b030cb8 CL |
670 | struct kmem_cache kmem_cache_boot = { |
671 | .name = "kmem_cache", | |
672 | .size = sizeof(struct kmem_cache), | |
673 | .flags = SLAB_PANIC, | |
674 | .align = ARCH_KMALLOC_MINALIGN, | |
675 | }; | |
676 | ||
bcb4ddb4 DG |
677 | void __init kmem_cache_init(void) |
678 | { | |
9b030cb8 | 679 | kmem_cache = &kmem_cache_boot; |
97d06609 | 680 | slab_state = UP; |
10cef602 | 681 | } |
bbff2e43 WF |
682 | |
683 | void __init kmem_cache_init_late(void) | |
684 | { | |
97d06609 | 685 | slab_state = FULL; |
bbff2e43 | 686 | } |